TW201218710A - Decoding method and device in relay network - Google Patents

Decoding method and device in relay network Download PDF

Info

Publication number
TW201218710A
TW201218710A TW100108572A TW100108572A TW201218710A TW 201218710 A TW201218710 A TW 201218710A TW 100108572 A TW100108572 A TW 100108572A TW 100108572 A TW100108572 A TW 100108572A TW 201218710 A TW201218710 A TW 201218710A
Authority
TW
Taiwan
Prior art keywords
data
channel
aliased
aliasing
packet
Prior art date
Application number
TW100108572A
Other languages
Chinese (zh)
Inventor
Ji Li
zhong-ji Hu
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Publication of TW201218710A publication Critical patent/TW201218710A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • H04L1/0077Cooperative coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

In order to solve the problem that the prior relay scheme occupies many uplink communication resources and does not utilize the relay links sufficiently, the present invention provides a decoding method and device in a relay network. A relay station performs inter-packet mixture for the data in a plurality of data packets, then performs channel encoding, and transmits the encoded data to a receiver as the assistant information for the decoding of the receiver, wherein, the channel encoding includes data compression processing. The receiver obtains the estimate of the original data of each data packet respectively, and performs mixture corresponding to the relay station; the receiver also performs data decompression for the received assistant information, and performs, according to the decompressed assistant information and the mixed estimate of the original data of each data packet, joint channel decoding so as to obtain the mixed original data of each data packet, and then performs de-mixture to recover each data packet. The embodiment of the present invention occupies fewer resources and has high utilization of relay links.

Description

201218710 六、發明說明: 【發明所屬之技術領域】 本發明關於無線中繼通信,尤其關於無線中繼通信中 的解碼。 【先前技術】 在目前的LTE-A標準化討論中,中繼爲提高容量和改 善覆蓋範圍的一個重要技術。在上行通信中,在各個用戶 設備(UE)直接將上行資料發送給基站(eNB)時,中繼 站通常也接收各個用戶設備的上行資料,並將其作爲輔助 基站對用戶設備的上行資料進行解碼的輔助資訊轉發給基 站。傳統的中繼方式是中繼站RN逐一轉發各個用戶設備的 上行資料。在圖1中,以TDD系統爲例,用戶設備UE1和 UE2分別在第一個時槽和第二個時槽發送其上行資料包?1 和P2給中繼站RN以及基站eNB ;中繼站RN分別在第三個 和第四個時槽中將所接收到的來自用戶設備UE1和UE2的 上行資料包P1和P2作爲輔助資訊轉發給基站eNB,以輔助 基站eNB對其在第一個和第二個時槽中接收到的來自用戶 設備UE1和UE2的上行資料進行解碼。隨著中繼站rn所服 務的用戶設備的增多,逐一轉發需要佔用越來越多的時槽 ,這會造成很長的通信延遲。在FDD系統中,這樣的問題 是類似的,則需多份頻譜資源。上行的時間資源或頻譜是 十分寶貴的,中繼站的功率也十分重要,因此業內迫切地 需要更有效率的中繼方式。 -5- 201218710 申請人在PCT/CN2009/000446申請中提出了 一種中繼 的方法,如圖2所示,以TDD系統爲例,用戶設備UE1和 UE2分別在第一個時槽和第二個時槽發送其上行資料包?1 和P2給中繼站RN以及基站eNB ;中繼站RN對所接收的來 自用戶設備UE1和UE2的資料包P1和P2進行按位元異或( 或同或)等處理,將得到的輔助資訊在第三個時槽中轉發 給基站eNB,以輔助基站eNB對其在第一個和第二個時槽 中接收到的來自用戶設備UE1和UE2的上行資料包P1和P2 進行解碼。這樣’中繼站RN只佔用了 一個時槽來提供輔助 資訊,節省了 50%的轉發資源。在基站eNB端,使用軟合 倂解碼器,基於所接收的來自用戶設備UE1和UE2的上行 資料以及中繼站RN提供的輔助資訊來恢復上行資料。然而 ’在中繼鏈路的通信性能轉好時,上面提出的方法的性能 提高比較緩慢。這意味著中繼鏈路沒有得到非常有效的利 用。 【發明內容】 可以看出,現有的逐一轉發的中繼方式佔用了較多的 上行通信資源(時間或頻譜)。本發明需要提供一種佔用 資源少,並且能夠充分利用中繼鏈路性能的通信技術。 針對這一問題,根據本發明的第一個方面,提供了一 種在基於LTE-A標準的中繼站中,提供用於輔助接收機對 所接收的多個資料包進行解碼的輔助資訊的方法,包括以 下步驟:分別接收該多個資料包;對該多個資料包中的資201218710 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to wireless relay communication, and more particularly to decoding in wireless relay communication. [Prior Art] In the current LTE-A standardization discussion, relaying is an important technology for improving capacity and improving coverage. In the uplink communication, when each user equipment (UE) directly transmits the uplink data to the base station (eNB), the relay station usually also receives the uplink data of each user equipment, and uses it as the auxiliary base station to decode the uplink data of the user equipment. The auxiliary information is forwarded to the base station. The traditional relay mode is that the relay station RN forwards the uplink data of each user equipment one by one. In FIG. 1, taking the TDD system as an example, the user equipments UE1 and UE2 respectively send their uplink data packets in the first time slot and the second time slot. 1 and P2 to the relay station RN and the base station eNB; the relay station RN forwards the received uplink data packets P1 and P2 from the user equipment UE1 and UE2 as auxiliary information to the base station eNB in the third and fourth time slots, respectively. The secondary base station eNB decodes the uplink data from the user equipment UE1 and UE2 received in the first and second time slots. As the number of user equipments served by the relay station rn increases, one by one forwarding requires more and more time slots, which causes a long communication delay. In an FDD system, such a problem is similar, requiring multiple spectrum resources. The uplink time resource or spectrum is very valuable, and the power of the relay station is also very important, so the industry urgently needs a more efficient relay mode. -5- 201218710 The applicant proposed a method of relaying in the PCT/CN2009/000446 application, as shown in FIG. 2, taking the TDD system as an example, the user equipment UE1 and UE2 are respectively in the first time slot and the second time. Does the time slot send its upstream packet? 1 and P2 are given to the relay station RN and the base station eNB; the relay station RN performs bitwise exclusive OR (or the same) on the received data packets P1 and P2 from the user equipment UE1 and UE2, and the obtained auxiliary information is in the third The time slots are forwarded to the base station eNB to assist the base station eNB in decoding the upstream data packets P1 and P2 from the user equipments UE1 and UE2 received in the first and second time slots. In this way, the relay station RN only takes up one time slot to provide auxiliary information, saving 50% of the forwarding resources. At the base station eNB side, the uplink data is recovered based on the received uplink data from the user equipments UE1 and UE2 and the auxiliary information provided by the relay station RN using the soft combining decoder. However, the performance of the above proposed method is slower when the communication performance of the relay link is improved. This means that the trunk link is not very effective. SUMMARY OF THE INVENTION It can be seen that the existing one-by-one forwarding relay mode occupies more uplink communication resources (time or spectrum). The present invention needs to provide a communication technique that occupies less resources and can fully utilize the performance of the relay link. In response to the problem, according to a first aspect of the present invention, a method for providing auxiliary information for assisting a receiver in decoding a plurality of received data packets is provided in a relay station based on the LTE-A standard, including The following steps: respectively receiving the plurality of data packages; the resources in the plurality of data packages

S -6- 201218710 料進行不同資料包間的混疊’混疊後的資料包括各個資料 包中的資料;對該混疊後的資料進行通道編碼,其中,該 通道編碼步驟包括對該混疊後的資料進行資料壓縮處理; 和將經通道編碼後的資料作爲該輔助資訊發送給該接收機 0 根據本發明的第二個方面,提供了一種在基於LTE-A 標準的接收機中’對多個資料包進行解碼的方法,其中, 該接收機接收到該多個資料包的副本以及根據本發明第一 個方面所述的中繼設備提供的用於輔助該接收機對該多個 資料包進行解碼的輔助資訊,該方法包括如下步驟:對接 收的各資料包的副本進行解碼;當至少一個資料包的副本 不能被正確解碼時’分別獲取對各資料包的原始資料的估 計:將對各資料包的原始資料的估計進行與該中繼設備獲 得該輔助資訊所進行的不同資料包間的混疊對應的混疊; 對所接收的該輔助資訊進行與該中繼設備進行的資料壓縮 對應的資料解壓縮;基於解壓縮後的該輔助資訊和經混疊 後的對各資料包的原始資料的估計,進行聯合的通道解碼 ,獲得經混疊後的各資料包的原始資料;對該經混疊後的 各資料包的原始資料進行與該中繼設備進行的不同資料包 間的混疊對應的解混疊,以恢復各資料包。 根據本發明的第三個方面,提供了一種在基於LTE-A 標準的中繼站中,提供用於輔助接收機對所接收的多個資 料包進行解碼的輔助資訊的設備,包括:接收裝置,用於 分別接收該多個資料包;混疊器,用於對該多個資料包中 201218710 的資料進行資料包間的混疊,混疊後的資料包括各個資料 包中的資料;通道編碼器,用於對該混疊後的資料進行通 道編碼,其中,該通道編碼器包括用於對該混疊後的資料 進行資料壓縮的資料壓縮器;和發射裝置,用於將經通道 編碼後的資料作爲該輔助資訊發送給該接收機。 根據本發明的第四個方面,提供了一種在基於LTE-A 標準的接收機中,對多個資料包進行解碼的設備,其中, 該接收機接收到該多個資料包的副本以及根據本發明第三 個方面所述的設備提供的用於輔助該接收機對該多個資料 包進行解碼的輔助資訊,該設備包括:解碼器,用於對接 收的各資料包的副本進行解碼,並且當至少一個資料包的 副本不能正確被解碼時,分別獲取對各資料包的原始資料 的估計;混疊器,用於將對各資料包的原始資料的估計進 行與根據本發明第三個方面所述的設備獲得該輔助資訊所 進行的資料包間的混疊對應的混疊;解壓縮器,用於對所 接收的該輔助資訊進行與根據本發明第三個方面所述的設 備進行的資料壓縮對應的資料解壓縮;通道解碼器,用於 基於解壓縮後的該輔助資訊和經混疊後的對各資料包的原 始資料的估計,進行聯合的通道解碼,獲得經混疊後的各 資料包的原始資料;解混疊器,用於對該經混疊後的各資 料包的原始資料進行與該中繼設備進行的包間混疊對應的 解混疊,以恢復各資料包。 在以上的方面裏,在通道編碼器中使用資料壓縮的方 式減少輔助資訊的資料量,透過調節資料壓縮的壓縮率,S -6- 201218710 Materials for aliasing between different data packets The 'aliased data includes data in each data packet; the aliased data is channel coded, wherein the channel coding step includes the aliasing The subsequent data is subjected to data compression processing; and the channel-encoded data is transmitted to the receiver as the auxiliary information. According to a second aspect of the present invention, a receiver is provided in the LTE-A based receiver. a method for decoding a plurality of data packets, wherein the receiver receives a copy of the plurality of data packets and the relay device according to the first aspect of the present invention is configured to assist the receiver to the plurality of data The auxiliary information for decoding the packet, the method comprising the steps of: decoding the received copy of each data packet; and obtaining an estimate of the original data of each data packet when the copy of the at least one data packet cannot be correctly decoded: An aliasing of the original data of each data packet corresponding to the aliasing of different data packets performed by the relay device to obtain the auxiliary information; Receiving the auxiliary information to perform data decompression corresponding to data compression performed by the relay device; performing joint channel decoding based on the decompressed auxiliary information and the aliased original data of each data packet Obtaining the original data of the aliased data packets; performing unmixing of the original data of the aliased data packets with the aliasing of different data packets of the relay device to recover Various packages. According to a third aspect of the present invention, there is provided an apparatus for providing auxiliary information for assisting a receiver in decoding a received plurality of data packets in a relay station based on an LTE-A standard, comprising: a receiving device, Receiving the plurality of data packets respectively; the aliasing device is configured to perform aliasing between the data packets of the 201218710 data in the plurality of data packets, and the aliased data includes data in each data packet; the channel encoder, Channel coding for the aliased data, wherein the channel encoder includes a data compressor for compressing the data after the aliasing; and a transmitting device for channel-encoded data The auxiliary information is sent to the receiver. According to a fourth aspect of the present invention, there is provided an apparatus for decoding a plurality of data packets in a receiver based on an LTE-A standard, wherein the receiver receives a copy of the plurality of data packets and according to the present invention The auxiliary information provided by the device of the third aspect for assisting the receiver to decode the plurality of data packets, the device comprising: a decoder for decoding the received copy of each data packet, and Obtaining an estimate of the original data of each data packet when the copy of the at least one data packet is not correctly decoded; the aliasing device is configured to perform the estimation of the original data of each data package with the third aspect according to the present invention And the device obtains the aliasing corresponding to the aliasing between the data packets by the auxiliary information; and the decompressor is configured to perform the auxiliary information received by the device according to the third aspect of the present invention. Data compression corresponding data decompression; channel decoder for estimating the auxiliary information based on the decompression and the aliased original data of each data packet, The channel decoding of the line is combined to obtain the original data of the aliased data packets; the de-mixer is configured to perform the inter-packet mixing of the original data of the aliased data packets with the relay device. Stack the corresponding unaliased to recover each packet. In the above aspect, the data compression method is used in the channel encoder to reduce the amount of information of the auxiliary information, and by adjusting the compression ratio of the data compression,

S -8 - 201218710 能夠節省相應比例的上行通信資源。並且,接收端能夠透 過通道解碼器較好地恢復出原始的輔助資訊。同時,以上 的方面保持了輔助資訊中的資料包信息量,使得接收端能 夠更好地基於直接鏈路所接收到的資料包,結合該輔助資 訊對資料包進行解碼。由於中繼站能夠利用中繼鏈路提供 信號品質比較好的輔助資訊,Turbo解碼器能夠有效地結 合輔助資訊進行解碼,所以隨著中繼鏈路的改善,根據本 發明的實施例的性能得到了較大提升。 在一個較佳的實施例中,以上的資料混疊和解混疊功 能是透過LTE標準中已經協定的交錯器來實現,以上資料 壓縮和解壓縮是透過目前LTE標準中已經協定的速率匹配 器和速率解匹配器來實現。在該實施例中,絕大多數模組 均符合現有LTE系統定義,僅需增加資料包間的混疊模組 ,該模組不做乘法/加法運算,因此增加複雜度很小。 在一個較佳的實施例中,在中繼站處,在對多個資料 包進行混疊步驟之前,還對至少一個資料包的資料進行包 內的交錯。在接收機處,相應地,在進行解混疊之後,還 對至少一個資料包的資料進行解交錯。在該實施例中,系 統的容錯性能得到了進一步增加。此外,這一功能也可以 透過LTE標準中已經協定的交錯器來實現,不需要增加額 外的功能模組。 在一個較佳的實施例中,當混疊後的資料長度大於 LTE-A標準中的編碼器容許的最大長度時,將混疊後的資 料分割爲多個長度均不大於最大長度的資料塊,再對多個 -9 - 201218710 資料塊進行編碼;在接收機處解碼器對多個編碼塊進行解 碼得到多個資料塊後,再將各個資料塊串聯。在該實施例 中’解決了混疊後的資料長度大於編碼器所容許的最大長 度的技術問題。 【實施方式】 下面將結合圖3至圖8,使用本發明的實施例對本發明 的發明構思進行詳述》 以TDD系統爲例,如圖3所示,用戶設備UE1和UE2分 別在第一個時槽和第二個時槽發送其上行資料包P1和P2給 中繼站RN以及基站eNB。可以理解,該兩個資料包也能夠 都由一個用戶設備所發送。並且,本發明可以適用於兩個 以上資料包(或兩個以上用戶)的情況,以及適用於兩跳 以上中繼的情況。對於FDD系統,本發明也同樣適用。 如圖4所示,對應於資料包P1的TB(傳輸塊)1由中繼 站RN接收後,接收裝置計算TB 1的符號最大似然比序列 LLRsl,而後計算位元最大似然比序列LLRbl,再經過通 道解碼後恢復爲資料位元;類似的,接收裝置也將對應於 資料包P2的TB2也恢復爲資料位元。圖中爲了明顯地區分 兩個資料包,使用了兩路處理過程——描述資料包P1和P2 ,可以理解,處理資料包P1和P2的符號最大似然比計算、 位元最大似然比計算以及通道解碼器可以是相同的一組單 元。可以理解,通道解碼器還可包括通道解交錯器、速率 解匹配器、子塊解交錯器、碼塊串聯裝置和CRC (循環冗 -10- 201218710 餘編碼)檢測裝置。這一過程是本領域的技術人員所熟知 的。 接下來,如圖5所示,以1/3編碼速率,包長3456位元 和QPSK調製爲例。3432位元的資料包P1和P2分別經過 CRC重新編碼,增加CRC校驗位元,長度變爲34W位元。 之後,爲了增加系統的容錯性,分別對資料包P1和P2 進行包內的交錯。這一功能可以由中繼站中的資料交錯模 組進行,交錯一般僅關於資料的移位元,而不關於對資料 進行加法或乘法運算,所以帶來的計算複雜度很低。可以 理解,可以僅對一個資料包進行包內交錯。在另一個實施 例中,不對任何一個資料包進行包內交錯。 接著,混疊器對該資料包P1和P2中進行不同資料包間 的混疊,混疊後的資料包括資料包P1和P2中的資料。例如 ,爲了增加系統的容錯性,使用中繼站中的資料交錯模組 按逐位元或逐多位元對資料包P1和P2中的資料進行交錯, 交錯一般僅關於資料的移位元,而不關於對資料進行加法 或乘法運算,所以帶來的計算複雜度很低。或者,不進行 交錯,直接將資料包P1和P2中的資料首尾串聯在一起。混 疊後的數據長度爲6912位元。該混疊後的資料被後端功能 模組視爲一個通常的TB進行處理,因此接下來與現有的後 端功能模組是相容的。 之後,由於資料長度69 12位元大於Turbo編碼器所要 求的最大長度,碼塊分割器將該混疊後的資料分割爲兩個 長度分別爲3456位元和3 520位元的資料塊。可以理解,若 -11 - 201218710 混疊後的資料的長度小於或等於最大長度時,該碼塊分割 器可以被省略。 接著,Turbo編碼器對該分割後的這兩個資料塊進行 編碼率爲1/3的Turbo編碼,得到長度分別爲1 0380位元和 1 0572位元的兩個輔助碼塊。 然後,子塊交錯器對Turbo編碼而得的輔助碼塊進行 子塊交錯。 隨後,速率匹配器對經子塊交錯的輔助碼塊進行速率 匹配。編碼率爲2/3,壓縮比爲50%,得到了總長度爲 1 03 80位元的兩個輔助碼塊,記爲JNC CB1和JNC CB2。也 可採用其他壓縮比,本實施例採用與XOR方案相同的壓縮 率,以比較使用相同轉發資源時可獲得的性能。 接著,輔助碼塊再經過通道交錯器的通道交錯。 最後,發射裝置,例如調製器將輔助碼塊調製爲長度 爲5190符號的複合信號序列,在第三時槽或第四時槽發送 給基站eNB,該複合信號序列記爲P;NC。 如圖5所示,基站eNB第一時槽和第二時槽透過直接鏈 路分別接收到資料包P 1和P2的複合信號序列後,計算其符 號最大似然比序列LLRs 1,而後計算其位元最大似然比序 列LLRb 1。之後,再分別進行通道解交錯、速率匹配和子 塊解交錯,得到編碼的資料包P1和P2的副本》 並且,基站eNB在接收到包含輔助碼塊的複合信號 PJNC後,計算其符號最大似然比序列,而後計算其位元最 大似然比序列。之後,再分別進行通道解交錯,並透過速 s -12- 201218710 率解匹配對經壓縮的輔助碼塊進行解壓縮,而後再進行子 塊解交錯,並最終獲得兩個輔助碼塊。 如圖6所示,編碼的資料包P1和P2的副本被提供給 Turbo解碼器進行解碼。當兩個編碼的資料包的副本都正 確被解碼時,輸出該兩個資料包的解碼後的資料。當至少 一個資料包的副本不能正確被解碼時,Turbo解碼器分別 獲取對資料包P1和P2的原始資料的估計Lai和La2,作爲先 驗資訊來在下面的處理中進行解碼。該Turbo解碼器是傳 統的解碼器,它內部進行多次(例如15次)循環進行解碼 。Turbo解碼器的解碼以及獲得對資料包中的原始資料的 估計的技術是本領域的一般技術人員所熟知的,這裏不再 贅述。 之後,交錯器將對至少一個資料包的原始資料的估計 進行與中繼站RN獲得該輔助資訊所進行的包內交錯對應的 交錯。當中繼站RN沒有進行包內交錯時,在基站eNB處的 交錯應被省略。 接著,混疊器將對各估計La進行與該中繼站獲得該輔 助資訊所進行的不同資料包間的混疊對應的混疊》例如, 在中繼站RN按逐位元或逐多位元對資料包P1和P2中的資 料進行交錯的情況下,資料混疊起也按逐位元或逐多位元 的方式對估計Lai和La2進行交錯。 當該混疊後的對各資料包的原始資料的估計的長度大 於Turbo解碼器要求的資料最大長度時,碼塊分割器將該 混疊後的對各資料包的原始資料的估計分割爲多個長度均 -13- 201218710 不大於該最大長度的估計資料塊La CB1和La CB2。需要注 意的是,碼塊分割器缺省地是對分割後的二進位資料塊進 行CRC計算,並在每一個資料塊後增加CRC校驗位元;而 由於Turbo解碼器產生的對原始資料的估計是未經過硬判 決的實數値,所以這裏應將碼塊分割器設置爲不進行CRC 計算,直接在每一個估計資料塊後的CRC校驗位元塡0。 這樣,獲得的這多個估計資料塊La CB1和LaCB2與接 收到的多個輔助碼塊JNC CB1和JNC CB2--對應。S -8 - 201218710 can save the corresponding proportion of uplink communication resources. Moreover, the receiving end can better recover the original auxiliary information through the channel decoder. At the same time, the above aspects maintain the amount of information in the auxiliary information, so that the receiving end can better decode the data packet based on the data packet received by the direct link and the auxiliary information. Since the relay station can provide the auxiliary information with better signal quality by using the relay link, the Turbo decoder can effectively combine the auxiliary information for decoding, so as the relay link is improved, the performance according to the embodiment of the present invention is improved. Great improvement. In a preferred embodiment, the above data aliasing and de-aliasing functions are implemented by an interleaver already agreed in the LTE standard. The above data compression and decompression is through the rate matcher and rate already agreed in the current LTE standard. The solver is implemented. In this embodiment, most of the modules conform to the existing LTE system definition, and only need to increase the aliasing module between the data packets. The module does not perform multiplication/addition operations, so the added complexity is small. In a preferred embodiment, at least one of the data packets is interleaved in the packet at the relay station prior to the aliasing step of the plurality of packets. At the receiver, correspondingly, after the anti-aliasing, the data of at least one of the packets is also deinterleaved. In this embodiment, the fault tolerance performance of the system is further increased. In addition, this function can also be implemented through interleavers already agreed in the LTE standard, without the need to add additional functional modules. In a preferred embodiment, when the length of the data after the aliasing is greater than the maximum length allowed by the encoder in the LTE-A standard, the data after the aliasing is divided into a plurality of data blocks each having a length not greater than the maximum length. Then, the plurality of -9 - 201218710 data blocks are encoded; after the decoder decodes the plurality of coding blocks at the receiver to obtain a plurality of data blocks, each data block is connected in series. In this embodiment, the technical problem that the length of the aliased data is larger than the maximum length allowed by the encoder is solved. [Embodiment] Hereinafter, the inventive concept of the present invention will be described in detail using an embodiment of the present invention with reference to FIG. 3 to FIG. 8. Taking a TDD system as an example, as shown in FIG. 3, user equipments UE1 and UE2 are respectively in the first The time slot and the second time slot transmit their uplink data packets P1 and P2 to the relay station RN and the base station eNB. It can be understood that the two data packets can also be sent by one user equipment. Moreover, the present invention can be applied to the case of two or more data packets (or more than two users) and to the case of two or more relays. The same applies to the FDD system. As shown in FIG. 4, after the TB (Transport Block) 1 corresponding to the packet P1 is received by the relay station RN, the receiving device calculates the symbol maximum likelihood ratio sequence LLRs1 of TB1, and then calculates the maximum likelihood ratio sequence LLRbl of the bit, and then After the channel is decoded, it is restored to the data bit; similarly, the receiving device also restores the TB2 corresponding to the data packet P2 to the data bit. In order to clearly distinguish between two data packets, the two processes are used—describe the data packets P1 and P2. It can be understood that the symbol maximum likelihood ratio calculation and the maximum likelihood ratio calculation of the data packets P1 and P2 are processed. And the channel decoder can be the same set of units. It can be understood that the channel decoder can also include a channel deinterleaver, a rate de-matcher, a sub-block deinterleaver, a code block concatenation device, and a CRC (Cyclic Redundancy -10- 201218710 Coding) detection device. This process is well known to those skilled in the art. Next, as shown in Fig. 5, a 1/3 encoding rate, a packet length of 3456 bits, and QPSK modulation are taken as an example. The 3432-bit data packets P1 and P2 are re-encoded by CRC, and the CRC check bits are added, and the length becomes 34W bits. Then, in order to increase the fault tolerance of the system, the packets P1 and P2 are respectively interleaved in the package. This function can be performed by the data interleaving module in the relay station. Interleaving is generally only about the shifting elements of the data, and it is not related to the addition or multiplication of the data, so the computational complexity is very low. It can be understood that only one packet can be inter-frame interleaved. In another embodiment, no packet is inter-frame interleaved. Next, the aliaser performs aliasing between the different packets in the packets P1 and P2, and the aliased data includes the data in the packets P1 and P2. For example, in order to increase the fault tolerance of the system, the data interleaving module in the relay station is used to interleave the data in the data packets P1 and P2 in bit-wise or multi-bitwise manners, and the interleaving is generally only about the shifting elements of the data, and not Regarding the addition or multiplication of data, the computational complexity is very low. Alternatively, without interleaving, the data in packets P1 and P2 are directly connected in series. The data length after the aliasing is 6912 bits. The aliased data is treated as a normal TB by the back-end function module, so it is then compatible with the existing back-end function modules. Thereafter, since the data length 69 12 bits is larger than the maximum length required by the Turbo encoder, the code block splitter divides the aliased data into two data blocks each having a length of 3456 bits and 3 520 bits. It can be understood that if the length of the -11 - 201218710 aliased data is less than or equal to the maximum length, the code block divider can be omitted. Then, the Turbo encoder performs Turbo coding on the divided data blocks with a coding rate of 1/3, and obtains two auxiliary code blocks having lengths of 1080 bits and 1 0572 bits, respectively. Then, the sub-block interleaver performs sub-block interleaving on the turbo coded auxiliary code block. The rate matcher then performs rate matching on the sub-block interleaved auxiliary code blocks. The coding rate is 2/3, and the compression ratio is 50%. Two auxiliary code blocks with a total length of 1 03 80 bits are obtained, which are recorded as JNC CB1 and JNC CB2. Other compression ratios may also be employed. This embodiment uses the same compression ratio as the XOR scheme to compare the performance that can be obtained when using the same forwarding resources. The auxiliary code blocks are then interleaved through the channels of the channel interleaver. Finally, the transmitting device, for example the modulator, modulates the auxiliary code block into a composite signal sequence of length 5190 symbols, and transmits it to the base station eNB in a third time slot or a fourth time slot, the composite signal sequence being denoted as P; NC. As shown in FIG. 5, after receiving the composite signal sequence of the data packets P1 and P2 through the direct link, the first time slot and the second time slot of the base station eNB respectively calculate the symbol maximum likelihood ratio sequence LLRs1, and then calculate the same. The bit maximum likelihood ratio sequence LLRb 1. Then, channel deinterleaving, rate matching, and sub-block deinterleaving are performed separately to obtain a copy of the encoded data packets P1 and P2. And, after receiving the composite signal PJNC including the auxiliary code block, the base station eNB calculates the symbol maximum likelihood. The sequence is compared to the sequence, and then the maximum likelihood ratio sequence of the bit is calculated. Then, the channel deinterleaving is performed separately, and the compressed auxiliary code block is decompressed by speed s -12-201218710 rate de-matching, and then the sub-block deinterleaving is performed, and finally two auxiliary code blocks are obtained. As shown in Figure 6, a copy of the encoded data packets P1 and P2 is provided to the Turbo decoder for decoding. When the copies of the two encoded packets are correctly decoded, the decoded data of the two packets is output. When the copy of at least one of the packets is not correctly decoded, the Turbo decoder acquires the estimates Lai and La2 of the original data of the packets P1 and P2, respectively, as prior information for decoding in the following processing. The Turbo decoder is a conventional decoder that performs multiple (e.g., 15) cycles of decoding internally. The decoding of the turbo decoder and the techniques for obtaining an estimate of the original data in the data packet are well known to those of ordinary skill in the art and will not be described again. Thereafter, the interleaver performs an interleaving of the original data of the at least one data packet corresponding to the intra-packet interleaving performed by the relay station RN to obtain the auxiliary information. When the relay station RN does not perform intra-packet interleaving, the interleaving at the base station eNB should be omitted. Then, the aliaser will perform aliasing corresponding to the aliasing of different packets carried by the relay station with the auxiliary information by the relay station. For example, the relay station RN is a bit-wise or multi-bit-by-bit packet. In the case where the data in P1 and P2 are interleaved, the data aliasing also interleaves the estimated Lai and La2 in a bit-wise or bit-by-bit manner. When the estimated length of the aliased original data of each data packet is greater than the maximum data length required by the Turbo decoder, the code block splitter divides the aliased estimate of the original data of each data packet into multiple The estimated data blocks La CB1 and La CB2 are not longer than the maximum length -13 - 201218710. It should be noted that the code block splitter performs CRC calculation on the divided binary data block by default, and adds CRC check bits after each data block; and the original data generated by the Turbo decoder The estimate is a real number that has not been hard-decided, so the code block splitter should be set to not perform CRC calculation, directly at the CRC check bit 塡0 after each estimated block. Thus, the obtained plurality of estimated data blocks La CB1 and LaCB2 correspond to the received plurality of auxiliary code blocks JNC CB1 and JNC CB2--.

Turbo解碼器分別對該各估計資料塊La CB1和La CB2 以及——對應的輔助碼塊JNC CB1和JNC CB2進行聯合的 通道解碼,獲得經混疊後的各資料包的原始資料的各個資 料塊。 而後,碼塊重組器將經混疊後的各資料包的原始資料 的各個資料塊串聯爲經混疊後的各資料包的原始資料。 接著,解混疊器對該經混疊後的各資料包的原始資料 進行與該中繼站RN進行的包間混疊對應的解混疊,將分屬 於不同資料包的資料分離開來。 最後,在資料包P 1和P2進行過包間交錯的情況下,解 交錯器對經解混疊的至少一個資料包進行與該中繼站RN進 行的包內交錯對應的解交錯,以恢復各資料包的資料。當 中繼站RN沒有進行包內交錯時,在基站eNB處的解交錯應 被省略。 在以上的實施例中,與現有的逐一轉發的中繼技術相 比,節省了 5 0%的轉發資源以及相應的傳輸功率。並且,The Turbo decoder performs joint channel decoding on each of the estimated data blocks La CB1 and La CB2 and the corresponding auxiliary code blocks JNC CB1 and JNC CB2 to obtain respective data blocks of the original data of the aliased data packets. . Then, the code block reassembler concatenates the data blocks of the original data of the aliased data packets into the original data of the aliased data packets. Then, the de-aliasing device performs the anti-aliasing corresponding to the inter-packet aliasing performed by the relay station RN on the original data of the aliased data packets, and separates the data belonging to different data packets. Finally, in the case where the packets P 1 and P 2 are inter-packet interleaved, the deinterleaver performs deinterleaving on the de-aliased at least one data packet corresponding to the intra-packet interleaving performed by the relay station RN to recover each data. Package information. When the relay station RN does not perform intra-packet interleaving, the de-interlacing at the base station eNB should be omitted. In the above embodiment, compared with the existing one-by-one forwarding relay technology, 50% of the forwarding resources and the corresponding transmission power are saved. and,

S -14 - 201218710 可以看出,增加了包內的交錯和資料包之間的資料混疊處 理,以及相應的解混疊和解交錯處理,並增加了對輔助資 訊壓縮以及解壓縮的處理。這些處理大都能夠由現有的功 能模組所實現,並且複雜度較低。對於這些增加的處理的 前端和後端模組來說,僅需少許改變,因此該實施例對目 前的LTE-A標準具有很好的相容性。 申請人採用仿真的手段,對根據本發明的實施例的性 能和在PCT/CN 2 009/0 00 446申請中提出的一種中繼技術的 性能進行了比較。其中,以中繼鏈路(RN-eNB )比直接 鏈路的品質好n dB ( n=10,12.5,15 )進行仿真》其中, JNC代表根據本發明的實施例,s-XOR代表軟判決XOR即 PCT/CN2009/000446申請中的中繼技術,h-XOR代表硬判 決XOR爲現有XOR中繼文獻中多採用的技術。仿真使用的 通道條件是瑞利通道。接入鏈路(UE-RN )的鏈路品質比 直接鏈路好20dB。Turbo碼長爲3456位元。調製方式是 QPSK。對於Turbo解碼器來說,內循環15次進行Turbo解 碼。 如圖8所示,短劃線代表硬判決XOR,長劃線代表軟 判決XOR,直線代表根據本發明的實施例;三角形線是 10dB,圓形是12_5dB,方形是15dB。橫坐標是位元信噪比 ,縱坐標是位元誤碼率。爲達到一定誤碼率所需的信噪比 越低(即曲線靠近左方),通信性能越優越。 從圖中可以看出,對於硬判決XOR來說,由於它的性 能是嚴格地取決於直接鏈路和中繼鏈路,所以它受限於直 -15- 201218710 接鏈路,當中繼鏈路從l〇dB改善爲12.5dB和15dB時性能沒 有得到很大提升。 對於軟判決XOR來說,它平等地使用來自直接鏈路和 中繼鏈路的資訊;當三條鏈路的品質都比較低時,該合倂 能夠產生一個更好的信號;但是當只有中繼鏈路改善時, 接收性能提升不大。 對於根據本發明的實施例來說,通道解碼首先在直接 鏈路的信號上進行,而後再對中繼鏈路的信號進行。當中 繼鏈路改善時,儘管來自直接鏈路的估計資料La精度並不 高,但由於中繼站能夠提供比較準確的輔助資訊,Turbo 解碼器能夠有效地結合輔助資訊進行解碼,所以隨著中繼 鏈路的改善,根據本發明的實施例的性能得到了較大提升 〇 當中繼鏈路的品質比直接鏈路好10dB時,本發明的實 施例優於軟合倂技術。透過仔細的網路部署,一般都可以 保證這種情況。在可以保證12.5 dB的情況下,對於位元誤 碼率在10_3的情況下,與軟合倂XOR相比,本發明的實施 例能夠提高接收性能2.8 dB ;與硬合倂XOR相比,本發明 的實施例能夠提高接收性能5 · 7 d B。在可以保證1 5 d B的情 況下’對於誤碼率在1CT3的情況下,與軟合倂XOR相比, 本發明的實施例能夠提高接收性能5 dB ;與硬合倂XOR相 比,本發明的實施例能夠提高接收性能8.1 dB。 申請人還採用仿真的手段,對根據本發明的實施例的 性能和另一種現有技術(C. Hausl and P. Durpaz,JointS -14 - 201218710 It can be seen that the interleaving in the packet and the data aliasing between the packets are added, as well as the corresponding anti-aliasing and de-interlacing, and the processing of the auxiliary information compression and decompression is added. Most of these processes can be implemented by existing functional modules with low complexity. For these increased processing front-end and back-end modules, only minor changes are required, so this embodiment has good compatibility with the current LTE-A standard. Applicants have used simulations to compare the performance of embodiments in accordance with the present invention with the performance of a relay technique proposed in the PCT/CN 2 009/00 446 application. Wherein, the relay link (RN-eNB) is better than the quality of the direct link by n dB (n=10, 12.5, 15). wherein JNC represents an s-XOR representative soft decision according to an embodiment of the present invention. XOR is the relay technology in the PCT/CN2009/000446 application, and h-XOR stands for Hard Decision XOR, which is the technology used in the existing XOR relay literature. The channel condition used for the simulation is the Rayleigh channel. The link quality of the access link (UE-RN) is 20 dB better than the direct link. The Turbo code length is 3456 bits. The modulation method is QPSK. For the Turbo decoder, the inner loop is rotated 15 times for Turbo decoding. As shown in Fig. 8, the dashed line represents a hard decision XOR, the long dash represents a soft decision XOR, and the straight line represents an embodiment according to the present invention; the triangle line is 10 dB, the circle is 12_5 dB, and the square is 15 dB. The abscissa is the bit signal to noise ratio, and the ordinate is the bit error rate. The lower the signal-to-noise ratio required to achieve a certain bit error rate (ie, the curve is close to the left), the better the communication performance. As can be seen from the figure, for hard decision XOR, since its performance is strictly dependent on the direct link and the relay link, it is limited to the direct link - 201218710 link, when the relay link The performance has not been greatly improved from l〇dB to 12.5dB and 15dB. For soft-decision XOR, it uses information from the direct link and the relay link equally; when the quality of the three links is relatively low, the combination can produce a better signal; but when only the relay When the link is improved, the reception performance is not improved much. For an embodiment in accordance with the invention, channel decoding is first performed on the signal of the direct link and then on the signal of the relay link. When the relay link is improved, although the accuracy of the estimated data La from the direct link is not high, since the relay station can provide more accurate auxiliary information, the Turbo decoder can effectively combine the auxiliary information for decoding, so the relay chain The improvement of the path, the performance according to the embodiment of the present invention is greatly improved. When the quality of the relay link is 10 dB better than the direct link, the embodiment of the present invention is superior to the soft combining technology. This can usually be guaranteed through careful network deployment. In the case where 12.5 dB can be guaranteed, in the case where the bit error rate is 10_3, the embodiment of the present invention can improve the reception performance by 2.8 dB compared with the soft-combined XOR; compared with the hard-combined XOR Embodiments of the invention can improve reception performance by 5 · 7 d B. In the case where 1 5 d B can be guaranteed, the embodiment of the present invention can improve the reception performance by 5 dB compared to the soft-combined XOR for the case where the bit error rate is 1 CT3; compared with the hard-combined XOR Embodiments of the invention can improve reception performance by 8.1 dB. The Applicant also employs simulations for performance in accordance with embodiments of the present invention and another prior art (C. Hausl and P. Durpaz, Joint

S • 16 - 201218710S • 16 - 201218710

Network-Channel Coding for the Multiple-Access Relay Channel, Proc. International Workshop on Wireless A d /ioc and New York, USA, June 2006 )進 行了比較。在該現有技術中’對資料包副本進行單次內循 環的Turbo解碼以得到估計資料塊,並基於估計資料塊和 輔助碼塊進行單次內循環的Turbo解碼得到的次估計資料 塊,外循環多次(以15次爲例)使用每次獲得的次估計資 料塊再對資料包副本進行單次內循環的Turb0解碼並重複 該步驟。改進技術1是Turbo解碼內循環進行3次’外循環 進行5次;改進技術2是Turbo內循環進行5次’外循環進行 3次;本發明的實施例是採用通常的Turbo解碼器(內循環 進行15次),省去了外循環的進行。爲了保持計算複雜性 的一致,這四種方式的總的Turbo解碼次數相同。其他的 仿真參數與前面的仿真相同。如圖9所示’可以看出,雖 然在整體上來說該另一種現有技術每次都使用估計資料塊 對資料包副本進行解碼,似乎它應具有更好的性能’但是 仿真結果表明本發明的實施例的性能優於該另一種現有技 術。綜上,本發明採用與現有LTE系統、特別是Turbo解碼 器相容的模組,僅對現有系統作少量更改,卻可獲得比參 考技術更好的性能。該參考技術需對現有系統、特別是 Turbo解碼器做全面的修改。 儘管在圖示和前述的描述中詳細闡明和描述了本發明 ,應認爲該闡明和描述是說明性的和示例性的,而不是限 制性的;本發明不限於所上述實施例。 -17- 201218710 那些本技術領域的一般技術人員可以透過硏究說明書 、公開的內容及圖示和所附的申請專利範圍,理解和實施 對披露的實施例的其他改變。在申請專利範圍中,措詞“ 包括”不排除其他的元素和步驟,並且措辭“一個”不排除 複數。在發明的實際應用中,一個零件可能執行申請專利 範圍中所引用的多個技術特徵的功能。申請專利範圍中的 任何圖標記不應理解爲對範圍的限制。 【圖式簡單說明】 透過閱讀參照以下圖示所作的對非限制性實施例所作 的詳細描述,本發明的以上及其它特徵、目的和優點將會 變得更加明顯: 圖1是現有的LTE-A標準裏中繼站RN進行中繼的示意 圖: 圖2是申請人提出的一種新的中繼站RN進行中繼的示 意圖; 圖3是根據本發明的實施例的中繼站RN進行中繼的示 意圖; 圖4是根據本發明的實施例的中繼站的前端的工作流 程的示意圖; 圖5是根據本發明的實施例的中繼站中提供輔助接收 機對所接收的多個資料包進行解碼的輔助資訊的設備的示 意圖; 圖6是根據本發明的實施例的基站的前端的工作流程Network-Channel Coding for the Multiple-Access Relay Channel, Proc. International Workshop on Wireless A d /ioc and New York, USA, June 2006 ) was compared. In the prior art, a single intra-cycle Turbo decoding is performed on the packet copy to obtain an estimated data block, and a sub-estimated data block obtained by Turbo decoding of a single inner loop based on the estimated data block and the auxiliary code block is used. Repeat (steps of 15 times) using the sub-estimated data block obtained each time and then perform a single inner loop of Turb0 decoding of the packet copy and repeat this step. The improved technique 1 is that the Turbo decoding inner loop performs 3 times of 'outer loops 5 times; the modified technique 2 is that the Turbo inner loop performs 5 times 'outer loops 3 times; the embodiment of the present invention adopts the usual Turbo decoder (internal loop) 15 times), eliminating the need for external circulation. In order to keep the computational complexity consistent, the total number of Turbo decoding times of the four methods is the same. The other simulation parameters are the same as the previous simulation. As can be seen in Figure 9, although the other prior art uses the estimated data block to decode the packet copy each time, it seems that it should have better performance, but the simulation results show that the present invention The performance of the embodiment is superior to the other prior art. In summary, the present invention employs a module that is compatible with existing LTE systems, particularly Turbo decoders, with only minor modifications to existing systems, but with better performance than the reference technology. This reference technology requires a comprehensive modification of existing systems, especially Turbo decoders. While the invention has been illustrated and described with reference to the particular embodiments -17-201218710 Other variations to the disclosed embodiments can be understood and effected by those of ordinary skill in the art. In the scope of the patent application, the word "comprising" does not exclude other elements and steps, and the word "a" does not exclude the plural. In the practical application of the invention, a part may perform the functions of a plurality of technical features cited in the scope of the patent application. Any reference signs in the scope of the patent application should not be construed as limiting the scope. BRIEF DESCRIPTION OF THE DRAWINGS The above and other features, objects, and advantages of the present invention will become more apparent from the detailed description of the accompanying drawings. Schematic diagram of the relay station RN relaying in the A standard: FIG. 2 is a schematic diagram of a new relay station RN for relaying proposed by the applicant; FIG. 3 is a schematic diagram of the relay station RN performing relay according to an embodiment of the present invention; A schematic diagram of a workflow of a front end of a relay station according to an embodiment of the present invention; FIG. 5 is a schematic diagram of an apparatus for providing auxiliary information for decoding an received plurality of data packets by an auxiliary receiver in a relay station according to an embodiment of the present invention; 6 is a workflow of a front end of a base station according to an embodiment of the present invention

S •18- 201218710 的示意圖; 圖7是根據本發明的實施例的基站中多個資料包進行 解碼的設備的示意圖; 圖8是用於比較根據本發明的實施例和現有技術的性 能的仿真圖; 圖9是用於比較根據本發明的實施例和另一種現有技 術的性能的仿真圖。 圖示中,相同或者相似的圖示標識代表相同或者相似 的部件。 【主要元件符號說明】 UE1、UE2 :用戶設備 P1 :上行資料包 P2 :下行資料包 eNB :基站 RN :中繼站 -19-FIG. 7 is a schematic diagram of an apparatus for decoding a plurality of data packets in a base station according to an embodiment of the present invention; FIG. 8 is a simulation for comparing performances according to an embodiment of the present invention and prior art; Figure 9 is a simulation diagram for comparing performance in accordance with an embodiment of the present invention and another prior art. In the drawings, identical or similar pictorial representations represent the same or similar components. [Description of main component symbols] UE1, UE2: User equipment P1: Uplink data packet P2: Downlink data packet eNB: Base station RN: Relay station -19-

Claims (1)

201218710 七、申請專利範圍: 1. 一種在基於LTE-A標準的中繼站中提供用於輔助接 收機對所接收的多個資料包進行解碼的輔助資訊的方法, 包括以下步驟: 分別接收該多個資料包; 對該多個資料包中的資料進行不同資料包間的混疊, 混疊後的資料包括各個資料包中的資料; 對該混疊後的資料進行通道編碼,其中,該通道編碼 步驟包括對該混疊後的資料進行資料壓縮處理;及 將經通道編碼後的資料作爲該輔助資訊發送給該接收 機。 2-根據申請專利範圍第1項所述的方法,其中,該混 疊步驟包括將多個資料包中的資料進行不同資料包間的交 錯。 3. 根據申請專利範圍第1項所述的方法,其中,在該 混疊步驟之前,還包括如下步驟: 對至少一個資料包的資料進行包內的交錯。 4. 根據申請專利範圍第1項所述的方法,其 道編碼步驟包括以下步驟: 對該混疊後的資料進行Turbo編碼; 對經Turbo編碼的資料進行子塊交錯;及 對經子塊交錯的資料進行速率匹配,作爲該資料壓縮 處理; 該方法在該發送步驟之前,還包括如下步驟: S -20- 201218710 對經速率匹配後的資料進行通道交錯。 5. 根據申請專利範圍第1項所述的方法,其中,當該 混疊後的資料的長度大於該通道編碼步驟要求的資料的最 大長度時’該方法在該通道編碼步驟之前還包括如下步驟 將該混疊後的資料分割爲多個長度均不大於最大長度 的資料塊:及 該通道編碼步驟分別對該一個或多個資料塊進行通道 編碼’該輔助資訊係由一個或多個資料塊經通道編碼而得 的一個或多個輔助碼塊所組成。 6. —種在基於LTE-A標準的接收機中,對多個資料包 進行解碼的方法,其中,該接收機接收到該多個資料包的 副本以及根據申請專利範圍第1所述的中繼站提供的用於 輔助該接收機對該多個資料包進行解碼的輔助資訊,該方 法包括如下步驟: 對接收的各資料包的副本進行解碼; 當至少一個資料包的副本不能被正確解碼時,分別獲 取對各資料包的原始資料的估計; 將對各資料包的原始資料的估計進行與該中繼站獲得 該輔助資訊所進行的不同資料包間的混疊對應的混疊; 對所接收的該輔助資訊進行與該中繼站進行的資料壓 縮對應的資料解壓縮; 基於解壓縮後的該輔助資訊和經混疊後的對各資料包 的原始資料的估計,進行聯合的通道解碼,以獲得經混疊 ' 21 - 201218710 後的各資料包的原始資料;及 對該經混疊後的各資料包的原始資料進行與該中繼站 進行的不同資料包間的混疊對應的解混疊,以恢復各資料 包。 7. 根據申請專利範圍第6項所述的方法,其中,該混 疊步驟包括不同資料包間的交錯,該解混疊步驟包括與不 同資料包間的交錯對應的解交錯。 8. 根據申請專利範圍第6項所述的方法,其中,該混 疊步驟之前,還包括如下步驟: 將對至少一個資料包的原始資料的估計進行與該中繼 站獲得該輔助資訊所進行的包內交錯對應的交錯; 該解混鹽步驟之後,還包括如下步驟: 對經解混#的至少一個資料包進行與該中繼站進行的 包內交錯對應的解交錯,以恢復各資料包。 9 ·根據申請專利範圍第6項所述的方法,其中,該通 道解碼包括Turbo解碼’該方法在該通道解碼步驟之前進 行如下步驟: 對接收到的該輔助資訊進行通道解交錯; 對經通道解交錯的輔助資訊進行速率解匹配,作爲_ 資料解壓縮處理:及 對經速率解匹配的輔助資訊進行子塊解交錯》 1 0 ·根據申請專利範圍第6項所述的方法,其中,當 該混疊後的對各資料包的原始資料的估計的長度大於該通 道解碼步驟要求的資料最大長度時,該方法在該通道解碼 S -22- 201218710 步驟之前還包括如下步驟: 將該混疊後的對各資料包的原始資料的估計分割爲多 個長度均不大於該最大長度的估計資料塊; 該接收到的輔助資訊也係由多個輔助碼塊所組成’此 多個輔助碼塊與該多個估計資料塊——對應; 該通道解碼步驟分別對各估計資料塊以及—對應的 輔助碼塊進行聯合的通道解碼,以獲得經混疊後的各資料 包的原始資料的各個資料塊; 該方法在該解混疊步驟之前,還包括以下步驟: 將經混疊後的各資料包的原始資料的各個資料塊串聯 爲經混疊後的各資料包的原始資料。 11. —種在基於LTE-A標準的中繼站中,提供用於輔 助接收機對所接收的多個資料包進行解碼的輔助資訊的設 備,包括: 接收裝置,用於分別接收該多個資料包; 混疊器,用於對該多個資料包中的資料進行資料包間 的混疊,混疊後的資料包括各個資料包中的資料; 通道編碼器,用於對該混疊後的資料進行通道編碼, 其中,該通道編碼器包括用於對該混疊後的資料進行資料 壓縮的資料壓縮器;及 發射裝置,用於將經通道編碼後的資料作爲該輔助資 訊發送給該接收機。 12. 根據申請專利範圍第11項所述的設備,其中,還 包括: -23- 201218710 包內交錯器’用於至少一個資料包的資料進行包內交 錯,提供給該混疊器; 該通道編碼器包括: Turbo編碼器’用於對該混疊後的資料進行Turb〇編碼 t 子塊交錯器’用於對經Turbo編碼的資料進行子塊交 錯:及 速率匹配器,用於對經子塊交錯的資料進行速率匹配 ,作爲該資料壓縮器; 該設備還包括= 通道交錯器,用於對經速率匹配的資料進行通道交錯 ,提供給該發射裝置。 1 3 .根據申請專利範圍第1 1項所述的設備,其中,當 該混疊後的資料的長度大於該通道編碼步驟要求的資料的 最大長度時,該設備還包括: 碼塊分割裝置,用於該混疊後的資料分割爲多個長度 均不大於最大長度的資料塊,以提供給該通道編碼器;及 該通道編碼器分別對該一個或多個資料塊進行通道編 碼,該輔助資訊係由一個或多個資料塊經過通道編碼而得 的一個或多個輔助碼塊所組成。 14.—種在基於LTE-A標準的接收機中對多個資料包 進行解碼的設備,其中,該接收機接收到該多個資料包的 副本以及根據申請專利範圍第1 1項所述的設備提供的用於 輔助該接收機對該多個資料包進行解碼的輔助資訊,該設 S -24- 201218710 備包括: 解碼器’用於對接收的各資料包的副本進行解碼,並 且當至少一個資料包的副本不能被正確解碼時,分別獲取 對各資料包的原始資料的估計; 混疊器,用於將對各資料包的原始資料的估計進行與 根據申請專利範圍第1 1項所述的設備獲得該輔助資訊所進 行的資料包間的混疊對應的混疊; 解壓縮器’用於對所接收的該輔助資訊進行與根據申 請專利範圍第10項所述的設備進行的資料壓縮對應的資料 解壓縮; 通道解碼器’用於基於解壓縮後的該輔助資訊和經混 疊後的對各資料包的原始資料的估計,進行聯合的通道解 碼’以獲得經混#後的各資料包的原始資料;及 解混疊器’用於對該經混疊後的各資料包的原始資料 進行與根據申請專利範圍第11項所述的設備進行的包間混 疊對應的解混疊,以恢復各資料包》 I5.根據申請專利範圍第I4所述的設備,其中,還包 括: 父錯器’用於將對至少一個資料包的原始資料的估計 進行與根據申請專利範圍第1 1項所述的設備獲得該輔助資 訊所進行的包內交錯對應的交錯,提供給該混曼器; 解父錯器,用於對經解混疊的至少一個資料包進行组 根據申請專利範圍第11項所述的設備進行的包內交錯對應 的解交錯,以恢復各資料包; •25- 201218710 該通道解碼器包括Turbo解碼器; 該設備還包括: 通道解交錯器,用於對接收到的該輔助資訊進行通^ 解交錯; 速率解匹配器,用於對經通道解交錯的輔助資-訊進$ 速率解匹配,作爲該資料解壓縮處理:及 子塊解交錯器,用於對經速率解匹配的輔助資訊進行: 子塊解交錯,並提供給該Turbo解碼器。 16.申請專利範圍第I4項所述的設備,其中,當該混 疊後的對各資料包的原始資料的估計的長度大於該通道$ 碼器要求的資料最大長度時,該設備還包括: 碼塊分割器,用於將該混疊後的對各資料包的原始資 料的估計分割爲多個長度均不大於該最大長度的估計資料 塊,提供給該通道解碼器; 該接收到的輔助資訊也由多個輔助碼塊組成,此多個 輔助碼塊與該多個估計資料塊——對應; 該通道解碼器用於分別對該各估計資料塊以及——對 應的輔助碼塊進行聯合的通道解碼,以獲得經混疊後的各 資料包的原始資料的各個資料塊; 該設備還包括: 碼塊重組器,用於將經混疊後的各資料包的原始資料 的各個資料塊串聯爲經混疊後的各資料包的原始資料,提 供給該解混疊器。 S -26-201218710 VII. Patent application scope: 1. A method for providing auxiliary information for assisting a receiver to decode a plurality of received data packets in a relay station based on the LTE-A standard, comprising the steps of: receiving the plurality of respectively a data packet; the data in the plurality of data packets is aliased between different data packets, and the aliased data includes data in each data packet; the aliased data is channel coded, wherein the channel code The step includes performing data compression processing on the aliased data; and transmitting the channel-encoded data as the auxiliary information to the receiver. The method of claim 1, wherein the step of merging comprises interleaving the data in the plurality of data packets between different data packages. 3. The method of claim 1, wherein before the step of aliasing, the method further comprises the step of: interleaving the data of the at least one data package. 4. The method according to claim 1, wherein the step of encoding comprises the steps of: Turbo coding the aliased data; sub-block interleaving of the turbo encoded data; and interleaving the sub-blocks The data is subjected to rate matching as the data compression processing; before the sending step, the method further includes the following steps: S -20- 201218710 Channel interleaving of the rate matched data. 5. The method of claim 1, wherein when the length of the aliased data is greater than a maximum length of data required by the channel encoding step, the method further comprises the following steps before the channel encoding step Dividing the aliased data into a plurality of data blocks each having a length not greater than a maximum length: and the channel encoding step separately channel encoding the one or more data blocks, wherein the auxiliary information is composed of one or more data blocks One or more auxiliary code blocks obtained by channel coding. 6. A method of decoding a plurality of data packets in a receiver based on the LTE-A standard, wherein the receiver receives a copy of the plurality of data packets and the relay station according to claim 1 Providing auxiliary information for assisting the receiver to decode the plurality of data packets, the method comprising the steps of: decoding a received copy of each data packet; when a copy of the at least one data package cannot be correctly decoded, Obtaining an estimate of the original data of each data packet separately; performing an aliasing on the original data of each data packet corresponding to the aliasing between different data packets obtained by the relay station to obtain the auxiliary information; The auxiliary information performs data decompression corresponding to the data compression performed by the relay station; based on the decompressed auxiliary information and the aliased original data of each data packet, joint channel decoding is performed to obtain a mixed The original data of each package after the '21 - 201218710; and the original data of the aliased package Aliasing between different data packets of the stations following the corresponding de-aliasing to recover each data packet. 7. The method of claim 6 wherein the step of aliasing comprises interleaving between different data packets, the descrambling step comprising deinterlacing corresponding to interleaving between different data packets. 8. The method according to claim 6, wherein before the step of aliasing, the method further comprises the steps of: performing an estimation of the original data of the at least one data package with a package obtained by the relay station to obtain the auxiliary information Interleaving the corresponding interleaving; after the demixing salt step, the method further includes the following steps: performing deinterlacing corresponding to the intra-packet interleaving performed by the relay station on at least one data packet of the de-mixed # to recover each data packet. The method of claim 6, wherein the channel decoding comprises Turbo decoding. The method performs the following steps before the channel decoding step: performing channel deinterleaving on the received auxiliary information; Deinterlacing auxiliary information for rate de-matching, as _ data decompression processing: and sub-block deinterleaving of rate-matched auxiliary information. 1 0. According to the method of claim 6, wherein After the aliased estimated length of the original data of each data packet is greater than the maximum data length required by the channel decoding step, the method further includes the following steps before the channel decodes the S -22-201218710 step: The subsequent estimation of the original data of each data packet is divided into an estimated data block whose length is not greater than the maximum length; the received auxiliary information is also composed of multiple auxiliary code blocks. Corresponding to the plurality of estimated data blocks; the channel decoding step respectively inputs the estimated data blocks and the corresponding auxiliary code blocks Joint channel decoding to obtain individual data blocks of the original data of the aliased data packets; the method further comprises the following steps before the de-aliasing step: the original data of the aliased data packets The individual data blocks are concatenated into the original data of the aliased data packets. 11. An apparatus for providing auxiliary information for assisting a receiver in decoding a plurality of received data packets in a relay station based on the LTE-A standard, comprising: receiving means for receiving the plurality of data packets respectively The aliasing device is configured to perform aliasing between the data packets in the plurality of data packets, the data after the aliasing includes data in each data packet, and the channel encoder for the data after the aliasing Performing channel coding, wherein the channel encoder includes a data compressor for compressing the data after the aliasing; and transmitting means for transmitting the channel-encoded data as the auxiliary information to the receiver . 12. The device according to claim 11, wherein the method further comprises: -23- 201218710 in-package interleaver 'for at least one data packet for inter-package interleaving, providing to the aliaser; the channel The encoder includes: a Turbo encoder 'for Turb 〇 encoding the aliased data t sub-block interleaver' for sub-block interleaving of Turbo encoded data: and a rate matcher for the pair of mesons The block interleaved data is rate matched as the data compressor; the device further includes a = channel interleaver for channel interleaving the rate matched data for the transmitting device. The device of claim 11, wherein when the length of the aliased data is greater than a maximum length of data required by the channel encoding step, the device further comprises: a code block dividing device, The data for the aliasing is divided into a plurality of data blocks each having a length not greater than a maximum length for being supplied to the channel encoder; and the channel encoder respectively performs channel coding on the one or more data blocks, the auxiliary Information consists of one or more auxiliary code blocks obtained by channel coding one or more data blocks. 14. An apparatus for decoding a plurality of data packets in a receiver based on the LTE-A standard, wherein the receiver receives a copy of the plurality of data packets and according to claim 11 The auxiliary information provided by the device for assisting the receiver to decode the plurality of data packets, the S-24-201218710 includes: the decoder 'for decoding a received copy of each data packet, and at least When a copy of a data package cannot be correctly decoded, an estimate of the original data of each data package is separately obtained; an aliaser is used to estimate the original data of each data package according to item 11 of the patent application scope. The device obtains the aliasing corresponding to the aliasing between the data packets by the auxiliary information; the decompressor' is configured to perform the information on the auxiliary information received according to the device according to claim 10 Compressing the corresponding data decompression; the channel decoder 'for combining the decompressed auxiliary information and the aliased original data for each data packet Channel decoding 'to obtain the original data of each packet after the mixed #; and the de-aliasing device' is used to perform the original data of the aliased data packets as described in claim 11 The device performs inter-packet aliasing corresponding to the de-aliasing to recover the data packets. I5. The device according to claim 4, wherein the method further comprises: a parent errorer for using at least one data packet The estimation of the original data is performed by interleaving corresponding to the intra-frame interleaving performed by the device according to claim 11 of the patent application scope, and is provided to the hybrid device; At least one data packet of the aliasing group is deinterleaved according to the intra-packet interleaving performed by the device described in claim 11 to recover each data packet; • 25-201218710 The channel decoder includes a Turbo decoder; The device further includes: a channel deinterleaver for performing interleaving and interleaving the received auxiliary information; and a rate dematching device for deinterleaving the channel through the channel de-interlacing As the data decompression processing: and subblock deinterleaver, rate-dematching for auxiliary information for: subblock deinterleaving, and supplied to the Turbo decoder. 16. The device of claim 1, wherein the device further comprises: when the estimated length of the aliased original data for each data packet is greater than a maximum length of data required by the channel coder, the device further comprising: a code block splitter, configured to divide the aliased estimate of the original data of each data packet into a plurality of estimated data blocks whose length is not greater than the maximum length, and provide the channel block to the channel decoder; the received auxiliary The information is also composed of a plurality of auxiliary code blocks corresponding to the plurality of estimated data blocks, wherein the channel decoder is configured to jointly combine the estimated data blocks and the corresponding auxiliary code blocks respectively. Channel decoding to obtain individual data blocks of the original data of each of the aliased data packets; the device further includes: a code block reorganizer for concatenating the data blocks of the original data of the aliased data packets The raw material of each of the aliased packets is supplied to the de-mixer. S -26-
TW100108572A 2010-03-31 2011-03-14 Decoding method and device in relay network TW201218710A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071445 WO2011120220A1 (en) 2010-03-31 2010-03-31 Decoding method and device in relay network

Publications (1)

Publication Number Publication Date
TW201218710A true TW201218710A (en) 2012-05-01

Family

ID=44711303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108572A TW201218710A (en) 2010-03-31 2011-03-14 Decoding method and device in relay network

Country Status (3)

Country Link
CN (1) CN102725986B (en)
TW (1) TW201218710A (en)
WO (1) WO2011120220A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774731B (en) * 2017-03-23 2022-08-21 美商高通公司 Downlink retransmission under unreliable code block group (cbg) level ack/nack feedback
US11563511B2 (en) 2017-11-15 2023-01-24 Idac Holdings, Inc. Polar coding system for ultra-reliable low latency communication

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245858B (en) * 2018-09-25 2021-03-23 重庆邮电大学 Improved joint network-Turbo coding method based on decoding forwarding
CN115001560B (en) * 2022-04-13 2023-05-12 华东师范大学 Star-ground fusion relay network transmission method based on power domain non-orthogonal multiple access

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8281211B2 (en) * 2008-05-15 2012-10-02 Nokia Corporation System and method for relay coding
CN101414865A (en) * 2008-11-12 2009-04-22 东南大学 Unite multi-user transmission method for wireless repeater assistance multi-user access system
CN101420291A (en) * 2008-12-08 2009-04-29 北京邮电大学 Combined decoding method for network and channel code in relay system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774731B (en) * 2017-03-23 2022-08-21 美商高通公司 Downlink retransmission under unreliable code block group (cbg) level ack/nack feedback
US11563511B2 (en) 2017-11-15 2023-01-24 Idac Holdings, Inc. Polar coding system for ultra-reliable low latency communication
TWI826402B (en) * 2017-11-15 2023-12-21 美商內數位專利控股公司 Wireless transmit/receive unit and a method of determining a number of hybrid automatic repeat request acknowledgemet bits

Also Published As

Publication number Publication date
CN102725986A (en) 2012-10-10
WO2011120220A1 (en) 2011-10-06
CN102725986B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
Durisi et al. Toward massive, ultrareliable, and low-latency wireless communication with short packets
US7523382B2 (en) Apparatus and method for generating and decoding forward error correction codes having variable rate in a high-rate wireless data communication system
JP4977214B2 (en) Packet combining in the physical layer for bidirectional relay
US8522110B2 (en) Apparatus and method for transmitting data using turbo code
US8340006B2 (en) Transmission of multicast/broadcast services in a wireless communication network
CN108667553B (en) Encoding method, decoding method, device and system
WO2001024419A1 (en) Adaptive layered coding for voice over wireless ip applications
TW201116084A (en) Utilization of a known portion of a payload to decode a payload having a known and an unknown portion
WO2011093074A1 (en) Wireless communication device and wireless communication method
CN109728877B (en) Method and device in user equipment and base station for wireless communication
US11552654B2 (en) Forward error control coding
JP2006332933A (en) Wireless communication method and wireless communication apparatus
TW201218710A (en) Decoding method and device in relay network
US10547330B2 (en) Method and device in user equipment and base station for wireless communication
CN109756299B (en) Method and device in user equipment and base station for wireless communication
WO2021259042A1 (en) Data processing method and device for communication system
EP1451962B1 (en) Methods and apparati for rate matching and decoding
CN109756294B (en) Method and device in user equipment and base station for wireless communication
KR20100081902A (en) Method for transmitting and receiving data using random linear coding
Hu et al. Protocol-assisted channel decoding
WO2014190819A1 (en) Method, intermediate node, and terminal for information transmission
Ekşim et al. Voice quality enhancement for ETSI digital mobile radio standard using improved FEC scheme
Westerlund Forward error correction in real-time video streaming applications
Albertazzi et al. Performance of turbo coding for satellite UMTS multimedia broadcast multicast services
Osunkunle Improving 802.11 video transport air efficiency with AL-FEC