TW201218646A - Analog to digital converter - Google Patents

Analog to digital converter Download PDF

Info

Publication number
TW201218646A
TW201218646A TW100132532A TW100132532A TW201218646A TW 201218646 A TW201218646 A TW 201218646A TW 100132532 A TW100132532 A TW 100132532A TW 100132532 A TW100132532 A TW 100132532A TW 201218646 A TW201218646 A TW 201218646A
Authority
TW
Taiwan
Prior art keywords
signal
sampling
analog
digital
channel
Prior art date
Application number
TW100132532A
Other languages
Chinese (zh)
Other versions
TWI496421B (en
Inventor
Guoxing Li
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/880,939 external-priority patent/US8193959B2/en
Application filed by O2Micro Inc filed Critical O2Micro Inc
Publication of TW201218646A publication Critical patent/TW201218646A/en
Application granted granted Critical
Publication of TWI496421B publication Critical patent/TWI496421B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

An analog to digital converter comprising: an input channel for receiving said analog signal; a first sampling-integrating unit for receiving said analog signal from said input channel and for sampling a analog signal and integrating a superposition of a first feedback signal and a first sampled signal of said analog signal, and for generating a first output signal; a second sampling-integrating unit for receiving said first output signal and for sampling said first output signal and integrating a superposition of a second feedback signal and a sampled signal of said first output signal, and for generating a second output signal, wherein each of said first and second sampling-integrating units comprises a first energy storage unit and a first switch array for controlling said first energy storage unit; and a feedback circuit coupled to said first and second sampling-integrating units and for generating said digital signal according to said second output signal and for providing said first and second feedback signals indicative of a digital signal to said first and second sampling-integrating units respectively.

Description

201218646 六、發明說明: 【發明所屬之技術領域】 特別關於一種類比/ 本發明係有關一種信號處理系統 數位轉換器。 【先前技術】 在資料擷取顧領域中,複數_比信號可同時或並列 地被擷取’並將其在-定的時間間隔中轉換成數位信號。 在一種傳統架射,每個輸人通道需要-個採樣(sa_e) 觸⑽d)模組。來自輸人通道的所有類比信號將同時被 進行採樣,錢進人簡狀態。在保持階段,類比/數位轉 換器(ADC)可时將雜而得續比錢依轉換成數位 信號,直到所有輸人通道的採樣信號轉換成為數位信號。這 種架構存麵多缺點。例如,多悔道需要多_樣/保持 拉組’而這賴組對高解雜訊較為敏紅不具有低通淚波 能力。 在另一種傳統架構中,每個輸入通道採用單獨的類比/數 轉換器目此,具有多個輸入通道的資料擷取系統,需要 夕個舰/數轉換$ ^平均狀舰/數轉㈣可用於這 種架構來實現多個輪人通道的同步。然而,如果採用多個類 比/數位轉換器’ _擷取純量祕、^面積和成 本都s增加。另外’不同的類比/數位轉換器可導致多個輸 201218646 入通道之間的不匹配。 【發明内容】 ,本發明要解決的技姻題在於提供—種賴比信號轉 換為數位信號的類比/數位轉換器。 。為解決上述技術問題,本發明提供—種類比/數位轉換 器’包含:-輸人通道’減信號;U樣·積分單 元’從該輸人通道減該域信號進行採樣, 對-第:回授信號和該類比信號的一第i樣信號的一重疊 部分進行積分’並產生-第一輸出信號;_第二採樣_積分單 元以接收》玄第-輸出信號、對該第一輸出信號進行採樣、及 對-第二回授信號和該第—輪出信號的—採樣信號的一重疊 P刀進行積刀並產生一第二輸出信號,其中,該第一採樣_ 積分單元和該第二採樣·積分單元中的每解元包含一第一能 量存儲單元及與第-能4存儲單元输之―第—開關陣列以 控制,第-能量存鮮元;以及—回授電路,與該第一採樣· 積分早70及該第二採樣·積分單喊接,根據該第二輸出信號產 生一數位碰’並提供分職示該數健號的該第—回授信號 和該第二喊㈣第—採樣·積分單元和該第二採樣_積分 σσ 一 早7C。 本發明賴tb /數轉姉相對于現有驗的類比/數位 轉換盗,具有更高驗姐和更高_比/數⑽換精度。 ⑧ 201218646 以下結合_和具體實施騎本發明的技術方案進行 詳細的說明,以使本發明的特性和優點更為明顯。 【實施方式】 以下將對本發明的實施例給出詳細的說明。雖然本發 明將結合實_進行闡述,但應理解這並非意指將本發明 限定於這些實施例。相反地,本發明意在涵蓋由後附申請 專利範圍所界定的本發明精神和範圍内所定義的各種變 化、修改和鱗物。此外,在町對本發_詳細描述中, 閣明大量的具體細節以提供針對本發明的全面理解。妙 而’本技術領域中具有通常知識者應理解,沒有這歧罝體 細節,本發明同樣可以實施。在其他實例中,對於習:方 法、流程、4和電路未作詳細料,錢於凸顯本發明 通道的多個咖^自多個輸入 _換為夕個數位輸出信號,例如 減(_咖咖e)下’多個類比輸入電 ^曰 輸出電屋。多顧類比/數位轉換器可以被應用在各 =::一-,_統,峨: 二二:的__轉換 圃在貫&例中,多通道類比/數位轉換器201218646 VI. Description of the Invention: [Technical Field of the Invention] In particular, an analogy/presentation relates to a signal processing system digital converter. [Prior Art] In the field of data acquisition, a complex-to-signal signal can be captured simultaneously or in parallel' and converted into a digital signal in a predetermined time interval. In a conventional racking, each input channel requires a sample (sa_e) touch (10) d) module. All analog signals from the input channel will be sampled at the same time, and the money will be in a simple state. In the hold phase, the analog/digital converter (ADC) can convert the odd-to-continue conversion into a digital signal until all the input channels are converted to digital signals. This architecture has many shortcomings. For example, more regrets require more _like/maintaining pull groups' and this group is more sensitive to high-noise noise and does not have low-pass tear wave capability. In another traditional architecture, each input channel uses a separate analog/digital converter. A data acquisition system with multiple input channels requires a ship/number conversion $^ average ship/number of turns (four) available In this architecture, synchronization of multiple wheel channels is achieved. However, if multiple analog/digital converters are used, the sufficiency, area and cost increase. In addition, 'different analog/digital converters can cause multiple mismatches between the 201218646 incoming channels. SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide an analog/digital converter that converts a ratio signal into a digital signal. . In order to solve the above technical problem, the present invention provides that the type ratio/digital converter includes: - the input channel minus the signal; the U-shaped and integral unit subtracts the domain signal from the input channel for sampling, and the -: back The signal is integrated with an overlap of an ith signal of the analog signal and generates a first output signal; a second sample _ integration unit receives the sin-first output signal and performs the first output signal Sampling, and an overlapping P-knife of the -second feedback signal and the first-round signal-sampling signal, and generating a second output signal, wherein the first sampling_integrating unit and the second Each of the sampling and integrating units includes a first energy storage unit and a first-switch array that is input to the first-energy storage unit to control, a first energy storage element; and a feedback circuit, and the first a sampling · integral early 70 and the second sampling · integral single call, according to the second output signal generates a digital touch 'and provides the first feedback signal of the number of jobs and the second call (four) First-sampling and integrating unit and the second Sampling_integration σσ is 7C early. The present invention has a higher tester and a higher _ ratio/number (10) conversion accuracy than the analog/digital conversion piracy of the prior art. 8 201218646 The following is a detailed description of the technical solutions of the present invention in conjunction with the specific embodiments to make the features and advantages of the present invention more apparent. [Embodiment] Hereinafter, a detailed description will be given of an embodiment of the present invention. While the invention will be described in conjunction with the present invention, it should be understood that the invention is not limited to the embodiments. On the contrary, the invention is intended to cover various modifications, modifications and In addition, in the detailed description of the present invention, numerous specific details are provided to provide a comprehensive understanding of the invention. It will be appreciated by those of ordinary skill in the art that the present invention may be practiced without such ambiguous details. In other examples, for the Xi: method, process, 4 and circuit are not detailed, money to highlight the channel of the invention from a plurality of inputs _ switch to a digital output signal, such as minus (_ 咖咖e) Under the 'multiple analog input circuit ^ output electrical house. More analog/digital converters can be applied to each =:: one-, _, 峨: 22: __ conversion 圃 in the & example, multi-channel analog/digital converter

S 201218646 100可以是一階Δ-Σ類比/數位轉換器(delta-sigma ADC)。 在一實施例中,多通道類比/數位轉換器100可以有多個 輸入通道’例如,4個輸入通道包含通道1、通道2、通道3和 通道4以將類比信號,例如,類比電壓信號Vl、v2、V3和V4 在交錯模式下分別轉換為數位信號。每個輸入通道與一個開關 耦接’例如,開關S1A與通道1耦接;開關s2A與通道2耦接; 開關S3A與通道3輕接;開關Sm與通道4麵接。在一實施例 中’開關S1A、、Sm和呂从能夠被系統時脈信號sCLK所控 制。在一實施例中,根據系統時脈信號在一個時脈週期内一個 輸入通道被選擇。在一實施例中,在一個時脈週期内,與選擇 的輸入通道所耦接的開關將被導通,其他開關被斷開。 多通道類比/數位轉換器100包含一個調變器11〇,以將 類比信號,例如,電壓信號V】、V2、V3或者v4轉換為數位信 號。调變器110可以從所選擇的輸入通道中接收類比信號,並 提供相應的數位信號給與輸入通道耦接的濾波器,例如,數位 慮波器Fi、數位渡波器F2、數位遽波器p3和數位渡波。 類比信號可以是各種類型的信號,例如,電流或者電壓信號。 在調變器110中,類比信號被輸入到採樣_積分單元13〇, 在採樣-積分單元130中,採樣電路可以在預設的採樣頻率下對 所接收的類比信號進行採樣,例如,採樣頻率等於Fs * 〇sr, 其中Fs是耐奎斯特頻率’ 〇SR是對耐奎斯特頻率的過採樣率^ 201218646 例如’當FS為16赫兹,0SR為4〇96,採樣頻率是奶36赫 兹。類比信號可以在採樣鮮下被婦器UG轉換為數位信 號。在-實施例中,數健號可以是包含由採樣頻率,例如, Fs * OSR確定比_邏輯i和邏輯〇組成的連續i位元資料串。 在-貫施财’採樣電路包含—能量存儲單元,例如, -採樣電容12G,與被選擇的輸人通·接以從被選擇的輸入 通道儲存f荷;採樣電路更進—步包含具有㈣122、開關 124、開關126㈣關128的一開關陣列,以控制能量存儲單 元120。開關122和開關124被信號pH2所控制。開關126和 開關128被信號P%所控制。在一實施例中,信號ρΗι和信號 PH2疋非重疊的時脈信號。例如,當信號|>只2是高電位準時, 信號PH!是低電位準。其中開關丨22和開關124被導通,且開 關126和開關128被斷開。當信號PHl是高電位準,信號Ph2 是低電位準’開關122和開關124被斷開,開關126和開關128 被導通。 採樣-積分單元13〇更進一步包含與採樣電路耦接的一 積分電路以接收輪入類比信號的採樣信號和回授信號 111 ’並對回授信號111和輸入類比信號的採樣信號的重疊部分 進行積分。積分電路可以根據重疊部分的積分結果產生一個輸 出信號170。在圖丨所示的實施例中,積分電路包含一組積分 電容(例如’積分電容Qi、Ci2、〇3、Ci4)以及誤差放大器1〇2。 201218646 積分電容Cu、C,2、Q3、C;4係並聯耦接。積分電容、 Q2、cB、(^能分別從輸入通道中積累電荷。每個積分電容q』、 Q2' ci3、cl4可以與一個開關串聯,例如,積分電容&與開 關s1B輕接,積分電容Ci2與開關S2B輕接,積分電容4與開 關S3B耦接,積分電容Ci4與開關S4B耦接。 在一實施例中,調變器110可以在轉換週期中相繼對每 個輸入通道完成類比/數位轉換。在一實施例中,在轉換週期的 開始時候,積分電容可以是隨機分配給輸入通道。例如,積分 電容Cu可以存儲來自通道2的電荷’積分電容Q2可以存儲來 自通道3的電荷,積分電容Q3可以存儲來自通道4的電荷, 積分電容C;4可以存儲來自通道1的電荷等等。這種輸入通道 和積分電容的柔性組成可以減少由於積分電容的不匹配導致 的不同通道之間的不匹配。在一實施例中,採樣-積分單元13〇 的輸出信號170代表相應的積分電容在之前的轉換週期内所存 儲的電荷,和回授信號111與輸入類比信號的採樣信號的重疊 部分進行積分的結果。 誤差放大器102可以透過反相輸入端接收輸入信號,透過 非反向輸入端接收第一參考信號,並產生誤差信號,例如,輸 入信號是輸入類比信號的採樣信號與回授信號111的重疊部 分。在一實施例中’非反向輸入端接地,這樣第一參考信號 的電壓位準基本等於零。 201218646 調變器110更進一步包含一回授電路,以根據採樣-積分 單元130的輸出信號170產生一個數位信號,並產生表示積分 電路的數位信號的回授信號111。在圖1所示的實施例中,回 授電路更進一步包含一比較器1〇4、一多工器1〇8和一數位/類 比轉換器(DAC) 106。也就是說’積分電路、比較器1〇4、多 工器108和數位/類比轉換器一起組成了 一個回授回路。回 授回路包含由積分電路、比較器104和多工器108組成的一前 饋順向(feed forward)路徑和包含數位/類比轉換器106組成的一 逆饋(backward)路徑。 與採樣-積分單元130耦接的比較器1〇4可以將採樣-積分 單το 130的輸出信號17〇與第二參考信號進行比較,並根據一 比較結果產生一個比較輸出信號。比較器1〇4可以由信號PH2 控制,並且當PH2是高電位準的時候比較器1〇4操作。在一實 轭例中,比較器104的非反向輸入端被接地。因此,第二參考 信號電壓位準基本等於零。比較器1〇4可以根據比較結果產生 一位元數位信號,例如,邏輯!或者邏輯卜比較器的輸出信 號,例如,1位元數位信號進一步被輸送到多工器1〇8。 在一實施例中,多工器108可以是由系統時脈信號Sc^ 控制的柱形位移暫存器(barrel shift代由切沉)。多工器1⑽能 夠讓來自比較器104的數位信號,例如,j位元的數位信號到 達相應的輸出通道,例如’根齡麟脈信號^,數位遽波 201218646 器與伴隨被選擇的輸入通道結合。輸出通道可以包含數位滤波 器F!、F2、F3和F4 ’例如’從比較器104將數位信號,例如, 1位元數位k號抽取成多位元數位輪出信號的降頻濾波器 (decimation filter)。因此,可以從數位濾波器,例如,匕、 F2、h和F4中分別得到與多個輸入通道相關的多個數位輸出 信號。 另外,多工器108可以栓鎖住(iatc}l)來自比較器1〇4 與每個輸入通道相關的1位元數位信號。因此,在電流轉換週 期中,先前轉換週期中每個輸入通道產生的丨位元數位信號被 鎖定在多工H 108中’直到新的1位元數健號產生。當在電 流轉換週期根據系統時脈信號ScLK選擇了 一個輸入通道,多工 器108可以將在先前哺換職+魅的被聊的輸入通道的 1位元數位信號傳送給數位/類比轉換器1〇6。在一實施例中, 在第-轉換週期,多工器1G8可以將丨位元數位信號,例如, 邏輯0傳送給數位/類比轉換器1〇6。 在一實施例中’數位/類比轉換器1〇6可以是一位數位/ 類比轉換器。數位/類比轉換器1〇6可以接收來自多工器1〇8的 1位το數健號’並轉參考電壓1將丨位元數健號轉換 為類比信號’例如’電壓信號。由數位/類比轉換器1〇6產生的 類比信號可以作為傳送給積分^ 15G的回授信號 111。在一實 靶例中,數位/類比轉換器1〇6可以當1位元數位信號為邏輯^ 201218646 的時候將回授信號111設定為-Vref’當1位元數位信號為邏輯 〇的時候將回授信號111設定為Vref。數位/類比轉換器106可 以被信號PH!和信號PH2控制。於是,回授信號ln的值可以 根據來自多工器108的1位元數位信號控制。 更進一步,當通道1根據電流轉換週期的每一個時脈週期 的系統時脈信號Sclk被選擇時’調變器110可以從通道1中接 收類比信號,例如,類比電壓信號%和來自數位/類比轉換器 106的回授信號111’並產生1位元的數位信號。在一實施例中, 來自數位/類比轉換器106的回授信號11丨根據通道1中先前轉 換週期產生的1位元數位信號和參考電壓Vref而產生。比較器 104可以給多工器1〇8產生1位元數位信號。因此,多工器1〇8 中與通道1相關聯的先前的1位元數位信號被電流轉換週期中 新的1位元數位信號所代替。多工器1〇8可以將電流轉換週期 中產生的1位元數位信號輸出給相應的數位濾波器Fl。下一個 輸入通道,例如’通道2可以在系統時脈信號SCLK的下一個時 脈週期被選擇,相應的1位元數位信號可以被相應的濾波器所 接收。例如’通道1、通道2、通道3和通道4相繼被選擇, 通道1、通道2、通道3和通道4的相應的1位元數位信號相 繼被數位濾'波器Fi、數字濾波器F2、數字濾波器F3和數位濾 波裔F4所接收。數位濾波器,例如,數位濾波器Fi、數位濾波 益F2、數位渡波器F3和數位濾波器f4可以將相應輸入通道中 13 201218646 的1位元數位彳5號進行累加,並產生多位元數字輸出信號。 儘官圖1所示為多通道類比/數位轉換器励,但本發明 並不局限於此。例如,調_⑽也可以驗單通道類比/數位 轉換器。 多通道類比/數位轉換器100的操作將參考圖2A所示的 波形圖200A進行舉例描述。圖2A顯示在一實施例中,系統時 脈信號sCLK的波形、開關Sia、心、〜、S4a、&、^、 和S4B的狀‘態、多通道類比/數位轉換$ 1〇〇操作過程中的信號 PH2和仏號PH!。圖2A尸、是為說明作用,本發明將不限於圖 2A所一示的操作。在圖2A所示的實施例中’當相應的狀態波形 處於高電位科開關導通’當相應的狀態波形處於低電位準時 開關斷開。 在圖2A所示的實施例中,系統時脈信號Sclk的時脈週 期被分成兩㈣段,這兩個賴包含祕時脈域—是低電 位準的&階段和系統時脈信號ScLK是高電位準的&階段。例 如,每個時脈週期,例如,Tl、A、A、%和A等等’包含 s〗階段和S2階段。在每個時脈週期的階段Si,信號ρΗι被設 定為高電位準’信號PH!被設;t為低電位準,似的,在每個 時脈週期的S2階段’彳§號PH】被設定為低電位準,信號pH] 被設定為高電位準。在-實施例巾,因為信號项和信號pH2 是非重疊的時脈信號。信號呀和信號ph2_寬味統時脈 ⑧ 14 201218646 信號sCLK的脈寬小以避免重疊。 在-實施例中,在時脈週期Tl,當多通道類比/數位轉換 器100被啟動後’通道】將首先被選擇。與通道】相關的開關 S1A和開關s1B將被導通。與其他輸入通道,例如,通道2、通 道3和通道4相關的開關將被斷開。在一實施例中,開關= 被延時半個時脈週期後導通,例如,開關Sia在時脈週期TjB 通’開關s1B在時脈週期Tl的S2階段和時脈週期Τ2的^階段 導通。開關122和開關124根據信號pH?的高電位準在時脈週 期1\的&階段導通。同時,開關126和開關128將根據信號 叫的低電位準在時脈週期丁i白勺&階段而斷開。耻,來自通 道1的類比信號’例如,類比電壓信號Vi,透過導通的開關 S1A、開關124和開Μ 122 ’可以被傳送到採樣電容12〇,並且 被採樣。與類比電壓信號Vi所對應的來自通道1的電荷,可 以被儲存在採樣電容120中。 在時脈週期丁2的Si階段,開關122和開關124根據信號 PH2的低電位準被斷開,並且開_ 126和開_ 128根據信號pH! 的向電位準被導通。因此,存儲在採樣電容12G中的電荷可以 透過該導通的_ 126、開關128和開關&被傳送到積分電 容C“。 另外’數位/類比轉換器106根據先前轉換週期中通道1中 的1位元數位仏號產生回授信號111到積分電路。在時脈週期 15 201218646 丁2的S2階段’當信號嗥是高電位準,比較器1〇4將採㈣ 分早元D0的輸出信號請與第二參考信號進行比較,產生通 道。1。的1位元數位信號,並將其鎖定在多工器湖中。數位渡 波器F!接收1位元數位信號。 在時脈週期I’通道2被選擇。通道2的操作次序與通道 1的操作次序類似。根據時脈週期I的心階段中信號pH2的高 電位準開關、開關122和開關124導通,開關126和開 關128斷開。來自通道2的輸入類比信號,例如,類比電壓信 號v2被傳送到採樣電容120並被採樣。在雜獅l的&階 段,根據信號PHl的高電位準,開關122和開關124斷開,開 關126和開關128導通。因為在時脈週期l的&階段以後, 開關s1B被斷開,在時脈週期Τ2的心階段和時脈週期凡的 階段時,開關SZB被導通,在時脈週期l的&階段時,存儲在 採樣電容12G $的電荷被傳輸到積分電容Q2。然後比較器104 可以在時脈週期了3的32階段操作,並給多工器產生通道2 的1位7L數位魏。數位渡波器F!接收i位元數位信號。 類f的可以在時脈週期I選擇通道3,並在時脈週期丁4 的S2Mx產生1位元數位信號,可以在時脈週期乃選擇通道 4,並在時脈週期丁5的階段產生i位元數位信號。如果有更 夕的輸入通道可用’那麼可以在相繼的時脈週期中相繼選擇這 —輸入通道。於是,來自這些輸人通道賴比信號可以相繼地 16 201218646 和迴圈地被轉換為數位信號。例如,如果有4個輪人通道,那 麼就會使用至少4個時脈週期Τι、時脈週期I、時脈週期丁3 和時脈週冑&以完成所有輸人通道的轉換的迴圈。數位渡波 器,例如,數位濾波器Fl、數位濾波器&、數位濾波器&或 數位渡波$ Fd以在每轉換聊接收與輸人通道,例如,通 L 1通道2通道3或通道4相關的1位元數位信號。然後 下-個轉換週期從時脈週期Τ5開始。類似地,每個輸入通道相 纖選擇’每個類比信號相繼被採樣。於是,每個數位濾波器 可以在多個轉換週期積累蝴輸人通道的—位元數健號,並 抽取-位7L數健號以在—預設的速度下(例如,Fs)產生多位 元數字輸出信號。 在-實施例中’假設-過採樣率為0SR,一轉換週期所需 要的時間為N * OSR個時脈週期’其中N表示通道的總數。優 點在於,在-實施例中,在一個轉換週期,來自輸入通道的類 比信號可以被採樣並被分勸繼轉換為丨位元數健號。於 是’多個輸人通道的多位元數字輸出信號可以關步的方式在 多個轉換週_祕。結果,在_實_巾,多通道數位/類比 轉換器100可以提升效率並減小能量消耗。 圖2B本發明的另—貫施例的多通道類比/數位轉換器1〇〇 的信號的波形圖纖。例如,波形加表示來自相應輸入通道 的輸入類比L號。波形204表示輸出自數位/類比轉換器1〇6的 17 201218646 回授信號111和從採樣電容120獲得的輸入類比信號的採樣信 號的重疊。波形206表示積分電路的輸出信號170。波形208 表示比較器104的輸出信號。波形210表示從相應的數位濾波 器獲得的表示輸入類比信號的輸出信號,例如,多位元數字信 號。波形212表示輸入類比信號的採樣率。 另外’為了加速轉換,可以透過增加其他的開關陣列(例 如,增加類似於開關122、124、126和128)以及增加其他採樣 電容(例如,增加類似於採樣電容12〇),並採用互補的控制時 脈信號PHl和PH2,來實現雙重採樣技術(double sampling technique)。採用這種拓撲架構,數位/類比轉換器的轉換速度 可以加倍,而不會增加靜態功耗。其他的採樣技術,例如,三 重採樣技術(triple sampling technique)也可以被採用以實現數 位/類比轉換器100更高的轉換速度。 圖所示為本發明一實施例的數位/類比轉換器,例如’多 通道數位/類比轉換器丨⑻操作的流程圖猶。圖3將結合圖1 進订為述。多通道數位/類比轉換器1〇〇選擇一個輸入通道在系 號SGLK的—個時脈職來接㈣比信號,輸入通道I =’是通道1、通道2、通道3或者通道4。在步驟302,由 310^積刀早(13G的—輸人通道接收—類比信號。在步驟 祕積5單% 13G中的—採樣電路在 ^_的_週射對類比信號進行採樣。在步驟 201218646S 201218646 100 may be a first order delta-sigma analog-to-digital converter (delta-sigma ADC). In an embodiment, the multi-channel analog/digital converter 100 can have multiple input channels 'eg, four input channels include channel 1, channel 2, channel 3, and channel 4 to classify signals, for example, analog voltage signals Vl , v2, V3, and V4 are converted to digital signals in the interleaved mode, respectively. Each input channel is coupled to a switch. For example, switch S1A is coupled to channel 1; switch s2A is coupled to channel 2; switch S3A is coupled to channel 3; and switch Sm is coupled to channel 4. In one embodiment, the switches S1A, Sm, and Lv can be controlled by the system clock signal sCLK. In one embodiment, an input channel is selected during a clock cycle based on the system clock signal. In one embodiment, during a clock cycle, the switches coupled to the selected input channel will be turned "on" and the other switches will be turned "off". The multi-channel analog/digital converter 100 includes a modulator 11A to convert an analog signal, such as a voltage signal V], V2, V3 or v4, into a digital signal. The modulator 110 can receive an analog signal from the selected input channel and provide a corresponding digital signal to the filter coupled to the input channel, for example, a digital filter Fi, a digital ferrite F2, a digital chopper p3 And digital crossing waves. The analog signal can be various types of signals, such as current or voltage signals. In the modulator 110, the analog signal is input to the sample-integration unit 13A. In the sample-integration unit 130, the sampling circuit can sample the received analog signal at a preset sampling frequency, for example, the sampling frequency. Equivalent to Fs * 〇sr, where Fs is the Nyquist frequency' 〇SR is the oversampling rate for the Nyquist frequency ^ 201218646 For example 'When FS is 16 Hz, 0SR is 4 〇 96, the sampling frequency is 36 Hz . The analog signal can be converted into a digital signal by the female UG after sampling. In an embodiment, the number health key may be a continuous i-bit data string consisting of a sampling frequency, for example, Fs * OSR determining ratio _ logical i and logical 〇. The in-sense-sampling circuit includes an energy storage unit, for example, a sampling capacitor 12G, connected to the selected input port to store the f-charge from the selected input channel; the sampling circuit further includes (four) 122 , a switch 124, a switch 126 (four) off a switch array of 128 to control the energy storage unit 120. Switch 122 and switch 124 are controlled by signal pH2. Switch 126 and switch 128 are controlled by signal P%. In one embodiment, the signal ρΗι and the signal PH2 疋 are non-overlapping clock signals. For example, when signal |> only 2 is high potential, the signal PH! is low potential. The switch 丨 22 and the switch 124 are turned on, and the switch 126 and the switch 128 are turned off. When the signal PH1 is high, the signal Ph2 is low and the switch 122 and the switch 124 are turned off, and the switch 126 and the switch 128 are turned on. The sampling-integration unit 13 further includes an integrating circuit coupled to the sampling circuit to receive the sampling signal and the feedback signal 111' of the round-in analog signal and to overlap the overlapping portions of the sampling signal of the feedback signal 111 and the input analog signal. integral. The integrating circuit can generate an output signal 170 based on the integration result of the overlapping portion. In the embodiment shown in Figure ,, the integrating circuit includes a set of integrating capacitors (e.g., 'integrated capacitors Qi, Ci2, 〇3, Ci4) and an error amplifier 1〇2. 201218646 Integral capacitors Cu, C, 2, Q3, C; 4 series are coupled in parallel. The integral capacitor, Q2, cB, (^ can accumulate charge from the input channel respectively. Each integral capacitor q", Q2' ci3, cl4 can be connected in series with a switch, for example, the integral capacitor & is connected with the switch s1B, the integral capacitor Ci2 is connected to the switch S2B, the integrating capacitor 4 is coupled to the switch S3B, and the integrating capacitor Ci4 is coupled to the switch S4B. In an embodiment, the modulator 110 can successively perform analog/digital steps for each input channel in the conversion cycle. In one embodiment, at the beginning of the conversion cycle, the integrating capacitor can be randomly assigned to the input channel. For example, the integrating capacitor Cu can store the charge from channel 2 'integral capacitor Q2 can store the charge from channel 3, integrating Capacitor Q3 can store the charge from channel 4, integrating capacitor C; 4 can store the charge from channel 1. etc. The flexible composition of this input channel and the integrating capacitor can reduce the difference between the different channels due to the mismatch of the integral capacitor. Mismatch. In an embodiment, the output signal 170 of the sample-integral unit 13A represents that the corresponding integrated capacitor is stored during the previous conversion cycle. The result of integrating the charge, and the overlapping portion of the feedback signal 111 and the sampling signal of the input analog signal. The error amplifier 102 can receive the input signal through the inverting input terminal, receive the first reference signal through the non-inverting input terminal, and generate an error. The signal, for example, the input signal is the overlap of the sampled signal of the input analog signal with the feedback signal 111. In one embodiment the 'non-inverting input is grounded such that the voltage level of the first reference signal is substantially equal to zero. 201218646 Modulation The processor 110 further includes a feedback circuit for generating a digital signal from the output signal 170 of the sample-integration unit 130 and generating a feedback signal 111 representative of the digital signal of the integration circuit. In the embodiment illustrated in FIG. The feedback circuit further includes a comparator 1〇4, a multiplexer 1〇8, and a digital/analog converter (DAC) 106. That is, the 'integration circuit, the comparator 1〇4, the multiplexer 108, and The digital/analog converters together form a feedback loop that includes a feedforward consisting of an integrating circuit, a comparator 104, and a multiplexer 108. A (feed forward) path and a backward path including a digital/analog converter 106. The comparator 1〇4 coupled to the sample-integral unit 130 can output the output signal 17 of the sample-integration unit το 130〇 Comparing with the second reference signal and generating a comparison output signal according to a comparison result. Comparator 1〇4 can be controlled by signal PH2, and comparator 1〇4 operates when PH2 is high potential. In the example, the non-inverting input of comparator 104 is grounded. Therefore, the second reference signal voltage level is substantially equal to zero. Comparator 1〇4 can generate a one-bit digital signal based on the comparison result, for example, logic! Alternatively, the output signal of the logic comparator, for example, the 1-bit digital signal is further supplied to the multiplexer 1〇8. In an embodiment, the multiplexer 108 may be a cylindrical displacement register controlled by the system clock signal Sc^. The multiplexer 1 (10) is capable of causing a digital signal from the comparator 104, for example, a j-bit digital signal, to reach a corresponding output channel, such as a 'root-length signal ^, a digital chopping 201218646 combined with an input channel that is selected . The output channel may include digital filters F!, F2, F3, and F4 'eg, a subtraction filter that extracts a digital signal from the comparator 104, for example, a 1-bit digital k number into a multi-bit digital round-out signal (decimation) Filter). Thus, multiple digital output signals associated with multiple input channels can be derived from digital filters, for example, 匕, F2, h, and F4, respectively. Additionally, multiplexer 108 can latch (1-bit) a 1-bit digital signal associated with each input channel from comparator 1〇4. Therefore, in the current conversion period, the 丨 bit digital signal generated by each input channel in the previous conversion period is locked in multiplex H 108 ' until a new 1-bit number is generated. When an input channel is selected according to the system clock signal ScLK during the current conversion period, the multiplexer 108 can transmit the 1-bit digital signal of the previously input channel of the previous change to the digital/analog converter 1 〇 6. In one embodiment, multiplexer 1G8 may transmit a 丨 bit digital signal, for example, a logic 0, to digital/analog converter 1 在 6 during the first-to-conversion cycle. In one embodiment, the 'digital/analog converter 1〇6' may be a one-bit digital/analog converter. The digital/analog converter 1 可以 6 can receive the 1-bit τ number health symbol ' from the multiplexer 1 并 8 and convert the 丨 bit number key to an analog signal ', for example, a voltage signal. The analog signal generated by the digital/analog converter 1〇6 can be used as the feedback signal 111 transmitted to the integral 15G. In a real target example, the digital/analog converter 1〇6 can set the feedback signal 111 to -Vref' when the 1-bit digital signal is logic ^201218646. When the 1-bit digital signal is logically 将The feedback signal 111 is set to Vref. The digital/analog converter 106 can be controlled by the signal PH! and the signal PH2. Thus, the value of the feedback signal ln can be controlled based on the 1-bit digital signal from the multiplexer 108. Further, when the channel 1 is selected according to the system clock signal Sclk of each clock cycle of the current conversion period, the modulator 110 can receive an analog signal from the channel 1, for example, analog voltage signal % and from digital/analog The feedback signal 111' of the converter 106 produces a 1-bit digital signal. In one embodiment, the feedback signal 11 from the digital/analog converter 106 is generated based on the 1-bit digital signal and the reference voltage Vref generated during the previous conversion cycle in channel 1. The comparator 104 can generate a 1-bit digital signal to the multiplexer 1A8. Therefore, the previous 1-bit digital signal associated with channel 1 in multiplexer 1〇8 is replaced by a new 1-bit digital signal in the current conversion period. The multiplexer 1〇8 can output a 1-bit digital signal generated in the current conversion period to the corresponding digital filter F1. The next input channel, e.g., 'Channel 2, can be selected at the next clock cycle of the system clock signal SCLK, and the corresponding 1-bit digital signal can be received by the corresponding filter. For example, 'channel 1, channel 2, channel 3 and channel 4 are successively selected, and the corresponding 1-bit digital signals of channel 1, channel 2, channel 3 and channel 4 are successively digitally filtered, and the digital filter F2. The digital filter F3 and the digital filter F4 are received. A digital filter, for example, a digital filter Fi, a digital filter F2, a digital ferrite F3, and a digital filter f4 can accumulate the 1-bit number 彳5 of 13 201218646 in the corresponding input channel, and generate a multi-digit number. output signal. The multi-channel analog/digital converter excitation is shown in Fig. 1, but the present invention is not limited thereto. For example, tune _(10) can also be used to verify single channel analog/digital converters. The operation of the multi-channel analog/digital converter 100 will be described by way of example with reference to the waveform diagram 200A shown in Fig. 2A. 2A shows the waveform of the system clock signal sCLK, the state of the switch Sia, the heart, the ~, S4a, &, ^, and S4B, and the multi-channel analog/digital conversion $1〇〇 operation process in one embodiment. Signal PH2 and nickname PH! 2A is for illustrative purposes and the invention is not limited to the operation illustrated in Figure 2A. In the embodiment shown in Fig. 2A, 'when the corresponding state waveform is at the high potential switch is turned on', the switch is turned off when the corresponding state waveform is at a low potential. In the embodiment shown in FIG. 2A, the clock period of the system clock signal Sclk is divided into two (four) segments, which include the secret time domain - the low potential level & phase and system clock signal ScLK is High potential level & For example, each clock cycle, for example, Tl, A, A, %, A, etc., includes the s phase and the S2 phase. In the phase Si of each clock cycle, the signal ρΗι is set to a high potential quasi-signal PH! is set; t is a low potential quasi, like, in the S2 phase of each clock cycle '彳§# PH] Set to low potential, signal pH] is set to high potential. In the embodiment towel, because the signal term and signal pH2 are non-overlapping clock signals. The signal and the signal ph2_ wide-format clock 8 14 201218646 The pulse width of the signal sCLK is small to avoid overlap. In the embodiment, at the clock cycle T1, the 'channel' will be selected first when the multi-channel analog/digital converter 100 is activated. The switch associated with the channel] S1A and switch s1B will be turned on. Switches associated with other input channels, such as channel 2, channel 3, and channel 4, will be disconnected. In one embodiment, the switch = is turned on after being delayed by half a clock period. For example, the switch Sia is turned on during the clock period TjB on the switch s1B during the S2 phase of the clock cycle T1 and the phase of the clock cycle Τ2. The switch 122 and the switch 124 are turned on at the & stage of the clock period 1\ according to the high potential of the signal pH?. At the same time, switch 126 and switch 128 will be turned off in accordance with the low potential of the signal in the clock period. Shame, the analog signal from channel 1 'e.g., analog voltage signal Vi, through switch S1A, switch 124 and opening 122' can be transmitted to sampling capacitor 12A and sampled. The charge from channel 1 corresponding to the analog voltage signal Vi can be stored in the sampling capacitor 120. In the Si phase of the clock cycle D2, the switch 122 and the switch 124 are turned off according to the low potential of the signal PH2, and the ON_126 and the ON_128 are turned on according to the potential of the signal pH!. Therefore, the charge stored in the sampling capacitor 12G can be transferred to the integrating capacitor C" through the turned-on 126, the switch 128, and the switch & "The 'digital/analog converter 106' is based on 1 in the channel 1 in the previous conversion cycle. The bit digit apostrophe generates the feedback signal 111 to the integration circuit. In the clock cycle 15 201218646 D 2 S2 phase 'When the signal 嗥 is high potential, the comparator 1 〇 4 will pick (4) the early D0 output signal please Comparing with the second reference signal, generating a 1-bit digital signal of the channel, and locking it in the multiplexer lake. The digital ferrite F! receives the 1-bit digital signal. In the clock cycle I' channel The order of operation of channel 2 is similar to that of channel 1. The high potential level switch of signal pH2, switch 122 and switch 124 are turned on according to the heart phase of clock cycle I, switch 126 and switch 128 are open. The input analog signal of channel 2, for example, the analog voltage signal v2 is transmitted to the sampling capacitor 120 and sampled. At the & stage of the lion, the switch 122 and the switch 124 are turned off according to the high potential of the signal PH1, and the switch 126 with The switch 128 is turned on. Since the switch s1B is turned off after the & period of the clock cycle 1, the switch SZB is turned on during the heart phase and the clock cycle of the clock cycle Τ2, in the clock cycle In the & stage, the charge stored in the sampling capacitor 12G $ is transferred to the integrating capacitor Q2. Then the comparator 104 can operate in the 32-stage phase of the clock cycle 3 and generate a 1-bit 7L digit of the channel 2 to the multiplexer. The digital ferrite F! receives the i-bit digital signal. The class f can select channel 3 in the clock cycle I, and generate a 1-bit digital signal in the clock cycle D4 S2Mx, which can select the channel in the clock cycle. 4, and generate i-bit digital signal in the phase of the clock cycle □ 5. If there is a more input channel available, then the input channel can be selected successively in successive clock cycles. Thus, from these input channels The Laiby signal can be converted to a digital signal in succession 16 201218646 and loopback. For example, if there are 4 rounds of channels, then at least 4 clock cycles Τι, clock cycle I, clock cycle 3 And clocks around A loop that converts all input channels. A digital waver, for example, a digital filter Fl, a digital filter & a digital filter & or a digital wave $ Fd to receive and input channels in each conversion chat, for example Pass L 1 channel 2 channel 3 or channel 4 related 1-bit digital signal. Then the next conversion cycle starts from clock cycle Τ 5. Similarly, each input channel phase fiber selects 'each analog signal is sampled successively Therefore, each digital filter can accumulate the bit number of the input channel in multiple conversion cycles, and extract the bit 7L number to generate more at a preset speed (for example, Fs). Bit digital output signal. In the embodiment - the hypothesis - the oversampling rate is 0SR, the time required for a conversion cycle is N * OSR clock cycles 'where N represents the total number of channels. Advantageously, in an embodiment, the analog signal from the input channel can be sampled and converted to a bitwise number in one conversion cycle. Therefore, the multi-bit digital output signal of multiple input channels can be closed in multiple conversion weeks. As a result, the multi-channel digital/analog converter 100 can increase efficiency and reduce energy consumption. Fig. 2B is a waveform diagram of a signal of a multi-channel analog/digital converter 1 另 of another embodiment of the present invention. For example, the waveform plus represents the analog analog L number from the corresponding input channel. Waveform 204 represents the overlap of the 17 201218646 feedback signal 111 output from the digital/analog converter 1〇6 and the sampled signal of the input analog signal obtained from the sampling capacitor 120. Waveform 206 represents the output signal 170 of the integrating circuit. Waveform 208 represents the output signal of comparator 104. Waveform 210 represents an output signal representative of an input analog signal, such as a multi-bit digital signal, obtained from a corresponding digital filter. Waveform 212 represents the sampling rate of the input analog signal. In addition, in order to speed up the conversion, other switch arrays can be added (for example, similar to switches 122, 124, 126, and 128) and other sampling capacitors can be added (for example, similar to sampling capacitor 12〇), and complementary control is used. The clock signals PH1 and PH2 are used to implement a double sampling technique. With this topology, the conversion speed of a digital/analog converter can be doubled without increasing static power. Other sampling techniques, such as a triple sampling technique, can also be employed to achieve higher conversion speeds of the digital/analog converter 100. The figure shows a flow chart of a digital/analog converter, such as the operation of a multi-channel digital/analog converter (8), in accordance with an embodiment of the present invention. Figure 3 will be described in conjunction with Figure 1. The multi-channel digital/analog converter 1 selects one input channel to connect (four) to the signal in the system SGLK, and the input channel I = ' is channel 1, channel 2, channel 3 or channel 4. At step 302, the analog signal is received by the 310-saw early (13G-input channel-sampling signal. The sampling circuit in the step-by-step 5 single % 13G samples the analog signal in the ^_. 201218646

入類比信號的採樣信號在相關開關,例如,開關SlB、Sm、s3B 或S4B的控制下,被傳送到其中的—個積分電容,例如,電容 cii、Cu、Q3或者Cm。採樣-積分單元13〇中的積分電路可以 對輸入類比信號的採樣信號和回授信號丨丨丨的重疊部分進行積 分。積分電容可以在轉換週期的開始時刻隨機地分別分配給輸 入通道。在步驟330,積分電路根據重疊部分的積分結果產生 輸出信號170。 在步驟340 ’比較器,例如,比較器1〇4可以根據輪出信 號170產生一個一位;^數位信號。更具體的,t匕較器1〇4將輸 出信號Π0與-個參考信號進行比較以產生一個i位元數位信 號’並將s玄1位元數位信號傳送給多工器,例如,多工器1〇8。 在步驟350,多工器108可以將1位元數位信號輸出給數位/類 比轉換器和減隨域波器,例如,數赠波器&、數 位遽波器f2、數字驗n f3、或者數字缝^ &,同時也產 生表示1位元數位信號的回授信號1U。在步驟36〇,相應的數 位渡波ϋ可以根據1位讀位信號產生多位域字輸出信號。 更具體地說,相應地數位驗器可以料個轉換週射相應輸 入通道巾的1位元触域進行歸,_產生纽元數字輸 出信號。 圖4所示為本發明的一實施例的電子系、统400的架構示意 圖。在-貫施例中,電子系統採用上述的多通道類比/數位 19 201218646 多通道類比/數位轉換器100有多個輸入通道,例 轉換器100。 如,通道1、通道2、诵指q、 ,, ^ 通......通道N,以從多個裝置,例 如’裝置402、裝置4〇4、裝置406、裝置408接收類比信 號’並將類比信號分別轉換為數位輸出信號,例如,輸出卜 輸出2輸出3 ·..··.輸出N。數位輸出信號可以被各種接收 器接收,例如,接收器422、接收器似、接收器伽、接 收器428。多個裝置可以是各種類型的產生類比信號的裝置。 例如,多通道類比/數位轉換器觸可以用來將表示電池電壓的 類比電壓制域轉縣數位錢。電池管理钱可以接收數 位信號並控制電池。 因此’在—實施例中’用來將類比信號轉換為數位信號的 數位/類比轉換器,例如,多通道類比/數位轉換器·,包含: 多輸入通道,例如,通道卜通道2、通道3、通道4等,採樣 -積分單元13〇 ’與採樣·積分單元請触的回授電路。當相應 開關導通時多個輸人通道的其中—個被選擇。採樣_積分單元 130包含對所選擇的輸入通道的類比信號進行採樣的採樣電 路。採樣電軌含包含—個能t存儲單元12()。採樣·積分單元 13〇更進步包含與採樣電路輕接的積分電路以接收輸入類比 信號的採樣韻㈣授電U1,麟輸入類比信 號的採樣信號和賴信號的重4部分進行積分。積分電路包: 多個並聯耦接的電容,例如,積分電容和-個誤差放大器。積 20 201218646 刀電谷分別與夕個開關進确接。當相應關導通時,其中一 個積分電容可以儲存來自能量儲存單元12G的電荷。 回授電路包含與採樣·積分單元請的積分電路搞接的比 較器刚’與比較器104輕接的多工器⑽,耗接在多工器刚 和祕-積分早7L 130之間的數位/類比轉換器。比較器1〇4可 以將採樣·積分單元13G的輸出信號m與參考信號進行比較, 並根據比較結果產生比較輸出信號H 1G8可以根據比較 輸出L號提供數位信號。多通道數位/類比轉換器110可以進一 步包含輸出通道以提供纽元數字輸出信號。 優點在於’多通道類比/數位轉換H 100可以在交錯模式下 執仃類比到數位_變。在—實施例巾,不需要多個採樣/保持 Μ .、且或者夕個類比/數位轉換器來將多個輸入通道的類比信號 進订轉換°因此’可以減小電路线的成本並提高電路系統的 士 ;;另外’多個類比/數位轉換器之間的不匹配可以減少或者 避免。 圖5所不為本發明的一實施例的多通道類比/數位轉換器 500的架構示土 ’、 思'圖。多通道類比/數位轉換器500可以是多階Σ-Δ Μ/數位轉換器’例如,2 P皆Σ-△類比/數位轉換器。與圖1 中有同樣圖號;u 观私兒的凡件具有類似功能。圖5將結合圖1進行 描述。 圖5所示’調變器51〇將來自相應輸入通道,例如,包 21 201218646 含通道1、通道2、通道3知補;音/ ^ ^和通道4的4個輸人通道的類比信 號,例如’類比電壓錄V|、_f壓錢%、類比電壓信 號%或者類比電壓信號V4轉換為相應的數健號姻謂 可以是多階Σ•△調變器,例如,2階Σ·△調變器。調變器510 包含多個串職接的採樣·積分料,例如,串_接的採樣-積分單元別和採樣-積分單元跡採樣-積分單元53〇和採樣 -積分單元550與圓丨中的採樣·積分單元陶能類似。採樣_ 積分單元530從所選擇的輸人通道,例如,通道丨和相關的開 關’例如’開關SlA接收類比信號。在採樣-積分單元530令, 、積77電路可以在預設的採樣頻率下對所接收的類比 信號進行採樣。在巾,第—雜電触含能量存儲單 ,(例如姆電容)以儲存來自所選擇的輪人通道的電 : '步匕3包含有開關522、開關524、開關526和開 二開關陣列以控制能量儲存單元52°。類似的,開關522 破彳》號ΡΗ2控制,開關526和528被信號ρΗι控制。 在一貫施例中,俨妹 採樣,分單二=*_2是非重叠的時脈信號。 更進一步包含與第一採樣電路耦接的 二電路M接收輪人贼信號的採樣信號和回授信號 111。f —積分魏對版_域的採樣錢和喊信號m 的重豐部分進行精八^ 號,第1分重疊部分的積分結果產生輸出信 电路包έ 一組積分電容,例如,積分電容 ⑧ 201218646The sampling signal of the analog signal is transmitted to an integral capacitor, for example, a capacitor cii, Cu, Q3 or Cm, under the control of an associated switch, for example, switch SlB, Sm, s3B or S4B. The integrating circuit in the sampling-integration unit 13A can integrate the overlapping portion of the sampling signal of the input analog signal and the feedback signal 丨丨丨. The integrating capacitors can be randomly assigned to the input channels at the beginning of the conversion cycle. At step 330, the integrating circuit produces an output signal 170 based on the integration result of the overlapping portion. At step 340' the comparator, for example, comparator 1 〇 4 can generate a one-bit digital signal based on the round-out signal 170. More specifically, the comparator 〇4 compares the output signal Π0 with the reference signals to generate an i-bit digital signal and transmits the s-dimensional 1-bit digital signal to the multiplexer, for example, multiplexing. 1〇8. At step 350, the multiplexer 108 may output a 1-bit digital signal to the digital/analog converter and the subtraction domain filter, for example, a digital wave filter & a digital chopper f2, a digital test n f3, or The digital stitch ^ & also produces a feedback signal 1U representing a 1-bit digital signal. In step 36, the corresponding digital waveform can generate a multi-bit field output signal based on the 1-bit read signal. More specifically, the digital detector can be converted to a 1-bit touch field of the corresponding input channel, and the _ generates a digital output signal. Fig. 4 is a block diagram showing the architecture of an electronic system 400 according to an embodiment of the present invention. In the embodiment, the electronic system employs the multi-channel analog/digital bit described above. The 201218646 multi-channel analog/digital converter 100 has a plurality of input channels, such as converter 100. For example, channel 1, channel 2, finger q, , ^ channel ... channel N to receive analog signals from multiple devices, such as 'device 402, device 4〇4, device 406, device 408' And converting the analog signal into a digital output signal, for example, output Bu output 2 output 3 ·..··. Output N. The digital output signal can be received by various receivers, such as receiver 422, receiver-like, receiver gamma, and receiver 428. Multiple devices may be various types of devices that generate analog signals. For example, a multi-channel analog/digital converter can be used to convert analog voltages representing battery voltages to counties. Battery management money can receive digital signals and control the battery. Thus, in the "embodiment", a digital/analog converter for converting an analog signal into a digital signal, for example, a multi-channel analog/digital converter, includes: a multi-input channel, for example, a channel channel 2, a channel 3 , channel 4, etc., the sampling-integration unit 13〇' and the sampling and integration unit contact feedback circuit. One of the plurality of input channels is selected when the corresponding switch is turned on. The sample-integration unit 130 includes a sampling circuit that samples an analog signal of the selected input channel. The sampling rail contains a memory unit 12(). The sampling/integrating unit 13 further includes an integrating circuit that is connected to the sampling circuit to receive the sampling rhyme of the input analog signal (4), the powering U1, the sampling signal of the analog input signal of the lining input signal, and the weighting of the weighting signal portion of the lining signal. Integral circuit pack: A plurality of capacitors coupled in parallel, for example, an integrating capacitor and an error amplifier. Product 20 201218646 Knife Valley is connected with the switch. When the corresponding off is turned on, one of the integrating capacitors can store the charge from the energy storage unit 12G. The feedback circuit includes a multiplexer (10) that is connected to the integrating circuit of the sampling/integrating unit and is connected to the comparator 104, and is connected to a digit between the multiplexer and the secret-integral 7L 130. / analog converter. The comparator 1〇4 can compare the output signal m of the sampling/integrating unit 13G with the reference signal, and generate a comparison output signal H 1G8 according to the comparison result, and can provide a digital signal according to the comparison output L number. The multi-channel digital/analog converter 110 can further include an output channel to provide a nucleus digital output signal. The advantage is that the 'multi-channel analog/digital conversion H 100 can perform analogy to digital_variation in interleaved mode. In the embodiment, there is no need for multiple sample/hold Μ, and or analog analog/digital converters to customize the analog signal of multiple input channels. Therefore, the cost of the circuit line can be reduced and the circuit can be improved. System taxis;; additionally 'mismatch between multiple analog/digital converters can be reduced or avoided. FIG. 5 is not a schematic diagram of the architecture of the multi-channel analog/digital converter 500 according to an embodiment of the present invention. The multi-channel analog/digital converter 500 can be a multi-stage sigma-delta Μ/digital converter ’, for example, a 2 P Σ-Δ analog/digital converter. The same figure number as in Figure 1; Figure 5 will be described in conjunction with Figure 1. The 'modulator 51' shown in Figure 5 will come from the corresponding input channel, for example, packet 21 201218646 contains channel 1, channel 2, channel 3 complement; tone / ^ ^ and channel 4 analog channels of the four input channels, For example, 'analog voltage record V|, _f pressure %, analog voltage signal % or analog voltage signal V4 converted to the corresponding number of health can be multi-order Σ•△ modulator, for example, 2nd order Σ·△ adjustment Transformer. The modulator 510 includes a plurality of serially sampled and integrated materials, for example, a serial-to-sampling-integrating unit and a sampling-integrating unit-sampling-integrating unit 53A and a sampling-integrating unit 550 and a circle The sampling and integration unit can be similar. The sample_integration unit 530 receives an analog signal from the selected input channel, e.g., channel 丨 and associated switch ', ' switch SlA. At the sample-integration unit 530, the product 77 can sample the received analog signal at a predetermined sampling frequency. In the towel, the first-heteroelectric touch contains an energy storage list, such as a m capacitor, to store electricity from the selected wheel channel: 'Step 3 includes a switch 522, a switch 524, a switch 526, and an open switch array. Control the energy storage unit 52°. Similarly, switch 522 is broken, and switches 526 and 528 are controlled by signal ρΗι. In the consistent example, sister sampling, sub-single = * 2 is a non-overlapping clock signal. Further, the two circuits M coupled to the first sampling circuit receive the sampling signal and the feedback signal 111 of the wheel thief signal. f—Integral Wei is the finest part of the sampling money and the shouting signal m of the version _ domain. The integral result of the overlapping part of the first point produces an output signal circuit pack έ a set of integral capacitors, for example, an integral capacitor 8 201218646

GiA ' Ci2A ' Ci3A、Ci4A 和誤差放大器 502。 積刀電合CUA、CM、CnA和CmA並聯耦接。積分電容 CllA ' Ci2A、Ci3A和CmA可以分別從輸入通道積累電荷。每一 個積分電容QlA、積分電容〇2A、積分電容Q3A和積分電容 14可以與一個開關串聯,例如,積分電容CUA與開關s1B 積刀電各CuA與開關S1B耦接,積分電容ci3A與開關 S3B耗接’積分電容Q4A與開關S4B輕接。 在一個轉換週射,積分電容可以在轉換翻的開始時候 隨機刀配給輸入通道。在一實施例中,採樣-積分單元5如的輸 出^號57G表7F在先前哺換週期巾儲存在減積分電容中的 電荷和輸人類比信號的採樣信號和回授信號⑴的重疊部分積 分結果。 在一實施例中,誤差放大器5〇2可以根據分別來自反相輸 端的和非反相輸人端的輸域號和第—參考信號產生一個 誤差k號。輸人信號是輸人類比賴的採樣信號和回授信號 U!的重疊部分。在—實施射,反相輸人端接地,於是第一 參考信號的電壓位準實質上等於〇。 採樣-積分單元550從雜積分單元53()接收輸出信號 570。採樣-積分單元55〇與採樣積分單元53〇有類似的架構和 功能。因此,輸出信號別可以由採樣_積分單元55〇中的第二 採樣電路用預設的採樣頻率進行採樣。第二採樣電路包含一能 23 201218646 量儲存單元540(例如,採樣電容),更進一步包含一個包含有 開關542、開關544、開關546和開關548的開關陣列以控制 能量儲存單元540。在一實施例中,開關542和開關544由信 號PH2控制,開關546和開關548由信號PH!控制。在一實施 例中’採樣-積分單元530與採樣積分單元550分別使用同樣的 採樣頻率對輸入類比信號和輸出信號570進行採樣。 採樣積分單元550更進一步包含與第二採樣電路耗接的 第二積分電路’以接收輸出信號570的採樣信號和回授信號例 如,回授信號111。第二積分電路對輪出信號57〇的採樣信號 和回授彳§號111的重疊部分進行積分,並根據對重疊部分進行 積分的結果產生輸出信號572。 第二積分電路包含一組積分電容,例如,積分電容cilB、 積分電容(:迦、積分電容Cbb和積分電容ci4B,以及誤差放大 器512積匀電谷Qib、積分電谷Ci2B、積分電容Ci:5B和積分 電容C^B並聯耦接。積分電容cilB、積分電容Ci2B、積分電容 Ci3B和積分電容Q4B可以累積分別與通道丨、通道2、通道3和 通道4相關的輸出信號570的電荷。每個積分電容CilB、積分 電容Qsb、積分電容cDB和積分電容ci4B與一個開關串聯。例 如積刀電谷CjiB與開關Sic輕接;積分電容Q2B與開關S;jc 輪接;積分電容(:郎與開關Sk;耦接;積分電容ci4B與開關S4C 耦接。 ⑧ 24 201218646 如上述的描述,積分電容Qia、積分電容Q2a、積分電容 cw和積分電$ ci4A可以在娜週期關始時候賴分配給輸 入通道;與之類似,積分電容CiiB、積分電容Ci2B、積分電容 Cdb和積分電容CWB也可以在轉換週期的開始時候隨機分配給 輸入通道。在一實施例中,分配給相應通道的積分電容C心和 ClkB ’例如’ n=卜2、3或4; k=1、2、3或4,被同時導通或 者斷開。例如,如果積分電容Qia和Q3b被分配給通道】,當 通道1被選擇時,積分電容CilA* ci3B都被導通。 田 類似的’誤差放大器512可以根據分別來自反相輪入端和 非反相輸入端的輸入信號和第二參考信號之間的差值生產誤 差信號。輸入信號可以是輸出信號570的採樣信號和回授信號 111的重疊部分。在-實施例巾,非反相輸人端接地,於是第 二參考信號的電壓位準實質上等於〇。 此外’回授電路包含比較器104、多工器108和數位/類比 轉換器(簡稱DAC)。回授電路可以根據採樣_積分單元55〇的 輸出信號572產生數位信號,並產生表示採樣·積分單元53〇 和採樣-積分單元550數位信號的回授信號111<5與採樣_積分單 元550耦接的比較器1〇4將採樣-積分單元55〇的輸出信號572 與第三參考信號進行比較,並根據比較結果產生比較器輸出作 號。在一實施例中,比較器104可以被信號pH2控制,並且當 PH2是咼電位準時操作。在一實施例中,比較器1〇4的非反相 25 201218646 輸入端接地,於是第三參考信號的電壓位準實質上等於〇。比 較器HH可以根據比減果產生—位元數健號,例如,邏輯 1或者邏輯G。比較器W之輪出信號,例如,丨侃數位信號 被輸送到多工器108。 夕器108將來自比較器1〇4魄健號傳遞到與根據系 統s。械㈣&獅_人_目_數赠㈣^、數位滤 波益F2、數位濾、波器f3和數位遽波器&的其中—個。於是, 與多個輸人通細__位輸出信號可时職數位濟 波器Fl、數赠波H F2、數倾㈣F3和數赠波器F4獲得。 550。 在個新的轉換週期,當根據系統時脈信號&選定一個 矜#工器108將§亥輸入通道的先前轉換週期產生的 1位元數位信號傳送給數位/類比轉換器1〇6。數位概轉換器 6將1位讀側5號轉換為類比信號,鞠比錢可以作為 回授信號丨11被傳送到採樣·積分衫別和採樣·積分單元 。。對不同1¾數的類比/數位轉換器’例如,丨階類比/數位轉換 Γ和2 P白類比/數位轉換器5〇〇 ’類比/數位轉換器信蜂比 (s_偏〇ise ratio,_SNR)的最大值會隨著過採樣率 和預設的類比/數位轉換器的階數而改變。預設的階數為l的類 比/數位轉換器的SNR由公式(丨)確定:GiA ' Ci2A ' Ci3A, Ci4A and error amplifier 502. The integrated cutter CUA, CM, CnA and CmA are coupled in parallel. Integral Capacitor CllA ' Ci2A, Ci3A, and CmA can accumulate charge from the input channel, respectively. Each integrating capacitor QlA, integrating capacitor 〇2A, integrating capacitor Q3A and integrating capacitor 14 can be connected in series with a switch. For example, integrating capacitor CUA and switch s1B are integrated with CuA and switch S1B, and integrating capacitor ci3A and switch S3B are used. Connect the 'integrated capacitor Q4A to the switch S4B. In a conversion cycle, the integral capacitor can be randomly assigned to the input channel at the beginning of the transition. In an embodiment, the output of the sample-integral unit 5, such as the output 57, the table 7F, is integrated in the overlap of the charge signal stored in the de-integration capacitor and the sample signal of the input-to-human ratio signal and the feedback signal (1). result. In one embodiment, the error amplifier 5〇2 can generate an error k number based on the input domain number and the first reference signal from the inverting and non-inverting input terminals, respectively. The input signal is the overlap between the sampled signal and the feedback signal U! In the implementation of the shot, the inverting input is grounded, so that the voltage level of the first reference signal is substantially equal to 〇. The sample-integration unit 550 receives an output signal 570 from the hybrid integration unit 53(). The sample-integration unit 55A has a similar architecture and function as the sample integration unit 53. Therefore, the output signal can be sampled by the second sampling circuit in the sampling_integration unit 55A with a preset sampling frequency. The second sampling circuit includes a 2012 23646 quantity storage unit 540 (e.g., sampling capacitor), and further includes a switch array including a switch 542, a switch 544, a switch 546, and a switch 548 to control the energy storage unit 540. In one embodiment, switch 542 and switch 544 are controlled by signal PH2, and switch 546 and switch 548 are controlled by signal PH!. In one embodiment, the sample-integration unit 530 and the sample integration unit 550 sample the input analog signal and the output signal 570 using the same sampling frequency, respectively. The sample integration unit 550 further includes a second integration circuit ‘ consuming the second sampling circuit to receive the sampled signal and the feedback signal of the output signal 570, for example, the feedback signal 111. The second integrating circuit integrates the overlapped portion of the sampled signal of the rounded signal 57A and the feedback of the reference number 111, and produces an output signal 572 based on the result of integrating the overlapped portion. The second integrating circuit includes a set of integral capacitors, for example, an integrating capacitor cilB, an integrating capacitor (: jia, an integrating capacitor Cbb, and an integrating capacitor ci4B, and an error amplifier 512 integrated electric valley Qib, an integrated electric valley Ci2B, an integrating capacitor Ci: 5B The integral capacitor cilB, the integrating capacitor Ci2B, the integrating capacitor Ci3B, and the integrating capacitor Q4B can accumulate the charges of the output signal 570 associated with the channel 丨, channel 2, channel 3, and channel 4, respectively. The integral capacitor CilB, the integral capacitor Qsb, the integral capacitor cDB and the integral capacitor ci4B are connected in series with a switch. For example, the integrated circuit Cgu B and the switch Sic are lightly connected; the integral capacitor Q2B is connected to the switch S; jc; the integral capacitor (: Lang and switch) Sk; coupling; integral capacitor ci4B is coupled to switch S4C. 8 24 201218646 As described above, integral capacitor Qi, integral capacitor Q2a, integral capacitor cw and integral power $ ci4A can be assigned to the input channel at the beginning of the cycle Similarly, the integrating capacitor CiiB, the integrating capacitor Ci2B, the integrating capacitor Cdb, and the integrating capacitor CWB can also be randomly assigned to the input pass at the beginning of the conversion cycle. In an embodiment, the integrating capacitor C core and ClkB '' assigned to the corresponding channel, for example 'n=Bu 2, 3 or 4; k=1, 2, 3 or 4, are turned on or off at the same time. For example, if The integrating capacitors Qia and Q3b are assigned to the channel. When the channel 1 is selected, the integrating capacitors CilA* ci3B are turned on. The similar 'error amplifier 512' can be based on inputs from the inverting wheel and the non-inverting input, respectively. The difference between the signal and the second reference signal produces an error signal. The input signal may be an overlap of the sampled signal of the output signal 570 and the feedback signal 111. In the embodiment, the non-inverting input is grounded, thus The voltage level of the two reference signals is substantially equal to 〇. Further, the feedback circuit includes a comparator 104, a multiplexer 108, and a digital/analog converter (referred to as a DAC). The feedback circuit can be based on the output of the sample-integrator unit 55〇. The signal 572 generates a digital signal, and generates a feedback signal 111 <5 representing the digital signal of the sampling and integrating unit 53A and the sampling-integrating unit 550. The comparator 1?4 coupled to the sampling_integrating unit 550 sets the sampling-integrating unit 55. The output signal 572 is compared to the third reference signal and produces a comparator output number based on the comparison. In one embodiment, the comparator 104 can be controlled by the signal pH2 and operates when PH2 is at zeta potential. In the example, the non-inverting 25 201218646 input of the comparator 1〇4 is grounded, so that the voltage level of the third reference signal is substantially equal to 〇. The comparator HH can generate a bit number key according to the ratio subtraction, for example, Logic 1 or Logic G. The wheeled signal of the comparator W, for example, the digital signal is delivered to the multiplexer 108. The eve 108 transmits the health signal from the comparator 1 to 4 according to the system s. (4) & lion_人_目_数赠(四)^, digital filter F2, digital filter, waver f3 and digital chopper & Thus, it is obtained with a plurality of input __ bit output signals, a time-of-care digital frequency device F1, a digital gift wave H F2, a digital tilt (four) F3, and a digital gift wave device F4. 550. In a new conversion cycle, a 1-bit digital signal generated by the previous conversion cycle of the input channel is transmitted to the digital/analog converter 1〇6 according to the system clock signal & The digital-to-average converter 6 converts the 1-bit read side number 5 into an analog signal, and the money can be transmitted as a feedback signal 丨11 to the sample/integration shirt and the sampling/integration unit. . For analog/digital converters with different ratios 'for example, 丨 analog/digit conversion Γ and 2 P white analog/digital converter 5〇〇' analog/digital converter bee ratio (s_biased ratio, _SNR) The maximum value of the ) varies with the oversampling rate and the order of the preset analog/digital converter. The SNR of the analog/digital converter with a preset order of l is determined by the formula (丨):

SNRSNR

JIAX -\)2 〇SR{U+l^ (1) 26 201218646 其中OSR表示類比/數位轉換器的過採樣率,1^表示數位 化的解析度。圖6表示在不同的類比/數位轉換器階次下相對於 過採樣率OSR的SNR曲線圖600。對於固定階次的類比/數位JIAX -\)2 〇SR{U+l^ (1) 26 201218646 where OSR represents the oversampling rate of the analog/digital converter, and 1^ represents the resolution of the digitization. Figure 6 shows an SNR plot 600 vs. oversampling rate OSR at different analog/digital converter orders. Analog/digit for fixed order

轉換器,例如’階次為0小2、3、4或者5,SNR隨著〇SR 的增加而增加。對於同樣的OSR ’例如,〇SR=64,類比/數位 轉換器的階次越高’在輸入信號的類比/數位轉換過程中更多的 噪音將被抑制《因此,對於更高階的類比/數位轉換器,輸入信 號的頻寬财增加,日恤解也會增加,輸出錢的精^脆 加強。 另外,在-實施例中,採樣·積分單元53〇的積分電路的輸 出信號不是直接輸入給採樣-積分單元55〇的積分電路,而是被 跡積分單S 550的採樣電路進行採樣。當採樣_積分單元55〇 的採樣電路將採樣信號傳送給信號ρΗι控制的採樣_積分單元 550的積分電路時,採樣-積分單元550的採樣電路將會與信號 Η:控制下的祕_積分單元55〇的積分電路脫離關係。於是, $同採樣·積分單^的積分電路獨立操作,增強了系統的穩 圆所示為本發明—實施例多通道類比/數 架構示意圖。多诵指翻咖 顺裔/υυ的 /數位轉_,m 器爾可以是多階&△類比 有細_。1 ° ’2階Σ_△類比/數位轉換器。與圖1和圖5 5 ’就w的辑有著議的魏。圖7將結合圖1和 27 201218646 圖5進行描述。 如圖7所示,調節器710更進—步包 =接收自所選擇的輪入通道的輸入類比信號,:= 積分電路韻 ^ 720 (^° ^ 來自所選輸入通道的電荷,前_向電路73〇更進— 有開關722、開關724、開關726和開 乂 3八 _ ^产〜 和開關728的開關陣列以控 制月⑶儲存早疋72〇。開關722和開關η4由信號项控制, 開關料開關728由信號ΡΗι控制。因此,開關722、開關 724和開關726、開關728將會交替導通。 在操作過程中’當輸入通道,例如,通道i被選擇,當開 關722和724導通時,能量儲存單元?2〇儲存來自通道i的類 比信號的電荷;當開關726和728導通時,儲存在能量儲存單 元720的電荷被傳送到採樣_積分單元55〇的積分電路。於是, 採樣-積分單元550的積分電路可以對輸出信號57〇的採樣信 號、輸入信號的採樣信號和賴信號的重㈣分進行積分 以產生輸出信號572。 此外,調節器710包含數位/類比轉換器⑽娜t〇㈣吨 converter DAC) 706和數位/類比轉換器714以根據來 自於多工S 1G8的先前轉換週期的所選擇輸人通道的丨位元數 位信號產生回授信號711和回授信號713。回授信號711和回 ⑧ 28 201218646 授信號713被分臟供給雜積分單元53_樣電路和採樣 -積分單元550的採樣電路。 優點在於,透過將輸人錢的採樣錢透過前饋順向 電路73〇提供給採樣-積分單元wo的積分電路。採樣積分單 疋5S0的輸出信號5?2的幅值被控制在—個特定範圍内。於 是’多階類比/數位轉換器的穩定性增加了。另外,數位/ 類比轉換3 706和數位/類比轉換n 714可以獨立地產生和提供 回授信號711和回授賴713,樣幫助提高抑酿/數位轉 換器700的穩定性。 圖8所示為本發明一實施例多通道類比/數位轉換器,例 如,多通道類比/數位轉換㈣〇的流程圖_。圖8將結合圖 5進行描述。多通道類比/數位轉換器在系統時脈信號^ 的一個時脈週期選擇—個輸人通道,例如,通道丨、通道2、 通道3或者通迢4以接收類比信號。在步驟8〇2,類比信號被 輸入到採樣·齡單元’例如,採樣傭單元W在步驟_, ^比信號在開關_的控制下在同樣㈣脈職被採樣-積分 早疋530的採樣電路所採樣。在步鄉806,採樣-積分單元53〇 的積分電路對輸人類比信號的採樣信號和回授信號的重疊部 分進行積分。在步驟_,積分電路姆對重疊部分的積分結 果生產輸出信號。 步驟如果電流採樣_積分單元是多通道類比/數位轉 29 201218646 換器5〇〇的上-個採樣_積分單元,那麼執行步驟削,否則執 行步驟812在步驟812,電流採樣_積分單元的輸出信號可以 被輸入到下—個採樣—積分料,例如,採樣·積分單以50。然 後返回到步驟804。 在步驟814,比較器,例如,比較器1〇4,根據上一個採 樣-積分單元的輸出信號’例如,採樣_積分單元55g的輸出信 號572 ’產生1位元數位信號。更具體地,比較器⑽將採樣· 積分單元55〇的輸出㈣572與一個參考信號進行比較並產生 1位7G數位信號,並將該i位元數位信號傳送到多工器,例如, 多工器108。在步驟816,多工器應將J位元數位信號輸出 到數位/類比轉換器106和相應的數位渡波器,例如,據波器 Fi、渡波器F2、渡波器F3或紐器&。同時,表示i位元數 位信號的回授信號U1也被產生。在步驟818,相應的數位濾 波器根據1位元數位信號產生多位錄字輸出信號。更具體 地,相應的數位濾波器累積相應輸入通道的幾個轉換週期的^ 位元數位信號,並產生多位元數字輸出信號。 因此,根據本發明的實施例,多通道類比/數位轉換器透過 相應的輸入通道將多個類比信號轉換為相應的數位信號。在一 實施例中’多通道類比/數位轉換器包含多個並聯輕接的採樣· 積分單7C。依靠包含多個採樣_積分單元,類比/數位轉換器可 以有更高的階次,類比/數位轉換器的信噪比被提升,類比/數 ⑧ 30 201218646 位轉換器的精度被提高。 上文具體實施方式和_僅為本發明之相實施例。顯 然,在不脫離申請專利範圍所界定的本發明精神和發明範圍的 前提下可以有各種增補、修改和替換。本領域技術人員應該理 解’本發明在實際顧中可根據具體的環境和工作要求在不背 離發明準則的前提下在形式、架構、佈局、比例、材料、元件、 元件及其它方面有所變化。因此,在此披露之實關僅說明而 非限制,本發明之範圍由後咐請專利翻及其合法等同物界 定,而不限於此前之描述。 【圖式簡單說明】 圖1所示為本發明的一實施例的多通道類比/數位轉換 器的架構示意圖; ' 圖2A所示為本發明的一實施例的多通道類比/數位轉換 器信號的波形圖; 圖2B所示為本發明的另一實施例的多通道類比/數位轉 換器信號的波形圖; 圖3所示為本發明的一實施例的多通道類比/數位轉換 器操作流程圖; 圖4所示為本發明的一實施例的電子系統的架構示意 圖; 圖5所示為本發明的另一實施例的多通道類比/數位轉 換器的架構示意圖; 圖6所示為本發明的一實施例的類比/數位轉換器不同 201218646 階次的過採樣率的信噪比曲線; 圖7所示為本發明的另一實施例的多通道類比/數位轉 換器的架構示意圖;以及 圖8所示為本發明的一實施例的多通道類比/數位轉換 器操作流程圖。 【主要元件符號說明】 100:多通道類比/數位轉換器 102 :誤差放大器 104 :比較器 106 :數位/類比轉換器 108 :多工器 110 :調變器 111 :回授信號 120 :採樣電容 122〜128 :開關 130 :採樣-積分單元 170 :輸出信號 200A〜200B :波形圖 202〜212 :波形 300 :流程圖 302〜360 :步驟 400 :電子系統 402〜408 :裝置 422〜428 :接收器 500 :類比/數位轉換器 ⑧ 32 201218646 502 :誤差放大器 510 :調變器 512 :誤差放大器 520 :能量儲存單元 522〜528 :開關 530 :採樣-積分單元 540 :能量儲存單元 542〜548 :開關 550 :採樣-積分單元 570 :輸出信號 572 :輸出信號 600 :曲線圖 700:多通道類比/數位轉換器 706 ··數位/類比轉換器 710 :調節器 711 :回授信號 713 :回授信號 714 :數位/類比轉換器 720 :能量儲存單元 722〜728 :開關 730 :前饋順向電路 800 :流程圖 802〜818 :步驟 Cil〜Ci4 :積分電容 CilA 〜Ci4A :積分電容 33 201218646The converter, for example, has an order of 0 small 2, 3, 4 or 5, and the SNR increases as the 〇SR increases. For the same OSR 'for example, 〇SR=64, the higher the order of the analog/digital converter', the more noise will be suppressed during the analog/digital conversion of the input signal. Therefore, for higher order analog/digital Converter, the bandwidth of the input signal is increased, the daily shirt solution will also increase, and the output money will be enhanced. Further, in the embodiment, the output signal of the integrating circuit of the sampling/integrating unit 53A is not directly input to the integrating circuit of the sampling-integrating unit 55A, but is sampled by the sampling circuit of the track integrating unit S550. When the sampling circuit of the sampling_integrating unit 55〇 transmits the sampling signal to the integrating circuit of the sampling_integrating unit 550 controlled by the signal ρΗι, the sampling circuit of the sampling-integrating unit 550 and the signal Η: the secret-integral unit under control The 55-inch integration circuit is disconnected. Thus, the integration circuit of the same sampling and integration unit is operated independently, and the stability of the system is enhanced as shown in the present invention - an embodiment multi-channel analog/number architecture. More than 诵 翻 顺 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1 ° '2nd order Σ_△ analog/digital converter. Wei with the figures of Figure 1 and Figure 5 5'. Figure 7 will be described in conjunction with Figures 1 and 27 201218646 Figure 5. As shown in FIG. 7, the regulator 710 further forwards the packet to the input analog signal received from the selected round-in channel, := the integral circuit rhyme ^ 720 (^° ^ the charge from the selected input channel, the front_direction The circuit 73 is further advanced - there is a switch array 722, a switch 724, a switch 726, and a switch array of switches 728 to control the month (3) storage earlier than 72. The switch 722 and the switch η4 are controlled by signal items. Switching switch 728 is controlled by signal 。. Therefore, switch 722, switch 724 and switch 726, switch 728 will alternately conduct. During operation 'when the input channel, for example, channel i is selected, when switches 722 and 724 are turned on The energy storage unit stores the charge of the analog signal from channel i; when switches 726 and 728 are turned on, the charge stored in energy storage unit 720 is transferred to the integrating circuit of sample-integrator unit 55. Thus, sampling- The integrating circuit of the integrating unit 550 can integrate the sampling signal of the output signal 57〇, the sampling signal of the input signal, and the weight (four) of the signal to generate an output signal 572. Further, the regulator 710 includes a digit/class Ratio converter (10) 〇 t〇 (four) ton converter DAC) 706 and digital/analog converter 714 to generate feedback signal 711 and based on the 丨 bit digital signal of the selected input channel from the previous conversion period of multiplexed S 1G8 The signal 713 is returned. The feedback signal 711 and the back 8 28 201218646 are signaled 713 to be supplied to the sampling circuit of the hybrid integrating unit 53_like circuit and the sampling-integrating unit 550. The advantage is that the sampling circuit of the input money is supplied to the integrating circuit of the sampling-integrating unit wo through the feedforward forward circuit 73. The amplitude of the output signal 5?2 of the sampling integration sheet 疋5S0 is controlled within a specific range. Thus the stability of the multi-stage analog/digital converter has increased. In addition, the digital/analog conversion 3 706 and the digital/analog conversion n 714 can independently generate and provide the feedback signal 711 and the feedback 713, which helps to improve the stability of the freeze/digital converter 700. Figure 8 is a flow chart showing a multi-channel analog/digital converter, for example, a multi-channel analog/digital conversion (four), according to an embodiment of the present invention. Figure 8 will be described in conjunction with Figure 5. The multi-channel analog/digital converter selects one input channel for one clock cycle of the system clock signal ^, for example, channel 丨, channel 2, channel 3 or 迢 4 to receive an analog signal. In step 8〇2, the analog signal is input to the sampling and age unit', for example, the sampling commission unit W is in the step _, the ratio signal is under the control of the switch_ in the same (four) pulse is sampled-integrated early 530 sampling circuit Sampled. In step 806, the integrating circuit of the sampling-integrating unit 53A integrates the overlapping portion of the sampling signal and the feedback signal of the human-to-human ratio signal. In step _, the integration circuit produces an output signal for the integration result of the overlap portion. Step If the current sampling_integration unit is a multi-channel analog/digital conversion to the upper sampling-integration unit of the 201218646 converter, then the step is performed, otherwise step 812 is performed, in step 812, the output of the current sampling_integration unit The signal can be input to the next-sampling-integral material, for example, the sampling/pointing sheet is 50. Then, return to step 804. At step 814, a comparator, e.g., comparator 〇4, generates a 1-bit digital signal based on the output signal ’ of the last sample-integration unit', e.g., the output signal 572' of the sample-integration unit 55g. More specifically, the comparator (10) compares the output (four) 572 of the sampling and integrating unit 55A with a reference signal and generates a 1-bit 7G digital signal, and transmits the i-bit digital signal to the multiplexer, for example, a multiplexer 108. At step 816, the multiplexer should output the J-bit digital signal to the digital/analog converter 106 and the corresponding digital ferrite, for example, according to the waver Fi, the ferrite F2, the ferrite F3, or the newer & At the same time, a feedback signal U1 indicating an i-bit digital signal is also generated. At step 818, the corresponding digital filter produces a multi-bit recording output signal based on the 1-bit digital signal. More specifically, the corresponding digital filter accumulates the bit-bit signals of several conversion periods of the corresponding input channel and produces a multi-bit digital output signal. Thus, in accordance with an embodiment of the present invention, a multi-channel analog/digital converter converts a plurality of analog signals into corresponding digital signals through respective input channels. In one embodiment, the 'multichannel analog/digital converter includes a plurality of sample and integration orders 7C that are connected in parallel. By including multiple sample-integration units, the analog/digital converter can have a higher order, the signal-to-noise ratio of the analog/digital converter is improved, and the analogy/number 8 30 201218646 bit converter accuracy is improved. The above specific embodiments and _ are merely phase embodiments of the present invention. Obviously, various additions, modifications and substitutions are possible without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those skilled in the art that the present invention may be modified in form, structure, arrangement, ratio, material, component, element, and other aspects without departing from the scope of the invention. Accordingly, the disclosure is to be construed as illustrative and not restrictive, and the scope of the invention BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the architecture of a multi-channel analog/digital converter according to an embodiment of the present invention; FIG. 2A shows a multi-channel analog/digital converter signal according to an embodiment of the present invention. FIG. 2B is a waveform diagram of a multi-channel analog/digital converter signal according to another embodiment of the present invention; FIG. 3 is a flowchart showing an operation flow of a multi-channel analog/digital converter according to an embodiment of the present invention; FIG. 4 is a schematic structural diagram of an electronic system according to an embodiment of the present invention; FIG. 5 is a schematic structural diagram of a multi-channel analog/digital converter according to another embodiment of the present invention; The analog/digital converter of an embodiment of the invention differs from the signal to noise ratio curve of the oversampling rate of the order of 201218646; FIG. 7 is a schematic diagram showing the architecture of a multichannel analog/digital converter according to another embodiment of the present invention; FIG. 8 is a flow chart showing the operation of a multi-channel analog/digital converter according to an embodiment of the present invention. [Main component symbol description] 100: Multi-channel analog/digital converter 102: Error amplifier 104: Comparator 106: Digital/analog converter 108: Multiplexer 110: Modulator 111: Feedback signal 120: Sampling capacitor 122 ~128: Switch 130: Sampling-integrating unit 170: Output signals 200A to 200B: Waveforms 202 to 212: Waveform 300: Flowcharts 302 to 360: Step 400: Electronic systems 402 to 408: Devices 422 to 428: Receiver 500 : Analog/Digital Converter 8 32 201218646 502 : Error Amplifier 510 : Modulator 512 : Error Amplifier 520 : Energy Storage Units 522 528 528 : Switch 530 : Sampling - Integrating Unit 540 : Energy Storage Units 542 - 548 : Switch 550 : Sampling-integrating unit 570: output signal 572: output signal 600: graph 700: multi-channel analog/digital converter 706 · digital/analog converter 710: regulator 711: feedback signal 713: feedback signal 714: digital / Analog Converter 720: Energy Storage Units 722 to 728: Switch 730: Feedforward Forward Circuit 800: Flowchart 802 to 818: Steps Cil to Ci4: Integration Capacitance CilA to Ci4A: Integration Capacitor 33 201218646

CilB〜Ci4B :積分電容 Si〜S2 :階段 $1八〜§4八:開關CilB~Ci4B: Integral Capacitor Si~S2: Stage $1 VIII~§4 VIII: Switch

SlB〜S4B :開關 Sic〜S4C :開關 ScLK :時脈信號 Fi-F# :數位濾波器 丁1〜丁5 :時脈週期 PH^PHb :信號 v[〜v4:類比電壓信號 Vref :參考電壓 ⑧ 34SlB~S4B: Switch Sic~S4C: Switch ScLK: Clock signal Fi-F#: Digital filter D1 to D5: Clock cycle PH^PHb: Signal v[~v4: Analog voltage signal Vref: Reference voltage 8 34

Claims (1)

201218646 七 申請專利範圍: 1· 一種類比/數位轉換器,包含: 一輸入通道,接收一類比信號; 一第-採樣·積分單元,從該輸人通道接_類 =類=信號進行採樣’對一第一回授信號和‘二 *的-第-採樣信號的一重疊部分進行積分二 第一輪出信號; 生 —第二採樣·齡單元,以接收該第_輸出錢 號稍採樣、及對_第二回授信號和該第= 。』的祕彳5號的-重疊部分進行積分,並 ^輪出㈣’其中’辦―採樣積分單元和該第二: 與第每個/純含―第—能量存儲單元及 -能量:接的—第—開關陣列以控制該第 :回=路’與該第一採樣·積分單元及該第二採樣-積分 ==:=號產生一數位信號,並提 第-第1項的類比/數位轉換器,其中,該 元更進i步包m第二採樣_積分單元中的每個單 =導通〇umed⑻時儲存來自該第—能量儲存單元之電 ί::::第1項的類比/數位轉換器,其中’該 私樣_積分早破進―步包含—誤差放大H,以將- 35 201218646 參考信號與該第一回庐产 4. 部分‘=:=祕 二-:二::二圍第1項的類比/數位轉換器,i中,該 第一抹樣-積分早元更進— 參考信號與該第二回汁⑼差放大11 ’以將一 5. 信號的該重疊部分進:車一輸出信賴該採樣 如申請專利範圍第丨1§w、’產疾差信號。 回授電路包含與該第二轉換器’财’該 —^樣-積为單元耦接的一比較器, 第一輸出仏號與-參考信號進行比較 較器輸出信號。 ⑽m座生比 6' f 含與該比較_接的—多工器,以 7. 根據该比較n輸出錢提供魏健號。 如申請專利範圍第1IM的類比/數位 8. 回授、電。路包含分別與該第-採樣-積分單元和該第:採 _積刀單7C耦接的一數位/類比轉換器。 ^請專利範圍第1項的類比後位轉換器,更進-步 -順向前饋電路,與該輸人通道 進行採樣並提供該類比信號的 號 # _1樣積分單元透過對兮第 :輸出㈣的該採樣信號、該類比信號的該第二^ 授信號的一重疊部分進行積分以產辑 9·如申請專利範圍第8項的類比/數位轉換器,其中,該 36 201218646 順向前饋電路包含一第二能量存儲單元及一第二開關陣 列,其中,該第二開關陣列與該第二能量存儲單元耦接 以控制該第二能量存儲單元。 37201218646 Seven patent application scope: 1. An analog/digital converter, comprising: an input channel, receiving an analog signal; a first-sampling and integrating unit, sampling from the input channel _ class = class = signal ' Integrating a first feedback signal and an overlap portion of the 'two*-first-sampling signal into two first round-out signals; generating a second sampling-age unit to receive the _th output money number for sampling, And the _ second feedback signal and the first =. The secret of the 5th - overlap part is integrated, and ^ turns out (four) 'where' do-sampling integration unit and the second: with each / pure containing - the first - energy storage unit and - energy: connected - a first switch array to control the first: return = way 'and the first sample and integration unit and the second sample - integral ==:= number to generate a digital signal, and to mention the analogy/digit of the first item a converter, wherein the element further enters the i-packet m, the second sample_each unit in the integration unit = when the 〇umed(8) is turned on, the analogy of the first item from the first-energy storage unit is stored/ Digital converter, where 'the private sample_integration breaks into the step-inclusive-error amplification H, to -35 201218646 reference signal and the first return yield 4. Part '=:= secret two-: two:: In the analog/digital converter of item 1, the first smear-integral is further advanced - the reference signal and the second juice (9) are differentially amplified by 11' to the overlap of a 5. signal. In: The car one output relies on the sampling, such as the patent application scope 丨1§w, 'product difference signal. The feedback circuit includes a comparator coupled to the second converter, the first output signal and the reference signal are compared to the comparator output signal. (10) The m-seat ratio 6'f contains the multiplexer connected to the comparison_ to 7. Provide the Wei Jian according to the comparison n output money. For example, the analogy/digit of the patent scope 1IM. 8. Feedback, electricity. The circuit includes a digital/analog converter coupled to the first sampling-integrating unit and the first sampling unit 7C. ^Please refer to the analogy back-position converter of the first item of the patent range, the further step-step forward feed circuit, sample with the input channel and provide the number of the analog signal # _1 like integral unit through the confrontation: output And (4) integrating the sampling signal and an overlapping portion of the second signal of the analog signal to produce an analogy/digital converter according to item 8 of the patent application scope, wherein the 36 201218646 is forward-feeding The circuit includes a second energy storage unit and a second switch array, wherein the second switch array is coupled to the second energy storage unit to control the second energy storage unit. 37
TW100132532A 2010-09-13 2011-09-09 Analog to digital converter TWI496421B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/880,939 US8193959B2 (en) 2008-02-06 2010-09-13 Analog to digital converters

Publications (2)

Publication Number Publication Date
TW201218646A true TW201218646A (en) 2012-05-01
TWI496421B TWI496421B (en) 2015-08-11

Family

ID=45885856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100132532A TWI496421B (en) 2010-09-13 2011-09-09 Analog to digital converter

Country Status (2)

Country Link
CN (1) CN102404007B (en)
TW (1) TWI496421B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401556B (en) * 2013-08-13 2016-08-10 哈尔滨工业大学 The signal reconfiguring method of multi-path parallel signal acquisition system based on comparator
EP2887553B1 (en) * 2013-12-18 2018-07-18 Nxp B.V. A/D converter input stage providing high linearity and gain matching between multiple channels
CN104300986B (en) * 2014-09-19 2018-06-19 上海联影医疗科技有限公司 A kind of high-precision feedback control and measuring circuit
CN107495958A (en) * 2017-08-15 2017-12-22 上海市奉贤区中心医院 A kind of cervical neural signal record method
CN107907866B (en) * 2017-12-15 2020-02-18 深圳先进技术研究院 Circuit, method and device for array radar signal digitization
US11399149B2 (en) * 2019-07-25 2022-07-26 Cirrus Logic, Inc. Flexible latency-minimized delivery and management of disparate-rate data streams and sub-streams for processing
WO2024082732A1 (en) * 2023-06-01 2024-04-25 杭州万高科技股份有限公司 Analog-to-digital converter integrated with reference voltage generation, and calibration method
CN117579074A (en) * 2023-11-15 2024-02-20 珠海科创储能科技有限公司 Signal sampling circuit, signal sampling method, signal sampling device and storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150120A (en) * 1991-01-03 1992-09-22 Harris Corp. Multiplexed sigma-delta A/D converter
JPH07162312A (en) * 1993-12-07 1995-06-23 Nec Corp Noise shaper
US6040793A (en) * 1998-03-18 2000-03-21 Analog Devices, Inc. Switched-capacitor sigma-delta analog-to-digital converter with input voltage overload protection
JP2006115003A (en) * 2004-10-12 2006-04-27 Sony Corp Sample-hold circuit and pipeline a-d converter using the same
US7245247B1 (en) * 2006-02-16 2007-07-17 Sigmatel, Inc. Analog to digital signal converter having sampling circuit with divided integrating capacitance
US7436336B2 (en) * 2006-12-19 2008-10-14 Broadcom Corporation Analog digital converter (ADC) having improved stability and signal to noise ratio (SNR)
US7796069B2 (en) * 2008-02-06 2010-09-14 02Micro International Limited Analog to digital converters

Also Published As

Publication number Publication date
CN102404007A (en) 2012-04-04
CN102404007B (en) 2014-04-23
TWI496421B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
TW201218646A (en) Analog to digital converter
US7796069B2 (en) Analog to digital converters
CN100471068C (en) High precision analog to digital converter
US7304594B2 (en) Transmitting and receiving device and transmitting device and receiving device
US8193959B2 (en) Analog to digital converters
TWI489792B (en) Multi-level feed-back digital-to-analog converter using a chopper voltage reference for a switched capacitor sigma-delta analog-to-digital converter
TW200830729A (en) Improved offset cancellation and reduced source induced 1/f noise of voltage reference by using bit stream from over-sampling analog-to-digital converter
TWI312619B (en) Delta-sigma analog to digital converter and method thereof
CN111162787B (en) Successive approximation type analog-to-digital converter with passive noise shaping
US20080303703A1 (en) Cross-Coupled Switched Capacitor Circuit with a Plurality of Branches
EP0734125A1 (en) Delta sigma analog-to-digital converter
US7796071B2 (en) Processing signals of a capacitive feedforward filter
TW200407586A (en) Time-interleaved delta sigma analog to digital modulator
CN105432019A (en) Energy-efficient system for distant measurement of analogue signals
EP2308174A1 (en) Method and apparatus for matched quantum accurate feedback dacs
CN104656524A (en) Multi-channel synchronous sampling holding circuit as well as digital sampling circuit and relay protection device
US10284222B1 (en) Delta-sigma converter with pre-charging based on quantizer output code
EP2719080A1 (en) Multichannel analog to digital converter apparatus and method for using
CN103688469B (en) The method and device of data conversion is performed using non-uniform quantizing
EP2088677A1 (en) Analog to digital converters
ES2364867T3 (en) MULTICHANNEL A / D CONVERTER.
JP2017153051A (en) Incremental delta-sigma modulator and incremental delta-sigma a/d converter
TW201128958A (en) Multi-channel analog digital conversion circuit and analog digital conversion method thereof
CN214544336U (en) APD bias voltage output device for quantum communication equipment
EP4322427A1 (en) Optical receivers