TW201219847A - A photodiffusion film laminate - Google Patents
A photodiffusion film laminate Download PDFInfo
- Publication number
- TW201219847A TW201219847A TW100131189A TW100131189A TW201219847A TW 201219847 A TW201219847 A TW 201219847A TW 100131189 A TW100131189 A TW 100131189A TW 100131189 A TW100131189 A TW 100131189A TW 201219847 A TW201219847 A TW 201219847A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- film
- diffusing film
- diffusing
- brightness
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
201219847 六、發明說明: 【發明所屬之技術領域】 置時,亮度或照度高, 之光擴散薄膜積層體、 源裝置、及使用該面光 本發明關於使用於面光源裝 而且可減小亮度不均或照度不均 使用該光擴散薄膜積層體之面光 源裝置之顯示裝置或照明裝置。 【先前技術】 液晶顯示模組(LCD)係利田— 等的特徵,而多用作為平板顯二型、輕量、低消耗電力 電話、m#丨次β & ‘不器,其用途係作為行動 個人電腦、電視等的資訊 π 4不裝置而年年擴大著。. 為了抑制自光源到面板的傳達 免度’而在液晶單元的下面側 於液晶顯示裝置中, 路之損失’提.高面板上的 裝備有面光源裝置。 衣罝不僅使用於液晶 且使用於燈具或電飾看板等的廣泛領域 於面光源裝置中,組合面光源裝置的基本單元與透 :薄膜、光擴散薄膜及増亮薄膜等的各種光學薄膜或擴 :板等光學構件’而提高面光源裝置的亮度或照度,或 5某求的亮度或照度的均勻性之提高…般使用2〜4片的 光學構件(例如參照非專利文獻1)。 例如’有揭不使亮度提高用的透鏡薄膜(例如參照專 利文獻1)。 此透鏡薄膜由於利用透鏡的聚光效果而謀求亮度的 提向’可提高自正面眺望時的亮度’但具有與自正面眺 201219847 望時的亮度相比’自斜向眺窒時的亮度大幅陁 「田丨兮低,而且 4貝格尚之問題。 作為為解決上述與自正面眺望時的亮度相比,自斜 向眺望時的亮度大幅降低之問題的方法,有揭示除了透 鏡薄膜’還併用2片的異向性光擴散薄膜之技術(例如參 照專利文獻2)。 又,以上述透鏡薄膜一片,亮度的均勻性係不充分 ,有揭示組合透鏡薄膜與異向性的光擴散薄膜之技術( 參照專利文獻3)。 另外,有揭示於上述透鏡薄膜上’更併用增亮薄膜 之方法(例如參照專利文獻4)。然而’不能有效地減低亮 度的角度依賴性。 近年來’由於利用面光源裝置的顯示裝置等之快速 普及,而強烈要求更高亮度’且改善亮度的面内之均質 性或亮度的角度依賴性之面光源裝置。再者,從裝置的 薄型化或經濟性方面來看’強烈要求面光源裝置所用的 光學薄膜構件之片數減低。 因此’亦檢討對單一的基材薄膜本身賦予擴散性之 嘗試(例如參照專利文獻5)。 然而’專利文獻5中記載的薄膜係擴散度小,暗示 亮度的水平或面内亮度均質性及圖案隱蔽性等不充分。 另一方面,有揭示在由丙烯酸樹脂所成的導光板表 面上’塗佈由丙烯酸預聚物所成的液狀樹脂,在該塗佈 面上積層由聚碳酸酯樹脂所成的光擴散薄膜後,使上述 液狀樹脂硬化而一體化之方法(參照專利文獻6)。 201219847 — 利文獻6中’關於由聚碳酸酯樹脂所成的光擴散 薄膜根據所§己載的圖,係利用表面突起所致的光之擴 散或放射的表面擴散型光擴散薄膜,但沒有揭示其具體 的内容或光學特性。 又’有揭不複合使用異向性的内部光擴散薄膜與等 向性的表面光擴散薄膜之方法(參照專利文獻7參照), 及複:使用異向性的内部光擴散薄m、等向性的表面光 擴散薄膜及稜鏡之方法(參照專利文獻 上 述 專 利 文 獻 7 及 8 中 件 間 或 面 光 源 單 元 而 評 價 > 亮 度 提 效 果 〇 此 等 技 術 係 均 的 減 低 者 > 記 載 有 效 地 利 差 〇 另 一 方 面 5 於 傳 送 信 息 示 裝 置 〇 照 顯 示 裝 置 係 rHI-5又 印 刷 有 信 息 的、内 容 之 透 光 性 光 昭 射 於 印 刷 體 不 論 電 昭 t 亮 度 為 何 5 而 經 常 傳 達 所 印 用 導 引 用 、 的 地 顯 示 用 示 用 及 遊 戲 機 的 顯 示 用 等 而 於 廣 告 用 或 導 引 板 等 的 亮 度 5 同 時 亮 度 的 均 質 性 > 像 的 機 能 0 因 此 5 必 須 使 昭 昭 4 明 裝 置 或 印 刷 體 賦 予 光 擴 揭示的技術皆僅疊合上述構 沒有言及構件的貼合所致的 針對燈像的消去性或亮度不 用各層與空隙部分的折射率 的顯示裝置之一,有電照顯 置一種在照明裝置的出光部 印刷體,將來自照明裂置的 顯示裝置所設置的空間之明 刷的信息者,例如作為廣告 、家電、OA機器、車輛的顯 使用於許多的領域中。 大型裝置時’要求向的表面 即消去照明裝置的光源之燈 明裝置的光源之光擴散,對 散機能。 201219847 例如,有揭示在印刷體的單面上積層發泡樹脂層, 藉由發泡樹脂層中的氣泡而將光擴散之方法(例如參照 專利文獻9)。 又,有揭示藉由使用具有光擴散性的印墨,對印刷 體本身賦予光擴散性之方法(例如參照專利文獻1 〇及11) 〇 近年來,要求照明裝置的光源之明亮度的提高,而 且電照顯示裝置的薄型化。又,對於電照顯示裝置,亦 要求節能。基於如此的背景,強烈希望開發出能進一步 提高回應此等要求的電照顯示裝置之顯示部的正面亮度 ,而且減小亮度不均之電照顯示裝置,或可適用於該電 照顯示裝置的構件。 [先前技術文獻] [專利文獻] [專利文獻1]特開2004-4970號公報 [專利文獻2]特開2008-256797號公報 [專利文獻3]特開2006-25 1 395號公報 [專利文獻4]特表平09-506985號公報 [專利文獻5]特開2007- 10798號公報 [專利文獻6]特開平06-32421 6號公報 [專利文獻7]特開2010-443 19號公報 [專利文獻8]特開2010-44320號公報 [專利文獻9]特開平07-92922號公報 [專利文獻10]特開2009-1 89669號公報 [專利文獻11]特開20 1 0-49 1 1 8號公報 201219847 [非專利文獻] [非專利文獻1 ]内田龍男監修「圖解電子顯示器大全」( 工業調査會刊)P47〜48 【發明内容】 [發明所欲解決的問題] 本發明係解決上述習知技術的問題點者,目的在於 提供一種光擴散薄膜積層體,其具有當使用於面光源裝 置時,亮度或照度高’而且該亮度或照度的不均可減小 之特疋光學特性及構成。又’目的在於提供—種使用該 光擴散薄膜的面光源裝置,及一種使用該面光源裝置的 顯示裝置或照明裝置。還有,本發明之目的在於提供一 種光擴散薄膜積層體’其具有當使用於電照顯示裝置時 ,焭度咼’而且费度不均可減小之特定光學特性及構成 。又,目的在於提供一種電照顯示裝置,其使用該光擴 散薄膜積層體’亮度高’而且亮度不均小,更節能化。 [解決問題的手段] 本發明具有以下(1)〜(27)的構成。 (1) 一種光擴散薄膜積層體,其特徵為將同時滿足下 述(1)〜(in)的内部光擴散薄膜(八)與55〇ηιη的全光線透 過率為50〜100%的基材(c)積層所成,而且在兩者的界 面沒有空氣層: (1)波長550nm的光之全光線透過率為4〇〜84% ; (η)主擴散方向的波長55〇nm之光在出射角3〇度的透 過度(ho)對在出射角〇度的透過度(1〇)之比例(ΐ3〇/Ι〇χ1〇〇) 為 8.0〜95% ; (1U)55〇nm的波長之光的變曲率為4.0〜100%。 201219847 (2) 如(1)記載的光擴 薄膜⑷含有由互相非It膜積層體’其中内部光擴散 混合物所成之層。相…至少兩種熱塑性樹脂的 (3) 如(2)記载的光择处^ ^ 擴政溥膜積層體,其中非相溶性的 知ί脂之至少一種係聚烯烴系樹脂。 ⑷如⑺記載的光擴散薄膜積層體,其中非相溶的敎 塑性樹脂之兩種係聚烯烴系樹脂❶ ‘、、' (5) 如⑷記載的光擴散薄膜積層體,其中非相溶的孰 塑性樹脂之兩種係環狀聚烯烴系樹脂及聚乙埼系樹脂: (6) 如⑷或(5)記載的光擴散薄膜積層體,其中在内 4光擴散薄膜(Α)的至少_面上,積層有由聚烯煙系樹脂 所成的表面層。 ⑺如(6)記載的光擴散薄膜積層體其中形成該表面 層的聚烯烴系樹脂係由含有極性基的聚烯烴樹脂所構成 (8) 如(7)記載的光擴散薄膜積層體,其中含有極性基 的聚烯烴樹脂係至少含有竣基。 (9) 如(1)〜(8)中任一項記載的光擴散薄膜積層體, 其中基材(C)係由樹脂及/或玻璃所構成。 (1〇)如(9)記載的光擴散薄膜積層體,其中基材(c) 係積層在内部光擴散薄膜(Α)的兩面。 (Π)—種正下方型面光源裝置’其特徵為使用如(1) 〜(10)中任一項記載的光擴ΐ欠薄膜積層體於單面的出射 面〇 201219847 (1 2) —種正下方型面光源裝置,其特徵為使用如(1) 〜(10)中任一項記載的光擴散薄膜積層體於兩面的出射 面。 (13) —種顯示裝置,其係使用如(1 1)或(12)記載的正 下方型面光源裝置所成。 (14) 一種照明裝置,其特徵為使用如(u)或(丨2)記載 的正下方型面光源裝置所成。 (15) 如(1)〜(9)中任一項記載的光擴散薄膜積層體 ’其含有擴散面的平均面積為6 00〜5000 μπι2的表面光擴 散薄膜(Β)當作構成材料。 (16) 如(15)記載的光擴散薄膜積層體,其中内部光擴 散薄膜(Α)、表面光擴散薄膜(Β)及基材(C)的積層順序係 選自於下述⑴〜(iii): (i) 表面光擴散薄膜(B)/内部光擴散薄膜(A)/基材(C); (ii) 表面光擴散薄膜(B)/基材(C)/内部光擴散薄膜(A); (iii) 表面光擴散薄膜(B)/内部光擴散薄膜(A)/基材(C)/ 内部光擴散薄膜(A) » (17) 如(15)或(16)記載的光擴散薄膜積層體,其中表 面光擴散薄膜(B)係藉由賦型而附有表面凹凸。 (18) 如(15)或(16)記載的光擴散薄膜積層體,其中表 面光擴散薄膜(B)係藉由含有微粒子的層而附有表面凹 凸。 (19)如(15)〜(18)令任一項記載的光擴散薄膜積層 體,其中使内部光擴散薄膜(A)與表面光擴散薄膜(B)疊 合而複合。 201219847 (2 0 ) —種面光源裝置,其特徵為使用如(1 5 )〜(1 9 )中 任一項記載的光擴散薄膜積層體於出射面的至少一面所 成。 (21) —種面光源裝置,其特徵為使用如(15)〜(19)中 任一項記載的光擴散薄膜積層體於出射面的兩面所成。 (22) —種顯示裝置,其特徵為使用如(19)或(2〇)記栽 的面光源裝Ϊ所成。 (23) —種照明裝置,其特徵為使用如(1 9)或(2〇)記栽 的面光源裝置所成。 (24) 如(1)〜(10)中任一項記載的光擴散薄膜積層體 ,其含有印刷層(D)當作構成材料。 (25) 如(24)記載的光擴散薄膜積層體,其含有表 擴散薄膜(Β)當作構成材料。 (26) 種電,、、、顯不裝置,其特徵為將如㈣或己 載的光擴散薄膜積層體設置於照明裝置的出光面所成。 (27) 如(26) s己載的電昭韻干駐里 一壯$ A _ ,,、、.’,、員不裝置,其具有藉由電照顯 不裝置的周圍之明亮度來調節 之明亮度的手段。 3即電照顯-裝置的照明裝薏 [發明的效果] 特以光的, 學係面率能 光,於效可 定材用光成 特基使出變 有的故或化 具性,率度 於特層效照 由學積光高 , 光下出或。 體定態的化性 層特狀置度質 積有的裝亮岣 膜、具層源高的 薄與氣光的度 散膜空面置照 擴薄有高裝或 光散沒提源度 的擴面可光亮 明光界,面高 發部的時,提 本内者置性可 的兩震勻且 性在源均而 -11 - 201219847 又本發明的光擴散薄膜積層 定光學特性的内部光擴散薄膜㈧與具有由::由具有特 的表面光擴散薄膜(B) ,义表面構造 薄膜之積層體所構成,故使:::法光不:兩種光擴散 面光源裝置的出光效率或出 , 原、裝置時’可提高 置的高亮度化或高照度化變成;:的均勾性,面光源裝 照度的均質性。 此而且可提尚亮度或 ’由於積層印刷層與具 膜’按照所欲更積層具 膜’故使用於電照顯示 之出光效率或該出光效 示部可高亮度化,而且 本發明的光擴散薄膜積層體 有特定光學特性的内部光擴散薄 有特疋表面構造的表面光擴散薄 裝置時,可提高照明裝置的光源 率的均勻性,電照顯示裝置的顯 可提高亮度的均質性。 因此,藉由減低面光源梦 括止風$ 2 I置的光源之輸出減低或各 種先學溥膜的使用片數,可接^ ^ 阿面光源裝置的經濟性。 又,藉由上述面光源裝罟& η ^ 置的使用,可謀求顯示裝置 及照明裴置的性能升高或經声 ^ „ .. Η 的升高。 另外,本發明的電照顯示 ^ ^ . _ 展置,當所設置的場所為 明亮時’即使不點亮電照4頁 不裝置的照明裝置,也由於 内σ卩光擴散薄膜具有高的反私 > 久射特性,而可藉由外光的明 兜度來非常清晰地辨識所顯 ^ ^ 的化息。因此,當所设置 的場所為明亮時,玎以停止昭 ^ τ止照明襞置的點燈之方式,對 應於外光的明亮度’藉由調飭 即固定於電照顯示裝置的照 月農置之明亮度,而謀求照明眭π 73裝置的節能化。 -12- 201219847 【實施方式】 [實施發明的形態] (光擴散薄膜積層體) 本發明的光擴散薄膜積層體重要的是將同時滿足下 述(1)〜(111)的内部光擴散薄膜(八)與55〇nm的全光線透 過率為50〜100%的基材(C)積層所成,而且在兩者的界 面沒有空氣層。 (1)波長550nm的光之全光線透過率為4〇〜84%。 (η)主擴散方向的波長550 nm之光在出射角30度的透 過度(13〇)對在出射角〇度的透過度(1〇)之比例(ΐ3〇/Ι〇χ iOOK擴散度比率)為8.0〜95%。 (iii)55〇nm的波長之光的變曲率為* 〇〜ι〇〇%。 又本务明的光擴散薄膜積層體係可含有擴散面的 平均面積為600〜5000μιη2的表面光擴散薄膜(B)當作構 成材料。再者,本發明的光擴散薄膜積層體係可含有印 刷層(D)當作構成材料。 (内部光擴散薄膜(A)的光學特性) 本發明的内部光擴散薄膜(A)必須同時滿足以下的 ⑴〜(iii)。 (1)波長550nm的光之全光線透過率為4〇〜84%。 GO主擴散方向的波長550nm之光在出射角3〇度的透 過度(ho)對在出射角〇度的透過度(1〇)之比例丨〇〇) 為 8·〇 〜95%。 (Ul)550nm的波長之光的變曲率為4·0〜100%。 -13- 201219847 本毛明中’著眼於5 5 0 n m的波長之光。此係基於對 人類的眼睛而言,波長55〇nm附近的光之分光視感效率 係最南。 (全光線透過率) 本發明中的全光線透過率係藉由實施例中記載的方 法測疋而求得。即,以主擴散方向呈水平的方式,固定 於自圯分光光度計的試料台而測定。此係因為當為等向 地擴散之薄膜時,即使改變薄膜的固定方向,全光線透 、°率也/又有變化,但當為在特定方向將光擴散的所謂之 異向性擴散薄膜時,全光線透過率係隨著測定時的薄膜 之固义方向而變化。全光線透過率由於係以積分球受光 而測定’故認為不會隨著本來薄膜的固定方向而變化, 仁於異向性擴散薄膜時,因為會隨其固定方向而全光線 透過率大幅變化而是一種應對方式。 主擴散方向例如可以使雷射標記器的光通過薄膜時 的透過光之擴散來判斷。即,將以雷射標記器使光透過 薄膜時的出射光擴散之方向#作主擴散方向。再者,以 該主擴散方向呈水平方向而固定測定時,全光線透過率 其理由雖然未確定,但 置之影響。茲認為是否因為 直接入射於積分球的受光部 直接入射的擴散光之影響。 再者,後述的實施例中 的測定裝置中所用的積分球 推測由於積分球的受光部位 主擴散方向的擴散光若成為 之位置關係,則強烈受到此 記載的本發明之測定法使用 ,由於係在積分球的上部頂 -14- 201219847 到直接入射於此 而成為反映真的 點設置受光部,故料想係使用最不易受 受光部的光之影響的方向中之測定值, 全光線透過率之值。 此,重要的是使用實施例記載的測 的自記分光光度計(uv-3150;島津製作 : 分球的裝置卿.3氣·島津製作所公司製)進㈣定附積 全光線透過率更佳為43〜㈣。全光線透過率若古 於本發明的範圍’則亮度不均變大而不宜。相反地,: 低於本發明的範圍,則亮度變低而不宜。 (擴散度比率) 擴散度比率係一種新擴散度之尺度,盆反映以 別⑽的波長之光在出射肖3〇度的透過度(μ對在出射 角〇度的透過度(1〇)之比例(l3〇/I()X⑽)所表示的正 度與擴散性透過度之平衡。即,與擴散度比率成比例, 擴散性透過度的比率變高。 為了提咼亮度,較佳為提高正透過性。然而,正 過度右變向則允度變高’ 4旦亮度不均亦變大。為了抑制 亮度不均,必須提高擴散性透過度。一般地,正透過性 與擴散性透過度係成反比例。目此,亮度與亮度不均係 成為二律背反現象。於sΑ了使高亮度與低的亮度不 均並存,重要是成為適度的擴散度比率。 擴政度比率更佳為1 〇〜9 〇 %。擴散度比率若低於本 發明的範圍,則擴散性不足,亮度不均變大而不宜。相 反也右南於本發明的範圍,則與上述全光線透過率的 圍之並存係技術上變困難,亮度降低而不宜。 -15- 201219847 更佳為2〇〜9〇%’尤佳為25〜9。%。 Η " ;Μ糸藉由實施例中的記載的方法來 (變曲率) 7 /¾:木承传。 變曲率係顯示使光入射於光擴散 膜中的過程,光的進行方向-曲的所謂光二=的專 2面:=高角度所入射的光經由變曲== ^ 出射的光量與照原樣直進的光量之程产的尺 度。該變曲率係以實施例中記載的: t明者等新確立的評價尺度。以相對於6〇二角= 時6〇度的角度直進的光之透過度而 :角度入射 曲至_内通_過的變 Γ二某音義)上方向出射的光之透過度的比率表示。因 、' " ,亦可視為表不對正面的聚央4要夕 尺度。因此,此變曲率女β 眾先效果之 種透鏡效果。羊大的先擴散缚膜亦可視為兼具- 排除後述的基材與内部光擴散薄膜㈧之 層時’變曲率例如是隔著密接層的積層作用於:: 效杲之尺度。 儿度杈冋 本發明中的内部光擴散薄膜⑷具有比習知 散薄膜或透鏡薄膜大的㈣Λm 的九擴 地展現本發明的的…果。因此’推測可有效率 #變曲率較佳為10〜80%,更佳為2〇〜8〇 右比本發明的範圍低’則後述本發明的重要要素之一的 在内部光擴散薄膜(A)與基材⑹的界面沒有空氣層:: 杲係降低而不宜。相反地,若比本發明的範圍高,貝二 ^述與全光線透過率或擴散度比率的並存與兼顧係變困 -16· 201219847 (異向性度) 定。中’内部光擴散薄膜(A)的異向性度係沒有限 :二 何方向皆大致均等地擴散之所謂等向性201219847 VI. Description of the Invention: [Technical Field] The present invention relates to a light diffusing film laminate, a source device, and a surface light used in the present invention. A display device or an illumination device using the surface light source device of the light-diffusing film laminate in a uniform or illuminance manner. [Prior Art] The liquid crystal display module (LCD) is a feature of Litian--, etc., and is used as a flat-panel type II, lightweight, low-consumption electric telephone, and m#丨β & The information of personal computers, televisions, etc. π 4 is not installed and is expanding year by year. In order to suppress the transmission of the light source to the panel, the lower side of the liquid crystal cell is in the liquid crystal display device, and the loss of the path is provided on the high panel with the surface light source device. The plaque is used not only in liquid crystal but also in a wide range of fields such as lamps or electric kanbans in surface light source devices. The basic unit of the combined surface light source device and various optical films such as thin films, light diffusing films, and bright films are expanded. In the case of an optical member such as a plate, the brightness or illuminance of the surface light source device is increased, or the uniformity of brightness or illuminance is improved, and 2 to 4 optical members are used (see, for example, Non-Patent Document 1). For example, a lens film for improving brightness is not disclosed (for example, refer to Patent Document 1). In the lens film, the brightness of the lens is improved by the condensing effect of the lens, which can improve the brightness from the front view, but has a sharper brightness than the brightness from the front 眺201219847. "The method of solving the above problem is that the brightness of the self-oblique viewing is greatly reduced compared with the brightness when viewed from the front, and it is disclosed that the lens film is used in combination. A technique of an anisotropic light-diffusing film of a sheet (for example, see Patent Document 2). Further, the uniformity of luminance is insufficient in one of the above-mentioned lens films, and there is a technique for revealing a combined lens film and an anisotropic light-diffusing film ( Refer to Patent Document 3). Further, there is a method of using a brightening film in combination with the above-mentioned lens film (for example, refer to Patent Document 4). However, 'the angle dependence of brightness cannot be effectively reduced. The display device of the device is rapidly popularized, and the higher brightness is strongly demanded, and the in-plane homogeneity of brightness or the angular dependence of brightness is improved. In addition, from the viewpoint of thinning or economical efficiency of the device, the number of optical film members used in the surface light source device is strongly reduced. Therefore, an attempt to impart diffusibility to a single substrate film itself has been reviewed ( For example, the film disclosed in Patent Document 5 has a small degree of diffusion, and suggests that the level of brightness or the in-plane brightness uniformity and pattern concealability are insufficient. On the other hand, it is disclosed by an acrylic resin. On the surface of the light guide plate, a liquid resin formed of an acrylic prepolymer is applied, and a light diffusion film made of a polycarbonate resin is laminated on the coated surface, and then the liquid resin is cured and integrated. (refer to Patent Document 6). 201219847 - Patent Document 6 'About the light diffusing film made of a polycarbonate resin, according to the figure of §, the surface of the light diffusion or radiation by surface protrusion Diffusion-type light-diffusing film, but does not reveal its specific content or optical properties. Also, the combination of anisotropic internal light-diffusing film and isotropic table A method of using a light-diffusing film (refer to Patent Document 7), and a method of using an isotropic internal light-diffusing thin film m, an isotropic surface light-diffusing film, and a crucible (refer to Patent Documents 7 and 8 of the patent documents). Evaluation of the inter-part or surface light source unit> The brightness improvement effect is reduced by the technical system> The effective interest rate is described. On the other hand, the transmission information display device display device rHI-5 is printed again. The light-transmissive light of the information and the content of the light is transmitted to the printing body, and the display or the display of the game machine is often conveyed for use in the display or the display of the game machine, regardless of the brightness of the printed matter. Luminance of the brightness, etc., and homogeneity of the brightness at the same time, the function of the image, and therefore the technique of providing the optical expansion of the device or the printed body is only superimposed on the above-mentioned structure without the bonding of the member. Elimination One of the display devices whose brightness does not use the refractive index of each layer and the gap portion, and the presence of an electric brush in the light exit portion of the illumination device, and the information of the space provided by the display device from the illumination split, for example, It is used in many fields as advertisements, home appliances, OA machines, and vehicles. In the case of a large device, the surface to be directed is the light source that eliminates the light source of the illumination device, and the light source of the device is diffused to disperse the machine. 201219847 For example, there is a method of laminating a foamed resin layer on one side of a printed body and diffusing light by bubbles in the foamed resin layer (see, for example, Patent Document 9). In addition, there is a method of imparting light diffusibility to a printed body by using an ink having light diffusibility (for example, refer to Patent Documents 1 and 11). In recent years, the brightness of a light source of an illumination device is required to be improved. Moreover, the electro-optical display device is thinned. Further, for the electro-optical display device, energy saving is also required. Based on such a background, it is strongly desired to develop an electro-optical display device capable of further improving the front luminance of the display portion of the electrophotographic display device that responds to such requirements, and to reduce uneven brightness, or to be applicable to the electro-optical display device. member. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2008-256797 [Patent Document 3] JP-A-2006-25 [Patent Document 5] Japanese Laid-Open Patent Publication No. H07-32421. [Patent Document 10] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Non-patent document] [Non-Patent Document 1] Uchida Natsuo, "Introduction to Graphical Electronic Display" (Industrial Survey) P47 to 48 [Disclosure] [The problem to be solved by the invention] The present invention solves the above-mentioned The problem of the prior art is to provide a light-diffusing film laminate having a characteristic optical property and composition which is high in brightness or illuminance when used in a surface light source device and which is incapable of reducing the luminance or illuminance. . Further, it is an object of the invention to provide a surface light source device using the light diffusing film, and a display device or a lighting device using the surface light source device. Further, an object of the present invention is to provide a light-diffusing film laminate which has a specific optical characteristic and a constitution which are reduced in thickness when used in an electro-optical display device. Further, it is an object of the invention to provide an electro-optical display device which uses the light-diffusing film laminate to have a high brightness and which has a small luminance unevenness and is more energy-saving. [Means for Solving the Problem] The present invention has the following configurations (1) to (27). (1) A light-diffusing film laminate which is characterized in that the internal light-diffusing film (8) and 55 〇ηηη of the following (1) to (in) have a total light transmittance of 50 to 100%. (c) The layer is formed, and there is no air layer at the interface between the two: (1) The total light transmittance of light having a wavelength of 550 nm is 4 〇 to 84%; (η) the light having a wavelength of 55 〇 nm in the main diffusion direction is The ratio of the transmittance (ho) of the exit angle of 3 degrees to the transmittance (1〇) at the exit angle (ΐ3〇/Ι〇χ1〇〇) is 8.0 to 95%; (1U) the wavelength of 55〇nm The curvature of the light is 4.0 to 100%. 201219847 (2) The optically-expanded film (4) as described in (1) contains a layer formed of a mixture of internal light diffusions of the non-It film laminates. (3) At least two thermoplastic resins as described in (2), wherein at least one of the non-compatible impregnated greases is a polyolefin-based resin. (4) The light-diffusing film laminate according to (7), wherein the two types of polyolefin resin are incompatible with the non-coherent ruthenium plastic resin, and the light-diffusing film laminate according to (4) is incompatible. (2) The light-diffusing film laminate according to (4) or (5), wherein at least the inner light diffusing film (Α) is at least _ On the surface, a surface layer made of a polyolefin resin is laminated. (7) The polyolefin-based resin in which the surface layer is formed in the light-diffusing film laminate according to the above (6), which is composed of a polyolefin resin containing a polar group. (8) The light-diffusing film laminate according to (7), which contains The polar-based polyolefin resin contains at least a mercapto group. (9) The light-diffusing film laminate according to any one of (1) to (8) wherein the substrate (C) is composed of a resin and/or glass. (1) The light-diffusing film laminate according to (9), wherein the substrate (c) is laminated on both surfaces of the internal light-diffusing film. (Π)—a type of direct-surface light source device </ RTI> characterized in that the light-expanding film laminate according to any one of (1) to (10) is used on one side of the exit surface 〇201219847 (1 2) — A direct-surface light source device is characterized in that the light-diffusing film laminate according to any one of (1) to (10) is used on both sides of the exit surface. (13) A display device using a direct-surface light source device as described in (1 1) or (12). (14) An illumination device characterized by using a direct-surface light source device as described in (u) or (丨2). (15) The light-diffusing film laminate according to any one of (1) to (9), which comprises a surface light-diffusing film (Β) having an average area of the diffusion surface of from 600 to 5000 μm 2 as a constituent material. (16) The light-diffusing film laminate according to (15), wherein the order of lamination of the internal light-diffusing film (Α), the surface light-diffusing film (Β), and the substrate (C) is selected from the following (1) to (iii) : (i) surface light diffusing film (B) / internal light diffusing film (A) / substrate (C); (ii) surface light diffusing film (B) / substrate (C) / internal light diffusing film (A); Iii) Surface light-diffusing film (B)/internal light-diffusing film (A)/substrate (C)/internal light-diffusing film (A) » (17) The light-diffusing film laminate according to (15) or (16), The surface light-diffusing film (B) is provided with surface irregularities by forming. (18) The light-diffusing film laminate according to (15) or (16), wherein the surface light-diffusing film (B) is provided with a surface concavity by a layer containing fine particles. (19) The light-diffusing film laminate according to any one of (15) to (18), wherein the internal light-diffusing film (A) and the surface light-diffusing film (B) are laminated and laminated. 201219847 (20) A surface light source device comprising the light-diffusing film laminate according to any one of (1) to (1), which is formed on at least one surface of the emission surface. (21) A surface light source device comprising the light-diffusing film laminate according to any one of (15) to (19) formed on both sides of an exit surface. (22) A display device characterized by using a surface light source device such as (19) or (2). (23) A lighting device characterized by using a surface light source device such as (1 9) or (2〇). (24) The light-diffusing film laminate according to any one of (1) to (10), which comprises a printed layer (D) as a constituent material. (25) The light-diffusing film laminate according to (24), which comprises a surface-diffused film (Β) as a constituent material. (26) An electric device, a device, and a display device, characterized in that a light-diffusing film laminate according to (4) or a load is provided on a light-emitting surface of an illumination device. (27) If (26) s has been carried by the electric Zhao Yungan in a strong $ A _,,,,.', the staff does not install, it has the brightness of the surroundings by the illumination of the device The means of brightness. 3, that is, the lighting installation of the device - the effect of the invention [special effect] The light of the light, the rate of the surface of the light can be light, and the light can be made into a special material or the chemistry. The degree of effect on the special layer is high by light, and light is out. The solidified layer of the body is characterized by a bright enamel film, a thin layer with a high source of light, and a diffuse film with a high light source. The thin surface has a high-energy or light-scattering source. The surface can be bright and bright, and when the surface is high, the two can be placed in the same place and the source is uniform. -11 - 201219847 The light diffusing film of the present invention also has an optical property of the internal light diffusing film (8) And having a laminate consisting of: a surface light diffusing film (B) having a special surface, and a film having a surface structure, so that::: law light is not: the light-emitting efficiency of the two light-diffusing surface light source devices, In the case of the device, it is possible to increase the brightness of the device or to increase the illuminance; the uniformity of the surface and the uniformity of the illumination of the surface light source. In addition, the brightness can be increased or the light-emitting efficiency of the light-emitting display can be increased or the light-emitting portion can be increased in brightness due to the laminated film and the film being laminated as desired. When the internal light diffusion having a specific optical property of the thin film laminate has a surface light diffusion thin device having a special surface structure, the uniformity of the light source ratio of the illumination device can be improved, and the uniformity of the luminance of the electrophotographic display device can be improved. Therefore, the economics of the light source device can be improved by reducing the output of the light source of the surface light source and the light source of the light source. Further, by using the above-described surface light source mounting & η ^, the performance of the display device and the illumination device can be improved or the sound can be increased. Further, the electrophotographic display of the present invention ^ ^ . _ Spreading, when the location is bright, even if the lighting device is not illuminated by 4 pages, the internal σ-diffusion film has high anti-privateness and long-time characteristics. The brightness of the displayed light is clearly recognized by the brightness of the external light. Therefore, when the set place is bright, the way to stop the lighting of the illumination is corresponding to The brightness of the external light is adjusted to the brightness of the illumination device by the illuminating display device, and the energy consumption of the 眭π 73 device is improved. -12-201219847 [Embodiment] [Formation of the Invention] (Light-diffusing film laminate) The light-diffusing film laminate of the present invention is important in that the internal light-diffusing film (8) satisfying the following (1) to (111) and the total light transmittance at 55 〇 nm are 50. ~100% of the substrate (C) is laminated, and there is no interface between the two (1) The total light transmittance of light with a wavelength of 550 nm is 4 〇 to 84%. (η) The transmittance at a wavelength of 550 nm in the main diffusion direction at an exit angle of 30 degrees (13 〇) at the exit angle The ratio of the transmittance (1〇) of the twist (ΐ3〇/Ι〇χ iOOK diffusivity ratio) is 8.0 to 95%. (iii) The curvature of the light of the wavelength of 55〇nm is * 〇 ~ι〇〇% Further, the light diffusing film layering system of the present invention may contain a surface light diffusing film (B) having an average surface area of 600 to 5000 μm 2 as a constituent material. Further, the light diffusing film layering system of the present invention may contain a printed layer ( D) As a constituent material. (Optical characteristics of the internal light-diffusing film (A)) The internal light-diffusing film (A) of the present invention must satisfy the following (1) to (iii) at the same time. (1) Total light of light having a wavelength of 550 nm The transmittance is 4〇~84%. The transmittance of the light at a wavelength of 550nm in the main diffusion direction of the GO at the exit angle of 3 degrees (ho) to the transmittance at the exit angle (1〇) is 8·〇~95%. (Ul) The 550mm wavelength of light has a curvature of 4·0~100%. -13- 201219847 本毛明中' focuses on 5 5 0 The light of the wavelength of nm is based on the human eye, and the spectral sensibility of light near the wavelength of 55 〇 nm is the southernmost. (Total light transmittance) The total light transmittance in the present invention is implemented by The method described in the example is obtained by measuring the flaw, that is, the sample is fixed to the sample stage of the spectrophotometer in such a manner that the main diffusion direction is horizontal. This is because even when the film is diffused in an isotropic manner, even if it is changed The direction of the film is fixed, the total light transmittance, and the ° rate are also changed, but when it is a so-called anisotropic diffusion film that diffuses light in a specific direction, the total light transmittance is determined by the film. Change in direction. Since the total light transmittance is measured by the light received by the integrating sphere, it is considered that it does not change with the direction in which the film is fixed. When the film is diffused in an anisotropic manner, the total light transmittance greatly changes depending on the direction in which it is fixed. It is a way of coping. The main diffusion direction can be judged, for example, by diffusion of transmitted light when the light of the laser marker passes through the film. That is, the direction in which the emitted light is diffused when the light is transmitted through the film by the laser marker is used as the main diffusion direction. Further, when the main diffusion direction is measured in the horizontal direction and fixed, the reason for the total light transmittance is not determined, but it is affected. It is considered that it is because of the influence of the diffused light directly incident on the light receiving portion of the integrating sphere. In addition, the integrating sphere used in the measuring apparatus of the embodiment described later is estimated to be strongly used by the measuring method of the present invention described above because the diffused light in the main diffusing direction of the light receiving portion of the integrating sphere is in a positional relationship. In the upper part of the integrating sphere, the upper part of the integral beam is placed at the point where it is directly incident on the point of the light, and the light receiving unit is set to reflect the light that is most unlikely to be affected by the light of the light receiving unit. value. Therefore, it is important to use the self-recording spectrophotometer (uv-3150; Shimadzu: Seiki equipment, 3 gas, Shimadzu Corporation) which is described in the examples. 43~(4). If the total light transmittance is in the range of the present invention, the unevenness in brightness becomes large, which is not preferable. Conversely, if it is lower than the range of the present invention, the brightness becomes low and it is not preferable. (Diffusion ratio) The diffusion ratio is a measure of the degree of new diffusion. The basin reflects the transmittance of the light of the wavelength of (10) at the emission angle (the transparency of the μ at the exit angle (1〇). The ratio of the positiveness expressed by the ratio (l3〇/I()X(10)) to the diffuse transmittance. That is, the ratio of the diffuse transmittance is higher than the ratio of the diffusivity, and it is preferable to increase the brightness. Positive permeability. However, when the excessive right direction changes, the degree of convergence becomes higher. 4 The brightness unevenness also increases. In order to suppress uneven brightness, it is necessary to increase the diffuse transmittance. Generally, the positive transmittance and the diffuse transmittance. Therefore, the brightness and brightness unevenness are the opposite phenomenon. In sΑ, high brightness and low brightness unevenness coexist, and it is important to become a moderate diffusion ratio. The degree of expansion ratio is preferably 1 〇~ If the diffusivity ratio is lower than the range of the present invention, the diffusibility is insufficient, and the unevenness of brightness is not preferable. Conversely, if it is within the scope of the present invention, it is coexistence with the above-mentioned total light transmittance. Technically difficult, brightness drop It is not suitable. -15- 201219847 Better 2〇~9〇%' especially good for 25~9.%. Η ";Μ糸 By the method described in the example (variable curvature) 7 /3⁄4: The variation of the curvature shows the process of making light incident on the light-diffusing film. The direction of the light--the so-called two-plane of the so-called light two = the amount of light that is incident at a high angle via the distortion == ^ The scale of the amount of light that goes straight as it is. The variable curvature is the newly established evaluation scale, such as the one described in the examples. The light is straightforward at an angle of 6 degrees to 6 degrees. The transmittance is represented by the ratio of the transmittance of the light emitted from the upper direction to the angle of incidence _ to _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Because , ' " , can also be regarded as a positive indicator of the positive side of the central government. Therefore, this variable curvature female β first effect of the lens effect. The first diffusion bonding film of the sheep can also be regarded as having the same effect - when the layer of the substrate and the internal light-diffusing film (8) described later is excluded, the variable curvature is, for example, a layer which is interposed between the adhesion layer and the surface layer. The internal light-diffusing film (4) of the present invention has a nine-dimensional expansion of (four) Λm larger than that of the conventional dispersion film or lens film. Therefore, it is assumed that the effective curvature is preferably 10 to 80%, more preferably 2 to 8 Å, and is lower than the range of the present invention, and the internal light-diffusing film (A) is one of the important elements of the present invention to be described later. ) There is no air layer at the interface with the substrate (6): The lanthanide system is not suitable for reduction. Conversely, if it is higher than the scope of the present invention, the coexistence of the ratio of the total light transmittance or the diffusivity of the shell is described as -16·201219847 (the degree of anisotropy). The anisotropy of the medium internal light-diffusing film (A) is not limited: the so-called isotropic property in which the directions are roughly equally diffused.
擴散’亦可為任—蛀a + H ^ JIJL ,於異向抖"、向擴散的所謂異向性擴散。惟 使用時& #加丄# 忙戚溽犋(Α)時,必須注意實際 使用時的内部光擴散薄膜之設置方向。 即’必須以在實際使時 卞n 于华乂佳的方向中將光擴散之 万式e又置。例如’於如 & ^ , ^ WS之先源為線狀的情況, 為了減小亮度不均,内部光擴散 K 艽顆政溥膜的主擴散方向較佳 為^又置在與光源的長度方 ., 又的方向。若對應於該 Π丨可更提高與使用等向性高的内部光擴散薄膜以 =度不均比較時的亮度。因此,異向性度高者可說 疋更佳。 異向性度例如係可藉由前述方法等來控制。里向性 度較佳為〇.8以上’更佳為2·0以上,尤佳為10以上。 (半值寬擴散度) 本發明的㈣光錢薄膜以實施例中記冑的方 測定的波長440nm之光的主擴散方向之配光分布 半值寬較佳為19度以上,更佳為5〇度以上,尤佳為: 度以上’上限係1 5 0度附近。 半值寬若低於19度,則亮度不均變大而不宜。另— 方面,若超過15〇度則技術上困難,而且亮度 : 係降低。 果 (内部光擴散薄膜(A)之構成) 201219847 本發明的光擴散薄膜 薄膜,只要β目+ 9肢中所使用的内部光擴散 /專膜(Α卜要疋具有藉由薄膜的内部所 分而使光擴散的機能 先擴散成 出含有由在透明Γ;=φ則沒有限定。例如,可舉 射率的微粒子而成合與該樹脂不同折 在該微粒子與基質擴散薄膜,於光通過薄膜時 至少兩種互相非使光散射而擴散者,或由 海/島法或含右此、 掺合物所成的所謂含有 一、^ — ”連續相法構造所成的層之光擴散薄膜 ,於光通相膜時藉由在海/島相或共連續相的界 散射而擴散者等。又,可舉出上述方法所組合的方法, 又,本發明中的内部光擴散薄膜係可為單層,也可 為二層以上的多層構成。於多層構成時,至少一層若係 由在透明基質樹脂層中摻合與該基質樹脂不同折射率的 微粒子而成的層或至少兩種的非相溶性樹脂之摻合物所 構成之所謂由海/島法或共連續相法構造所成的層,則其 它層亦可為不具有光擴散性的僅是透明層。又,全部層 亦可為光擴散層的構成。 9 於上述構成之中,由至少兩種的互相非相溶性的樹 脂之摻合物所成之所謂含有由海/島法或共連續相法構 造所成的層之内部光擴散薄膜,由於不需要含有非熔融 性的微粒子當作將光擴散的成分,故即使以熔融壓出成 型法來實施,在製膜步驟的熔融樹脂之過濾中,也可減 低過;慮盗的堵塞,生產性優異’同時具有所得之薄膜的 澄清度亦高的特徵。 18 - 201219847 本發明的内部光擴散薄膜係如後述,重要的為在光 通過薄膜内時,遭遇光擴散成分所致的複數次散射之所 明多重散射效果,光擴散成分的薄膜之厚度方向的平均 直徑較佳為薄膜的厚度之至少1/2以下,更佳為1/3以 下’尤佳為1 /1 〇以下。 例如,以電子顯微鏡觀察薄膜的戴面時,在厚度方 向晝出任意的直線時’該線上所存在的粒子之數目較佳 為5個以上’更佳為i 〇個以上’尤佳為個以上。 _上述内部光擴散薄膜(A)由於面内的光學特性之均 勻f生為重要’故光擴散成分較佳為儘可能均句地存在於 面内。然而,只要確保面内的光學特性之均勻性,則關 於厚度方向的光擴散成分之均勾性係不拘。例如亦可 局部存在於厚度方向的特定部分。 (至少兩種的互相非相溶性之熱塑性樹脂的混合物) 於本發明中,作為5 φ # μ 马至乂兩種的互相非相溶性的熱塑 性树知之混合物中所用的埶 ,、、、jf生树脂,例如可舉出聚乙 席系树脂、聚丙稀系樹脂、聚 ^.. 聚丁烯系树脂、環狀聚烯烴 系樹脂及聚甲基戊烯系樹脂等 ,i+ r钿寺的聚烯烴系樹脂、聚酯系 , ♦本乙烯系樹脂、聚碳酸酯系樹 知、氟系樹脂及此等的共聚物等。 可由此等熱塑性樹脂中異 、於人w 選擇互相非相溶性(互相不 ,.H v兩種類,從可安定地展現上述 特性及經濟性之點來看,較 槲w 為至少—種係由聚烯烴系 树脂所構成。 -19- 201219847 作為兩種類樹脂的 酯系樹脂及氟系樹脂==庸聚:烴系樹脂、聚 求特性或、經濟t生等而適宜選擇。,、光予特性以外的要 Η !上Ϊ !"少兩種的互相非相溶性的熱塑性樹脂之配A 比例,各自以質量比表示較佳為1。/9。〜9_,;圭: 20/80〜80/20,更佳a ,Λ/ί7Λ 尚佳為 旯住為30/70〜70/30的比例。 特別地從财光性或經濟性之點來 皆使用聚稀烴系樹月旨 佳為兩種 两檀树知的折射率差較佳Λ 〜0.07的範圍。更佳Λ n w Λ 权住為0.003 〜〇 02β 4 0.05〜°·005的範圍,尤佳為0·01 使用:ί tf少兩種的互相非相溶性的熱塑性樹脂所 使用的熱塑性树脂之熔體流速,例如於海/島法時,由於 取決於炼體流速的組合而大幅變化,光學特性會變化: 故可按照所要求的光學特性或島相的大小或形狀來適宜 選擇。 例如,上述兩種皆使用聚烯烴系樹脂時,各自在23〇 °c所測定的熔體流速為〇」〜1〇〇的範圍之適宜組人係 實施。 《 ” 於本發明中,如前述,較佳為對擴散度賦予異向性 。為了賦予該特性,較佳為在島構造具有異向性Y為了 形成如此形狀的島構造,較佳為使海成分樹脂與島成分 樹脂之熔融黏度具有差異。特別地,島成分的熔融黏1 較佳為比海成分還低。因此,例如,較佳為給予熔體流 速的差,較佳為使島成分的熔體流速比海成分高。又, 方較佳使海成分樹脂與島成分樹脂的剛性具有差異。特 別地,較佳為使島成分的剛性比海成分還低。 -20- 作為環狀聚烯烴系樹脂 201219847 又 於島成分的溶體流速低時,由於模頭 〆牵拉而難以施予島成分變細的力,異向性 貝I比愈偏離5〇/5〇,則該傾向愈強。考慮此等 行各特性的調整。 兩種樹腸例如為環狀聚烯烴系樹脂與聚乙 的組合’可容易安定地得到本發明的光學特性 生優異而較佳。又,亦具有耐紫外線安定性優 衣十一稀等具有環狀的聚烯烴構造者。 入例如’可舉出(1)於對降冰片烯系單體的 s物按知、需要進行如馬來酸附加、二環戊 ,D物改性後,而氫化的樹脂,(2)使降冰片 仃加成型聚合的樹脂,(3)使降冰片烯系單體 歸^等的%蛵系卩冑進行加成型聚合的樹脂 及氫化方法係可藉由常用方法來進行。 作為聚乙締系樹脂,可為單一聚合物, :共聚物時,較佳為50莫耳%以上係乙 a聚乙稀系樹脂的密度或聚合方法等亦沒 且使用密度為〇 9〇q .909以下的共聚物。例如, 締、丁稀、己描 碎 辛烯等的共聚物。聚合方 戍金屬觸媒法及非_ — 非一戊金屬觸媒法中的任一: 特別地,從可 7 ^ < j文疋賦予高擴散性之點來 乙稀與辛烯的嵌段丘 出D0W化學公司广聚物。例如,作為該 Θ 製的 INFUSE(TM)。 内的剪切 會降低。 傾向,進 烯系樹脂 ,且經濟 異的特徵 片稀或四 環(共)聚 稀附加之 系單體進 乙稀或α-。聚合方 可為共聚 成分。 限定,較 舉出與丙 係可為二 〇 ,較宜使 脂’可舉 -21 - 201219847 使用乙烯與辛烯的嵌段共聚物之較佳理由雖然未確 定,但推測與環狀聚烯烴系樹脂的相溶性係比其它聚烯 烴系樹脂優異之貢獻。 於環狀聚烯烴系樹脂與聚乙烯系樹脂的組合時,較 佳為將聚乙烯系樹脂當作海相,而且使該海相的聚乙烯 系樹脂之熔體流速比島相的環狀聚烯烴系樹脂之熔體流 速還高。 於環狀聚烯烴系樹脂與聚乙烯系樹脂的組合時,較 佳為全部樹脂量中配合1 0〜6 〇質量。/。的環狀聚烯烴系樹 脂’更佳為配合1 〇〜5 0質量%。 上述樹脂係可由一般市售的通用性高之樹脂中選擇 但為了對應於可女疋生產等,亦可使用特別訂購品。 上述中所詳述的部分終究是例示,不受此等所限定 。只要在滿足上述光學特性範圍内適宜選擇即可。 (由聚烯烴樹脂所成的層之積層) 於本發明中,作為前述至少兩種的互相非相溶性的熱 塑性樹脂之混合物,當兩種皆使用聚浠烴系樹脂時,較佳 為在由至少兩種的聚烯烴系樹脂之混合物所成的層之至 少一面上,積層主要由聚烯烴系樹脂所成的表面層。 藉由上述表面層的形成,在熔融壓出製膜時,可抑 制在模頭的出口所發生者,例如抑制稱為「口模焦料」 的在模頭出口發生的樹脂劣化物造成的附著物之^生」, 故可長時間安定地連續製膜。又,例如在使用乙烯與辛 烯的嵌段共聚物等柔軟性聚烯烴系樹脂時,抑制所發生 的内部光擴散薄膜之黏連性。 " -22- 201219847 .車丄述表層之形成時所用的聚歸煙系樹脂,因展現黏 七I7制等之效果等,較佳為使用結晶性的樹脂。 ::上述表層之形成時所用的聚烯煙系樹脂,較佳 2 3有極性基的聚烯烴樹脂。藉此,可提高與内部 光擴散薄膜(A)的其它素材之接著性。例如,於後述的光 擴散溥膜積層片之製造中’可謀求與塑勝片的接著性之 提高。又,可賦予與作為光學用材料所廣泛使用的丙烯 酸系樹脂或聚碳酸酯系樹脂之熱接著性。 上述含有極性基的聚烯烴樹脂,較佳為在其骨架中 含有乙烯、丙烯、丁烯、己烯、辛烯、曱基戊烯及環狀 烯烴中的至少一種單體。 可為使用一種的上述單體之均聚物,也可為使用兩 種以上的單體之共聚物。 本發明中之上述含有極性基的聚烯烴樹脂,較佳為 含有至少一種的極性基。作為極性基’可舉出羧酸基、 磺酸基、膦酸基、羥基、環氧丙基、異氰酸酯基、胺基 、醯亞胺基、噚唑啉基、酯基、醚基、羧酸金屬鹽基、 磺酸金屬鹽基、膦酸金屬鹽基、三級胺鹽基或四級胺鹽 基專。该極性基係可為一種,也可含有兩種以上。極性 基只要按照構成内部光擴散層的聚烯烴系樹脂之組成或 密接對象的構件之種類或所需要的密接力等來適宜選擇 即可,較佳為至少含有羧基。 又,本發明中之含有極性基的聚烯烴樹脂,係可在 聚烯烴樹脂的高分子鏈中直接導入極性基,而且也可為 導入其它樹脂中、添加、混合的狀態。又,視情況而定 -23- 201219847 ,本發明的聚烯烴樹脂亦可在分子鏈的末端或内部導入 ’例如使羧酸基或羥基與可和此等反應的化合物反應而 改性使用。 於本發明中’上述含有極性基的聚稀煙樹脂係可單 獨一種使用,也可為摻合有兩種以上的摻合組成物。又 ’亦可為摻合有不含極性基的聚烯烴樹脂或其它種類的 樹脂之摻合組成物。於該摻合組成物時,較佳為含有1 〇 質量%以上的上述含有極性基的聚烯烴樹脂,更佳為含 有3 0質量%以上。 上述含有極性基的聚烯烴樹脂較佳為由結晶性的樹 脂所構成。樹脂的熔點較佳為1 〇 〇〜1 8 〇。〇。 上述含有極性基的聚烯烴樹脂只要具有上述特性則 /又有限定,例如作為接著性聚烯烴系樹脂所市售的樹脂 係可適用。例如,可舉出Admer樹脂(TM,三井化學公 司製)、M〇diC樹脂(TM,三菱化學公司製)或Adtex樹脂 (TM,曰本聚乙烯公司性)及B〇ndfast樹脂(頂,住友化 學公司製),並沒有特別的限定。 藉由在上述内部光擴散層上,積層由含有極性基的 聚烯烴樹脂所成的層,與僅由光擴散層的單層所成的内 部光擴散薄膜⑷4目比’可提高與其它素材的接著性。又 ,可改善薄膜的防黏連性或潛袖 认> ^ 迓性次,月陡、内部光擴散薄膜(A)Diffusion can also be the so-called anisotropic diffusion of 蛀a + H ^ JIJL , in the anisotropic chatter, to diffusion. However, when using &#加丄# busy Α (Α), attention must be paid to the direction in which the internal light diffusing film is actually used. That is, it must be set again in the direction in which the light is diffused in the direction in which it is actually used. For example, in the case where the source of _ & ^ ^ , ^ WS is linear, in order to reduce the uneven brightness, the internal light diffusion K 艽 溥 的 的 的 的 的 的 的 的 的 的 的 的 的 的Fang., Again. According to this enthalpy, the brightness when compared with the internal light-diffusing film having high isotropicity is compared with the degree of unevenness. Therefore, those with higher anisotropy can say that they are better. The degree of anisotropy can be controlled, for example, by the aforementioned method or the like. The degree of tropism is preferably 〇. 8 or more, and more preferably 2.0 or more, and particularly preferably 10 or more. (half-value wide diffusivity) The half-value width of the light distribution of the light distribution in the main diffusion direction of the light having a wavelength of 440 nm measured by the method of the present invention in the fourth embodiment is preferably 19 or more, more preferably 5 Above the twist, it is especially good: Above the degree, the upper limit is around 150 degrees. If the half value width is less than 19 degrees, the unevenness in brightness becomes large. On the other hand, if it exceeds 15 degrees, it is technically difficult, and the brightness is reduced. Fruit (Composition of Internal Light-Diffusing Film (A)) 201219847 The light-diffusing film film of the present invention is used as long as the internal light diffusion/special film used in the β-mesh + 9 limbs The function of diffusing the light first diffuses into a transparent Γ; = φ is not limited. For example, the fine particles of the radiant ratio are combined with the resin to fold the film between the fine particles and the matrix, and the light passes through the film. a light diffusing film of at least two layers which are formed by a sea/island method or a so-called continuous phase method comprising a mixture of the first and the second. In the case of a light-passing phase film, it is diffused by scattering at the boundary of the sea/island phase or the co-continuous phase, etc. Further, a method in which the above method is combined may be mentioned, and the internal light-diffusing film in the present invention may be a single The layer may be composed of two or more layers. In the case of a multilayer structure, at least one layer may be a layer obtained by blending fine particles having a refractive index different from that of the matrix resin in the transparent matrix resin layer, or at least two non-phases. Blend resin blend In the case of a layer formed by a sea/island method or a co-continuous phase method, the other layer may be a transparent layer which does not have light diffusibility, and all layers may also be a light diffusion layer. Among the above configurations, an internal light-diffusing film comprising a layer formed of a sea/island method or a co-continuous phase method, which is a mixture of at least two mutually incompatible resins, is not required. Since the non-melting fine particles are used as a component for diffusing light, even if it is carried out by a melt extrusion molding method, it can be reduced in the filtration of the molten resin in the film forming step, and the clogging is considered to be excellent in productivity. At the same time, the obtained film has a high degree of clarity. 18 - 201219847 The internal light diffusing film of the present invention is as follows, and it is important that the light is diffused by the light diffusing component when the light passes through the film. The multiple scattering effect, the average diameter of the film of the light-diffusing component in the thickness direction is preferably at least 1/2 of the thickness of the film, more preferably 1/3 or less, and particularly preferably 1 / 1 〇 or less. For example, with an electron microscope View When the film is worn on the surface, when the arbitrary line is drawn in the thickness direction, the number of particles present on the line is preferably 5 or more. More preferably, more than one or more are more than one. _ The above internal light diffusion The film (A) is important because the uniform optical properties of the in-plane are important. Therefore, the light-diffusing component is preferably present in the plane as uniformly as possible. However, as long as the uniformity of the optical characteristics in the plane is ensured, the thickness is The uniformity of the light diffusing component in the direction is not limited. For example, it may be locally present in a specific portion in the thickness direction. (A mixture of at least two mutually incompatible thermoplastic resins) In the present invention, as 5 φ # μ horse Examples of the yttrium, yt, and jf raw resin used in the mixture of two kinds of mutually incompatible thermoplastic trees include, for example, a polyethylene-based resin, a polypropylene resin, and a polybutylene resin. , a polyolefin resin such as a cyclic polyolefin resin or a polymethyl pentene resin, a polyolefin resin of i+ r钿 Temple, a polyester system, a vinyl resin, a polycarbonate resin, a fluorine resin, and the like. Copolymers, etc. It is possible to select mutually different in the thermoplastic resin, and to select mutually incompatible (not mutually, .H v, from the point of view that the above characteristics and economy can be stably exhibited, and at least —w is at least It is composed of a polyolefin-based resin. -19-201219847 It is suitable as an ester-based resin and a fluorine-based resin of two types of resins: a hydrocarbon-based resin, a polymerization property, an economical property, and the like. The ratio of the ratio of the two types of mutually incompatible thermoplastic resins is preferably 1. In terms of mass ratio, it is preferably 1. 1 / 9 ~ 9_,; Gui: 20/80~80 /20, Better a, Λ/ί7Λ Shang Jia is a ratio of 30/70 to 70/30. Especially from the point of view of the financial property or economics, the use of the polyhydrocarbon tree is the best. The difference in refractive index between the two sandalwoods is preferably Λ 〜0.07. More preferably Λ nw Λ The weight is 0.003 ~ 〇02β 4 0.05~°·005 range, especially preferably 0·01 Use: ί tf less The melt flow rate of the thermoplastic resin used for the mutually incompatible thermoplastic resin, for example, in the sea/island method, depending on the refining body The combination of the speed changes greatly, and the optical characteristics change: Therefore, it can be appropriately selected according to the required optical characteristics or the size or shape of the island phase. For example, when the above two types of polyolefin resin are used, each is at 23 ° C. The measured melt flow rate is suitably in the range of 〇"~1". In the present invention, as described above, it is preferred to impart anisotropy to the degree of diffusion. In order to form an island structure having such an shape in the island structure, it is preferable to have a difference in melt viscosity between the sea component resin and the island component resin. In particular, the melt viscosity of the island component is preferably more than the sea component. Therefore, for example, it is preferred to give a difference in melt flow rate, and it is preferred that the melt flow rate of the island component is higher than that of the sea component. Further, it is preferable to make the rigidity of the sea component resin and the island component resin different. Preferably, the rigidity of the island component is lower than that of the sea component. -20- As the cyclic polyolefin resin 201219847, when the solution flow rate of the island component is low, it is difficult to apply the island component due to the pulling of the die head. Thinning The force, the anisotropy Bay I ratio deviates from 5〇/5〇, the stronger the tendency. Consider the adjustment of the characteristics of these lines. The two kinds of tree intestines are, for example, the combination of cyclic polyolefin resin and polyethylene. The optical characteristics of the present invention can be easily and stably obtained, and it is also preferable to have a polyolefin structure having a ring shape such as an ultraviolet-resistant stability and an excellent clothing, and the like. The slab of the borneol-based monomer is subjected to, for example, maleic acid addition, dicyclopentan, D-modification, and hydrogenated resin, and (2) precipitation of the norbornene resin, (3) The resin and the hydrogenation method for subjecting the norbornene-based monomer to the % oxime system to be subjected to addition polymerization can be carried out by a usual method. The polyethylenic resin may be a single polymer, and when the copolymer is used, it is preferably 50 mol% or more, and the density or polymerization method of the ethyl b-poly resin is not used, and the density is 〇9〇q. a copolymer of .909 or less. For example, a copolymer of butyl, butyl, and octene. Any one of a polymeric bismuth metal catalyst method and a non- _- pentad metal catalyst method: in particular, a block of ethylene and octene is given from a point where a high diffusivity is imparted to the surface. D0W Chemical Company Polymers. For example, as the INFUSE(TM) of this control. The cut inside will be reduced. The tendency is to enter the olefinic resin, and the characteristics of the economy are different. The thin or tetracyclic (co) polyaddition monomer is added to ethylene or α-. The polymerization can be a copolymerization component. Restricted, it can be said that it can be diterpene with C. It is better to use the same as the C--21-201219847. The preferred reason for using the block copolymer of ethylene and octene is not determined, but it is presumed to be a cyclic polyolefin system. The compatibility of the resin is superior to that of other polyolefin-based resins. When a combination of a cyclic polyolefin resin and a polyethylene resin is used, it is preferable to use a polyethylene resin as a sea phase, and to make a melt flow rate of the sea phase polyethylene resin to be a cyclic polyolefin of an island phase. The melt flow rate of the resin is also high. In the case of a combination of a cyclic polyolefin resin and a polyethylene resin, it is preferred to blend 10 to 6 Torr of the total resin amount. /. The cyclic polyolefin-based resin is more preferably used in an amount of from 1 〇 to 50% by mass. The resin may be selected from generally available resins of high versatility, but special ordering products may be used in order to correspond to the production of niece. The parts detailed above are illustrative and are not limited by these. It suffices that it is appropriately selected within the range in which the above optical characteristics are satisfied. (Lamination of a layer made of a polyolefin resin) In the present invention, as a mixture of at least two kinds of mutually incompatible thermoplastic resins, when both types of polyalkylene-based resins are used, it is preferred to On at least one side of the layer formed by the mixture of at least two polyolefin resins, a surface layer mainly composed of a polyolefin resin is laminated. By the formation of the surface layer, it is possible to suppress the occurrence of the deterioration of the resin at the exit of the die, which is called "mouth mold", when the film is melted and extruded. The material can be continuously produced in a stable manner for a long time. Further, for example, when a flexible polyolefin-based resin such as a block copolymer of ethylene and octene is used, the adhesion of the internal light-diffusing film which occurs is suppressed. " -22- 201219847 . The polynitrogenic resin used in the formation of the surface layer is preferably a crystalline resin because it exhibits an effect such as the adhesion of the I7 system. The polyalkylene-based resin used in the formation of the above surface layer is preferably a polyolefin resin having a polar group. Thereby, the adhesion to other materials of the internal light-diffusing film (A) can be improved. For example, in the production of a light-diffusing ruthenium film sheet to be described later, the adhesion to the plastic sheet can be improved. Further, it is possible to impart thermal adhesion to an acrylic resin or a polycarbonate resin which is widely used as an optical material. The polar group-containing polyolefin resin preferably contains at least one of ethylene, propylene, butylene, hexene, octene, nonylpentene and a cyclic olefin in its skeleton. A homopolymer of one of the above monomers may be used, or a copolymer of two or more kinds of monomers may be used. The above polar group-containing polyolefin resin in the present invention preferably contains at least one polar group. Examples of the polar group include a carboxylic acid group, a sulfonic acid group, a phosphonic acid group, a hydroxyl group, a glycidyl group, an isocyanate group, an amine group, an oxime imido group, an oxazoline group, an ester group, an ether group, and a carboxylic acid. A metal salt group, a sulfonic acid metal salt group, a phosphonic acid metal salt group, a tertiary amine salt group or a quaternary amine salt group. The polar group may be one type or two or more types. The polar group may be appropriately selected in accordance with the composition of the polyolefin-based resin constituting the internal light-diffusing layer or the type of the member to be adhered, or the required adhesion, etc., and preferably contains at least a carboxyl group. Further, the polar group-containing polyolefin resin in the present invention may be directly introduced into a polymer chain of a polyolefin resin, or may be introduced into another resin, added or mixed. Further, as the case may be, -23-201219847, the polyolefin resin of the present invention may be introduced at the end or inside of a molecular chain, for example, by reacting a carboxylic acid group or a hydroxyl group with a compound which can react with these. In the present invention, the above-mentioned polar group-containing poly-smoke resin may be used singly or in combination of two or more kinds of blended compositions. Further, it may be a blended composition in which a polyolefin resin containing no polar group or other kinds of resins is blended. In the case of the blended composition, the polar group-containing polyolefin resin containing 1% by mass or more is more preferably contained, and more preferably 30% by mass or more. The above polar group-containing polyolefin resin is preferably composed of a crystalline resin. The melting point of the resin is preferably from 1 〇 1 to 18 〇. Hey. The polar group-containing polyolefin resin is not limited as long as it has the above characteristics, and is applicable, for example, as a resin commercially available as an adhesive polyolefin resin. For example, Admer resin (TM, manufactured by Mitsui Chemicals Co., Ltd.), M〇diC resin (TM, manufactured by Mitsubishi Chemical Corporation), or Adtex resin (TM, Sakamoto Polyethylene Co., Ltd.) and B〇ndfast resin (top, Sumitomo) Chemical company system) is not particularly limited. By laminating a layer made of a polar group-containing polyolefin resin on the internal light diffusion layer, an internal light diffusion film (4) formed by a single layer of only the light diffusion layer can be improved with other materials. Follow-up. In addition, it can improve the anti-adhesion property of the film or the latent sleeve. > 迓 次, month steep, internal light diffusing film (A)
的細作性等。還有,可賦予盥I 叭卞/、各種素材的熱接著性。 (内。卩光擴散薄膜(A)之製造方法) 本發明中的内部井撼勒·、違胺/ 2I ^…九擴政溥胲(A)之製造方法係沒有 特別的限疋’仗經濟性之點央善 看,較佳為藉由熔融壓出 成型來製膜的方法。 •24- 201219847 製膜方法係沒有特別的限制, 吹塑法中的任一者。又,可* I ^如可為τ模頭法及 J馬未延伸& # 延伸處理。 r的溥膜,也可進行 於含有二層以上的構成時, 製膜。例如,可藉由壓出積層法來製,共壓出法來 劑等來貼合2片以上的薄膜。 ’也可藉由接著 於該製造中,例如當以海/島法 的壓出溫度、擠壓機及模頭内的剪:^’取決於樹脂 間的牽拉比及到冷卻輥的片之緊貼方法::到:部輥 尺寸或形狀會大幅變化。結果 方式’島相的 亦會大幅變化。 所件之薄膜的光學特性 例如,於藉由對島相的形狀賦予 μ a ^ 狀巩卞異向性,使光擴散 比展現異向性時’較佳為藉由以下的方法來對應。 ▲上述熔融壓出成型法’ 一般係將在擠壓機中熔融的 树脂由模頭壓出成片狀,使該片緊貼(密接)於冷卻輥,被 冷卻固化而製膜。此時,於對上述冷卻輥緊貼時,較佳 為該緊貼部的入口部分不形成積液區(亦稱為“叭)。積 液區的形成係在對冷卻輥的緊貼時之壓接中即由於以 強壓力施壓時發生,故較佳為減低緊貼時的緊貼壓力。 例如,一般廣用的以推壓輥壓接而使緊貼的方法最 好避免。 只要是以弱的壓力使緊貼的方法’則沒有限定的, 例如車乂佳為將在擠壓·機中炼融的樹脂由模頭壓出成片狀 ’藉由以氣壓推壓該片的方法及/或吸引法及/或靜電緊 貼法使緊貼而冷卻固化、製膜。藉由此方法,可安定地 -25- 尤其前述特性之一的擴散度 0 的製造裝置之差異而大幅變 此,對於可安定生產的製造 結果發現較佳為以如上述的 然未確定,但推測如下。 片中之島成分的形狀,由於 壓出方向配向的形式變細。 熔融狀態下對該片施加牵拉 細。較佳為在此狀態下冷卻 使壓接於冷卻親,在高壓力 部分之片由於係未固化狀態 積液區’未固化狀態的樹脂 變細的島成分係藉由表面張 滴之力進行作用,而緩和異 狀’由於該變形的形狀被冷 鬲,結果光擴散性亦増加等 異向性度。 及/或吸引法及/或靜電緊貼 係沒有限定。例如,作為氣 以空氣等的氣壓來壓住之所 嘴嘴來吸引而使緊貼的真空 電緊貼法等。此等方法可翠 法。從可提高所得之薄膜的 以後者實施。 201219847 得到前述較佳的光學特性, 比率高之異向性光擴散薄膜 擴散度比率會隨著所用 化,而無法安定地生產。因 方法進行專心致力的檢討, 製造方法來製造。此理由雖 以熔融壓出法所壓出的 在模頭内受到剪切,而以在 再者,於自模頭壓出後,在 ’島形狀更在壓出方向中變 固化。然而,若以推壓輥等 下壓住,則該壓接部的入口 ’而在塵接部入口部分形成 滯留於該區中,在壓出方向 力’返回本來形狀的等向液 向度,變形為更等向性的形 卻固化’島形狀的等向性升 向性’推測因此不利於提高 以上述氣壓的推壓方法 法使緊貼而冷卻固化的方法 壓的推壓方法,例如可舉出 。月的氣刀法4方法,以減壓 室法,以靜電力使緊貼的靜 獨使用,也可併用複數的方 厚度精度之點來看,較佳為 ' 26 - 201219847 亦可將熔融壓出法所壓出的片延柚,, 々延伸,例如當使用聚 酯系樹脂於光擴散層時,較佳為進行一 ^軸延伸。延伸倍 率較佳為2倍以上。上限係沒有限定,但較佳為低於10 倍。因此’若在島相在延伸方向拉長,則變成細長的構 造二與島相的配向方向呈正交的方向之光擴散性係顯著 提南,而可賦予異向性,而且可使輯定 1之将疋方向的擴散性大 幅升高。 以延伸方法實施時,延伸倍帛更佳為以3〜8倍進行 延伸方法係沒有限定。可為單純的自由寬度一軸延 伸’也可為一定寬度一軸延伸。例如,可舉出將經固化 的薄膜之兩端拉伸的方法(拉伸延伸),將互相對向的一 對輥(2支輥)以複數系列(例如2系列)並排,在各自的2 支輥間插入薄膜,同時在滾入側的2支輥與滾出側的2 支輥之間張設薄膜,藉由使滾出側的2支輥之薄膜輸送 速度比滾入側的2支輥快而延伸之方法(輥間延伸),於 互相對向的一對輥之間插入薄膜,以輥壓將薄膜壓延之 方法(輥壓延)等。 相反地,為了接近等向性,較佳為用以下方法來對 應。 即’較佳為將在擠壓機中熔融的樹脂由模頭壓出成 片狀,將片推壓至冷卻輥,以壓輥來壓接而使緊貼,使 冷卻固化而製膜。 只要滿足對冷卻輥以推壓輥進行壓接而使緊貼,則 其内谷係沒有限定。例如,與一般實施的冷卻輥相比, -27- 201219847 可以直徑細小的柏茂 妁推£輥進行壓接,也可以在直徑相 2個冷卻輥之間將 的 ]將片壓出,以冷卻輥彼此進行壓 又,於此方、土士 , — 去令,亦可使用推壓輥及/或冷卻 經粗面化處理的隸,π u 、 輥同時地進行前述賦型處理所致的粗 W化。 於要求等向性時, 施加牽拉而製逆…二為無延伸且在熔融麼出時不 薄膜。 但亦可如下述地使用複數之異向性的 例如’在内部光擴散層使用聚酯系樹脂,單向延伸 2〜㈣,在延伸方向拉長島相而成為細長的構造,;申 ::!:Γ相:…向呈正交的方向之光擴散性, 、χ 之目才示的咼擴散性。較佳為將_ Η 平乂 Ί王句將—片以上的簿 膜以主擴散方向呈直交的方式疊合而使用。 又’本發明的内部光擴散薄膜⑷係可為單層也可 為二層以上的多層構成。於多層構成時若至少一層為 由上述構成的内部光擴散薄膜⑷所成之層,則Α它層亦 可為不具有光擴散性的僅是透明層。另外,全部声亦可 為光擴散層的構成。 曰 於上述多層構成時,可藉由多芦 夕增共壓出法來製造, 也可藉由壓出積層法或乾積層法來實施。 上述至少兩種的互相非相溶柹的 ^ 合性的熱塑性樹脂之混合 物’係可將各自的熱塑性樹脂在製 表犋步驟的擠壓機等中 摻合’也可為預先以混煉法等在挛折 在事刖成為混合物的形式 使用。 -28- 201219847 (表面光擴散薄膜(B)) 本發明的表面光擴散薄膜(B)係利用在薄膜表面上 所形成的凹凸之光散射效果而展現光擴散性,而且以實 施例中記載的方法所求得的平均面積較佳為6〇〇〜 5000μπι2 0 平均面積更佳為700〜5000μϊη2’尤佳為8〇〇〜 5000μιη2 ° 平均面積低於600μηι2時,即使與前述内部光擴散薄 膜(Α)積層,也不展現正面的亮度提高效果而不宜。相反 地,超過500W時,i述正面的亮度提高效果係飽和 ,同時技術上變困難。 本發明的表面光擴散薄膜(B)只要滿足上述要件,則 沒有限定。例如,可舉出藉由賦型而在基材薄膜的表面 亡形成凹凸構造’即所謂的壓紋加工者,或藉由在基材 薄膜表面上積層由在基質樹脂中摻合有粒子的組成物所 成,層’即所謂的粒子法者,及藉由基材薄膜的不均勻 :縮而在基材薄膜的表面上形成皺紋,即所謂的皺紋法 朽r的= 加工法來實施時,可舉出在熱塑性 ㈣膜之表面上’藉由所欲形狀的鎢模(或 )」=、:的熱塑性樹脂的基材薄膜之表面上形成表面 :物4 4在透明的基材薄膜上塗佈光硬化性樹脂組 =-邊塗佈,-邊使所欲形狀的親模具轉動,而形 W凸’對此表面凹凸部進行光照射而使硬化之方 轉:且亦可藉由轉印模具在透明的基材薄膜表面上 轉P /、有凹凸的構造層而製作。 -29- 201219847 光硬化性樹脂組成物例如可含有光硬化性寡聚物或 樹脂[例如雙酚A-環氧烷加成物的(甲基)丙烯酸酯、環氧 (甲基)丙烯酸酯(雙酚A型環氧(甲基)丙烯酸酯、酚醛清 漆型環氧(甲基)丙烯酸酯等)、聚酯(甲基)丙烯酸酯(例如 脂肪族聚酯型(甲基)丙烯酸酯、芳香族聚酯型(甲基)丙烯 酸醋等)、(聚)胺基甲酸酯(甲基)丙烯酸酯(聚酯型胺基甲 酸醋(曱基)丙烯酸酯、聚醚型胺基甲酸酯(甲基)丙烯酸醋 等)、聚石夕氧(甲基)丙烯酸酯等] '光聚合引發劑(二笨基 酮系光聚合引發劑等)、視需要的反應性稀釋劑(乙稀〇比 洛咬嗣等的單官能性光聚合性單體、三羥甲基丙烧三( 曱基)丙烯酸酯等的具有2〜6左右的(曱基)丙烯醯基之 多官能性(曱基)丙烯酸酯單體等)、光聚合促進劑(增感劑 )等。 上述壓紋加工法所形成的表面凹凸之形狀,只要滿 足後述的要件則沒有限定。可為大致相同形狀的凹凸之 重複所成的單純形狀,也可為複數的形狀混合成的複雜 形狀。只要滿足上述要件則沒有限定,較佳為圓頂狀、 金字塔狀及貪j山型。 為了提高正面的亮度,廣泛使用稜鏡狀的透鏡薄膜( 以下僅稱透鏡薄膜),但於該透鏡薄膜時’若將透鏡薄瞑 設置在出光側的最表面,則發生光干涉作用,由於發生 干涉條紋等的不宜現象,必須在該透鏡薄膜薄膜的出光 側設置一般稱為上擴散薄膜的光擴散薄膜,由於違反 發,目的之—的光學構件的片數減低而不宜。因此 鏡薄膜構造的表面凹凸形狀係不宜。 -30- 201219847 又’粒子法係藉由在透明基材薄膜的 可能在厚度方向中粒子不重疊的方式之厚 基質樹脂中含有粒子的含粒子組成層積声 凹凸構造之方法而實施。 上述表面層的形成係可舉出以塗佈法 及壓出積層法等所貫施的方法。 作為透明基質樹脂,較佳為使用透明 。例如’可使用聚@旨糸樹脂、丙稀酸系樹 基曱酸酯系樹脂、聚酯丙烯酸酯系樹脂、 稀酸醋系樹脂、環氧丙稀酸自旨系樹脂、胺 脂、環氧系樹脂、聚碳酸酯系樹脂、纖維 醛系樹脂、聚乙烯系樹脂、聚苯乙烯系樹 樹脂、聚醯亞胺系樹脂、蜜胺系樹脂、驗 氧系樹脂等的熱塑性樹脂、熱硬化性樹脂 硬化性樹脂等。 作為粒子,可使用矽石、黏土、滑石 西欠詞硫酸鎖專的無機微粒子,但較佳為 樹脂所成之所謂聚合物珠。聚合物珠的樹 限定’可舉出丙烯酸樹脂、苯乙烯樹脂、 脂、苯并胍胺樹脂、聚矽氧樹脂等。可為 可為交聯型。 形狀或粒子尺寸亦沒有限定,但為了 ’較佳為使用球狀或橢圓狀,且短徑的平 10Ομηι者。可使用由丙烯酸樹脂等所成的 °亥粒子不僅為一種,也可併用複數種。 表面上,以儘 度’將在透明 ’以形成表面 、多層壓出法 性優異之樹脂 脂、丙烯酸胺 聚胺甲酸醋丙 基曱酸酯系樹 素系樹脂、縮 脂、聚醯胺系 系樹脂、聚矽 、電離放射線 、碳酸#5、硫 使用由ifj分子 脂成分係沒有 胺基曱酸g旨樹 非交聯型,也 滿足上述要件 均粒徑為 1〜 有機微粒子。 •31- 201219847 於本發明中,可刺田企μ ⑸用先擴散方法相異的兩種光擴散 薄膜之併用效果。如德、+、.. 便4 ’推測兩種光擴散薄膜的光擴 散方法之大不同點倍本从々土 ' 、九的多重散射之貢獻程度的差異。 此意味與前述内部朵拖ι^ + 擴散溥膜不同,當使用電子顯微鏡 觀察薄膜的截面時,太屏由山 仕7予度方向中晝出任意的直線時, 該線上所存在的粒子勃^ 数較佳為5個以下,更佳為3個以 下。 (基材(C)) 本發明中.所用的美铋 ,Α、“ 暴材(C),當將上述内部光擴散薄膜 (Α)併入面光源裝置時 f 係為了補強内部光擴散薄膜(A) 的強度、剛性及耐熱性笙 …等。因此,例如於導光板的情況 ’亦可為導光板本身。gij a 身即’較佳為在導光板的表面上, 隔者挽接層來積層上述 鬥°P先擴散溥膜(A)。又,於正下 方孓的情況,較佳為在 从主二L 出先。卩所用的透明板或乳白板等 的表面上’隔著密接層 。 續采積層上述内部光擴散薄膜(A) 置的出弁立广佳為使用導光板或在正下方型的面光源裝 、片及拓。所使用的透明板或乳白板等的塑膠片性薄膜 、苯乙烯等素材較佳為聚酯系樹脂、丙烯酸系樹脂 歸糸樹脂及聚碳酸酷谢t ,亦可盔丄 夂S曰树知專’但沒有特別的限定 」与由坡璃等的 弁柘方士 边月…機材料所成的板或片。於導 元板方式時,可扁邋 膜(Ap 板表面上直接黏貼内部光擴散薄 土材(C)必須55〇nm的全夯綠、枣玄 ,*估& J王九線透過率滿足50〜100% 又征马6〇〜95%,特佳 马70〜95%。低於50%時,由 -32- 201219847 ;儿度提冋效果降低而不宜。相反地,超過i者係理 δ备上不彳丁。 王光線透過率係藉由與上述内部光擴散薄膜(Α)同 樣方法進行測定。 從補強效果等來看,厚度較佳為〇2〜1〇mm。從透 過率的關係來看,更佳為〇 2〜3mm。 (光擴散薄膜積層體之構成) 本發明的光擴散薄膜積層體係可將内部光擴散薄膜 (A)與表面光擴散薄膜(B)積層而構成,但於正下方型面 光源裝置時,可更積層55〇nm的全光線透過率為5〇〜 100%的基材(C)。此時,内部光擴散薄膜(A)、表面光擴 散薄膜(B)及基材(C)的積層順序較佳為由下述⑴〜(丨⑴ 中選擇。 (i)表面光擴散薄膜(B)/内部光擴散薄膜(A)/基材; (Π)表面光擴散薄膜(B)/基材(C)/内部光擴散薄膜(a); (iii)表面光擴散薄膜(B)/内部光擴散薄膜(A)/基材(c)/ 内部光擴散薄膜(A)。 另一方面,於導光板型面光源裝置的情況,較佳為 表面光擴散薄膜(B)/内部光擴散薄膜(A)/導光板的積層 順序。 、曰 又,表面光擴散薄膜(B)較佳為配置成使光擴散面成 為出光側。 於本發明中’重要的是在上述内部光擴散薄膜(a) 與基材(C)的界面沒有空氣層的狀態下積層。藉由該對庫 方式,可使高亮度與低亮度並存。 ~ -33- 201219847 藉此,可提尚正面亮度,而且可減低亮度不均。 上述效果係可藉由以往廣泛使用的賦型&或在透明 薄膜的表面上’例如塗佈珠等的錢散成分而得,在利 用所。月的表®凹凸之光散射效果的表面光擴散型光 薄膜中係小。 ;本4月中自上述内部光擴散薄膜(a)與基材(c 的界面排除空氣層的方法係沒有限定,例如可舉出以黏 著劑或接著劑使貼合之方法。又,例如亦可用水等的液 體進行密接而穑厗。 B 亦可在内部光擴散薄膜(A)或基材 (C)的表面上’形成熱接著層,以熱接著法積層兩者。 ,本發明中’藉由貼合上述内部光擴散薄膜⑷與基 二),例如能抑制内部光擴散薄膜⑷之由於溫度等環 兄,支化所致的尺寸變化# $羽& & ^ ^ 欠化寺之習知技術中所公知的效杲亦 可附屬地展現。 刃双禾叮 於本發明中参 使上述内部光擴散薄膜(Α)與基材(C) 貼合而貫施時,較估 # 較佳為隔者與基材(C)的折射率之差為 -0.3〜+〇.5的密接層進行。 一般折射率係以小數點以下第3位表示 明中,只要藉由小數 仁於本發 下弟1位(在小數點以下第2位 四捨五入)的差異進行評價即可。 第 於本發明中, 時,使用折身… 用文獻值。又,由樹脂所成 值的樹脂係可不測定而麻 有文獻 ,使用單彳用文獻值。於樹脂的遇合物時 值。 吏由組成比來加權平均而求得之 -34- 201219847 上述折射率差更佳為_〇1〜+ 〇 2,最 低於-0.3或超過+〇.5時,由於藉由排 薄膜(A)與基材(C)的界面之空氣層所致的 效果降低而不宜。 上述内部光擴散薄膜(A)的積層係可 面進行’也可在兩面進行》於兩面上積層 使用相同的内部光擴散薄膜(A),也可各自 的内部光擴散薄膜。 再者,本發明中之由構件間的界面排 係僅在與基材之間的界面有效。在立它 ’倒是反效果多。 (印刷層(D)) 本發明的光擴散薄膜積層體係可積^ 作構成材料。本發明中的印刷層(D)係主要 印墨藉由印刷而形成之層。若為部分地, 透光性的印墨。又,可使用通常的印刷油 具有光擴散性的印墨。 上述印刷層(D)的形成方法係沒有限定 出噴墨印刷、平版印刷、凸版印刷及網版 濟性或簡便性專來看’較佳為喷墨印刷。 上述印刷層(D)的形成,係可在上述内 (A)、基材(C)及表面光擴散薄膜(b)中的任 直接進行,例如可使用在透明性高的薄膜 印刷體進行積層。以噴墨印刷實施時,由 喷墨印墨的受容層,故較佳為使用設有喷 佳為0。 除内部光擴散 正面亮度提高 僅在基材的一 時,兩面可皆 使用不同種類 除空氣的效果 構件間係無效 ^印刷層(D)當 使用透光性的 則亦可使用不 墨,也可使用 :。例如,可舉 印刷等。從經 部光擴散薄膜 一者之表面上 或片上印刷的 於較佳為設有 墨印墨的受容 -35- 201219847 層之透明薄膜,士、# 尤其聚酯薄膜,在喷墨印墨的受容層面 上印刷而積層。 (作用機構) 於本發明+ , 甲’排除内部光擴散薄膜(A)與基材(C)之 界面間所存在& & β 的二氧層係最重要的要素之—^藉由該對 應方式,僅聂人、 i σ廣泛一般進行的兩構件,可比在兩構件 間有空翁ja y- + -B存在的情況還更提高亮度,而且可降低亮度 不均,茲推測係如以下。 於在某^ Γ P、4= 往 表面上僅疊合内部光擴散薄膜(A)的以 斤廣泛Λ施的方法中,空氣層存在於内部光擴散薄膜 (Α)與基材(C1之pq . 杰 之間。空氣的折射率,由於與基材的折射 *予' 冲目t匕 折射率係顯著降低’故通過基材而來的光之臨 界角声戀,丨、 , X 、,在界面被反射的比例變高,在基材的表面 ^ ^射的光量變低,結果亮度變低。一般地,内部光擴 ‘膜(A)所用的樹脂、貼合所用的樹脂或液體及基材 (C)所用的材料之折射率,係比空氣還大。因此,藉由排 上乳’内部光擴散薄膜(A)與基材(c)之間的界面之折 率差變小。於是’在基材界面的臨界角度變大,被該 jg- ^ 所反射的比例變少,進入内部光擴散薄膜(A)側的光 里增加。再者’由於此光入射内部光擴散薄膜(A)時,界 面折射率差也變小’在此界面所反射的光之比例變少, 1由進入内部光擴散薄膜(A)的光量增加之相乘效果,結Fine work and so on. In addition, it is possible to impart thermal adhesion to various materials. (Inner. Method for Producing Twilight Diffusion Film (A)) The manufacturing method of the internal well Muller, the illicit amine/ 2I ^... nine expansion 溥胲 (A) in the present invention is not particularly limited to the economy. The point of sexuality is preferably a method of forming a film by melt extrusion molding. • 24-201219847 There are no special restrictions on the film making method, either of the blow molding methods. Also, *I ^ can be the τ die method and the J horse unextended &# extension processing. The ruthenium film of r may be formed into a film when it has a structure containing two or more layers. For example, it is possible to bond two or more films by a method of extrusion lamination, by co-pressing a method or the like. 'Alternatively in the manufacturing process, for example, when the sea/island extrusion temperature, the extruder and the shear in the die are determined by the ratio between the resin and the sheet to the cooling roll Adhesive method:: to: the size or shape of the roller will vary greatly. The result of the 'the island phase' will also change significantly. The optical characteristics of the film of the film are preferably, for example, by imparting an ai-like shape to the shape of the island phase and exhibiting the anisotropy of the light diffusing ratio. ▲ The above-described melt extrusion molding method is generally performed by pressing a resin melted in an extruder into a sheet shape by a die, and adhering the sheet to a cooling roll to be cooled and solidified to form a film. In this case, when the cooling roller is in close contact with each other, it is preferable that the inlet portion of the abutting portion does not form a liquid accumulation region (also referred to as a "beep". The formation of the liquid accumulation region is when the cooling roller is in close contact with each other. In the case of crimping, since it is generated when the pressure is applied by a strong pressure, it is preferable to reduce the adhesion pressure at the time of the adhesion. For example, a generally widely used method of pressing the pressing roller to make the adhesion is preferably avoided. There is no limitation on the method of adhering with weak pressure, for example, the method of pressing the resin which is smelted in the extrusion machine into a sheet shape by the die is carried out by pushing the sheet by air pressure. And/or the attraction method and/or the electrostatic adhesion method to make the film adhere to the film by cooling, and to form a film. By this method, it is possible to stably change the difference of the manufacturing device of the diffusion degree 0 which is one of the aforementioned characteristics. Therefore, it has been found that the production result of the stable production is preferably determined as described above, but it is presumed as follows. The shape of the island component in the sheet is thinned by the direction of the extrusion direction. The sheet is applied in a molten state. Fine. It is preferred to cool in this state to make the crimping contact the cooling pro. The sheet of the high-pressure portion is subjected to the uncured state of the effusion zone, and the resin component which is uncured by the resin is acted upon by the force of the surface draping, and the shape of the deformation is relaxed. The light diffusibility is also added to the degree of anisotropy. And/or the suction method and/or the electrostatic adhesion system are not limited. For example, the vacuum is pressed by the nozzle which is pressed by the air pressure of air or the like to attract the vacuum. Electro-adhesive method, etc. These methods can be carried out by the latter method from the latter which can improve the obtained film. 201219847 The above-mentioned preferred optical characteristics are obtained, and the ratio of the diffusion ratio of the anisotropic light-diffusing film with a high ratio is used. It is impossible to produce in a stable manner. The method is carried out with a dedicated review and manufacturing method. This reason is sheared in the die by the melt extrusion method, and in the other, from the die. After the extrusion, the shape of the island is more solidified in the extrusion direction. However, if pressed by a pressing roller or the like, the inlet of the crimping portion is formed in the inlet portion of the dust joint and stays in the region. Extrusion The direction of force returns to the isotropic liquidity of the original shape, and is deformed into a more isotropic shape. The solidified 'isotropic isotropic shape of the island shape' is not conducive to the improvement of the pressure method by the above-mentioned air pressure. For example, the method of pressing and cooling the method for cooling and solidifying can be exemplified by the method of the air knife method of the month, and the static pressure method can be used for the static force by the decompression chamber method, or a plurality of square thickness precision can be used in combination. In view of the above, it is preferred that '26 - 201219847 can also extend the sheet of pomelo pressed by the melt extrusion method, and the crucible is extended. For example, when a polyester resin is used in the light diffusion layer, it is preferred to carry out a shaft. The stretching ratio is preferably 2 or more. The upper limit is not limited, but is preferably less than 10 times. Therefore, if the island phase is elongated in the extending direction, the orientation of the elongated structure 2 and the island phase is The light diffusivity in the orthogonal direction is significantly increased, and the anisotropy can be imparted, and the diffusibility of the first direction can be greatly increased. When the stretching method is carried out, the stretching ratio is preferably from 3 to 8 times. The stretching method is not limited. It can be a single free extension of the free width, or it can be extended by a certain width. For example, a method of stretching both ends of the cured film (stretching stretching) may be mentioned, and a pair of rolls (two rolls) facing each other are arranged side by side in a plurality of series (for example, two series), in each of 2 A film is inserted between the rolls, and a film is stretched between the two rolls on the roll-in side and the two rolls on the roll-out side, so that the film conveyance speed of the two rolls on the roll-out side is two from the roll-in side. A method in which the rolls are quickly extended (extension between rolls), a film is inserted between a pair of rolls facing each other, a film is rolled by rolling (roller rolling), or the like. On the contrary, in order to approach the isotropic property, it is preferred to use the following method. That is, it is preferable that the resin melted in the extruder is extruded into a sheet shape by a die, and the sheet is pressed against a cooling roll, and pressed by a press roll to be brought into close contact with each other to form a film by cooling and solidifying. The inner valley is not limited as long as the chill roll is pressed against the nip roller so as to be in close contact with each other. For example, compared with a conventionally implemented chill roll, -27-201219847 can be crimped by a small diameter cypress, or it can be pressed between two chill rolls of a diameter phase to cool The rollers are pressed against each other, and the squeezing roller and/or the cooling granules, π u and the rollers are simultaneously subjected to the above-mentioned shaping treatment. W. When isotropy is required, the pulling is applied to make the reverse... the second is no extension and the film is not melted when it is melted out. However, it is also possible to use a plurality of anisotropic properties as follows, such as 'using a polyester resin in the internal light diffusion layer, unidirectionally extending 2 to (4), and elongating the island phase in the extending direction to form a slender structure; : Γ phase: ... the diffusivity of light diffused in the direction perpendicular to the direction of 咼. It is preferable to use _ Η Η 乂 Ί Ί Ί 的 的 的 的 片 片 片 片 片 片 片 片 片 片 片 片 片 片 以上 以上 以上 。 以上 。 。 Further, the internal light-diffusing film (4) of the present invention may be a single layer or a multilayer of two or more layers. When at least one of the layers formed by the above-mentioned internal light-diffusing film (4) is formed in a multilayer structure, the layer may be a transparent layer which does not have light diffusibility. Further, all of the sounds may be a configuration of the light diffusion layer. In the case of the above-described multilayer structure, it may be produced by a multi-Augmented co-extrusion method, or may be carried out by an extrusion lamination method or a dry laminate method. The above-mentioned mixture of at least two mutually incompatible ruthenium-containing thermoplastic resins can be blended in an extruder or the like of the tabulation step, or it can be a pre-mixing method or the like. It is used in the form of a mixture. -28-201219847 (Surface Light-Diffusing Film (B)) The surface light-diffusing film (B) of the present invention exhibits light diffusibility by the light-scattering effect of the unevenness formed on the surface of the film, and is also described by the method described in the examples. The average area to be obtained is preferably 6 〇〇 to 5000 μπι 2 0, the average area is more preferably 700 to 5000 μ ϊ η 2 ', especially preferably 8 〇〇 to 5000 μιη 2 ° when the average area is less than 600 μηι 2 even if laminated with the aforementioned internal light diffusing film (Α) It does not show the positive brightness enhancement effect. On the other hand, when it exceeds 500 W, the brightness improvement effect of the front side is saturated, and it becomes technically difficult. The surface light-diffusing film (B) of the present invention is not limited as long as it satisfies the above requirements. For example, a so-called embossing process may be employed in which a concave-convex structure is formed on the surface of a base film by forming, or a composition in which a particle is blended in a matrix resin by laminating on the surface of the base film. When the material is formed, the layer is a so-called particle method, and when the wrinkle is formed on the surface of the base film by the unevenness of the base film, which is a so-called wrinkle method = processing method, It is possible to form a surface on the surface of the base film of the thermoplastic resin of the desired shape of the tungsten mold (or) on the surface of the thermoplastic (tetra) film: the material 4 4 is coated on the transparent base film. The cloth light-curable resin group =-side coating, while rotating the mold of the desired shape, and the shape W convex 'lights the surface uneven portion to be hardened: and can also be transferred by transfer The mold was produced by rotating a P//concave structure layer on the surface of a transparent base film. -29- 201219847 The photocurable resin composition may contain, for example, a photocurable oligomer or a resin [for example, a (meth) acrylate or an epoxy (meth) acrylate of a bisphenol A-alkylene oxide adduct ( Bisphenol A type epoxy (meth) acrylate, novolak type epoxy (meth) acrylate, etc.), polyester (meth) acrylate (for example, aliphatic polyester type (meth) acrylate, aromatic Group of polyester (meth)acrylic acid vinegar, etc., (poly)urethane (meth) acrylate (polyester urethane phthalate acrylate, polyether urethane) (Meth)acrylic acid vinegar, etc., polyoxime (meth) acrylate, etc.] 'Photopolymerization initiator (diphenyl ketone photopolymerization initiator, etc.), if necessary, reactive diluent (Ethyl hydrazine) a polyfunctionality (fluorenyl group) having a (fluorenyl) acrylonitrile group of about 2 to 6 such as a monofunctional photopolymerizable monomer such as piroxime or a trimethylol propyl tris(fluorenyl) acrylate. ) an acrylate monomer or the like), a photopolymerization accelerator (sensitizer), and the like. The shape of the surface unevenness formed by the embossing method is not limited as long as it satisfies the requirements described later. The simple shape formed by repeating the irregularities of substantially the same shape may be a complicated shape in which a plurality of shapes are mixed. As long as the above requirements are satisfied, there is no limitation, and it is preferably a dome shape, a pyramid shape, and a greedy type. In order to increase the brightness of the front surface, a lens-shaped lens film (hereinafter simply referred to as a lens film) is widely used. However, when the lens film is disposed on the outermost surface of the light-emitting side, light interference occurs due to occurrence of light. In the case of an unfavorable phenomenon such as interference fringes, it is necessary to provide a light-diffusing film generally called an upper diffusion film on the light-emitting side of the lens film film, and it is not preferable to reduce the number of optical members for the purpose of violating the hair. Therefore, the surface unevenness of the mirror film structure is not suitable. -30-201219847 The "particle method" is carried out by a method of constituting an acoustic concavo-convex structure by containing particles in a thick matrix resin in which the particles in the thickness direction of the transparent base film do not overlap. The formation of the surface layer may be carried out by a coating method or an extrusion lamination method. As the transparent matrix resin, it is preferred to use transparency. For example, 'Poly@ 糸 resin, acrylic acid phthalate resin, polyester acrylate resin, dilute vinegar resin, epoxy acrylate resin, amine grease, epoxy resin can be used. A thermoplastic resin such as a resin, a polycarbonate resin, a fiber aldehyde resin, a polyethylene resin, a polystyrene resin, a polyimide resin, a melamine resin, or an oxygen-checking resin, and a thermosetting property. Resin curable resin or the like. As the particles, inorganic fine particles of vermiculite, clay, or talc, which are specifically used for the sulfuric acid, may be used, but a so-called polymer bead formed of a resin is preferable. The tree of the polymer beads is defined by an acrylic resin, a styrene resin, a fat, a benzoguanamine resin, a polyoxyxylene resin or the like. It can be cross-linked. The shape or particle size is also not limited, but it is preferably a spherical or elliptical shape and a short diameter of 10 Å μηι. It is possible to use not only one type of particles, but also a plurality of kinds of particles. On the surface, resin resin, acrylamide, urethane propyl phthalate-based resin, lipo-compound, polyamido-based system, which is excellent in the appearance of the surface, and which is excellent in lamination. Resin, polyfluorene, ionizing radiation, carbonic acid #5, sulfur used by the ifj molecular lipid component is not amine-based citric acid g-tree non-crosslinked type, also meet the above requirements, the average particle size of 1 ~ organic microparticles. • 31- 201219847 In the present invention, it is possible to use the effect of the combination of two kinds of light-diffusing films which differ in the first diffusion method. Such as Germany, +, .. 4 s speculates that the difference between the two methods of light diffusion of the two light-diffusing films is different from the contribution of the multiple scattering of the earth's and nine. This means that unlike the internal dragging ι^ + diffusing ruthenium film, when an electron microscope is used to observe the cross section of the film, when the screen is pulled out by an arbitrary straight line in the direction of the mountain, the particles present on the line are The number is preferably 5 or less, more preferably 3 or less. (Substrate (C)) In the present invention, the fluorene (C), when the internal light diffusing film (Α) is incorporated into the surface light source device, is used to reinforce the internal light diffusing film ( A) strength, rigidity and heat resistance, etc. Therefore, for example, in the case of a light guide plate, it may be the light guide plate itself. The gij a body is preferably 'on the surface of the light guide plate, and the spacer layer is provided. In the case where the film is formed directly below the film, it is preferable to form an adhesive layer on the surface of the transparent plate or the milk white plate used for the first two L. Continued mining of the above-mentioned internal light-diffusing film (A) is based on the use of a light guide plate or a direct-surface type surface light source, a sheet, and a plastic sheet film such as a transparent plate or a milk white plate. The material such as styrene and the like is preferably a polyester resin, an acrylic resin, a resin, and a polycarbonate, and may be used as a helmet, but it is not particularly limited.柘方方士月...The board or piece made of machine material. In the case of the guide plate method, the flat film (the surface of the Ap plate is directly adhered to the internal light-diffusing thin soil material (C) must be 55〇nm full green, jujube, * estimated & J Wang nine line transmittance meets 50~ 100% and 6 horses 〇~95%, Tejiama 70~95%. When less than 50%, it is not suitable for the effect of 32 32 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The light transmission rate of the king is measured by the same method as the above internal light-diffusing film (Α). From the viewpoint of the reinforcing effect, etc., the thickness is preferably 〇2 to 1 〇mm. From the relationship of transmittance More preferably, it is 2 to 3 mm. (Configuration of Light-Diffusing Film Laminate) The light-diffusing film layering system of the present invention can be formed by laminating an internal light-diffusing film (A) and a surface light-diffusing film (B). In the case of the lower surface light source device, a substrate (C) having a total light transmittance of 55 〇 nm of 5 〇 to 100% can be further laminated. At this time, the internal light diffusion film (A), the surface light diffusion film (B), and the base The order of lamination of the material (C) is preferably selected from the following (1) to (丨(1). (i) Surface light diffusing film (B) / internal light diffusion Dispersion film (A) / substrate; (Π) surface light diffusing film (B) / substrate (C) / internal light diffusing film (a); (iii) surface light diffusing film (B) / internal light diffusing film (A) /Substrate (c) / Internal light diffusing film (A). On the other hand, in the case of a light guide plate type surface light source device, a surface light diffusing film (B) / an internal light diffusing film (A) / a light guide plate are preferable. In the present invention, it is preferable that the light diffusing film (B) is disposed so that the light diffusing surface becomes the light emitting side. In the present invention, it is important that the internal light diffusing film (a) and the substrate (C) are The interface is layered without an air layer. By the pair of banks, high brightness and low brightness can be coexisted. ~ -33- 201219847 By this, the front brightness can be improved and the brightness unevenness can be reduced. It is obtained by a conventionally widely used type and film, or by coating a surface of a transparent film, for example, by coating a component such as a bead, etc., in a surface light diffusing type light film which utilizes the light scattering effect of the surface of the moon. Small in the middle of the above-mentioned internal light diffusing film (a) and substrate (c The method of removing the air layer is not limited, and for example, a method of bonding with an adhesive or an adhesive may be mentioned. Further, for example, it may be adhered to with a liquid such as water. B may also be used in the internal light-diffusing film (A) Or forming a thermal adhesive layer on the surface of the substrate (C), and thermally laminating both. In the present invention, by adhering the above internal light diffusing film (4) and the base 2, for example, internal light diffusion can be suppressed. The dimensional change caused by the branching of the film (4) due to temperature, etc. # 羽&& ^ ^ The effects known in the conventional techniques of the cultivating temple can also be exhibited. In the present invention, when the internal light-diffusing film (Α) is bonded to the substrate (C), it is estimated that the difference between the refractive index of the spacer and the substrate (C) is preferable. It is carried out for the adhesion layer of -0.3 to +〇.5. Generally, the refractive index is expressed by the third digit below the decimal point, and it can be evaluated by the difference of the fractional number in the first place (the second place below the decimal point). In the present invention, when using the folding body, the literature value is used. Further, the resin which is a value derived from the resin can be used without a measurement, and the literature value of the single use is used. The value of the composition of the resin.吏 Calculated by the weighted average of the composition ratio -34- 201219847 The above refractive index difference is more preferably _〇1~+ 〇2, at least -0.3 or more than +〇.5, due to the thin film (A) The effect of the air layer at the interface with the substrate (C) is not preferable. The laminate of the internal light-diffusing film (A) may be formed on the both surfaces by using the same internal light-diffusing film (A) or the internal light-diffusing film. Further, in the present invention, the interface between members is effective only at the interface with the substrate. It’s counterproductive in setting it up. (Printed Layer (D)) The light-diffusing film layered system of the present invention can be used as a constituent material. The printing layer (D) in the present invention is mainly a layer in which ink is printed by printing. If it is partially, translucent ink. Further, an ink having a light diffusing property of a usual printing oil can be used. The method of forming the above-mentioned printing layer (D) is not limited to inkjet printing, lithography, letterpress printing, and screen or simpleness. The formation of the printing layer (D) can be carried out directly in the above (A), the substrate (C) and the surface light-diffusing film (b). For example, it can be laminated in a film printing body having high transparency. When the ink jet printing is carried out by the ink receiving layer of the ink jet ink, it is preferable to use a spray of 0. In addition to the internal light diffusion, the brightness of the front side is increased only at the moment of the substrate, and the effect of the different types of air removal on both sides is invalid. The printed layer (D) can also be used when the light transmittance is used. :. For example, printing or the like can be mentioned. A transparent film of a layer-35-201219847 layer, preferably a polyester film, which is preferably provided with an ink-printed ink, is printed on the surface of the transflective light-diffusing film, or is coated on the inkjet ink. Printed on the level and layered. (Action mechanism) In the present invention +, A 'excludes the most important element of the && beta dioxo layer between the internal light diffusing film (A) and the substrate (C) by means of the Correspondingly, only two components of Nie and i σ can be used to increase the brightness and reduce the unevenness of the brightness. . In a method in which a certain Γ P, 4 = only the inner light diffusing film (A) is superposed on the surface, the air layer is present in the internal light diffusing film (Α) and the substrate (the pq of C1) Between Jay. The refractive index of air, due to the refraction of the substrate * is significantly reduced by the refractive index of the 'bumpy 匕', so the critical angle of light from the substrate is 声, 丨, X, The ratio at which the interface is reflected becomes high, and the amount of light emitted on the surface of the substrate becomes low, and as a result, the brightness becomes low. Generally, the resin used for the internal light diffusion film (A), the resin or liquid used for bonding, and the base The refractive index of the material used for the material (C) is larger than that of air. Therefore, the difference in the ratio of the interface between the inner light diffusing film (A) and the substrate (c) by the milk is reduced. 'The critical angle at the interface of the substrate becomes larger, the proportion reflected by the jg-^ becomes smaller, and the light entering the side of the internal light-diffusing film (A) increases. Furthermore, the internal light-diffusing film (A) is incident on this light. At the same time, the interface refractive index difference also becomes smaller. 'The proportion of light reflected at this interface becomes less, 1 is entered into the internal light diffusion thin Increase (A) of the light amount of a synergistic effect, junction
果自内部光擴散薄膜(A)所出射的光量增加,而謀求亮度 提高。 & X -36- 201219847 再者’本發明的内部光擴散薄膜(A)係與表面光擴散 溥膜(B)不同,由於具有咼的變曲率 筑稭由減小上述的 界:折射率差’包含輸入内部光擴散薄膜⑷的光量之總 光量,係藉由變曲效果而在内部光擴散薄膜(A)内聚光, 2在内部光擴散薄膜(A)表面被更多地取出,推測可 冗度的提高。 ’ 於特開麵·2 1 527號公報的圖6中,例示以W 入射的光係藉由通過異向性擴散薄膜而變曲成产 出射。然而’該變曲效果係沒有波及正面(〇度)。又,^ :報所揭示的技術與本發明在利用變曲效果之點雖缺有X 部分,但該公极所揭示的技術係關於異向性擴散 大I、稜鏡的積層體’與本發明在目的及期待效果上係 薄it同。又’於該公報所揭示的技術中,關於與擴散 、的入先側之界面的折射率之相乘效果關係, &有言及。 再者,内部光擴散薄膜(Α)係擴散度比率或變曲率比 =擴散薄膜(Β)還高者’推測係内部光擴散 U多重散射的程度大而引起。 擴Ή本發明中’利用内部光擴散薄膜⑷與表面光 果:溥膜(Β)的擴散機構不同的2種擴散薄膜之組合的效 異點:部光擴散薄膜(Α)與表面光擴散薄膜(Β)的最大差 況,利=無多重散射。即’於表面光擴散薄膜⑻的情 係m =面:凸的散射效果而賦予_散性,光散射 上僅以表面的一面來控制,相對於此,内部光擴 -37- 201219847 散薄膜(A)係光散射在薄膜内部全體發生。即,在薄膜的 厚度方向中,使光散射的散射成分係重複存在,光通過 薄膜之中時,因此等散射成分而重複若干次散射所謂 的多重散射之貢獻大。由於此多重散射的貢獻度之差, 能看到内部光擴散薄膜(A)與表面光擴散薄膜(B)賦予各 自固有的光學特性。 内4光擴散薄膜(A)係由於上述多重散射的貢獻高 ’而可容易賦予適度的擴散度比率。 ^藉由賦予適度的擴散度比率,可謀求高亮度與低的 亮度不均之並存,推測前述擴散度比率的陳述中所記載 的事項係重要。 另一方面,藉由内部光擴散薄膜(Α)與表面光擴散薄 膜(Β)的積層而提高正面亮度者,係藉由表面光擴散薄膜 (Β)'表面凹凸所造成的一種透鏡效果使出射光在正面 方向斌光而展現,及推測該透鏡效果係與表面凹凸的表 面積成比例’而實施表面光擴散薄膜的光擴層表面之粗 糙度解析’得到如推測的結果’而完成本發明。 上述聚光效果係即使單獨的表面光擴散薄膜(Β)也 可展現,但以單獨的表面光擴散薄膜(Β),亮度不均的抑 制效果係不足而不佳。另—方面,即使將表面光擴散薄 膜(B)j皮此或内部光擴散薄膜(Α)彼此積層,也無法謀求 正面免度提高與亮度不均減低的並存。 才子於此’内部光擴散薄膜(A)係如上述,以抑制正 面:度降低的形式,具有可減低亮度不均的效果。因此 效 < 為藉由此等二光擴散薄膜的擴散效果不同的組合 才了使更南的免度提高與亮度不均減低並存。 -38- 201219847 藉由此擴散效果不同的兩種光擴散薄祺之 打破亮度與亮度不均的二律背反現象,為出乎 果。 (面光源裝置) 本發明的面光源裝置之基本單元只要是在 具有出光面的構成,則其内容不拘。例如,可 方式及正下方型中的任一種。又,亦可為兩面 較佳為正下方型。 一般地,於面光源裝置中,以提高出光面 目的,在與出光面相反的面上,使用反射薄膜 。反射薄膜或反射體的種類係沒有限定。例如 由白色體所成的擴散型反射薄膜或反射體,利 澤的反射之指向性強的反射薄膜或反射體,及 性的反射薄膜或反射體等。 於邊緣光方式的面光源裝置中,為了抑制 與光源的距離而衰減’採用印刷、刻印及愿叫 出光圖案之方法,但該出光圖案的有無亦不拘 出光圖案的方法中’在本發明的方法中,與習 實施的僅豐合各種光學用構件而設置的方法, 的輪廓係大不相同,故較佳為以適合於本發明 設計出光圖案。本發明的方法,由於在與光源 出光量係增加’更增強出光圖案的傾斜者係較 (面光源裝置的光源) 本發明的面光源裝置所用的光源係沒有限 ’可舉出已經多用的螢光燈、冷陰極管及乙后〇 源0 組合,可 預料的結 至少一面 為邊緣光 出光型。 的亮度為 或反射體 ,可舉出 用金屬光 兼具兩特 亮度隨著 等而賦予 。於賦予 知技術所 由於出光 的方法來 近距離的 定。例如 光源等光 -39- 201219847 特別地,本發明的光擴散薄膜積層體,由於與廣泛 使用的光擴散薄膜相比,係擴散度比率極高,故可以抑 制亮度降低的形式大幅減低光的直進性高之led光源的 光源斑點(s p 〇 t)之視覺辨認性。 (光擴散薄膜積層體中的内部光擴散薄膜之使用片數) 於本發明中,由於即使僅使用i片内部光擴散薄膜 ,也具有高亮度或亮度的均勻性,故也可不使用廣用的 透鏡薄膜或亮度提高薄膜等光學用薄膜。因此,可僅使 用1片,但較佳為不限定。例如,可與透鏡薄膜組合, 而謀求更大的亮度提高,亦可謀求燈的輸出(output)減低 等。又,例如亦推薦在基材的兩面積層而使用的方法。 於最佳僅使用1片實施時,作為内部光擴散薄膜的 擴散度比及變曲率’較佳為使用各自為2 〇〜9 5 %及1 5〜 100% 者。 (光擴散薄膜積層體之使用方向) 本發明所使用的内部光擴散薄膜(A)係含有光擴散 的異向性高者。因此’本發明的光擴散薄膜積層體亦含 有光擴散的異向性高者。 異向性度高的光擴散薄膜積層體,由於將出射光聚 光於特定方向’故在併入面光源裝置時,光擴散薄膜積 層體之使用方向係重要。 使用方向係可按照面光源裝置的要求特性而適宜選 擇。一般地’面光源裝置多要求均質的亮度或照度。對 於該要求的回應,可使用異向性度高者當作光擴散薄膜 積層體。例如’使用螢光燈或冷陰極管等具有異向性的 -40- 201219847 光源時 光源時 與此等 大幅減 性而的 ,降低 層體進 主擴散 正交的 為主擴 藉由此 由 度。此 積層體 另 ,面光 ,光擴 光源的 低的光 光擴散 亮度不 行時有 方向在 方向固 散方向 固定方 於圖案 時,較 的主擴 一方面 亮度提高之均 積層體。使用 為將該異向性 正交方向貼合 (顯示裝置) 於本發明 用的光源。 本發明的 減低亮度不均 裝置的明亮度 的視覺辨認性 源裝置的亮度均勻性降 散薄膜積層體的主擴散 長度方向呈正交的方向 源的異向性所致的亮度 薄膜積層體還抑制平均 均。惟,此效果係僅以 效’但在使用2片以上 同—方向而使用,較佳 疋 再者-,入光側的内 係與光源的長度方向呈 法’擴散度比率或變曲 設計性等的要求,反而 佳為在滿足要求的方向 散方向變化而使用。 ’於LED光源的情況, 勻性時,較佳為使用等 異向性度高的光擴散薄 度高的光擴散薄膜積層 而使用。 低。因 方向較 而使用 不均。 亮度的 一片光 的複數 為在與 部光擴 正交的 率變高 會要求 中,使 要求面 向性的 膜積層 體在主 此,使 佳為固 。藉此 可以比 降低之 擴散薄 片時, 主擴散 散薄膜 方向固 〇 不均勻 光擴散 光源裝 光擴散 體時, 擴散方 用該 定在 ,可 等向 形式 膜積 不使 方向 較佳 定 。 的亮 薄臈 置的 薄膜 較佳 向為 中,可使用上述面光源裝置當作異 上述面光源裝置,由於具有高亮力 ’故作為顯示裝置用的光源使用日; 或明亮度的均勾性升高,可提高! 教置 且可 顯示 晝面 -41 - 201219847 或者,於不需要高亮度的使用 光量,可滅俏-壯亜 万法中’可減低燈的 九篁Ί減低顯不裝置的製造成本哎 台&署喷紅I -r上 4顯不裝置使用時的 “ 1,彳減低經濟的效應或環境負荷。As the amount of light emitted from the internal light-diffusing film (A) increases, the brightness is improved. & X -36- 201219847 Furthermore, the internal light-diffusing film (A) of the present invention is different from the surface light-diffusing film (B) in that it has a reduced curvature of tantalum to reduce the above-mentioned boundary: refractive index difference The total amount of light including the amount of light input to the internal light-diffusing film (4) is concentrated in the internal light-diffusing film (A) by the effect of the distortion, and 2 is taken out more on the surface of the internal light-diffusing film (A). Increased redundancy. In Fig. 6 of the Japanese Patent Publication No. 2 1 527, it is exemplified that the light incident at W is transformed into an emission by the anisotropic diffusion film. However, the effect of the distortion did not affect the front (twist). Moreover, the technology disclosed in the report and the present invention lack the X portion in the point of utilizing the effect of the distortion, but the technique disclosed by the public pole relates to the anisotropic diffusion I and the layered body of the '. The invention is thin and the same in terms of purpose and expected effect. Further, in the technique disclosed in the publication, the relationship of the multiplication effect of the refractive index at the interface with the diffusion side is described. Further, the internal light-diffusing film (Α)-based diffusivity ratio or the variable curvature ratio = the higher the diffusion film (Β) is estimated to be caused by the large degree of internal light diffusion U multiple scattering. In the present invention, the effect of the combination of two kinds of diffusing films different from the diffusing mechanism of the internal light diffusing film (4) and the surface light: 溥 film (Β): a partial light diffusing film (Α) and a surface light diffusing film (Β The biggest difference, the profit = no multiple scattering. That is, in the surface light diffusing film (8), the m = surface: convex scattering effect gives _ scatter, and the light scatter is controlled only by one side of the surface. In contrast, the internal light is expanded -37-201219847 Light scattering occurs throughout the film. In other words, in the thickness direction of the film, the scattering component that scatters light is repeated, and when light passes through the film, the contribution of so-called multiple scattering is repeated several times. Due to the difference in the contribution of the multiple scattering, it can be seen that the internal light diffusing film (A) and the surface light diffusing film (B) impart respective inherent optical characteristics. The inner 4 light-diffusing film (A) can easily impart a moderate diffusion ratio because of the high contribution of the multiple scattering described above. By providing a moderate degree of diffusivity, it is possible to achieve high luminance and low luminance unevenness, and it is presumed that the matters described in the statement of the diffusion ratio are important. On the other hand, by increasing the front luminance by laminating the internal light-diffusing film (Α) and the surface light-diffusing film (Β), a lens effect caused by surface unevenness of the surface light-diffusing film (Β) causes the emitted light to be emitted. The present invention has been completed by exhibiting a binocular light in the front direction and presuming that the lens effect is proportional to the surface area of the surface unevenness and performing the roughness analysis of the surface of the light-expanding layer of the surface light-diffusing film. The above-mentioned condensing effect is exhibited even by a single surface light-diffusing film (Β), but the effect of suppressing uneven brightness is not good as a single surface light-diffusing film (Β). On the other hand, even if the surface light-diffusing film (B) or the internal light-diffusing film (layer) is laminated to each other, it is impossible to achieve both the improvement in the front side and the decrease in the brightness unevenness. In the above-mentioned internal light-diffusing film (A), as described above, it is possible to reduce the unevenness in brightness by suppressing the reduction of the front surface. Therefore, the combination of different diffusion effects of the two light-diffusing films is such that the improvement of the southerness and the reduction of the luminance unevenness coexist. -38- 201219847 By the two kinds of light-diffusing thin films with different diffusion effects, the phenomenon of breaking the brightness and brightness unevenness is the result. (surface light source device) The basic unit of the surface light source device of the present invention is not limited as long as it has a light-emitting surface. For example, it can be any of the modes and the type directly below. Further, it may be two sides, preferably a direct type. Generally, in the surface light source device, a reflective film is used on the surface opposite to the light-emitting surface for the purpose of improving the light-emitting surface. The type of the reflective film or the reflector is not limited. For example, a diffused reflection film or a reflector made of a white body, a reflective film or a reflector having a strong directivity of reflection, a reflective film or a reflector, and the like. In the edge light type surface light source device, in order to suppress the distance from the light source, the method of printing, marking, and the light-emitting pattern is attenuated, but the method of the light-emitting pattern is not limited to the light pattern. In the method in which the various optical members are merely integrated, the contours of the method are greatly different. Therefore, it is preferable to design a light pattern suitable for the present invention. In the method of the present invention, the light source used in the surface light source device of the present invention is not limited to the light source of the light source, and the light source used in the surface light source device of the present invention is not limited to the above-mentioned method. The combination of light, cold cathode tube and B rear source 0, the expected junction is at least one edge light output type. The brightness is either a reflector or a reflector, and it can be exemplified by the use of metallic light with both characteristics. The method of giving light to the knowing technology is close to the method of light extraction. For example, a light source or the like is used in the light-39-201219847. In particular, since the light-diffusing film laminate of the present invention has a very high diffusion ratio compared with the widely used light-diffusing film, the form of suppressing the brightness can be greatly reduced. The visibility of the source spot (sp 〇t) of the high-level led light source. (The number of sheets of the internal light-diffusing film used in the light-diffusing film laminate) In the present invention, even if only the i-chip internal light-diffusing film is used, it has high brightness or uniformity of brightness, so that it is not necessary to use a widely used one. An optical film such as a lens film or a brightness enhancement film. Therefore, only one sheet can be used, but it is preferably not limited. For example, it is possible to combine with a lens film to achieve greater brightness improvement, and to reduce the output of the lamp. Further, for example, a method of using two layers of a substrate is also recommended. When it is preferable to use only one sheet, the diffusivity ratio and the variable curvature ' as the internal light-diffusing film are preferably 2 〇 to 9 5 % and 15 to 100%, respectively. (Usage direction of light-diffusing film laminate) The internal light-diffusing film (A) used in the present invention contains a high anisotropy of light diffusion. Therefore, the light-diffusing film laminate of the present invention also contains a high anisotropy of light diffusion. The light-diffusing thin film laminate having a high degree of anisotropy is important in the direction in which the light-diffusing film laminate is used when it is incorporated into the surface light source device because the emitted light is concentrated in a specific direction. The direction of use can be suitably selected in accordance with the required characteristics of the surface light source device. Generally, a "surface light source device" requires a uniform brightness or illuminance. In response to this requirement, an anisotropic film can be used as a light diffusing film laminate. For example, when using an anisotropic -40-201219847 light source such as a fluorescent lamp or a cold cathode tube, the light source is greatly reduced, and the reduction of the layer into the main diffusion is the main expansion. . In addition, when the brightness of the surface light or the light-expanding light source is low, the direction of the light in the direction of the solidification is fixed to the pattern, and the main expansion is on the one hand, and the brightness is increased. A light source for bonding the anisotropy orthogonal direction (display device) to the present invention is used. The brightness uniformity of the visibility source device for reducing the brightness of the brightness unevenness device of the present invention is reduced. The brightness of the thin film layer body is also caused by the anisotropy of the orthogonal direction source. Average average. However, this effect is only effective, but it is used in the case of using two or more of the same direction, preferably 疋 again, and the length of the internal light source side and the light source are expressed as a 'diffusion ratio or a design changeability. On the other hand, it is better to use it in the direction of the direction that satisfies the requirements. In the case of the LED light source, it is preferable to use a light-diffusing film layer having a high light-diffusing thinness with a high degree of anisotropy for uniformity. low. Unusual due to the direction. The complex number of light of one piece of light is required to be higher in the rate of orthogonality with the portion of the light spread, so that the film layer body requiring the facet is the main one, and it is preferable to be solid. Therefore, when the diffusion film is reduced, the direction of the main diffusion film is not uniform. When the light diffusion source is used to diffuse the light diffusing body, the diffusion method is used, and the film formation in the isotropic form does not make the direction better. The bright and thin film is preferably oriented, and the above-mentioned surface light source device can be used as the above-mentioned surface light source device, and because of the high brightness, it is used as a light source for the display device; or the brightness is increased. , can be improved! Teaching and display can be displayed -41 - 201219847 Or, in the absence of high-brightness of the use of light, can be eliminated - strong 亜 亜 中 ' 可 可 可 可 可 可 可 可 可 可 可 可 可 可 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί 篁Ί The downfall & Department of Spraying Red I-r on the 4th display device does not use the device to reduce the economic effect or environmental load.
作為顯示裝置,只要是且有 ,,、令精由面光源裝詈所菸屮 的光,傳達任何資訊的機能之裝 X , 只』彳又有限定。例如 ,可舉出個人電腦、τν及車輛等 一酤罢 平平苛妁輸送裝置用LCD顯 不裝置。又,可舉出廣告或導引板 双I的非動畫顯示裝置 〇 (照明裝置) 於本發明中,可使用上述面光源裝置當作照明用的 光源。 本發明的上述面光源裝置’由於罝有古 _ 、井韦阿焭度,即高 如度’而且可減低照度的不均,故作為照明用的光源使 用時,可提高照明裝置的明亮度及均勻性。 .或者’於不需要高照度的使用方法中,由於可減低 燈的光量’故可減低照明裝置的製造成本或照明裝置使 用時的能量消耗量’可減低經濟的效應或環境負荷。 作為照明用使用時,亦可使用上述面光源裝置本身 (電照顯示裝置) 本發明中的電照顯示裝置,只要是在 牡照明裝置的出As a display device, as long as it is, there is a limit to the function of the light that is transmitted by the surface light source and that conveys any information. For example, a personal computer, a τν, a vehicle, and the like can be cited as an LCD display device for a flat conveyor. Further, a non-animated display device of an advertisement or guide plate double I can be cited. (Lighting device) In the present invention, the above-described surface light source device can be used as a light source for illumination. The above-mentioned surface light source device of the present invention can reduce the brightness of the illumination device when used as a light source for illumination because it has an ancient _, a well-being degree, that is, a high degree, and can reduce unevenness of illumination. Uniformity. Alternatively, in the use method that does not require high illumination, since the amount of light of the lamp can be reduced, the manufacturing cost of the illumination device or the amount of energy consumption when the illumination device is used can be reduced, and the economic effect or environmental load can be reduced. When used as illumination, the above-described surface light source device itself (electrical display device) can be used as long as it is in the illuminating device.
光部設有前述電照顯不裝置用光擴散薄膜避_ a A '谓層體之構成 ,則其構造或大小係沒有限定。例如,輪技& Μ佳為於如上述 的面光源裝置之出光面,設有前述電照& + # Μ不襞置用光擴 散薄膜積層體之構造者。 -42- 201219847 (照明裝置之光量調節) 本發明的光擴散薄Μ層體所㈣的 膜(Α),例如由於具比表面光 九擴 ,、狀得膜(Β)遇高的反射性 能,故本發明的電照顯示裝置具有特徵為·· m的 場所為明亮時,即使不點亮照明裝置,也由:内部光擴 散薄膜⑷反射外光的光,而可藉由外光的明亮产非常清 晰地且以高晝質辨認所顯示的信息,當電照顯示裝置所 設置的場所為明亮時,即使不點亮照明裝置,也可確保 信息的充分視覺辨認性或畫質。 因此,於本發明的電照顯示裝置中,較佳為設置對 應於場所的周圍之外光的明亮度,調節照明農置的光量 之手段,對應於外光的明亮度而調節照明裝置的光量。 藉此,節能係成為可能。 對應於上述外光的明亮度來調節照明裝置的光量之 方法係沒有限定。例如,可舉出設置一種測定電照顯示 裝置或其周邊的外光之照度的照度計,對應於照度來進 行照明裝置的光量調節之方法。 (理想的平均亮度及亮度之擴展) 作為平均亮度,宜正面亮度(0度亮度)高。而且,較 佳為咼角度的平均亮度亦高。藉由成為如此,例如與顯 示裝置使用時’視野角變廣。又’作為照明裝置使用時 ,照度的擴展係變廣。 理想的平均亮度係隨著光學構件的構成等而不同, 僅内部光擴散薄膜(A)的構成時之〇度亮度較佳為 6000Cd/m2以上,更佳為6200Cd/m2以上。又,内部光 -43- 201219847 擴散薄膜(A)與表面光擴散薄膜(B)的積層系之〇度亮度 較佳為7000Cd/m2,更佳為75〇〇Cd/m2以上。 關於亮度的擴展,例如僅内部光擴散薄膜(A)的構成 時之tc度的擴展,以60度的平均亮度對〇度的平均亮度 之比表示,較佳為0.6以上,更佳為〇 7以上。另一方面 ,於内部光擴散薄膜(A)與表面光擴散薄膜的積層系 時,以提高0度的平均亮度為目的,亮度的擴展係變窄 〇 内部光擴散薄膜(A)具有特徵為:與表面光擴散薄膜 ⑻相比’平均亮度的擴展係可變廣。推測此係因為擴散 度比率高。 惟,本發明的重要要素係以排除内部光擴散薄膜(八) 與基材(C)之間的空氣層之效果為基礎,於後述的實施例 及比較例中,亦例示各自不適合此範圍之例。 (理想的亮度不均) 〇%為理想’但技術上困難。較佳為10%以下,更佳 為8%以下,尤佳為6%以下。 准本發月的重要要素係以排除内部光擴散薄膜(A) 與基材(C)之間的空氣層之效果為基礎,於後述的實施例 及比較例中,亦例示各自不適合此範圍之例。 [實施例] ^以下舉出μ施例來更具體說明本發明,惟本發明 :系不又下述實%例所限制,在可適合於本發明的宗旨之 範圍内亦可加以適宜的變更而實施,彼等皆含於本發 明的技術範圍内。再者,實施例所採用的測定·評價方 -44- 201219847 法係如以下。又’實施例中的「份」只要沒有預先指明 ’則意味「質量份」’ 「%」只要沒有預先指明,則意 味「質量%」。 1 ·全光線透過率 將自記分光光度計(UV-3 150 ;島津製作所公司製) 安裝在附積分球的裝置(ISR-3 100 ;島津製作所公司製) ’以狹縫寬度12nm ’高速掃描波長300〜8〇〇nm的範圍 ,進行分光光譜的測定,以在550ηιη的透過率表示。 於s玄測定中,使用以試料的主擴散方向成為水平方 向的方式,固定在試料固定器具,進行測定時之值。主 擴散方向係以雷射標記器對試料照射光,檢測出射光的 擴散方向而決定。 一試料兩面的表面粗糙度不同時,可使實際使用時的 光之透過方向在-致的方向,將試料固定而測定。於本 發明中’在自表面粗糙度低者入射的方向固定而測定。 2.半值寬擴散度(配光分布圖案之峰頂—半的高度 ,使用,交角分光測色系統Gcms_4型型:村上 色彩研究所股份有限公司匍 、隹…, 切有1民A J製,變角分光光度計GPS-2型、 進仃測定。在透過測定模式、 < 方向)、受光角度、8〇。〜8〇。广線射角.〇(溥膜法線 0 (自薄膜法線的極角。方位 角為水平)、光源:D65 主擴散方向成為水平方向二.2的條件下,以試料的 的轴與主二固定在試料台(試料台 ,求得透過光的變角IS係容許在2〇度左右以内: 間距測定。 刀光先度曲線。擺動角為〇。。以5 = '45- 201219847 求得上述測定所得之配光分布圖案的峰頂一半之高 度的角度,當作半值寬擴散度。 於測定之前,使用村上色彩研窕所股份有限公司製 的GCMS-4用之透過擴散標準板(橢圓玻璃),進行裝置 的校正’將該透過擴散標準板的受光角度〇度之透過光 強度當作基準(1.000),測定相對透過度。再者,前述透 過擴散彳示準板’係在積分球式分光計測中空氣層為1 . 〇 〇 〇 時’ 550nm的透過率為0.3535。 本測定係各試料皆測定3次,以其平均值表示。 當試料兩面的表面粗糙度不同時,可使實際使用時 的光之透過方向在一致的方向’將試料固定而測定。於 本發明中’在自表面粗糙度低者入射的方向固定而測定 〇 再者’主擴散方向係得到最大的光擴散性之薄膜面 内的方向’可使用雷射指示器等簡單地決定。 3.擴散度比率(主擴散方向的波長550nm之光在出射角 30度的透過度(13〇)對在出射角〇度的透過度(1〇)之比例 (I30/IOxl〇〇)) 以與上述半值寬擴散度相同的方法,測定波長 55 Onm的出射角〇°及30。之透過度,求得在出射角3〇度 的透過度(Iso)對在出射角〇度的透過度(1〇)之比例(I3〇/Iq Xl 00) >以%表示。 當試料兩面的表面粗糙度不同時,可使實際使用時的 光之透過方向在一致的方向,將試料固定而測定。於本發 明中’在自表面粗糙度低者入射的方向固定而測定。 -46 _ 201219847 4 ·變曲率 除了於上述2項的半值寬擴散度測定+,將光線入 射角變更為-60度以外,藉由同樣的方法進行測定測定 在波長550nm的〇度及6〇度之透過度,將各自的值當 作(1〇)6〇及(16〇)6〇,以下式求得變曲率。 變曲率(%)= (ι0)6〇/(ΐ6〇)6〇χ1〇〇 5. 異向性度 將藉由與上述同樣的方法所測定的在出光角30度 之透過率當作(I3G)H。 又’以試料的主擴散方向成為垂直方向的方式固 定在試料台,藉由與上述同樣的方法,求得與上述 正交的方向之在出射角3〇度的透過率(l3〇)v。 異向性度係藉由下式算出。 (I30)H /(I3〇)v 6. 平均面積 藉由接觸式的三次元表面粗縫度測定裝置(小坂研 究所(股)製二次元、三次元表面粗糙度解析系統TDA-21) ,於以下所示的條件下進行測定而求得。 (測定條件) TABLE PITCH : 0.005mm > REC PITCH : 1mm > H. MAGNIFICATION : 200,MEASURING LENGTH : 1mm ,V. MAGNIFICATION : 500,CUT OFF : 0.25mm, TRAVERSING LENGTH : REC,支數:100 支 X 輸送速 度:0.1mm/秒 再者,觸針為2μιη,使用90度者。 -47- 201219847 7. 熱塑性樹脂之熔體流速 依據JIS K 7210 A法,於2.16kgf的條件下測定。 8. 冷陰極管方式的面光源裝置之亮度及亮度不均 使用 RISA-COLOR/〇NE-II(Highland 公司製)進行測 定。 拆卸電通產業股份有限公司製的冷陰極管型之檢査 用面光源裝置(發光部品號LB350-236及電源部品號 SWD24-3.2A)的乳白擴散板,改變成此乳白擴散板,設 置試料而測定。 設置設有100mm見方的開口部之黑色遮光板,以使 得開口部成為上述檢査用面光源裝置的大致中央部之方 式,進行測定。 使CCD照相機與試料表面間之距離在垂直狀態下成 為lm,使CCD照相機對於試料表面,在_7^至+7〇。為 止之間的赤道上移動,測定亮度的角度依賴性。變角係 開始至最後僅1度’其間為3度間距,進行變角移動。 亮度的測定係將測定部在橫向3分割、縱向9分割,讀 取橫向的中心部之9公室丨丨Λ , > 丨< y刀割部分的亮度數據,表示〇度( 垂直方向)、30度及60度的平均亮度。 又由0度的9數據之最大值、最小值及平均值, 用下式求得亮度不均而表示。 亮度不均(〇/〇) = (崙女枯 窃 J (敢大值—攻小值)/平均值χίοο 檢査用面光源裝置係在水平的狀態下點亮後,放置 1小時以上後㈣度係以最大值進行。 測定係在暗室進行。 -48- 201219847 9. LED光源方式的面光源裝置之亮度及亮度不均 於295x33 5mm的鋁製殼體上,以45mm間距,用接 著劑固定曰亞化學公司製的LED光源(1W高功率型 Rigel 1 W)48個,在距離LED光源表面60mm的高度之 位置,固定試料,使用 RlSA-COLOR/ONE-II(Highland 公司製),藉由以下的方法進行測定。 設置設有1 00mm見方的開口部之黑色遮光板,以使 得開口部成為上述檢査用面光源裝置的大致中央部之方 式’進行測定。測定係設定2 1個2 b i t的面積之測定點 ’以其内6個當作LED光源的中心部,剩餘的15個成 為LED光源間的中央部而作設定,進行測定/上述亮度 及亮度不均(1)係不同,進行僅〇度(垂直)的測定。 面光源裝置係在水平狀態下點亮後,放置丨小時以 上後進行測定。 測定係在暗室下進行。 光源斑點的消去性係藉由下述基準來評價。 於上述亮度及亮度不均測定中’在點亮面光源裝置 的狀癌下’肉眼觀察開口部,進行以下的判定。The light portion is provided with the light diffusing film for the electro-optical display device to avoid the structure of the layer body, and the structure or size thereof is not limited. For example, the wheel technology &amp; is preferably a light-emitting surface of the surface light source device as described above, and is provided with a structure of the above-described electro-optical/amplitude-dispersion optical diffusing film laminate. -42-201219847 (Light quantity adjustment of illuminating device) The film (Α) of the light-diffusing thin layer layer (4) of the present invention has a high reflection performance due to, for example, a film having a specific surface light. When the electroluminescence display device of the present invention has a feature that the position of the m is bright, even if the illumination device is not lit, the internal light diffusion film (4) reflects the external light, and the bright light of the external light can be very bright. The displayed information is clearly and highly identifiable, and when the place where the electrophotographic display device is placed is bright, sufficient visibility or image quality of the information can be ensured even if the illumination device is not lit. Therefore, in the electrophotographic display device of the present invention, it is preferable to adjust the amount of light corresponding to the ambient of the place, adjust the amount of light of the illumination, and adjust the amount of light of the illumination device in accordance with the brightness of the external light. . This makes it possible to save energy. The method of adjusting the amount of light of the illumination device corresponding to the brightness of the external light is not limited. For example, a method of providing an illuminance meter for measuring the illuminance of external light of the electro-optical display device or the periphery thereof, and adjusting the amount of light of the illumination device in accordance with the illuminance can be mentioned. (Ideal average brightness and brightness extension) As the average brightness, the front brightness (0 degree brightness) should be high. Moreover, it is preferable that the average brightness of the 咼 angle is also high. By doing so, for example, when used with a display device, the viewing angle becomes wider. Further, when used as a lighting device, the expansion of illuminance is broadened. The average brightness is preferably different depending on the configuration of the optical member, and the brightness of the internal light-diffusing film (A) is preferably 6000 Cd/m2 or more, more preferably 6200 Cd/m2 or more. Further, the internal light -43 - 201219847 has a thickness of 7000 Cd/m2, more preferably 75 〇〇Cd/m2 or more, of the laminated film of the diffusing film (A) and the surface light diffusing film (B). Regarding the expansion of the luminance, for example, only the extension of the tc degree at the time of the configuration of the internal light-diffusing film (A) is expressed by a ratio of the average luminance of 60 degrees to the average luminance of the luminance, preferably 0.6 or more, more preferably 〇7. the above. On the other hand, in the case of the layering of the internal light-diffusing film (A) and the surface light-diffusing film, the expansion of the brightness is narrowed for the purpose of increasing the average brightness of 0 degrees. The internal light-diffusing film (A) is characterized by: The surface light diffusing film (8) has a wider range of expansion than the average brightness. It is speculated that this is because the diffusion ratio is high. However, the important elements of the present invention are based on the effect of eliminating the air layer between the internal light-diffusing film (8) and the substrate (C), and in the examples and comparative examples described later, they are also not suitable for the range. example. (ideal uneven brightness) 〇% is ideal' but technically difficult. It is preferably 10% or less, more preferably 8% or less, and particularly preferably 6% or less. The important elements of the quasi-this month are based on the effect of eliminating the air layer between the internal light-diffusing film (A) and the substrate (C). In the examples and comparative examples described later, they are also not suitable for this range. example. [Examples] The present invention will be more specifically described by the following examples, but the present invention is not limited by the following examples, and may be appropriately modified within the scope of the gist of the present invention. And implementation, they are all included in the technical scope of the present invention. Further, the measurement and evaluation method used in the examples is as follows. The "parts" in the 'examples' mean "mass parts" as long as they are not specified in advance. '%' means "% by mass" unless otherwise specified. 1 · The total light transmittance is measured by a self-recording spectrophotometer (UV-3 150; manufactured by Shimadzu Corporation) equipped with an integrating sphere (ISR-3 100; manufactured by Shimadzu Corporation) 'Scanning width at a slit width of 12 nm' The measurement of the spectral spectrum was carried out in the range of 300 to 8 〇〇 nm, and was expressed at a transmittance of 550 ηηη. In the measurement of the smectometry, the value of the sample fixing device is fixed to the sample fixing device so that the main diffusion direction of the sample is in the horizontal direction. The main diffusion direction is determined by irradiating light to the sample with a laser marker and detecting the direction in which the light is diffused. When the surface roughness of both surfaces of the sample is different, the light transmission direction in actual use can be measured in a direction in which the sample is fixed. In the present invention, it is measured by being fixed in a direction in which the surface roughness is low. 2. Half-value width diffusivity (peak of the light distribution pattern - half height, use, cross-section spectrophotometric system Gcms_4 type: Murakami Color Research Institute Co., Ltd. 匍, 隹..., cut a folk AJ system, Variable angle spectrophotometer GPS-2 type, measurement of the entrance and exit. In the transmission measurement mode, < direction), the light receiving angle, 8 〇. ~8〇. Wide line angle. 〇 (溥 film normal 0 (from the polar angle of the film normal. Azimuth is horizontal), light source: D65 The main diffusion direction becomes the horizontal direction of 2. 2, with the axis and the main of the sample Second, it is fixed to the sample table (sample table, and the angle of the transmitted light is IS. The system is allowed to be within 2 degrees or so: the pitch is measured. The knife curve is the first curve. The swing angle is 〇.. 5 = '45- 201219847 The angle of the height of the peak half of the light distribution pattern obtained by the above measurement was regarded as a half-value width diffusion degree. Before the measurement, a diffusion diffusion standard plate for GCMS-4 manufactured by Murakami Color Research Co., Ltd. was used. Elliptical glass), the correction of the device is carried out, and the relative transmittance is measured by using the transmitted light intensity of the light-receiving angle of the diffusion-diffusion standard as a reference (1.000). Further, the transmission-diffusion-displayed quasi-plate is attached to the integrating sphere. The air layer in the spectrometer is 1. The transmittance at 550 nm is 0.3535. The samples are measured three times in this measurement system and are expressed as the average value. When the surface roughness of the two sides of the sample is different, the actual When used The transmission direction is measured by fixing the sample in the same direction. In the present invention, the film is fixed in the direction in which the surface roughness is low, and the film is measured in the direction in which the main diffusion direction is the maximum light diffusibility. The direction ' can be determined simply by using a laser pointer, etc. 3. Diffusion ratio (transmission of light at a wavelength of 550 nm in the main diffusion direction at an exit angle of 30 degrees (13 〇) versus transmittance at an exit angle ( Ratio of 1〇) (I30/IOxl〇〇)) The same angle as the above-mentioned half-value width diffuser is used to measure the exit angle 〇° of wavelength 55 Onm and the transmittance of 30. The angle of incidence is 3 degrees. The ratio of the transmittance (Iso) to the transmittance at the exit angle (1〇) (I3〇/Iq Xl 00) > is expressed in %. When the surface roughness of the two sides of the sample is different, it can be used in actual use. The light transmission direction is measured in a uniform direction, and the sample is fixed. In the present invention, 'the measurement is fixed from the direction in which the surface roughness is low. -46 _ 201219847 4 · The curvature is divided by the half value of the above two items Wide diffuse measurement +, change the incident angle of light The measurement at the wavelength of 550 nm and the transmittance of 6 degrees were measured by the same method except for -60 degrees, and the respective values were regarded as (1 〇) 6 〇 and (16 〇) 6 〇. The curvature is changed. The curvature (%) = (ι0)6〇/(ΐ6〇)6〇χ1〇〇5. The degree of anisotropy will be measured at the exit angle of 30 degrees by the same method as above. It is regarded as (I3G)H. It is fixed to the sample stage so that the main diffusion direction of the sample is perpendicular, and the transmission in the direction orthogonal to the above is obtained by the same method as described above. Rate (l3〇) v. The degree of anisotropy is calculated by the following formula. (I30)H /(I3〇)v 6. The average area is measured by a contact type three-dimensional surface rough joint measuring device (secondary, three-dimensional surface roughness analysis system TDA-21 manufactured by Otaru Research Institute Co., Ltd.). The measurement was carried out under the conditions shown below. (Measurement conditions) TABLE PITCH : 0.005mm > REC PITCH : 1mm > H. MAGNIFICATION : 200, MEASURING LENGTH : 1mm , V. MAGNIFICATION : 500, CUT OFF : 0.25mm, TRAVERSING LENGTH : REC, count: 100 X conveying speed: 0.1mm / sec, the stylus is 2μιη, use 90 degrees. -47- 201219847 7. Melt flow rate of thermoplastic resin Measured under the conditions of 2.16 kgf according to JIS K 7210 A method. 8. Uneven brightness and brightness of the surface light source device of the cold cathode tube type were measured using RISA-COLOR/〇NE-II (manufactured by Highland). The milky white diffusing plate of the cold-cathode tube-type inspection surface light source device (light-emitting part number LB350-236 and power supply part number SWD24-3.2A) manufactured by Dentsu Industrial Co., Ltd. was changed, and the sample was measured by changing the white diffusing plate. . The black light-shielding plate having an opening of 100 mm square was provided so that the opening portion became a substantially central portion of the surface light source device for inspection, and measurement was performed. The distance between the CCD camera and the surface of the sample was made lm in the vertical state, so that the CCD camera was at _7^ to +7 对于 for the sample surface. The angular dependence of the brightness is measured for the movement between the equators. The variable angle system is only 1 degree at the beginning and is 3 degrees apart, and the angular movement is performed. In the measurement of the brightness, the measurement unit is divided into three in the horizontal direction and nine in the vertical direction, and the luminance data of the 9-central 中心, >丨< y-cut portion in the horizontal center portion is read, indicating the degree of twist (vertical direction). Average brightness of 30 degrees and 60 degrees. Further, the maximum value, the minimum value, and the average value of the 9 data of 0 degrees are expressed by the following equations. Uneven brightness (〇/〇) = (Large female burglary J (Dare big value - attack small value) / Average χίοο After checking the surface light source device is lit in a horizontal state, after being placed for more than 1 hour (four degrees) The measurement is performed in the dark room. -48- 201219847 9. The brightness and brightness of the surface light source device of the LED light source type are not uniform on the 295x33 5mm aluminum case, and the adhesive is fixed at 45mm pitch. 48 LED light sources (1W high-power Rigel 1 W) manufactured by Asia Chemical Co., Ltd., fixed at a height of 60 mm from the surface of the LED light source, using RlSA-COLOR/ONE-II (manufactured by Highland), with the following The measurement is carried out by setting a black light-shielding plate having an opening of 100 mm square so that the opening becomes a substantially central portion of the inspection surface light source device. The measurement system sets two 1 bit areas. In the measurement point, the six of them are used as the center of the LED light source, and the remaining 15 are set as the center between the LED light sources, and the measurement/the brightness and the brightness unevenness (1) are different. Degree (vertical) measurement The surface light source device was lighted in a horizontal state, and then measured after being left for more than one hour. The measurement was performed under a dark room. The erasing property of the light source spot was evaluated by the following criteria. In the case of 'under the cancer of the light-emitting surface light source device', the opening was visually observed, and the following determination was made.
沒有看到LED光源的亮點時:〇 看到LED光源的亮點時:X 之亮度及網 1〇·冷陰極管方式的導光板型^光源裝置 (mesh)的消去性 冷陰極管的1 9 )的面光源裝置 ’安裝4〇mmx 於長徑側(橫向)的兩側各個設有3支 对導光板型(使用白色反射薄膜的網目型 之出射光側的壓克力板上之大致中央部 -49- 201219847 60mm見方(60mm側為橫向)的評價樣品(僅疊合設置,試 料因捲曲而凸出時,用膠帶固定四角落),設置設有3〇mm x5〇mm見方(5〇mm側為橫向)之剪下部^的黑色遮光紙 ,以使得剪下部分的中心成為評價樣品的中心部,在暗 至測疋焭度。黑色遮光紙係成為覆蓋面光源裝置的全體 之大小而固定,不使漏光而進行測定。 又’面光源裝置係水平設置而測定。 焭度係使用Topcon Technohouse(股)製的Topc〇n分 光放射計SR-3A,以2度的測定角度,與背光單元表面 的距離為4〇cm,在評價用樣品的中心成為正下方的位置 進行測定。 於本測疋中’評價用樣品係以主擴散方向成為與冷 陰極管的長度方向正交的方向之方式設置而進行 網目的消去性,係在使面光源裝置點亮的狀態下, 肉眼Μ察上述正面亮度測定令的開口部,進行以下的判 定。 完全沒有看到導光板的網目時:〇 隱約看到導光板的網目時:△ >月楚看到導光板的網目時:X 測疋係在暗.室下進行。 11.在明至的電照顯示裝置之照明裝置非點亮的顯示晝 像之視覺辨認性 於冷陰極管方式之正下方型面光源裝置的亮度及亮 度不均:f價法中,停止面光源襄置的點亮,拆卸面光源 裝置的乳白板,在該部分依順序設置透明壓克力板所成 -50- 201219847 的基材、光擴散薄膜及印刷薄膜’於明室下觀察’藉由 以下的基準進行判定。再者,判定係以使用薄膜製造例 4的内部光擴散薄膜時,所印刷的圖像之視覺辨認性為 基準而進行。又,印刷薄膜係使用依照後述的方法而印 刷有大象存在的草原風景者。視覺辨認性係藉由所印刷 的圖像之明亮度與細部的視覺辨認性來判定。細部的視 覺辨認性係主要注視草原的草部分或象的鼻子皺紋之解 像度而判定。 (視覺辨認性之判定) 1 :非常良好,2 :良好,3 :稍微良好,4 :與薄膜 製造例4相同程度,5 :差,6 :非常差。 (薄膜製造例1) 使用2台的熔融擠壓機,在第1擠壓機中,將3 5質 量份的環狀聚烯烴系樹脂(T〇PAS(TM)6013S-04 TopasWhen you do not see the bright spot of the LED light source: 〇 When you see the bright spot of the LED light source: the brightness of X and the light guide plate type of the cold cathode tube type, the elimination of the cold cathode tube of the light source device (m9) The surface light source device is mounted with 4 〇mmx on each side of the long diameter side (lateral direction) and is provided with three pairs of light guide plates (the central portion of the acryl plate on the exit side of the mesh type using the white reflective film) -49- 201219847 60mm square (60mm side is horizontal) evaluation sample (only overlapped, when the sample protrudes due to curling, tape four corners), set with 3〇mm x5〇mm square (5〇mm The side is a horizontally-cut black shading paper, so that the center of the cut portion becomes the center portion of the evaluation sample, and the darkness is measured. The black shading paper is fixed to the size of the entire surface light source device. The measurement was performed without leaking light. The surface light source device was measured horizontally. The temperature was measured using a Topcon®n spectroradiometer SR-3A manufactured by Topcon Technohouse, at a measurement angle of 2 degrees, and the surface of the backlight unit. The distance is 4〇cm, at In the present measurement, the sample for evaluation is set such that the main diffusion direction is perpendicular to the longitudinal direction of the cold cathode tube, and the mesh is eliminated. When the surface light source device is turned on, the opening of the front brightness measuring command is visually observed, and the following determination is made. When the mesh of the light guide plate is not seen at all: When the mesh of the light guide plate is hidden: △ > When the moon sees the mesh of the light guide plate: X test system is carried out under the dark room. 11. The illumination device of the light-emitting display device of the brightest is not illuminated, and the visibility of the image is in the cold cathode tube. In the f-price method, the illumination of the surface light source is stopped, and the whiteboard of the surface light source device is removed. -50-201219847 The substrate, the light-diffusing film, and the printed film 'observed under the bright room' were judged by the following criteria. Further, when the internal light-diffusing film of the film production example 4 was used, it was judged that The visibility of the printed image is based on the standard. The printed film is printed on the grassland landscape in which the elephant is present according to the method described later. The visibility is determined by the brightness and detail of the printed image. It is judged by the visibility of the detail. The visual recognition of the detail is mainly determined by the resolution of the grass part of the grassland or the wrinkle of the nose of the elephant. (Determination of visual recognition) 1 : Very good, 2: Good, 3: slightly good, 4: The same degree as in the film production example 4, 5: poor, and 6: very poor. (Film production example 1) In a first extruder, 35 parts by mass of a ring was used in a first extruder. Polyolefin resin (T〇PAS(TM) 6013S-04 Topas
Advanced P〇lymers 公司製熔體流速:2.0(230。(:))與 65 貝里份的由乙烯與辛烯所成的嵌段共聚合樹脂(D〇W化 學公司製 INFUSE(TM) D9817.15 熔體流速:26(23〇 C ))當作光擴散層,在第2擠壓機中,以聚丙烯系的黏 著性樹脂(Admer(TM)SE8〇〇三井化學公司製熔體流 速L 5.7(190 C ))成為兩表層的方式,以τ模頭方式熔融 ” C出後藉由鏡面的冷卻辕進行冷卻,而得總厚度 4〇C^m之在兩面積層有熱密接層的内部光擴散薄膜。上 述冷部時’薄膜對冷卻親的密接(緊貼)係使用真空室進 仃。層厚度構成為4〇/32〇/4〇(μπ〇β 表1中顯不所得之内部光擴散薄膜的特性。 -51 - 201219847 (薄膜製造例2) 使用池貝鐵工公司製PCM45擠壓機,將50質量份 的環狀聚烯烴系樹脂(TOPAS(TM)6015 Topas Advanced Polymers公司製 溶體流速:0.4 1 (230°C ))與5〇質量份 的由乙烯與辛烯所成的嵌段共聚合樹脂(DOW化學公司 製 INFUSE(TM) D9817.15 熔體流速·· 26(230°C )), 以25 0°C的樹脂溫度熔融混合’由T模頭壓出,用經梨 皮紋加工的冷卻親(R a = 0.5 5)進行冷卻,而得到厚度 400μπι的内部光擴散薄膜。再者,上述冷卻輥的相反面 係使用表面經脫模處理(Ra= 1.0)的推壓親。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例3) 除了於薄膜製造例2中,使薄膜厚度成為2〇〇μπι以 外,藉由與實施例2同樣的方法,得到内部光擴散薄膜 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例4) 除了於薄膜製造例1中,將薄膜厚度變更為丨7 5 m 25/125/25(μιη)"^ & η同杈的方去,得到内部光擴散薄膜β 表1中顯不所得之内部光擴散薄膜的特性。 (薄膜製造例5) ° 除了於薄膜製造例i中,將薄膜厚度 ,將層厚度構成變更為18mm = 26叫 製造例1同樣的方法,^ s丨向加丄 精由與溥膜 付到内部光擴散薄膜。 表1中α示所得之内部光擴散薄膜的特性。 -52- 201219847 (薄膜製造例6) 將與實施例1相同的樹脂組成之摻合組成物,在壓 出溫度230°C、吹脹比K3下吹塑製膜,而得到厚度5〇μιη 的内部光擴散薄膜。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例7) 於真空乾燥機中在i 8(rc乾燥3小時,將95質量份 的已充分去除水分的實質上無滑劑之聚對笨二曱酸乙二 酯樹脂與5質量份的改性聚丙烯系樹脂(大日精化(股)製 CAP350)之混合物供應給單軸擠壓機,在28〇χ:熔融通 過過濾器、齒輪泵,進行雜質的除去、壓出量的均整化 後,由T模頭在溫度經控制在25。〇的冷卻滾筒上吐出片 狀。於該情況下,使用直徑〇.丨mm的線狀電極施加靜電 ,使緊貼於冷卻滾筒,而得到未延伸薄膜。其次,在溫 度l〇3°C,於長度方向中延伸5·0倍,而得厚度1〇〇叫 的内部光擴散薄膜原材。 將2片所得之内部光擴散薄膜原材,在内部光擴散 薄膜原材的主擴散方向為正交的方向,用光學用黏著劑 貼合而得到内部光擴散薄膜。黏著劑層的厚度為i 。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例8) 於真空乾燥機中在180°C乾燥3小時,將85質量份 的已充分去除水分的實質上無滑劑之聚對苯二甲酸乙二 酯樹脂與15質量份的prime Polymer(股)製之低密度聚 -53- 201219847 乙烯樹脂(SP 1 540)的混合物供應給單軸擠壓機,在280 C熔融,通過過濾器、齒輪泵,進行雜質的除去、壓出 I的均整化後,由T模頭在溫度經控制在2 5。〇的冷卻滾 筒上吐出片狀。於該情況下,使用直徑〇 ·丨的線狀電 極施加靜電,使緊貼於冷卻滾筒,而得到未延伸薄膜。 其次,在溫度103°C,於長度方向中延伸5 〇倍,而得厚 度7 5 μηι的内部光擴散薄膜原材。 將2片所得之内部光擴散薄膜原材,在内部光擴散 薄膜原材的主擴散方向為正交的方向,肖光學用黏著劑 貼合而得到内部光擴散薄膜。黏著劑層的厚度$ 1〇_。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例9) 使用池貝鐵工公司t PCM45擠壓機,將5〇質量份 的說系樹脂(Kynar 720(PVDF)ARKEMA公司製熔體流速 :10(230°C , 5kgf))與50質量份的取田甘丄 貝里物的來甲基戊烯系樹脂 (TPX(TM)DX820三井化學公司製校躺.占± 。 j取,熔體流速:1 1 〇 (2 6 0 °C,5kgf)),以250°C的樹脂溫度炼融 又^/晃合,由T模頭壓 出’用鏡面的冷卻輥進行冷卻, 、 '而传到厚度ΙΟΟμπι的内 部光擴散薄膜原材。上述冷卻時薄 导膜對冷部輥的緊貼係 使用氣刀進行。又’對單面施予電暈處理。 將2片所得之内部光擴散薄 守联席材,在内部光擴散 薄膜原材的主擴散方向為正交的方 用光學用潘占著密|j 貼合而得到内部光擴散薄膜。黏著 ’ ± t ^ Β 々者劑層的厚度為ΙΟμηι。 表i中顯示所侍之内部光擴 -54- 201219847 (薄膜製造例ίο) 使用池貝鐵工公司製PCM45擠壓機,將5〇質量份 的氟系樹脂(Kynar 720(PVDF)ARKEMA公司製炫體流速 :10(230°C,5kgf))與50質量份的環狀聚烯烴系樹脂 (T〇PAS(TM)6013 Topas Advanced .Polymers 公司製溶 體流速:2_l(23(TC,2.16kgf)),以250t的樹脂溫度溶融 混合’由T模頭壓出,用鏡面的冷卻輥進行冷卻,而得 到厚度200μιη的異向性内部光擴散薄膜。上述冷卻時薄 膜對冷卻親的緊貼係使用真空室進行。又,對單面施予 電暈處理。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例1 1) 除了於薄膜製造例1中,將薄膜厚度變更為56μιη, 將層厚度構成變更為8/4〇/8(μιη)以外,藉由與薄膜製造 例1同樣的方法’得到内部光擴散薄膜。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例12) 使用2台 用2台的熔融擠壓機,作為基材層的aAdvanced P〇lymers melt flow rate: 2.0 (230. (:)) and 65 mils of block copolymerized resin from ethylene and octene (DFUSE (TM) D9817 manufactured by D〇W Chemical Co., Ltd. 15 Melt flow rate: 26 (23 〇C)) as a light diffusion layer, in the second extruder, a polypropylene-based adhesive resin (Admer (TM) SE8 〇〇 Mitsui Chemicals Co., Ltd. melt flow rate L 5.7 (190 C )) is a two-layer method, which is melted by a τ die method. C is cooled by a mirror cooling enthalpy, and a total thickness of 4 〇 C ^ m is obtained in a two-layer layer having a heat-bonding layer. Internal light-diffusing film. In the above cold part, the film adheres to the cooling contact (closely) using a vacuum chamber. The layer thickness is 4〇/32〇/4〇 (μπ〇β is not obtained in Table 1). Characteristics of the internal light-diffusing film -51 - 201219847 (Film manufacturing example 2) 50 parts by mass of a cyclic polyolefin resin (TOPAS(TM) 6015 Topas Advanced Polymers, Inc., manufactured by Ikebukuro Iron Works Co., Ltd.) Solution flow rate: 0.4 1 (230 ° C)) and 5 parts by mass of block copolymerized resin composed of ethylene and octene (Dowization) Company-made INFUSE(TM) D9817.15 Melt flow rate · · 26 (230 ° C )), melt-mixed at a resin temperature of 25 ° C 'expressed by a T-die, cooled with a pear-skinned processing R a = 0.5 5) Cooling was carried out to obtain an internal light-diffusing film having a thickness of 400 μm. Further, the opposite surface of the above-mentioned cooling roll was subjected to a release treatment of a surface subjected to a release treatment (Ra = 1.0). Characteristics of the internal light-diffusing film. (Film Production Example 3) An internal light-diffusing film was obtained in the same manner as in Example 2 except that the film thickness was 2 μm. The characteristics of the obtained internal light-diffusing film were shown. (Film Production Example 4) In the film production example 1, the film thickness was changed to 丨7 5 m 25/125/25 (μιη) "^ & η The characteristics of the internal light-diffusing film which was not obtained in Table 1 were obtained. (Film Production Example 5) ° In addition to film production example i, the film thickness was changed to 18 mm. 26 is the same method as in the manufacture example 1, ^ s 丨 丄 丄 由 由 and 溥 film To the internal light-diffusing film. The characteristics of the internal light-diffusing film obtained in Table 1 are shown in Table 1. -52 - 201219847 (Film Production Example 6) The blended composition of the same resin composition as in Example 1 was extruded at a temperature of 230 At a temperature of ° C and a blow ratio of K3, a film was blow molded to obtain an internal light-diffusing film having a thickness of 5 μm. The characteristics of the obtained internal light diffusing film are shown in Table 1. (Film Production Example 7) 95 parts by mass of a substantially slip-free polybutylene phthalate resin and 5 parts by mass in a vacuum dryer at i 8 (rc for 3 hours) A mixture of a modified polypropylene resin (CAP350 manufactured by Daisei Seiki Co., Ltd.) is supplied to a uniaxial extruder at 28 〇χ: melted through a filter and a gear pump to remove impurities and equalize the amount of extrusion. After the tempering, the T-die is sprinkled with a sheet on the cooling drum whose temperature is controlled at 25. The enthalpy is applied to the cooling drum using a wire electrode having a diameter of 〇.丨mm. The film is not stretched. Secondly, at a temperature of l〇3 ° C, it is extended by 5.0 times in the longitudinal direction to obtain an internal light-diffusing film material having a thickness of 1 Å. The obtained internal light-diffusing film material is obtained. The internal light diffusing film is obtained by bonding the optical diffusing film in the direction in which the main diffusing direction of the internal light diffusing film material is orthogonal, and the thickness of the adhesive layer is i. The internal light diffusing film obtained in Table 1 is shown in Table 1. Characteristics (film production example 8) in a vacuum dryer Drying at 180 ° C for 3 hours, 85 parts by mass of the substantially slip-free polyethylene terephthalate resin with sufficient moisture removal and 15 parts by mass of low density poly-53-made by prime polymer (stock) 201219847 A mixture of vinyl resin (SP 1 540) is supplied to a uniaxial extruder, melted at 280 C, passed through a filter, a gear pump, and subjected to the removal of impurities and the homogenization of the extrusion I. It is controlled to discharge a sheet shape on the cooling drum of 25°. In this case, static electricity is applied using a wire electrode having a diameter of 〇·丨 to adhere to the cooling drum to obtain an unstretched film. Second, at a temperature of 103°. C, extending 5 times in the longitudinal direction to obtain an internal light-diffusing film material having a thickness of 7 5 μη. The internal light-diffusing film material obtained by the two sheets is positive in the main diffusion direction of the internal light-diffusing film material. In the direction of intersection, Xiao Optics was bonded with an adhesive to obtain an internal light-diffusing film. The thickness of the adhesive layer was $1〇_. The characteristics of the obtained internal light-diffusing film are shown in Table 1. (Film Production Example 9) Company t PCM45 extruder, will 5 parts by mass of the resin (Kynar 720 (PVDF) Arkema company melt flow rate: 10 (230 ° C, 5 kgf)) and 50 parts by mass of the glutinous rice glutinous product of the methyl pentene resin (TPX(TM) DX820 Mitsui Chemicals Co., Ltd. lie. 占±, j take, melt flow rate: 1 1 〇 (260 ° C, 5kgf)), smelt at a resin temperature of 250 ° C and The T-die presses out the 'cooling with a mirror cooling roller,' and transmits it to the internal light-diffusing film material having a thickness of ΙΟΟμπι. When the cooling is performed, the adhesion of the thin film to the cold roller is performed using an air knife. . Further, a single side is subjected to corona treatment. Two pieces of the obtained internal light were diffused into the thin-wound material, and the internal light-diffusing film was obtained by bonding the internal light-diffusing film material in the direction in which the main diffusion direction of the film was orthogonal to each other. The thickness of the adhesive layer of '± t ^ Β 々 is ΙΟμηι. Table i shows the internal light expansion of the service -54-201219847 (film manufacturing example ίο) Using a PCM45 extruder manufactured by Chiba Iron Works Co., Ltd., 5 parts by mass of fluorine resin (Kynar 720 (PVDF) ARKEMA company Body flow rate: 10 (230 ° C, 5 kgf)) and 50 parts by mass of a cyclic polyolefin resin (T〇PAS (TM) 6013 Topas Advanced. Polymers company solution flow rate: 2-1 (23 (TC, 2.16 kgf)) The mixture is melted and mixed at a resin temperature of 250 t, and is extruded by a T die, and cooled by a mirror cooling roll to obtain an anisotropic internal light diffusion film having a thickness of 200 μm. The film is used for cooling the close contact during cooling. In the vacuum chamber, the corona treatment was applied to one side. The characteristics of the obtained internal light-diffusing film are shown in Table 1. (Film Production Example 1 1) In the film production example 1, the film thickness was changed to 56 μm. The internal light-diffusing film was obtained by the same method as in Film Production Example 1 except that the layer thickness configuration was changed to 8/4 Å/8 (μιη). The characteristics of the obtained internal light-diffusing film are shown in Table 1. Example 12) Using two sets of two melt extruders as Substrate layer a
擠壓機供給1 出後’藉由20的鑷造 利用縱延伸機的輥周速 -55- 201219847 差,將未延伸片以1 20°c的延伸溫度延伸4 8倍,接著藉 由拉幅式延伸機’在1 6 5 °C加熱後’以1 5 5 〇c的延伸溫度 在橫向延伸9倍。然後,在i 66〇c進行熱定型,得到A 層及B層的厚度分別為22.2 μιη及2.8 μηι的内部光擴散薄 膜。於捲繞的跟前,對基層Α表面進行電暈處理。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例13) 將50質量份的聚丙烯樹脂(住友化學公司製,住友 NoblenFS2011DG3)、30質量份的乙烯.丁烯共聚物(三 井化學公司製,Tafmer A0585X)及20質量份的奈米結晶 構造控制型聚烯烴系彈性體樹脂(三井化學公司製, Notio PN3560)預先經2軸擠壓機熔融壓出而得的混煉之 聚烯經糸樹脂組成物,於6 0 m m φ單軸擠壓機(l / D : 2 2) 内’以240°C的樹脂溫度熔融混合,在τ模頭壓出後, 藉由2 0 C的鑄造輥冷卻而得到未延伸片。其次,利用縱 延伸機的輥周速差,將未延伸片以1 1 8。(:的延伸溫度延 伸4.5倍’再於橫向在145。(:延伸8.2倍,於158。(:熱定 型。接著’對其單面進行電暈處理,而得到厚度25μπι 的内部光擴散薄膜。 表1中顯示所得之内部光擴散薄膜的特性。 (薄膜製造例14) 於厚度ΙΟΟμιη的高透明性聚酯薄膜(東洋紡績公司 製C〇sm〇shineA4300)之一面上,使用塗佈機,以乾燥後 厚度成為30μιη的方式’塗佈50質量份的平均粒徑為3μχη 的真球狀之丙烯酸樹脂粒子(東洋紡績公司製 -56- 201219847After the extruder is supplied with 1 out, the difference between the roll speed of the longitudinal stretcher and the circumferential speed of the longitudinal stretcher is -55-201219847, and the unstretched piece is extended by 4 times as long as the extension temperature of 1 20 ° C, and then by the tenter. The type of extension machine 'extends 9 times in the transverse direction at an extension temperature of 1 5 5 〇c after heating at 165 °C. Then, heat setting was performed at i 66 〇 c to obtain internal light-diffusing films of A and B layers having thicknesses of 22.2 μm and 2.8 μm, respectively. The surface of the base layer was corona treated before winding. The characteristics of the obtained internal light diffusing film are shown in Table 1. (Film Production Example 13) 50 parts by mass of a polypropylene resin (manufactured by Sumitomo Chemical Co., Ltd., Sumitomo Noblen FS 2011 DG3), 30 parts by mass of an ethylene-butene copolymer (manufactured by Mitsui Chemicals Co., Ltd., Tafmer A0585X), and 20 parts by mass of a nanometer The crystal structure-controlled polyolefin-based elastomer resin (Notio PN3560, manufactured by Mitsui Chemicals Co., Ltd.) was previously melt-extruded by a 2-axis extruder to obtain a kneaded resin composition having a ruthenium resin composition of 60 mm φ. The extruder (l / D : 2 2) was melt-mixed at a resin temperature of 240 ° C, and after being extruded by a τ die, it was cooled by a 20 ° C casting roll to obtain an unstretched sheet. Next, using the circumferential speed difference of the longitudinal stretcher, the unstretched sheet was set to 1 18 . (: the extension temperature was extended 4.5 times and then the transverse direction was 145. (: 8.2 times extension, at 158. (: heat setting. Then 'one side was subjected to corona treatment to obtain an internal light diffusion film having a thickness of 25 μm. The characteristics of the obtained internal light-diffusion film are shown in Table 1. (Film Production Example 14) A coater was used on one surface of a highly transparent polyester film (C〇sm〇shine A4300 manufactured by Toyobo Co., Ltd.) having a thickness of ΙΟΟμηη In the form of a film having a thickness of 30 μm after drying, 50 parts by mass of true spherical acrylic resin particles having an average particle diameter of 3 μχη (manufactured by Toyobo Co., Ltd. -56-201219847)
Taftic(TM)FH _ S300)與5〇質量份的聚胺甲酸酯樹脂之 &物及進行乾燥而得到表面光擴散薄膜。 表1中顯示所得之表面光擴散薄膜的特性。再者, 所得之表面光擴散薄膜的塗佈面之表面積相當值(擴散 面的平均面積)為890μιη2。 (薄膜製造例1 5 ) 於厚度20〇μηι的高透明性聚酯薄膜(東洋紡績公司 製C〇Smoshine Α4300)之—面上’塗佈透明丙烯酸系光硬 化型樹脂組成物(DAICE科學(股)製,商品名「ρΕΤΙΑ」) ,以輥模具來賦型’藉由照射紫外線的紫外線賦型法, 得到高度為25μπι且直徑為50μηι的半球狀之圓頂形狀的 大·起經最检填充的形式賦型之表面光擴散薄膜。 表1中顯示所得之表面光擴散薄膜的特性。再者, 所得之表面光擴散薄膜的賦型面之表面積相當值(擴散 面的平均面積)為2100μηι2。 (薄膜製造例16) 於厚度1 ΟΟμηι的高透明性聚酯薄膜(東洋紡績公司 ^ C〇Sm〇shine Α4300)之一面上,使用塗佈機,以乾燥後 厚度成為30μιη的方式,塗佈60質量份的平均粒徑為 5〇μηι的真球狀之丙烯酸樹脂粒子(積水化成品工業公司 製Techp〇lymer(TM)MBX_5〇m 4〇質量份的聚胺曱酸酯 樹脂之混合物,及進行乾燥而得到表面光擴散薄膜。 表1中顯示所得之表面光擴散薄膜的特性。再者, 所得之表面光擴散薄膜的塗佈面之表面積相當值(擴散 面的平均面積)為1 5 20 μιη2。 -57- 201219847 (薄膜製造例17) 除了於薄膜製造例14中’將丙烯酸樹脂粒子變更為 平均粒徑0·9μηι的丙稀酸樹脂粒子(東洋紡績公司製 Taftic(TM)FU700)以外,藉由與薄膜製造例Μ同樣的方 法,得到表面光擴散薄膜。 表1中顯示所得之表面光擴散薄膜的特性。再者, 所得之表面光擴散薄膜的塗佈面之表面積相當值(擴散 面的平均面積)為405μηι2。 (實施例1Α) 於厚度3mm且550nm的全光線透過率為92.2%的透 明壓克力板之一面上,用熱接著法貼合薄膜製造例1所 得之光擴散薄膜’而得到光擴散薄膜積層體。 以光擴散薄膜側成為出光面的方式,設置所得之光 擴散薄膜積層體,藉由前述冷陰極管方式的面光源裝置 之壳度及亮度不均的評價方法進行評價。表2中顯示所 得之結果。 Λ細* 所付之光擴散薄膜積層體,與比較例1 A〜 10A比較下,平均亮度高,$度的角度依賴性小,而且 亮度不均小,為高品質,表示可適用於面光源裝置。而 且,如與參考例1 A h ^ 的比較下所示,得到比使用1片光擴 散溥膜的:有-般廣用的透鏡薄膜之複數片的光學構件 之情況還南性能的面光源裝置。 (比較例1A) 使用不熱接著光擴散薄膜之透明壓克力板,表2中 顯示與實施例i A @ H 兄力板,表2干 1 j樣地評價之結果。 與貫施例1 A相士 τ 、’均冗度低,亮度不均係明顯大。 -58· 201219847 (比較例2A) 不熱接光擴散薄膜’而僅在透明壓克力板上疊合薄 膜製造例1的光擴散薄膜’表2中顯示與實施例1 a同樣 地評價之結果。 與實施例1A相比’平均亮度低,亮度不均高。表示 在基材上貼合光擴散薄膜的效果。 (比較例3A) 除了於比較例2A的方法中,代替薄膜製造例1的光 擴散薄膜,使用薄膜製造例1 4的光擴散薄膜以外,與比 較例2A同樣,表2中顯示所評價之結果。再者,在出光 側設置珠塗面,進行評價。 與實施例1 A相比’雖然正面(〇度)的亮度高,但亮 度的角度依賴性變差。再者,亮度不均係明顯高。 再者,本比較例所用的薄膜製造例14之光擴散薄膜 係霧值為96.7%,被定位為高擴散性薄膜。 (比較例4A) 於實施例1A所用的透明壓克力板之一面上,用厚度 5 μηι的光學用黏著劑’將薄膜製造例1 4的光擴散薄膜以 珠塗面的相反面進行貼合’在出光側設置光擴散薄膜, 進行評價。 顯示以表面光擴散型的光擴散薄膜,不出現與基材 的貼合所致的亮度提高或亮度不均減低之效果。 (比較例5 Α及比較例6 A) 除了於比較例3 A及比較例4 A的方法中,代替薄膜 製造例14的光擴散薄膜,使用薄膜製造例1 $的光擴散 -59- 201219847 薄膜以外,藉由與比較例3A及比較例4A同樣的方法, 表2中顯不所評價之結果。與比較例5Λ重疊,比較例 6A係貼&時之結果。皆將賦型面作為出光面設置。 知到與比較例3A及比較例4A類似的結果,顯示以 表面光擴散型的光擴散薄膜,不出現與基材的貼合所致 的亮度提高或亮度不均減低之效果。 再者’本比較例所用的薄膜製造例1 5之光擴散薄膜 係霧值為94.3%,被定位為高擴散性薄膜。 (比較例7A及比較例8a) 除了於實施例1 A及比較例2 A的方法中,代替薄膜 製造例1的光擴散薄膜,使用薄膜製造例丨i的光擴散薄 膜以外,藉由與實施例丨A及比較例2A同樣的方法,表 2中顯不所評價之結果。與比較例7A重疊,比較例8A 係貼合時的結果。 即使為内部光擴散薄膜,當擴散度比率或變曲率不 足時 也無法展現本發明的效果。 (比較例9A及比較例1〇A) 除了於實施例1 A的方法中,代替薄膜製造例1的光 擴散薄膜,各自用厚度5 μηι的光學用黏著劑貼合薄膜製 造例12及薄獏製造例13的光擴散薄膜以外,藉由與實 施例1 Α同樣的方法,表2中顯示所評價之結果。 與比較例7A及比較例8A同樣地’即使為内部光擴 散薄膜,當擴散度比率或變曲率不足時,也無法展現本 發明的效果。 -60- 201219847 (比較例1 ΙΑ) 除了於比較例9Α的方法中’將光擴散薄膜變 膜製造例1〇的光擴散薄膜以外,藉由與比較例9Α同樣 的方法,表2中顯示所評價之結果。 , 即使為内部光擴散薄膜’當全光線透過率超過本發 明的較佳範圍時,亮度提高效果也變小。 (參考例1 A ) 除了於實施例丨八的方法中,作為基材,變更為全光 線透過率44.4%的厚度3mm之乳白壓克力板以外,藉由 與實施例1同樣的方法,表2中顯示所評價之結果。0 基材的全光線透過率低於本發明的較佳範圍時亮 度變低。 (實施例2A) 除了於實施例1 A的方法中,取消薄膜製造例1的光 擴散薄膜之熱接著,變更為使用水來黏貼該光擴散薄膜 與基材以外’藉由與實施例1 A同樣的方法,表2中顯示 所評價之結果。 與實施例1A相比’由於與基材的折射率差變大,故 梵度提高及亮度不均的改善效果係比實施例1 A若干降 低。 (實施例3A) 除了於實施例1 A的方法中,將光擴散薄膜積層體的 光擴散薄膜面變更為光源側以外,藉由與實施例1A同樣 的方法,表2中顯示所評價之結果。展現與實施例1 a 同等的效果。 -61 - 201219847 (實施例4A) 除了於實施例1 A的方法中,取消薄膜製造例1的光 擴散薄膜之熱接著,變更為用厚度5 μιη的光學用黏著劑 來貼合薄膜製造例2的光擴散薄膜以外,藉由與實施例 1Α同樣的方法,表2中顯示所評價之結果。 平均正面亮度係比實施例1 A若干降低,但亮度的角 度依賴性或亮度不均係比實施例1 A改善。 (比較例12A) 於實施例4A中,不用黏著劑貼合光擴散薄膜,僅在 透明壓克力板上疊合薄膜製造例2的光擴散薄膜,表2 中顯示與實施例4A同樣地評價之結果。 與實施例4A相比,平均亮度低,亮度不均高。表示 在基材上貼合内部光擴散薄膜之效果。 (實施例5A) 除了於實施例4A的方法中,將薄膜製造例2的光擴 散薄膜變更為薄膜製造例3的光擴散薄膜以外,藉由與 實施例4A同樣的方法,表2中顯示所評價之結果。 亮度係比實施例4A稍微提高,但亮度不均係比實施 例4A若干降低。 (比較例1 3 A) 於實施例5 A中’不用黏著劑貼合光擴散薄膜,僅在 透明壓克力板上疊合薄膜製造例3的光擴散薄膜,表2 中顯示與實施例5A同樣地評價之結果。 與實施例5A相比,平均亮度低,亮度不均高。表示 在基材上貼合光擴散薄膜之效果。 -62- 201219847 (實施例6A) 除了於實施例5 A的方法中,變更為在基材的兩面貼 合薄膜製造例3的光擴散薄膜以外,藉由與實施例5 A 同樣的方法’表2中顯示所評價之結果。 贵度係比貫施例5A稍微降低’但亮度不均變小。 (實施例7A) 除了於實施例1 A的方法中’代替薄膜製造例1的光 擴散薄膜’變更為使用薄膜製造例4的光擴散薄膜以外 ’藉由與貫施例1A同樣的方法,表2中顯示所評價之結 果。 亮度不均係比實施例1A稍差。 (比較例14A) 於實施例7A中,不用黏著劑貼合光擴散薄膜,僅在 透明壓克力板上疊合薄膜製造例3的光擴散薄膜,表2 中顯示與實施例4A同樣地評價之結果。 與實施例7A相比’平均亮度低,亮度不均高。表示 在基材上貼合光擴散薄膜之效果。 (實施例8A) 除了於實施例1 A的方法中,代替薄膜製造例1的光 擴散薄膜’使用薄膜製造例5的光擴散薄膜,而且變更 為以主擴散方向呈互相正交的方式,藉由熱接著而貼合 在基材的兩面以外’藉由與實施例1A同樣的方法,表2 中顯示所評價之結果。再者,入光的光擴散薄膜之主擴 散方向係在與檢査用面光源裝置的冷陰極管之長度方向 呈正交的方向設置而進行評價β -63- 201219847 與實施例1A相比’特性皆變差,但比上述比較例優 異。 (實施例9Α及實施例10Α) 除了於實施例8Α中’代替薄膜製造例5的光擴散— 膜,變更為各自用厚度5 μηι的光學用黏著劑,將^ ' 守〉寻膜製 造例6及薄膜製造例7的光擴散薄膜貼合於基杈 M 兩面 以外,藉由與實施例8A同樣的方法,表2中顯+ & ’小所評僧 之結果。 特性係比實施例8 A差,但優於比較例。 (比較例15A) 於實施例9A中’不用黏著劑貼合光擴散薄祺,僅 透明壓克力板上疊合薄膜製造例6的光擴散薄膜,在 中顯示與實施例9A同樣地評價之結果。 ^ 2 與實施例9A相比,平均亮度低,亮度不均高。_ 在基材上貼合光擴散薄膜之效果。 〜不 (實施例1 1A) 除了於實施例5A的方法中,代替薄膜製造例3 、“ 擴散薄膜,使用薄膜製造例8的光擴散薄膜以外,=光 與實施例5 A同樣的方法,表2中顯示所評價之、狂藉由 與實施例1A大致同等,比實施例5八優異。。 (實施例12A) 除了於實施例5A的方法中,代替薄膜製造例3 擴散薄膜,使用薄膜製造例9的光擴散薄膜以外的光 與實施例5A同樣的方法,表2中顯示所評價之結藉由 與實施例5A大致同等β 果· ° -64 - 201219847 (實施例13 A) 除了於實施例7A的方法中,將基材變更為全光線透 過率67.2%的乳白壓克力板以外,藉由與實施例7A同樣 的方法,表2中顯示所評價之結果。 與實施例7A相比,雖然平均亮度若干降低,但亮度 不均減半。 (參考例2A) 將市售的VA型TV之背光裝置所用的乳白光擴散板 /下擴散薄膜/稜鏡薄膜/上擴散薄膜所成的4片構成之光 學構件,換成冷陰極管方式的面光源裝置中的亮度及亮 度不均評價方法所用的冷陰極管方式之檢査用面光源裝 置的乳白擴散板而設置,藉由冷陰極管方式的面光源裝 置之亮度及亮度不均評價方法進行評價。表2中顯示結 果。 例如’與實施例1 A比較下,平均亮度、亮度的角度 依賴性及亮度不均的任一特性皆差,表示本發明的光擴 散薄膜積層體係高性能。 (貫施例14 A〜1 6 A及比較例1 6 A〜1 8 A) 使用與實施例1A、實施例4A、實施例6A、比較例 2A、比較例12A、比較例3A相同的積層體,藉由前述 Led光源方式的面光源裝置之亮度及亮度不均測定方法 進行LED光源之面光源裝置的本發明之效果確%。表 3中顯示結果。 於LED光源的面光源裂置中,亦與冷陰極管光源的 面光源裝置同樣地展現本發明的效果。 -65- 201219847 特別地,本發明的光擴散薄膜積層體係具有可大幅 降低光源斑點的視覺辨認性之特徵,藉由使用本發明的 光擴散薄膜積層體於面光源裝置,可以維持此特性的形 式提局亮度。 [表1] 薄膜 製造例 光擴散薄膜特性 全光線透過率 (%) 擴散度比率 (%) 變曲率 (%) 半值寬 擴散度 異向性度 1 61.8 76.1 44.4 100 1.7 2 46.1 86.0 67.9 130 1.2 3 73.0 51.7 28.3 64 1.6 4 75.0 28.1 19.5 35 3.2 5 82.8 11.4 4.8 20 32 6 78.2 25.7 5.1 40 1.0 7 57.0 19.4 8.3 60 1.1 8 56.0 38.0 19.5 92 1.3 一 9 " 77.6 11.8 9.9 52 2.5 10 22.9 92.3 111.8 142 1.4 11 84.8 1.8 0.1 5 8.1 12 91.0 0.1 <0.1 11 1.6 13 89.4 0.2 <0.1 5 28 14 59.0 6.1 3.0 20 1.0 15 53.8 2.5 4.0 13 1.0 16 56.2 2.8 2.9 15 1.0 17 78.0 0.9 0.5 9 1.0 -66 - 201219847 [表2] 與基材的 折射率差 基材的全光 線透過率 (%) 平均亮度(Cd/m2) 亮度不均 (%) 〇度 30度 60度 實施例1A 0 92.2 6560(1.00) 6030 (0.92) 4970 (0.75) 3.0 實施例2A -0.2 92.2 6340(1.00) 5940 (0.92) 4840 (0.75) 3.4 實施例3A 0 92.2 6550(1.00) 6070 (0.98) 4990 (0.76) 3.3 實施例4A 0 92.2 6060(1.00) 5930 (0.98) 4970 (0.82) 2.2 實施例5A 0 92.2 6650(1.00) 6070 (0.91) 4660 (0.70) 5.1 實施例6A 0 92.2 6470(1.00) 5890 (0.90) 4690 (0.72) 3.8 實施例7A 0 92.2 6570(1.00) 5690 (0.87) 4630 (0.70) 5.8 實施例8 A 0 92.2 6470(1.00) 5820 (0.90) 4550 (0.70) 5.2 實施例9A 0 92.2 5860(1.00) 5560 (0.95) 4630 (0.79). 10.3 實施例10A 0 92.2 6320(1.00) 5690 (0.90) 4590 (0.72) 7.8 實施例11A 0 92.2 6520 (1.00) 601.0 (0.92) 4900 (0.75) 3.0 實施例12A 0 92.2 6620(1.00) 5980 (0.90) 4820 (0.72) 5.0 實施例13A 0 67.2 6030(1.00) 5960 (0.98) 5010 (0.83) 2.5 比較例1A — — 5010(1.00) 5010 (1.00) 4470 (0.89) 130.2 比較例2 A -0.5 92.2 6140 (1.00) 5650 (0.92) 4560 (0.74) 7.0 比較例3 A -0.5 92.2 7460(1.00) 6670 (0.89) 3430 (0.46) 19.6 比較例4 A 0 92.2 7400(1.00) 6830 (0.92) 3610 (0.48) 22.6 比較例5 A -0.5 92.2 8100(1.00) 6640 (0.82) 2630 (0.32) 20.8 比較例6 A 0 92.2 8130(1.00) 7020 (0.86) 2940 (0.36) 23.1 比較例7 A 0 92.2 5230(1.00) 5160 (0.99) 4040 (0.77) 54.8 比較例8 A 0 92.2 5460(1.00) 5290 (0.97) 4240 (0.78) 46.1 比較例9 A 0 92.2 5240(1.00) 5140(0.98) 4100 (0.78) 75.2 比較例10A 0 92.2 5200(1.00) 5310(0.98) 4320 (0.83) 80.3 比較例11A 0 92.2 4210(1.00) 3860 (0.92) 3260 (0.77) 2.0 比較例12A -0.5 92.2 5980(1.00) 5540 (0.93) 4610 (0.77) 3.6 比較例13A -0.5 92.2 6080(1.00) 5690 (0.94) 4690 (0.77) 6.5 比較例14A -0.5 92.2 6080(1.00) 5690 (0.94) 4700 (0.77) 6.5 比較例15A -0.5 92.2 5450 (1.00) 5070 (0.93) 4090 (0.75) 14.7 參考例1A 0 44.4 5260(1.00) 5050 (0.96) 4460 (0.85) 1.8 參考例2A — — 5980(1.00) 5250 (0.97) 2410 (0.40) 3.3 * :平均亮度的()内之數值表示對0度亮度的相對比 -67- 201219847 [表3] 與基材的 折射率差 基材的全光線 透過率 (%) 平均亮度 (Cd/m2) 實施例14A 0 92.2 12080 實施例15A 0 92.2 11360 實施例16A 0 92.2 11260 比較例16A -0.5 92.2 11080 比較例17A -0.5 92.2 9390 比較例18A -0.5 92.2 18100 (實施例IB)Taftic (TM) FH _ S300) and 5 parts by mass of the polyurethane resin & and dried to obtain a surface light diffusing film. The characteristics of the obtained surface light diffusing film are shown in Table 1. Further, the surface area equivalent value (average area of the diffusion surface) of the coated surface of the obtained surface light-diffusing film was 890 μm 2 . (Film Production Example 15) Coating of a transparent acrylic photocurable resin composition on a surface of a highly transparent polyester film (C〇Smoshine® 4300 manufactured by Toyobo Co., Ltd.) having a thickness of 20 μm (DAICE Science) ), the product name "ρΕΤΙΑ", which is shaped by a roll mold. By the UV-forming method of ultraviolet light, a hemispherical dome shape with a height of 25 μm and a diameter of 50 μm is obtained. Formed surface light diffusing film. The characteristics of the obtained surface light diffusing film are shown in Table 1. Further, the surface area equivalent value (average area of the diffusion surface) of the surface of the obtained surface light-diffusing film was 2,100 μm 2 . (Film Production Example 16) On one surface of a highly transparent polyester film (Toyobo Co., Ltd., C.Sm〇shine Α4300) having a thickness of 1 ΟΟμηι, a coating machine was used, and the thickness was 30 μm after drying. a mixture of a true spherical acrylic resin particle having a mean particle diameter of 5 μμηι (a Techp〇lymer (TM) MBX_5〇m 4 parts by mass of a polyamine phthalate resin manufactured by Sekisui Kogyo Co., Ltd., and The surface light-diffusing film was dried to obtain the characteristics of the surface light-diffusing film obtained in Table 1. Further, the surface area equivalent value (average area of the diffusion surface) of the coated surface of the obtained surface light-diffusing film was 1 5 20 μm 2 . - 201219847 (Film Production Example 17) In addition to the acrylic resin particles (the Taftic (TM) FU700 manufactured by Toyobo Co., Ltd.), which was changed to the average particle diameter of 0·9 μηι in the film production example 14, Film Production Example A surface light-diffusing film was obtained in the same manner. The characteristics of the obtained surface light-diffusing film are shown in Table 1. Further, the coated surface of the obtained surface light-diffusing film was used. The surface area equivalent value (average area of the diffusion surface) was 405 μm 2 (Example 1 Α) The film was bonded to one surface of a transparent acrylic plate having a total light transmittance of 92.2% and a thickness of 3 mm and 550 nm. The obtained light-diffusing film layer is obtained by the light diffusing film obtained in the first embodiment. The obtained light-diffusing film layered body is provided so that the light-diffusing film side becomes the light-emitting surface, and the surface of the surface-light source device of the cold cathode tube type is The evaluation method of uneven brightness was evaluated. The results obtained are shown in Table 2. Λ细* The light-diffusing film laminate which was applied was compared with Comparative Example 1 A to 10A, and the average luminance was high, and the angle dependence of $degree was small. Moreover, the brightness is not uniform, and the quality is high, indicating that it can be applied to a surface light source device. Moreover, as shown in comparison with Reference Example 1 A h ^, it is more widely used than using one light diffusing film: A case of an optical member of a plurality of lens films used is also a surface light source device of the south performance. (Comparative Example 1A) A transparent acrylic plate which is not thermally followed by a light diffusion film is used, and is shown in Table 2 with Example i A @ H Brother force The results of the evaluation of the plate and Table 2 are as follows: with the example 1 A phase τ, 'the average redundancy is low, the brightness unevenness is significantly larger. -58· 201219847 (Comparative Example 2A) Non-thermal light diffusion The film was laminated on the transparent acrylic sheet only on the transparent acryl sheet. The light diffusing film of the first example of the film 1 was shown in Table 2. The results of the evaluation were the same as in Example 1 a. Compared with Example 1A, the average brightness was low and the brightness was not The film was bonded to the substrate to form a light-diffusing film. (Comparative Example 3A) In the method of Comparative Example 2A, a light-diffusing film of Film Production Example 14 was used instead of the light-diffusing film of Film Production Example 1. The results of the evaluation are shown in Table 2, as in Comparative Example 2A. Further, a bead coating surface was placed on the light-emitting side to evaluate. Compared with the first embodiment, the brightness of the front side (the degree of twist) is high, but the angular dependence of the brightness is deteriorated. Furthermore, the uneven brightness is significantly higher. Further, the light-diffusing film of Film Production Example 14 used in the comparative example had a haze value of 96.7% and was positioned as a highly diffusible film. (Comparative Example 4A) The light-diffusing film of the film production example 14 was bonded to the opposite side of the bead coating surface on one surface of the transparent acrylic plate used in Example 1A with an optical adhesive of 5 μm. 'The light diffusing film was placed on the light exit side and evaluated. The light diffusing film of the surface light diffusing type is displayed, and the effect of improving the brightness or the unevenness of the brightness due to the adhesion to the substrate does not occur. (Comparative Example 5 and Comparative Example 6 A) In the method of Comparative Example 3 A and Comparative Example 4 A, instead of the light-diffusing film of Film Production Example 14, a light-diffusion-59-201219847 film of Film Production Example 1 was used. The results of the evaluations are not shown in Table 2 by the same method as Comparative Example 3A and Comparative Example 4A. It was overlapped with Comparative Example 5, and Comparative Example 6A was attached to the results of & The shaping surface is set as the illuminating surface. As a result similar to Comparative Example 3A and Comparative Example 4A, a light diffusing film of a surface light diffusion type was observed, and the effect of improving the brightness or the unevenness of the brightness due to the adhesion to the substrate did not occur. Further, the light-diffusing film of the film production example 15 used in the comparative example had a haze value of 94.3% and was positioned as a highly diffusible film. (Comparative Example 7A and Comparative Example 8a) In addition to the methods of Example 1 A and Comparative Example 2 A, instead of the light-diffusing film of Film Production Example 1, a light-diffusion film of the film production example 丨i was used, and In the same manner as in Example A and Comparative Example 2A, the results of the evaluation are not shown in Table 2. Superimposed with Comparative Example 7A, Comparative Example 8A was the result when it was bonded. Even in the case of the internal light diffusing film, the effect of the present invention cannot be exhibited when the diffusivity ratio or the variable curvature is insufficient. (Comparative Example 9A and Comparative Example 1A) In the method of Example 1 A, in place of the light-diffusing film of Film Production Example 1, each of the film-forming examples 12 and a thin film was bonded with an optical adhesive having a thickness of 5 μm. In the same manner as in Example 1 except for the light-diffusing film of Production Example 13, the results of the evaluation are shown in Table 2. In the same manner as in Comparative Example 7A and Comparative Example 8A, even when it is an internal light-diffusing film, when the diffusivity ratio or the variable curvature is insufficient, the effects of the present invention are not exhibited. -60-201219847 (Comparative Example 1) In the same manner as in Comparative Example 9 except that the light-diffusion film of the light-diffusing film-transformation film production example 1 was used in the method of Comparative Example 9A, Table 2 shows The result of the evaluation. Even if it is the internal light-diffusing film 'when the total light transmittance exceeds the preferred range of the present invention, the brightness enhancement effect becomes small. (Reference Example 1 A) In the method of the eighth embodiment, the substrate was changed to a milky white acrylic plate having a total light transmittance of 44.4% and a thickness of 3 mm, and the same method as in Example 1 was used. The results of the evaluation are shown in 2. 0 When the total light transmittance of the substrate is lower than the preferred range of the present invention, the brightness becomes low. (Example 2A) Except that in the method of Example 1 A, the heat of the light-diffusing film of Film Production Example 1 was removed, and then changed to use water to adhere the light-diffusing film to the outside of the substrate. In the same way, the results of the evaluation are shown in Table 2. In comparison with Example 1A, since the difference in refractive index from the substrate became large, the effect of improving the Brahman's degree and the unevenness in brightness was somewhat lower than that of Example 1A. (Example 3A) Except that in the method of Example 1 A, the light diffusing film surface of the light-diffusing film laminate was changed to the light source side, and the results of the evaluation were shown in Table 2 by the same method as in Example 1A. . The same effect as in Example 1a was exhibited. -61 - 201219847 (Example 4A) In the method of Example 1 A, the heat of the light-diffusing film of the film production example 1 was removed, and then the film was bonded to the film production example 2 by using an optical adhesive having a thickness of 5 μm. Table 2 shows the results of the evaluation in the same manner as in Example 1 except for the light-diffusing film. The average front luminance was somewhat lower than that of Example 1 A, but the angular dependence or luminance unevenness of luminance was improved as compared with Example 1A. (Comparative Example 12A) In Example 4A, the light-diffusing film was bonded to the transparent acrylic sheet only by bonding the light-diffusing film without an adhesive, and the evaluation was carried out in the same manner as in Example 4A in Table 2 The result. Compared with Example 4A, the average luminance was low and the luminance unevenness was high. Indicates the effect of bonding an internal light-diffusing film to a substrate. (Example 5A) In the method of Example 4A, the light diffusion film of Film Production Example 2 was changed to the light diffusion film of Film Production Example 3, and the same method as in Example 4A was used. The result of the evaluation. The brightness was slightly higher than that of Example 4A, but the brightness unevenness was somewhat lower than that of Example 4A. (Comparative Example 1 3 A) In Example 5A, 'the light-diffusing film was bonded without an adhesive, and the light-diffusing film of Film Production Example 3 was laminated only on the transparent acrylic plate, and the results are shown in Table 2 and Example 5A. The results of the same evaluation. Compared with Example 5A, the average luminance was low and the luminance unevenness was high. This indicates the effect of bonding a light-diffusing film to a substrate. -62-201219847 (Example 6A) In the method of Example 5 A, the same method as in Example 5 A was used except that the light-diffusing film of Film Production Example 3 was bonded to both surfaces of the substrate. The results of the evaluation are shown in 2. The degree of expensiveness is slightly lower than that of the example 5A', but the unevenness in brightness becomes small. (Example 7A) The same procedure as in Example 1A was used except that the light diffusing film of the film manufacturing example 1 was changed to the light diffusing film of the film manufacturing example 4 in the method of Example 1A. The results of the evaluation are shown in 2. The unevenness in brightness was slightly inferior to that of Example 1A. (Comparative Example 14A) In Example 7A, the light-diffusing film was bonded to the transparent acrylic plate only by bonding the light-diffusing film without an adhesive, and the evaluation was carried out in the same manner as in Example 4A in Table 2 The result. Compared with Example 7A, the average luminance was low and the luminance unevenness was high. This indicates the effect of bonding a light-diffusing film to a substrate. (Example 8A) In the method of Example 1 A, the light-diffusing film of Film Production Example 5 was used instead of the light-diffusing film of Film Production Example 1, and was changed so that the main diffusion directions were orthogonal to each other. The results of the evaluation were shown in Table 2 by the same method as in Example 1A, except that the film was bonded to the both sides of the substrate by heat. In addition, the main diffusion direction of the light-diffusing film which is incident on the light is set in a direction orthogonal to the longitudinal direction of the cold cathode tube of the surface light source device for inspection, and is evaluated as follows: β-63-201219847 Compared with the first embodiment Both deteriorated, but were superior to the above comparative examples. (Example 9A and Example 10A) In the same manner as in Example 8A, the optical diffusion film of the film production example 5 was changed to an optical adhesive having a thickness of 5 μm, and the film formation example 6 was used. Further, the light-diffusing film of Film Production Example 7 was bonded to both surfaces of the substrate M, and the results of the evaluation of + & 'small were shown in Table 2 by the same method as in Example 8A. The characteristics were inferior to those of Example 8 A, but were superior to the comparative examples. (Comparative Example 15A) In the Example 9A, the light-diffusion film of the film production example 6 was laminated on the transparent acrylic plate only by bonding the light-diffusing thin film without an adhesive, and the evaluation was carried out in the same manner as in Example 9A. result. ^ 2 Compared with Example 9A, the average luminance is low and the luminance unevenness is high. _ The effect of bonding a light diffusing film to a substrate. - (Example 1 1A) In the method of Example 5A, the same method as in Example 5A was used instead of the film production example 3, "the diffusion film, and the light diffusion film of the film production example 8 was used. The evaluation shown in Fig. 2 is substantially the same as that of Example 1A, and is superior to Example 5A. (Example 12A) In addition to the method of Example 5A, instead of the film production example 3 diffusion film, a film was used. The light other than the light-diffusing film of Example 9 was the same as that of Example 5A, and the evaluation of the knot shown in Table 2 was substantially the same as that of Example 5A. β-° - 64 - 201219847 (Example 13 A) In the method of Example 7A, the results of the evaluation were shown in Table 2 in the same manner as in Example 7A except that the substrate was changed to a milky white acrylic plate having a total light transmittance of 67.2%. Although the average brightness is somewhat lowered, the luminance unevenness is halved. (Reference Example 2A) A white light diffusing plate/lower diffusing film/ytterbium film/upper diffusing film used in a backlight device of a commercially available VA type TV is used. 4 pieces of optical components, replaced by cold In the surface light source device of the tube type, the brightness and brightness unevenness evaluation method is used in the cold cathode tube type inspection surface light source device for the surface light source device, and the surface light source device of the cold cathode tube method is uneven in brightness and brightness. The evaluation method was evaluated. The results are shown in Table 2. For example, in comparison with Example 1 A, any of the characteristics of average brightness, angular dependence of brightness, and uneven brightness is poor, indicating that the light-diffusing film layering system of the present invention is high. (Examples 14A to 1 6 A and Comparative Examples 1 6 A to 1 8 A) The same procedures as in Example 1A, Example 4A, Example 6A, Comparative Example 2A, Comparative Example 12A, and Comparative Example 3A were used. In the laminated body, the effect of the present invention for performing the surface light source device of the LED light source by the method of measuring the brightness and brightness unevenness of the surface light source device of the Led light source method is accurate. The results are shown in Table 3. The surface light source of the LED light source is cleaved The effect of the present invention is also exhibited in the same manner as the surface light source device of the cold cathode tube light source. -65- 201219847 In particular, the light diffusing film layering system of the present invention has a view which can greatly reduce the spot of the light source. The characteristic of the identification is that the brightness can be maintained in the form of the characteristic by using the light-diffusing film laminate of the present invention in the surface light source device. [Table 1] Thin film manufacturing example Light diffusing film characteristics Total light transmittance (%) Diffusion Degree ratio (%) Variable curvature (%) Half value wide diffusivity Anisotropy 1 61.8 76.1 44.4 100 1.7 2 46.1 86.0 67.9 130 1.2 3 73.0 51.7 28.3 64 1.6 4 75.0 28.1 19.5 35 3.2 5 82.8 11.4 4.8 20 32 6 78.2 25.7 5.1 40 1.0 7 57.0 19.4 8.3 60 1.1 8 56.0 38.0 19.5 92 1.3 a 9 " 77.6 11.8 9.9 52 2.5 10 22.9 92.3 111.8 142 1.4 11 84.8 1.8 0.1 5 8.1 12 91.0 0.1 <0.1 11 1.6 13 89.4 0.2 < ; 0.1 5 28 14 59.0 6.1 3.0 20 1.0 15 53.8 2.5 4.0 13 1.0 16 56.2 2.8 2.9 15 1.0 17 78.0 0.9 0.5 9 1.0 -66 - 201219847 [Table 2] The refractive index difference from the substrate is the total light transmittance of the substrate. (%) Average luminance (Cd/m2) Luminance unevenness (%) Temperature 30 degrees 60 degrees Example 1A 0 92.2 6560 (1.00) 6030 (0.92) 4970 (0.75) 3.0 Example 2A - 0.2 92.2 6340 (1.00) 5940 (0.92) 4840 (0.75) 3.4 Example 3A 0 92.2 6550 (1.00) 6070 (0.98) 4990 (0.76) 3.3 Example 4A 0 92.2 6060 (1.00) 5930 (0.98) 4970 (0.82) 2.2 Example 5A 0 92.2 6650 (1.00) 6070 (0.91) 4660 (0.70) 5.1 Example 6A 0 92.2 6470(1.00) 5890 (0.90) 4690 (0.72) 3.8 Example 7A 0 92.2 6570(1.00) 5690 (0.87) 4630 (0.70) 5.8 Example 8 A 0 92.2 6470(1.00) 5820 (0.90) 4550 (0.70) 5.2 Example 9A 0 92.2 5860 (1.00) 5560 (0.95) 4630 (0.79). 10.3 Example 10A 0 92.2 6320 (1.00) 5690 (0.90) 4590 (0.72) 7.8 Example 11A 0 92.2 6520 (1.00) 601.0 (0.92) 4900 (0.75) 3.0 Example 12A 0 92.2 6620 (1.00) 5980 (0.90) 4820 (0.72) 5.0 Example 13A 0 67.2 6030 (1.00) 5960 (0.98) 5010 (0.83) 2.5 Comparative Example 1A — — 5010 (1.00) 5010 (1.00) 4470 (0.89) 130.2 Comparative Example 2 A -0.5 92.2 6140 (1.00) 5650 (0.92) 4560 (0.74) 7.0 Comparative Example 3 A -0.5 92.2 7460(1.00) 6670 (0.89) 3430 (0.46) 19.6 Comparison Example 4 A 0 92.2 7400 (1.00) 6830 (0.92) 3610 (0.48) 22.6 Comparative Example 5 A -0.5 92.2 8100 (1.00) 6640 (0.82) 2630 (0.32) 20.8 Comparative Example 6 A 0 92.2 8130 (1.00) 7020 ( 0.86) 2940 (0.36) 2 3.1 Comparative Example 7 A 0 92.2 5230 (1.00) 5160 (0.99) 4040 (0.77) 54.8 Comparative Example 8 A 0 92.2 5460 (1.00) 5290 (0.97) 4240 (0.78) 46.1 Comparative Example 9 A 0 92.2 5240 (1.00) 5140 (0.98) 4100 (0.78) 75.2 Comparative Example 10A 0 92.2 5200 (1.00) 5310 (0.98) 4320 (0.83) 80.3 Comparative Example 11A 0 92.2 4210 (1.00) 3860 (0.92) 3260 (0.77) 2.0 Comparative Example 12A -0.5 92.2 5980(1.00) 5540 (0.93) 4610 (0.77) 3.6 Comparative Example 13A -0.5 92.2 6080(1.00) 5690 (0.94) 4690 (0.77) 6.5 Comparative Example 14A -0.5 92.2 6080(1.00) 5690 (0.94) 4700 (0.77) 6.5 Comparative Example 15A -0.5 92.2 5450 (1.00) 5070 (0.93) 4090 (0.75) 14.7 Reference Example 1A 0 44.4 5260(1.00) 5050 (0.96) 4460 (0.85) 1.8 Reference Example 2A – 5980(1.00) 5250 (0.97 ) 2410 (0.40) 3.3 * : The value in () of the average brightness indicates the relative ratio of the brightness to 0 degree -67-201219847 [Table 3] The refractive index difference from the substrate is the total light transmittance (%) of the substrate. Brightness (Cd/m2) Example 14A 0 92.2 12080 Example 15A 0 92.2 11360 Example 16A 0 92.2 11260 Comparative Example 16A -0.5 92.2 11080 Comparative Example 17A -0.5 92.2 9390 Comparison 18A -0.5 92.2 18100 (Example IB)
亮度不均(%) 光源斑點的 消去性Uneven brightness (%) erasure of source spots
〇〇
〜y厶2%的透 明壓克力板之一面上,用厚度5μιη的光學用黏著劑貼人 薄膜製造例3所得之内部光擴散薄膜,而得 : 膜積層體。 4 肘所得之光擴散薄 "、队/寸肤Wj風馮出 光面的方式’在已卸下前述擴散板的冷陰極管方式 下方型面光源裝置,以光擴散薄膜側成為出光側之 ,設置上述光擴散薄膜積層體’更且於薄膜製造例心 得之光擴散薄膜上,將薄膜製造们5所得之表面光擴散 溥膜’以表面賦型側成為出光側的方式,聂入而於置 藉由亮度及亮度不均的評價方法進行評二4二: 所得之結果。 、必 τ 4不 本實施例所得之光擴散薄膜積層體 1 4B的比較下,係平均正面亮度高, 為高品質,表示可適用於面光源裝置 而 ,與比較例1 B -且亮度不均小, -68- 201219847 (比較例1 B) 除了於實施例1B Φ , %、, ^ 取消内部光擴散薄膜的貼合, 變更為於透明壓克力;^ p_ 板上將溥膜製造例1 5所得之表面 光擴散薄膜,以表面賦型你丨 啊^侧成為出光側之方式,疊合而 設置以外,與實施你丨1 D ρη 同樣’表5中顯示所評價之結果 〇 與實施例1B相比,平的主 . .. k / 十均表面亮度雖然同等,但亮度 不句係月顯大’顯不藉由内部光擴散薄膜的積層,可以 抑制平均表面亮度降低的形式,大幅提高亮度不均。 再者,本比較例所用的薄膜製造例15之光擴散薄膜 係務值為94.3%,被定位為古抽“ — 心句阿擴散性薄膜》 (比較例2B) 除了於實施例1B中,取咕噠时也丨α 取桷溥膜製造例1 5所得之表 面光擴散薄膜的重合設置以 ^ 9 卜與貫施例1Β同樣,表5 中顯示所評價之結果。 與實施例1Β相比,平均$ ^ ^ . ^ a 正面允度低,表示表面光擴 散潯膜的積層效果。 (比較例3 B) 除了於實施例1 B的方法φ , P夕车二, , Y ’代替薄膜製造例15所 付之表面光擴散薄膜’變更為 允邮止播《 ’、、使用缚膜製造例3所得之 内部先擴散薄膜以外,與實施伽 評價之結果。 同樣,表5中顯示所 以、内部光擴散薄膜彼此的雜Μ 私策时也* . 積層,沒有出現内部光擴 散溥膜與表面光擴散薄膜的積屏 胃增所展現之亮度提高效果 〇 -69- 201219847 (比較例4B) 力 所 擴 評 側 薄 不 膜 同 所 之 所 表 得 内 取消内部光擴散薄膜的貼合,變更為在透明壓克 板上,自壓克力板側依順序疊合2片的薄膜製造例14 得之表面光擴散薄膜及薄獏製造例丨5所得之表面光 散薄膜而設置以外,與實施例丨B同樣,表5中顯示所 價之結果。再者’表面光擴散型薄膜皆同時以光擴散 成為出光側的方式設置。 與實施例1 B相比’平均正面亮度及亮度不均皆差 以表面光擴散薄膜彼此的積層,沒有出現内部光擴散 膜與表面光擴散薄膜之積層所展現之亮度提高或亮度 均減低效果。 再者,本比較例所用的薄膜製造例丨4之光擴散薄 係霧值為96.7%,與薄膜製造例15的表面光擴散薄膜 樣地’被定位為高擴散性薄膜。 (比較例5B) 除了於實施例1B的方法令,代替薄膜製造例15 得之表面光擴散薄膜,變更為使用薄膜製造例17所得 表面光擴散薄膜以外,與實施例1B同樣,表5中顯示 評價之結果。 · μ 與實施例1B相比,平均正面亮度及亮度不均皆差 即使併用表面光擴散薄冑’若表面光擴散薄膜的平均 面積比本發明的範圍小’也不展現本發明的效果。 (比較例6B) 除了於實施你】1B#方法中,代替薄膜製造例3所 之内部光擴散薄膜’變更為使用薄膜製造例1〇所得之 -70- 201219847 部光擴散薄膜以外,與實施例1B同樣,表5中顯示所評 價之結果。 〃貝施例1B相比,雖然壳度不均更優異但平均正 面亮度差’即使併用表面光擴散薄膜與内部光擴散薄膜 ,若内部光擴散薄膜的光學特性脫離本發明的範圍,也 不展現本發明的效果。 (比較例7 B〜比較例9 b ) 除了於實施例1B的方法中,代替薄膜製造例3所得 之内部光擴散薄膜,變更為各自使用薄膜製造例i i、薄 膜製造例12及薄膜製造例13所得之内部光擴散薄膜以 外,與實施例1B同樣,表5中顯示所評價之結果。 與實施例1B相比,比較例皆平均正面亮度及亮度不 均差,即使併用表面光擴散薄膜與内部光擴散薄膜,若 内部光擴散薄膜的光學特性脫離本發明的範圍,也不展 現本發明的效果。 (比較例10B) 除了於實施例1B中,取消薄膜製造例3之内部光擴 散薄膜的經黏著劑貼合,變更為僅在壓克力板上疊合的 方式以外,與實施例1 B同樣,表4中顯示所.評價之結果 〇 與貫施例1B相比,平均正面亮度係稍微降低^ _八 若在内部光擴散薄膜與基材之間有空氣的存在,則疋 壳度稍微降低。即,藉由排除内部光擴散薄膜與基付 間的空氣’可提高正面亮度。 之 -71- 201219847 (實施例2B及實施例3b) =了於貝施例i B中代替薄膜製造例】5的 擴政薄膜’變更為各自使用薄膜製造命"4及薄膜 16的表面光擴散薄膜以夕卜,與實施例1B同樣, 顯示所評價之結果。 於任只施例中皆得到與實施例1 b大致同 果0 (實施例4B) ^ 除了於實施例1B中,將薄膜製造例3的内部 薄膜之設置場所變更為透明壓克力板的入光側, 更為在出光側的壓克力板上疊合薄膜製造例15 光擴散薄膜以外,與實施例丨B同樣,表4中顯示 之結果。 得到與實施例1B大致同等的結果。 (實施例5B及實施例6B) 除了於實施例1B中,取消薄膜製造例3之内 散溥膜的經黏著劑貼合,變更為各自藉由熱接著 膜製造例4及薄膜製造例1的内部光擴散薄膜黏 克力板的一面以外,與實施例1B同樣,表4中顯 價之結果。實施例5 B者係使用薄膜製造例*之右 實施例5 B的壳度不均雖然比實施例1 b稍差 它係得到與實施例1 B大致同等的結杲。 (比較例11B及比較例12B) 除了各自於實施例5B及實施例6B中,取消 造例1 5所得之表面光擴散薄膜的疊合設置以外, 例5B及實施例6B同樣’表5中顯示所評價之結 表面光 製造例 表4中 等的結 光擴散 而且變 的表面 所評價 部光擴 法將薄 貼於壓 示所評 ;|J〇 ’但其 薄膜製 與實施 果0 •72· 201219847 各自於貫施例5 B及實施例6 B比較下,平均正面亮 度低,表示表面光擴散薄膜的積層效果。 (實施例7B) 除了於實施例6B的方法中,將薄膜製造例1的内部 光擴散薄膜之設置場所變更為透明壓克力板的入光側, 而且變更為在出光側的壓克力板上疊合薄膜製造例i 5 的表面光擴散薄膜以外’藉由與實施例4B同樣的方法, 表4中顯示所評價之結果。 得到與實施例6B大致同等的結果。 (實施例8B) 除了於實施例4B中’代替薄膜製造例3的内部光擴 散薄膜’使用薄膜製造例2的内部光擴散薄膜以 主' 广’表 4中顯示以與實施例4B同樣的方法所評價之社| | 1只〜、.'σ禾。平约 正面亮度雖然比實施例4Β還稍低,但亮度不均升古 (比較例1 3 Β) 除了於實施例8Β中,取消薄膜製造例1 5斛~ 叮传之表 面光擴散薄膜的疊合設置以外’與實施例8Β间择 1」僳,表f 中顯示所評價之結果。 ~ 表示表面光擴 與實施例8Β ;):目比,平均正面亮度低, 散薄膜的積層效果。 (實施例9Β) 除了於實施例1Β的方法中,將薄膜製造例1 、 ^的内部 光擴散薄膜換成薄膜製造例6的内部光擴散薄膜以 藉由與實施例4Β同樣的方法’表4中顯示所評彳& 1貝之結果 •73- 201219847 若與實施例1 B相比,則平均正面亮度及亮度不均皆 稍微變差,但與比較例相比係良好。 (比較例14B) 除了於實施例9B中,取消薄膜製造例1 5所得之表 面光擴散薄膜的疊合設置以外,實施例9B同樣,表5 中顯示所評價的結果。 與貫施例9B相比,平均正面冗度低,而且亮度不均 係明顯變大,表示表面光擴散薄膜的積層效果係極大。 (實施例10B及實施例1 1B) 除了各自於實施例1 B及實施例2B的方法中,將薄 膜製造例3的内部光擴散薄膜換成薄膜製造例5的内部 光擴散薄膜,而且將黏著劑的貼合換成熱接著法以外, 藉由與實施例1B及實施例2B同樣的方法,表4中顯示 所評價之結果。 各自若與實施例1 B及實施例2B相比,則亮度不均 係變稍大。 (比較例1 5 B) 除了於實施例1 0B中,取消薄膜製造例1 $所得之表 面光擴散薄膜的疊合設置以外,與實施例1 0 B同樣,表 5中顯示所評價之結果。 與實施例10B相比’平均正面亮度低,而且亮度不均 係明顯變大,表示表面光擴散薄膜的積層效果係極大。 (實施例1 2B〜實施例14B) 除了各自於實施例1B中,代替薄膜製造例3的内部 光擴散薄膜,變更為使用薄膜製造例7、薄膜製造例 -74- 201219847 及薄膜製造例9以外’藉由與實施例iB同樣方$ 中顯示所評價之結果。 · 任一實施例皆得到與實施例1B大致同等的, (實施例15B) 除了於實施例1 0B的方法中,變更為將透明 板換成厚度3mm且550nm的全光線透過率為67 白壓克力板以外,藉由與實施例1 〇B同樣的方法 中顯示所評價之結果。 與實施例10B相比’平均正面亮度及亮度不 良好。 (參考例1B) 將市售的VA型TV之背光裝置所用的乳白光 下擴散薄膜/稜鏡薄膜/上擴散薄膜所成的4片構 學構件,換成冷陰極管方式的正下方型面光源裝 冗度及壳度不均評價方法所用的冷陰極管方式之 面光源裴置的乳白擴散板而設置,表4中顯示以 例1 B同樣的方法所評價之結果。 本發明的光擴散薄膜積層體係顯示高性能。 (貫施例1 618〜實施例1 8B及比較例1 6B〜比較例 使用與實施例1B、實施例7B、實施例8B、 1B、比較例2B及比較例4B相同的積層體,藉 光源方式的正下方型面光源裝置之亮度及亮度不 方法’進行LED光源的面光源裝置之本發明的效 以表面賦型側成為出光側的方式,設置而評價 表6中顯示結果。 备,表4 浩果。 壓克力 2 %的乳 r,表4 均皆變 擴散板 成之光 置中的 檢査用 與實施 18B) 比較例 由LED 均評價 果確認 -75- 201219847 於LED光源的面光源裝置中,亦與冷陰極管光源的 面光源裝置同樣地展現本發明的效果·。 ^特別地,本發明的光擴散薄膜積層體具有可大幅提 高光源斑點的消去性之特徵,#由使用本發明的 薄膜積層體於面光源裝置,可 κ月 一 尤原装1 了以維持此特性的形式提高 壳度。 (貫施例1 9Β〜實施例2 1 Β) =極管方式的導光板型面光源裝置之亮度及網目 為性評價法中所用的導光板之出光面上,各自與實 加•例1 Β同樣地使用光皋用逢| 丨、 便用九子用黏者劑貼合薄膜製造例卜薄 膜製造例2及薄膜制造你丨^ μ久4膜h例3所得之内部光擴散薄膜,更 且於此薄膜製造例1、簿胺制 … 衣k例1溥膜製造例2及薄膜製造例3所 付之内部光擴散薄膜 w丄宜合溥膜製造例1 5所得 ,表面光擴散薄膜而設置,評價正面亮度及網目的消去 者,表面光擴散薄膜的疊合,係皆以光擴散面側 為出光側而疊合,進行評價。 表7中顯示結果。 (比較例1 9 B〜比較例2 1B) 於實施例19B、實施例2〇B及實施例2ib的方法中 ’不疊合薄膜製造例1 5所得 Τ传之表面光擴散薄膜,表7中 顯不所評價之結果。 (比較例2 2 Β及比較例2 3 Β) 於實施例1 9 Β的方法中,俶 ^ Τ 取消薄膜製造例1的内部 光擴散薄膜之黏貼’比較例2)只y么 二,μ 1 j 22B係將薄膜製造例15的表 面光擴散薄膜疊合在導光板On the one surface of the transparent acryl plate of y 厶 2%, the internal light-diffusing film obtained in Example 3 was attached to the film with an optical adhesive having a thickness of 5 μm to obtain a film laminate. 4 The light diffusion thinning obtained by the elbow, the way of the team/inch skin Wj wind von light-emitting surface 'the surface light source device under the cold cathode tube method in which the diffusion plate has been removed, and the light diffusion film side becomes the light-emitting side, The light-diffusing film layered body described above is provided on the light-diffusing film of the film-making example, and the surface light-diffusing film obtained by the film-making device 5 is formed so that the surface-forming side becomes the light-emitting side. The results obtained by the evaluation method of brightness and brightness unevenness are evaluated. In comparison with the light-diffusing film laminate 1 4B obtained in the present embodiment, the average front luminance is high, and the quality is high, indicating that it can be applied to a surface light source device, and the brightness is uneven with Comparative Example 1 B - Small, -68-201219847 (Comparative Example 1 B) Except that in Example 1B Φ , %, , ^ canceled the bonding of the internal light-diffusing film, changed to transparent acryl; ^ p_ board 溥 film manufacturing example 1 (5) The obtained surface light-diffusing film is formed by the surface forming method, and the side is the light-emitting side. The stacking is performed in the same manner as the implementation of the 丨1 D ρη. The results of the evaluation are shown in Table 5 and Example 1B. Compared with the flat main . . . k / ten-thick surface brightness, although the same, but the brightness is not a large number of months, it is not visible by the layering of the internal light-diffusing film, which can suppress the form of the average surface brightness reduction, greatly improving the brightness. Uneven. Further, the light-diffusing film of Example 15 of the comparative example used in the comparative example had a service value of 94.3%, and was positioned as a "study of a diffuse film" (Comparative Example 2B) except that in Example 1B, In the case of 咕哒 丨 桷溥 制造 制造 制造 制造 制造 制造 制造 表面 表面 表面 表面 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重 重$ ^ ^ . ^ a The positive retardation is low, indicating the layering effect of the surface light diffusing ruthenium film. (Comparative Example 3 B) Except for the method φ of the first embodiment B, P 车车二, , Y ' instead of the film manufacturing example 15 The surface light-diffusing film was changed to the same as the internal first diffusion film obtained in the production process example 3, and the result of the gamma evaluation was performed. Similarly, the internal light diffusion films were shown in Table 5. The hodgepodge also has a private policy. * The layering, there is no brightness enhancement effect of the internal light diffusion 溥 film and the surface light diffusion film. 〇-69- 201219847 (Comparative Example 4B) Membrane The bonding of the internal light-diffusing film was changed to a surface light-diffusion film obtained by laminating two sheets of the film on the transparent acryl plate side in the order of the acryl plate side, and the surface light obtained in the 貘 manufacturing example 丨5. In the same manner as in Example 丨B, the results shown in Table 5 are shown in the same manner as in Example B. Further, the 'surface light-diffusion type film is provided so that light is diffused to the light-emitting side at the same time. Compared with Example 1 B, 'average The front side brightness and the brightness unevenness are both poor, and the surface light-diffusing film is laminated with each other, and the brightness enhancement or the brightness reduction effect exhibited by the laminate of the internal light diffusion film and the surface light diffusion film does not occur. Further, the film production example used in the comparative example. The light diffusing thin haze value of 丨4 was 96.7%, and was positioned as a highly diffusible film as in the surface light diffusing film of Film Production Example 15. (Comparative Example 5B) In addition to the method of Example 1B, instead of the film manufacturing In the same manner as in Example 1B, the surface light-diffusing film obtained in Example 15 was changed to the surface light-diffusing film obtained in Film Production Example 17, and the results of the evaluation are shown in Table 5. In comparison with Example 1B, the average front luminance and luminance unevenness were both inferior even if the surface light diffusion thinning was used in combination with the fact that the average area of the surface light diffusing film was smaller than the range of the present invention, the effect of the present invention was not exhibited. (Comparative Example 6B) The same as Example 1B except that the internal light-diffusing film of the film production example 3 was changed to the light-diffusion film of -70-201219847 obtained in the film production example 1 except that the method of the present invention was used. The results of the evaluation are shown in the above. In the case of the shell example 1B, although the shell unevenness is more excellent, the average front luminance is poor. Even if the surface light diffusing film and the internal light diffusing film are used in combination, if the optical characteristics of the internal light diffusing film are out of the present invention The scope does not exhibit the effects of the present invention. (Comparative Example 7 B to Comparative Example 9 b) The internal light-diffusing film obtained in the film production example 3 was replaced with the film production example ii, the film production example 12, and the film production example 13 except for the method of the example 1B. In the same manner as in Example 1B except for the obtained internal light-diffusing film, the results of the evaluation are shown in Table 5. Compared with Example 1B, the comparative examples all have an average front luminance and luminance unevenness. Even if a surface light diffusing film and an internal light diffusing film are used in combination, if the optical characteristics of the internal light diffusing film are out of the scope of the present invention, the present invention is not exhibited. effect. (Comparative Example 10B) The same procedure as in Example 1 B was carried out except that the internal light-diffusing film of the film production example 3 was bonded by the adhesive in the first embodiment, and changed to a mode in which only the acrylic plate was laminated. Table 4 shows the results of the evaluation. Compared with Example 1B, the average front brightness is slightly lowered. _8 If there is air between the internal light-diffusing film and the substrate, the degree of clamshell is slightly lowered. . Namely, the front luminance can be improved by eliminating the air between the internal light diffusing film and the base. -71-201219847 (Example 2B and Example 3b) = In the case of the shell example i B, instead of the film production example, the 5 film of the expansion film was changed to the surface light diffusion of each of the film manufacturing life "4 and film 16. The film was examined in the same manner as in Example 1B, and the results of the evaluation were shown. In the following examples, it was found to be substantially the same as Example 1 b (Example 4B) ^ In addition to Example 1B, the installation place of the inner film of Film Production Example 3 was changed to the entrance of the transparent acrylic plate. On the light side, the result of the film shown in Table 4 was the same as that of Example 丨B except that the light-diffusing film of the film production example 15 was laminated on the acryl plate on the light-emitting side. The results substantially the same as in Example 1B were obtained. (Example 5B and Example 6B) Except that in Example 1B, the adhesive bonding of the mydriatic film in the film production example 3 was canceled, and it was changed to each of the thermal adhesive film production example 4 and the film production example 1 In the same manner as in Example 1B except for one side of the internal light-diffusing film acryl plate, the results in Table 4 were evaluated. Example 5 B was used in the right example of the film production example. Example 5 The case ratio unevenness of B was slightly inferior to that of Example 1 b. This gave a crucible substantially equivalent to that of Example 1 B. (Comparative Example 11B and Comparative Example 12B) Except that in Example 5B and Example 6B, the superposition of the surface light-diffusing film obtained in Example 15 was omitted, and Example 5B and Example 6B were similarly shown in Table 5. Evaluation of the surface light production example Table 4 medium junction light diffusion and the surface evaluation part of the light expansion method will be thinly attached to the pressure gauge evaluation; |J〇' but its film production and implementation results 0 • 72 · 201219847 In the comparison of Example 5B and Example 6B, the average front luminance was low, indicating the layering effect of the surface light diffusion film. (Example 7B) In the method of Example 6B, the installation place of the internal light-diffusing film of the film production example 1 was changed to the light-incident side of the transparent acrylic plate, and was changed to the acrylic plate on the light-emitting side. The results of the evaluation were shown in Table 4 by the same method as in Example 4B except for the surface light-diffusing film of the superposed film production example i5. The results substantially the same as in Example 6B were obtained. (Example 8B) The internal light-diffusing film of the film production example 2 was used in the same manner as in Example 4B except that the internal light-diffusing film of the film production example 2 was used instead of the internal light-diffusing film of the film production example 3 in Example 4B. The company evaluated | | 1 ~,. 'σ禾. Although the front surface brightness was slightly lower than that of Example 4, the brightness unevenness was increased (Comparative Example 1 3 Β) except in Example 8, the film-forming example 1 5 斛 叮 之 之 之 之 表面 表面 表面 表面In addition to the setting "1" in the case of Example 8, the results of the evaluation are shown in Table f. ~ indicates surface light diffusion and Example 8 Β ;): The ratio of the average front luminance is low, and the laminated film effect of the scattered film. (Example 9A) Except that in the method of Example 1, the internal light-diffusing film of Film Production Example 1 and ^ was replaced with the internal light-diffusing film of Film Production Example 6 by the same method as in Example 4, Table 4 The results of the evaluation of <1<1><1>><1>>'''''''' (Comparative Example 14B) The results of the evaluation were shown in Table 5, except that in Example 9B, the superposition of the surface light-diffusing film obtained in Film Production Example 15 was omitted. Compared with the example 9B, the average positive redundancy was low, and the unevenness in brightness was remarkably large, indicating that the layering effect of the surface light-diffusing film was extremely large. (Example 10B and Example 1 1B) In addition to the methods of Example 1 B and Example 2B, the internal light-diffusing film of Film Production Example 3 was replaced with the internal light-diffusing film of Film Production Example 5, and it was adhered. The results of the evaluation are shown in Table 4 by the same method as in Example 1B and Example 2B except that the bonding of the agents was changed to the thermal bonding method. When compared with Example 1 B and Example 2B, the luminance unevenness is slightly larger. (Comparative Example 1 5 B) The evaluation results are shown in Table 5, except that in Example 10B, the superposition of the surface light-diffusing film obtained in Film Production Example 1 was omitted. Compared with Example 10B, the average front luminance was low, and the luminance unevenness was remarkably large, indicating that the layering effect of the surface light-diffusing film was extremely large. (Example 1 2B to Example 14B) The internal light-diffusing film of the film production example 3 was replaced with the film production example 7, the film production example-74-201219847, and the film production example 9 except for the first embodiment. 'The results of the evaluation are shown by the same amount as in the example iB. Either embodiment is substantially equivalent to the embodiment 1B. (Example 15B) In addition to the method of the embodiment 10B, the transparent plate is changed to a thickness of 3 mm and a total light transmittance of 550 nm is 67 white pressure. The results of the evaluation were shown in the same manner as in Example 1 〇B except for the gram plate. The average front luminance and brightness were not as good as in Example 10B. (Reference Example 1B) The four-piece construction member formed by the emulsion-light diffusing film/tank film/upper diffusion film used in the backlight device of the commercially available VA-type TV was replaced with the direct-lower profile of the cold cathode tube method. The source of the light source and the white-diffusing plate of the surface light source of the cold cathode tube method used for the evaluation method of the shell unevenness were used, and the results evaluated by the same method as in Example 1 B are shown in Table 4. The light diffusing film layering system of the present invention exhibits high performance. (Example 1 618 to Example 1 8B and Comparative Example 1 6B to Comparative Example The same laminated body as in Example 1B, Example 7B, Example 8B, 1B, Comparative Example 2B, and Comparative Example 4B was used, and the light source method was used. The brightness and brightness of the direct-surface light source device are not the same as the method of the present invention for performing the surface light source device of the LED light source, and the surface forming side is the light-emitting side, and the results are shown in Table 6. Hao Guo. Acrylic 2% milk r, Table 4 are all diffused into the light of the inspection and implementation of 18B) Comparative example by LED evaluation results -75- 201219847 LED light source surface light source device The effect of the present invention is also exhibited in the same manner as the surface light source device of the cold cathode tube light source. In particular, the light-diffusing film laminate of the present invention has the feature of greatly improving the erasability of the light source spot, and # is used by the thin-film layered body of the present invention in the surface light source device to maintain this characteristic. The form increases the shell. (Example 1 9 Β ~ Example 2 1 Β) = The brightness and mesh of the light guide plate type surface light source device of the pole tube type are the light-emitting surfaces of the light guide plate used in the evaluation method, and each is added. In the same manner, the optical diffusion film obtained by using the optical film is used for the production of the film, and the film is used for the production of the film, and the film is used for the production of the film. In the film production example 1 and the preparation of the amine film, the internal light-diffusing film of the film production example 2 and the film production example 3 was prepared, and the surface light-diffusing film was provided. The evaluation of the front side brightness and the mesh object was carried out by superimposing the surface light-diffusing film on the light-diffusing surface side as the light-emitting side. The results are shown in Table 7. (Comparative Example 1 9 B to Comparative Example 2 1B) In the methods of Example 19B, Example 2B, and Example 2ib, the surface light diffusing film obtained by the film formation example No. 15 was not laminated, and the surface light diffusing film obtained in Table 7 was shown. The result of the evaluation. (Comparative Example 2 2 Β and Comparative Example 2 3 Β) In the method of Example 19, 俶^ Τ canceled the adhesion of the internal light-diffusing film of the film production example 1 [Comparative Example 2) only y, μ 1 j 22B is a method in which a surface light diffusion film of Film Production Example 15 is laminated on a light guide plate
巧做的表面上,而且比較例23B -76- 201219847 中將薄膜製造例1 4的表面光擴散薄膜及薄膜製造例1 5 的表面光擴散薄膜依此順序疊合在導光板的表面上,藉 由與實施例1 9B同樣的方法,評價正面亮度及網目的消 去性。再者,表面光擴散薄膜的疊合,係皆以光擴散面 側為出光側而疊合,進行評價。 表7中顯示結果。 於上述實施例與比較例的比較中,可知即使在導光 板型的面光源裝置中,本發明的效果也顯著。 [表4] .與基材的 折射率差 基材的全光 線透過率 (%) 平均亮度(Cd/m2) 亮度不均 (%) 〇度 30度 60度 實施例1B 0 92.2 8120 (1.00) 6470 (0.79) 2460 (0.30) 3.1 實施例2B 0 92.2 7670 (1.00) 6430 (0.82) 3060 (0.40) 1.4 實施例3B 0 92.2 7890 (1.00) 6420 (0.81) 2450 (0.31) 2.3 實施例4B 0 92.2 8110 (1.00) 6620 (0.82) 2550 (0.32) 2.1 實施例5B 0 92.2 8040 (1.00) 6340 (0.79) 2330 (0.29) 5.5 實施例6B 0 92.2 7880 (1.00) 6000 (0.76) 2520 (0.32) 3.0 實施例7B 0 92.2 7940 (1.00) 6480 (0.82) 2500 (0.31) 2.5 實施例8B 0 92.2 7710 (1.00) 6280 (0.81) 2400 (0.31) 1.8 實施例9B 0 92.2 7760 (1.00) 6150 (0.79) 2450 (0.32) 6.0 實施例10B 0 92.2 8090 (1.00) 6560 (0.82) 2490 (0.31) 7.0 實施例11B 0 92.2 7500 (1.00) 6390 (0.85) 2920 (0.39) 2.5 實施例12B 0 92.2 7820 (1.00) 6200 (0.79) 2920 (0.31) 3.8 實施例13B 0 92.2 8100 (1.00) 6450 (0.80) 2460 (0.30) 3.0 實施例14B 0 92.2 7950 (1.00) 6300 (0.79) 2450 (0.31) 2.5 實施例15B 0 67.2 8110 (1.00) 6600 (0.81) 2530 (0.31) 2.0 參考例ffi 0 67.2 5980 (1.00) 5250 (0.97) 2410 (0.40) 3.3 * :平均亮度的()内之數值表示對0度亮度的相對比 -77- 201219847 [表5] 與基材的 N句亮度(Cd/m2) 亮度不均 折射率差 0度 30度 60度 (%) 比較例1B -0.5 8100 (1.00) 6640 (0.82) 2630 (0.32) 20.8 比較例2B 0 6650 (1.00) 6070 (0.91) 4660 (0.70) 5.1 比較例3B 0 6160 (1.00) 5650 (0.92) 4660 (0.76) 4.4 比較例4B -0.5 7270 (1.00) 6210 (0.85) 2500 (0.35) 9.8 比較例5B 0 6620 (1.00) 6070 (0.92) 4670 (0_71) 5.0 比較例6B 0 6420 (1.00) 5890 (0.92) 3210 (0.50) 1.5 比較例7B 0 6780 (1.00) 6100 (0.90) 2630 (0.39) 7.5 比較例8B 0 7300 (1.00) 6250 (0.86) 2480 (0.34) 12.5 比較例9B 0 7520 (1.00) 6450 (0.86) 2620 (0.34) 15.0 比較例10B -0.5 7580 (1.00) 6380 (0.84) 2540 (0.34) 2.9 比較例11B 0 6570 (1.00) 5690 (0.87) 4630 (0.70) 3.8 比較例12B 0 6250 (1.00) 5930 (0.94) 5080 (0.80) 5.8 比較例13B 0 6060 (1.00) 5930 (0.98) 4970 (0.82) 2.2 比較例14B 0 6040 (1.00) 5820 (0.96) 4020 (0.67) 20.4 比較例15B 0 6050 (1.00) 6020 (1.00) 4560 (0.75) 25.8 * :平均亮度的()内之數值表示對0度亮度的相對比 [表6]On the surface of the light guide plate, the surface light diffusion film of the film production example 14 and the surface light diffusion film of the film production example 15 are laminated on the surface of the light guide plate in this order, in the same manner as in Comparative Example 23B-76-201219847. Example 1 In the same manner as in 9B, the front brightness and the net object erasability were evaluated. Further, the superposition of the surface light-diffusing film was carried out by laminating the light-diffusing surface side as the light-emitting side. The results are shown in Table 7. In the comparison between the above embodiment and the comparative example, it is understood that the effect of the present invention is remarkable even in the light guide plate type surface light source device. [Table 4]. Difference in refractive index from the substrate. Total light transmittance (%) of the substrate Average brightness (Cd/m2) Unevenness in brightness (%) Twistness 30 degrees 60 degrees Example 1B 0 92.2 8120 (1.00) 6470 (0.79) 2460 (0.30) 3.1 Example 2B 0 92.2 7670 (1.00) 6430 (0.82) 3060 (0.40) 1.4 Example 3B 0 92.2 7890 (1.00) 6420 (0.81) 2450 (0.31) 2.3 Example 4B 0 92.2 8110 (1.00) 6620 (0.82) 2550 (0.32) 2.1 Example 5B 0 92.2 8040 (1.00) 6340 (0.79) 2330 (0.29) 5.5 Example 6B 0 92.2 7880 (1.00) 6000 (0.76) 2520 (0.32) 3.0 Implementation Example 7B 0 92.2 7940 (1.00) 6480 (0.82) 2500 (0.31) 2.5 Example 8B 0 92.2 7710 (1.00) 6280 (0.81) 2400 (0.31) 1.8 Example 9B 0 92.2 7760 (1.00) 6150 (0.79) 2450 ( 0.32) 6.0 Example 10B 0 92.2 8090 (1.00) 6560 (0.82) 2490 (0.31) 7.0 Example 11B 0 92.2 7500 (1.00) 6390 (0.85) 2920 (0.39) 2.5 Example 12B 0 92.2 7820 (1.00) 6200 ( 0.79) 2920 (0.31) 3.8 Example 13B 0 92.2 8100 (1.00) 6450 (0.80) 2460 (0.30) 3.0 Example 14B 0 92.2 7950 (1.00) 6300 (0.79) 2450 (0.31) 2.5 Example 15B 0 67.2 8110 ( 1.00 6600 (0.81) 2530 (0.31) 2.0 Reference example ffi 0 67.2 5980 (1.00) 5250 (0.97) 2410 (0.40) 3.3 * : The value of the average brightness in () indicates the relative ratio of 0 degree brightness -77-201219847 [Table 5] N sentence brightness with substrate (Cd/m2) Brightness unevenness Refractive index difference 0 degree 30 degrees 60 degrees (%) Comparative Example 1B -0.5 8100 (1.00) 6640 (0.82) 2630 (0.32) 20.8 Comparison Example 2B 0 6650 (1.00) 6070 (0.91) 4660 (0.70) 5.1 Comparative Example 3B 0 6160 (1.00) 5650 (0.92) 4660 (0.76) 4.4 Comparative Example 4B -0.5 7270 (1.00) 6210 (0.85) 2500 (0.35) 9.8 Comparative Example 5B 0 6620 (1.00) 6070 (0.92) 4670 (0_71) 5.0 Comparative Example 6B 0 6420 (1.00) 5890 (0.92) 3210 (0.50) 1.5 Comparative Example 7B 0 6780 (1.00) 6100 (0.90) 2630 (0.39 7.5 Comparative Example 8B 0 7300 (1.00) 6250 (0.86) 2480 (0.34) 12.5 Comparative Example 9B 0 7520 (1.00) 6450 (0.86) 2620 (0.34) 15.0 Comparative Example 10B -0.5 7580 (1.00) 6380 (0.84) 2540 (0.34) 2.9 Comparative Example 11B 0 6570 (1.00) 5690 (0.87) 4630 (0.70) 3.8 Comparative Example 12B 0 6250 (1.00) 5930 (0.94) 5080 (0.80) 5.8 Comparative Example 13B 0 6060 (1.00) 5930 (0.98) 4970 (0.82) 2.2 ratio Example 14B 0 6040 (1.00) 5820 (0.96) 4020 (0.67) 20.4 Comparative Example 15B 0 6050 (1.00) 6020 (1.00) 4560 (0.75) 25.8 * : The value in () of the average brightness indicates the relative brightness of 0 degree. Than [Table 6]
與基材的 折射率差 基材的全光線 透過率 (%) 平均亮度 (Cd/m2) 亮度不均(%) 光源斑點的 消去性 實施例16B 0 92.2 13020 8.9 〇 實施例17B 0 92.2 13200 2.0 〇 實施例18B 0 92.2 12090 2.0 〇 比較例16B 0 92.2 18200 98.9 X 比較例17B 0 92.2 11260 3.2 〇 比較例18B -0.5 92.2 10850 48.0 XDifference in refractive index from the substrate. Total light transmittance (%) of the substrate. Average brightness (Cd/m2). Unevenness in brightness (%) Elimination of spot of the light source. Example 16B 0 92.2 13020 8.9 〇 Example 17B 0 92.2 13200 2.0 〇Example 18B 0 92.2 12090 2.0 〇Comparative Example 16B 0 92.2 18200 98.9 X Comparative Example 17B 0 92.2 11260 3.2 〇Comparative Example 18B -0.5 92.2 10850 48.0 X
[表7][Table 7]
平均亮度(Cd/m2) 網目的消失性 實施例19B 3850 〇 實施例20B 3420 〇 實施例21B 3780 〇 比較例19B 2900 〇 比較例20B 2420 〇 比較例21B 2900 〇 比較例22B 1760 X 比較例23B 2240 X -78- 201219847 (噴墨印刷薄膜之製作) 用MIMAKI Engineering公司製的喷墨印表機 (JV3-75 SPII型)來製作黃色、藍乂及紅色的3色印刷薄 膜。基材薄膜係使用油性的喷墨印刷用高透明聚醋薄膜( 東洋紡績公司製開發品),印墨係使用mimaki Engineering公司製的ss印墨黃色、洋紅及青色,以解 析度720x720DD及16道次進行全面印刷。 所得之印刷薄膜的550nm之波長的全光線透過率係 黃色:86.7%,藍色:57.6%,紅色:15 〇%。 (實施例1C-1) 拆卸前述冷陰極管方式的正下方型面光源裝置中的 亮度及亮度不均測定所用之面光源裝置的乳白壓克力板 ,設置厚度3mm且55〇nm的全光線透過率為92 2%的透 明壓克力板,在其上疊合薄膜製造例丨及黃色印刷薄膜 ,以亮度及亮度不均的評價方法進行評價。表8中顯示 所得之結果。 本實施例所得之電照顯示裝置用光擴散薄膜積層體 ,在與比較例1 C-1〜比較例7C_ i的比較下,係平均亮 度高,而且亮度不均小,為高品質,表示可適用於電照 顯示裝置。 (比較例1C-1) 除了於實施例1C-1中,取消薄膜製造例i所得之内 部光擴散薄膜的使用,變更為將黃色印刷薄膜直接設置 於透明壓克力板上以外,與實施例i C _ i同樣,表8中顯 示所評價之結果。 -79- 201219847Average Brightness (Cd/m2) Disappearance of the mesh Example 19B 3850 〇 Example 20B 3420 〇 Example 21B 3780 〇 Comparative Example 19B 2900 〇 Comparative Example 20B 2420 〇 Comparative Example 21B 2900 〇 Comparative Example 22B 1760 X Comparative Example 23B 2240 X-78-201219847 (Production of inkjet printing film) A three-color printing film of yellow, blue and red was produced by an inkjet printer (JV3-75 SPII type) manufactured by MIMAKI Engineering Co., Ltd. The base film is an oil-based high-transparent polyester film for inkjet printing (developed by Toyobo Co., Ltd.), and the ink is made of ss ink yellow, magenta, and cyan made by mimaki engineering, with resolutions of 720x720DD and 16 channels. Completely printed. The total light transmittance of the obtained printed film at a wavelength of 550 nm was yellow: 86.7%, blue: 57.6%, and red: 15%. (Example 1C-1) The opaque acrylic plate of the surface light source device used for measuring the luminance and brightness unevenness in the direct-surface light source device of the cold cathode tube type was removed, and the total light having a thickness of 3 mm and 55 〇 nm was set. A transparent acrylic sheet having a transmittance of 92 2% was laminated thereon with a film production example and a yellow printed film, and evaluated by a method of evaluating brightness and brightness unevenness. The results obtained are shown in Table 8. In the light-diffusing film laminate of the electrophotographic display device obtained in the present embodiment, in comparison with Comparative Example 1 C-1 to Comparative Example 7C_i, the average luminance is high, and the luminance unevenness is small, indicating high quality. Suitable for electrophotographic display devices. (Comparative Example 1C-1) Except that in Example 1C-1, the use of the internal light-diffusing film obtained in the film production example i was omitted, and the yellow printed film was directly placed on the transparent acrylic plate, and the example was changed. i C _ i Similarly, the results of the evaluation are shown in Table 8. -79- 201219847
與實施例1 C -1相比,古痒M _ 冗度差’而且亮度不均係明顯 大,表示藉由内部光擴热祛时k π賴政4膜的積層,可以在提高亮度 的形式下’大幅降低亮度不均。 (比較例2 C -1及比較例3 c _ J) 除了於實施例1C-1巾,冲祛— ^ 干代替溥膜製造例1所得之内 部光擴散薄膜’變更為各白 各自使用溥膜製造例14及薄膜製 造例1 5所得之表面井撼 _ 、放溽膜以外,與實施例1 C-1同 樣,表8中顯示所評價之結果。 若與比較例1C_丨加 ’雖然亮度及亮度不均升高, 但與實施例1C-1相比,韋 勺升问 儿度不均係約丨位數差,矣 内部光擴散薄膜有大的差異。 表不〃 再者,薄膜製造例! 4 s c # m Μ ^ κι & QA 70 所得之表面光擴散薄膜 保霧值分別為96.7%及q4 q。/,a _ 夂94_3 /〇,破定位為高擴 (比較例4C-1〜比較例n) 以丨生厚膜 除了於實施例1 C 1 、土 1 ,θ ^ ^ ^ 的方法中,代替薄膜製造例丨所 传之内部光擴散薄膜,變更為 1i所 笼脫別 自使用薄膜製造例U、 4膜製造例12及薄曝製造例13所得之内… 以外,與實施例1C-1同樣,表8 、政薄膜 丨』橡衣8中顯不所評價之处 任-比較例皆亮度低,而且亮度不均大。 此等比較例的内部光擴散薄膜皆擴散度 ί:低於本發明的範圍之下限。目此 〜變曲 薄膜,若為本發明的範圍外之薄膜,也心邹光擴散 的效果。 展現本發明 (比較例7 C -1) -80- 201219847 除了於實施例1C-1的方冰士 ,、 法中,代替薄膜贺坤々 得之内部光擴散薄膜,變更 1 k ^ q成用,專膜製造例丨 内部光擴散薄膜以外,盥會故点丨,p J 0戶’ /、只施例1C-J同樣,Compared with the first embodiment C-1, the ancient itching M _ is poor in redundancy and the brightness unevenness is obviously large, indicating that the layer of k π Lai Zheng 4 film can be increased in brightness by internal light diffusion. Under 'substantially reduce uneven brightness. (Comparative Example 2 C-1 and Comparative Example 3 c_J) In addition to the Example 1C-1 towel, the internal light-diffusing film obtained by replacing the ruthenium film production example 1 was changed to each of the white films. In the same manner as in Example 1 C-1 except for the surface flaw obtained in Production Example 14 and Film Production Example 1, and the release of the film, the results of the evaluation are shown in Table 8. When compared with the comparative example 1C_丨, although the brightness and brightness unevenness are increased, compared with the example 1C-1, the unevenness of the Weiqi rise is about the difference in the number of digits, and the internal light diffusion film is large. The difference. The table is not awkward. The surface light diffusion film obtained by 4 s c # m Μ ^ κι & QA 70 has a fogging value of 96.7% and q4 q, respectively. /, a _ 夂 94_3 / 〇, broken positioning is high expansion (Comparative Example 4C-1 ~ Comparative Example n) to produce a thick film in addition to the method of Example 1 C 1 , soil 1, θ ^ ^ ^, instead In the film production example, the internal light-diffusing film was changed to 1i, and the same as in Example 1C-1 except that the film production example U, the film production example 12, and the thin exposure production example 13 were used. Table 8, essay, 橡 丨 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡 橡The internal light diffusing films of these comparative examples all have a degree of diffusion ί: lower than the lower limit of the range of the present invention. In view of this, the film is a film which is outside the scope of the present invention, and also has the effect of diffusion. Presenting the present invention (Comparative Example 7 C-1) -80-201219847 In addition to the method of Fang Bingshi of Example 1C-1, in the method, instead of the internal light diffusing film of the film He Kun, the change of 1 k ^ q is used. In addition to the internal light-diffusing film, the film is manufactured in the same way as the internal light-diffusing film, p J 0 households / /, only the example 1C-J,
所評價之結果。 β δ T 亮度不均雖然良好, 本比較例的内部光擴 發明的範圍之下限。因此 為本發明的範圍外之薄膜 (實施例2C-1) 除了於實施例1 C -1中,變更為藉由熱接著法在 壓克力板上黏貼薄膜製造例1所得之内部光擴散薄 外,與實施例1C-1同樣,表8中顯示所評價之結弟 與實施例1 C-1相比,亮度不均雖然稍微降低, 度升高°表示藉由排除肉部光擴散薄膜與基材之間 在的空氣’可展現亮度提高。 (實施例3C-1) 除了於實施例1 C -1中,代替薄膜製造例1的内 擴散薄膜’變更為藉由5 μπι厚度的光學用黏著劑在 壓克力板上黏貼薄膜製造例2所得之薄膜以外,與 例1C-1同樣,表8中顯示所評價之結果。 得到與實施例1 C-1大致同等的結果。 (實施例4C-1) 除了於實施例1 C_ 1中,將薄膜製造例1的内部 散薄膜變更為薄膜製造例3的内部光擴散薄膜以外 實施例1C-1同樣,表8中顯示所評價之結果。 得到與實施例1 C-1大致同等的結果。 1所 得之 顯示 但亮度低。 散薄膜係全光線透過率低 ,即使是内部光擴散薄膜 ,也無法展現本發明的效 於本 ,若 果。 透明 膜以 〇 但亮 所存 部光 透明 實施 光擴 ,與 -81 - 201219847 (實施例5C-1) 除了於實施例2C-1中,將薄膜製造例1的内部光擴 散薄膜變更為薄膜製造例4的内部光擴散薄膜以外,與 實施例2C-1同樣,表8中顯示所評價之結果。 得到與實施例2C-1大致同等的結果。 (實施例6C-1) 除了於實施例5C-1中,將薄膜製造例4的内部光擴 散薄膜換成薄膜製造例5的内部光擴散薄膜,而且變更 為藉由熱接著將薄膜製造例5的内部光擴散薄膜黏貼於 透明壓克力板的兩面以外,與實施例5C-1同樣,表8中 顯示所評價之結果。 得到與實施例5C-1大致同等的結果。 (實施例7C-1) 除了於實施例3 C-1的方法中,將薄膜製造例2的内 部光擴散薄膜變更為薄膜製造例6的内部光擴散薄膜以 外,藉由與實施例3C-1同樣的方法,表8中顯示所評價 之結果。 雖然比實施例3 C -1差,但若與比較例相比,則具有 高特性。 (實施例8C-1〜實施例10C-1)) 除了於實施例3C-1的方法中,代替薄膜製造例2的 内部光擴散薄膜,變更為各自使用薄膜製造例7、薄膜 製造例8及薄膜製造例9的内部光擴散薄膜以外,藉由 與實施例3C-1同樣的方法,表8中顯示所評價之結果。 與實施例3C-1相比,為同等或亮度不均稍差的程度,若 與比較例相比,則實施例皆具有高特性。 -82- 201219847 (實施例1C-2〜實施例7C-2、實施例10C-2及比較例ic-2 〜比較例7C-2) 於實施例1 C -1〜實施例7 C -1、實施例1 〇 C -1及比較 例1C-1〜比較例7C-1中’代替黃色印刷薄膜’變更為 使用藍色印刷薄膜,各自藉由與實施例1 C-1〜實施例 7C-1、實施例10C-1及比較例1C-1〜比較例7C-1同樣 的方法,表9中顯示所評價之結果。· 全體皆亮度變低’但於藍色印刷薄膜中’亦得到與 黃色印刷薄膜同樣的結果。 (實施例1 C-3〜實施例9〇3及比較例i C-3〜比較例 7C-3) 於實施例1C-1〜實施例9C-1及比較例1C-1〜比較 例7C-1中,代替黃色印刷薄犋’變更為使用紅色印刷薄 膜,各自藉由與實施例1 C -1〜實施例7 C -1、實施例9 C -1 及比較例1C-1〜7C-1同樣的方法,表1〇中顯示所評價 之結果。 全體皆焭度比藍色印刷薄膜還更低,但於紅色印刷 薄膜中,亦得到與黃色印刷薄膜同樣的結果。惟,關於 亮度不均’與黃色或藍色印刷薄膜相比,變高者俜多。 於以上的實施例及比較例中,隨著印刷薄膜:多顏色 而壳度大幅變化者,抽.、目丨丨尨m * 推測係因為印刷薄膜各自的顏色造 成550nm的全光線透過率之變化。 度不均大者,推測係因各 光擴散薄膜的擴散性發生 又,僅紅色印刷薄膜係亮 色的主吸收波長之差異,内部 變化所造成。 -83· 201219847 (實施例1 1C-1) 除了於實施例1 C-1的方法中,在黃色印刷薄膜與薄 膜製造例1之間插入薄膜製造例1 5的表面光擴散薄膜以 外,藉由與實施例1C-1同樣的方法,表1 1中顯示所評 價之結果。 與實施例1C-1相比,正面亮度(0度的亮度)升高, 而且亮度不均降低。 (實施例12C-1) 除了於實施例2C-1的方法中,在黃色印刷薄膜與薄 膜製造例1之間插入薄膜製造例1 5的表面光擴散薄膜以 外,藉由與實施例2C-1同樣的方法,表1 1中顯示所評 價之結果。 與實施例2C-1相比,正面亮度升高,而且亮度不均 降低。 (實施例13C-1) 除了於實施例1 C-1的方法中,在黃色印刷薄膜與薄 膜製造例1之間插入薄膜製造例1 4的表面光擴散薄膜以 外,藉由與實施例1C-1同樣的方法,表1 1中顯示所評 價之結果。 與實施例1 C-1相比,正面亮度升高,而且亮度不均 降低。 (實施例14C-1及實施例15C-1) 除了於實施例5C-1的方法中,在黃色印刷薄膜與薄 膜製造例1之間各自插入薄膜製造例1 5的表面光擴散薄 膜及薄膜製造例14的表面光擴散薄膜以外,藉由實施例 5C-1的方法,表1 1中顯示所評價之結果。 -84- 201219847 與實施例5 C -1相比,正面亮度升高,而且亮度不均 降低。 (比較例8C-1) 除了於比較例4C-1的方法中,在黃色印刷薄膜與薄 膜製造例1 5之間插入薄膜製造例1 4的表面光擴散薄膜 以外,藉由與比較例4C-1同樣的方法,表1 1中顯示所 評價之結果。 正面亮度倒是降低,而且亮度不均的降低亦停留在 約減半。 根據以上的實施例及比較例,藉由内部光擴散薄膜 與表面光擴散薄膜的組合使用,與僅内部光擴散薄膜的 使用時相比,顯示可提高正面亮度,而且可改善亮度不 均。 又,於該内部光擴散薄膜與表面光擴散薄膜的組合 使用中,亦與内部光擴散薄膜單獨使用時同樣,藉由排 除内部光擴散薄膜與基材之空氣,而提高正面亮度。 (實施例11C-2〜實施例15C-2及比較例8C-2) 除了於實施例11 C-1〜實施例1 5C-1及比較例8C-1 的方法中,代替黃色印刷薄膜,變更為藍色印刷薄膜以 外,各自藉由與實施例1 1C-1〜實施例1 5C-1及比較例 8C-1同樣的方法,表1 2中顯示所評價之結果。 全體皆亮度變低,但即使於藍色印刷薄膜中,也得 到與黃色印刷薄膜同樣的結果。 (實施例11C-3〜實施例15C-3及比較例8C-3) -85- 201219847 除了於實施例11C-1〜實施例15C-1及比較例8C-1 的方法中,代替黃色印刷薄膜,變更為紅色印刷薄膜以 外,各自藉由與實施例1 1C-1〜實施例15C-1及比較例 8C-1同樣的方法,表1 3中顯示所評價之結果。 全體皆亮度比藍色印刷薄膜還更低,但即使於紅色 印刷薄膜中’也得到與黃色印刷薄膜同樣的結果。 (實施例1 6 C -1、實施例1 7 C -1及比較例9 C -1) 以各自使用實施例1 C -1、實施例1 c - 2及比較例2 C -1 之構成,藉由LED光源方式的正下方型面光源裝置之亮 度及亮度不均評價方法’進行LED光源的面光源裝置之 評價,表14中顯示結果。 即使於LED光源的面光源裝置中,也與冷陰極管光 源的面光源裝置同樣地,展現本發明的效果。 特別地’本發明的光擴散薄膜積層體具有可大幅提 高光源斑點的消去性之特徵,使用採用LED光源的照明 裝置時,可有效地適用。 (實施例18C〜實施例21C) 各自對於薄膜製造例1、薄膜製造例2、薄膜製造例 3及薄膜製造例4的内部光擴散薄膜,藉由評價法中所 記載的方法,進行在明室的電照顯示裝置之照明裝置非 點燈狀態下之顯示畫像的視覺辨認性之評價。表丨5中顯 示結果。 (比較例1 0 C〜比較例1 2 C) 各自對於僅透明壓克力板、薄膜製造例14及薄膜製 造例1 5之表面光擴散薄膜,藉由與實施例丨8c〜實施例 -86- 201219847 2 1 C同樣的方法’進行在明室的電照顯示裝置之照明裝 置非點燈狀態下之顯示晝像的視覺辨認性之評價。表15 中顯示結果。 使用内部光擴散薄膜時,具有良好的視覺辨認性, 僅藉由外光而得到良好的視覺辨認性。特別地,薄膜製 造例2及3係優異。 在超出細部的視覺辨認性,明亮度的差係顯著。 於實施例1 8C〜實施例2 1 C及比較例1 〇c〜比較例 1 2 C的方法中,將印刷有大象的草原風景之印刷薄膜換 成藍色印刷薄膜,在不點亮面光源裝置的狀態下,藉由 根據LED光源方式的正下方型面光源裝置之亮度及亮度 不均評價法之方法’評價亮度及亮度不均。表1 5中顯示 2 1點的測定值之最大值及最小值以及該最大值與最小值 的平均值。 於上述實施例或比較例中,雖然無法將實施例丨& 〇 〜實施例21C及比較例10C〜比較例12C所進行的感康 評價所得之顯著差數值化,但得到大致與視覺辨認性對 應的結果。 再者’點亮暗室的照明燈之狀態下的亮度測定位置 之照度為300勒克司。 -87- 201219847 L衣δ j 與暴材的 平均亮度(Cd/m勺 亮度不均 析射率差 〇度 30度_ 60度 (%) 實施例1C-1 ______ 5130 (1.00) 4700 (0.92) 3660 (0.70) 1.9 5560 (100) 5090 (0.92) 3950 (0.65) 2.6 貫施例2C-1 *fr I-cA *2 Ο 1 5280 (1.00) 4970 (0.94) 3990 (0.76) 3.5 貫施例31-1 -^〇5 5320 (1.00) 4850 (0.91) 3660 (0.69) 3.8 實細*例401 —**— ^0 5460 (1.00) 5050 (0.92) 3670 (0.67) 4.9 貫施例 s^*-h Ι^λί^Γ^ 1 5540 (1.00) 4800 (0.87) 3630 (0.65) 2.5 貫她例bU-1 眘你初ι17Γ-1 4940 (1.00) 4690 (0.95) 3670 (〇_74) 7.8 ^ /3vL\T\ /V-^-1 實施例8C-1 ^ ^h. Μ ΟΓ1 1 ^ 0 5320 (1.00) 4840 (0.91) 3630 (0.68) 5.8 5610 (1.00) 5090 (0.91) 3940 (0.70) 4.8 ^ *k. M 1 ΠΟ 1 5540 (1.00) 5080 (0.92) 3790 (0.68) 4.0 ^ <7〇 I^J 1UL^* 1 士齡你丨1Γ1-1 -^〇5 4670 (1.00) 4600 (0.99) 3830 (0.82) 115 ii. αλυλ.ιογ1 i 6010 (1.00) 5380 (0.90) 2830 (0.47) 16.1 比权 比較例3C-1 LPM/SildP 1 j〇7s 6550 (1.00) 6520 (1.00) 2400 (0.37) 17.8 4200 (1.00) 3860 (0.92) 3010 (0.72) 49.8 比較例5C-1 |丄柄乂*,ϊ 1 4260 (1.00) 3880 (0.90) 3040 (0.71) 78.0 τ~ 4410 (1.00) 3980 (0.90) 3150 (0.71) 81.0 比权1夕!l〇l-l »ι-缺 /*m 1 3130 (1.00) 3020 (0.96) 2400 (0.77) 1.5 比权1外/1-1 氺:平均亮度的( Γ矣 91 一數值表示對0度亮度的相對比 L 不· 7 J 與基材的 平均亮度(Cd/m2) 亮度不均 柝射率差 0度 30度 60度 (%) 营施例1C-2 ^α5 3510 (1.00) 3140 (0.92) 2280 (0.65) 2.6 實施例2C-2 一^"〇 3680 (1.00) 3320 (0.90) 2390 (0.65) 4.7 营;5fe你】3C-2 0 3650 (1.00) 3210 (0.88) 2360 (0.65) 5.0 f施例4C-2 ^0.5 3620 (1.00) 3220 (0.89) 2250 (0.62) 5.4 會施例SC-2 3410 (1.00) 3110 (0.91) 2320 (0.68) 5.0 ΐ施例6C-2 -^〇~ 3610 (1.00) 3180 (0.88) 2170 (0.60) 2.8 f施例7C-2 一0 3310 (1.00) 3050 (0.92) 2200 (0.66) 8.2 f施例10C-2 3670 (1.00) 3300 (0.90) 2310 (0.63) 5.0 tb較例1C-2 -^0.5 3150 (1.00) 3080 (0.98) 2270 (0.72) 117 »-Kii^'l2C-? -^0.5 4110 (1.00) 3600 (0.88) 1710 (0.27) 18.7 p>"w fy ^ v_>^ tb 較例 3(^-2 ^〇5 4440 (1.00) 4410 (0.99) 1440 (0.32) 20.0 卜匕較例4f\2 2880 (1.00) 2590 (0.90) 870 (0.56) 55.2 ^P-2 2910 (1.00) 2590 (0.89) 2130 (0.73) 80.0 比較例6C-2 3030 (1.00) 2720 (0.90) 1950 (0.65) 78.0 fchi$^'l7r:-? ^^0 2140 (1.00) 2000 (0.93) 1960 (0.77) 1.9 ^數值表示對G度亮度的相對比 -88 - .201219847 A ^ J 的 折射率差 平均亮度(Cd/m2) 亮度不均 (%) 〇度 30度 60度 實施例1C-3 實施例2C-3 _________ Π80 (1.00) 1560 (0.87) 1060 (0.60) 6.1 0 ---- 1870 (1.00) 1670 (0.89) 1150 (0.61) 3.6 實施例3C-3 實施例4C-3 實施例5C-3 1830 (1.00) 1670 (0.91) 1180 (0.64) 4.2 ^0.5 .-—- 0 1850 (1.00) 1590 (0.86) 1040 (0.56) 4.7 1840 (1.00) 1640 (0.89) 1030 (0.56) 4.3 實施例6C-3 0 1830 (1.00) 1610 (0.88) 1050 (0.57) 7.2 實施例7C-3 0 --- 1680 (1.00) 1480 (0.89) 1060 (0.63) 9.8 實施例8C-3 0 ________ .^780 (1.00) 1560 (0.89) 1050 (0.59) 8.6 實施例9C-3 0 __--- ,_^820 (1.00) 1650 (0.91) 1100 (0.60) 7.3 比較例1C-3 -----^ 1600 (1.00) 1530 (0.84) 1090 (0.68) 121.0 比較例2C-3 -0.5 ___ 2050 (1.00) 1720 (0.84) 790 (0.39) 16.8 比較例3C-3 比較例4C-3 -JQ.S 2250 (1.00) 2230 (0.99) 680 (0.30) 17.8 1550 (1.00) 1280 (0.83) 870 (0.56) 49.0 比較例5C-3 ^0 ^--- 1480 (1.00) 1290 (0.87) 890 (0.60) 79.5 比較例6C-3 0 ___—- 1520 (1.00) 1340 (0.88) 920 (0.60) 85.0 比較例7C-3 0 ΙΓ 1050 (1.00) 1000 (0.95) 920 (0.87) 2.5 * :平均亮度的()内义 [表 1 1] 政表示對0度亮度的相對比 與基材的— — 千均亮度iCd/m2、 亮度不均 (%) 〇度 30度 60度 實施例11C-1 .0.5 ____ 6270(1.00) 5150 (0.82) 2140 (0.34) 1.8 實施例12C-1 0 一一 6710(1.00) 5890(1.00) 5180 (0.89) 2070 (0.61) 1.9 實施例13C-1 .0.5 5〇3〇 (0.85) 2540 (0.43) 1.4 實施例14C-1 0 6470(1.00) 5030 (0.78) 1990(0.31) 1.3 實施例15C-1 0 ------ 6220(1.00) 5900 (1.00) -^^0(089) 2280 (0.37) 1.2 比較例8C-1 -0.5 572〇 (0.97) 2280 (0.39) 8.5 氺:平均亮度的 之數值表示對0度亮度的相U一" -89- 201219847 實施例11C-2 ★施例 12C-2 實施例13C-2 ~~~ 赉施例MC-2 一~ 貪施例l5C-2 —~' 比較例8C-2 氺:平均亮度的 h 差 平均亮度(Cd/m2) 亮度不均 (%) 〇度 30度 60度 4290 (1.00) 3390 (0.79) 1220 (0.28) 1.2 4590 (1.00) 3380 (0.74) 1170 (0.25) 1.3 3890 (1.00) 3290 (0.83) 1500 (0.38) 0.8 4420 (1.00) 3300 (0.75) 1130 (0.26) 1.6 4120 (1.00) 3350 (0.81) 2010 (0.49) 1.5 3990 (1.00) 3900 (0.98) 930 (0.23) 10.5 數值表示對0度亮度的相對比 [表 12] 折 0_ Γαζ, .表 13] 與基讨的 平均亮度(Cd/m2) 亮度不均 〇度 30度 60度 (%) 實施例11C-3 -0.5 2170 (1.00) 1690 (0.77) 580 (0.27) 6.0 施例 12C-3 0 2330 (1.00) 1710 (0.73) 560 (0.24) 6.8 施例 13C-3 ' -0.5 2020 (1.00) 1640 (0.81) 580 (0.26) 6.3 實施例14C-3 0 2210 (1.00) 1710 (0.77) 1130 (0.26) 5.8 實施例15C-3 0 2150 (1.00) ΠΙΟ (0.80) 820 (0.38) 5.0 比較例8C-3 -0.5 2010 (1.00) 1990 (0.99) 640 (0.31) 9.0 氺:平均亮度的()内之數值表示對〇度亮度的相對比 [表 14]The result of the evaluation. Although the luminance unevenness of β δ T is good, the internal light expansion of the comparative example is the lower limit of the range of the invention. Therefore, the film outside the scope of the present invention (Example 2C-1) was changed to the internal light diffusion film obtained by the thermal bonding method in which the film was bonded to the acrylic sheet by the thermal bonding method in Example 1 C-1. In the same manner as in Example 1C-1, it is shown in Table 8 that the brightness of the knot was slightly lower than that of Example 1 C-1, and the degree of increase was expressed by excluding the light diffusion film of the meat portion. The air 'between the substrates' can exhibit an increase in brightness. (Example 3C-1) In the same manner as in Example 1 C-1, the inner diffusion film of the film production example 1 was replaced with an optical adhesive having a thickness of 5 μm, which was adhered to the film on the acrylic sheet. The results of the evaluation are shown in Table 8 in the same manner as in Example 1C-1 except for the obtained film. The results which were substantially equivalent to those of Example 1 C-1 were obtained. (Example 4C-1) In the same manner as in Example 1C-1 except that the internal light-transmissive film of Film Production Example 1 was changed to the internal light-diffusing film of Film Production Example 3, the evaluation was shown in Table 8 except that in Example 1 C-1. The result. The results which were substantially equivalent to those of Example 1 C-1 were obtained. 1 Get the display but the brightness is low. The diffused film has a low total light transmittance, and even if it is an internal light diffusing film, the effect of the present invention cannot be exhibited. The transparent film was light-transmissively transparent, and the light-transparent portion was light-transmissive, and -81 - 201219847 (Example 5C-1) In addition to Example 2C-1, the internal light-diffusion film of Film Production Example 1 was changed to a film production example. The results of the evaluation are shown in Table 8 in the same manner as in Example 2C-1 except for the internal light diffusing film of 4. The results substantially the same as in Example 2C-1 were obtained. (Example 6C-1) In the example 5C-1, the internal light-diffusing film of the film production example 4 was replaced with the internal light-diffusing film of the film production example 5, and the film production example 5 was changed by heat. The internal light-diffusing film was adhered to both sides of the transparent acrylic sheet, and the results of the evaluation were shown in Table 8 in the same manner as in Example 5C-1. The results substantially the same as in Example 5C-1 were obtained. (Example 7C-1) In the method of Example 3 C-1, the internal light-diffusing film of Film Production Example 2 was changed to the internal light-diffusing film of Film Production Example 6, and Example 3C-1 was used. In the same way, the results of the evaluation are shown in Table 8. Although it is inferior to Example 3 C-1, it has high characteristics as compared with the comparative example. (Example 8C-1 to Example 10C-1)) In the method of Example 3C-1, instead of the internal light-diffusing film of the film production example 2, the film production example 7 and the film production example 8 were used. The results of the evaluation are shown in Table 8 by the same method as in Example 3C-1 except for the internal light-diffusing film of Film Production Example 9. Compared with the example 3C-1, the examples were equal or slightly different in brightness unevenness, and the examples all had high characteristics as compared with the comparative examples. -82-201219847 (Example 1C-2 to Example 7C-2, Example 10C-2 and Comparative Example ic-2 to Comparative Example 7C-2) In Example 1 C-1 to Example 7 C-1 Example 1 In the case of 〇C-1 and Comparative Example 1C-1 to Comparative Example 7C-1, the 'instead of the yellow printed film' was changed to the use of the blue printed film, and each of the examples 1 C-1 to 7C-1 was used. In the same manner as in Example 10C-1 and Comparative Example 1C-1 to Comparative Example 7C-1, the results of the evaluation are shown in Table 9. • The overall brightness is lowered 'but the blue printed film' also gives the same results as the yellow printed film. (Example 1 C-3 to Example 9〇3 and Comparative Example i C-3 to Comparative Example 7C-3) In Example 1C-1 to Example 9C-1 and Comparative Example 1C-1 to Comparative Example 7C- In 1 , instead of the yellow printing sheet, the red printing film was changed to use the red printed film, and each of the examples 1 C-1 to 7 C-1, the example 9 C-1, and the comparative examples 1C-1 to 7C-1. In the same way, the results of the evaluation are shown in Table 1. The overall degree of enthalpy is lower than that of the blue printed film, but in the red printed film, the same result as the yellow printed film is obtained. However, the unevenness in brightness is much higher than that of a yellow or blue printed film. In the above examples and comparative examples, as the printed film: multi-color and the degree of change in the shell greatly changed, it was estimated that the total light transmittance of 550 nm was changed due to the color of each of the printed films. . If the degree of unevenness is large, it is presumed that the diffusibility of each light-diffusing film occurs, and only the difference in the main absorption wavelength of the bright printed film of the red printed film is caused by internal variation. -83·201219847 (Example 1 1C-1) In addition to the method of Example 1 C-1, a surface light diffusion film of the film production example 15 was inserted between the yellow printed film and the film production example 1, by In the same manner as in Example 1C-1, the results of the evaluation are shown in Table 11. Compared with Example 1C-1, the front luminance (luminance of 0 degree) was increased, and the luminance unevenness was lowered. (Example 12C-1) The same procedure as in Example 2C-1 except that the surface light-diffusing film of Film Production Example 15 was inserted between the yellow printed film and the film production example 1 in the method of Example 2C-1. The method of evaluation, the results of the evaluation are shown in Table 11. As compared with Example 2C-1, the front luminance was increased and the luminance unevenness was lowered. (Example 13C-1) Except that the method of Example 1 C-1 was carried out, a surface light-diffusing film of the film production example 14 was inserted between the yellow printed film and the film production example 1, by the same as Example 1C-1. In the same way, the results of the evaluation are shown in Table 11. As compared with Example 1 C-1, the front luminance was increased and the luminance unevenness was lowered. (Example 14C-1 and Example 15C-1) In the method of Example 5C-1, a surface light-diffusing film and a film production example of the film production example 15 were inserted between the yellow printing film and the film production example 1 respectively. In addition to the surface light diffusing film of 14, the results of the evaluation are shown in Table 11 by the method of Example 5C-1. -84-201219847 Compared with Example 5 C-1, the front luminance is increased and the luminance unevenness is lowered. (Comparative Example 8C-1) In the method of Comparative Example 4C-1, a surface light-diffusing film of Film Production Example 14 was inserted between the yellow printed film and the film production example 15 by using Comparative Example 4C-1. In the same way, the results of the evaluation are shown in Table 11. The front brightness is reduced, and the decrease in brightness unevenness is also reduced by about half. According to the above embodiments and comparative examples, by using the combination of the internal light diffusing film and the surface light diffusing film, the display can improve the front luminance and improve the luminance unevenness as compared with the case of using only the internal light diffusing film. Further, in the combination of the internal light-diffusing film and the surface light-diffusing film, as in the case where the internal light-diffusing film is used alone, the front light is improved by removing the air of the internal light-diffusing film and the substrate. (Example 11C-2 to Example 15C-2 and Comparative Example 8C-2) Except for the methods of Example 11 C-1 to Example 1 5C-1 and Comparative Example 8C-1, instead of the yellow printed film, the change was made. The results of the evaluation are shown in Table 12 in the same manner as in Example 1 1C-1 to Example 15C-1 and Comparative Example 8C-1 except for the blue printed film. The brightness was low in all of them, but even in the blue printed film, the same results as in the yellow printed film were obtained. (Example 11C-3 to Example 15C-3 and Comparative Example 8C-3) -85-201219847 In place of the yellow printing film, except for the methods of Example 11C-1 to Example 15C-1 and Comparative Example 8C-1 The results of the evaluation are shown in Table 13 in the same manner as in Example 1 1C-1 to Example 15C-1 and Comparative Example 8C-1 except that the red printed film was changed. The brightness of all was lower than that of the blue printed film, but the same result as the yellow printed film was obtained even in the red printed film. (Example 1 6 C -1, Example 1 7 C -1 and Comparative Example 9 C -1) The constitutions of Example 1 C -1, Example 1 c - 2 and Comparative Example 2 C -1 were used, respectively. The results of the surface light source device of the LED light source were evaluated by the method of evaluating the brightness and brightness unevenness of the direct-surface light source device of the LED light source method, and the results are shown in Table 14. Even in the surface light source device of the LED light source, the effects of the present invention are exhibited in the same manner as the surface light source device of the cold cathode tube light source. In particular, the light-diffusing film laminate of the present invention has a feature of greatly improving the erasability of light source spots, and can be effectively applied when an illumination device using an LED light source is used. (Example 18C to Example 21C) The internal light-diffusing film of the film production example 1, the film production example 2, the film production example 3, and the film production example 4 were each carried out in the bright room by the method described in the evaluation method. The illuminating device of the electro-optical display device is evaluated for the visibility of the displayed image in the non-lighting state. The results are shown in Table 5. (Comparative Example 1 0 C to Comparative Example 1 2 C) For each of the surface light-diffusing film of only the transparent acrylic plate, the film production example 14 and the film production example 15, the same as Example c8c to Example-86- 201219847 2 1 C The same method 'evaluates the visibility of the displayed image in the non-lighting state of the illumination device of the bright room illumination device. The results are shown in Table 15. When the internal light diffusing film is used, it has good visibility and good visibility is obtained only by external light. In particular, the film production examples 2 and 3 were excellent. In the visual recognition beyond the detail, the difference in brightness is remarkable. Example 1 8C to Example 2 1 C and Comparative Example 1 〇c~Comparative Example 1 In the method of 2 C, the printed film of the grassland landscape printed with the elephant was replaced with a blue printed film, and the surface was not lit. In the state of the light source device, the brightness and brightness unevenness are evaluated by the method of the brightness and brightness unevenness evaluation method of the direct-surface light source device of the LED light source method. Table 1 5 shows the maximum and minimum values of the measured values of 21 points and the average of the maximum and minimum values. In the above-described examples or comparative examples, the significant differences obtained from the evaluations of the senses performed in the examples 丨 & 实施 to the example 21C and the comparative examples 10C to 12C were not quantified, but the visibility and visibility were obtained. Corresponding results. Further, the illuminance at the luminance measurement position in the state where the illumination lamp of the dark room is lit is 300 lux. -87- 201219847 L clothing δ j and average brightness of explosive materials (Cd/m spoon brightness unevenness rate difference 〇 degree 30 degrees _ 60 degrees (%) Example 1C-1 ______ 5130 (1.00) 4700 (0.92) 3660 (0.70) 1.9 5560 (100) 5090 (0.92) 3950 (0.65) 2.6 Example 2C-1 *fr I-cA *2 Ο 1 5280 (1.00) 4970 (0.94) 3990 (0.76) 3.5 Example 31 -1 -^〇5 5320 (1.00) 4850 (0.91) 3660 (0.69) 3.8 Really fine* Example 401 —**— ^0 5460 (1.00) 5050 (0.92) 3670 (0.67) 4.9 Example s^*- h Ι^λί^Γ^ 1 5540 (1.00) 4800 (0.87) 3630 (0.65) 2.5 Through her example bU-1 Caution you first ι17Γ-1 4940 (1.00) 4690 (0.95) 3670 (〇_74) 7.8 ^ / 3vL\T\ /V-^-1 Example 8C-1 ^ ^h. Μ ΟΓ1 1 ^ 0 5320 (1.00) 4840 (0.91) 3630 (0.68) 5.8 5610 (1.00) 5090 (0.91) 3940 (0.70) 4.8 ^ *k. M 1 ΠΟ 1 5540 (1.00) 5080 (0.92) 3790 (0.68) 4.0 ^ <7〇I^J 1UL^* 1 士龄你丨1Γ1-1 -^〇5 4670 (1.00) 4600 ( 0.99) 3830 (0.82) 115 ii. αλυλ.ιογ1 i 6010 (1.00) 5380 (0.90) 2830 (0.47) 16.1 Comparative Example 3C-1 LPM/SildP 1 j〇7s 6550 (1.00) 6520 (1.00) 2400 ( 0.37) 17.8 42 00 (1.00) 3860 (0.92) 3010 (0.72) 49.8 Comparative Example 5C-1 | 丄 乂 *, ϊ 1 4260 (1.00) 3880 (0.90) 3040 (0.71) 78.0 τ~ 4410 (1.00) 3980 (0.90) 3150 (0.71) 81.0 More than one day! L〇ll »ι-缺/*m 1 3130 (1.00) 3020 (0.96) 2400 (0.77) 1.5 ratio 1 out / 1-1 氺: average brightness ( Γ矣 91 a value indicates the relative brightness of 0 degrees Ratio L: · 7 J and the average brightness of the substrate (Cd/m2) Luminance unevenness radiance difference 0 degrees 30 degrees 60 degrees (%) Camp 1C-2 ^α5 3510 (1.00) 3140 (0.92) 2280 (0.65) 2.6 Example 2C-2 I^"〇3680 (1.00) 3320 (0.90) 2390 (0.65) 4.7 battalion; 5fe you]3C-2 0 3650 (1.00) 3210 (0.88) 2360 (0.65) 5.0 f Example 4C-2 ^0.5 3620 (1.00) 3220 (0.89) 2250 (0.62) 5.4 The application of SC-2 3410 (1.00) 3110 (0.91) 2320 (0.68) 5.0 ΐ例6C-2 -^〇~ 3610 (1.00) 3180 (0.88) 2170 (0.60) 2.8 f Example 7C-2 A 0 3310 (1.00) 3050 (0.92) 2200 (0.66) 8.2 f Example 10C-2 3670 (1.00) 3300 (0.90) 2310 (0.63 ) 5.0 tb Comparative Example 1C-2 -^0.5 3150 (1.00) 3080 (0.98) 2270 (0.72) 117 »-Kii^'l2C-? -^0.5 4110 (1.00) 3600 (0.88) 1710 (0.27) 18.7 p>"w fy ^ v_>^ tb Comparative Example 3(^-2^〇5 4440 (1.00) 4410 (0.99) 1440 (0.32) 20.0 Divination Example 4f\2 2880 (1.00) 2590 (0.90) 870 (0.56 ) 55.2 ^ P-2 2910 (1.00) 2590 (0.89) 2130 (0.73) 80.0 Comparative Example 6C-2 3030 (1.00) 2720 (0.90) 1950 (0.65) 78.0 fchi$^'l7r:-? ^^0 2140 (1.00) 2000 (0.93) 1960 (0.77) 1.9 ^ Numerical value indicates the relative ratio of G-degree brightness -88 - .201219847 A ^ J Refractive index difference Average brightness (Cd/m2) Luminance unevenness (%) 30 degree 30 degrees 60 degrees implementation Example 1C-3 Example 2C-3 _________ Π80 (1.00) 1560 (0.87) 1060 (0.60) 6.1 0 ---- 1870 (1.00) 1670 (0.89) 1150 (0.61) 3.6 Example 3C-3 Example 4C- 3 Example 5C-3 1830 (1.00) 1670 (0.91) 1180 (0.64) 4.2 ^0.5 .--- 0 1850 (1.00) 1590 (0.86) 1040 (0.56) 4.7 1840 (1.00) 1640 (0.89) 1030 (0.56 4.3 Example 6C-3 0 1830 (1.00) 1610 (0.88) 1050 (0.57) 7.2 Example 7C-3 0 --- 1680 (1.00) 1480 (0.89) 1060 (0.63) 9.8 Example 8C-3 0 ________ .^780 (1.00) 1560 (0.89) 1050 (0.59) 8.6 Example 9C-3 0 __--- , _^820 (1.00) 1650 (0.91) 1100 (0.60) 7.3 Comparative Example 1C-3 ---- -^ 1600 (1.00) 1530 (0.84) 1090 (0.68) 121.0 Comparative Example 2C-3 -0.5 ___ 2050 (1.00) 1720 (0.84) 790 (0.39) 16.8 Comparative Example 3C-3 Comparative Example 4C-3 - JQ.S 2250 (1.00) 2230 (0.99) 680 (0.30) 17.8 1550 (1.00) 1280 (0.83) 870 (0.56) 49.0 Comparative Example 5C-3 ^0 ^--- 1480 (1.00) 1290 (0.87) 890 (0.60) 79.5 Comparative Example 6C-3 0 ___-- 1520 (1.00) 1340 (0.88) 920 (0.60) 85.0 Comparative Example 7C-3 0 ΙΓ 1050 (1.00) 1000 (0.95) 920 (0.87) 2.5 * : The average brightness of the () inner meaning [Table 1 1] The political representation of the relative ratio of 0 degree brightness to the substrate - thousand average brightness iCd / m2, brightness unevenness (%) 〇 degree 30 degrees 60 degrees implementation Example 11C-1 .0.5 ____ 6270(1.00) 5150 (0.82) 2140 (0.34) 1.8 Example 12C-1 0 One 6710 (1.00) 5890 (1.00) 5180 (0.89) 2070 (0.61) 1.9 Example 13C-1 .0.5 5〇3〇(0.85) 2540 (0.43) 1.4 Example 14C-1 0 6470(1.00) 5030 (0.78) 1990(0.31) 1.3 Example 15C-1 0 ------ 6220(1.00) 5900 (1.00) -^^0(089) 2280 (0.37) 1.2 Comparative Example 8C-1 -0.5 572〇(0.97) 2280 (0.39) 8.5 氺: The value of the average brightness indicates the phase U of the brightness of 0 degrees. -89-201219847 Example 11C-2 ★Example 12C-2 Example 13C-2 ~~~ 赉Example MC-2 I~ Greedy Example l5C-2 —~' Example 8C-2 氺: h of the average brightness Average brightness (Cd/m2) Uneven brightness (%) 30 degree 30 degrees 60 degrees 4290 (1.00) 3390 (0.79) 1220 (0.28) 1.2 4590 (1.00) 3380 (0.74 1170 (0.25) 1.3 3890 (1.00) 3290 (0.83) 1500 (0.38) 0.8 4420 (1.00) 3300 (0.75) 1130 (0.26) 1.6 4120 (1.00) 3350 (0.81) 2010 (0.49) 1.5 3990 (1.00) 3900 (0.98) 930 (0.23) 10.5 The numerical value indicates the relative ratio of 0 degree brightness [Table 12]. The value is 0_ Γαζ, . Table 13] The average brightness with the base (Cd/m2) The brightness unevenness is 30 degrees 60 degrees ( %) Example 11C-3 -0.5 2170 (1.00) 1690 (0.77) 580 (0.27) 6.0 Example 12C-3 0 2330 (1.00) 1710 (0.73) 560 (0.24) 6.8 Example 13C-3 ' -0.5 2020 (1.00) 1640 (0.81) 580 (0.26) 6.3 Example 14C-3 0 2210 (1.00) 1710 (0.77) 1130 (0.26) 5.8 Example 15C-3 0 2150 (1.00) ΠΙΟ (0.80) 820 (0.38) 5.0 Comparative Example 8C-3 -0.5 2010 (1.00) 1990 (0.99) 640 (0.31) 9.0 氺: The value of () in the average brightness indicates the relative brightness of the brightness [Table 14].
與基材的 折射率差 基材的全光線 透過率 (%) 平均亮度 (Cd/m2) 亮度不均(%) 光源斑點的 消去性 實施例16C-1 -0.5 92.2 9050 2.1 〇 實施例17C-1 -0.5 92.2 9430 3.0 〇 比較例9C-1 -0.5 92.2 14800 80.2 X -90- 201219847 [表 15] 實施例 薄膜製造例 視覺辨認性 亮度(Cd/m2) 最大值 最小值 平均值 實施例18C 薄膜製造例1 3 33 27 30 實施例19C 薄膜製造例2 1 37 33 35 實施例20C 薄膜製造例3 2 35 29 32 實施例21C 薄膜製造例4 4 32 24 28 比較例10C 僅透明壓克力板 6 36 4 20 比較例11C 薄膜製造例14 5 31 14 23 比較例12C 薄膜製造例15 5 32 15 24 [產業上的利用可能性] 本發明的光擴散薄膜積層體,由於具有特定光學特 性的光擴散薄膜與基材係由特定的構成所組成,當使用 於面光源裝置時,可提高面光源裝置的出光效率或出光 效率的均勻性,面光源裝置的高亮度化或高照度化係可 能,而且可提高亮度或照度的均質性。因此,面光源裝 置的光源之輸出減低,或減低各種光學薄膜的使用片數 ,可提高面光源裝置的經濟性。 又,藉由使用上述面光源裝置,可提高顯示裝置及 照明裝置的性能或經濟性。 【圖式簡單說明】 無。 【主要元件符號說明】 無0 -91-Difference in refractive index from the substrate. Total light transmittance (%) of the substrate. Average brightness (Cd/m2). Unevenness in brightness (%) Elimination of spot of the light source. Example 16C-1 -0.5 92.2 9050 2.1 Example 17C- 1 - 0.5 92.2 9430 3.0 〇 Comparative Example 9C-1 - 0.5 92.2 14800 80.2 X - 90 - 201219847 [Table 15] Example Film Production Example Vision Brightness (Cd/m2) Maximum Value Minimum Value Average Example 18C Film Production Example 1 3 33 27 30 Example 19C Film Production Example 2 1 37 33 35 Example 20C Film Production Example 3 2 35 29 32 Example 21C Film Production Example 4 4 32 24 28 Comparative Example 10C Transparent acrylic plate only 6 36 4 20 Comparative Example 11C Film Production Example 14 5 31 14 23 Comparative Example 12C Film Production Example 15 5 32 15 24 [Industrial Applicability] The light-diffusing film laminate of the present invention has light diffusion due to specific optical characteristics The film and the substrate are composed of a specific structure, and when used in a surface light source device, the light-emitting efficiency of the surface light source device or the uniformity of light-emitting efficiency can be improved, and the high-luminance or high-illumination of the surface light source device is possible, and Can increase brightness or photo Degree of homogeneity. Therefore, the output of the light source of the surface light source device is reduced, or the number of sheets of various optical films is reduced, and the economical efficiency of the surface light source device can be improved. Further, by using the above-described surface light source device, the performance and economy of the display device and the illumination device can be improved. [Simple description of the diagram] None. [Main component symbol description] No 0 -91-
Claims (1)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196028 | 2010-09-01 | ||
JP2010195466 | 2010-09-01 | ||
JP2010200441 | 2010-09-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201219847A true TW201219847A (en) | 2012-05-16 |
TWI459042B TWI459042B (en) | 2014-11-01 |
Family
ID=45773332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100131189A TWI459042B (en) | 2010-09-01 | 2011-08-31 | A photodiffusion film laminate |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20130102043A (en) |
CN (1) | CN103080783B (en) |
TW (1) | TWI459042B (en) |
WO (1) | WO2012029755A2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017145881A1 (en) * | 2016-02-22 | 2017-08-31 | シャープ株式会社 | Method for manufacturing optical component and optical component |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3250888B2 (en) * | 1993-10-08 | 2002-01-28 | 三井化学株式会社 | Matte reflective film |
TWI234885B (en) * | 2002-03-26 | 2005-06-21 | Fujikura Ltd | Electroconductive glass and photovoltaic cell using the same |
JP2004198484A (en) * | 2002-12-16 | 2004-07-15 | Mitsubishi Polyester Film Copp | Diffuse reflection film for polarizer |
CN101087846B (en) * | 2004-12-27 | 2010-09-29 | Jsr株式会社 | Thermoplastic resin composition, optical film and oriented film |
JP2007010798A (en) * | 2005-06-28 | 2007-01-18 | Asahi Kasei Corp | Anisotropic scattering film |
KR101151486B1 (en) * | 2006-03-20 | 2012-05-30 | 미쓰이 가가쿠 가부시키가이샤 | Optical film and method for producing same |
KR101345170B1 (en) * | 2006-07-13 | 2013-12-26 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | Film laminate and method of manufacturing the same |
JP4352348B2 (en) * | 2007-12-07 | 2009-10-28 | 東洋紡績株式会社 | Surface light diffusing polyester film |
JP2010123542A (en) * | 2008-11-21 | 2010-06-03 | Toshiba Lighting & Technology Corp | Liquid agent for coating diffusion film of high-pressure discharge lamp and high-pressure discharge lamp |
-
2011
- 2011-08-30 CN CN201180042252.5A patent/CN103080783B/en not_active Expired - Fee Related
- 2011-08-30 KR KR1020137005333A patent/KR20130102043A/en not_active Application Discontinuation
- 2011-08-30 WO PCT/JP2011/069557 patent/WO2012029755A2/en active Application Filing
- 2011-08-31 TW TW100131189A patent/TWI459042B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN103080783A (en) | 2013-05-01 |
CN103080783B (en) | 2016-03-16 |
WO2012029755A2 (en) | 2012-03-08 |
KR20130102043A (en) | 2013-09-16 |
TWI459042B (en) | 2014-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102365537B1 (en) | Method for producing laminate, laminate, polarizing plate, image display device, and method for improving readability of image display device | |
CN103052898B (en) | Comprise multilayer film and the goods of matte surface layer | |
TWI487952B (en) | A light diffusion film, a method of manufacturing the same, a light diffusioning polarizing plate, and a liquid crystal display device | |
TWI437278B (en) | Anisotropic light-diffusing film, anisotropic light-diffusing film laminated sheet and production method thereof | |
US8979330B2 (en) | Anisotropic light-diffusing film, anisotropic light-diffusing laminate, anisotropic light-reflecting laminate, and use thereof | |
TWI354122B (en) | Lens sheet, planar light source device and liquid | |
CN103109213A (en) | Light-diffusing element, polarizing plate having light-diffusing element attached thereto, polarizing element, and liquid crystal display device equipped with those components | |
TW200907422A (en) | Optical sheets | |
CN101276101A (en) | Light redirecting film having variable thickness | |
KR100909427B1 (en) | Light control film | |
CN103109214A (en) | Light-diffusing film, light-diffusing film-equipped polarizing plate, lcd device, and lighting apparatus | |
TW201126242A (en) | Viewing angle enhancement film for liquid crystal display device, protect film with function of viewing angle enhancement, and liquid crystal display device | |
KR20130036205A (en) | Liquid crystal display device | |
CN101290423A (en) | Light altering film possessing incontinuous coating | |
KR20120038470A (en) | Liquid crystal display device and light diffusion film | |
KR101481181B1 (en) | Condensing type optical sheet | |
TW201219847A (en) | A photodiffusion film laminate | |
JP4992280B2 (en) | Liquid crystal display | |
TWI438499B (en) | Light diffusing film, its laminating sheet, method for producing the same, lighting device using led source and backlight device | |
KR100988764B1 (en) | Multi-functional optic film | |
KR20130127938A (en) | Laminated base material, laminated body, polarizing plate, liquid crystal display panel, and image display device | |
TW201243458A (en) | Viewing angle improvement film and liquid crystal display device | |
JP2007199618A (en) | Diffuser enabling color correction, polarizing element using the same, and liquid crystal display device | |
JP2004219438A (en) | Light diffusing film | |
JP2012078799A (en) | Light-diffusing film laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |