TW201218179A - Multi-view display device - Google Patents

Multi-view display device Download PDF

Info

Publication number
TW201218179A
TW201218179A TW100133651A TW100133651A TW201218179A TW 201218179 A TW201218179 A TW 201218179A TW 100133651 A TW100133651 A TW 100133651A TW 100133651 A TW100133651 A TW 100133651A TW 201218179 A TW201218179 A TW 201218179A
Authority
TW
Taiwan
Prior art keywords
backlight
display
illumination
mode
display panel
Prior art date
Application number
TW100133651A
Other languages
Chinese (zh)
Inventor
Marcellinus Petrus Carolus Michael Krijn
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201218179A publication Critical patent/TW201218179A/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays

Abstract

A display device has a backlight arrangement which has a first backlight device for generating illumination in the form of a set of spaced lines. This is used to illuminate the display panel to project different images to different spatial locations and thereby provide multi-view output. A second backlight device is for generating illumination in the form of a continuous area of illumination covering the backlight area. This is for a single-view mode.

Description

201218179201218179

II

I 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種包括具有用於產生一顯示之—顯示像 素陣列之-顯示面板及用於將不同畫面引導至不同空間位 * 置之一成像配置之類型的多重畫面顯示裝置。 【先前技術】 多重畫面顯示裝置可用於將不同畫面提供至不同位置 (例如’-駕駛員及其前座乘客)或用於產生一自動立體顯 示輸出。了文之此詳細描述係基於一自動立體顯示器,但 疋所述概念同樣適用於多重晝面顯示器。 在此類型之顯示器中使用之一成像配置之一第一實例係 -視差屏障’例如該視差屏障具有相對於顯示器之下伏像 素而:大小及定位之狭縫。在一自動立體顯示器之情形 中,若觀看者的頭部在一固定位置,則他/她可感知一 3D 〜像S障係疋位力顯示面板的前面且經設計使得來自奇 數像素行與偶數像素行之光被引導朝向觀看者的左眼與右 眼。因此,觀看者以左眼與右眼感知一影像的不同晝面, 建立3D體驗。或者,屏障使得該等晝面被分離成致使其等 . 纟容許*同觀看者相該等畫面之-者之位置結束的一程 - 度以建立一雙晝面2D顯示器。 此類型之兩個晝面3D顯示器設計之一缺點在於觀看者須 在一固定位置,且僅可向左或向右移動約3 em。在一更佳 只化例中#名夾縫下並非為兩個子像素行,而為若干個 子像素行。以此方;气,容許觀看著向左及向右移動且在觀 I58301.doc 201218179 看者眼中一直感知一立體影像。 視差屏障配置容易生產但是光效率低。因此,一較佳替 代為使用一透鏡配置作為成像配置。舉例而言,可提供長 形雙凸透鏡元件之-陣列,該等雙凸透鏡元件彼此平行地 延伸且上覆於顯示像素陣列,並 平亚且透過此等雙凸透鏡元件 觀察顯示像素。 一:等雙凸透鏡元件係設置成一元件薄板,其之各者包括 +31㈣& ^件1等雙凸透鏡元件在顯示面板 。“申*中各雙凸透鏡元件上覆於兩個或更多 個郇近之顯示像素行的一各自群組。 在其中例如各雙凸透鏡與兩行顯示像素相關聯之一配置 k顯㈣素提供—各自二料影像的—垂直圖 s似。6亥雙凸透鏡薄板將此兩個圖塊及來自盥盆他雙 鏡相關聯之顯示像素行之對應圖塊引導至定位於該薄 板則面之一使用者的左眼 „一 ^ 艮/、右眼,使得該使用者觀察到一 早一立肢影像0因此, m . 又凸透鏡70件溥板提供一光輸出引 导工力成0 鄰近顯示像::丄各雙凸透鏡係與列方向上四個或更多個 行經適心配置h群组相關聯。各群組中之對應顯示像素 :二:配置以提供來自-各自二維子影像之-垂直圖 續、不同的立體書面建Γ 感知到一系列連 印象。 —面,建立例如身歷其境(look-around)的 上述裝置提供—有效三維顯示。“,應心,為提供 158301.doc 201218179 二體畫面,必須犧牲裝置的水平解析度。對於某些應用 。如顯不小文字字元以從短距離觀看广解析度上之此 牲是令人無法接受的。出於此原因,已提出提供一種可在 隹模式/、—維(立體)模式之間切換的顯示裝置。 實:此之彳式為提供一電可切換的雙凸透鏡陣列。在 一’准杈式中’可切換裝置之雙凸透鏡元件操作於一「通 ^」杈式t ’亦即’該等雙凸透鏡元件以與光學透明材料 之二平面型薄板相同的方式作用。所得顯示具有等於顯示 面之=解析度的一高解析度’其適於從短觀看距離顯 T文子子凡。當然’二维顯示模式無法提供一立體影 像。 列失仍為3D模式中之一問題。一主要困境係由下 量的方面,對於—良好3D印象,每角度需要大 ㈣旦’且另一方面’對於一足夠高之解析度(亦即, 像素之數目),每視角需要少量的畫面。 大量畫面意指每晝面之影像解析度減小,因為顯示面板 之可用像素之總數目必須在該等晝面之間分佈。相對於20 :形’,具有垂直雙凸透鏡之一 n晝面3D顯示器之情形 ,沿者水平方向之各晝面之感知解析度將減小至。 ^直方向上’解析度將保持相同。使用一傾 凸透鏡可減小水平方向上之解析度與垂直方向上之解析度 之間之此像差。在該情形中,解 又 水平方向與*直方向之間。度“可均勻地分佈在 存在與使用可切換之雙凸透鏡相關聯之許多問題。 158301.doc 201218179 須極小心地選擇LC層及複製品之材料參數以免在扣模 式中得到一殘餘透鏡作用。當在一角度下觀看顯示器時仍 可能存在一殘餘透鏡作用。換言之,2D模式受損。複製品 之形狀須極為精確且一基於LC之可切換雙凸透鏡極為『 責。 p 因此’需要—種用於實現不具有上述缺點之一單—書 面-多重晝面可切換顯示的替代方法。 【發明内容】 本心明之—目的係提供一種交替型單一-多重晝面顯示 裝置。本發明係由獨立技術方案定義。附屬技術方案提供 有利實施例。 根據本發明’提供-種如技術方案1之多重晝面顯示裝 置。 本發明之裝置具有一背光配置,該背光配置具有用於產 〜:間隔線形式之照明的一第一背光裝置。此係用於 照亮顯示面板以將不同影 个1』〜像匕影至不同空間位置且藉此提 供多重畫面輸出。提供_坌_ 弟—背光裝置,其用於產生呈覆 盍为光輸出區域之一;袭择肪。。 連’’、、、明區域之形式的照明。此係用 於一單一晝面模式。 此方法將措施定位於. _ 、在員不面板後面而非該顯示面板前 面提供單一晝面-多重全 忠面切換,作為背光設計之一部 分0 當該裝置操作於一單一查 3面槟式時,兩個背光裝置均被 …、冗’而在一多重書而p丄、 一 故式時,僅該第一背光裝置被照 158301.doc 201218179 亮。 各背光裝置可包括一邊緣發光型照明面板。此意指一成 熟技術可用於該兩個背光配置。 β玄弟一背光配置之該組間隔線可由該面板之一表面上之 刷塗區域或由該面板之一表面上之表面輪廓定義。 本發明可用於一自動立體顯示裝置或用於一多重晝面顯 示器。 本發明亦提供一種如技術方案丨丨之操作一顯示裝置的方 法。 【實施方式】 現將參考附圖僅藉由實例描述本發明之一實施例。 圖1之已知裝置1包括主動矩陣類型之—液晶顯示面板 3,其用作一空間光調變器以產生顯示。顯示面板亦可為 被動類型(例如在較小面積顯示器之情形中)。 該顯示面板3具有配置成列及行的顯示像素5之一正交陣 列。為清楚之故’圖式中僅展示少量顯示像素5。實務 上顯不面板3可包括約一千列及數千行的顯示像素$。 液晶顯示面板3之結構係完全習知的。特定言之,面板3 =—對間隔開的透明玻璃基板,於其間設置—對準的扭 型:其他液晶材料。該等基板在其相面對的表面上 上pH化銦錫(IT〇)f極㈣。在料基板之外表面 上亦s又置偏光層。 各顯示像素5包括在該等基板上之 電極之間目士 λ 成寻相對 "液晶材料。顯示像素5之形狀及佈局係 15830l.doc 201218179 由電極之形狀及佈局決定。該等顯示像素5係藉由間隙而 有規則地彼此間隔開。 各顯示像素5係與諸如一薄膜電晶體(TFT)或薄膜二極體 (TFD)之一切換元件相關聯。該等顯示像素經操作以藉由 將定址信號提供至該等切換元件而產生顯示,且熟悉此項 技術者將知道適當的定址方案。 顯示面板3係由一光源7照亮,在此情形中,該光源7包 括在顯示像素陣列之區域上延伸的—平面型背光。透過顯 示面板3引導來自光源7之光,其中個別顯示像素5經驅動 以調變光並且產生顯示。 該顯示裝置!亦包括一雙凸透鏡薄板9,該雙凸透鏡薄板 9係配置於顯示面板3之顯示側上且執行一畫面形成功能。 該雙凸透鏡薄板9包括彼此平行延伸的一列雙凸透鏡元件 Η,為清楚之故,僅以放大尺寸顯示其中之一者。 ,該等雙&透鏡元件U為圓柱形凸透鏡之形式,且其等充 當一光輸出引導槿孙,w脱也a s _ 午乂將來自顯示面板3之不同影像或 -面提供至定位於顯示裝置】前面之一使用者之眼睛。 圖1亦示意性展示用於驅動顯示裝置的-控制器13。 圖1所展不之自動立轉雜+壯 .’、、不裝置1能夠在不同方向上提供 若干不同透視圖。特定+ ’、 5之’各雙凸透鏡元件11上覆於各 列中之小群組 之.,.,員不像素5。雙凸透鏡元件u在不同方向 上投影一群組之各顯 岭— ,.’貞不像素5 ’以便形成若干不同晝面。 酼者使用者頭部從左向 #1Π右移動’觀看者的眼睛將輪流接收 右干畫面之不同者。 I5830I.doc 201218179 1 熟悉此項技術者應明白,由於液晶材料係雙折射的,而 且折射率切換僅應用於一特定偏振之光,所以一偏光構件 必須結合上述陣列一起使用。偏光構件可設置成該裝置之 顯示面板或成像配置的一部分。 - 圖2展示如上所述之一雙凸透鏡類型成像配置的操作原 • 理且展示背光20、顯示裝置24(諸如一 LCD)及雙凸透鏡陣 列28。圖2展示雙凸透鏡配置28如何將不同像素輸出引導 至不同空間位置。 本發明係基於使用一條式背光以在不同方向上照亮不同 像素,以產生多重空間分離畫面《為在2D(亦即,單一晝 面)模式與3D(亦即’多重晝面)模式之間提供可切換性, 設置一第二背光。 圖3展示本發明之一顯示器之一實例。 在圖3中,基於一規則LCD面板30(例如,諸如對圖j之 已知裝置所描述之面板)且結合兩個背光32、34展示一 2D 至3D可切換顯示器。 兩個背光係基於一光導。若干LED 36之光係從一或多個 邊緣耦合至各光導中。光藉由實質上無損失的全内反射 (TIR)在此光導内行進。光係藉由一出耦合結構而從光導 . 中耦合出。該出耦合結構可由塗料點或塗料線組成。或 者’其可由具有一特定形狀或粗糙度的表面壓痕組成。 對於實現一 3D模式之第一邊緣發光型光導32,出耦合結 構由以某一距離(圖3中之piine)間隔開之薄平行線33之一圖 案組成。結果將為線源之圖案。此等線源結合lcd面板之 158301.doc 201218179 像素可實現3D呈現:相關於一下伏線源之位置的各像素之 位置決定-晝面方向。各像素對應於若干類似晝面(等效 於雙凸透鏡配置中產生之重複晝面現象)。存在若干視 錐,在每-錐内具有唯-晝面。各視錐之角大小為(近似 值): 9r =nFjJ2£. d 此處,η為在像素與線源之間之材料之有效折射率,而d 為像素與線源之間之實體距離。 圖4更清楚地展示如何形成多重畫面,例如3晝面,、 V2、V3。在此實例中,發光線(Ught Hne)之間之間距係 (子)像素間距的整數倍,使得各發光線對上方之像素產生 相同組之角度。以此方丨’從各發光線產生相同組之照明 方向。虛線展示在下個視錐中產生的晝面重複。 然而,間距不必一定為(子)像素間距的整數倍;亦容許 為非整數倍。此類似於其中在一顯示面板前面存在具有為 子像素間距之非整數倍之一間距的一雙凸透鏡的情形。此 有助於減小由具有黑矩陣之像素陣列及雙凸透鏡陣列之週 期性特性所引起的莫爾(m〇ir0)效應。 視域之總寬度將受限於光導内的全内反射-因為在—給 疋角度之外,來自線光源之光將不會從光導處逃逸,.且將 在該光導内繼續一全内反射路徑,直至其再次藉由光源散 射。離開光導之光線將在多達9〇度之角度下離開該光導。 當行進通過顯示面板時,此等光線朝垂直於面板之一方向 折射且不會滿足TIR條件。因此,離開光導之所有光線將 15830l.doc 201218179 可行進通過該面板。 在線源平行於像素行之情形中,唯一晝面之數目等於 Nview=pline/Ppixel,其中ppixei為子像素大小。在線源相對於 像素行傾斜之情形中,此數目較大(例如,在傾斜1/6的情 形中,該數目為 Nview=2 pline/ppixel)。 線源之寬度應為小的(圖3中之wnne)。實務上,其應不超 過子像素間距ppixel。若線源寬度過大,則個別3D畫面將變 寬至令人無法接受之一位準。 第二邊緣發光型光導34實現一 2D模式,且類似於第—光 導32,不同之處在於第二邊緣發光型光導34提供LCD面板 之一均勻照明。此光導上之出耦合結構使得可獲得一均勻 照明。該第一光導32對於由第二光導所產生之光係大體上 透明的。 對於第一光導32,由線源發射之光應僅朝LCD面板發 射:往錯誤方向發射之光可從第二光導之出耦合圖案散射 且導致各3D晝面中之對比度的損失。 達成此之一方式為對出耦合結構使用白色塗料,其足夠 厚而使光無法通過或塗有一吸收或反射層。 對於第一光導32,發光線之寬度可跨越光導而變化以確 保各線產生相同量的光。在所有線之寬度相同之情形中, 離LED最遠之線將比其他者產生更少光,此係因為在該位 置,較少光留在光導内。 對於第一光導32,出耦合結構不必一定由直線組成,儘 管如此是較佳的。該等線可為交錯的。該結構亦可為線段 158301.doc -11 - 201218179 的一二維圖案。 在兩個光導32、34之間可定位一擴散器以在2D模式中提 供一更均勻照明。 在2D模式中,用於3D模式之第一光導32之LED應經驅動 使得由第一光導32之發光線所產生之強度等於由第二(2D 模式)光導34所發射之光的強度。此確保第一光導32之發 光線在2D模式中保持不可見。 第二光導34可為傳遞一均勻照明的任何普通背光技術, 包含無需光導的技術。 因此本發明提供一種可切換的多重晝面顯示器,該多重 畫面顯示器具有用於一單一畫面(例如,2D)模式之一規則 背光且在此背光與一 LCD面板之間存在緊密地間隔開之窄 線源之一陣列。較佳言之,線源陣列係由具有線形出耦合 結構的一邊緣發光型光導產生。此等線源產生朝向LCD面 板引導(而非在朝向規則背光之相反方向上)的光。 在3D模式中,關閉負責2D模式之背光,而在2〇模式 中切換負責3 D模式之線源以便發射遮掩其存在之一光位 準〇 可由控制器(圖1中之〗3)且在一電腦程式之控制下實施 模式間之切換。可由使用者手動執行模式切換,或者可基 於摘測正被顯不之影像内容之格式而自動實施模式切換。 一潛在問題為小型像素引起之光繞射,其可導致加寬之 畫面。 歸因於繞射,一光線(在相同方向上行進之光子之一集 15830 丨.docI. Description of the Invention: [Technical Field] The present invention relates to a display panel including a display pixel array for generating a display and for guiding different images to different spatial positions. A multi-screen display device of the type configured. [Prior Art] A multi-picture display device can be used to provide different pictures to different locations (e.g., the driver and its front passenger) or to generate an auto-stereoscopic output. This detailed description is based on an autostereoscopic display, but the concept is equally applicable to multiple faceted displays. One of the imaging configurations used in this type of display is a first example - a parallax barrier - for example, the parallax barrier has a slit relative to the underlying pixels of the display: size and positioning. In the case of an autostereoscopic display, if the viewer's head is in a fixed position, he/she can perceive a 3D to the front of the S-block force display panel and is designed to be from odd pixel rows and even numbers. The light of the pixel row is directed toward the left and right eyes of the viewer. Therefore, the viewer perceives different images of an image with the left eye and the right eye to establish a 3D experience. Alternatively, the barrier causes the faces to be separated such that they are allowed to wait for the end of the position of the picture with the viewer to establish a double-sided 2D display. One disadvantage of the two faceted 3D display designs of this type is that the viewer must be in a fixed position and can only move about 3 em to the left or right. In a better case, the name is not two sub-pixel rows but several sub-pixel rows. With this side; gas, allowing viewing to move left and right and in the eyes of the viewer I8301.doc 201218179 always perceive a stereoscopic image. The parallax barrier configuration is easy to produce but has low light efficiency. Therefore, a preferred alternative is to use a lens configuration as the imaging configuration. For example, an array of elongate lenticular elements can be provided that extend parallel to one another and overlie the array of display pixels, and view the display pixels through the lenticular elements. A: The lenticular lens element is arranged as a thin component plate, each of which comprises a +3 (four) & 1 member lenticular lens element on the display panel. Each of the lenticular elements in the application is overlaid on a respective group of two or more adjacent display pixel rows. In which, for example, each lenticular lens is associated with one of the two rows of display pixels. - a vertical image of the respective two images. The 6-Hall lenticular sheet guides the two tiles and the corresponding blocks of the display pixel rows associated with the double-mirror mirror to one of the faces of the thin plate. The user's left eye „一^ 艮/, right eye, so that the user observes an early limb image 0. Therefore, the convex lens 70 pieces of the slab provides a light output guiding force to 0 adjacent display image:: Each of the lenticular lens systems is associated with four or more rows in the column direction via a suitably configured h group. Corresponding display pixels in each group: 2: configured to provide a vertical image from the respective two-dimensional sub-images, and different stereoscopic drawings to perceive a series of connected impressions. To create a three-dimensional display, such as a look-around, is provided. "It should be noted that in order to provide the 158301.doc 201218179 two-body screen, the horizontal resolution of the device must be sacrificed. For some applications, it is impossible to view the wide-resolution characters from a short distance. For this reason, it has been proposed to provide a display device that can be switched between a 隹 mode/, a dimensional (stereo) mode. Actually, this is to provide an electrically switchable lenticular lens array. The lenticular elements of the 'quasi-type' switchable device operate in a "pass" manner, that is, the lenticular elements act in the same manner as the two planar sheets of optically transparent material. The resulting display has a high resolution equal to the resolution of the display surface, which is suitable for displaying the text from a short viewing distance. Of course, the 2D display mode does not provide a stereo image. Column loss is still one of the problems in 3D mode. A major dilemma is due to the fact that for a good 3D impression, each angle requires a large (four) denier and on the other hand 'for a sufficiently high resolution (ie, the number of pixels), a small amount of picture is required per view. . A large number of pictures means that the image resolution of each face is reduced because the total number of available pixels of the display panel must be distributed between the faces. With respect to the 20: shape', with one of the vertical lenticular lenses, the perceptual resolution of each of the sides along the horizontal direction will be reduced. The 'straight direction' resolution will remain the same. The use of a tilting convex lens reduces the aberration between the resolution in the horizontal direction and the resolution in the vertical direction. In this case, the solution is again between the horizontal direction and the * straight direction. The degree "can be evenly distributed in the presence of many problems associated with the use of switchable lenticular lenses. 158301.doc 201218179 The material parameters of the LC layer and the replica must be carefully selected to avoid a residual lens effect in the buckle mode. There may still be a residual lens effect when viewing the display at an angle. In other words, the 2D mode is damaged. The shape of the replica must be extremely precise and an LC-based switchable lenticular lens is extremely responsible. p therefore needs to be implemented An alternative method of single-written-multiple facet switchable display that does not have one of the above disadvantages. [Invention] It is an object of the present invention to provide an alternate single-multiple facet display device. The present invention is defined by an independent technical solution. The accompanying technical solution provides an advantageous embodiment. According to the present invention, there is provided a multi-faceted display device as in claim 1. The device of the present invention has a backlight configuration having illumination for the production of ~: spacer lines a first backlight device. This is used to illuminate the display panel to change the different images to the image. The same spatial position and thereby providing multiple picture output. Providing _坌_ brother-backlight device for generating the presentation 之一 as one of the light output areas; attacking the fat.. even in the form of '',,, and bright areas Illumination. This method is used in a single kneading mode. This method locates the measure at . _ , providing a single face behind the panel instead of the display panel - multiple full-face switching, as part of the backlight design 0 When the device is operated in a single check, the two backlight devices are both erroneously and in a multi-book, and the first backlight device is illuminated. 158301.doc 201218179 Each backlight device may include an edge-emitting illumination panel. This means that a mature technology can be used for the two backlight configurations. The group of spacers in the backlight configuration can be brushed on the surface of one of the panels. Or defined by the surface profile on one surface of the panel. The invention can be used in an autostereoscopic display device or in a multi-faceted display. The invention also provides a display device as in the technical solution [Embodiment] An embodiment of the present invention will now be described by way of example only with reference to the accompanying drawings. The known device 1 of Fig. 1 includes an active matrix type liquid crystal display panel 3, which is used as a spatial light modulation. The display panel can also be of a passive type (for example in the case of a smaller area display). The display panel 3 has an orthogonal array of display pixels 5 arranged in columns and rows. Only a small number of display pixels 5 are shown in the formula. The practical display panel 3 may include about one thousand columns and thousands of rows of display pixels $. The structure of the liquid crystal display panel 3 is completely known. In particular, the panel 3 = The spaced apart transparent glass substrates are provided with an aligned twist type: other liquid crystal materials. The substrates are pH indium tin (IT〇) f poles (4) on their facing surfaces. A polarizing layer is also disposed on the outer surface of the substrate. Each of the display pixels 5 includes a mesh λ relative to the liquid crystal material between the electrodes on the substrates. The shape and layout of the display pixel 5 is 15830l.doc 201218179 is determined by the shape and layout of the electrodes. The display pixels 5 are regularly spaced apart from each other by a gap. Each display pixel 5 is associated with a switching element such as a thin film transistor (TFT) or a thin film diode (TFD). The display pixels are operative to produce a display by providing an address signal to the switching elements, and those skilled in the art will be aware of suitable addressing schemes. The display panel 3 is illuminated by a light source 7, which in this case comprises a planar backlight extending over the area of the array of display pixels. Light from source 7 is directed through display panel 3, with individual display pixels 5 being driven to modulate light and produce a display. The display device also includes a lenticular lens sheet 9 which is disposed on the display side of the display panel 3 and performs a screen forming function. The lenticular lens sheet 9 includes a row of lenticular lens elements 平行 extending in parallel with each other, and for clarity, only one of them is shown in an enlarged size. The double & lens element U is in the form of a cylindrical convex lens, and the like serves as a light output guiding the grandson, and the w is also provided as a different image or surface from the display panel 3 to be positioned to display Device] The eye of one of the front users. Figure 1 also schematically shows a controller 13 for driving a display device. Figure 1 shows that the automatic device does not have a different perspective. Each of the lenticular lens elements 11 of the specific +', 5' is overlaid on a small group of the columns, and the member is not the pixel 5. The lenticular lens element u projects a sensation of a group in different directions - . . . not a pixel 5 ' to form a number of different faces. The user's head moves from left to #1Π right. The viewer's eyes will alternately receive the difference in the right-hand picture. I5830I.doc 201218179 1 Those skilled in the art will appreciate that since the liquid crystal material is birefringent and the refractive index switching is applied only to a particular polarized light, a polarizing member must be used in conjunction with the array described above. The polarizing member can be provided as part of the display panel or imaging configuration of the device. - Figure 2 shows the operational principle of one of the lenticular-type imaging configurations as described above and shows the backlight 20, display device 24 (such as an LCD) and lenticular array 28. Figure 2 shows how the lenticular configuration 28 directs different pixel outputs to different spatial locations. The present invention is based on the use of a single backlight to illuminate different pixels in different directions to produce a multi-space separation picture "between 2D (ie, single facet) mode and 3D (ie, 'multiple facet" mode). Provides switchability and sets a second backlight. Figure 3 shows an example of one of the displays of the present invention. In Fig. 3, a 2D to 3D switchable display is shown based on a regular LCD panel 30 (e.g., a panel such as that described with respect to known devices of Fig. j) in combination with two backlights 32,34. The two backlights are based on a light guide. A plurality of LEDs 36 are coupled from one or more edges to each of the light guides. Light travels within the light guide by substantially lossless total internal reflection (TIR). The light system is coupled out of the light guide by a coupling structure. The outcoupling structure can be composed of paint spots or paint lines. Or it may consist of a surface indentation having a specific shape or roughness. For the first edge-emitting light guide 32 implementing a 3D mode, the out-coupling structure is composed of one of the thin parallel lines 33 spaced apart by a certain distance (piine in Fig. 3). The result will be the pattern of the line source. These line sources are combined with the lcd panel 158301.doc 201218179 pixels to achieve 3D rendering: the position of each pixel relative to the position of the underlying line source determines the direction of the facet. Each pixel corresponds to a number of similar faces (equivalent to the repeated facet phenomenon produced in a lenticular configuration). There are several cones with a 昼-昼 plane in each cone. The angle of each cone is (approximate): 9r = nFjJ2£. d where η is the effective refractive index of the material between the pixel and the line source, and d is the physical distance between the pixel and the line source. Figure 4 shows more clearly how to form multiple pictures, such as 3 ,, V2, V3. In this example, the distance between the illuminating lines (Ught Hne) is an integer multiple of the pitch of the (sub)pixels such that each of the illuminating lines produces the same set of angles for the pixels above. In this way, the same group of illumination directions are generated from the respective illumination lines. The dashed line shows the facet repeats produced in the next cone. However, the pitch does not have to be an integer multiple of the (sub)pixel pitch; it is also allowed to be a non-integer multiple. This is similar to the case where there is a lenticular lens having a pitch which is a non-integer multiple of the sub-pixel pitch in front of a display panel. This helps to reduce the m〇ir0 effect caused by the periodic characteristics of the pixel array having the black matrix and the lenticular lens array. The total width of the field of view will be limited by total internal reflection within the light guide - because outside the angle of the given angle, light from the line source will not escape from the light guide, and a total internal reflection will continue within the light guide. Path until it is again scattered by the light source. Light leaving the light guide will leave the light guide at an angle of up to 9 degrees. When traveling through the display panel, the rays are refracted perpendicular to one of the panels and do not satisfy the TIR condition. Therefore, all the light leaving the light guide will travel through the panel 15830l.doc 201218179. In the case where the line source is parallel to the pixel row, the number of unique faces is equal to Nview=pline/Ppixel, where ppixei is the sub-pixel size. In the case where the line source is tilted with respect to the pixel row, this number is large (for example, in the case of a 1/6 tilt, the number is Nview=2 pline/ppixel). The width of the line source should be small (wnne in Figure 3). In practice, it should not exceed the sub-pixel pitch ppixel. If the line source width is too large, the individual 3D picture will be widened to an unacceptable level. The second edge-emitting light guide 34 implements a 2D mode and is similar to the first light guide 32, except that the second edge-emitting light guide 34 provides uniform illumination of one of the LCD panels. The outcoupling structure on this light guide allows a uniform illumination to be obtained. The first light guide 32 is substantially transparent to the light system produced by the second light guide. For the first light guide 32, the light emitted by the line source should only be emitted toward the LCD panel: light emitted in the wrong direction can be scattered from the out-coupling pattern of the second light guide and cause a loss of contrast in each 3D facet. One way to achieve this is to use a white coating for the outcoupling structure that is thick enough to prevent light from passing through or coated with an absorbing or reflecting layer. For the first light guide 32, the width of the illuminating lines can be varied across the light guide to ensure that the lines produce the same amount of light. In the case where the widths of all the lines are the same, the line farthest from the LED will produce less light than the other, because at this position, less light remains in the light guide. For the first light guide 32, the outcoupling structure does not have to be composed of straight lines, although this is preferred. The lines can be staggered. The structure can also be a two-dimensional pattern of line segments 158301.doc -11 - 201218179. A diffuser can be positioned between the two light guides 32, 34 to provide a more uniform illumination in the 2D mode. In the 2D mode, the LEDs of the first light guide 32 for the 3D mode should be driven such that the intensity produced by the illumination lines of the first light guide 32 is equal to the intensity of the light emitted by the second (2D mode) light guide 34. This ensures that the ray of the first light guide 32 remains invisible in the 2D mode. The second light guide 34 can be any conventional backlight technology that delivers a uniform illumination, including techniques that do not require a light guide. The present invention therefore provides a switchable multiple facet display having a regular backlight for a single picture (eg, 2D) mode and where there is a tightly spaced narrow gap between the backlight and an LCD panel An array of line sources. Preferably, the line source array is produced by an edge-emitting light guide having a linear out-coupling structure. These line sources produce light that is directed toward the LCD panel (rather than in the opposite direction toward the regular backlight). In the 3D mode, the backlight responsible for the 2D mode is turned off, and in the 2〇 mode, the line source responsible for the 3D mode is switched to emit a mask to hide its presence. The light level can be used by the controller (Fig. 1) and Switching between implementation modes under the control of a computer program. The mode switching can be performed manually by the user, or the mode switching can be automatically performed based on the format of the image content being displayed. A potential problem is the diffraction of light caused by small pixels, which can result in a widened picture. Due to diffraction, a ray (a set of photons traveling in the same direction 15830 丨.doc)

-12- 201218179 合)之角範圍將加寬一量: ΑΘ〇 =C~D~~,其中 c=l-2。 ^ pixel 常數 另一方面 P pixel ? 此處,λ為光的波長且單位量級的某 一個別晝面之角寬度為·· Αθ„The range of -12- 201218179 combined) will be widened by one amount: ΑΘ〇 = C~D~~, where c=l-2. ^ pixel constant On the other hand P pixel ? Here, λ is the wavelength of light and the angular width of one of the other planes is · „ „

其中11為像素與線源之間之材料夕古A 材科之有效折射率且d為像素 與線源之間之實體距離(參看圖3)。 要求由繞射引起之晝面加寬不超過_畫面之寬度換言 之,Δθ£)<Δθν。因此,要求:11 is the effective refractive index of the material between the pixel and the line source, and d is the physical distance between the pixel and the line source (see Figure 3). It is required that the width of the face caused by the diffraction does not exceed the width of the _ picture, in other words, Δθ£) < Δθν. Therefore, the requirements are:

Ppixel >〇 λ— ο η 連同一視錐大小: ec = n^-, d 其中Pnne為線源之間距且畫面之數目為Ppixel >〇 λ— ο η with the same cone size: ec = n^-, d where Pnne is the distance between the line sources and the number of pictures is

Nview = Piine/ppixel(以無傾斜為例),結果:Nview = Piine/ppixel (with no tilt as an example), the result:

Ppixe,&gt;cX^ , ec 作為貫例,若c=2,λ=450 nm(最壞情形:藍光), 15且θ(:_2〇。因此要求Ppixei&gt;39 μηι。此由當前像 素尺寸滿足。因此,實務上繞射將不起重要作用。 以上貝例使用一液晶顯示器。然而,當採用其他照明顯 示技術時,仍可獲得本發明之優點。本發明適用於使用一 照明源及一光閘(shutter)類型像素化顯示器的任何顯示器 配置。 已結合自動立體顯示器描述本發明。本發明亦可應用於 15830I.doc •13· 201218179 將不同影像提供至不同空間位置的多重晝面顯示器;但是 此等影像對於不同位置之不同觀看者通常為不同單像(2d) 影像(儘管其等對於不同觀看者亦可為不同立體影像或一 組合)。此類顯示器通常稱為雙畫面顯示器或分割式螢幕 顯示器。 如上所述,光出耦合結構可為塗有諸如塗料的一表面或 圖案化或塑形諸如三肖形凹槽(以改變反射角且藉此允許 從光導逃逸)的一表面或例如藉由噴砂而粗糙化=表面: 或者’可使用S光材料條,諸如麟光體(黃色)或有機發光 材料。在此情形中,可將藍光耦合至光導中, 產生及釋放白光。 先導 較佳實施方案對於單-畫面(2 D)模式將兩個光導開啟。 然而,此非為必要的,尤其是若第一背光之線源足夠小, 其等對第二背光產生之陰影不會被觀看者感知。若险影係 可感知的,則開啟第一背光以重新產生一均勾照明場w、 在研習圖式、揭示内容及隨附申請專利範圍[熟悉此 項技術者在實踐本發明中可理解且實現對所揭示之實施例 的其他變動。〇請專利範圍中,用詞「包括」不排= 他元::步驟’且不定冠詞「一」或「一個」不排除複數 個二一早-處理器或其他單元可滿足申請專利範圍令所述 之右干項目之功能。在互不相同之附屬請求項中述及某些 措施的純粹事實並不表示*能有利使用此等措施之組合。 -電腦程式可儲存/分佈於與其他硬體一起供應或作為其 他硬體之-部分的一適當媒體上’諸如一光學儲存媒體或 15830 丨.doc •14· 201218179 一固態媒體,但是亦可以其他方 万式々佈,诸如經由網際網 路或其他有線或無線電㈣統分佈。t請專利範圍中之任 何參考符號不應視為用於限制範疇。 【圖式簡單說明】 圖1係-已知自動立體顯示裝置的一示意性透視圖; 圖2展示一雙凸透鏡陣列如何將不同晝面提供至 * 間位置; = 圖3展示本發明之一顯示裝置·,及 圖4係用於更清楚地展示多重晝面產生。 【主要元件符號說明】 1 顯示裝置 3 液晶顯示面板 5 顯示像素 7 光源 9 雙凸透鏡薄板 11 雙凸透鏡元件 13 控制器 20 背光 24 顯示裝置 28 雙凸透鏡陣列/雙凸透鏡配置 30 顯示面板/規則LCD面板 32 背光/第一邊緣發光型光導 33 薄平行線 34 背光/第二邊緣發光型光導 158301.doc -15· 201218179Ppixe, &gt;cX^ , ec as a general example, if c=2, λ=450 nm (worst case: blue light), 15 and θ(:_2〇. Therefore Ppixei&gt;39 μηι is required. This is satisfied by the current pixel size. Therefore, the practice of diffraction will not play an important role. The above example uses a liquid crystal display. However, when other illumination display technologies are used, the advantages of the present invention can still be obtained. The present invention is applicable to the use of an illumination source and a light. Any display configuration of a shutter type pixilated display. The invention has been described in connection with an autostereoscopic display. The invention may also be applied to 15830I.doc • 13· 201218179 to provide different images to multiple faceted displays in different spatial locations; These images are typically different single-image (2d) images for different viewers at different locations (although they may be different stereo images or a combination for different viewers). Such displays are often referred to as dual-screen displays or splits. Screen display. As mentioned above, the light outcoupling structure can be coated with a surface such as a coating or patterned or shaped such as a three-Shaw groove (to change the reflection) a surface that is angled and thereby allowed to escape from the light guide or roughened, for example by sand blasting = surface: or 'a strip of S-light material, such as a spheroid (yellow) or organic luminescent material may be used. In this case, The blue light is coupled into the light guide to generate and release white light. The preferred embodiment of the prior art turns on the two light guides in a single-picture (2D) mode. However, this is not necessary, especially if the line source of the first backlight is sufficient Small, the shadows generated by the second backlight are not perceived by the viewer. If the danger is perceptible, the first backlight is turned on to regenerate a uniform illumination field w, in the study schema, reveal the content, and </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The indefinite article "a" or "an" does not exclude a plurality of two-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-one-of-one Measures The mere fact of application does not imply that * can be used in combination with such measures. - Computer programs can be stored/distributed on a suitable medium that is supplied with other hardware or as part of other hardware - such as an optical storage medium Or 15830 丨.doc •14· 201218179 A solid-state medium, but it can also be distributed in other ways, such as via the Internet or other wired or radio (four) systems. t Any reference symbol in the patent scope should not be considered BRIEF DESCRIPTION OF THE DRAWINGS [A brief description of the drawings] Fig. 1 is a schematic perspective view of a known autostereoscopic display device; Fig. 2 shows how a lenticular lens array provides different facets to an inter-* position; = Figure 3 shows One of the display devices of the present invention, and Figure 4, is used to more clearly show multiple facets. [Main component symbol description] 1 Display device 3 Liquid crystal display panel 5 Display pixel 7 Light source 9 Lenticular thin plate 11 lenticular lens element 13 Controller 20 Backlight 24 Display device 28 Lenticular lens array / lenticular configuration 30 Display panel / regular LCD panel 32 Backlight / First Edge Illumination Light Guide 33 Thin Parallel Line 34 Backlight / Second Edge Illumination Type Light Guide 158301.doc -15· 201218179

36 發光二極體/LED VI 晝面 V2 晝面 V3 畫面 -16· 158301.doc36 Light Emitting Diode / LED VI Face V2 Face V3 Screen -16· 158301.doc

Claims (1)

201218179 七、申請專利範圍: 1. 一種多重畫面顯示裝置,其包括: 一背光配置(32、34);及 一顯示面板(30),其用於調變從該背光配置(32、34) 輸出之光且包括複數個像素; 其中該背光配置包括: —第一背光裝置(32) ’其用於產生呈一組間隔線形 式之照明’用於照亮該顯示面板(30)以將不同影像投 影至不同空間位置;及 第一背光裝置(34) ’其用於產生呈覆蓋該背光配 置區域之一連續照明區域之形式的照明; 其中s亥第一背光裝置(32)係在該顯示面板(3〇)與該第 二背光裝置(34)之間,且在該等間隔線之區域之外對該 第二背光裝置之光係透明的。 2·如請求項1之裝置,其中該裝置係可操作於其中兩個背 光裝置(32、34)均被照亮的一單一晝面模式,及其中僅 該第一背光裝置(32)被照亮的一多重畫面模式。 3. 如請求項2之裝置,其包括用於控制操作模式的一顯示 控制器C13)。 4. 如前述任一請求項之裝置,其中該第一背光裝置(32)包 括一邊緣發光型照明面板。 5·如請求項4之裝置,其中該組間隔線係由該照明面板之 一表面上之刷塗區域定義。 6.如請求項4之裝置’其中該組間隔線係由該照明面板之 158301.doc 201218179 表面上之表面輪扉定義。201218179 VII. Patent Application Range: 1. A multiple screen display device comprising: a backlight configuration (32, 34); and a display panel (30) for modulating output from the backlight configuration (32, 34) The light includes a plurality of pixels; wherein the backlight configuration comprises: a first backlight (32) 'which is used to generate illumination in the form of a set of spaced lines' for illuminating the display panel (30) to different images Projecting to different spatial locations; and a first backlight (34) 'for generating illumination in the form of a continuous illumination region covering one of the backlight configuration regions; wherein the first backlight (32) is attached to the display panel (3〇) is transparent to the light of the second backlight device between the second backlight device (34) and outside the region of the spacer lines. 2. The device of claim 1, wherein the device is operable in a single facet mode in which both backlight devices (32, 34) are illuminated, and wherein only the first backlight device (32) is illuminated A bright multi-picture mode. 3. The apparatus of claim 2, comprising a display controller C13) for controlling the mode of operation. 4. Apparatus according to any of the preceding claims, wherein the first backlight (32) comprises an edge-lit illumination panel. 5. The device of claim 4, wherein the set of spacer lines is defined by a brushed area on a surface of the illumination panel. 6. The device of claim 4 wherein the set of spacing lines is defined by a surface rim on the surface of the illumination panel 158301.doc 201218179. 如前述任一諳免g 自動立體顯示裝 〇月承項之裝置’其包括— 置。 裝置,其用於產生至少三個個別2〇畫面。 .了項1至6中任—項之裝置,其中該裝置係可將至少 兩個不同2D及/或3D影像提供$宏a 〜彳豕杈供至夂位於顯示器前面之不 同位置之兩個不同觀看者的雙畫面顯示裝置。 1〇_如前述任一請求項裝 ,、T 6亥顯不面板(30)包括一 液晶顯示器。 11. -種操作-顯示裝置以提供一單—畫面輸出及一多重畫 面顯不輸出兩者的方法,該方法包括: 在一第一多重畫面模式中,控制—背光配置之一第一 :光裝置(32)以產生呈一組間隔線形式之照明,用於照 亮該顯示面板(30)以將不同影像投影至不同空間位置; 及 一, 在一第二單一晝面模式中,控制相對於一顯示面板 (3〇)在該第一背光裝置(32)後面的該背光配置之一第二 背光裝置(34),以產生呈覆蓋背光區域之一連續照明: 域之形式的照明; 其中在各模式中,從該背光配置(32、34)輸出之光係 由該顯示面板調變。 12.如請求項1〗之方法,其中在該第二單一晝面模式中,該 背光配置之該第一背光裝置(32)經控制以產生3 ^至一組間 隔線形式之照明。 158301.doc 201218179 13.如咐求項u或12之方法,其包括在該第一模式中產生一 自動立體顯示影像。 士 β求項13之方法,其用於產生至少三個個別2D畫面。 15. —種包括電腦程式碼構件的電腦程式,當該程式運行於 一電腦上時,用於實施請求項8至14中任一項之方法。 158301.doc 3·Any of the above-mentioned devices for the goggles auto-stereoscopic display installations are included. A device for generating at least three individual 2 frames. The device of any one of clauses 1 to 6, wherein the device is capable of providing at least two different 2D and/or 3D images with a macro a ~ 彳豕杈 for two different positions at different positions in front of the display A dual screen display device for the viewer. 1〇_ As claimed in any of the preceding claims, the T6 display panel (30) includes a liquid crystal display. 11. An operation-display device for providing a single-picture output and a multi-picture display output, the method comprising: in a first multiple picture mode, one of the control-backlight configurations Optical means (32) for producing illumination in the form of a set of spaced lines for illuminating the display panel (30) for projecting different images to different spatial locations; and, in a second single faceted mode, Controlling a second backlight (34) of the backlight configuration relative to a display panel (3) behind the first backlight (32) to produce illumination in the form of a continuous illumination: field covering one of the backlight regions Wherein in each mode, the light output from the backlight arrangement (32, 34) is modulated by the display panel. 12. The method of claim 1, wherein in the second single facet mode, the first backlight (32) of the backlight configuration is controlled to produce illumination in the form of a 3^ to a set of spaced lines. 158301.doc 201218179 13. The method of claim u or 12, comprising generating an autostereoscopic display image in the first mode. The method of Equation 14, which is used to generate at least three individual 2D pictures. 15. A computer program comprising a computer code component for performing the method of any one of claims 8 to 14 when the program is run on a computer. 158301.doc 3·
TW100133651A 2010-09-21 2011-09-19 Multi-view display device TW201218179A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10177825 2010-09-21

Publications (1)

Publication Number Publication Date
TW201218179A true TW201218179A (en) 2012-05-01

Family

ID=44735999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133651A TW201218179A (en) 2010-09-21 2011-09-19 Multi-view display device

Country Status (2)

Country Link
TW (1) TW201218179A (en)
WO (1) WO2012038856A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626481B (en) * 2015-12-30 2018-06-11 Lg顯示器股份有限公司 Backlight unit and autostereoscopic 3d display device including the same
TWI627458B (en) * 2016-01-30 2018-06-21 雷亞有限公司 Multibeam element-based backlight, method and display using the same
CN108267902A (en) * 2018-01-15 2018-07-10 友达光电股份有限公司 Display device and method for switching display visual angle thereof
US10365497B2 (en) 2015-12-29 2019-07-30 Lg Display Co., Ltd. Backlight unit and autostereoscopic 3D display device including the same
CN110709758A (en) * 2017-05-11 2020-01-17 镭亚股份有限公司 Microstructured multibeam element backlight

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853936A1 (en) * 2013-09-27 2015-04-01 Samsung Electronics Co., Ltd Display apparatus and method
US10798371B2 (en) 2015-09-05 2020-10-06 Leia Inc. Multiview display with head tracking
KR102274752B1 (en) 2015-09-05 2021-07-08 레이아 인코포레이티드 Multibeam diffraction grating-based display with head tracking
WO2017204840A1 (en) 2016-05-23 2017-11-30 Leia Inc. Diffractive multibeam element-based backlighting
JP2019510995A (en) 2016-01-16 2019-04-18 レイア、インコーポレイテッドLeia Inc. Multi-beam grating based head-up display
WO2017132579A1 (en) 2016-01-30 2017-08-03 Leia Inc. Multibeam element-based backlighting having converging views
CN109790969A (en) 2016-10-05 2019-05-21 镭亚股份有限公司 Polarized backlight body and the backlit display for using it
WO2018067725A1 (en) 2016-10-05 2018-04-12 Leia Inc. Transparent display and method
KR102335721B1 (en) 2016-10-05 2021-12-07 레이아 인코포레이티드 Mode-Selectable Backlight, Method, and Display Employing a Directional Scattering Feature
FR3060140B1 (en) * 2016-12-13 2019-07-05 Valeo Comfort And Driving Assistance HIGH HEAD DISPLAY
EP3563083B1 (en) 2016-12-28 2023-06-07 LEIA Inc. Multiview displays having a reflective support structure
WO2018125103A1 (en) 2016-12-28 2018-07-05 Leia Inc. Multiview backlighting employing fluorescent multibeam elements
CA3070560C (en) * 2017-07-21 2022-05-24 Leia Inc. Multibeam element-based backlight with microlens and display using same
WO2019070317A1 (en) 2017-10-02 2019-04-11 Leia Inc. Multiview camera array, multiview system, and method having camera sub-arrays with a shared camera
EP3701183A4 (en) 2017-10-27 2021-06-09 LEIA Inc. Backlit transparent display, transparent display system, and method
EP3728941A4 (en) 2017-12-18 2021-07-28 LEIA Inc. Mode-switchable backlight, display, and method
CA3084344C (en) 2017-12-18 2022-09-06 Leia Inc. Multibeam element-based head-up display, system, and method
JP7011066B2 (en) 2017-12-21 2022-02-10 レイア、インコーポレイテッド Mode selectable backlight, privacy display, and method
KR102440643B1 (en) 2018-01-27 2022-09-06 레이아 인코포레이티드 Polarization recycling backlight using subwavelength gratings, method and multiview display
KR102479674B1 (en) 2018-03-01 2022-12-21 레이아 인코포레이티드 Static multi-view display and method using collimated guiding light
KR20200121379A (en) 2018-03-15 2020-10-23 레이아 인코포레이티드 Horizontal parallax multiview display and method with inclined multibeam columns
WO2020005293A1 (en) * 2018-06-29 2020-01-02 Leia Inc. Mixed-format backlight, display, and method
EP3861546A4 (en) 2018-10-01 2022-10-19 LEIA Inc. Multiview display and method with offset rows of multibeam emitters and multiview pixels
WO2020072034A1 (en) 2018-10-01 2020-04-09 Leia Inc. Holographic reality system, multiview display, and method
EP3899648A4 (en) 2018-12-20 2022-11-30 LEIA Inc. Multiview display, system, and method having shiftable convergence plane
KR20210097815A (en) 2018-12-27 2021-08-09 레이아 인코포레이티드 Multiview display, system and method with dynamic color subpixels remapping
JP7394139B2 (en) 2019-01-25 2023-12-07 レイア、インコーポレイテッド Multidirectional backlight, multi-user multi-view display, and method
WO2020222770A1 (en) 2019-04-29 2020-11-05 Leia Inc. Multiview display and method having shifted color sub-pixels
JP7308282B2 (en) 2019-03-14 2023-07-13 レイア、インコーポレイテッド Mode-switchable backlight, privacy display, and method employing h-ray
WO2020190341A1 (en) 2019-03-17 2020-09-24 Leia Inc. Dual view zone backlight, dual-mode display, and method employing directional emitters
JP7213370B2 (en) 2019-04-02 2023-01-26 レイア、インコーポレイテッド Multi-view display alignment method and system
CN116774481A (en) * 2019-05-20 2023-09-19 群创光电股份有限公司 Light emitting device
CN110389454B (en) * 2019-07-28 2024-03-26 成都航空职业技术学院 Integrated imaging double-vision 3D display device based on rectangular polarization array
JP7245955B2 (en) 2019-08-01 2023-03-24 レイア、インコーポレイテッド Collimated backlight, electronic display, and method employing an absorbing collimator
CA3148748C (en) 2019-08-27 2023-09-19 Leia Inc. Multiview backlight, display, and method employing an optical diffuser
KR20220045044A (en) 2019-09-12 2022-04-12 레이아 인코포레이티드 Multiview backlight, multiview display and method using reflective multibeam elements
JP2022553178A (en) 2019-10-15 2022-12-22 レイア、インコーポレイテッド Privacy Mode Backlight, Privacy Display, and Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897184A (en) * 1996-07-02 1999-04-27 Dimension Technologies, Inc. Reduced-thickness backlighter for autostereoscopic display and display using the backlighter
US7518664B2 (en) * 2005-09-12 2009-04-14 Sharp Kabushiki Kaisha Multiple-view directional display having parallax optic disposed within an image display element that has an image display layer sandwiched between TFT and color filter substrates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10365497B2 (en) 2015-12-29 2019-07-30 Lg Display Co., Ltd. Backlight unit and autostereoscopic 3D display device including the same
TWI626481B (en) * 2015-12-30 2018-06-11 Lg顯示器股份有限公司 Backlight unit and autostereoscopic 3d display device including the same
TWI627458B (en) * 2016-01-30 2018-06-21 雷亞有限公司 Multibeam element-based backlight, method and display using the same
US10649128B2 (en) 2016-01-30 2020-05-12 Leia Inc. Multibeam element-based backlight and display using same
US10838134B2 (en) 2016-01-30 2020-11-17 Leia Inc. Multibeam element-based backlight and display using same
CN110709758A (en) * 2017-05-11 2020-01-17 镭亚股份有限公司 Microstructured multibeam element backlight
CN108267902A (en) * 2018-01-15 2018-07-10 友达光电股份有限公司 Display device and method for switching display visual angle thereof
TWI632540B (en) * 2018-01-15 2018-08-11 友達光電股份有限公司 Display apparatus and method of switching viewing angle thereof

Also Published As

Publication number Publication date
WO2012038856A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
TW201218179A (en) Multi-view display device
TWI545348B (en) Multi-view display device
JP4861180B2 (en) Backlight for 3D display device
JP5514115B2 (en) Autostereoscopic display device
US7903183B2 (en) Display including backlight operable in 2D and 3D modes
EP3273688B1 (en) Directional backlight unit, three-dimensional (3d) image display apparatus, and 3d image displaying method
US9407906B2 (en) Autostereoscopic display device and driving method
EP2466578A1 (en) 3d image display apparatus and driving method thereof
US20130169694A1 (en) Display apparatus
US10616564B2 (en) Display device and display control method
KR20100139017A (en) Autostereoscopic display with fresnel lens element
JP2009520232A (en) Autostereoscopic display device
JP2009519487A (en) Display apparatus and method
JP2007025683A (en) Display
JP5767293B2 (en) Display device including line light source and driving method thereof
RU2589249C2 (en) Optical beam deflection device and multi-view display device comprising same
TWI474048B (en) Display device
EP1705927B1 (en) Autostereoscopic display using time-sequential method
CN107257937B (en) Display device and method of controlling the same
KR102134595B1 (en) Three-dimension display apparatus
CN108370439B (en) Display apparatus and display control method
KR101759540B1 (en) 3-dimensional displaying apparatus and driving method thereof
KR102293367B1 (en) Display device for displying 2-dimension and 3-dimension images
JP5131331B2 (en) Liquid crystal display