TW201217853A - Optical imaging system - Google Patents

Optical imaging system Download PDF

Info

Publication number
TW201217853A
TW201217853A TW99137137A TW99137137A TW201217853A TW 201217853 A TW201217853 A TW 201217853A TW 99137137 A TW99137137 A TW 99137137A TW 99137137 A TW99137137 A TW 99137137A TW 201217853 A TW201217853 A TW 201217853A
Authority
TW
Taiwan
Prior art keywords
lens
imaging system
optical imaging
image side
object side
Prior art date
Application number
TW99137137A
Other languages
Chinese (zh)
Other versions
TWI426316B (en
Inventor
Chun-Shan Chen
Hsin-Hsuan Huang
Original Assignee
Largan Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Largan Precision Co Ltd filed Critical Largan Precision Co Ltd
Priority to TW99137137A priority Critical patent/TWI426316B/en
Publication of TW201217853A publication Critical patent/TW201217853A/en
Application granted granted Critical
Publication of TWI426316B publication Critical patent/TWI426316B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

This invention provides an optical imaging system including in order from an object side toward an image side: a first lens element with negative refractive power having a convex object-side surface and a concave image-side surface, a second lens element with positive refractive power, a third lens element with positive power having both of its object-side and image-side surfaces thereof being aspheric, a fourth lens element with negative refractive power having a concave image-side surface and both of its object-side and image-side surfaces thereof being aspheric; wherein the optical imaging system further comprises an aperture stop, disposed between the first and the third lens element, and there are four lens elements with refractive power. By such arrangement, total track length of the optical imaging system can be effectively reduced. Larger field of view and higher image resolution can be obtained.

Description

201217853 六、發明說明: 【發明所屬之技術領域】 本發明係與光學攝影系統有關’特別是指一種應用於 電子產品的小型化四片式的光學攝影系統。 【先前技術】 最近幾年來’隨著具有攝像功能之可攜式電子產品的興 起,小型化攝像鏡頭的需求日漸提高,而一般攝像鏡頭的感光 元件不外乎是感光耦合元件(Charge Coupled Device, CCD) 或互補性氧化金屬半導體元件(C〇mp 1 ementary Meta 1 -Oxide Semiconductor Sensor, CMOS Sensor)兩種,且由於製程技術 的精進,使得感光元件的畫素尺寸縮小,小型化攝像鏡頭逐漸 往高晝素領域發展,因此,對成像品質的要求也日益增加。 傳統搭載於可攜式電子產品上的小型化攝像鏡頭,多採用 二片式透鏡結構為主’透鏡系統由物侧至像侧依序為一具正屈 折力的第一透鏡、一具負屈折力的第二透鏡及一具正屈折力的 第三透鏡’如美國專利第7,145, 736號所示。 由於製程技術的進步與電子產品往輕薄化發展的趨勢 下,感光元件晝素尺寸不斷地縮小,使得系統對成像品質的要 求更加提高,習知的三片式透鏡組將無法滿足更高階的攝像鏡 頭模組。 美國專利第7, 365, 920號揭露了一種四片式透鏡組,其中 第一透鏡及第二透鏡係以二片玻璃球面鏡互相黏合而成為 201217853201217853 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an optical imaging system', particularly to a miniaturized four-piece optical imaging system applied to electronic products. [Prior Art] In recent years, with the rise of portable electronic products with camera functions, the demand for miniaturized camera lenses has been increasing, and the photosensitive elements of general camera lenses are nothing more than photosensitive coupled devices (Charge Coupled Device, CCD) or a complementary oxidized metal semiconductor component (C〇mp 1 ementary Meta 1 - Oxide Semiconductor Sensor, CMOS Sensor), and due to the advancement of process technology, the pixel size of the photosensitive element is reduced, and the miniaturized camera lens is gradually The development of the sorghum field is therefore increasing the demand for image quality. The miniaturized camera lens that is traditionally mounted on portable electronic products uses a two-piece lens structure. The lens system is a first lens with a positive refractive power and a negative refractive index from the object side to the image side. A second lens of force and a third lens having a positive refractive power are shown in U.S. Patent No. 7,145,736. Due to the advancement of process technology and the trend of thinner and lighter electronic products, the size of the photosensitive element has been continuously reduced, which has made the system more demanding on image quality. The conventional three-piece lens group will not be able to meet higher-order imaging. Lens module. U.S. Patent No. 7,365,920 discloses a four-piece lens assembly in which a first lens and a second lens are bonded to each other by two glass spherical mirrors to become 201217853.

Doublet(雙合賴),㈣齡色差,但此方法有其缺點,其 過多的玻璃球面鏡配置使得系統自由度不足,導致系統的 總長度不驗短;其二,玻璃鏡片黏合的製程不易,容易形成 製造上的困難。 【發明内容】 為了可以擁有較大的視角、有效縮小鏡頭體積,且能獲得 較商的解像力’本發明提供一種由四片透鏡構成的光學攝影 系統’其要旨如下: 一種光學攝影系統,由物側至像側依序包含:一具負屈 折力的第-透鏡,其物側表面為凸面、像側表面為凹面;一具 正屈折力的第二透鏡具正麟力的第三透鏡,其物侧表面 與像侧表面皆為非球面;一具負屈折力的第四透鏡,其像侧表 面為凹面,且該第四透鏡的物側表面與像側表面皆為非球面; 該光學攝影系統中具屈折力的透鏡為四片,且該第一透鏡與 第二透鏡間的鏡間距為T12,該光學攝影系統的整體焦距為 f,該第一透鏡的中心厚度為CT1,該光學攝影系統另設置 有一光圈,該光圈至成像面於光軸上的距離為乩,該第一透 鏡的物側表面至成像面於光軸上的距離為TTL,滿足下記關 係式:0· 1 &lt; T12/f &lt; 0. 3 ; 0· 30 &lt; CTl/f &lt; 〇· 75 ; 〇. 52 &lt; SL/m &lt; 0· 82。 其中當0.1 &lt; T12/f &lt; 0. 3時,將有利於修正該光學攝 影系統的高P皆像差’且可使該光學攝料統的鏡組配置較為 201217853 平衡’有爿於縮短該光學攝影系統的光學總長度,以維持鏡 頭的小型化,較佳地,係滿足下記關係式:〇 〇7&lt;Ti2/f= 〇. 50 ’該光學攝料統可脑其光學總長度且提供良好的成 像品質;.當G.3G &lt;CTl/f &lt; 0.75時,該第-透鏡的鏡片厚度 大小較為合適,可降低製造上的困難以獲得較高的鏡片製作= 率,當0. 52 &lt; SL/TTL &lt; 0. 82時,可有利於廣視場角的特性, 有助於對歪曲(Distortion)及倍率色收差(Chr〇matk Aberration of Magnification)的修正,且如此的配置可有效 降低系統的敏感度。 本發明光學攝影系統中,該第一透鏡具負屈折力,其物側 表面為凸面而像側表面為凹面,係可利於擴大該光學攝影系統 的視場角。 該第一透鏡具正屈折力,提供系統所需的部分屈折力,有 助於縮短該光學攝影系統的總長度。 該第三透鏡具正屈折力’可有效分配該第二透鏡的正屈折 力,以降低該光學攝影系統的敏感度。本發明光學攝影系統 中’當該第三透鏡的物側表面與像側表面皆為凸面時,將可有 助於加強該第三透鏡的正屈折力,有助於進一步縮短該光學攝 影系統的總長度。 該第四透鏡具負屈折力,且該像侧表面為凹面,可使該光 學攝影系統的主點(Principal Point)遠離成像面,有利於縮 短光學攝影系統的光學總長度,以促進該光學攝影系統的小型 201217853 化。此外,該第四透鏡上可設置有反曲點,將可更有效地壓制 離轴視場的光線入射於感光元件上的角度’並且可進一步修正 離軸視場的像差。 本發明光學攝影系統中,該第二透鏡的焦距為f2,該第 三透鏡的焦距為f3,兩者滿足〇· 2 &lt; f3/f2 &lt; 0· 7關係式時, 可使該第三透鏡有效分配系統所需的屈折力,可避免單一透鏡 的屈折力過大,進而降低該光學攝影系統的敏感度。 • 本發明光學攝影系統中,該第一透鏡與該第二透鏡間彼 此具有空氣間距,且該第一透鏡的中心厚度為CT1,該第二 透鏡的中心厚度為CT2,兩者滿足0.2 &lt; CT2/CT1 &lt; 0.50關 - 係式時,該第一透鏡與該第二透鏡的厚度不至於過大或過小, 有利於各透鏡的組裝配置。 本發明光學攝影系統中,該第一透鏡的焦距為fl,該第 四透鏡的焦距為f4,兩者滿足〇. 2 &lt; f4/fl &lt; 〇· 6關係式時, _ 豸第-it鏡與該帛四透鏡的屈折力配置較為平衡,有利於該光 學攝影系統高階像差的補正。另外,當兩者滿足0.2 &lt; f4/fl &lt;〇· 45關係式時’該光學攝影系統高階像差的補正效果更佳。 本發明光學攝影系統中’該第1C圖為本發明SAG32與 Y32的示意圖,該第三透鏡的像側表面上光線通過之最大 1已圍位置與光轴的垂直距離為Y32’該第三透鏡的像側表 面上距離光軸為Μ2的位置與相切於第三透鏡光轴頂點上 之切面的距離為SAG32,兩者滿足〇. 4 &lt; SAG32/Y32 &lt; 0. 6 201217853 關係式時’可_第三透鏡_狀不會太臂曲,除有利於透 鏡的製作與成型外,更有助糊_學攝料财各透鏡組 裝配置所需的空間,使得鏡組的配置可更為緊密。 本發明光學攝影系統中,該第三透鏡的色散係我V3, 該第四透鏡的色㈣數為V4,兩者滿足3G &lt; Μ,〈犯關 係式時’將有利於該光學攝料統巾色差的修正。 本發明光學攝财射,該第—透賴物難面曲率半徑 為R1 ’該第-透鏡的像侧表面曲率半徑為R2,兩者滿足2. 〇〈 R1/R2 &lt; 3.0關係時,有助於該光學攝影系統球差 Aberration)的補正。 本發明光學攝料統巾’該第―透鏡的物側表面至成像 面於光轴上的距離為TTL,本光學攝影系統另於該成像面 設置一電子感光元件,該電子感光元件有效畫素區域對 角線長的一半為_,兩者滿足TTL/ImgH &lt; 3. 8關係式時, 有利於維持該光學攝财制小型化,以搭載於㈣可攜式的 電子產品上。 有關本發明為達成上述目的,所採用之技術、手段及其他 之功效,茲舉三較佳可行實施例並配合圖式詳細說明如後。 【實施方式】 本發明第一實施例所提供的一種光學攝影系統,請參閱 第ΙΑ、1B圖,該第ία圖為本發明第一實施例之光學攝影 系統配置示意圖,第1B圖為本發明第一實施例像差曲線圖, 201217853 第一實施例從物側到像側包含·· 一具負屈折力的第一透鏡110,其材質為塑膠,該第—透 鏡110物侧表面111為凸面、該像侧表面112為凹面,該第一 透鏡110的物側表面m與像側表面112皆設為非球面。 一具正屈折力的第二透鏡12〇,其材質為塑膠,該第二透 鏡120物側表面121為凸面、該像側表面122為凸面,該第二 透鏡120的物侧表面121與像侧表面122皆設為非球面。一 • —具正麟力的第三透鏡130,其材質為瓣,該第三透 鏡130物侧表面131為凸面、該像侧表面132為凸面,該第三 透鏡130的物側表㈣i鄕側表面132皆設為非球面。 _具負屈折力的第四透鏡14〇,其材f為塑膠,該第四透 鏡140物側表面141為凸面、該像侧表面142為凹面,該第四 透鏡140的物側表面141與像侧表面142皆設為非球面,且該 第四透鏡140麟侧表面141與像側表面142皆設置有反曲 點。 光圈100其„又於該第二透鏡12〇與該第三透鏡⑽之 間。 -紅外線濾韻光片(IR_filter) 17G,其設於該第四透 鏡140像侧表面142與-成像面19〇之間,令該紅外線滤除據 光片170珊質為賴且不影_光學攝影祕的焦距。 上述之非球面曲線的方程式表示如下: 9 201217853 / Υ(Α〇*(Γ) X(YHY2/R)/(l+(l-(l+k)*(Y/R)2)1/2H 十 其中: X:非球面上距離光軸為γ的點,其與相切於非球面光軸 上頂點之切面的相對高度; Y:非球面曲線上的點與光轴的距離; k :錐面係數;Doublet (double), (four) age color difference, but this method has its shortcomings, its excessive glass spherical mirror configuration makes the system freedom insufficient, resulting in the system's total length is not short; second, the glass lens bonding process is not easy, easy Forming manufacturing difficulties. SUMMARY OF THE INVENTION In order to have a larger viewing angle, to effectively reduce the lens volume, and to obtain a comparative resolution, the present invention provides an optical imaging system composed of four lenses. The gist of the invention is as follows: An optical imaging system The side to image side sequentially includes: a first lens having a negative refractive power, the object side surface is a convex surface, the image side surface is a concave surface; and a positive refractive power second lens has a positive third force lens, The object side surface and the image side surface are both aspherical surfaces; a fourth lens having a negative refractive power, the image side surface is a concave surface, and the object side surface and the image side surface of the fourth lens are aspherical surfaces; The lens with refractive power in the system is four, and the mirror distance between the first lens and the second lens is T12, the overall focal length of the optical imaging system is f, and the center thickness of the first lens is CT1, the optical photography The system is further provided with an aperture, the distance from the aperture to the imaging plane on the optical axis is 乩, and the distance from the object side surface of the first lens to the imaging plane on the optical axis is TTL, which satisfies the following relationship: 0·1 &lt; T12/ f &lt; 0. 3 ; 0· 30 &lt; CTl / f &lt; 〇 · 75 ; 〇. 52 &lt; SL / m &lt; 0 · 82. Where 0.1 &lt; T12/f &lt; 0. 3, it will be beneficial to correct the high P aberration of the optical imaging system and make the optical lens configuration of the optical camera system more stable than the 201217853 balance. The total optical length of the optical imaging system is to maintain the miniaturization of the lens, preferably, the following relationship is satisfied: 〇〇7&lt;Ti2/f= 〇. 50 'The optical imaging system can have the total optical length of the lens and Provide good image quality; when G.3G &lt;CTl/f &lt; 0.75, the lens thickness of the first lens is more suitable, which can reduce the manufacturing difficulty to obtain higher lens production = rate, when 0 52 &lt; SL / TTL &lt; 0. 82, can be beneficial to the characteristics of the wide field of view, help to correct the distortion and the Chr〇matk Aberration of Magnification, and so The configuration can effectively reduce the sensitivity of the system. In the optical imaging system of the present invention, the first lens has a negative refractive power, and the object side surface is convex and the image side surface is concave, which is advantageous for enlarging the angle of view of the optical imaging system. The first lens has a positive refractive power that provides the partial refractive power required by the system to help reduce the overall length of the optical imaging system. The third lens has a positive refractive power & effective to distribute the positive refractive power of the second lens to reduce the sensitivity of the optical imaging system. In the optical imaging system of the present invention, when both the object side surface and the image side surface of the third lens are convex, it will help to strengthen the positive refractive power of the third lens, which helps to further shorten the optical imaging system. Total length. The fourth lens has a negative refractive power, and the image side surface is concave, which can make the Principal Point of the optical imaging system away from the imaging surface, which is beneficial to shorten the optical total length of the optical imaging system to facilitate the optical photography. The system is small 201217853. Further, the fourth lens may be provided with an inflection point which more effectively suppresses the angle at which the light of the off-axis field of view is incident on the photosensitive member and further corrects the aberration of the off-axis field of view. In the optical imaging system of the present invention, the focal length of the second lens is f2, and the focal length of the third lens is f3, and when the two satisfy the relationship of 〇·2 &lt; f3/f2 &lt; 0·7, the third The refractive power required by the effective distribution system of the lens avoids excessive bending of the single lens, thereby reducing the sensitivity of the optical imaging system. In the optical imaging system of the present invention, the first lens and the second lens have an air gap with each other, and the center thickness of the first lens is CT1, and the center thickness of the second lens is CT2, both satisfy 0.2 &lt; When the CT2/CT1 &lt; 0.50 off-line type, the thickness of the first lens and the second lens is not too large or too small, which is advantageous for the assembly configuration of each lens. In the optical imaging system of the present invention, the focal length of the first lens is fl, and the focal length of the fourth lens is f4, and both satisfy 〇. 2 &lt; f4/fl &lt; 〇·6 relationship, _ 豸-it The mirror and the four-lens lens have a relatively balanced refractive power configuration, which is beneficial to the correction of higher-order aberrations of the optical imaging system. In addition, when the two satisfy the relationship of 0.2 &lt; f4/fl &lt; 〇·45, the correction effect of the higher-order aberration of the optical imaging system is better. In the optical imaging system of the present invention, the first C-picture is a schematic view of the SAG32 and Y32 of the present invention, and the maximum distance of the light passing through the image side surface of the third lens is a vertical distance from the optical axis Y32'. The distance between the position on the image side surface from the optical axis Μ2 and the tangent on the apex of the optical axis of the third lens is SAG32, and both satisfy 〇. 4 &lt; SAG32/Y32 &lt; 0. 6 201217853 'Can _ third lens _ shape will not be too arm flexed, in addition to facilitating the production and molding of the lens, it is more helpful to _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ close. In the optical imaging system of the present invention, the dispersion of the third lens is my V3, and the number of colors (four) of the fourth lens is V4, both of which satisfy 3G &lt; Μ, when the relationship is made, it will be beneficial to the optical film system. Correction of the color difference of the towel. According to the optical lens of the present invention, the radius of curvature of the first surface of the first lens is R1', and the radius of curvature of the image side surface of the first lens is R2, which satisfies 2. 〇< R1/R2 &lt; 3.0 relationship, Help the correction of the optical photography system Aberration). In the optical filming device of the present invention, the distance from the object side surface of the first lens to the imaging surface on the optical axis is TTL, and the optical imaging system further provides an electronic photosensitive element on the imaging surface, and the electronic photosensitive element has an effective pixel. Half of the diagonal length of the area is _, and both of them satisfy the TTL/ImgH &lt; 3. 8 relationship, which is advantageous for maintaining the miniaturization of the optical manufacturing system for mounting on (4) portable electronic products. The present invention has been described in connection with the preferred embodiments of the present invention in accordance with the present invention. [Embodiment] An optical imaging system according to a first embodiment of the present invention, please refer to FIG. 1 and FIG. 1B, which is a schematic diagram of the configuration of an optical imaging system according to a first embodiment of the present invention, and FIG. 1B is a view of the present invention. First Embodiment Aberration Graph, 201217853 The first embodiment includes a first lens 110 having a negative refractive power from a material side to an image side. The material is plastic, and the object side surface 111 of the first lens 110 is convex. The image side surface 112 is a concave surface, and the object side surface m and the image side surface 112 of the first lens 110 are both aspherical. A second lens 12 正 having a positive refractive power is made of plastic, the object side surface 121 of the second lens 120 is a convex surface, the image side surface 122 is a convex surface, and the object side surface 121 and the image side of the second lens 120 are The surface 122 is set to be aspherical. A third lens 130 having a positive force is made of a valve, the object side surface 131 of the third lens 130 is a convex surface, and the image side surface 132 is a convex surface, and the object side surface (4) i鄕 side of the third lens 130 The surface 132 is set to be aspherical. a fourth lens 14A having a negative refractive power, the material f being a plastic, the object side surface 141 of the fourth lens 140 being a convex surface, the image side surface 142 being a concave surface, and the object side surface 141 and the image of the fourth lens 140 The side surfaces 142 are all aspherical, and the fourth lens 140 and the image side surface 142 are both provided with inflection points. The aperture 100 is further disposed between the second lens 12A and the third lens (10). An infrared filter (IR_filter) 17G is disposed on the image side surface 142 and the imaging surface 19 of the fourth lens 140. Between the infrared ray filter and the focal length of the optical camera, the equation of the aspheric curve described above is expressed as follows: 9 201217853 / Υ(Α〇*(Γ) X(YHY2 /R)/(l+(l-(l+k)*(Y/R)2)1/2H Ten: X: the point on the aspheric surface from the optical axis γ, which is tangent to the aspheric optical axis The relative height of the tangent plane of the upper vertex; Y: the distance of the point on the aspherical curve from the optical axis; k: the taper coefficient;

Ai :第i p皆非球面係數。 第一實施例中,該整體光學攝影系統的焦距為f,其關係 式為:f = 3.02。 第一實施例中,該整體光學攝影系統的光圈值 (f-number)為 Fno,其關係式為:Fno = 2. 〇5。 第一實施例中,該整體光學攝影系統的最大視角的一半為 HF0V,其關係式為:HFOV=37. 4。 第一實施例中,該第三透鏡13〇的色散係數為V3,該第 四透鏡140的色散係數為V4,其關係式為:V3_V4=32. 5。 第一實施例巾’該第-透鏡110與第二透鏡間12〇的鏡間 距為T12,該光學攝影系統的整體焦距為^,其關係式為· T12/f = 〇. 19。 … 第-實施例中,該第-透鏡110的中心厚度為卬, 學攝影系統的整體焦距為f,其關係式為:CT1/f = 〇如Λ 第-實施例中’.該第-透鏡110的中心厚度為cti,6該第 201217853 二透鏡120的中心厚度為CT2,其關係式為:CT2/CTl =〇. 29。 第-實施例中,該第_透鏡110的物側表面⑴曲率半徑 為R1 ’該第-透鏡110的像側表Φ 112曲率半徑為R2,其關 係式為:Rl/R2=2.55。 第-實施例中’該第二透鏡12〇的焦距為f2,該第三透 鏡130的焦距為f3,其關係式為:f3/f2=〇. 43。 第-實施例巾’該第-透鏡11Q的焦距為fl,該第四透 • 鏡140的焦距為Μ,其關係式為:f4/fl = 〇. 38。 第一實施例中,該第三透鏡13〇的像侧表面132上光線 通過之最大範圍位置與光軸15〇的垂直距離為γ32,該第 二透鏡130的像侧表面132上距離光軸15〇為γ32的位置 • 與相切於第三透鏡130光軸15G頂點上之切面的距離為 SAG32,其關係式為:SAG32/Y32 = 〇 52。其可參閱第ic圖 所示。 ❿第-實施例中’該光圈1〇〇至成像面19〇於光軸15〇上的 距離為SL,該第一透鏡110的物侧表® 111至成像面190 於光轴150上的距離為TTL,其關係式為:SL/TTL=〇料。 第一實施例中’該第一透鏡110的物侧表面111至成像 面190於光抽150上的距離為m,本光學攝影系統另設 置一電子感光疋件(圖上未示)於成像面190,該電子感光 疋件有效晝素區域料線長的—半為丨mgH,錢係: TTL/ImgH=3.2 卜 ‘、、 201217853 第一實施例詳細的結構數據如同表—所示,其非球面數據 如同表二所示,其中,曲率半徑、厚度及焦距的單位為公厘 (mm)。 本發明第二實施例所提供的-種光學攝影系統,請參閱 第2A、2B圖,該第2A圖為本發明第二實施例之光學攝影 系統配置示意圖,第2B圖為本發明第二實施例像差曲線圖, 第二實施例從物侧到像侧包含: 一具負屈折力的第一透鏡210,其材質為塑膠,該第一透 鏡210物侧表面211為凸面、該像側表面212為凹面,該第一 透鏡210的物側表面211與像侧表面212皆設為非球面。 一具正屈折力的第二透鏡220,其材質為塑膠,該第二透 鏡220物侧表面221為凹面、該像侧表面222為凸面,該第二 透鏡220軸侧表面221與像側表面222皆設為非球面。 一具正屈折力的第三透鏡230,其材質為塑膠,該第三透 鏡230物側表面231為凸面、該像側表面232為凸面,該第三 透鏡230的物側表面231與像側表面咖皆設為非球面。 一具負屈折力的第四透鏡24Q,其材質為塑膠,該第四透 鏡240物側表面241為凹面、該像側表面⑽為凹面,該第四 透鏡240的物側表φ 241與像側表面祕冑設為非球面,且該 第四透鏡240的物侧表面241與像側表面242皆設置有反曲 點。 光圈200,其设於該第一透鏡210與該第二透鏡22〇之 12 201217853 間。 一紅外線濾除濾光片(IR-filter) 270,其設於該第四透 鏡240像側表面242與一成像面290之間,令該紅外線濾除濾 光片270的材質為玻璃且不影響該光學攝影系統的焦距。 第二實施例非球面曲線方程式的表示如同第一實施例的 形式。 第二實施例中,該整體光學攝影系統的焦距為f,其關係 φ 式為:f = 3.U。 第二實施例中,該整體光學攝影系統的光圈值 (f-number)為 Fno,其關係式為:Fn〇 = 2 4〇。 , 第二實施例中,該整體光學攝影系統的最大視角的一半為 HF0V,其關係式為:hf〇V=36. 5。 第-實施例中’該第三透鏡230的色散係數為V3,該第 四透鏡240的色散係數為V4,其關係式為:V3_V4=32. 5。 ♦ 第一實施例巾,該第一透鏡210與第二透鏡間220的鏡間 距為T12 ’該光學攝影祕的整體焦距為f,其關係式為: T12/f = 〇. 15。 第二實施例中,該第-透鏡21Q的中心厚度為CT1,該光 學攝影系統的整體焦距為f,其關係式為:CTi/f = 〇 58。 第二實施例+ ’該第一透鏡21〇的中心厚度為m,該第 透鏡220的中〜厚度為CT2,其關係式為:cT2/cTi = 〇. 34。 第一實施例+ ’該第一透鏡21〇的物侧表面211曲率半徑 13 201217853 為幻該第一透鏡2i〇的像側表面212曲率半徑為敗,其關 係式為:Rl/R2=2. 69。 第二實施例中,該第二透鏡220的焦距為f2,該第三透 鏡230的焦距為f3,其關係式為·· π。 第二實施例中,該第—透鏡21G的焦距為f卜該第四透 鏡240的焦距為Μ,其關係式為:f4/fl=〇.33。 第二實施例中,該第三透鏡230的像側表面232上光線 通過之最大|&amp;圍位置與光軸250的垂直距離為γ32,該第 三透鏡230的像侧表面232上距離光軸25〇為γ32的位置 與相切於第三透鏡23〇光軸25G頂點上之切面的距離為 SAG32 ’其關係式為:SAG32/Y32=〇 49。需說明的是,由於 該SAG32與Y32的示意圖類似於第一實施例(即第1C圖),故 在此不再繪製。 第二實施例中,該光圈200至成像面290於光轴250上 的距離為SL’該第-透鏡210 #物侧表面211域像面290 於光轴250上的距離為TTL,其關係式為:SL/TTL=〇. 7ι。 第二實施例中,該第一透鏡210的物側表面211至成像 面290於光軸250上的距離為TTL,本光學攝影系統另設 置一電子感光元件(圖上未示)於成像面29〇,該電子感光 元件有效晝素區域對角線長的一半為ImgH,其關係式為: TTL/ImgH=3. 29。 第二實施例詳細的結構數據如同表三所示,其非球面數據 201217853 如同表四所示’其中’㈣半徑、厚度及焦距的單位為公厘 (mm)。 本發明第三實施例所提供的-種光學攝影系統,請參閱 第3A、3B® ’該第3A圖為本發明第三實施例之光學攝影 系統配置示意圖,第3B圖為本發明第三實施例像差曲線圖, 第三實施例從物側到像侧包含: -具負屈折力的第—透鏡,其材質為塑膠,該第一透 • 鏡310物侧表面311為凸面、該像側表面312為凹面,該第一 透鏡310的物侧表面311與像侧表面312皆設為非球面。 一具正屈折力的第二透鏡320,其材質為塑膠,該第二透 鏡320物侧表面321為凹面、該像側表面322為凸面,該第二 • 透鏡32G的物側表面如與像侧表面322皆設為非球面。一 一具正屈折力的第三透鏡33G,其材質為塑膠,該第三透 鏡330物側表面331為凸面、該侧表面332為凸φ,該第三 鲁透鏡330的物侧表面331與像侧表面咖皆設為非球面。― 一具負屈折力的第四透鏡340,其材質為塑膠,該第四透 鏡340物側表面341為凸面、該像側表面料2為凹面,該第四 透鏡340的物侧表面341與像侧表面籼皆設為非球面,且該 第四透鏡340的物録面341與像側表面342皆設置有反曲 點0 一光圈300 ’其設於該第二透鏡320與該第三透鏡33〇之 15 201217853 -紅外線滤除滤光片(IR_filter) 37Q,其設於該第四透 鏡340像侧表面342與一成像面390之間,令該紅外線遽除遽 光片370的材質為玻璃且不影響該光學攝影系統的焦距。‘、 第三實施解球面曲線方程式的表示如同第—實施例 形式。 第三實施例中,該整體光學攝影系統的焦距為f,其關係 式為:f = 3.09。 、 第三實施例中’該整體光學攝影系統的光圈值 (f-number)為 Fno,其關係式為:Fn〇 = 2 1〇。 第三實施例中’該整體光學攝影系統的最大視角的—半 HF0V,其關係式為:HFOV=36. 5。 第二實施例中’該第三透鏡33Q的色散係數為V3,該第 四透鏡340的色散係數為V4,其關係式為:V3_V4=32 5。 第三實施例中,該第-透鏡31〇與第二透鏡間咖的 距為T12,該光學攝影系統的整體焦距為f,其關係式為. TT12/f = 〇.16。 ’、、’ 第三實施例中,該第一透鏡310的中心厚度為CT卜該 學攝影系統的整體焦距為f,其關係式為:CT1/f = 〇 “ 第三實施例中’該第-透鏡⑽的中心厚度為m,該 二透鏡320的中心厚度為CT2,其關係式為:CT2/CT1二〇 第二實施例中’該第-透鏡310的物侧表面311曲率半押 為R1 ’該第一透鏡310的像侧表面312曲率半徑為尺2, 工’、、、’其關 201217853 係式為:Rl/R2 = 2.63。 第三實施例中,該第二透鏡320的焦距為f2,該第三透 鏡33〇的焦距為f3 ’其關係式為:f3/f2=〇 36。 第三實施例中,該第一透鏡310的焦距為Π,該第四透 鏡340的焦距為f4,其關係式為:f4/fl = 〇. 3〇。 第三實施例中,該第三透鏡330的像侧表面332上光線 通過之最大範圍位置與光軸350的垂直距離為Y32,該第 • 二透鏡330的像側表面332上距離光軸350為Y32的位置 與相切於第三透鏡330光軸350頂點上之切面的距離為 SAG32,其關係式為:SAG32/Y32=Q 48。需說明的是,由於 該SAG32與Y32的示意圖類似於第一實施例(即第lc圖),故 在此不再繪製。 第三實施例中,該光圈300至成像面390於光軸350上的 距離為SL’該第一透鏡⑽的物侧表面311至成像面390 • 於光軸350上的距離為TTL,其關係式為:SL/m=0. 63。 第三實施例中’該第一透鏡310的物側表自311至成像 面390於光轴350上的距離為m,本光學攝影系統另設 置-電子感光7L件(圖上未示)於成像面·’該電子感光 元件有效畫素區域對角線長的一半為_,其關係式為: TTL/ImgH = 3. 39 〇 第三實施例詳細的結構數據如同表五所示,其非球面數據 如同表六所示’其中’曲率半徑、厚度及焦距的單位為公厘 17 201217853 (mm) ° 值得說明的是,表一至表六所示為本發明的光學攝影 系統各實闕的不同數㈣化表,絲發明各實施例的數 值變化皆屬實驗所得,即使使用不同數值,相同結構的產 品仍屬於本發明的保護範4。表七為各實施例中各關係式 的對應表。 【圖式簡單說明】 第1A圖係本發明第一實施例之光學示意圖。 第1B圖係本發明第一實施例像差曲線圖。 第ic圖係本發明第一實施例之从(;32與^32的示意圖。 第2A圖係本發明第二實施例之光學示意圖。 第2B圖係本發明第二實施例像差曲線圖。 第3A圖係本發明第三實施例之光學示意圖。 第3B圖係本發明第三實施例像差曲線圖。 【表簡單說明】 表一第一實施例光學數據。 表二第一實施例非球面數據。 表三第二實施例光學數據。 表四第二實施例非球面數據。 表五第三實施例光學數據。 表六第三實施例非球面數據。 表七本發明相關關係式的數值資料。 201217853 【主要元件符號說明】 第一透鏡 110、210、310 物側表面 111、211、311 像側表面112、212、312 第二透鏡 120、220、320 物側表面 121、221、321 像側表面122、222、322 第三透鏡130、230、330 物侧表面131、231、331 像側表面132、232、332Ai : The i p is aspherical coefficient. In the first embodiment, the focal length of the integral optical imaging system is f, and the relationship is: f = 3.02. In the first embodiment, the aperture value (f-number) of the integral optical imaging system is Fno, and the relationship is: Fno = 2. 〇5. In the first embodiment, half of the maximum viewing angle of the overall optical imaging system is HF0V, and the relationship is: HFOV=37. 4. In the first embodiment, the dispersion coefficient of the third lens 13 is V3, and the dispersion coefficient of the fourth lens 140 is V4, and the relationship is V3_V4=32. In the first embodiment, the inter-mirror distance between the first lens 110 and the second lens 12 is T12, and the overall focal length of the optical imaging system is ^, and the relation is T12/f = 〇. In the first embodiment, the center thickness of the first lens 110 is 卬, and the overall focal length of the photographic system is f, and the relationship is: CT1/f = 〇, for example, the first lens in the embodiment. The center thickness of 110 is cti, and the center thickness of the second lens 120 of the 201217853 is CT2, and the relationship is: CT2/CTl = 〇. In the first embodiment, the object side surface (1) of the _ lens 110 has a radius of curvature R1'. The image side surface Φ 112 of the first lens 110 has a radius of curvature R2, and the relationship is R1/R2 = 2.55. In the first embodiment, the focal length of the second lens 12A is f2, and the focal length of the third lens 130 is f3, and the relationship is f3/f2 = 〇.43. The focal length of the first lens 11Q is fl, and the focal length of the fourth lens 140 is Μ, and the relationship is f4/fl = 〇.38. In the first embodiment, the vertical distance between the maximum range position of the light passing through the image side surface 132 of the third lens 13A and the optical axis 15〇 is γ32, and the image side surface 132 of the second lens 130 is separated from the optical axis 15 〇 is the position of γ32 • The distance from the tangent plane on the apex of the optical axis 15G of the third lens 130 is SAG32, and the relationship is: SAG32/Y32 = 〇52. It can be seen in Figure ic. In the first embodiment, the distance from the aperture 1 to the imaging surface 19 on the optical axis 15〇 is SL, and the distance from the object side table® 111 of the first lens 110 to the imaging surface 190 on the optical axis 150 For TTL, the relationship is: SL/TTL=〇. In the first embodiment, the distance from the object side surface 111 to the imaging surface 190 of the first lens 110 to the light extraction 150 is m, and the optical imaging system further provides an electronic photosensitive element (not shown) on the imaging surface. 190, the electronic photosensitive element is effective in the area of the raw material area - half is 丨mgH, money: TTL / ImgH = 3.2 卜',, 201217853 The detailed structure data of the first embodiment is shown in the table - The spherical data is shown in Table 2, where the unit of curvature radius, thickness and focal length is in mm (mm). For an optical imaging system according to a second embodiment of the present invention, please refer to FIGS. 2A and 2B. FIG. 2A is a schematic diagram showing the configuration of an optical imaging system according to a second embodiment of the present invention, and FIG. 2B is a second embodiment of the present invention. For example, the second embodiment includes a first lens 210 having a negative refractive power and a material of plastic. The object side surface 211 of the first lens 210 is a convex surface and the image side surface. 212 is a concave surface, and both the object side surface 211 and the image side surface 212 of the first lens 210 are aspherical. A second lens 220 having a positive refractive power is made of plastic. The object side surface 221 of the second lens 220 is a concave surface, and the image side surface 222 is a convex surface. The second lens 220 has an axial side surface 221 and an image side surface 222. All are set to aspherical. A third lens 230 having a positive refractive power is made of plastic. The object side surface 231 of the third lens 230 is a convex surface, the image side surface 232 is a convex surface, and the object side surface 231 and the image side surface of the third lens 230 are formed. The coffee is set to aspherical. A fourth lens 24Q having a negative refractive power is made of plastic, the object side surface 241 of the fourth lens 240 is a concave surface, the image side surface (10) is a concave surface, and the object side surface φ 241 and the image side of the fourth lens 240 are The surface secret is set to be aspherical, and the object side surface 241 and the image side surface 242 of the fourth lens 240 are both provided with inflection points. The aperture 200 is disposed between the first lens 210 and the second lens 22 12 201217853. An infrared filter (IR-filter) 270 is disposed between the image side surface 242 of the fourth lens 240 and an image forming surface 290, so that the material of the infrared filter filter 270 is glass and does not affect The focal length of the optical imaging system. The second embodiment shows the aspheric curve equation as in the form of the first embodiment. In the second embodiment, the focal length of the integral optical imaging system is f, and the relationship φ is: f = 3.U. In the second embodiment, the aperture value (f-number) of the integral optical imaging system is Fno, and the relational expression is: Fn 〇 = 2 4 〇. 5。 The second embodiment of the overall optical imaging system, the maximum viewing angle of half of the HF0V, the relationship is: hf 〇 V = 36.5. In the first embodiment, the dispersion coefficient of the third lens 230 is V3, and the dispersion coefficient of the fourth lens 240 is V4, and the relationship is V3_V4=32. ♦ In the first embodiment, the mirror distance between the first lens 210 and the second lens 220 is T12'. The overall focal length of the optical camera is f, and the relationship is: T12/f = 〇. In the second embodiment, the center thickness of the first lens 21Q is CT1, and the overall focal length of the optical imaging system is f, and the relationship is CTi/f = 〇 58. The second embodiment + 'the center thickness of the first lens 21' is m, and the middle to the thickness of the first lens 220 is CT2, and the relationship is: cT2 / cTi = 〇. The first embodiment + 'the curvature radius 13 201217853 of the object side surface 211 of the first lens 21 为 is the radius of curvature of the image side surface 212 of the first lens 2i 为, and the relationship is: Rl / R2 = 2. 69. In the second embodiment, the focal length of the second lens 220 is f2, and the focal length of the third lens 230 is f3, and the relation is π. In the second embodiment, the focal length of the first lens 21G is f. The focal length of the fourth lens 240 is Μ, and the relational expression is f4/fl=〇.33. In the second embodiment, the maximum |&amp; position of the light passing through the image side surface 232 of the third lens 230 is γ32 from the optical axis 250, and the image side surface 232 of the third lens 230 is separated from the optical axis. The position where 25 〇 is γ32 and the tangent plane tangent to the apex of the third lens 23 at the apex of the optical axis 25G is SAG32', and the relationship is SAG32/Y32=〇49. It should be noted that since the schematic diagrams of the SAG32 and Y32 are similar to the first embodiment (i.e., FIG. 1C), they are not drawn here. In the second embodiment, the distance from the aperture 200 to the imaging surface 290 on the optical axis 250 is SL'. The distance between the image lens surface 211 of the first lens 210 and the image surface 290 on the optical axis 250 is TTL. For: SL/TTL=〇. 7ι. In the second embodiment, the distance from the object side surface 211 of the first lens 210 to the imaging surface 290 on the optical axis 250 is TTL. The optical imaging system further provides an electronic photosensitive element (not shown) on the imaging surface 29 . 〇, the half of the diagonal length of the effective pixel region of the electronic photosensitive element is ImgH, and the relationship is: TTL/ImgH=3.29. The detailed structural data of the second embodiment is shown in Table 3. The aspherical data 201217853 is as shown in Table 4. The unit of radius, thickness and focal length shown in Table 4 is mm (mm). For an optical imaging system according to a third embodiment of the present invention, please refer to FIGS. 3A and 3B®. FIG. 3A is a schematic diagram showing the configuration of an optical imaging system according to a third embodiment of the present invention, and FIG. 3B is a third embodiment of the present invention. For example, the third embodiment includes: a first lens having a negative refractive power, the material is plastic, and the first side surface 311 of the first lens 310 is a convex surface, and the image side is The surface 312 is a concave surface, and the object side surface 311 and the image side surface 312 of the first lens 310 are both aspherical. A second lens 320 having a positive refractive power is made of plastic. The object side surface 321 of the second lens 320 is a concave surface, and the image side surface 322 is a convex surface. The object side surface of the second lens 32G is like the image side. The surface 322 is set to be aspherical. The third lens 33G having a positive refractive power is made of plastic, the object side surface 331 of the third lens 330 is a convex surface, the side surface 332 is convex φ, and the object side surface 331 and the image of the third lenticular lens 330 are The side surfaces are all aspherical. ― a fourth lens 340 having a negative refractive power, which is made of plastic, the object side surface 341 of the fourth lens 340 is a convex surface, the image side surface material 2 is a concave surface, and the object side surface 341 and the image of the fourth lens 340 are The side surface 籼 is aspherical, and the object surface 341 and the image side surface 342 of the fourth lens 340 are both provided with an inflection point 0 - an aperture 300 ′ which is disposed on the second lens 320 and the third lens 33 . 〇 15 201217853 - an infrared filter (IR_filter) 37Q, which is disposed between the image side surface 342 of the fourth lens 340 and an image forming surface 390, so that the infrared light removing sheet 370 is made of glass and Does not affect the focal length of the optical imaging system. ‘, the third implementation of the solution of the spherical curve equation is like the first embodiment. In the third embodiment, the focal length of the integral optical imaging system is f, and the relationship is: f = 3.09. In the third embodiment, the aperture value (f-number) of the integral optical imaging system is Fno, and the relational expression is: Fn 〇 = 2 1 〇. In the third embodiment, the maximum viewing angle of the overall optical imaging system is half HF0V, and the relationship is: HFOV = 36.5. In the second embodiment, the third lens 33Q has a dispersion coefficient of V3, and the fourth lens 340 has a dispersion coefficient of V4, and the relational expression is V3_V4 = 32 5 . In the third embodiment, the distance between the first lens 31〇 and the second lens is T12, and the overall focal length of the optical imaging system is f, and the relationship is TT12/f = 〇.16. In the third embodiment, the center thickness of the first lens 310 is CT. The overall focal length of the imaging system is f, and the relationship is: CT1/f = 〇 "In the third embodiment, the first lens The central thickness of the lens (10) is m, and the center thickness of the two lenses 320 is CT2, and the relationship is: CT2/CT1. In the second embodiment, the curvature of the object side surface 311 of the first lens 310 is half-baked as R1. The image side surface 312 of the first lens 310 has a radius of curvature of the ruler 2, and the process of '2012' is: Rl/R2 = 2.63. In the third embodiment, the focal length of the second lens 320 is F2, the focal length of the third lens 33〇 is f3′, and the relationship is: f3/f2=〇36. In the third embodiment, the focal length of the first lens 310 is Π, and the focal length of the fourth lens 340 is f4. The relationship is: f4/fl = 〇. 3 〇 In the third embodiment, the maximum distance between the maximum range of the light passing through the image side surface 332 of the third lens 330 and the optical axis 350 is Y32, which is • A position on the image side surface 332 of the two lens 330 that is Y32 from the optical axis 350 and a tangent to the apex of the optical axis 350 of the third lens 330 The distance is SAG32, and the relationship is: SAG32/Y32=Q 48. It should be noted that since the schematic diagrams of the SAG32 and Y32 are similar to the first embodiment (ie, the lc diagram), they are not drawn here. In an embodiment, the distance from the aperture 300 to the imaging surface 390 on the optical axis 350 is SL'. The object side surface 311 of the first lens (10) to the imaging surface 390. The distance on the optical axis 350 is TTL, and the relationship is :SL/m=0. 63. In the third embodiment, the object side table of the first lens 310 has a distance from the 311 to the imaging surface 390 on the optical axis 350, and the optical imaging system is further provided with an electronic photosensitive 7L. The part (not shown) is on the imaging surface. 'The diagonal length of the effective pixel area of the electronic photosensitive element is _, and the relationship is: TTL/ImgH = 3. 39 详细 Detailed structural data of the third embodiment As shown in Table 5, the aspherical data is as shown in Table 6. The unit of curvature radius, thickness and focal length is 17 17 201217853 (mm) ° It is worth noting that Tables 1 to 6 show the invention. The different numbers of the optical imaging system (four), the numerical changes of the various embodiments of the invention According to the experiment, even if different values are used, the products of the same structure belong to the protection formula 4 of the present invention. Table 7 is the correspondence table of the relations in each embodiment. [Simplified description of the drawings] FIG. 1A is the first embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1B is a diagram showing aberrations of the first embodiment of the present invention. The ic diagram is a schematic diagram of (32 and 32) of the first embodiment of the present invention. Fig. 2A is a second embodiment of the present invention. An optical schematic of an example. Fig. 2B is a diagram showing aberrations of the second embodiment of the present invention. Fig. 3A is an optical schematic view of a third embodiment of the present invention. Fig. 3B is a diagram showing aberrations of the third embodiment of the present invention. [Table Description] Table 1 shows optical data of the first embodiment. Table 2 shows the aspherical data of the first embodiment. Table 3 Second embodiment optical data. Table 4 shows the aspherical data of the second embodiment. Table 5. Optical data of the third embodiment. Table 6. Third embodiment aspherical data. Table 7 shows the numerical data of the correlation equation of the present invention. 201217853 [Description of main component symbols] First lens 110, 210, 310 Object side surface 111, 211, 311 Image side surface 112, 212, 312 Second lens 120, 220, 320 Object side surface 121, 221, 321 Image side surface 122, 222, 322 third lens 130, 230, 330 object side surface 131, 231, 331 image side surface 132, 232, 332

第四透鏡140、240、340 物侧表面141、241、341 像側表面142、242、342 光圈 100、200、300 光轴 150、250、350 紅外線濾除濾光片(IR Filter)170、270、370 成像面 190、290、390 CT1 :第一透鏡的中心厚度 CT2 :第二透鏡的中心厚度 f:光學攝影系統的整體焦距 η : 第一透鏡的焦距 f2 : 第二透鏡的焦距 f3 : 第三透鏡的焦距 f4 : 第四透鏡的焦距Fourth lens 140, 240, 340 object side surface 141, 241, 341 image side surface 142, 242, 342 aperture 100, 200, 300 optical axis 150, 250, 350 IR filter 170, 270 370 imaging plane 190, 290, 390 CT1: center thickness CT2 of the first lens: center thickness of the second lens f: overall focal length η of the optical imaging system: focal length f2 of the first lens: focal length f3 of the second lens: Focal length f4 of the three lens: focal length of the fourth lens

ImgH:電子感光元件有效晝素區域對角線長的一半 R1 :第一透鏡的物侧表面曲率半徑 19 201217853 R2 :第一透鏡的像侧表面曲率半徑 Y32:第三透鏡的像侧表面上光線通過之最大範圍位置與光 軸的垂直距離 SAG32:第三透鏡的像側表面上距離光軸為Y32的位置與相 切於第三透鏡光軸頂點上之切面的距離 SL :光圈至成像面於光軸上的距離 T12:第一透鏡與第二透鏡間的鏡間距 TTL :第一透鏡的物側表面至成像面於光軸上的距離 · V3 :第三透鏡的色散係數 V4 :第四透鏡的色散係數ImgH: half of the diagonal length of the effective photosensitive region of the electronic photosensitive element R1: radius of curvature of the object side surface of the first lens 19 201217853 R2: curvature of the image side surface of the first lens Y32: light on the image side surface of the third lens The vertical distance SAG32 of the maximum range position and the optical axis: the distance from the optical axis Y32 on the image side surface of the third lens to the tangent plane on the apex of the optical axis of the third lens: aperture to imaging surface The distance T12 on the optical axis: the mirror pitch TTL between the first lens and the second lens: the distance from the object side surface of the first lens to the imaging plane on the optical axis · V3: the dispersion coefficient V4 of the third lens: the fourth lens Dispersion coefficient

2020

Claims (1)

201217853 七、申請專利範圍: 1. 一種光學攝影系統,由物側至像側依序包含: 一具負屈折力的第-透鏡,其物侧表面為凸面、像側 凹面; 句 一具正屈折力的第二透鏡; 一具正屈折力的第三透鏡,其物側表面與像侧表面皆為非球 面; • —具負屈折力的第四透鏡,其侧表面為凹面,且該第四透 鏡的物侧表面與像側表面皆為非球面; 該光學攝影系統中具屈折力的透鏡為四片,且該第一透鏡 與第二透鏡間的鏡間距為T12,該光學攝影系統的整體焦距為 f ’該第一透鏡的中心厚度為m,此外,該光學攝影系統另設 置一光圈,該光圈至成像面於光轴上的距離為SL,該第一透鏡 的物侧表面至成像面於光軸上的距離為TTL,滿足下記關係式: • 0-1 &lt; T12/f &lt;0.3; 〇. 30 &lt; CTl/f &lt; ο. 75 ; 〇.52 &lt; SL/TTL &lt; 0. 82。 2. 如申請專利範圍第1項所述之光學攝影系統,其中該第 三透鏡的像侧表面為凸面。 3. 如申請專利範圍第2項所述之光學攝影系統,其中該第 四透鏡設置有反曲點。 4·如申請專利範圍第3項所述之光學攝影系統,其中該第 21 201217853 三透鏡與第四透鏡的材質皆為塑膠。 5. 如申請專利範圍第4項所述之光學攝影系統,其中該第 二透鏡的焦距為f2,該第三透鏡的焦距為f3,兩者滿足下記關 係式:0. 2 &lt; f3/f2 &lt; 0.7。 6. 如申請專利範圍第5項所述之光學攝影系統,其中該第 透鏡與該第一透鏡間彼此具有空氣間距’且該第一透鏡的中 心厚度為CT1,該第二透鏡的中心厚度為CT2,兩者滿足下記關 係式:0. 2 &lt; CT2/CT1 &lt; 0. 50。 7. 如申請專利範圍第5項所述之光學攝影系統,其中該第 一透鏡的焦距為fl ’該第四透鏡的焦距為f4,兩者滿足下記關 係式:0. 2 &lt; f4/fl &lt; 〇. 45。 8. 如申請專利範圍第7項所述之光學攝影系統,其中該第 三透鏡的像側表面上光線通過之最大範圍位置與光軸的垂直 距離為Y32,該第三透鏡的像側表面上距離光軸為γ32的位 置與相切於第三透鏡光軸頂點上之切面的距離為MG32,兩者 滿足下記關係式:〇. 4 &lt; SAG32/Y32 &lt; 0. 6。 9. 如申請專利範圍第5項所述之光學攝影系統,其中該第 三透鏡的色散係數為V3,該第四透鏡的色散係數為V4,兩者滿 足下記關係式:30 &lt; V3-V4 &lt; 42。 10. 如申請專利範圍第5項所述之光學攝影系統,其中該第 一透鏡的物側表面曲率半徑為R1’該第一透鏡的像側表面曲率半 徑為R2 ’兩者滿足下記關係式:2. 0 &lt; R1/R2 &lt; 3. 0。 22 201217853 11.如申請專利範圍第2項所述之光學攝影系統,其中該第 一透鏡的物侧表面至成像面於光軸上的距離為TTL,另於該成 像面設置一電子感光元件,該電子感光元件有效畫素區域對角線 長的一半為ImgH ’兩者滿足下記關係式:TTL/ImgH &lt; 3.8。 12·—種光學攝影系統,由物側至像侧依序包含: 一具負屈折力的第一透鏡,其物侧表面為凸面、像側表面為 凹面; • 一具正屈折力的第二透鏡; 一具正屈折力的第三透鏡; 一具負屈折力的第四透鏡,其像側表面為凹面,且該第四透 鏡設置有反曲點; 該光學攝影系統中具屈折力的透鏡為四片,且該第一透鏡 的焦距為f卜該第四透鏡的焦距為f4,該第一透鏡的中心厚度 為CT1 ’該第二透鏡的中心厚度為CT2,此外,該光學攝影系統 _ 置-光圈,該細至成像面於雜上的距離為⑶,該第一 透鏡的物側表面至成像面於光軸上的距離為TTL,滿足下記關 係式: 0. 2 &lt; f4/f 1 &lt; 〇. 6 ; 0· 2 &lt; CT2/CT1 &lt; 〇. 5 ; 0· 52 &lt; SL/TTL &lt; 〇. 82。 13.如申請專利顧第12項所述之光學攝影祕,其中該 第三透鏡的材質為塑膠’且其物側表面與像侧表面皆為非球面。 23 201217853 14. 如申請專利範圍第13項所述之光學攝影系統,其中該 第一透鏡與第二透鏡間的鏡間距為T12,該光學攝影系統的整體 焦距為f,兩者滿足下記關係式:〇. 1 &lt; T12/f &lt; 〇. 3。 15. 如申請專利範圍第14項所述之光學攝影系統,其中該 第三透鏡的色散係數為V3,該第四透鏡的色散係數為V4,兩者 滿足下記關係式:30 &lt; V3-V4 &lt; 42。 16. 如申請專利範圍第14項所述之光學攝影系統,其中該 第二透鏡的像側表面上光線通過之最大範圍位置與光軸的垂 · 直距離為Y32,該第三透鏡的像側表面上距離光轴為的 位置與相切於第三透鏡光軸頂點上之切面的距離為SAG32, 兩者滿足下記關係式:〇. 4 &lt; SAG32/Y32〈 0. 6。 17. 如申請專利範圍第13項所述之光學攝影系統,其中該 ‘ 第三透鏡的物側表面與像側表面皆為凸面。 - 18. 如申請專利範圍第17項所述之光學攝影系統,其中該 第「透鏡的物侧表面曲率半徑_,該第—透鏡的像側表面料籲 半輕為R2,兩者滿足下記關係式:2. 〇 &lt;則/敗&lt; 3 〇。 19. 如申請專利範圍第17項所述之光學攝影系統,其中該 第二透鏡距為f2 ’該第三透鏡的焦距為f3,兩者滿足下記 關係式:0.2 &lt; f3/f2 &lt; 〇. 7。 ° 20. -種光學攝料統,由物侧至像側依序包含: 一具負屈折力的第一透鏡,其物側表面為凸面、像侧表面為 凹面; 24 201217853 一具正屈折力的第二透鏡; 一具正屈折力的第三透鏡,其物側表面與像側表面皆為凸 面,且該物侧表面與像側表面皆為非球面,該第三透鏡為 -具負屈折力的第四透鏡,其該像側表面為凹面其物侧表 面與像側表面皆轉_,且該第四透鏡設置有反曲點該第四 透鏡為塑膠; 該光學攝影系統中具屈折力的透鏡為四片,且該第一透鏡 _ 與第二透鏡間的鏡間距為T12,該光學攝影系統的整體焦距為 f ’該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,此外,該 光學攝影系統另設置-光圈,該光圈至成像面於光轴上的距離 為SL,該第一透鏡的物侧表面至成像面於光軸上的距離為 TTL,滿足下記關係式: 0.07 &lt; T12/f &lt; 0.50 ; 0. 2 &lt; f3/f 2 &lt; 〇. 7 ; # 0. 52 &lt; SL/TTL &lt; 〇.82。 21.如申請專利範圍第20項所述之光學攝影系統,其中該 第一透鏡的焦距為Π ’該第四透鏡的焦距為f4,該第三透鏡的 色散係數為V3,該第四透鏡的色散係數為V4,滿足下記關係式: 0.2 &lt; f4/fl &lt; 〇. 6 ; 30 &lt; V3-V4 &lt; 42 。 25201217853 VII. Patent application scope: 1. An optical imaging system consisting of: from the object side to the image side: a first lens with negative refractive power, the object side surface is convex, the image is concave; the sentence has a positive inflection a second lens of a force; a third lens having a positive refractive power, the object side surface and the image side surface are both aspherical surfaces; • a fourth lens having a negative refractive power, the side surface of which is a concave surface, and the fourth The object side surface and the image side surface of the lens are both aspherical; the lens with refractive power in the optical imaging system is four, and the mirror spacing between the first lens and the second lens is T12, the whole of the optical imaging system The focal length is f 'the center thickness of the first lens is m. In addition, the optical imaging system further provides an aperture, the distance from the aperture to the imaging plane on the optical axis is SL, and the object side surface of the first lens to the imaging surface The distance on the optical axis is TTL, which satisfies the following relationship: • 0-1 &lt; T12/f &lt;0.3; 〇. 30 &lt; CTl/f &lt; ο. 75 ; 〇.52 &lt; SL/TTL &lt ; 0. 82. 2. The optical imaging system of claim 1, wherein the image side surface of the third lens is convex. 3. The optical imaging system of claim 2, wherein the fourth lens is provided with an inflection point. 4. The optical imaging system of claim 3, wherein the 21st 201217853 three lens and the fourth lens are made of plastic. 5. The optical imaging system of claim 4, wherein the focal length of the second lens is f2, and the focal length of the third lens is f3, and the two satisfy the following relationship: 0. 2 &lt; f3/f2 &lt; 0.7. 6. The optical imaging system of claim 5, wherein the first lens and the first lens have an air gap between each other and the center thickness of the first lens is CT1, and the center thickness of the second lens is CT2, both satisfy the following relationship: 0. 2 &lt; CT2/CT1 &lt; 0. 50. 7. The optical imaging system of claim 5, wherein the focal length of the first lens is fl 'the focal length of the fourth lens is f4, and the two satisfy the following relationship: 0. 2 &lt; f4/fl &lt; 〇. 45. 8. The optical imaging system of claim 7, wherein a maximum distance between the maximum range of light passing through the image side surface of the third lens and the optical axis is Y32, and the image side surface of the third lens The distance from the position where the optical axis is γ32 and the tangent plane at the apex of the optical axis of the third lens is MG32, and both satisfy the following relationship: &. 4 &lt; SAG32/Y32 &lt; 0.6. 9. The optical imaging system of claim 5, wherein the third lens has a dispersion coefficient of V3 and the fourth lens has a dispersion coefficient of V4, and both satisfy the following relationship: 30 &lt; V3-V4 &lt; 42. 10. The optical imaging system of claim 5, wherein the first lens has an object side surface radius of curvature R1' and the image side surface curvature radius of the first lens is R2' both satisfy the following relationship: 2. 0 &lt; R1/R2 &lt; 3. 0. The optical imaging system of claim 2, wherein the distance from the object side surface of the first lens to the imaging surface on the optical axis is TTL, and an electronic photosensitive element is disposed on the imaging surface, The half of the diagonal length of the effective pixel area of the electronic photosensitive element is ImgH 'both satisfying the following relationship: TTL/ImgH &lt; 3.8. 12. An optical imaging system comprising, from the object side to the image side, sequentially: a first lens having a negative refractive power, the object side surface being a convex surface, the image side surface being a concave surface; • a positive refractive power second a third lens having a positive refractive power; a fourth lens having a negative refractive power, the image side surface being concave, and the fourth lens being provided with an inflection point; the lens having a refractive power in the optical imaging system The optical lens is _ The distance from the object side surface to the imaging surface on the optical axis is TTL, which satisfies the following relationship: 0. 2 &lt; f4/f 1 &lt; 〇. 6 ; 0· 2 &lt; CT2/CT1 &lt; 〇. 5 ; 0· 52 &lt; SL/TTL &lt; 〇. 82. 13. The optical photography secret of claim 12, wherein the third lens is made of plastic and both the object side surface and the image side surface are aspherical. The optical imaging system of claim 13, wherein the mirror spacing between the first lens and the second lens is T12, and the overall focal length of the optical imaging system is f, both satisfying the following relationship :〇. 1 &lt; T12/f &lt; 〇. 3. 15. The optical imaging system of claim 14, wherein the third lens has a dispersion coefficient of V3 and the fourth lens has a dispersion coefficient of V4, and both satisfy the following relationship: 30 &lt; V3-V4 &lt; 42. 16. The optical imaging system of claim 14, wherein a maximum range of light passing through the image side surface of the second lens and a vertical distance from the optical axis are Y32, and an image side of the third lens The distance from the optical axis on the surface to the tangent plane at the apex of the optical axis of the third lens is SAG32, and both satisfy the following relationship: &. 4 &lt; SAG32/Y32< 0.6. 17. The optical imaging system of claim 13, wherein the object side surface and the image side surface of the 'third lens are both convex. 18. The optical imaging system of claim 17, wherein the first object has a radius of curvature _ of the object side surface, and the image side surface of the first lens is half lightly R2, which satisfies the following relationship光学 则 则 则 则 则 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. The person satisfies the following relationship: 0.2 &lt; f3/f2 &lt; 〇. 7. ° 20. - An optical imaging system, consisting of the object side to the image side sequentially: a first lens with negative refractive power, The side surface is a convex surface, and the image side surface is a concave surface; 24 201217853 a second lens having a positive refractive power; a third lens having a positive refractive power, the object side surface and the image side surface are both convex surfaces, and the object side surface And the image side surface is aspherical, the third lens is a fourth lens having a negative refractive power, the image side surface is a concave surface, and the object side surface and the image side surface are both rotated, and the fourth lens is provided with The fourth lens is a plastic; the lens with refractive power in the optical imaging system Four pieces, and the mirror distance between the first lens _ and the second lens is T12, the overall focal length of the optical photographic system is f 'the focal length of the second lens is f2, and the focal length of the third lens is f3, The optical imaging system is further provided with an aperture, the distance from the aperture to the imaging plane on the optical axis is SL, and the distance from the object side surface of the first lens to the imaging plane on the optical axis is TTL, which satisfies the following relationship: 0.07 &lt; T12/f &lt;0.50; 0. 2 &lt; f3/f 2 &lt; 〇. 7 ; # 0. 52 &lt; SL/TTL &lt; 〇. 82. 21. As described in claim 20 The optical imaging system, wherein the focal length of the first lens is Π 'the focal length of the fourth lens is f4, the dispersion coefficient of the third lens is V3, and the dispersion coefficient of the fourth lens is V4, which satisfies the following relationship: 0.2 &lt; f4/fl &lt; 〇. 6 ; 30 &lt; V3-V4 &lt; 42 . 25
TW99137137A 2010-10-29 2010-10-29 Optical imaging system TWI426316B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99137137A TWI426316B (en) 2010-10-29 2010-10-29 Optical imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99137137A TWI426316B (en) 2010-10-29 2010-10-29 Optical imaging system

Publications (2)

Publication Number Publication Date
TW201217853A true TW201217853A (en) 2012-05-01
TWI426316B TWI426316B (en) 2014-02-11

Family

ID=46552331

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99137137A TWI426316B (en) 2010-10-29 2010-10-29 Optical imaging system

Country Status (1)

Country Link
TW (1) TWI426316B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969809A (en) * 2013-12-30 2014-08-06 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device utilizing same
TWI507717B (en) * 2013-12-30 2015-11-11 玉晶光電股份有限公司 An optical imaging lens and an electronic device to which the optical imaging lens is applied
US9217846B2 (en) 2013-11-29 2015-12-22 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9513534B2 (en) 2013-11-29 2016-12-06 Genius Electronic Optical Co., Ltd. Mobil device and optical imaging lens having four lens elements thereof
CN112099208A (en) * 2020-09-23 2020-12-18 深圳市汇顶科技股份有限公司 Infrared imaging lens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272141B (en) * 2016-04-06 2019-06-14 大立光电股份有限公司 Optical system microscope group, image-taking device and electronic device
CN106468817A (en) 2016-07-05 2017-03-01 玉晶光电(厦门)有限公司 Optical imaging lens
TWI620956B (en) * 2017-10-19 2018-04-11 聲遠精密光學股份有限公司 Wide angle imaging lens assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548385B2 (en) * 2006-11-06 2009-06-16 Hoya Corporation Wide-angle lens system
TWI361915B (en) * 2008-02-18 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
JP2010079252A (en) * 2008-09-01 2010-04-08 Fujinon Corp Small projection lens and projection display using the same
JP5067589B2 (en) * 2010-05-06 2012-11-07 コニカミノルタアドバンストレイヤー株式会社 Photography lens and imaging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217846B2 (en) 2013-11-29 2015-12-22 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9513534B2 (en) 2013-11-29 2016-12-06 Genius Electronic Optical Co., Ltd. Mobil device and optical imaging lens having four lens elements thereof
CN103969809A (en) * 2013-12-30 2014-08-06 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device utilizing same
TWI507717B (en) * 2013-12-30 2015-11-11 玉晶光電股份有限公司 An optical imaging lens and an electronic device to which the optical imaging lens is applied
TWI512322B (en) * 2013-12-30 2015-12-11 玉晶光電股份有限公司 An optical imaging lens and an electronic device to which the optical imaging lens is applied
US9405097B2 (en) 2013-12-30 2016-08-02 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9432557B2 (en) 2013-12-30 2016-08-30 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
CN103969809B (en) * 2013-12-30 2016-08-31 玉晶光电(厦门)有限公司 Optical imaging lens and apply the electronic installation of this optical imaging lens
CN112099208A (en) * 2020-09-23 2020-12-18 深圳市汇顶科技股份有限公司 Infrared imaging lens
CN114815180A (en) * 2020-09-23 2022-07-29 深圳市汇顶科技股份有限公司 Infrared imaging lens
CN114815180B (en) * 2020-09-23 2024-04-12 深圳市汇顶科技股份有限公司 Infrared imaging lens

Also Published As

Publication number Publication date
TWI426316B (en) 2014-02-11

Similar Documents

Publication Publication Date Title
TWI438478B (en) Image capturing optical lens system
TWI421557B (en) Imaging lens system
TWI406027B (en) Imaging lens assembly
TWI379102B (en) Optical lens system for taking image
TWI438476B (en) Image capturing system
TWI449947B (en) Image lens assembly system
TWI432773B (en) Photographing lens assembly
TWI435136B (en) Optical imaging lens assembly
CN202171677U (en) Optical camera lens assembly
TWI437312B (en) Image capturing lens system
TWI395992B (en) Four-piece optical lens system for taking image
TWI440924B (en) Image lens system
TWI434096B (en) Optical imaging lens system
TWI388878B (en) Optical lens system for taking image
TWI457596B (en) Optical photographing system
TWI424217B (en) Image capturing lens assembly
TWI418876B (en) Optical photographing system
TWI435135B (en) Optical lens system
TWI439720B (en) Image capturing lens assembly
TWI435106B (en) Imaging lens system
TWI429979B (en) Optical image lens assembly
TWI424189B (en) Imaging lens assembly
TWI472825B (en) Image capturing lens system, imaging device and mobile terminal
TWI409522B (en) Image capturing lens system
TWI429943B (en) Optical imaging lens system