201217830 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種變焦鏡頭系統。 【先前技術】 [0002]近年來,隨著多媒體的發展,數位產品等使用 CCD(Charged Coupled Device)或 CMOSCComplementary Metal Oxide Semiconduct- 〇r)等固體成像器件作為攝像元件的需求越來越大,由於 這些固體成像器件如CCD或者CM0S的工藝技術提高,已經 能夠製作出每個畫素只有幾個微米大小的成像器件。由 此又要求和上述成像器件配套的丨變焦鏡頭系統做到小型 化。 [0003] [0004] [0005] 099137065 變焦鏡頭系統小型化的途徑之—是提高變焦比,但是現 有的變焦鏡頭系統,在變焦比要求較高時,對像差的續 正就變得困難’從而使得變焦鏡f系統在滿足小型化的 同時成像的品質較差。 : ..... .... 【發明内容】 有鑒於此有必要提供一種滿足小型化的同時成像品質 較好的變焦鏡頭系統。 -種變焦鏡頭系統’沿其妹從物側到像财向依次包 括一個正総度的第—透鏡組、—個負光焦度的第二透 鏡組、一個正光焦度的第三透鏡組、-個正光焦度的第 四透鏡組及—個成像面,所述第-透鏡組及所述第三透 鏡組在變焦過程巾沿光財向以,㈣第二透鏡組及 所述第四透鏡組在變焦過程中沿光轴移動。該變焦鏡頭 表單編號卿! 第4頁/共3〇頁 09920 201217830 系統滿足條件式5<f3/f4<8. 2 ; 2. 1<U2Mw|<3. 2,其 ' 中’ f2為第二透鏡組的有效焦距;f3為第三透鏡組的有 效焦距;ί 4為第四透鏡組的有效焦距;fw為變焦鏡頭系 統處於廣角端狀態下的有效焦距。 [〇〇〇6] 在滿足條件式的情況下,所述變焦鏡頭系統具有一較短 0 的長度’從而滿足變焦鏡頭系統小型化的要求,同時確 保第二、三及四透鏡組的光焦度在變焦鏡頭系統中的比 例,以降低球差,提高成像品質。 〇 【實施方式】 [0007] 下面將結合附圖’對本發明作進一步的詳細說明。 [0008] 請參閱圖1,為本發明提供的變焦鏡頭系統10 0。沿該變 焦鏡頭系統1〇〇的光軸從物側到像側方向依次包括一個正 光焦度的第一透鏡組10、一個負光焦度蚱第二透鏡組20 、一個光闌50、一個正光焦度的第三遠鏡組30、一個正 光焦度的第四透鏡组40、及一個瀘光片60。變焦鏡頭系 統100在像側具有一個成像面70。 Ο [0009] 當所述變焦鏡頭系統100用於成像時,來自被攝物的光線 從物側方向射入所述變焦鏡頭系統100並依次經過所述第 一透鏡組10、第二透鏡組20、光闌50、第三透鏡組30及 第四透鏡組40,最終通過所述濾光片60匯聚到所述成像 面70上,通過將CCD或CMOS等固體成像器件置於所述成 像面70處,即可獲取該被攝物的像。當所述變焦鏡頭系 統100進行變焦操作時,所述第一透鏡組10沿光軸方向固 定,所述第二透鏡組20沿光軸移動,所述第三透鏡組30 沿光軸方向固定,所述第四透鏡組40沿光轴移動,以補 099137065 表單編號A0101 第5頁/共30頁 0992064643-0 201217830 償變焦過程及物距變化所造成的成像面位置變動。另外 · ,當所述變焦鏡頭系統100由廣角狀態切換至望遠狀態時 ’所述第二透鏡組20與所述第一透鏡組10之間的間距會 增加。 [0010] 本實施方式中’所述第一透鏡組1 0從從物側到像侧依次 % 包括由第一透鏡11、第二透鏡12、第三透鏡13及第四透 鏡14。其中’所述第一透鏡π是凸面面向所述物侧的凹 彎月透鏡,所述第二透鏡12是凸透鏡,所述第一透鏡11 與所述第二透鏡12膠合在一起組成膠合透鏡。所述第三 透鏡13是凸面面向所述物側的凸彎月透鏡,所述第四透 鏡14是一球面玻璃鏡片,具艟地,所述第四透鏡14是凸 面面向所述物側的凸彎月玻璃透鏡。通過在所述第一透 鏡11、第二透鏡12、第三透鏡13後增加所述球面玻璃的 第四透鏡14,能夠適當地補償第一透鏡組1〇在中間焦距 狀態及望遠狀態時產生的球面像差,從而有效提升變焦 鏡頭系統10 0的影像解析能力。 [0011 ] 所述第二透鏡組20從所述物侧^到.像侧依次包括第五透鏡 21、第六透鏡22及第七透鏡23。所述第五透鏡21是凸面 面向所述物側的凹彎月透鏡,所述第六透鏡22是負光焦 度透鏡’所述第七透鏡23是正光焦度透鏡。所述第六透 鏡22與所述第七透鏡23膠合在一起組成膠合透鏡。 [0012] 為了實現整個變焦鏡頭系統1 0 0的低高度及低球差,該變 焦鏡頭系統10 0滿足以下條件式: [0013] (1) 5<f3/f4<8. 2 ;及 099137065 表單編號A0101 第6頁/共30頁 0992064643-0 201217830 [0014] [0015] ❹ Ο [0016] [0017] [0018] [0019] [0020] (2) 2.I<|f2/fw|<3.2 , f2為所述第二透鏡組20的有效焦距;f3為所述第三透鏡 組30的有效焦距;f4為所述第四透鏡組40的有效焦距; fw為所述變焦鏡頭系統100處於廣角端狀態下的有效焦距 。由於所述變焦鏡頭系統100中所述第三透鏡組30光焦度 過小會導致球差難以充分補償,所述第四透鏡組40光焦 度過小則會導致第四透鏡組40變焦時移動距離過長,不 利於縮短鏡頭總長,且望遠端的後焦會過短。另外,所 述變焦鏡頭系統100中所述第二透鏡組20的光焦度過大會 導致組裝敏感度過大,容易因組裝偏心等因素使解析大 幅下降,若所述第二透鏡組20光焦度過小則會導致所述 第二透鏡組20於變焦時移動距離過長,不利於縮短鏡頭 總長。而條件式(1)及條件式(2)中分別給出了所述第三 透鏡組30有效焦距與所述第四透鏡組40的焦距之間的關 係,所述第二透鏡組20與所述變焦鏡頭系統100處於廣角 端狀態下的有效焦距之間的關係,通過上述兩個條件式 的限定,能夠確保所述變焦鏡頭系統100提高成像品質的 同時,能夠縮短變焦鏡頭系統100整體的長度。 優選地,所述第一透鏡組10滿足條件式: (3) 70<V2 ; 其中V2表示所述第二透鏡的阿貝數,以更好的補正望遠 狀態時的橫向色差。 優選地,所述第二透鏡組20還滿足條件式: (4) 0·2<M2/L<0.4 ; 099137065 表單編號A0101 第7頁/共30頁 0992064643-0 201217830 _1]其中M2為變焦鏡頭系統從廣角狀態切換到望遠狀態時第 一透鏡組沿光轴的最大移動量,L為變焦鏡頭系統總長, 即第一透鏡11靠近物侧的表面到所述成像面70的距離。 因為高變焦比的鏡頭,若第二透鏡組2〇變焦時移動距離 過短’則必須提高第二透鏡組2〇的光焦度,從而會造成 組裝敏感度增加。若移動距離過長,一方面增加變焦鏡 頭系統100總長,另一方面也增加了變焦時像面彎曲與球 差的變化量。通過上述條件式(4)可以降低變焦鏡頭系統 100的組裝敏感度,減少變焦鏡頭系統1〇〇的長度及降低 變焦時像面彎曲與球差的變化量。 [0022] 所述第三透鏡組30為第八透鏡,所述第三透鏡組30是凸 面面向所述物方的凸彎月透鏡,所述第三透鏡組3〇包含 至少一個由非球面形成的表面。本實施方式中,所述第 三透鏡組30包含兩個由非球面形成的表面,可以消除球 差、慧差及像散,提升成像品質。優選地,所述第三透 鏡組30採用塑膠鏡片以降低變意、鏡頭系統100的成本。 [0〇23] 所述第四透鏡組40從所述物側依次包括第九透鏡41、第 十透鏡42及第十一透鏡43。所述第九透鏡41是正光焦度 透鏡,所述第九透鏡41包括至少一個由非球面形成的表 面。本實施方式中’所述第九透鏡41包括兩個由非球面 形成的表面,從而可以消除球差、慧差及像散,提升成 像品質。所述第十透鏡42是負光焦度透鏡,所述第十一 透鏡43是正光焦度透鏡,所述第十透鏡42與所述第十一 透鏡43膠合在一起組成膠合透鏡。由於所述第九透鏡41 沒有與所述第十透鏡42與所述第十一透鏡43膠合,所以 099137065 表單編號A0101 第8頁/共30頁 0992064643-α 201217830 [0024] [0025] [0026] [0027] Ο 〇 [0028] [0029] [0030] 可以降低膠合步驟中因膠合不準確造成的產品報廢的風 險。 優選地,所述第一透鏡組2 0滿足條件式: (5) 45<(V6-V7) ’ 其中,其中V6、V7表示所述第六及第七透鏡的阿貝數, 以更好的補正望遠狀態時的橫向色差。 所述光闌50位於第二透鏡組20與第三透鏡組3〇之間,以 限制經過所述第二透鏡組2 0的先線準入所述第三透鏡組 30的光通量,並讓經過所述第二透錢:叙20後的光錐能更 加對稱,使所述變焦鏡頭系統100的慧差得以修正。優選 地,所述光闌50設置於所述第三透鏡組30靠近物側的表 面上,從而可減少所述變焦鏡頭系統100的元件數量,% 低所述變焦鏡頭系統100組裝的複雜度。實際操作時, 以直接將所述第三透鏡組30的靠近物側的参面上—週邊 環狀區域塗黑以當作光閑50 »所述濾光片60位於所述$ 四透鏡組40與所堪成像面70之間,主要用於濾除進 述變焦鏡頭系統10 0光線中的位於紅外波段的光線。 可以理解,所述變焦鏡頭系統100的第二透鏡組2〇Λ您 透鏡組40都採用低色散材料製成。本實施方式中,第、 透鏡組20及第四透鏡組40均由玻璃製成。 下面請參照圖2至圖10,以具體實施方式來詳細說明本% 明的變焦鏡頭系統1 〇 〇。 以下實施方式中,所述第三透鏡組30及所述第九透鏡41 099137065 表單編號Α0101 第9頁/共30頁 201217830 的兩個表面均採用非球面。 [0031] 非球面面型運算式如下: [0032] ch2 ^ 1 + ^l-(k+l)c2W + Σ Ah1 [0033] 其中201217830 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a zoom lens system. [Prior Art] [0002] In recent years, with the development of multimedia, there is an increasing demand for digital imaging devices such as CCD (Charged Coupled Device) or CMOS CComplementary Metal Oxide Semiconduct- 〇r) as imaging elements. The process technology of these solid-state imaging devices, such as CCD or CMOS, has been improved, and it has been possible to produce imaging devices with a size of only a few micrometers per pixel. Therefore, the 丨 zoom lens system that is compatible with the above imaging device is required to be miniaturized. [0003] [0005] [0005] 099137065 zoom lens system miniaturization approach - is to increase the zoom ratio, but the existing zoom lens system, when the zoom ratio is higher, the aberrations become difficult to continue ' Thereby, the zoom lens f system is poor in image quality while satisfying miniaturization. [...] [Invention] In view of the above, it is necessary to provide a zoom lens system that satisfies miniaturization while having better imaging quality. a zoom lens system 'including a positive lens group, a second lens group having a negative power, a third lens group having a positive power, and a third lens group having a positive power from the object side to the side of the money, a fourth lens group of positive refractive power and an imaging surface, wherein the first lens group and the third lens group are along the optical direction of the zoom process, (4) the second lens group and the fourth lens The group moves along the optical axis during zooming. The zoom lens form number qing! Page 4 of 3 page 09920 201217830 The system satisfies the conditional expression 5<f3/f4<8. 2; 2. 1<U2Mw|<3.2, where 'mid' f2 is the effective focal length of the second lens group; F3 is the effective focal length of the third lens group; ί 4 is the effective focal length of the fourth lens group; fw is the effective focal length of the zoom lens system in the wide-angle end state. [〇〇〇6] In the case where the conditional expression is satisfied, the zoom lens system has a length of a shorter 0' to satisfy the miniaturization of the zoom lens system while ensuring the optical focus of the second, third and fourth lens groups. Degree in the zoom lens system to reduce spherical aberration and improve image quality. [Embodiment] [0007] The present invention will be further described in detail below with reference to the accompanying drawings. Please refer to FIG. 1, which is a zoom lens system 100 provided by the present invention. A first lens group 10 including a positive refractive power, a negative optical power 蚱 second lens group 20, an aperture 50, and a positive light are sequentially included from the object side to the image side direction along the optical axis of the zoom lens system 1〇〇. A third telescope group 30 of power, a fourth lens group 40 of positive power, and a calender sheet 60. The zoom lens system 100 has an imaging surface 70 on the image side. 0009 [0009] When the zoom lens system 100 is used for imaging, light from a subject is incident from the object side direction into the zoom lens system 100 and sequentially passes through the first lens group 10 and the second lens group 20 The aperture 50, the third lens group 30, and the fourth lens group 40 are finally collected by the filter 60 onto the imaging surface 70 by placing a solid imaging device such as a CCD or CMOS on the imaging surface 70. At that point, you can get an image of the subject. When the zoom lens system 100 performs a zooming operation, the first lens group 10 is fixed in the optical axis direction, the second lens group 20 is moved along the optical axis, and the third lens group 30 is fixed in the optical axis direction. The fourth lens group 40 moves along the optical axis to compensate for the change of the position of the imaging surface caused by the zoom process and the change of the object distance by adding 099137065 Form No. A0101 Page 5 / Total 30 Page 0992064643-0 201217830. Further, when the zoom lens system 100 is switched from the wide-angle state to the telephoto state, the interval between the second lens group 20 and the first lens group 10 is increased. In the present embodiment, the first lens group 10 includes, from the object side to the image side, a first lens 11, a second lens 12, a third lens 13, and a fourth lens 14. Wherein the first lens π is a concave meniscus lens having a convex surface facing the object side, the second lens 12 is a convex lens, and the first lens 11 and the second lens 12 are glued together to form a cemented lens. The third lens 13 is a convex meniscus lens having a convex surface facing the object side, and the fourth lens 14 is a spherical glass lens having a convex surface, and the fourth lens 14 is a convex surface facing the object side. Meniscus glass lens. By adding the fourth lens 14 of the spherical glass after the first lens 11, the second lens 12, and the third lens 13, it is possible to appropriately compensate for the occurrence of the first lens group 1 〇 in the intermediate focal length state and the telephoto state. The spherical aberration is effective to improve the image resolution capability of the zoom lens system 100. [0011] The second lens group 20 includes a fifth lens 21, a sixth lens 22, and a seventh lens 23 in this order from the object side to the image side. The fifth lens 21 is a concave meniscus lens having a convex surface facing the object side, and the sixth lens 22 is a negative power lens. The seventh lens 23 is a positive power lens. The sixth lens 22 and the seventh lens 23 are glued together to form a cemented lens. [0012] In order to achieve a low height and a low spherical aberration of the entire zoom lens system 100, the zoom lens system 100 satisfies the following conditional expression: [0013] (1) 5 <f3/f4<8. 2; and 099137065 No. A0101 Page 6/Total 30 Page 0992064643-0 201217830 [0014] [0015] [0018] [0020] [0020] (2) 2.I<|f2/fw|< 3.2, f2 is the effective focal length of the second lens group 20; f3 is the effective focal length of the third lens group 30; f4 is the effective focal length of the fourth lens group 40; fw is the zoom lens system 100 Effective focal length in the wide-angle end state. Since the third lens group 30 in the zoom lens system 100 has too small a power to cause a spherical aberration to be sufficiently compensated, the fourth lens group 40 is too small to cause a moving distance when the fourth lens group 40 is zoomed. Too long is not conducive to shortening the total length of the lens, and the back focus of the telephoto end will be too short. In addition, the optical power of the second lens group 20 in the zoom lens system 100 causes the assembly sensitivity to be too large, and the analysis is greatly reduced due to factors such as assembly eccentricity, if the second lens group 20 is optically pleasing. Too small will cause the second lens group 20 to move too long when zooming, which is not conducive to shortening the total length of the lens. The condition (1) and the conditional expression (2) respectively show the relationship between the effective focal length of the third lens group 30 and the focal length of the fourth lens group 40, and the second lens group 20 and the The relationship between the effective focal lengths of the zoom lens system 100 in the wide-angle end state can be ensured that the zoom lens system 100 can improve the imaging quality while reducing the overall length of the zoom lens system 100 while defining the above two conditional expressions. . Preferably, the first lens group 10 satisfies the conditional expression: (3) 70 <V2; wherein V2 represents the Abbe number of the second lens to better correct lateral chromatic aberration in the telephoto state. Preferably, the second lens group 20 further satisfies the conditional expression: (4) 0·2 < M2/L <0.4; 099137065 Form No. A0101 Page 7 / Total 30 Page 0992064643-0 201217830 _1] Where M2 is a zoom lens The maximum amount of movement of the first lens group along the optical axis when the system is switched from the wide-angle state to the telephoto state, L is the total length of the zoom lens system, that is, the distance from the surface of the first lens 11 near the object side to the imaging surface 70. Since the lens of the high zoom ratio is too short when the second lens group 2 is zoomed, the power of the second lens group 2〇 must be increased, resulting in an increase in assembly sensitivity. If the moving distance is too long, on the one hand, the total length of the zoom lens system 100 is increased, and on the other hand, the amount of change in the curvature of field and the spherical aberration during zooming is increased. By the above conditional expression (4), the assembly sensitivity of the zoom lens system 100 can be reduced, the length of the zoom lens system 1〇〇 can be reduced, and the amount of change in field curvature and spherical aberration at the time of zooming can be reduced. [0022] The third lens group 30 is an eighth lens, the third lens group 30 is a convex meniscus lens with a convex surface facing the object side, and the third lens group 3〇 includes at least one formed by an aspheric surface. s surface. In the present embodiment, the third lens group 30 includes two surfaces formed by aspherical surfaces, which can eliminate spherical aberration, coma, and astigmatism, and improve image quality. Preferably, the third lens set 30 employs a plastic lens to reduce the cost of the lens system 100. The fourth lens group 40 includes, in order from the object side, a ninth lens 41, a tenth lens 42, and an eleventh lens 43 in this order. The ninth lens 41 is a positive power lens, and the ninth lens 41 includes at least one surface formed by an aspherical surface. In the present embodiment, the ninth lens 41 includes two surfaces formed by aspherical surfaces, so that spherical aberration, coma, and astigmatism can be eliminated, and the image quality can be improved. The tenth lens 42 is a negative power lens, the eleventh lens 43 is a positive power lens, and the tenth lens 42 and the eleventh lens 43 are glued together to constitute a cemented lens. Since the ninth lens 41 is not glued to the tenth lens 42 and the eleventh lens 43, 099137065 Form No. A0101 Page 8/Total 30 Page 0992064643-α 201217830 [0024] [0025] [0027] [0030] [0030] The risk of product scrapping due to inaccurate gluing in the gluing step can be reduced. Preferably, the first lens group 20 satisfies the conditional expression: (5) 45 < (V6 - V7) ' where V6, V7 represent the Abbe number of the sixth and seventh lenses, to be better Correct the lateral chromatic aberration in the telephoto state. The aperture 50 is located between the second lens group 20 and the third lens group 3〇 to restrict the light flux passing through the first lens group of the second lens group 20 into the third lens group 30, and let The second translucent: the light cone after the 20th can be more symmetrical, so that the coma of the zoom lens system 100 can be corrected. Preferably, the aperture 50 is disposed on a surface of the third lens group 30 near the object side, so that the number of components of the zoom lens system 100 can be reduced, and the complexity of assembly of the zoom lens system 100 is low. In actual operation, the reference surface-peripheral annular region on the object side of the third lens group 30 is directly blacked out as a light idle 50. The filter 60 is located in the $4 lens group 40. Between the image surface 70 and the image surface 70, it is mainly used to filter out the light in the infrared band in the light of the zoom lens system. It can be understood that the second lens group 2 of the zoom lens system 100 and the lens group 40 are made of a low dispersion material. In the present embodiment, each of the first lens group 20 and the fourth lens group 40 is made of glass. 2 to 10, the zoom lens system 1 本 本 of the present invention will be described in detail with reference to the specific embodiments. In the following embodiments, the third lens group 30 and the ninth lens 41 099137065 Form No. 1010101 Page 9 of 30 The two surfaces of 201217830 are aspherical. [0031] The aspherical surface equation is as follows: [0032] ch2 ^ 1 + ^l-(k+l)c2W + Σ Ah1 [0033]
+ Z I為從光軸到透 k是二次曲面係數,為第i階的非球面 鏡表面的高度 面型係數,c 為鏡面表面中心的曲率。 [麵]該變焦鏡頭系統100各光學元件滿足表卜 衣表3和表4 的條件。表1至表4中各參數的含義如下: [0035] f :變焦鏡頭系統100的有效焦距; [0036] D7 :第一透鏡組10與第二透鏡組2〇的表面間距,即第四 ... :. .......... 透鏡14像側表面與第五透鏡21#钿表面之間的距離; [0037] D12 :第二透鏡組20與第三透鏡組30的表面間距,即第七 透鏡23像側表面與第三透鏡組30物側表面之間的距離; [0038] D15 :第三透鏡組30與第四透鏡組40的表面間距,即第三 透鏡組30像側表面與第九透鏡41物側表面之間的距離; [0039] D20 :第四透鏡組40與濾光片60的表面間距,即第十一透 鏡43像側表面與濾光片60物側表面之間的距離; [0040] F„ : F數;+ Z I is the quadric surface coefficient from the optical axis to the transmission k, which is the height profile coefficient of the i-th order aspherical mirror surface, and c is the curvature of the center of the mirror surface. [Face] The optical elements of the zoom lens system 100 satisfy the conditions of Tables 3 and 4. The meanings of the parameters in Table 1 to Table 4 are as follows: [0035] f: effective focal length of the zoom lens system 100; [0036] D7: the surface spacing of the first lens group 10 and the second lens group 2〇, that is, the fourth. .. :........ The distance between the image side surface of the lens 14 and the surface of the fifth lens 21#钿; [0037] D12: the surface of the second lens group 20 and the third lens group 30 The pitch, that is, the distance between the image side surface of the seventh lens 23 and the object side surface of the third lens group 30; [0038] D15: the surface pitch of the third lens group 30 and the fourth lens group 40, that is, the third lens group 30 The distance between the image side surface and the object side surface of the ninth lens 41; D20: the surface pitch of the fourth lens group 40 and the color filter 60, that is, the image side surface of the eleventh lens 43 and the filter 60 Distance between side surfaces; [0040] F„ : F number;
No 099137065 表單編號A0101 第10頁/共30頁 0992064643-0- 201217830 - [0041] 2ω :視場角。 [0042] 表 1 變焦鏡 F D7 D12 D15 D20 頭系統 100狀態 廣角狀 4. 54 2.539 48.569 8.5 12.548 態 5 中間焦 34 38.024 13.084 5. 7 15.347 距狀態 望遠狀 167.75 49.054 2. 052 19.361 1. 686 態 5 [0043] ❹ 表2 變焦鏡頭系統 100狀態 f FNo 2 ω 廣角狀態 4.54 1. 52 63 中間焦距狀態 34 Mi. 4' ' 8. 96 望遠狀態 167.75 5. 1 1.8 表3 [0044] 變焦鏡頭 系統10 0 曲率半徑 (ram) 厚度(mm) 折射率 阿貝數 第一透鏡 349.73 1. 92 1.85 23.8 11物侧表 面 第一透鏡 67. 41 7. 8 1. 5 81.6 表單編號Α0101 第11頁/共30頁 0992064643-0 099137065 201217830 11像侧表 面(第二 透鏡12物 侧表面) 1 第二透鏡 12像侧表 面 -373.6 0.2 第三透鏡 13物側表 面 72. 85 4.7 1. 8 46.5 第三透鏡 13像側表 面 300.57 0. 2 第四透鏡 14物侧表 面 56. 74 4 1. 8 46. 5 第四透鏡 14像側表 面 129.31 D7 第五透鏡 21物側表 面 69 1.15 1. 83 37. 3 第五透鏡 21像側表 面 10. 07 6. 37 第六透鏡 -37.35 1.02 1.5 81.6 表單編號A0101 第12頁/共30頁 0992064643-α 099137065 201217830No 099137065 Form No. A0101 Page 10 of 30 0992064643-0- 201217830 - [0041] 2ω : Field of view. Table 1 Zoom mirror F D7 D12 D15 D20 Head system 100 state wide angle 4. 54 2.539 48.569 8.5 12.548 State 5 Intermediate focus 34 38.024 13.084 5. 7 15.347 Distance from state 167.75 49.054 2. 052 19.361 1. 686 State 5 [0043] ❹ Table 2 Zoom Lens System 100 Status f FNo 2 ω Wide Angle State 4.54 1. 52 63 Intermediate Focal Length Status 34 Mi. 4' ' 8. 96 Telephoto Status 167.75 5. 1 1.8 Table 3 [0044] Zoom Lens System 10 0 Curvature radius (ram) Thickness (mm) Refractive index Abbe number First lens 349.73 1. 92 1.85 23.8 11 Object side surface first lens 67. 41 7. 8 1. 5 81.6 Form number Α0101 Page 11 / Total 30 page 0992064643-0 099137065 201217830 11 image side surface (second lens 12 object side surface) 1 second lens 12 image side surface - 373.6 0.2 third lens 13 object side surface 72. 85 4.7 1. 8 46.5 third lens 13 Image side surface 300.57 0. 2 Fourth lens 14 object side surface 56. 74 4 1. 8 46.5 5 Fourth lens 14 image side surface 129.31 D7 Fifth lens 21 object side surface 69 1.15 1. 83 37. 3 Fifth Lens 21 image Side surface 10. 07 6. 37 Sixth lens -37.35 1.02 1.5 81.6 Form number A0101 Page 12 of 30 0992064643-α 099137065 201217830
099137065 22物側表 面 第六透鏡 22像側表 面(第七 透鏡23物 側表面) 12.39 3.8 1. 85 23. 8 第七透鏡 23像側表 面 36.65 D12 光闌50 無窮大 0. 1 ---.. —— 第三透鏡 組3 0物側 表面 9. 16 4. 56 1. 53 56 第三透鏡 組3 0像側 表面 9.1 D15 第九透鏡 41物側表 面 14. 15 5 1. 58 59. 5 第九透鏡 41像侧表 面 -21.65 0.2 第十透鏡 42物側表 面 -27 1.15 1. 92 20. 9 表單編號A0101 第13頁/共30頁 0992064643-0 201217830 第十透鏡 4 2像側表 面(第十 一透鏡4 3 物側表面) 32. 85 ™—--- 4.55 __ 1. 84 43. 1 c 第十一透 鏡43像側 表面 -20. 65 -—---— D20 一— 渡光片6 0 物側表面 無窮大 ~~~—------ 0.5 1. 52 64. 2 濾光片60 像側表面 無窮大 :丨.::.¾... — 成像面7 0 物侧表面 無窮大d --- ::.-,; ί.' — 表4 表面 — :. .. _·_—___^ 葬球面係數 第三透鏡組30物側表面 k=0;Α4=-6·51314x10 ΰ; Α6=_9.02437x10 ; Α8=-6.11924χ10'9; Α10=2.298787χ10-11 第三透鏡組30像側表面 k=0;A4=8.492025χ10~5; Α6=1.718978χ10"6; Α8=-1.03274χ10'7; Α10=1.931947χ1(Γ9 第九透鏡41物側表面 -———_ k=0;A4=-6.27615χ10~5; 表單編號A0101 第14頁/共30頁 0992064643-0 099137065 201217830099137065 22 object side surface sixth lens 22 image side surface (seventh lens 23 object side surface) 12.39 3.8 1. 85 23. 8 seventh lens 23 image side surface 36.65 D12 aperture 50 infinity 0. 1 ---.. —— The third lens group 3 0 side surface 9.16 4. 56 1. 53 56 Third lens group 3 0 image side surface 9.1 D15 ninth lens 41 object side surface 14. 15 5 1. 58 59. 5 Nine lens 41 image side surface -21.65 0.2 Tenth lens 42 object side surface -27 1.15 1. 92 20. 9 Form No. A0101 Page 13 of 30 0992064643-0 201217830 Tenth lens 4 2 image side surface (tenth a lens 4 3 object side surface) 32. 85 TM—--- 4.55 __ 1. 84 43. 1 c eleventh lens 43 image side surface -20. 65 ------ D20 one - light beam 6 0 Object side surface infinity~~~——------ 0.5 1. 52 64. 2 Filter 60 Image side surface infinity: 丨.::.3⁄4... — Imaging surface 7 0 Object side surface infinity d --- ::.-,; ί.' — Table 4 Surface — :. .. _·_—___^ Funeral spherical coefficient third lens group 30 object side surface k=0; Α4=-6·51314x10 ΰ; Α6=_9.02437x10 ; Α8=-6.11924χ 10'9; Α10=2.298787χ10-11 The third lens group 30 image side surface k=0; A4=8.492025χ10~5; Α6=1.718978χ10"6;Α8=-1.03274χ10'7; Α10=1.931947χ1 (Γ9 The object side surface of the ninth lens 41---_k=0; A4=-6.27615χ10~5; Form No. A0101 Page 14/Total 30 Page 0992064643-0 099137065 201217830
[0047][0047]
所述變焦鏡頭系統i 〇 〇在廣角狀] A6=l.901262x10-7; A8 = -2. 2651 2x1 0-8;The zoom lens system i 〇 〇 is in a wide angle] A6=l.901262x10-7; A8 = -2. 2651 2x1 0-8;
Al〇 = l. 937028x10, ~~~------------ k=0;A4=6.268545xl〇~5 A6=6.968704xl〇'8; A8=-l.82837xl〇-8; Al〇=l.69221xl〇~10 別如圖2到圖4所示。圖2中的子午場曲值和弧矢場曲值均 控制在(-0.05龍,0.05mm)範圍内。圓3中的畸變率控制 在(-5%,5%)範圍内。圖4中,針對(1線(j^588nm) 而觀察到的球差值。總體而言,本實施方式的變焦鏡頭 系統100對可見光產生的球差值在(_〇· 03mm,〇 03mm)範 圍内。由此可見,變焦鏡頭系統100在廣角狀態的像差、 場曲、畸變都能被很好的校正。 所述變焦鏡頭系統100在中間焦距狀態的場曲、畸變及球 差分別如圖5到圖7所示。圖5中的子午場曲值和弧矢場曲 值均控制在(-0.05mm,0.05mm)範圍内。圖6中的畴變率 控制在(-1%,1%)範圍内。圖7中,針對(!線(1值 Λ 588nra)而觀察到的球差值。總體而言,本實施方式的變 焦鏡頭系統100對可見光產生的球差值在 (_0. 03mm’ 0. 03mm)範圍内。由此可見,變焦鏡頭系統 100在令間焦距狀態的像差、場曲 '畸變都能被很好的校 正° 099137065 表單編號A0101 第15頁/共30頁 099206 201217830 [0048] 所述變焦鏡頭系統100在望遠狀態的場曲、畸變及球差分 別如圖8到圖1 0所示。圖8中的子午場曲值和弧矢場曲值 均控制在(-0. 2mm,0. 2mm)範圍内。圖9中的畸變率控制 在(-2°/。,2%)範圍内。圖10中,針對(1線(2值588nm) 而觀察到的球差值。總體而言,本實施方式的變焦鏡頭 系統100對可見光產生的球差值在(-0. 12mm,0. 12mm)範 圍内。由此可見,變焦鏡頭系統100在望遠焦距狀態的像 差、場曲、畸變都能被很好的校正。 [0049] 在滿足條件式的情況下,所述變焦鏡頭系統具有一較短 的長度,從而滿足變焦鏡頭系統小型化的要求,同時確 保第二、三及四透鏡組的光焦度在變焦鏡頭系統中的比 例,以降低球差,提高成像品質。 [0050] 另外,本領域技術人員可在本發明精神内做其他變化, 但是,凡依據本發明精神實質所做的變化,都應包含在 本發明所要求保護的範圍之内。 【圖式簡單說明】 [0051] 圖1為本發明提供的變焦鏡頭系統示意圖; [0052] 圖2為圖1的變焦鏡頭系統在廣角狀態的場曲圖; [0053] 圖3為圖1的變焦鏡頭系統在廣角狀態的畸變圖; [0054] 圖4為圖1的變焦鏡頭系統在廣角狀態的球差圖; [0055] 圖5為圖1的變焦鏡頭系統在中間焦距狀態的場曲圖; [0056] 圖6為圖1的變焦鏡頭系統在中間焦距狀態的畸變圖; 099137065 表單編號A0101 第16頁/共30頁 0992064643-0 201217830 [0057] 圖7為圖1的變焦鏡頭系統在中間焦距狀態的球差圖 [0058] 圖8為圖1的變焦鏡頭系統在望遠狀態的場曲圖; [0059] 圖9為圖1的變焦鏡頭系統在望遠狀態的畸變圖; [0060] 圖10為圖1的變焦鏡頭系統在望遠狀態的球差圖。 [0061] 【主要元件符號說明】 變焦鏡頭系統100 [0062] 第一透鏡組10 Ο [0063] 第一透鏡11 [0064] 第二透鏡12 [0065] C.'?: 第三透鏡13 [0066] 第四透鏡14 [0067] 第二透鏡組20 [0068] 第五透鏡21 〇 ^ [0069] 第六透鏡22 [0070] 第七透鏡23 [0071] 第三透鏡組30 [0072] 第四透鏡組4 0 [0073] 第九透鏡41 [0074] 第十透鏡42 [0075] 第十一透鏡43 09^9137065 表單編號A0101 第17頁/共30頁 0992064643-0 201217830 [0076] 光闌 50 [0077] 濾光片60 [0078] 成像面70 0992064643-α 099137065 表單編號A0101 第18頁/共30頁Al〇= l. 937028x10, ~~~------------ k=0;A4=6.268545xl〇~5 A6=6.968704xl〇'8; A8=-l.82837xl〇-8 ; Al〇=l.69221xl〇~10 Do not show in Figure 2 to Figure 4. The meridional curvature values and the sagittal field curvature values in Fig. 2 are both controlled within the range of (-0.05 dragons, 0.05 mm). The distortion rate in circle 3 is controlled in the range of (-5%, 5%). In Fig. 4, the spherical aberration value observed for (1 line (j^588 nm). Overall, the spherical aberration value of the zoom lens system 100 of the present embodiment for visible light is (_〇· 03 mm, 〇03 mm). It can be seen that the aberration, field curvature and distortion of the zoom lens system 100 in the wide-angle state can be well corrected. The field curvature, distortion and spherical aberration of the zoom lens system 100 in the intermediate focal length state are respectively Figure 5 to Figure 7. The Meridian field value and the sagittal field curvature value in Figure 5 are both controlled within the range of (-0.05mm, 0.05mm). The domain variability in Figure 6 is controlled at (-1%, 1). In the range of %), in Fig. 7, the spherical aberration value observed for the (! line (1 value 588 588nra). In general, the spherical aberration value of the zoom lens system 100 of the present embodiment for visible light is (_0. In the range of 03mm' 0. 03mm), it can be seen that the aberration and field curvature 'distortion of the zoom lens system 100 in the inter-focus distance state can be well corrected. 099137065 Form No. A0101 Page 15 of 30 Page 099206 201217830 [0048] The field curvature, distortion and spherical aberration of the zoom lens system 100 in the telephoto state are as shown in FIG. 8 to FIG. 1 respectively. 0. The meridional field curvature value and the sagittal field curvature value in Fig. 8 are both controlled within the range of (-0. 2mm, 0.2 mm). The distortion rate in Fig. 9 is controlled at (-2°/., 2%). In the range of Fig. 10, the spherical aberration value observed for (1 line (2 value 588 nm). In general, the spherical aberration value of the zoom lens system 100 of the present embodiment for visible light is (-0. 12 mm). In the range of 0. 12 mm), it can be seen that the aberration, field curvature, and distortion of the zoom lens system 100 in the telephoto focal length state can be well corrected. [0049] In the case where the conditional expression is satisfied, the zoom The lens system has a short length to meet the miniaturization requirements of the zoom lens system, while ensuring the ratio of the power of the second, third and fourth lens groups in the zoom lens system to reduce spherical aberration and improve image quality. In addition, those skilled in the art can make other changes within the spirit of the invention, but any changes made in accordance with the spirit of the invention should be included in the scope of the invention. [0051] FIG. 1 is a zoom lens system provided by the present invention 2 is a field curvature diagram of the zoom lens system of FIG. 1 in a wide-angle state; [0053] FIG. 3 is a distortion diagram of the zoom lens system of FIG. 1 in a wide-angle state; [0054] FIG. a spherical aberration diagram of the zoom lens system in a wide-angle state; [0055] FIG. 5 is a field curvature diagram of the zoom lens system of FIG. 1 in an intermediate focal length state; [0056] FIG. 6 is a distortion of the zoom lens system of FIG. 1 in an intermediate focal length state FIG. 7 is a spherical aberration diagram of the zoom lens system of FIG. 1 in an intermediate focal length state [0058] FIG. 8 is a zoom lens system of FIG. 1 in FIG. Field curve of the telephoto state; [0059] FIG. 9 is a distortion diagram of the zoom lens system of FIG. 1 in a telephoto state; [0060] FIG. 10 is a spherical aberration diagram of the zoom lens system of FIG. 1 in a telephoto state. [Main Element Symbol Description] Zoom Lens System 100 [0062] First Lens Group 10 [0063] First Lens 11 [0064] Second Lens 12 [0065] C. '?: Third Lens 13 [0066] Fourth lens 14 [0067] Second lens group 20 [0068] Fifth lens 21 [0069] Sixth lens 22 [0070] Seventh lens 23 [0071] Third lens group 30 [0072] Fourth lens Group 4 0 [0073] Ninth Lens 41 [0074] Tenth Lens 42 [0075] Eleventh Lens 43 09^9137065 Form No. A0101 Page 17 / Total 30 Page 0992064643-0 201217830 [0076] Optical 阑 50 [0077] Filter 60 [0078] Image plane 70 0992064643-α 099137065 Form number A0101 Page 18 of 30