TW201217781A - Microfluidic system for detecting a biological entity in a sample - Google Patents

Microfluidic system for detecting a biological entity in a sample Download PDF

Info

Publication number
TW201217781A
TW201217781A TW100107946A TW100107946A TW201217781A TW 201217781 A TW201217781 A TW 201217781A TW 100107946 A TW100107946 A TW 100107946A TW 100107946 A TW100107946 A TW 100107946A TW 201217781 A TW201217781 A TW 201217781A
Authority
TW
Taiwan
Prior art keywords
port
cells
chamber
microfluidic system
cell
Prior art date
Application number
TW100107946A
Other languages
Chinese (zh)
Inventor
Julien Reboud
Tzu-Hsiang Linus Kao
Yao-Kuang Andre Chung
Shi Yun Ng
Yu Chen
yan ping Wang
Hao Yuan Janice Liaw
Original Assignee
Agency Science Tech & Res
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SG201007702-2A external-priority patent/SG170703A1/en
Application filed by Agency Science Tech & Res filed Critical Agency Science Tech & Res
Publication of TW201217781A publication Critical patent/TW201217781A/en

Links

Abstract

According to various embodiments, a microfluidic system for detecting a biological entity in a sample volume is provided. The microfluidic system may include: a chamber configured to receive the sample volume, wherein the chamber includes a detection region for detecting the biological entity; a first port in fluid communication with the chamber; and a second port including a filter in fluid communication with the chamber; and wherein a fluid provided to the first port or the second port flows between the first port and the second port through the chamber.

Description

201217781 六、發明說明: 【交互參照之相關申請案】 本申請案主張新加坡申請案200906999-8號之申請案 的優先權,該申請案在2009年10月20曰提出申請,其 全文在此併入做為參考。 【發明所屬之技術領域】 各實施例是關於用於在樣本體積偵測生物體的微流體 系統與形成該微流體系統的方法。各實施例進一步關於 用於使用該微流體系統偵測生物體的方法。 【先前技術】 患者血液中的循環細胞數是在臨床診斷上的一項例行 性使用的生物指標。然而,當前用於偵測細胞數的系統 龐大、昂貴、費時’且需要外部的樣品準備程序。此外, 已利用微流體裝置,提供緊密且便宜的解決方案,其可 提供將試驗朝床邊環境中的患者移動的承諾。不幸的 是’這些技術經常須要一定量的樣本準備(特別是在使 用無標記的方法時)以達成良好的效能。 近期的發展包括使用具特異性的細胞亞群 (sub population)做為用於各種疾病的生物指標。循環細 胞的次類型(subtype)已被用作各種狀況的診斷生物指標 (bl〇marker) ’例如用於癌症的循環腫瘤細胞(circulating 201217781 tumor cells,CTCs) ( Mocellin S.等人發表之「Circulating tumor cells.: the 4 leukemic phase’ of solid cancers j,刊於 「TRENDS in Molecular Medicine」,2006,12 (3), 13 0-139 )、用於HIV的淋巴細胞CD4 ( Jokerst JV·等人 發表之「Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of. CD4+ T cell counts at the point-of-need」,刊於 Lab Chip,2008,8, 2079-2090 )、以及用於心血管狀況的内皮前驅細胞 (endothelial progenitor cells,EPCs) ( Massa M.等人發表 之「Increased circulating hematopoietic and endothelial progenitor cells (EPCs) in the early phase of acute myocardial infarction」,刊於 Blood,2005,l〇5 : 199-206 )。這些生物指標可用於早期診斷、預測、治療 監視或微罝殘存腫瘤(Minimal residual disease,MRD)控 制。他們在金液中的數目從相當低(例如對CTC而言每 7.5 ml少於5個細胞)到相對豐存(例如對於cd4 T淋 巴細胞而言為200 cell/pl(每微升細胞數)):.epc大約為 0.01%-2%的周邊血液單核細胞(pBMC),而血液含有約 7000-10000個白血球細胞與超過1〇〇〇倍的紅血球細 胞這使付而要非常低Y貞測限制以偵測血液中生物指標 的生物感測器面臨重大挑戰。 循環細胞的數目已被用做為習知程序中的診斷指標, 諸如在臨床實驗室中例行性執行的白血球細胞計數。 EPC亦已用做為心血管狀況的生物指標。循環的Epc是 201217781 源自骨髓的幹細胞’其具有分化成血管内皮細胞以用於 血管内襯修復的能力,且他們在血液中的數目可作為生 物指標(Rosenzweig A.之「Circulating Endothelial Progenitors - Cells as Biomarkers」,The New England Journal of Medicine,2005, 353 (10),1055-1057; J.M. Hill 等人之「Circulating Endothelial Progenitor Cells,201217781 VI. Description of the invention: [Related application of the cross-reference] This application claims the priority of the application of the Singapore application No. 200606999-8, which is filed on October 20, 2009, the entire contents of which are hereby Use as a reference. TECHNICAL FIELD Various embodiments are directed to a microfluidic system for detecting a living body in a sample volume and a method of forming the microfluidic system. Embodiments are further directed to methods for detecting organisms using the microfluidic system. [Prior Art] The number of circulating cells in the blood of a patient is a biological indicator for routine use in clinical diagnosis. However, current systems for detecting cell counts are large, expensive, time consuming and require an external sample preparation procedure. In addition, microfluidic devices have been utilized to provide a compact and inexpensive solution that provides the promise of moving the test toward patients in a bedside environment. Unfortunately, these techniques often require a certain amount of sample preparation (especially when using a label-free method) to achieve good performance. Recent developments have included the use of specific subpopulations as biomarkers for various diseases. The subtype of circulating cells has been used as a diagnostic biomarker for various conditions (eg, circulating tumor cells for cancer (circulating 201217781 tumor cells, CTCs) ("Circulating" by Mocellin S. et al. Tumor cells.: the 4 leukemic phase' of solid cancers j, published in "TRENDS in Molecular Medicine", 2006, 12 (3), 13 0-139 ), lymphocytes CD4 for HIV (Jokerst JV· et al. "Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of. CD4+ T cell counts at the point-of-need", published in Lab Chip, 2008, 8, 2079-2090), and for cardiovascular Endothelial progenitor cells (EPCs) (Increased circulating hematopoietic and endothelial progenitor cells (EPCs) in the early phase of acute myocardial infarction, published by Blood, 2005, l〇5 : 199-206 ). These biomarkers can be used for early diagnosis, prediction, treatment monitoring, or Minimal residual disease (MRD) control. Their number in gold is quite low (for example, less than 5 cells per 7.5 ml for CTC) to relatively abundant (for example, 200 cells/pl for cd4 T lymphocytes) ): .epc is about 0.01%-2% of peripheral blood mononuclear cells (pBMC), and the blood contains about 7000-10000 white blood cells and more than 1〇〇〇 of red blood cells. This makes it very low. Biosensors that measure limits to detect biological indicators in the blood face significant challenges. The number of circulating cells has been used as a diagnostic indicator in conventional procedures, such as white blood cell counts routinely performed in clinical laboratories. EPC has also been used as a biological indicator of cardiovascular status. The circulating Epc is 201217781 bone marrow-derived stem cells, which have the ability to differentiate into vascular endothelial cells for vascular lining repair, and their number in the blood can be used as a biological indicator (Rosenzweig A. "Circulating Endothelial Progenitors - Cells As Biomarkers, The New England Journal of Medicine, 2005, 353 (10), 1055-1057; JM Hill et al., "Circulating Endothelial Progenitor Cells,"

Vascular Function, and Cardiovascular Risk」,The New England Journal of Medicine,2003,348,593-600 ; P.E. Szmitko 專人之「Endothelial progenitor cells: new hope for a broken hear」,Circulation,2003,107,3093-100) 〇 EPC層級可用於健康監視,因他們在血液中的層級與冠 狀動脈疾病或心血管狀況及其風險因子有關聯。EPC亦 用於治療監視,以監視主要與次要預防策略的效應,其 中已知的特異性藥物(諸如statin ’即羥甲戊二醯輔酶A 還原酶抑制劑)增加EPC計數。此外,EPC能夠移植用 於組織再生。 然而’分析循環細胞的具特異性之次類型並非小事, 且並非已被用作為通常的作法,這是由於技術限制與相 對高成本之故。從全血中有效地及選擇性地萃取稀少的 目標細胞對於微型整合分析系統(Micr〇 Total Analysis System,pTAS)而言非常具挑戰性。} μ1的全血樣本可 含有大約400萬至500萬個紅血球細胞(RBC )與大約 4000至11 〇〇〇個周邊血液單核細胞(pBMC )。假設偵測 在0.1%的PBMC之層級的CD34+,此將意味著在i μ1 201217781 的全血中少至7個細胞。習知上’為了從血液分離此低 濃度的EPC,需要用於細胞純化的樣本準備法。一般的 ·_ 程序包括:(1)以RBC溶化(lyse)緩衝液培養樣本,(2)離 • 心細胞懸浮液並且移除上清液,(3)以磁珠標記,該磁珠 標附(tag)抗原特異性抗體,以及(4)再度離心並且移除溶 液中未結合的珠狀物。用於樣本準備程序的總時間可大 約1至2小時’且此外該程序需要龐大的離心機以及熟 習此技藝之人士。結果’這些習知樣本純化的使用上所 存在的限制考驗著重點照護檢驗(p〇int>〇f._care )的應用。 細胞次類型通常是由他們具特異性的表面指標 (marker)的表達而界定。例如,偵測CTC大體上是基於 表面上具特異性的上皮指標(上皮細胞附著分子 (EpCAM))的存在,而EPC可由其CD34或CD133蛋白 質或内皮標記蛋白質(VEGFR2/KDR或這些蛋白質之組 合)界定。為了偵測這些特定細胞,習知技術為流式細 胞技術(Khan S. S.等人,厂 Detection of Circulating Endothelial Cells and Endothelial Progenitor Cells byVascular Function, and Cardiovascular Risk", The New England Journal of Medicine, 2003, 348, 593-600; PE Szmitko "Endothelial progenitor cells: new hope for a broken hear", Circulation, 2003, 107, 3093-100) The 〇EPC level can be used for health surveillance because their level in the blood is associated with coronary artery disease or cardiovascular status and its risk factors. EPC is also used in therapeutic surveillance to monitor the effects of primary and secondary prevention strategies, with known specific drugs (such as statin', a hydroxymethyl quinone coenzyme A reductase inhibitor) increasing EPC counts. In addition, EPC can be transplanted for tissue regeneration. However, it is not trivial to analyze the specific type of circulating cells, and it has not been used as a usual practice due to technical limitations and relatively high costs. The efficient and selective extraction of rare target cells from whole blood is very challenging for the Microcr〇 Total Analysis System (pTAS). The μ1 whole blood sample can contain approximately 4 million to 5 million red blood cells (RBC) and approximately 4000 to 11 peripheral blood mononuclear cells (pBMC). Assuming that CD34+ is detected at the level of 0.1% PBMC, this would mean as few as 7 cells in the whole blood of i μ1 201217781. Conventionally, in order to separate this low concentration of EPC from blood, a sample preparation method for cell purification is required. The general ·_ procedure includes: (1) culturing the sample with RBC lyse buffer, (2) removing the cardiac cell suspension and removing the supernatant, and (3) marking with magnetic beads, attached to the magnetic beads (tag) antigen-specific antibodies, and (4) re-centrifuging and removing unbound beads from the solution. The total time for the sample preparation procedure can be about 1 to 2 hours' and in addition the procedure requires a large centrifuge and those skilled in the art. Results 'The limitations of the use of these conventional sample purifications test the application of the key care test (p〇int>〇f._care). Cell subtypes are usually defined by the expression of their specific surface markers. For example, detection of CTC is generally based on the presence of a specific epithelial index (EpCAM) on the surface, while EPC can be derived from its CD34 or CD133 protein or endothelial marker protein (VEGFR2/KDR or a combination of these proteins). ) Definition. In order to detect these specific cells, the conventional technique is flow cell technology (Khan S. S. et al., Factory Detection of Circulating Endothelial Cells and Endothelial Progenitor Cells by

Flow Cytometry」,Clinical Cytometry ’ 2005,64B,1-8 ), 諸如螢光細胞分類機(FACS ),其光學上讀取通過薄的 毛細管之以具特異性的指標著染(stain)的細胞之螢光。 • 然而’此技術繁重、耗時(用於著染程序及分析為大約 4至5小時)’需要較大的樣本體積(mi ),要求高度 熟習此技藝之人士並且大體上是場外執行。 在微流體技術的出現下,已浮現多種方法針對克服 201217781 FACS的缺點(即,涉及的時間與技藝)並且強化輕便性。 流通(flow-through)系統(Taek Dong Chung、Hee Chan Kim,「Recent advances in miniaturized microfluidic flow cytometry for clinical use」,Electrophoresis,2007,28,, 45 11-4520 )直接微型化該分類概念並且使用細胞的具特 異性的性質以將他們導引至計數器,以藉由光學或無標 a己的手^又(Roeser T 專人’「Lab-on-chip for the Isolation and Characterization of Circulating Tumor Cells」, Proceedings of the 29th Annual International Conference of the IEEE EMBS,2007 ’ 6446-6448 )或二者手段(Wang Y-N 等人 ’「〇n-chip counting the number and the percentage of CD4+ T lymphocytes」,Lab Chip,2008,8, 309-315 )偵測之。這些系統能夠準確計算通過的細胞 數’但需要預備性的晶片外樣本準備’例如涉及螢光或 磁性著染’且其亦可能包括分離PBMC。再者,流通系 統可能造成細胞損失,且可能不適合用於大型樣本處 理,其將影響成本與敏感性與專一性問題。標記或著染 細胞的程序亦耗時。 亦可用「停流(fl〇w_stop)」系統,其使用微裝置的功 倉b化表面上的細胞之特異性結合以直接在晶片上從全血 純化樣本(Nagrath S. et al. “Isolati〇n 〇f rare circulating tumour cells in cancer patients by microchip technology»,Flow Cytometry", Clinical Cytometry '2005, 64B, 1-8), such as the Fluorescent Cell Sorter (FACS), which optically reads cells that are stained by thin capillaries with specific indicators. Fluorescent. • However, this technique is cumbersome and time consuming (used for dyeing procedures and analysis for approximately 4 to 5 hours) requiring a larger sample size (mi), requiring a highly skilled person and generally performing off-site execution. In the advent of microfluidics, a variety of approaches have emerged to overcome the shortcomings of the 201217781 FACS (ie, the time and skill involved) and to enhance portability. Flow-through system (Taek Dong Chung, Hee Chan Kim, "Recent advances in miniaturized microfluidic flow cytometry for clinical use", Electrophoresis, 2007, 28,, 45 11-4520) directly miniaturizes the classification concept and uses cells The specific nature of the guide to direct them to the counter for optical or unlabeled hands (Roeser T's "Lab-on-chip for the Isolation and Characterization of Circulating Tumor Cells", Proceedings Of the 29th Annual International Conference of the IEEE EMBS, 2007 ' 6446-6448 ) or both (Wang YN et al. '"〇n-chip counting the number and the percentage of CD4+ T lymphocytes", Lab Chip, 2008, 8 , 309-315) detected. These systems are capable of accurately calculating the number of cells passed' but require preparative off-wafer sample preparation' for example, involving fluorescent or magnetic staining' and which may also include isolating PBMC. Furthermore, the circulation system may cause cell loss and may not be suitable for large sample processing, which will affect cost and sensitivity and specificity issues. The process of marking or staining cells is also time consuming. It is also possible to use the "fl〇w_stop" system, which uses the specific binding of cells on the surface of the micro-device to directly purify the sample from whole blood on the wafer (Nagrath S. et al. "Isolati〇 n 〇f rare circulating tumour cells in cancer patients by microchip technology»,

Natu%2〇〇7’45()’ 1235_1239 )。然而’偵測是在營光著 染(staining)之後光學式執行,並且需要複雜的光學分析 201217781 系統以自動化’且具有相對差的效能。 用額外的裇s己阻止習知元件以輕便的方式、以順應 心、f疾病的矽斷之速度(例如,對於急性心血管狀況而 °小於一小時)達成重點照護檢驗偵測。腔室系統已 將…、‘屺偵,則與表面具特異性的細胞選擇耦合,以避免 在偵測階段使用標記。多數的該等系統仰賴樣本,諸如 PBMC,其受預純化(Ng SY 等人、「Label-free Impedance ion of Low Levels of Circulating Endothelial Progenitor Cells for Diagnosis」,Natu%2〇〇7'45()' 1235_1239). However, 'detection is performed optically after camping staining and requires complex optical analysis 201217781 system to automate' and has relatively poor performance. Additional care has been used to prevent known components from reaching critical care test detection in a light manner, at a rate that is responsive to the heart, and at a rate of disease (eg, for an acute cardiovascular condition, less than one hour). The chamber system has ..., 屺 ,, coupled with surface-specific cell selection to avoid the use of markers during the detection phase. Most of these systems rely on samples, such as PBMC, which are pre-purified (Nel SY et al., "Label-free Impedance of Low Levels of Circulating Endothelial Progenitor Cells for Diagnosis",

Biosensors and Bioelectronics,2010,25,1095-1 101)。 然而他們對於表面具特異性的捕獲(capture)之仰賴度 疋限制丨生的,因為極度豐存的紅血球細胞能夠遮蔽用於 其他細胞的表面存取(access )。 用於PBMC的習知準備方法是基於相較於其對應體 (諸如紅也球細胞)的密度與尺寸差異。對於基於細胞 的债測而言’不需要從細胞分離其餘成份(諸如血漿), 儘管所使用的技術通常如此操作。 有許多用於準備PBMC的習知方法,最廣用的方法是 離心,其中在離心程序後,細胞在含有不同密度部份的 特定管中的膚色血球層中回復。所需的血液樣本通常是 毫升(ml)等級,且由注射器汲引並且需要實驗室設施以 供準備之需。因此,PBMC的晶片外的準備大幅削減使 用重點照護檢驗Ί貞測應用的微流體裝置之好處,其需要 在患者側處理少量容積(例如’來自手指針刺(finger 201217781 prick)的血液樣本為約5〇 μ1)。 離心的概念亦已用於晶片上,以提供通過通道與腔室 系抽樣本。其亦應用到細胞與其他血液成份的分離(Kang D-R 等人,「Blood micro-separator」,US2006/0263265 ), 但需要旋轉機構與複雜的偵測整合策略。 使用多孔膜的尺寸過渡(微製造(microfabricated ) (Siyang Zheng 專人’ 「Membrane microfiilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells 」,Journal ofBiosensors and Bioelectronics, 2010, 25, 1095-1 101). However, their dependence on surface-specific capture limits the occurrence of paralysis, as extremely abundant red blood cells can mask surface access for other cells. The conventional preparation method for PBMC is based on the difference in density and size compared to its counterpart (such as red and spherical cells). For cell-based debt testing, it is not necessary to separate the remaining components (such as plasma) from the cells, although the techniques used typically operate as such. There are many conventional methods for preparing PBMC, the most widely used method being centrifugation, in which after the centrifugation procedure, the cells are recovered in the skin layer of the skin color in a specific tube containing different density portions. The blood sample required is usually in the milliliter (ml) grade and is indexed by a syringe and requires laboratory facilities for preparation. Therefore, off-wafer preparation of PBMCs greatly reduces the benefits of using microfluidic devices for critical care testing applications, which require processing a small volume on the patient side (eg, 'a blood sample from a finger thorn (finger 201217781 prick) is about 5〇μ1). The concept of centrifugation has also been applied to wafers to provide a sample through the channel and chamber. It is also applied to the separation of cells from other blood components (Kang D-R et al., "Blood micro-separator", US 2006/0263265), but requires a rotating mechanism and a sophisticated detection integration strategy. Dimensional transition of microporous membranes (microfabricated) (Myangbrane microfiilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells), Journal of

Chromatography A,2007, 1162, 154-161 )或紙類(V〇na G.等人,「Isolation by Size of Epithelial Tumor Cells」, American Journal of Pathology,2000 , 15 6 (1) > 57-63 *» Illert W· ’「Methods of preparing peripheral stem cells from leukocytes reduction filters」,EP1484390))已用於 準備及偵測稀少的循環細胞(大多是CTC )。在這些系統 中’樣本通過含特定尺寸孔隙的膜,該等孔隙會讓小細 胞(例如紅血球細胞)通過’同時留下較大的細胞(例 如CTC及/或白血球細胞)。達成的效能相對高,且細胞 直接在膜上透過光學或生物分子檢測受分析。然而,此 類技術無法輕易整合到無標記的重點照護檢驗系統,其 需要計算膜上的細胞或者將溶化的樣本轉移到特定偵測 器,諸如即時PCR機’其不會提供精確層級。 尺寸濾片亦已在完全密封系統中微製造(MaUez〇s G. 等人,「Fluorescence detector,filter device and re】ated 10 s 201217781 methods」’ US2008/0013092 ; Battr ell C.F.等人,「Method and system for microfluidic manipulation, amplification and analysis of fluids, for example, bacteria assays and antiglobulin testing」’ US74 1 6892 )。然而,該等系統通 常用於捕捉大型非期望粒子以及偵測小型(分子)物料。 這些系統的另一缺點在於平面製造技術(主要是矽製 程),其急遽減少系統中捕捉的區域。 【發明内容】 根據一實施例,提供一種用於在一樣本體積中偵測一 生物體的微流體系統❶該微流體系統可包括:一腔室, 其设以接收該樣本體積,其中該腔室包含一偵測區域以 供偵測該生物體;一第一通口,與該腔室流體連通;以 及一第二通口,其包含一濾片且與該腔室流體連通,且 其中提供至該第一通口或該第二通口的一流體於該第一 通口與該第二通口之間流動通過該腔室。 【實施方式】 、隨後詳細說明書參考伴隨的圖式,該等圖式以說明方 式顯不可實施本發明的特定細節與實施例。該等實施例 描述於足夠的細節中’以使熟習此技藝者實施本發明。 在不背離本發明之範疇的情況下’可利用其他實施例’ 並且可製作結構、邏輯與電子方面的改變。各實施例不 201217781 必然相互排斥,-些實施例可與—個或多個其他實_ 結合而形成新的實施例。 各實施例可提供微流體系統及用於偵測生物體(諸如 細胞或生物指標)@方法,具有相對上改善的表現與效 能,減少或無至少一些當前系統之相關缺點。 、 各實施例可提供微流體系統及用於從相對小體積的血 液樣本中偵測生物體的方法,該等生物體諸如細胞或生 物指標,例如周邊血液單核細胞(PBMC)或循環内皮前 驅細胞(EPC )。在各實施例中,該微流體系統可包括用 於偵測生物體的開放腔室。微流體系統可設在微晶片上 或微晶片中’以形成具有整合式開放腔室的微流體晶片。 各實施例可提供整合微流體系統,用於無標記偵測患 者血液中的周邊血液單核纟田胞(PBMC )或循環内皮前驅 細胞(EPC ),以便提供整合式床邊診斷測試。該微流體 系統可提供樣本準備的功能,例如在相對緊密的系統 中,從血液樣本中隔離周邊血液單核細胞(PBMC )或循 環内皮前驅細胞(EPC )、基於抗體抗原辨識的具特異性 細胞捕捉、以及相對高度敏感的無標記阻抗偵測》 各實施例中,微流體系統可提供從相對少量的全血樣 本中準備細胞(例如PBMC或EPC )與偵測該等細胞的 功能。細胞的準備可包括隔離、濃化(enrich)、或集中 (concentrate)待偵測的細胞。 各實施例可提供採樣應答(sample-to-answer)整合系 統,其包括微流體晶片以從全血樣本偵測PBMC或 12 201217781 EPC。樣本可裝入系統中,而資訊或應答可在相對短時 間内根據樣本而投射。整合系統可基於無標記阻抗光譜 類偵測平台,該平台能夠偵測相對少量的細胞。pBMC 或EPC從其他血液細胞隔離,並且傳送到開放腔室以供 偵測。該系統可基於PBMC、EPC與其他血液細胞的尺 寸差異而據除其他血液細胞。在各實施例中,.具特異性 細胞(諸如EPC )可受磁性標記(例如以磁珠),以進一 步隔離與集中。此舉助於將磁性標記的Epc從pMBC磁 性隔離以偵測EPC。 各種實施例可提供用於以高效能從相對少量的血液樣 本(小於100 μΐ )獲得PBMC或EPC溶液的方法與微流 體系統,並且與開放腔室整合以偵測具特異性細胞的次 類型(諸如PBMC或EPC )以減少稀少細胞的損失。各 實施例可提供採樣應答結果於具極微流體、使用無標記 偵測的能夠重點照護檢驗的系統。 各實施例可提供一種微流體系統與方法,其提供在單 一微流體晶片中於一腔室内細胞(諸如pBMC或Epc或 其他類型具有可區別之表面指標的細胞)的準備與偵 測’ s亥晶片可容許無標記的細胞偵測。PBMC或EPC或 其他類型的細胞可在全血的溶液中。 各實施例可提供一種微流體系統與方法,以在準備在 微流體晶片中一開放腔室内從全血樣本純化的pBMC或 EPC樣本❶該微流體系統可與無標記偵測技術整合,以 提供#近樣本準備區域的偵測區域。該偵測區域可包括 13 201217781 捕獲表面,其以具特異性之捕獲分子功能化。各實施例 的微流體晶片中開放腔室内的細胞準備、過濾與偵測的 整合免除了傳送程序的需求(如在用於過濾與偵測的不 同模組間的傳送),因而盡量減少採樣程序期間例如於互 連處或沿著微通道壁的細胞損失。微流體系統可包括具 有孔隙尺寸在約 3微米至約 8 微米的半透膜 (membrane) ’以用於過濾目的。半透膜濾片可與微流體 系統整合’以提供基於尺寸分離的整合方法。半透膜渡 片可k供相對大的過渡面積以及相對高的細胞回復效 能。 各實施例可提供具有開放腔室的方法與微流體系統, 其包括偵測區域,以偵測樣本體積中的生物體,其中該 樣本體積可從開放腔室的頂部開口直接裝進微流體系統 的開放腔室。此舉免除了傳送程序或流通流體法傳送生 物體至偵測區域的需要,因而減少例如在流體互連處的 細胞損失。各實施例中,少量的樣本體積可與序列式批 次裝載至微流體系統的開放腔室一併使用。 各實施例中,可透過將樣本通過微流體系統中的濾片 (諸如半透膜濾片)而純化樣本,以透過濾片隔離及留 住待偵測的生物體(例如PBMC4 Epc),同時移除通過 濾片的不欲偵測的任何生物體。待偵測的鱼物體(例如 PBMC或EPC )隨後從濾、片移出,並且傳送到可執行谓 測的腔室。 在各實施例中,偵測區域可設在開放腔室的底部,具 14 201217781 有以具特異!·生之捕獲分子功能化的捕獲表面。該捕獲表 面可連接任何可偵測生物體存在的感測器或偵測器。微 流體系統可進-步包括兩個與腔室或捕獲表面流體連通 、 “通口可藉由相對短的微通道輕接或連接腔 至使得諸如緩衝溶液之類的流體可透過該等通口之任 者^供到開放腔至,以供樣本處理與偵測區域的清 洗。該二通口可耦接泵或注射器以沿流體微通道與腔室 移動緩衝溶液。例如,系可用於將緩衝溶液輸入進入微 流體系統或從微流體系統提取樣本及/或緩衝溶液。 各貫施例中,諸如緩衝溶液之類的流體可通過含有樣 本(具待债測之生物體)…空室,則吏樣本流過渡片, 因而將待偵測的生物體留在濾片,同時將不欲偵測的生 物體及緩衝溶液移除而廢棄。諸如緩衝溶液之類的流體 的回流可以相反方向流過濾片,以將留在濾片的待偵測 之生物體移出及傳送到腔室、該腔室的偵測區域、或腔 室内的微電極陣列。在各實施例中,捕獲分子可被設置 及/或附接於微電極陣列之表面,以捕獲待偵測的生物 體。捕獲为子可為抗體,其對待偵測的生物體具特異性。 在各實施例中,可裝設微電極陣列以生成非均勻的電場 而誘導介電泳,以助捕獲與培養待偵測的生物體。 在各貫施例中,微流體系統可進一步包括可移動式排 列的磁性元件,其設以在偵測區域或微電極陣列附近提 供或生成磁場。該磁場元件可為永久磁鐵或電磁鐵。生 成的磁場可幫助捕捉在偵測區域或微電極陣列處已磁性 15 201217781 標記的生物體。在進一步的實施例中,可設置複數個磁 鐵使得可設置兩個、三個、或四個磁體。 各實施例中’生物體可在微流體系統的偵測區域由捕 獲分子、介電泳、或磁場、或前述者之組合所捕捉。 各實施例可提供表面指標辨識。此舉可透過提供具特 異性捕獲分子(諸如抗體)而達成。例如,可提供對ctc 之上皮細胞附著分子(EpCAM)、或者CD34或CD33蛋 白、或EPC的内皮指標蛋白(VEGFR2/KDR)具特異性 的抗體。進一步的實施例可提供多重指標分離。例如, 第一抗體可耦接目標細胞並且提供用於磁性捕捉,同時 對目標細胞具特異性的第二抗體可在電極表面上功能 化。在移除其他非目標的細胞後(例如沖洗程序後),僅 有耦接第一與第二抗體二者的具特異性細胞留在電極 上。 各實施例可提供用於整合細胞偵測的方法與微流體系 統,其用於相對快速地分離少量體積(小於丨〇〇 )的 全血中稀少的内皮前驅細胞(EPC ),以及其選擇性捕獲 或固定化以及其透過在局部化偵測區域上與電化學阻抗 感測(諸如微電極陣列(ΜΕΑ))耦合的免疫化學的偵測。 全血樣本可為來自患者手指針刺的血液樣本❶各實施例 可容許偵測EPC的潛能低如在實驗室晶片(lab-on-chiP ) 設施上直接來自於小型血液樣本的G.1%的周邊血液單核 、’田胞(PBMC )。此舉可提供篩選測試、床邊監視系統或 重點照護檢測應用,以用於健康照護監視、藥物治療最 16 201217781 適化以及血管去趣救处 永移植決疋。各實施例可容許全偵測時 門在卜時内’如此時間上的資訊能提供給醫生做快速 的處里決《特別是在緊急狀況時。此相對快速的分離 程序、田胞表面指標辨識、以及目標細胞(例如EPC ) 工間上的丑虽度(spatial及排列能致使大範 圍的:胞類應用執行於微型整合分析系統(μ τ A s )。 各實施例可提供用於具免疫磁性分離法的紅血球細胞Chromatography A, 2007, 1162, 154-161) or paper (V〇na G. et al., "Isolation by Size of Epithelial Tumor Cells", American Journal of Pathology, 2000, 15 6 (1) > 57-63 *» Illert W· '"Methods of preparing peripheral stem cells from leukocytes reduction filters", EP1484390)) has been used to prepare and detect rare circulating cells (mostly CTCs). In these systems, the sample passes through a membrane containing pores of a specific size that allow small cells (e.g., red blood cells) to pass while leaving larger cells (e.g., CTCs and/or white blood cells). The achieved efficacy is relatively high and the cells are directly analyzed on the membrane by optical or biomolecular detection. However, such techniques cannot be easily integrated into a label-free, focused care inspection system that requires the calculation of cells on the membrane or the transfer of the melted sample to a specific detector, such as an instant PCR machine, which does not provide an accurate level. Size filters have also been microfabricated in fully sealed systems (MaUez〇s G. et al., "Fluorescence detector, filter device and re" 10 s 201217781 methods" US2008/0013092; Battr ell CF et al., "Method and System for microfluidic manipulation, amplification and analysis of fluids, for example, bacteria assays and antiglobulin testing"' US74 1 6892 ). However, such systems are commonly used to capture large undesired particles and to detect small (molecular) materials. Another disadvantage of these systems is the planar manufacturing technique (mainly the 矽 process), which rushes to reduce the area captured in the system. SUMMARY OF THE INVENTION According to one embodiment, a microfluidic system for detecting an organism in a sample volume is provided. The microfluidic system can include a chamber configured to receive the sample volume, wherein the chamber Include a detection area for detecting the living body; a first port in fluid communication with the chamber; and a second port including a filter and in fluid communication with the chamber, and wherein A fluid of the first port or the second port flows through the chamber between the first port and the second port. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description refers to the accompanying drawings in the claims The embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electronic changes may be made without departing from the scope of the invention. The various embodiments are not necessarily mutually exclusive, and some embodiments may be combined with one or more other real forms to form new embodiments. Embodiments may provide a microfluidic system and method for detecting organisms (such as cells or biological indicators) with relatively improved performance and performance, with or without at least some of the disadvantages associated with current systems. Embodiments may provide a microfluidic system and methods for detecting organisms from relatively small volumes of blood samples, such as cellular or biological indicators, such as peripheral blood mononuclear cells (PBMC) or circulating endothelial progenitors. Cells (EPC). In various embodiments, the microfluidic system can include an open chamber for detecting organisms. The microfluidic system can be disposed on or in the microchip to form a microfluidic wafer having an integrated open chamber. Embodiments may provide an integrated microfluidic system for label-free detection of peripheral blood mononuclear cell (PBMC) or circulating endothelial progenitor cells (EPC) in the blood of a patient to provide an integrated bedside diagnostic test. The microfluidic system provides sample preparation functions, such as isolation of peripheral blood mononuclear cells (PBMC) or circulating endothelial progenitor cells (EPC), specific antigen-based cells based on antibody antigens in a relatively compact system. Capture, and relatively highly sensitive, unmarked impedance detection. In various embodiments, the microfluidic system can provide the ability to prepare cells (e.g., PBMC or EPC) from a relatively small amount of whole blood sample and to detect such cells. Preparation of the cells can include isolating, enriching, or concentrating the cells to be detected. Embodiments may provide a sample-to-answer integration system that includes a microfluidic wafer to detect PBMC or 12 201217781 EPC from a whole blood sample. Samples can be loaded into the system, and information or responses can be projected from the sample in a relatively short time. The integrated system can be based on a mark-free impedance spectroscopy-like detection platform that can detect relatively small numbers of cells. The pBMC or EPC is isolated from other blood cells and delivered to the open chamber for detection. The system can exclude other blood cells based on the difference in size between PBMC, EPC and other blood cells. In various embodiments, specific cells, such as EPC, can be magnetically labeled (e. g., with magnetic beads) for further isolation and concentration. This helps magnetically isolate the magnetically labeled Epc from the pMBC to detect EPC. Various embodiments may provide methods and microfluidic systems for obtaining PBMC or EPC solutions from relatively small amounts of blood samples (less than 100 μΐ) with high efficiency, and integrating with open chambers to detect subtypes of specific cells ( Such as PBMC or EPC) to reduce the loss of rare cells. Embodiments can provide a sample response result to a system capable of critical care testing with very microfluidic, unmarked detection. Embodiments may provide a microfluidic system and method for providing preparation and detection of cells in a chamber (such as pBMC or Epc or other types of cells having distinguishable surface indicators) in a single microfluidic wafer. The wafer can tolerate unlabeled cell detection. PBMC or EPC or other types of cells can be in solution in whole blood. Embodiments may provide a microfluidic system and method for preparing a pBMC or EPC sample purified from a whole blood sample in an open chamber in a microfluidic wafer, the microfluidic system being integrated with labelless detection technology to provide # Near the detection area of the sample preparation area. The detection region can include a 13 201217781 capture surface that is functionalized with specific capture molecules. The integration of cell preparation, filtering and detection in the open cells of the microfluidic wafers of the various embodiments eliminates the need for transfer procedures (eg, transfer between different modules for filtering and detection), thereby minimizing sampling procedures Loss of cells during, for example, at the interconnect or along the walls of the microchannel. The microfluidic system can include a semi-permeable membrane having a pore size between about 3 microns and about 8 microns for filtration purposes. The semipermeable membrane filter can be integrated with the microfluidic system to provide an integrated method based on size separation. Semi-permeable membranes provide a relatively large transition area and relatively high cell recovery. Embodiments can provide a method and microfluidic system having an open chamber that includes a detection zone to detect organisms in a sample volume, wherein the sample volume can be directly loaded into the microfluidic system from the top opening of the open chamber Open chamber. This eliminates the need for a transfer procedure or a flow-through fluid method to deliver a biological object to the detection zone, thereby reducing cell loss, for example, at fluid interconnections. In various embodiments, a small sample volume can be used in conjunction with a sequential batch loading into the open chamber of the microfluidic system. In various embodiments, the sample can be purified by passing the sample through a filter (such as a semi-permeable membrane) in a microfluidic system to isolate and retain the organism to be detected (eg, PBMC4 Epc) through the filter while Remove any organisms that pass through the filter that are not to be detected. The fish object to be detected (for example PBMC or EPC) is then removed from the filter, the sheet and transferred to the chamber where the prediction can be performed. In various embodiments, the detection zone can be located at the bottom of the open chamber, with a capture surface functionalized with a specific capture molecule. The capture surface can be connected to any sensor or detector that detects the presence of the organism. The microfluidic system can include two steps in fluid communication with the chamber or capture surface, "the port can be lightly connected or connected to the cavity by relatively short microchannels such that fluid such as a buffer solution can pass through the ports Anyone is supplied to the open cavity for cleaning of the sample processing and detection area. The two ports may be coupled to a pump or a syringe to move the buffer solution along the fluid microchannel and the chamber. For example, it may be used to buffer The solution is input into the microfluidic system or the sample and/or the buffer solution is extracted from the microfluidic system. In each of the embodiments, a fluid such as a buffer solution can pass through the empty chamber containing the sample (the organism to be tested). The sample flow transition piece, so that the organism to be detected is left in the filter, and the undetected organism and the buffer solution are removed and discarded. The reflux of the fluid such as a buffer solution can be filtered in the opposite direction. a sheet for removing and transferring the organism to be detected remaining in the filter to the chamber, the detection area of the chamber, or the array of microelectrodes in the chamber. In various embodiments, the capture molecules can be set and / Attached to the surface of the microelectrode array to capture the organism to be detected. The capture is an antibody that is specific for the organism to be detected. In various embodiments, a microelectrode array can be installed to generate Non-uniform electric field induces dielectrophoresis to assist in capturing and culturing the organism to be detected. In various embodiments, the microfluidic system may further comprise a movably arranged magnetic element disposed in the detection zone or A magnetic field is provided or generated near the microelectrode array. The magnetic field element can be a permanent magnet or an electromagnet. The generated magnetic field can help capture organisms that have been magnetically labeled at the detection region or microelectrode array. In a further embodiment A plurality of magnets may be provided so that two, three, or four magnets may be provided. In each embodiment, the organism may be captured by a capture molecule, a dielectrophoresis, or a magnetic field in the detection region of the microfluidic system, or the foregoing. Captured by combination. Embodiments can provide surface index identification. This can be achieved by providing specific capture molecules such as antibodies. For example, it can be provided on top of ctc A skin cell attachment molecule (EpCAM), or a CD34 or CD33 protein, or an EPC endothelial marker protein (VEGFR2/KDR) specific antibody. Further examples may provide for multiple indicator separations. For example, a first antibody can be coupled to a target Cells and providing a second antibody for magnetic capture while being specific to the target cell can be functionalized on the surface of the electrode. After removal of other non-target cells (eg, after a flushing procedure), only the first and the coupling are coupled Specific cells of both secondary antibodies remain on the electrodes. Embodiments may provide methods and microfluidic systems for integrated cell detection for relatively rapid separation of small volumes (less than 丨〇〇) Endothelial precursor cells (EPC), which are sparsely populated in the blood, and their selective capture or immobilization and their detection by immunochemical chemistry coupled to electrochemical impedance sensing (such as microelectrode arrays) on localized detection regions Measurement. The whole blood sample can be a blood sample from the patient's finger stick. Each embodiment can tolerate the potential for detecting EPC as low as G.1% directly from a small blood sample on a lab-on-chiP facility. Peripheral blood mononuclear, 'field cell (PBMC). This can provide screening tests, bedside surveillance systems, or key care testing applications for health care surveillance, medication, and vascular care. Embodiments may allow the door to be in the time of full detection. The information in such a time can be provided to the doctor for a quick decision, especially in an emergency. This relatively rapid separation procedure, identification of field surface indicators, and ugliness of target cells (eg, EPC) can result in a wide range of: cell-based applications performed on micro-integrated analysis systems (μ τ A) s ). Embodiments can provide red blood cell cells for immunomagnetic separation

(RBC)之溶化的方法與微流體系統。含有EPC與RBC 的液樣本可在最初準備並且與某些化學物質的溶化緩 衝溶液混合,該等化學物質包㈣於溶化效應的氯化敍 (NH4C1,即其做為溶化劑)、做為pH緩衝液的碳酸鈉 (NaHC〇3 )以及做為抗凝聚劑的乙二胺四乙酸(EdTA)。 各實施例中,在溶化緩衝溶液中的碳酸鈉亦可做為阻礙 劑(blocker)以中止Na+_K+_ATp酶。該溶化緩衝溶液可 進一步包括磁性元件,諸如磁珠。該等磁珠可為連接抗 體的磁珠(即,磁珠與抗體耦合),以耦接Epc,其可助 於選擇性捕獲EPC以及在各實施例的微流體系統中透過 免疫化學的偵測《各實施例中,選擇性的細胞溶化(諸 如溶化RBC)可發生在含有EPC的溶液中,然而,也可 月&無EPC的溶化發生》此準備程序在相對短暫的時間内 同時執行移除紅血球細胞(RBC )與細胞表面指標標記 (需要約10分鐘)’且可造成在低於1小時内完成準備 及债測程序。各實施例可造成溶化後相對更高的效能(> 90%的 EPC)。 17 201217781 各實施例中,溶化緩衝溶液可包括大約1 5 0 mM的 NH4C1、10 mM 的 NaHC03、0.1 rnM 的 EDTA 與約 2000 個磁珠。然而,應瞭解NH4C1的濃度可在約1 0 mM至約 150 mM的範圍内’例如約1〇 至約100 mM的範圍、 約10 mM至約50 mM的範圍、或約50 mM至約150 mM 的範圍,如此,NH4C1的濃度可為約1〇 mM、約20 mM、 約 50 mM、約 100 mM、約 120 mM、或約 150 mM。應 瞭解NaHC〇3的濃度可在約1〇 mM至約100 mM的範圍 内’例如約10 mM至約50 mM的範圍、或約10 mM至 約20 mM的範圍’如此’ NaHC03的濃度可為約1〇 mM、 約 20mM、約 30mM、約 50mM、約 80mM、或約 lOOmM。 應瞭解EDTA的濃度可在約〇 〇ι 至約1.0 mM的範 圍内’例如約0.01 mM至約〇.5 mM的範圍、約〇.〇i mM 至約0.1 mM的範圍、或約〇丨mM至約i.o mM的範圍’ 使得EDTA的濃度可為約〇〇1 mM、約〇 〇5 mM、約〇」 mM、約 〇.2 mM、約 〇.5 mM、或約 1 。 各實施例中’血液樣本可與溶化緩衝溶液混合,使得 ΝΗ4<:1對血液的體積比(NHUCl具有約150 mM的濃度) 範圍從1:1 1 1:10。各實施例中,混合溶液的總體積可 低於100 μΐ。 應瞭解磁珠的數目在各實施例中不同,其取決於待與 磁珠轉接的細胞數目。各實施例中,提供每—個細胞兩 個磁珠之比例。例如’在大約2〇 μ1的血液樣本中,㈣ 的數目可在約〇.Μ%的PBMC之範圍,相當於約 18 201217781 ΗΗΜ000個EPC。因此,大約可能需要2〇〇〇個磁珠。在 進一步的實施例中,可提供每—個細胞相對上更高比率 的磁珠。視磁珠尺寸而定(例如,微米尺寸的磁珠或奈 米尺寸的磁珠)’可提供大約2〇〇〇_2〇〇〇〇個磁珠。 各實施例可提供用於相對快速分離及偵測稀少内皮前 驅細胞(EPC)的方法與系、统,其基於選擇性溶化紅血 球細胞(RBC )以及免疫磁性豐富度從血液分離Epc (諸 如CD34 +細胞)。可準備含有CD34 +細胞的樣本並且將 之與含有NaHC〇3、EDTA及連接抗體之磁珠的 溶液混合。該溶液可助於溶化或剷除樣本中的RBC,同 時在相對短暫的時間内(約丨〇分鐘)亦將連接抗體的磁 珠標記到CD34 +細胞指標上。此時限滿足CD34 +偵測的 需要。培養樣本後,含有CD34 +細胞的樣本與混合溶液 可裝載或提供至各實施例的微流體系統。微流體系統可 過濾樣本,以透過移除其他非目標的細胞而集中及濃化 CD34 +細胞。接著,局部化的磁場可施加到偵測區域處 的微電極區域附近,以選擇性隔離及集中免疫磁性標記 的CD34+細胞(與磁珠耦接)於微電極上,因而捕捉及 固定CD34+細胞於微電及上,以偵測及量化測量。此舉 助於特異性從血液樣本提取CD34 +細胞,同時其他不表 達CD34抗原的剩餘細胞(諸如未溶化的RBC與pBMc ) 可從樣本透過將之洗離而移除。 各實施例可提供無標記的偵測方法。此類無標記的偵 測方法可利用阻抗測量或阻抗光譜法,如2〇〇9年9月i 19 201217781 曰所申請的WO 20丨0/050898所述,其所揭露者在此併入 做為參考。肖此偵測機制而纟,開放腔室内的捕獲表面 是於微晶片上以金電極圖案化,金電極與測量或偵測系 統連接或電子通訊。該等電極可設成微電極陣列。該等 電極可特異性式設有捕獲分子(諸如抗體)以用於特定 目標細胞或生物體’同時該微晶片不受電極覆蓋的剩餘 部份可以除拒材料(repellent material)鈍化,例如聚乙二 醇(PEG)。該等電極亦可用於執行介電泳(DEp)以在電極 上吸引及集中細胞而加速細胞的捕獲且增加效能。 各實施例中,可使用其他偵測機構,且偵測區域可基 於該偵測機構而相對應地以適合的形式修飾或設置。例 如,以折射率為基礎的感測機構(像表面電漿共振 (SPR)、或光 ί衣共振器(0pticai ring res〇nat〇r)、或干_涉儀) 可用做為偵測機構,其中該捕獲表面可以金層圖案 化’該金層含有捕獲分子(諸如抗體)的斑點。光可使 用光子或透過直接照明而經通道至捕獲區域。亦可能用 局部化SPR。 另一項可能的偵測機構是場效感測器,諸如奈米石夕線 陣列’其可设置且圖案化於捕獲表面上,並且以具特異 性之捕獲分子(諸如抗體)功能化。該奈荇矽線陣列可 連接測量系統’以測量奈米矽線的電阻,該電阻可在生 物體(諸如細胞)捕獲於表面時改變。 習知的螢光測量亦可用於偵測生物體。捕獲的細胞可 以各種染劑著染,可使用外部光源激發該等染劑,而該 201217781 發射可由例如電荷耦合裝置(CCD)相機或光電倍增管 (PMT)所偵測。 .在進一步實施例中,可執行剪力流控制的清洗方案, 其透過使流體(諸如緩衝溶液)流過微電極陣列與腔室 而達成,以助於微電極上的特異性細胞選擇並且移除任 何可能存在但不受偵測的生物體。 各種實施例可減輕在不同系統之間傳送期間樣本損失 的挑戰或樣本在不同系統之間的界面處駐留(l〇dge)的挑 戰,其透過提供單一微流體封包中的微流體系統或在腔 室中提供樣本準備與偵測的微流體晶片而達成。該腔室 可為開放腔室,其可提供小型感測區域以供高敏感性感 測並且在偵測程序期間提供相對高效能等級的細胞回 復。 各實施例可提供一種微流體系統,該系統是以從微流 體系統一區段至另一區段在微通道與腔室中的流體運動 或流動為基礎,因而容許與無標記偵測無縫整合。 各實施例可提供:細胞的診斷’諸如偵測周邊血液單 核細胞(PBMC)或稀少循環細胞(例如EPC:);用於具高 敏感度免持式(hands-free)整合系統的無標記偵測;相對 低成本處理的自動化系統;以及診斷、預後、治療監視, 例如用於癌症、心血管疾病與移植監視。 各實施例可於少於丨小時内從相對少量的血液樣本 (少於100 μι )提供生物體(諸如稀少的循環腫瘤細胞 (CTC)、諸如内皮前驅細胞(EPC))的床邊或重點照護檢 21 201217781 測(POC )處理與偵測,以供診斷所用。各實施例可提 供整合的微流體系統以用於患者血液中的EPC之無標記 偵測,以便提供用於整合樣本的整合床邊診斷測試而應 答結果,該等樣本是從患者做一個或多個手指針刺(每 一手指被針刺約50 μΐ的血液)而獲得。微流體系統可在 相對緊欲的系統中提供以下功能:來自血液樣本之樣本 準備、基於抗體抗原辨認的特異性細胞捕獲與相對高敏 感度的無標記阻抗偵測(例如在PBMC樣本中約〇.1%的 EPC )。此舉可能幫助例如用於患者(諸如心臟病患者) 之支架類型上做決定的程序。 各實施例中,微流體系統與方法可提供相對高敏感 度、相對更高的處理量以及相對低的成本的細胞偵測。 微流體系統可包括矽晶片與塑膠固定物。 各實施例可提供包括開放腔室的微流體系統與方法以 基於開放腔室内不同細胞或生物體的尺寸差異分離白血 球細胞(包括循環細胞)。 各實施例的微流體統可以相對低成本生產,且可為拋 棄式。 各實施例的内容中,「微流體系統」一詞可意味包括一 個或多個微米範圍中的通道(亦可稱微通道)的流體系 統’其中可提供樣本體積以基於流體運動流進微通道且 沿该微通道流動。各實施例中,微流體系統可形成於微 晶片上’而形成微流體晶片。 各實施例的内容中,「偵測區域」一詞可意味可偵測生 22 201217781 物體的區域。各實施例中,偵測區域可設於腔室中例 如於腔室底部。各實施例中,該腔室是開放腔室。可基 於無標記彳貞測方法(例如阻抗測量或感測)執行偵測。 偵測區域可包括電極、一對電極、或包括超過一個電極 或超過一對電極的微電極陣列。每一對電極可包括内電 極與外電極’該外電極具有實質上環繞内電極的互補形 狀。各實施.例中,該電極、一對電極、或微電極陣列可 定位在偵測區域的底部。各實施例中,透過介電泳或捕 獲分子(例如抗體)的捕獲,生物體可在偵測區域被捕 捉。捕獲分子可設於電極的表面上及/或附接於電極的表 面上。 各實施例的内容中’「開放腔室」一詞可意味溶液可流 過或通過或殘留於腔室或通道中的腔室或通道。各實施 例中,開放腔室具有頂部開口。換言之,開放腔室不具 有頂蓋。各實施例中,「腔室」一詞可意味「開放腔室」。 與微流體系統的不同區段相關的「流體連通」一詞可 意味在微流體系統的兩個區段之間的連通。各實施例 中’此連通可為微流體系統的兩個區段之間的直接的連 接件或直接的路徑’或可在微流體系統的兩個區段之間 包括一個或多各居中的區段。 各實施例的内容中,「通口」-詞可意味-開口、-凹 或一空腔,以提供流體通過的管道。各實施例中, 微机體系統可包括至少兩個與腔室流體連通的通口。該 微桃體系統可包括入口通口,其提供進入或引入的工 23 201217781 ,、。該為流體系統可包括出口通 的管道。各實施例中,每一通口了其提供離開或輪出 中空圓柱結構^ # τ具有中空圓柱結構。 偁了為早一的連續結 圓柱結構可具有範圍在約lmm^/實施例中,中空 在約1 mm至約2 从 > 約3mm的長度,例如 的範圍,使得該县声 · mm至,力3 mm 于茨長度可為約1 mm、吻,c 約 2.5 mm、或约 3 々由 2mm、 次、力3 mm。各實施例中, 具有範圍在約〇.6mm至約 中工回柱,,構可 5 ,, , 01的直彼’例如在約〇 6 _至約1職的範圍或在約i 6 使得該直徑可為約〇6 , 至、力的範圍, 试4崎叼〇·6 mrn、約 〇以 ^ , Λ U·66 _、約 〇·8 mm、 約1·〇 mm、或約2 5 mm。進— ^ t 步的貫施例中,具有Φ * 圓柱結構的每一通口可包括筮 工 了包括第一部份與第二部份,第— °Ρ伤具有大約0.66 mm (直徑)xi s 二略 、且仫)Xl.5mm(高度)的尺寸, 而第二部份具有大約1>5 mm (直 、且也j xl.5 mm (高度) 的尺寸。第一部份可在第二 τ刀項0卩上,亦可相反。麸 而’應瞭解每—通口或每—通口的每-部份可具有不同' 的結構與組態’且可具有不同的尺寸。各實施例中,可 設置與腔Μ體連通、具有適合的結構、組態與尺寸的 第三通口或更多通口。 各實施例中’「生物體」—詞可意味生物指標、細胞、 胞器、病毒粒子、生物高分子、或前述者之組合。「細胞」 一詞可包括真核細胞與原核細胞。「細胞」一詞亦可包括 周邊血液單核細胞、包括白血球細胞、τ細胞與辅助τ 細胞的免疫系統的細胞、包括循環腫瘤細胞、淋巴細胞、 24 201217781 CD4淋巴細胞與内皮前驅細 可包括哺乳動物細胞或酵母 胞的生物指標。「真核細胞j 菌細胞。「哺乳動物細胞」一 詞可包括腫瘤細胞、血液細胞、免疫系統細胞、前驅細 胞與胚胎細胞。「生物高分子」-詞可包括多肽類、核酸、 脂類與募糖。各實施例中’生物體可具有謹錨定以供 微電極陣列表面上的培養與捕獲。 各實施例中,樣本體積可為血液樣本體積。該血液樣 本體積可為全血樣本體積。 各實施例中,腔室或開放腔室可具有範圍在約ΐμ1至 約500 μΐ的體積,例如在約1 μ1至約5〇〇 y的範圍、約 至約_μ1的範圍、約1μ1至約2〇〇μΐ的範圍、約 1 μι至約100 μΐ的範圍、約! μ1至約5〇 μΐ的範圍、約i μ!至約2〇μ1的範圍、約2〇〇μ1至約〜的範圍、約 5〇 μΐ至約500 μΐ的範圍、或約5〇 μι至約2〇 μΐ的範圍, 使得該腔室可具有約24、約5μ卜約1〇以、約2〇4、 約 5〇μ1、約 100μ1、約 2〇〇μ1、約 3〇〇μΐ、或約 5〇〇 ^ 的體積。 各實施例中,偵測區域可包括微電極陣列,其可包括 一對或多對電極,諸如兩對電極、四對電極、六對電極、 八對電極、十二對電極、十六對電極、或二十對電極, 且其可排列成2x1陣列、1Χ4陣列、2χ2陣列、1χ6陣列、 2x3陣列、3χ2陣列、2χ4陣列、4χ2陣列、j"陣列、 4x3陣列、2χ8陣列、4χ4陣列、4χ6ρ車列、或3χ8陣列。 每一對電極可包括内電極與外電極,外電極具有實質上 25 201217781 1 衷繞:電極周邊的互補形狀。各實施例中1極可由金、 或其他金屬或導電材料製成。 各實施财,内電極可為碟狀電極, 蹄鐵狀電極。然而,應瞭解内 :了為馬 三角形,、正方形、矩形戈J 何形狀’諸如 矩形或菱形,而外電極可為 ㈣式’具有實質上環繞相對應的内電極之周邊的互補 形狀。内電極可為工作電極而外電極可為參考電極。各 貫施例中,外電極可—心接(sh(med)以提供相對較 大的表面積而增加敏感度’而内電極可個別受控制,以 用於相對高敏感度的阻抗測量,或—起短接以生成非均 句的電場以誘導介電泳(DEP)。各實施例中,特異性捕獲 分子可設於及/或附接於微電極陣列的表面上。 如此技藝中所知的介電泳是一項經常用於分離微粒子 的技術’其透過誘導空間上變化的非均勻窀場(介電泳 場)而達成,該電場生成非均等的電極化偶極於中性介 電粒子(例如包括細胞)中,因而造成介t泳力。 環繞粒子的介質之介電性質可影響粒子所歷經的介電 冰力。比其環繞之介質更可極化的粒子將歷經朝高電場 區域的淨力(正DEP ),而比其環繞之介質較不可極化的 粒子將歷經朝低電場區域的淨力(負DEP )。 各實施例中,用於介電泳捕獲而生成的電場可具有發 生在内電極中心的電場極小值,因而引導細胞朝向捕獲 分子。各實施例中,所生成的介電泳場可為負的介電泳 場’使得目標生物體可在發生於内電極中心的電場極小 26 201217781 值處集中,因而增強阻抗偵測敏感度,而無須標記樣本。 各實訑例中,施加於微電極陣列以誘導介電泳場的電 子訊號可具有範圍在約〇· 1 v至約20 V的峰對峰的振 幅,例如約0.1 V至約1〇 v的範圍、約〇1 v至約5 v 的範圍、約0.1 V至約1.5 V的範圍、約ι·5 V至約1〇 v 的範圍、約1.5 V至約20 V的範圍,使得電子訊號可具 有約0.1 V、約0.5 V、約1·0 ν、約丨5 ν、約5V、約 10 V、或約20V之峰對峰振幅。各實施例中,施加於微 電極陣列以誘導介電泳場的電子訊號可具有範圍在約 10 kHz至約1〇〇 kHz的頻率,例如約1〇 kHz至約5〇 MHz 之範圍、約10 kHz至約1〇 MHz之範圍、約i〇 kHz至約 1 MHz之範圍、約1 MHz至約1〇〇 MHz之範圍、約ι〇 mHz 至約100 MHz之範圍,使得電子訊號的頻率可為約工〇 kHz、約 1〇〇 kHz、約 1 MHz、約 5 MHz、約 1〇 MHz、 約20 MHz、約50 MHz或約100 MHz。各實施例中,施 加於微電極陣列以誘導介電泳場的電子訊號可具有約 1.5 V的峰對峰振幅及約1 MHz的頻率。 各實施例中,為了在偵測區域獲得高敏感度,相對小 的感測電極或微電極陣列可排列在偵測區域上。各實施 例中’每一電極可具有約1 〇〇 μπι的尺寸。 各實施例中,濾片可為濾紙、纖維篩、高分子濾片或 具有塗佈的抗體或電荷的功能性濾片。各實施例中,濾 片可由聚對二甲苯基、聚苯乙烯、聚乙烯、聚甲基丙= 酸酯(polymethylmethacrylate,ΡΜΜΑ)' 或聚雙甲旯矽 27 201217781 氧烷(PDMS )製成。各實施例中,濾片可為半透膜濾片。 一貫知例中,濾片可為Sterlitech聚碳酸酯半透膜。 各實施例中,濾片可具有根據直徑範圍在約2 mm至 約4 mm内的尺寸,例如約2 mm至約3 mm的範圍,使 得據片直徑可為約2 mm、約3 _、或約4 _。滤片的 過濾區域可實質上具有與濾片相同的尺寸。各實施例 中,濾片可具有範圍在約3 μιη至約50 μηι内的孔隙尺 寸例如、力3 μιη至約30 μιη之範圍、約3 μιη至約20 μιη 之範圍、約3 μηι至約1〇 μιη之範圍、約5丨咖至約5〇 μιη 之範圍、約10 μηι至約50 μηι之範圍、或約1〇 pm至約 30 μιη之範圍,使得可提供具有孔徑尺寸約3 μιη、約5 μηι、約 8 μπι、約 1〇 μΓη、約 15 μπι、約 2〇 陣、約 3〇 μηι、 约40 μιη、或約50 μηι的濾片《然而應瞭解,視待過濾 或容許通過的生物體或細胞而定,濾片可具有任何孔隙 尺寸。 各實施例中,耦接第一通口至腔室或耦接第二通口至 腔室的微流體系統之微通道可具有範圍在約5〇 μιη至約 200μπι内的寬度’例如約50μπι至約ι〇〇 μπι之範圍或約 100 μιη至約200 μηι之範圍,使得該為通道可具有約5〇 μηι、約1〇〇 μιη、約15〇 μιη '或約2〇〇 的寬度。各實 施例中,.微通道可具有範圍在20 μπι至約1〇〇 μιη的高 度,例如在約50 μιη至約100 μηι内的範圍、在約2〇 μηι 至約50 μιη内的範圍、或在約2〇 μιη至約30 μιη内的範 圍,使得微通道可具有約20μΐη、約4〇μηι、約6〇μιη' 28 201217781 約80 μηι、或約ι〇〇 μηι的高度》 各實施例中,過濾流率或樣本及流體(例如緩衝溶液) 通過*片以在濾片留住目標生物體且過濾其他生物體的 流率可在約3 (每分鐘微升數)至約600 μΐ/min 之範圍’例如在約3 μΐ/min至約400 μΐ/ηήη之範圍、約 3 μΐ/min 至約 200 μΐ/min 之範圍、約 50 μΐ/min 至約 600 μΐ/min之範圍、約5〇 μΐ/min至約400 μΐ/min之範圍、約 100 μΐ/min 至約 200 μΐ/min 之範圍、約 200 μΐ/min 至約 4〇0 μΐ/min之範圍,使得過濾流率可為約3 μ1/ηιίη、約 10 μΐ/min、約 30 μΐ/min、約 50 μΐ/min、100 μΐ/min、約 200 μΐ/min、約 300 μΐ/min、約 400 μΐ/min、约 500 μΐ/min、 或約 600 μΐ/min。 各實施例中,回流速率或流體(例如緩衝溶液)以相 對過濾程序相反的方向通過濾片以移除濾片處留住的生 物體之流率可在約200 μΐ/min至約1〇〇〇 μΐ/min之範圍, 例如在約200 μΐ/min至約800 μΐ/min之範圍、或約400 μΐ/min至約800 μΐ/min之範圍,使得回流速率可為約2〇〇 μΐ/min、約 400 μΐ/min、約 600 μΐ/min、約 800 pl/min、 或約 1 000 μΐ/min。 各實施例中’沖洗速率或流體(例如緩衝溶液)通過 第一通口或第二通口以移除其他非具特異性之生物體的 流率可在約15 μΐ/min至約400 μΐ/min之範圍,例如在約 15 μΐ/min 至約 300 μΐ/min 之範圍、約 15 μ1/πιίη 至約 2〇〇 μΐ/min之範圍、約50 μΙ/min至約400 μΐ/miri之範圍、約 29 201217781 50 μΐ/min 至約 300 μΐ/min 之範圍、約 100 μΐ/min 至約 300 μ1/ιηιη之範圍、或約1〇〇 μΐ/min至約200 μΐ/min之範圍, 使知沖洗速率可為約15 μΐ/min、約50 μΐ/min、約1〇〇 μΐ/min、約 200 μΐ/min、約 300 μΙ/min、或约 400 μΐ/min。 各實施例中’目標的生物體或特異性之生物體可在電 極陣列表面上培養長達範圍在約5分鐘至約6〇分鐘〇 小時)内的歷時’例如約5分鐘至40分鐘的範圍、約5 分鐘至20分鐘的範圍、約5分鐘至1 〇分鐘的範圍、約 1〇分鐘至60分鐘的範圍、或約2〇分鐘至6〇分鐘的範 圍’使得培養歷時可為約5分鐘、約1 〇分鐘、約2〇分 鐘、約30分鐘、約40分鐘、約50分鐘或約60分鐘。 各實施例中’提供用於製造微流體系統以偵測樣本體 積中的生物體之方法。該方法可包括:提供設以接收該 樣本體積的一腔室,其中該腔室可包括一偵測區域,以 偵測該生物體;提供與該腔室流體連通的一第一通口; 以及提供與該腔室流體連通的一第二通口,該第二通口 匕括慮片,且其中提供至該第一通口或該第二通口的 一流體在該第一通口與該第二通口之間流過該腔室。 各實施例中’提供使用微流體系統偵測樣本體積中的 生物體的方法,該微流體系統用於偵測樣本體積中的生 物體,該微流體系統包括:設以接收該樣本體積的一腔 室,其中該腔室可包括一偵測區域以偵測該生物體;與 該腔至流體連通的一第一通口;以及與該腔室流體連通 的一第二通口,該第二通口包括一濾片;且其中提供至 30 201217781 該第一通口或該第二通口的一流體在該第一通口與該第 二通口之間流過該腔室。該方法可包括:提供該樣本體 積至該腔室;提供該流體至該第一通口,以使該樣本體 積通過該濾片以留住該生物體;從該濾片移出該生物體 至該腔室的該偵測區域;以及偵測該生物體。 第1A圖至第1C圖顯示根據各實施例之微流體系統 100的透視圖。微流體系統1 02可設有微晶片1 〇4或與 微晶片104整合’而形成整合微流體系統100,以用於 準備及偵測樣本體積中的生物體,例如血液樣本中的周 邊血液單核細胞(PBMC )。微晶片1 〇4可為矽微晶片。 各實施例中’微流體系統102可具有大約7 mm X 6 mm X 3 mm的尺寸。各實施例中,微晶片i 〇4可具有大約1瓜瓜 X 1mm X 0.75 mm 的尺寸。 微流體系統102可包括一對腔室1〇6a、1〇6b,其設以 接收樣本體積。腔室106a、106b可為開放腔室。換言之, 排除其他生物體之外,尤其是將含有待偵測之生物體的 樣本體積透過腔室106a、1〇6b提供到整合微流體系統 100的微流體系統102。每一腔室1〇6a、1Ci6b可包括個 別的债測區域1〇8a、1〇8b (其具有個別的捕獲表面)以 侦測生物體’該個別的偵測區域位於個別腔室1 〇6a、丨〇6b 的底部。各實施例中,偵測區域l〇8a、l〇8b可包括微電 極陣列(圖中未示) 表面可為微電極陣列的表 於微電極陣列的表面上 其中偵測區域108a、l〇8b的捕獲 面。捕獲分子可設置及/或附接 以捕獲目標的生物體以供偵 31 201217781 測。捕獲分子可對供偵測的目標生物體具特異性。各實 施例中,每一腔室1 0 6 a、1 0 6 b可為開放腔室。 微流體系統102可進一步包括第一通口 1]〇與第二通 口 112,該第一通口 110可連接腔室l〇6a、l〇6b,使得 第一通口 110可與腔室106a、l〇6b之每-·者流體連通, 而第二通口 112可連接腔室106a、1 06b ’使得第二通口 112可與腔室l〇6a、106b之每一者流體連通。第一通口 110與第二通口 112可實質上垂直於偵測區域108a、108b 的捕獲表面排列。 各實施例中,微流體系統102可進一步包括濾片114, 其設於第二通口 112。該濾片114可與第二通口 112整 合。濾片114可為半透膜濾片。各實施例中,濾片114 可以水平組態設置於第二通口 112,或換言之,水平地 設於第二通口 112中。 各實施例中’微通道(圖中未示)可經設置以將第一 通口 11 0耦接每一腔室1 〇6a、j 06b。各實施例中,微通 道(圖中未示)可經設置以將第二通口 U2耦接每一腔 室106a、1 06b。進一步的實施例中,可設置超過一個微 通道(諸如兩個、三個、或四個微通道)以將第一通口 11〇耦接每一腔室l〇6a、i〇6b ,且可設置超過一個微通 道(諸如兩個、三個、或四個微通道)以將第二通口 12〇 耦接每一腔室l〇6a、l〇6b。 各貫施例中,第一通口 11〇、腔室iOh'j〇6b、以及 第一通口 112彼此流體連通,以致提供至第一通口 110 32 201217781 或第一通口丨12的流體(例如緩衝溶液)可在第一通口 ?〇與第二通。112之間流過腔室l〇6a、l〇6b。據此, 提供至第-通口 110的流體可從第-通口 110流至每— 腔室l〇6a、106b,並且通過每一腔室1〇仏、1〇仳至第二 通口 112。類似地,在相反方向,提供至第二通口山 的體可從第二通口 112流至每一腔室i〇6a、,並 且通過每一腔室106a、1〇6b至第一通口 ιι〇。 各實施例中,整合微流體系統1〇〇可進一步包括複數 個形成於其中或形成於微晶片上的接觸塾116。複 數個接觸墊11 6可與設在偵測區域2 〇8a、〖〇8b的微電極 陣列電連通。複數個接觸墊116可透過複數個電連接件 (圖中未不)連接微電極陣列。各實施例中,複數個接 觸墊116的數目可對應偵測區域1 〇 8 a、1 〇 8匕處微電極陣 列(圖中未示)的電極數目。各實施例中,複數個接觸 墊116可由金、鈦、鉑或其他金屬或導電材料製成。 第ic圖中,顯示金屬中空針118,其插入第二通口 ιΐ2 以做為出口。金屬中空針118進一步連接到管路(圖中 未示)以移除任何樣本。 各實施例中,微流體系統1〇〇可進一步包括可移除式 排列的磁性元件(圖中未示,例如磁鐵),其設以提供或 生成磁場於偵測區域108a、108b附近。磁鐵可定位在偵 測區域108a、108b下方。所生成的磁場可助於在偵測區 域108a、108b處捕捉已磁性標記的生物體。各實施例 中,磁鐵可為永久磁鐵或電磁鐵。 33 201217781 各實施例中’可設置與腔室106a、106b流體連通的第 三通口或更多通口,以透過增加過濾面積與流體進出而 緩和過濾程序。第三通口或更多通口可能或可能不設有 渡片。 進一步實施例中,濾片114可在第二通口 112以垂直 組態實施,或換言之,垂直地排列在第二通口 112中, 其可影響流態並且提供某些優點。 替代性實施例中,僅設有一個腔室。進一步的實施例 中’可設置超過兩個腔室,使得可設置三個、四個、或 五個、或甚至更多腔室。 各實施例中,微流體系統102可由聚碳酸酯、聚乙烯、 聚甲基丙烯酸酯(PMMA)、或聚雙甲基矽氧烷(pDMS) 製成。進一步實施例中,微流體系統1〇2可由金屬製成, 例如鋁或不鏽鋼。 現在將以範例而非限制的方式描述基於使用阻抗測量 偵測生物體的微流體系統1〇2的操作。 微流體系統102可用於準備及偵測血液樣本中的周邊 血液單核細胞(PBMC)。準備周邊血液單核細胞(pBMc) 可意味集中周邊血液單核細胞(PBMC)或從血液樣本中 的其他細胞或生物體過濾或隔離周邊血液單核細胞 (PBMC)。 最初,提供血液樣本前,可直接提供緩衝溶液至腔室 l〇6a、106b。可提供緩衝溶液以填充腔室“Μ、切化的 整體體積,其可具有約4μ1的體積。在替代性實施例中, 34 201217781 可提供緩衝溶液以填滿腔室106a、1〇6b 一半的體積,或 充分地提供以覆蓋或疊置(overlay)微電極陣列。 可採取阻抗測量為背景訊號以用於常態化目的。腔室 職内的緩衝溶液隨後可移除。然而,維持腔室 1 〇6a、1 06b内某體積的緩衝溶液以稀釋後續提供至腔室 l〇6a、lG6b的血液樣本是有益的,以在偵測區域n 1 〇 8 b處緩和處理及減少飽㈣發± (例#由血液樣本令 的紅血球細胞與其他成份或生物體造成),其可能妨礙待 偵測之目標生物體的偵測。因此,在提供血液樣本至腔 室l〇6a、1〇6b之前,腔室1〇6a、1〇6b内某體積的緩衝 溶液可移除’該體積可為約2μ1,為腔室1〇6a、1〇讣體 積的一半。血液樣本隨後可提供至腔室1〇(5&、1〇补。在 此階段,血液樣本可含有除了待_的pBMc外的各種 生物體,諸如紅血球細胞、白血球細胞與其他細胞。 隨後可執行過濾程序。可通過第二通口 ]12提取樣本 (該樣本是以緩衝溶液稀釋的血液樣本),此舉是例如借 助附接第二通口 112的泵達成,以使樣本通過濾片 與第二通口 112而廢棄。可移除樣本的整體體積,或可 移除腔室106a、l〇6b内的某體積的樣本,例如約2 在此階段,PBMC可留在濾片114,同時紅血球可被移除 而廢棄。因第二通口 112大體上可用於在樣本通過濾片 114後輸出樣本,第二通口 112亦可界定為出口或排出通 口 〇 各實施例令,過濾程序可執行數次,例如兩次、三次、 35 201217781 或四次,以使PBMC的留駐最大化並且㈣W ιΐ4移 除其他例如紅血球之類的生物體。因 口 η。提供額外緩衝溶液(而此時第二通二 以填充腔室106a、1()6b,並且進—步稀釋内部的樣本。 隨後可藉由透過第二通α 112提取樣本而執行進一步的 過濾。腔室106a、l〇6b内某體積的樣本可透過濾片ιΐ4 與第二通口 112移除而廢棄。各實施例中,第一通口 可大體上做為緩衝溶液的輸入工具,該第一通口 ]1〇亦 可界定為入口或入口通口。 各實施例中,在過濾程序期間,生物體可存在於偵測 區域l〇8a、l〇8b的捕獲表面上,該等區域個別位在腔室 l〇6a、1〇6b的底部。因此,培養與介電泳(為偵測方案 的一部分)可在過濾程序期間實施,以在偵測區域1〇8a、 l〇8b上捕獲PBMC。 在過濾程序的末端,多數白血球細胞或pBMC可能留 在濾片114,同時多數紅血球細胞被移除而廢棄。 為了從留在濾片114的細胞回復PBMC的部份且為了 致使捕獲及偵測PBMC,通過第二通口 112提供缓衝溶 液而第一通口 1 10關閉,如此反轉液體流動的偵測(相 較於過濾程序期間的液體流動)。換言之,執行通過第二 通口 112的緩衝溶液回流或反轉流動,因而從濾片114 移出細胞並且將該細胞傳送到腔室106a、1 〇6b,使得該 等細胞可傳送到腔室106a、106b的偵測區域1〇8a、1〇8b。 緩衝溶液回流及細胞傳送到腔室丨〇6a、丨〇6b之後,可 36 201217781 實施培養及/或介電泳與沖洗(為為偵測方案的一部 分),以在偵測區域108a、108b (例如在偵測區域108a、 108b的微電極陣列處)集中細胞。在清洗程序期間,可 透過第一通口 11〇及/或第二通口 112流動流體,而移除 在微電極陣列表面上不被捕獲的非特異性生物體。接 著’可執行在腔室l〇6a、i〇6b的偵測區域i〇8a、i〇8b 處的PBMC的偵測。可使用無標記方法(諸如阻抗測量) 偵測PBMC。 各貫施例中’在偵測區域108a、丨〇8b捕獲PBMC之後 可重覆回流程序,以增加回復效能。各實施例中,回流 程序可執行達第三時間或第四時間,每一時間是在偵測 區域108a、l〇8b處捕獲Pbmc之後。 據此,各實施例中,提供到第一通口 11〇的諸如緩衝 浴液之流體可設以流過腔室丨〇6a、〗〇6b與濾片丨丨4,以 致生物體由濾片114留駐,而提供到第二通口 112的諸 如緩衝溶液之流體可設以流過濾片114,以致生物體由 濾片114移出到腔室106a、106b,而用於透過附接在微 電極陣列表面的捕獲分子之捕獲。 各實知例中,亦可能貫施序列式批次處理方案,其令 可依序處理不同體積的血液樣本。 處理程序後,可偵測在概電極陣列上捕獲的PBMc。 第2圖顯示流程圖2〇〇,其說明根據各實施例之用於 製造微流體系統的方法。 在202,提供設以接收樣本體積的腔室,其中該腔室 37 201217781 包含偵測區域用於偵測生物體β • 在204,提供與該腔室流體連通的第一通口。 • 在206 ’提供包含濾片且與腔室流體連通的第二通口; 且其中提供至該第一通口或噹笛_ 尺忒弟一通口的流體在第一通 口與第二通口之間流動通過該腔室。 製造與實驗資料 現在將如下文透過範例但非限制的形式描述各實施例 的微流體系統之製造。 微流體系統設計 第3 Α圖至第3D圖顯示根據一個實施例的微流體系統 102之概略視圖。微流體系統1〇2可包括底部的矽微晶 片104,該微晶片包括微電極陣列3 〇〇 (以用於無標記横 測)’該微流體系統102尚且包括微流體腔室丨〇6a、 l〇6b、第一通口 110與第二通口 m(其具有整合的微濾 片半透膜114)。該對微流體腔室i〇6a、106b的每一者可 具有約4 μΐ的體積。膜濾片114可具有約3 μηι的孔隙尺 寸。微電極陣列300可形成於矽微晶片1 〇4上或其中, 或整合於矽微晶片104上,以形成微電極陣列(me A ) • 晶片。因此’微流體系統102的偵測區域可整合至矽微 . 晶片104上。 第3 A圖顯示根據各實施例之微流體系統102的概略底 視圖,為說明目的,圖中移去了包括微電極陣列300的 38 201217781 矽微曰曰片104。第3B圖顯示沿第3A圖的線段A A,所取 的微流體系統1〇2的概略剖面圖。 如第3B圖所示,微流體系統102可包括塑膠腔室結構 302兩個居中膠帶層(tape Iayer)304以及底部膠帶層 根據第3A圖與第3B圖,可將微電極陣列3〇〇設 置成覆蓋_微晶片1G4的—部分’該部份對應腔室 驗、祕及塑膠腔室3〇2之底表面,如第3a圖中虛 線方塊3〇8所不。各實施例中,塑膠腔室結構302可透 過兩個居令膠帶層3〇4與底部膝帶層寫附接微晶片 104。各實施例中,兩個居中勝帶層则與底部膠帶層 306可為雙面膠帶層。 第3C圖與第3D圖各別顯示根據各實施例的膠帶層 3〇4及306的概略頂視圖。居中膠帶層刚包括開口 31〇a、310b,各別對應第一通口 與第二通口 112。居 中膠帶層3 (Μ進_舟句紅„ 進步包括開口 312,使得 302與腔室106a、1〇 ,版至、.口稱 微晶片104。 …接觸微電極陣列3。。與 各實施例中’底部膠帶層3〇6包括開口 Μ、·, 各別對應第一通口 11〇與第二 進一,句心 逍口 112。底部膠帶層306 進步包括開口 316,使得塑膠腔室 106a' 1 Of\h hh ±. 冓 302 與腔室 的表面可接觸微電極陣列300血微曰片丨04 進-步實施例中’可以第二通 aa 。 片,或換言之,垂直排列於第二通口 實施滤 並且提供某些優點。第3E圖顯示根 〜響流態 個貫施例的微流 39 201217781 體系統3 1 8之概略側視圖,該微流體系統具有垂直設置 的濾片320 »除濾片組態外,第3E圆的實施例類似於第 3B圖的貫施例,包括微流體的元件或零件◊第3B圖的 貫施例中,濾片114是以水平組態於第二通口丨丨2中實 施。在第3E圖的實施例中,濾片32〇是以垂直組態於第 二通口 322中實施。因此’濾片32〇平行於第二通口 322 的壁設置。此組態可相對上較不傾向產生濾片上32〇沈 降所造成的阻塞。應瞭解,具有垂直設置之濾片32〇的 微流體系統3 1 8可以任何適合應用的設計實施。 各實施例中’應瞭解可設置任何數目的居中膠帶層3〇4 與底部膠帶層306。 如此技藝中已知,可執行表面化學方法以附接諸如硫 醇之連接劑(linker)至微電極陣列300。包括塑膠腔室結 構3 02的微流體系統1 〇2可隨後架設到石夕微晶片1 〇4 上。用於特異性細胞捕獲的捕獲分子(諸如抗體)可透 過耦接 至連接 劑 的 EDAC/NHS( 1 - (3-Dimethylaminopropyl)-3-e thylcarbodiim ide hydrochloride/N-hydroxy succinimide)附接。不被微 電極陣列300覆蓋的矽微晶片1 〇4之表面可以除拒材料 鈍化,例如聚乙二醇(PEG )。因此,可有包括連接劑、 捕獲分子與除拒材料的塗佈層。隨後,架設在微晶片1 〇4 上的微流體系統1 02可儲存在冷藏室中以保存或維持塗 佈層的功能性。緩衝溶液可提供於微流體系統丨02中, 以保護塗佈層。替代性實施例中,可使用此技藝中已知 40 201217781 的其他儲存方沐 y 歹’j如乾燥、冷康、或真空儲存。 使用除拒材料於不受微電極陣列300覆蓋的裝置表面 上減少了生物體的非特異性附著,並且増加目標生物體 的特異性偵測,其在目標生物體的數目相對少量時相當 有幫助》 第,圖顯示根據_個實施例的塑膠腔室結構搬的技 術圖式。第4圖顯示塑膠腔室3〇2的頂視圖、底視圖與 剖面視圖,而塑膠腔室結構3〇2的尺度是毫米—)。 第5A圖顯示根據一個實施例的微晶片5〇〇之頂視圖, 其可設於各實施例的微流體系統。微晶片500可包括微 電極陣列502以及複數個電互連,例如5〇4a、5〇4卜 504c、504d、504e’用於連接到複數個接觸墊5〇6。複數 個接觸墊506可連接到印刷電路板(pcB ),以用於電控 制微電極陣列502與處理。微晶片5〇〇可為矽微晶片。 使用PCB為基礎的訊號處理可將生物體的處理與偵測時 間減少到低於1小時,其可容許將各實施例的微流體系 、’’充用在重點照護檢測(p〇C )設定,以供急性與慢性疾 病(諸如心臟病及動脈粥狀硬化進展)的診斷與監視。 第5B圖顯示根據一個實施例的微電極陣列5〇2的頂視 圖’設於第5A圖的微晶片500上。如第5E;圖所示,微 電極陣列502包括24對電極,排成4x6陣列。各實施例 中’複數個接觸墊5 0 6的數目可對應電極對的數目。 各實施例中,每一對電極可由其每一列號碼(如第5B 圖左側所指示者)與其每一行號碼(如第5B圖頂部上所 201217781 指示者)辨識。24對電極巾沾> 才中的母一者可具有内電極(例 如5_、5_、508(;、5〇8£〇與外電極(例如5心、·、 51〇c、51〇d)。各實施例t,例如鳩、則卜5他、侧 之内電極可為工作電極且為 r丑馬碟形,而例如5〗〇a、5 j 〇b、 510c、510d之外電極可A |+斤 〗為參考電極且形狀為實質上環繞 内電極(例如508a、5〇8b 、 MSb、508c、5〇8d)的馬蹄鐵形。 外電極(例如51〇a、510b、51〇 uuc、51〇d)可一起短接或 彼此電連通以一起作用為跄隹带n 巧卜用马收集電極,而提供相對大的表 面積而增加敏感度,而内電極(例如508a、508b、508c、 5〇8d)可個別受控制’以用於相對高度敏感的阻抗測量, 或-起短接或彼此電連通以一起作用為收集電極,而生 成空間上非均勻的電場以誘導介電泳(DEp),因而造成 介電泳力。 第6A圖顯不根據各實施例由微電極陣列生成的非均 勻電場的模擬繪圖600,該非均勻電場引起介電泳場。 如第6A圖所示,所生成的電場具有發生於内電極令央處 的電場極小值,其在用於負介電泳(DEp)時可引導及 集中目標細胞於内電極中央處,以供阻抗測量。 第6B圖顯示根據各實施例之具有細胞的微電極陣列 的光學顯微鏡影像602,施加的電子訊號之峰對峰振幅 約1.5V,而頻率約1MHz。第6B圖顯示因負DEp而造 成複數個細胞604集中在微電極陣列6〇2的内電極6〇6 的中央。 參考第5圖,各實施例中,電極對的第一列的内電極 42 201217781 可透過互連504a、504e連接複數個接觸墊5〇6。電極對 的第二與第三列的内電極可透過互連5 04 b、5 04d連接複 數個接觸墊506。電極對的第四列的内電極可透過互連 504c連接複數個接觸塾506。外電極(其經短接並且彼 此電連通)可透過互連504b、504d連接複數個接觸墊 506 〇 各實施例中,可執行表面化學法以諸如硫醇之連接劑 功能化微電極陣列502的内電極(例如508a、508b、 508c、5 08d)與外電極(例如 51〇a、51〇b、51〇c、51〇d)。 用於特異性細胞捕獲的捕獲分子(諸如抗體)可透過耦 接至連接劑的EDAC/NHS附接。不被微電極陣列3〇〇覆 蓋的矽微晶片104 (可為氧化矽)之表面可以細胞除拒 材料鈍化,例如聚乙二醇(PEG )。 現在,將透過隨後說明性但非限制性的範例而描述各 實施例。(RBC) method of melting and microfluidic systems. Liquid samples containing EPC and RBC can be initially prepared and mixed with a melting buffer solution of certain chemicals, which are included in the chlorination of the melting effect (NH4C1, which is used as a solvent), as a pH. Sodium carbonate (NaHC〇3) in buffer and ethylenediaminetetraacetic acid (EdTA) as an anti-agglomerating agent. In each of the examples, sodium carbonate in the dissolution buffer solution may also serve as a blocker to suspend the Na+_K+_ATp enzyme. The melting buffer solution may further comprise a magnetic element such as a magnetic bead. The magnetic beads can be magnetic beads attached to the antibody (ie, the magnetic beads are coupled to the antibody) to couple with Epc, which can facilitate selective capture of EPC and detection by immunochemistry in the microfluidic systems of various embodiments. In each of the examples, selective cell solvation (such as dissolving RBC) may occur in a solution containing EPC, however, it may also occur in a & EPC-free melting process. This preparation procedure performs simultaneous migration in a relatively short period of time. In addition to red blood cell (RBC) and cell surface index markers (requires about 10 minutes) 'can cause completion of the preparation and debt testing procedures in less than 1 hour. Each example can result in relatively higher potency after melting (> 90% EPC). 17 201217781 In each of the examples, the dissolution buffer solution may include about 150 mM NH4C1, 10 mM NaHC03, 0.1 rnM EDTA, and about 2000 magnetic beads. However, it is to be understood that the concentration of NH4C1 may range from about 10 mM to about 150 mM 'eg, from about 1 〇 to about 100 mM, from about 10 mM to about 50 mM, or from about 50 mM to about 150 mM. Thus, the concentration of NH4C1 can be about 1 mM, about 20 mM, about 50 mM, about 100 mM, about 120 mM, or about 150 mM. It will be appreciated that the concentration of NaHC〇3 can range from about 1 mM to about 100 mM, such as in the range of about 10 mM to about 50 mM, or in the range of about 10 mM to about 20 mM 'so' the concentration of NaHC03 can be About 1 mM, about 20 mM, about 30 mM, about 50 mM, about 80 mM, or about 100 mM. It will be appreciated that the concentration of EDTA may range from about 〇〇ι to about 1.0 mM, such as from about 0.01 mM to about 5.5 mM, from about 〇.〇i mM to about 0.1 mM, or about 〇丨 mM. A range of up to about io mM can be such that the concentration of EDTA can be about 1 mM, about 5 mM, about 〇 mM, about 2 2 mM, about 5 5 mM, or about 1 . In each of the examples, the blood sample can be mixed with the dissolution buffer solution such that ΝΗ4 <:1 to blood volume ratio (NHUCl has a concentration of about 150 mM) ranging from 1:1 1 1:10. In each of the examples, the total volume of the mixed solution may be less than 100 μΐ. It will be appreciated that the number of magnetic beads varies in the various embodiments depending on the number of cells to be transferred to the magnetic beads. In various embodiments, the ratio of two magnetic beads per cell is provided. For example, in a blood sample of about 2 〇 μ1, the number of (d) can be about 〇. The range of Μ% of PBMC is equivalent to approximately 18 201217781 ΗΗΜ000 EPCs. Therefore, approximately 2 magnetic beads may be required. In a further embodiment, a relatively higher ratio of magnetic beads per cell can be provided. Depending on the size of the magnetic beads (for example, micron-sized magnetic beads or nano-sized magnetic beads) can provide approximately 2 〇〇〇 2 磁 magnetic beads. Embodiments may provide methods and systems for relatively rapid separation and detection of rare endothelial progenitor cells (EPCs) based on selective melting red blood cells (RBC) and immunomagnetic richness to separate Epc from blood (such as CD34+). cell). A sample containing CD34+ cells can be prepared and mixed with a solution containing NaHC〇3, EDTA, and magnetic beads attached to the antibody. This solution can help to dissolve or eradicate RBC in the sample, and also label the magnetic beads attached to the antibody to the CD34+ cell index in a relatively short period of time (about 丨〇 minute). This time limit meets the needs of CD34+ detection. After culturing the sample, the sample and mixed solution containing CD34+ cells can be loaded or supplied to the microfluidic system of each example. The microfluidic system filters the sample to concentrate and concentrate CD34+ cells by removing other non-target cells. Then, a localized magnetic field can be applied to the vicinity of the microelectrode region at the detection region to selectively isolate and concentrate the immunomagnetically labeled CD34+ cells (coupled with the magnetic beads) on the microelectrode, thereby capturing and immobilizing the CD34+ cells. Micro-electricity and above to detect and quantify measurements. This facilitates the specific extraction of CD34+ cells from blood samples, while other remaining cells that do not express CD34 antigen (such as undissolved RBC and pBMc) can be removed from the sample by washing it away. Embodiments may provide an unmarked detection method. Such an unmarked detection method can be performed by impedance measurement or impedance spectroscopy as described in WO 20 丨 0/050898 filed on Sep. 19, 2009, the entire disclosure of which is incorporated herein by reference. For reference. With this detection mechanism, the capture surface in the open chamber is patterned with a gold electrode on the microchip, and the gold electrode is connected or electronically communicated with the measurement or detection system. The electrodes can be arranged as a microelectrode array. The electrodes may be specifically provided with a capture molecule (such as an antibody) for a specific target cell or organism' while the remaining portion of the microchip that is not covered by the electrode may be passivated by a repellent material, such as polyethylation Glycol (PEG). The electrodes can also be used to perform dielectrophoresis (DEp) to attract and concentrate cells on the electrodes to accelerate cell capture and increase efficacy. In other embodiments, other detection mechanisms may be used, and the detection area may be modified or set in a suitable form correspondingly based on the detection mechanism. For example, a refractive index-based sensing mechanism (such as surface-plasma resonance (SPR), or a light-applied resonator (0pticai ring res〇nat〇r), or a dry-source instrument) can be used as a detection mechanism. Wherein the capture surface can be patterned with a gold layer that contains spots of capture molecules such as antibodies. Light can be passed through the channel to the capture area using photons or through direct illumination. It is also possible to use localized SPR. Another possible detection mechanism is a field effect sensor, such as a nanowire array, which can be placed and patterned on the capture surface and functionalized with specific capture molecules such as antibodies. The array of nanowires can be coupled to a measurement system' to measure the resistance of the nanowires, which can change when a biological object, such as a cell, is captured on a surface. Conventional fluorescence measurements can also be used to detect organisms. The captured cells can be stained with various dyes, which can be excited using an external light source, and the 201217781 emission can be detected by, for example, a charge coupled device (CCD) camera or a photomultiplier tube (PMT). . In a further embodiment, a shear flow controlled cleaning scheme can be implemented that is accomplished by flowing a fluid, such as a buffer solution, through the microelectrode array and chamber to facilitate specific cell selection and removal on the microelectrode Any organism that may exist but is not detected. Various embodiments may alleviate the challenge of sample loss during transfer between different systems or the challenge of a sample at the interface between different systems by providing a microfluidic system in a single microfluidic package or in a cavity This is achieved by providing a microfluidic wafer for sample preparation and detection in the chamber. The chamber can be an open chamber that provides a small sensing area for highly sensitive sensing and provides a relatively high performance level of cellular response during the detection procedure. Embodiments may provide a microfluidic system based on fluid movement or flow in a microchannel and chamber from one section of the microfluidic system to another, thereby allowing seamless detection with no marks Integration. Embodiments may provide: diagnosis of cells such as detection of peripheral blood mononuclear cells (PBMC) or rare circulating cells (eg, EPC:); label-free for highly sensitive hands-free integration systems Detection; automated systems for relatively low-cost processing; and diagnostics, prognosis, and therapeutic surveillance, for example, for cancer, cardiovascular disease, and transplant surveillance. Each embodiment may provide bedside or critical care of an organism, such as a rare circulating tumor cell (CTC), such as endothelial progenitor cells (EPC), from a relatively small amount of blood sample (less than 100 μιη) in less than one hour. Check 21 201217781 (POC) processing and detection for diagnosis. Embodiments may provide an integrated microfluidic system for label-free detection of EPC in a patient's blood to provide an integrated bedside diagnostic test for integrating samples that are made from one or more patients A hand-pointed thorn (each finger is needled with about 50 μΐ of blood) is obtained. Microfluidic systems provide the following functions in relatively tight systems: sample preparation from blood samples, specific cell capture based on antibody antigen recognition, and relatively high sensitivity label-free impedance detection (eg, in PBMC samples) . 1% EPC). This may help, for example, to make decisions on the type of stent used by a patient, such as a heart patient. In various embodiments, microfluidic systems and methods provide relatively high sensitivity, relatively high throughput, and relatively low cost cell detection. The microfluidic system can include a tantalum wafer and a plastic fixture. Embodiments may provide a microfluidic system and method including an open chamber to separate white blood cells (including circulating cells) based on differences in size of different cells or organisms within the open chamber. The microfluidic systems of the various embodiments can be produced at relatively low cost and can be disposable. In the context of the various embodiments, the term "microfluidic system" may mean a fluid system comprising channels (also referred to as microchannels) in one or more micrometer ranges, wherein a sample volume is provided to flow into the microchannel based on fluid motion. And flowing along the microchannel. In various embodiments, a microfluidic system can be formed on a microchip to form a microfluidic wafer. In the context of the various embodiments, the term "detection area" may mean an area in which an object can be detected 22 201217781. In various embodiments, the detection zone can be located in the chamber, such as at the bottom of the chamber. In various embodiments, the chamber is an open chamber. Detection can be performed based on an unmarked guessing method such as impedance measurement or sensing. The detection region can include an electrode, a pair of electrodes, or a microelectrode array comprising more than one electrode or more than a pair of electrodes. Each pair of electrodes can include an inner electrode and an outer electrode. The outer electrode has a complementary shape that substantially surrounds the inner electrode. Implementation. In this example, the electrode, a pair of electrodes, or a microelectrode array can be positioned at the bottom of the detection area. In various embodiments, the organism can be captured in the detection zone by dielectrophoresis or capture of capture molecules (e. g., antibodies). The capture molecules can be disposed on the surface of the electrode and/or attached to the surface of the electrode. The term "open chamber" in the context of the various embodiments may mean that the solution may flow or pass through or remain in a chamber or passage in the chamber or passage. In various embodiments, the open chamber has a top opening. In other words, the open chamber does not have a top cover. In each of the embodiments, the term "chamber" means "open chamber". The term "fluid communication" associated with different sections of a microfluidic system may mean communication between two sections of a microfluidic system. In this embodiment 'this communication may be a direct connection or a direct path between two sections of the microfluidic system' or may include one or more zones in between the two sections of the microfluidic system segment. In the context of the various embodiments, the "port" - word may mean - an opening, a recess or a cavity to provide a conduit through which fluid passes. In various embodiments, the microbody system can include at least two ports in fluid communication with the chamber. The micro-peach system can include an inlet port that provides access to or introduction of work 23 201217781 , . The fluid system can include an outlet conduit. In each of the embodiments, each of the ports has a hollow cylindrical structure which is provided to leave or exit the hollow cylindrical structure. It is possible to have a continuous knot cylindrical structure that is early in the range of about 1 mm ^ / in the embodiment, hollow in the length of about 1 mm to about 2 from > about 3 mm, for example, such that the county sound · mm to, The force of 3 mm can be about 1 mm in length, kiss, and c is about 2. 5 mm, or about 3 々 by 2 mm, secondary, force 3 mm. In each of the embodiments, the range is about 〇. 6mm to about the middle back column, the structure can be 5,, , 01 straight, such as in the range of about 6 _ to about 1 or at about i 6 so that the diameter can be about ,6, to, force Range, test 4 rugged · 6 mrn, about 〇 , , Λ U · 66 _, about 〇 · 8 mm, about 1 · 〇 mm, or about 25 mm. In the embodiment of the -^ t step, each port having a Φ* cylindrical structure may include a first portion and a second portion, and the first -° smash has about 0. 66 mm (diameter) xi s two slightly, and 仫) Xl. 5mm (height) size, and the second part has about 1 > 5 mm (straight, and also j xl. 5 mm (height) size. The first part can be on the second τ knife item 0卩, or vice versa. The bran should be understood that each of the ports or per-ports may have a different 'structure and configuration' and may have different dimensions. In various embodiments, a third port or more ports may be provided in communication with the cavity body, having a suitable configuration, configuration and dimensions. The term "organism" in each embodiment may mean a biological indicator, a cell, a cell, a virion, a biopolymer, or a combination of the foregoing. The term "cell" can include eukaryotic cells and prokaryotic cells. The term "cell" may also include peripheral blood mononuclear cells, cells including the white blood cells, tau cells, and the immune system of the helper tau cells, including circulating tumor cells, lymphocytes, and 24 201217781 CD4 lymphocytes and endothelial progenitor. Biological indicator of animal cells or yeast cells. "Eukaryotic cells. The term "mammalian cells" can include tumor cells, blood cells, immune system cells, precursor cells, and embryonic cells. "Biopolymer" - words may include polypeptides, nucleic acids, lipids, and sugar collection. The organisms in various embodiments may have anchors for culture and capture on the surface of the microelectrode array. In various embodiments, the sample volume can be a blood sample volume. The blood sample volume can be a whole blood sample volume. In various embodiments, the chamber or open chamber can have a volume ranging from about ΐμ1 to about 500 μΐ, such as in the range of about 1 μ1 to about 5 〇〇 y, in the range of about _μ1, about 1 μl to about 2〇〇μΐ range, from about 1 μm to about 100 μΐ, about! a range of μ1 to about 5〇μΐ, a range of about i μ! to about 2〇μ1, a range of about 2〇〇μ1 to about 〜, a range of about 5〇μΐ to about 500 μΐ, or about 5〇μι to about a range of 2 〇μΐ such that the chamber can have about 24, about 5 μ, about 1 〇, about 2 〇 4, about 5 〇 μl, about 100 μl, about 2 〇〇 μ, about 3 〇〇 μ ΐ, or about 5 〇〇 ^ volume. In various embodiments, the detection region may include a microelectrode array, which may include one or more pairs of electrodes, such as two pairs of electrodes, four pairs of electrodes, six pairs of electrodes, eight pairs of electrodes, twelve pairs of electrodes, sixteen pairs of electrodes Or twenty pairs of electrodes, and they may be arranged in a 2x1 array, a 1Χ4 array, a 2χ2 array, a 1χ6 array, a 2×3 array, a 3χ2 array, a 2χ4 array, a 4χ2 array, a j" array, a 4×3 array, a 2χ8 array, a 4χ4 array, a 4χ6ρ Train, or 3χ8 array. Each pair of electrodes may comprise an inner electrode and an outer electrode, the outer electrode having a substantially complementary shape to the periphery of the electrode. In each of the embodiments, one pole may be made of gold, or other metal or conductive material. For each implementation, the inner electrode can be a dish electrode, a shoe electrode. However, it should be understood that the inside is a triangle, a square, a rectangle, such as a rectangle or a diamond, and the outer electrode may have a complementary shape substantially surrounding the periphery of the corresponding inner electrode. The inner electrode can be a working electrode and the outer electrode can be a reference electrode. In various embodiments, the outer electrode can be connected (sh (med) to provide a relatively large surface area to increase sensitivity" while the inner electrode can be individually controlled for relatively high sensitivity impedance measurements, or - Shorting to generate a non-uniform electric field to induce dielectrophoresis (DEP). In various embodiments, specific capture molecules can be provided on and/or attached to the surface of the microelectrode array. Electrophoresis is a technique often used to separate microparticles, which is achieved by inducing a spatially varying non-uniform field (dielectrophoretic field) that produces a non-uniform polarized dipole to a neutral dielectric particle (for example including In the cell, thus, the dielectric force of the medium. The dielectric properties of the medium surrounding the particle can affect the dielectric ice force experienced by the particle. The more polarizable particles than the surrounding medium will experience the net force toward the high electric field region ( Positive DEP), and particles that are less polarizable than the surrounding medium will experience a net force (negative DEP) toward the low electric field region. In various embodiments, the electric field generated by dielectrophoretic capture may have an internal electrode. central The field is extremely small, thus directing the cells toward the capture molecules. In each embodiment, the generated dielectrophoretic field can be a negative dielectrophoretic field 'so that the target organism can be concentrated at the value of the minimum electric field occurring at the center of the inner electrode 26 201217781, Thus, the impedance detection sensitivity is enhanced without labeling the sample. In each of the embodiments, the electronic signal applied to the microelectrode array to induce the dielectrophoretic field may have a peak-to-peak range ranging from about 〇·1 v to about 20 V. Amplitude, for example about 0. A range of from 1 V to about 1 〇 v, a range of from about 1 v to about 5 v, about 0. 1 V to about 1. The range of 5 V, the range of about ι·5 V to about 1 〇 v, about 1. The range of 5 V to about 20 V makes the electronic signal have about 0. 1 V, about 0. Peak-to-peak amplitude of 5 V, about 1·0 ν, about 丨5 ν, about 5 V, about 10 V, or about 20 V. In various embodiments, the electronic signal applied to the microelectrode array to induce the dielectrophoretic field can have a frequency ranging from about 10 kHz to about 1 kHz, such as from about 1 kHz to about 5 kHz, about 10 kHz. Up to a range of about 1 〇 MHz, a range of about i 〇 kHz to about 1 MHz, a range of about 1 MHz to about 1 〇〇 MHz, a range of about ι 〇 m Hz to about 100 MHz, such that the frequency of the electronic signal can be about Work kHz, about 1 kHz, about 1 MHz, about 5 MHz, about 1 〇 MHz, about 20 MHz, about 50 MHz, or about 100 MHz. In various embodiments, the electronic signal applied to the microelectrode array to induce the dielectrophoretic field can have about 1. Peak-to-peak amplitude of 5 V and frequency of approximately 1 MHz. In various embodiments, in order to obtain high sensitivity in the detection area, relatively small sensing electrodes or microelectrode arrays may be arranged on the detection area. Each of the electrodes in each embodiment may have a size of about 1 〇〇 μπι. In various embodiments, the filter may be a filter paper, a fibrous screen, a polymeric filter, or a functional filter having a coated antibody or charge. In various embodiments, the filter may be made of parylene, polystyrene, polyethylene, polymethylmethacrylate (polymethylmethacrylate) or polyamethylene phthalocyanine 27 201217781 oxyalkylene (PDMS). In various embodiments, the filter can be a semipermeable membrane filter. It is well known that the filter can be a semi-permeable membrane of Sterlitech polycarbonate. In various embodiments, the filter may have a size ranging from about 2 mm to about 4 mm in diameter, such as from about 2 mm to about 3 mm, such that the diameter of the sheet may be about 2 mm, about 3 _, or About 4 _. The filter area of the filter can have substantially the same dimensions as the filter. In various embodiments, the filter may have a pore size ranging from about 3 μηη to about 50 μηη, for example, a force ranging from 3 μm to about 30 μηη, ranging from about 3 μm to about 20 μηη, from about 3 μηι to about 1 The range of 〇μιη, a range of about 5 丨 coffee to about 5 〇 μηη, a range of about 10 μηι to about 50 μηι, or a range of about 1 〇 pm to about 30 μηη, so as to provide a pore size of about 3 μm, about 5 μηι, about 8 μπι, about 1 μμΓη, about 15 μπι, about 2 〇 array, about 3 〇μηι, about 40 μηη, or about 50 μηι filter. "However, it should be understood that the organism to be filtered or allowed to pass The filter may have any pore size depending on the body or cell. In various embodiments, the microchannels of the microfluidic system that couples the first port to the chamber or the second port to the chamber may have a width ranging from about 5 μm to about 200 μm, such as about 50 μm to A range of about 1 μm to about 200 μm to about 200 μm, such that the channel can have a width of about 5 μm, about 1 μm, about 15 μm, or about 2 Å. In each embodiment, The microchannels can have a height ranging from 20 μm to about 1 μm, such as in the range of from about 50 μm to about 100 μηη, in the range of from about 2 μηη to about 50 μηη, or from about 2 μm μη to A range within about 30 μηη such that the microchannel can have a height of about 20 μΐη, about 4 〇μηι, about 6 〇μιη′ 28 201217781 about 80 μηι, or about ι〇〇μηι. In each of the examples, the flow rate or sample is filtered. And the flow rate of the fluid (eg, buffer solution) through the * sheet to retain the target organism in the filter and to filter other organisms may range from about 3 (microliters per minute) to about 600 μΐ/min 'eg, A range of from 3 μΐ/min to about 400 μΐ/ηήη, a range of from about 3 μΐ/min to about 200 μΐ/min, a range of from about 50 μΐ/min to about 600 μΐ/min, from about 5 μμΐ/min to about 400 The range of μΐ/min, the range of about 100 μΐ/min to about 200 μΐ/min, and the range of about 200 μΐ/min to about 4〇0 μΐ/min, so that the filtration flow rate can be about 3 μ1/ηιίη, about 10 Μΐ/min, about 30 μΐ/min, about 50 μΐ/min, 100 μΐ/min, about 200 μΐ/min, about 300 ΐ / min, about 400 μΐ / min, about 500 μΐ / min, or from about 600 μΐ / min. In various embodiments, the flow rate of the retentate or fluid (e.g., buffer solution) through the filter in the opposite direction relative to the filtration process to remove the organism retained at the filter can range from about 200 μΐ/min to about 1 Torr. The range of 〇μΐ/min, for example, in the range of about 200 μΐ/min to about 800 μΐ/min, or in the range of about 400 μΐ/min to about 800 μΐ/min, such that the reflux rate can be about 2 μμΐ/min. , about 400 μΐ/min, about 600 μΐ/min, about 800 pl/min, or about 1 000 μΐ/min. The flow rate of the rinsing rate or fluid (eg, buffer solution) through the first or second port to remove other non-specific organisms in various embodiments may range from about 15 μΐ/min to about 400 μΐ/ The range of min, for example, in the range of about 15 μΐ/min to about 300 μΐ/min, in the range of about 15 μ1/πιίη to about 2〇〇μΐ/min, in the range of about 50 μΙ/min to about 400 μΐ/miri, Approximately 29 201217781 ranges from 50 μΐ/min to about 300 μΐ/min, from about 100 μΐ/min to about 300 μl/ιηιη, or from about 1 μμΐ/min to about 200 μΐ/min. The rate can be about 15 μΐ/min, about 50 μΐ/min, about 1 μμΐ/min, about 200 μΐ/min, about 300 μΙ/min, or about 400 μΐ/min. In each embodiment, the 'target organism or specific organism can be cultured on the surface of the electrode array for a period of time ranging from about 5 minutes to about 6 minutes per hour, for example, from about 5 minutes to 40 minutes. , a range of about 5 minutes to 20 minutes, a range of about 5 minutes to 1 minute, a range of about 1 minute to 60 minutes, or a range of about 2 minutes to 6 minutes - so that the culture duration can be about 5 minutes , about 1 minute, about 2 minutes, about 30 minutes, about 40 minutes, about 50 minutes, or about 60 minutes. In various embodiments, a method for fabricating a microfluidic system to detect organisms in a sample volume is provided. The method can include providing a chamber configured to receive the sample volume, wherein the chamber can include a detection region to detect the organism; providing a first port in fluid communication with the chamber; Providing a second port in fluid communication with the chamber, the second port including a sheet, and wherein a fluid supplied to the first port or the second port is at the first port and the The chamber passes between the second ports. In various embodiments, 'providing a method for detecting an organism in a sample volume using a microfluidic system for detecting an organism in a sample volume, the microfluidic system comprising: a body configured to receive the sample volume a chamber, wherein the chamber can include a detection area to detect the living body; a first port in fluid communication with the cavity; and a second port in fluid communication with the chamber, the second The port includes a filter; and a fluid provided to the first or second port of 30 201217781 flows through the chamber between the first port and the second port. The method can include: providing the sample volume to the chamber; providing the fluid to the first port to pass the sample volume through the filter to retain the organism; removing the organism from the filter to the The detection area of the chamber; and detecting the organism. 1A through 1C are perspective views of a microfluidic system 100 in accordance with various embodiments. The microfluidic system 102 can be provided with or integrated with the microchip 104 to form an integrated microfluidic system 100 for preparing and detecting organisms in the sample volume, such as peripheral blood samples in a blood sample. Nuclear cells (PBMC). The microchip 1 〇4 can be a germanium microchip. The microfluidic system 102 can have a size of about 7 mm X 6 mm X 3 mm in various embodiments. In various embodiments, the microchip i 〇 4 may have about 1 melon X 1 mm X 0. Size of 75 mm. The microfluidic system 102 can include a pair of chambers 1A, 6a, 6b that are configured to receive a sample volume. The chambers 106a, 106b can be open chambers. In other words, in addition to other organisms, in particular the sample volume containing the organism to be detected is provided through the chambers 106a, 1bb to the microfluidic system 102 of the integrated microfluidic system 100. Each of the chambers 1〇6a, 1Ci6b may include individual debt measurement areas 1〇8a, 1〇8b (having individual capture surfaces) to detect organisms' the individual detection areas are located in individual chambers 1 〇 6a , 底部 6b at the bottom. In each embodiment, the detection regions 10a, 8b, 8b may include a microelectrode array (not shown). The surface may be a microelectrode array on the surface of the microelectrode array, wherein the detection regions 108a, 10b Capture face. The capture molecules can be set up and/or attached to capture the target organism for detection 31 201217781. The capture molecule can be specific to the target organism being detected. In various embodiments, each chamber 1 0 6 a, 1 0 6 b can be an open chamber. The microfluidic system 102 can further include a first port 1] and a second port 112, the first port 110 being connectable to the chambers 16a, 6b, such that the first port 110 can be coupled to the chamber 106a Each of the ports 6b is in fluid communication, and the second port 112 is connectable to the chambers 106a, 106b' such that the second port 112 is in fluid communication with each of the chambers 16a, 106b. The first port 110 and the second port 112 may be arranged substantially perpendicular to the capture surface of the detection regions 108a, 108b. In various embodiments, the microfluidic system 102 can further include a filter 114 disposed in the second port 112. The filter 114 can be integrated with the second port 112. Filter 114 can be a semipermeable membrane. In various embodiments, the filter 114 can be disposed horizontally in the second port 112 or, in other words, horizontally in the second port 112. The 'microchannels (not shown) may be arranged in various embodiments to couple the first port 11 0 to each of the chambers 1 〇 6a, j 06b. In various embodiments, a microchannel (not shown) may be provided to couple the second port U2 to each of the chambers 106a, 106b. In a further embodiment, more than one microchannel (such as two, three, or four microchannels) may be disposed to couple the first port 11 每一 to each of the chambers 〇6a, i 〇 6b, and More than one microchannel (such as two, three, or four microchannels) is provided to couple the second port 12'' to each of the chambers 16a, 6b, 6b. In each of the embodiments, the first port 11 〇, the chambers iOh'j 〇 6b, and the first port 112 are in fluid communication with each other such that the fluid supplied to the first port 110 32 201217781 or the first port 丨 12 is provided. (for example, a buffer solution) can be used in the first port and the second port. Between the 112 flows through the chambers l〇6a, l〇6b. According to this, the fluid supplied to the first port 110 can flow from the first port 110 to each of the chambers 16a, 106b, and through each of the chambers 1 to 1 to the second port 112. . Similarly, in the opposite direction, the body provided to the second port mountain may flow from the second port 112 to each of the chambers i〇6a, and through each of the chambers 106a, 1〇6b to the first port Ιι〇. In various embodiments, the integrated microfluidic system can further include a plurality of contact tips 116 formed therein or formed on the microchip. A plurality of contact pads 116 can be in electrical communication with the microelectrode array disposed in the detection regions 2 〇 8a, 〇 8b. A plurality of contact pads 116 are connectable to the microelectrode array through a plurality of electrical connectors (not shown). In various embodiments, the number of the plurality of contact pads 116 may correspond to the number of electrodes of the microelectrode array (not shown) at the detection area 1 〇 8 a, 1 〇 8 。. In various embodiments, the plurality of contact pads 116 can be made of gold, titanium, platinum, or other metal or conductive material. In the ic diagram, a metal hollow needle 118 is shown which is inserted into the second port ι 2 as an outlet. The metal hollow needle 118 is further connected to a tubing (not shown) to remove any sample. In various embodiments, the microfluidic system 1A can further include a removable magnetic element (not shown, such as a magnet) configured to provide or generate a magnetic field adjacent the detection regions 108a, 108b. The magnets can be positioned below the detection zones 108a, 108b. The generated magnetic field can assist in capturing magnetically labeled organisms at detection regions 108a, 108b. In various embodiments, the magnet can be a permanent magnet or an electromagnet. 33 201217781 In the embodiments, a third port or more ports may be provided in fluid communication with the chambers 106a, 106b to mitigate the filtration process by increasing the filtration area and fluid in and out. The third port or more ports may or may not have a pass. In a further embodiment, the filter 114 can be implemented in a vertical configuration at the second port 112, or in other words, vertically in the second port 112, which can affect the flow regime and provide certain advantages. In an alternative embodiment, only one chamber is provided. In a further embodiment, more than two chambers may be provided such that three, four, or five, or even more chambers may be provided. In various embodiments, the microfluidic system 102 can be made of polycarbonate, polyethylene, polymethacrylate (PMMA), or polybismethyl decane (pDMS). In a further embodiment, the microfluidic system 1〇2 can be made of metal, such as aluminum or stainless steel. The operation of the microfluidic system 1〇2 based on the detection of organisms using impedance measurements will now be described by way of example and not limitation. The microfluidic system 102 can be used to prepare and detect peripheral blood mononuclear cells (PBMC) in a blood sample. Preparing peripheral blood mononuclear cells (pBMc) may mean concentrating peripheral blood mononuclear cells (PBMC) or filtering or isolating peripheral blood mononuclear cells (PBMC) from other cells or organisms in the blood sample. Initially, a buffer solution can be provided directly to the chambers l〇6a, 106b prior to providing the blood sample. A buffer solution may be provided to fill the chamber "Μ, the entire volume of the cut, which may have a volume of about 4 μl. In an alternative embodiment, 34 201217781 may provide a buffer solution to fill half the volume of chambers 106a, 1〇6b Or fully provided to cover or overlay the microelectrode array. Impedance measurements can be taken as background signals for normalization purposes. The buffer solution in the chamber can then be removed. However, the chamber 1 is maintained. It is beneficial to dilute a volume of the buffer solution supplied to the chambers l6a, lG6b in a volume of 6a, 168b to relax the treatment at the detection area n 1 〇 8 b and reduce the satiety (4) # 红 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血 血A volume of buffer solution in chambers 1〇6a, 1〇6b can be removed'. The volume can be about 2μ1, which is half of the volume of chamber 1〇6a, 1〇讣. The blood sample can then be supplied to the chamber 1〇 ( 5&, 1 〇. At this stage, blood The sample may contain various organisms other than pBMc to be treated, such as red blood cells, white blood cells, and other cells. A filtering procedure may then be performed. The sample may be extracted through the second port]12 (the sample is diluted with a buffer solution of blood) Sample), which is achieved, for example, by means of a pump attached to the second port 112 to discard the sample through the filter and the second port 112. The overall volume of the sample can be removed, or the chamber 106a can be removed, A sample of a volume within 6〇, for example about 2, at this stage, the PBMC can remain in the filter 114 while the red blood cells can be removed and discarded. Since the second port 112 is generally available for passage of the sample through the filter 114 After the sample is output, the second port 112 can also be defined as an outlet or a discharge port. The filter program can be executed several times, for example, two times, three times, 35 201217781 or four times to maximize the retention of the PBMC. And (iv) W ΐ 4 removes other organisms such as red blood cells. Additional buffer solution is provided for the mouth η. (At this time, the second pass 2 is filled to fill the chambers 106a, 1 () 6b, and the internal sample is further diluted. Subsequently Further filtering is performed by extracting the sample through the second pass α 112. A volume of the sample in the chambers 106a, 106b can be removed by the filter ι 4 and the second port 112 and discarded. In each embodiment, A port can be generally used as an input tool for a buffer solution, and the first port can also be defined as an inlet or an inlet port. In various embodiments, the organism can exist in the detection area during the filtering process. On the capture surface of l〇8a, l〇8b, these regions are located at the bottom of the chambers l〇6a, 1〇6b. Therefore, culture and dielectrophoresis (as part of the detection scheme) can be implemented during the filtration process. To capture the PBMC on the detection areas 1〇8a, l〇8b. At the end of the filtration procedure, most white blood cells or pBMC may remain in the filter 114 while most of the red blood cells are removed and discarded. In order to recover the portion of the PBMC from the cells remaining in the filter 114 and to cause capture and detection of the PBMC, the buffer solution is provided through the second port 112 and the first port 1 10 is closed, thus reversing the detection of the liquid flow. (compared to liquid flow during the filtration process). In other words, the buffer solution flowing through the second port 112 is recirculated or reversed, thereby removing the cells from the filter 114 and transferring the cells to the chambers 106a, 1 〇 6b so that the cells can be transferred to the chamber 106a, The detection area of 106b is 1〇8a, 1〇8b. After the buffer solution is refluxed and the cells are transferred to the chambers a6a and 丨〇6b, culture and/or dielectrophoresis and rinsing (as part of the detection protocol) may be performed at 36 201217781 to detect regions 108a, 108b (eg, The cells are concentrated at the microelectrode array of the detection regions 108a, 108b. During the cleaning procedure, fluid can be flowed through the first port 11 〇 and/or the second port 112 to remove non-specific organisms that are not captured on the surface of the microelectrode array. Then, the detection of the PBMC at the detection areas i 〇 8a, i 〇 8b of the chambers 〇 6a, i 〇 6b can be performed. PBMC can be detected using a non-marking method such as impedance measurement. In each of the embodiments, the reflow procedure can be repeated after the PBMC is captured in the detection areas 108a and 8b to increase the recovery performance. In various embodiments, the reflow procedure can be performed for a third time or a fourth time, each time after capturing Pbmc at the detection regions 108a, 108b. Accordingly, in various embodiments, a fluid such as a buffer bath provided to the first port 11〇 may be provided to flow through the chamber 丨〇6a, 〇6b and the filter 丨丨4, so that the living body is filtered. 114 is retained, and a fluid such as a buffer solution provided to the second port 112 may be provided with a flow filter 114 such that the organism is removed from the filter 114 to the chambers 106a, 106b for attachment through the microelectrode array. Capture of capture molecules on the surface. In various embodiments, it is also possible to implement a sequential batch processing scheme that allows different volumes of blood samples to be processed sequentially. After processing the program, the PBMc captured on the array of the electrode electrodes can be detected. Figure 2 shows a flow chart 2A illustrating a method for fabricating a microfluidic system in accordance with various embodiments. At 202, a chamber is provided for receiving a sample volume, wherein the chamber 37 201217781 includes a detection area for detecting the organism β. • At 204, a first port in fluid communication with the chamber is provided. • providing a second port comprising a filter and in fluid communication with the chamber at 206'; and wherein the fluid supplied to the first port or the port of the flute is at the first port and the second port Flow through the chamber. Manufacturing and Experimental Materials The fabrication of the microfluidic systems of the various embodiments will now be described by way of example and not limitation. Microfluidic System Design Figures 3 through 3D show schematic views of a microfluidic system 102 in accordance with one embodiment. The microfluidic system 1〇2 can include a bottom germanium microchip 104 comprising a microelectrode array 3 (for unmarked cross-sectional measurement). The microfluidic system 102 also includes a microfluidic chamber 6a, L〇6b, first port 110 and second port m (having an integrated microfilter semi-permeable membrane 114). Each of the pair of microfluidic chambers i 〇 6a, 106b may have a volume of about 4 μΐ. Membrane filter 114 can have a pore size of about 3 μηη. The microelectrode array 300 can be formed on or in the germanium microchip 1 4 or integrated on the germanium microchip 104 to form a microelectrode array (me A ) • wafer. Thus, the detection area of the microfluidic system 102 can be integrated into the micro-fluid.  On the wafer 104. Figure 3A shows a schematic bottom view of a microfluidic system 102 in accordance with various embodiments, for the purpose of illustration, a 32 201217781 microchip 104 comprising a microelectrode array 300 is removed. Fig. 3B is a schematic cross-sectional view showing the microfluidic system 1〇2 taken along the line A A of Fig. 3A. As shown in FIG. 3B, the microfluidic system 102 can include a plastic chamber structure 302 with two tape layers (tape Iayer) 304 and a bottom tape layer. According to FIGS. 3A and 3B, the microelectrode array 3 can be set. Covering the portion of the microchip 1G4 - this portion corresponds to the chamber inspection, the secret and the bottom surface of the plastic chamber 3〇2, as shown by the dashed box 3〇8 in Figure 3a. In various embodiments, the plastic chamber structure 302 can be attached to the microchip 104 via the two layers of adhesive tape 3〇4 and the bottom kneeband. In various embodiments, the two center belt layers and the bottom belt layer 306 can be double sided tape layers. 3C and 3D respectively show schematic top views of the tape layers 3〇4 and 306 according to the respective embodiments. The centering tape layer has just included openings 31a, 310b, each corresponding to the first port and the second port 112. Centering tape layer 3 (Μ进_舟句红 „ Progress includes opening 312, so that 302 and chamber 106a, 1〇, version to,. The microchip 104 is referred to as a mouth. ...contacting the microelectrode array 3. . In each of the embodiments, the bottom tape layer 3〇6 includes openings Μ, ·, corresponding to the first port 11 〇 and the second one, the sentence mouth 112. The bottom tape layer 306 advancement includes an opening 316 such that the plastic chamber 106a' 1 Of\h hh ±.  The surface of the chamber 302 is in contact with the surface of the chamber. The microelectrode array 300 can be second-passed aa. The sheets, or in other words, vertically arranged in the second port, perform filtering and provide certain advantages. Figure 3E shows a microflow of a root-to-flow regime. The schematic view of the body system 3 1 8 has a vertically disposed filter 320 » in addition to the filter configuration, the 3E circle The embodiment is similar to the embodiment of Figure 3B, including the microfluidic component or part. In the embodiment of Figure 3B, the filter 114 is implemented in a horizontal configuration in the second port 丨丨2. In the embodiment of Fig. 3E, the filter 32 is implemented in a vertical configuration in the second port 322. Therefore, the filter 32 is disposed parallel to the wall of the second port 322. This configuration is relatively less prone to blockages caused by 32 〇 drops on the filter. It will be appreciated that the microfluidic system 3 18 having the vertically disposed filter 32 可以 can be implemented in any suitable design for the application. It should be understood in the various embodiments that any number of centering tape layers 3〇4 and bottom tape layers 306 can be provided. As is known in the art, surface chemistry methods can be performed to attach a linker such as thiol to the microelectrode array 300. The microfluidic system 1 〇 2 including the plastic chamber structure 302 can then be mounted to the Shixi microchip 1 〇4. A capture molecule (such as an antibody) for specific cell capture can be attached via EDAC/NHS ( 1 - (3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxy succinimide) coupled to a linker. The surface of the germanium microchip 1 〇4 not covered by the microelectrode array 300 can be deactivated by material, such as polyethylene glycol (PEG). Thus, there may be a coating layer comprising a linking agent, a capture molecule, and a repellency material. Subsequently, the microfluidic system 102 mounted on the microchip 1 〇 4 can be stored in the refrigerating compartment to preserve or maintain the functionality of the coating. A buffer solution can be provided in the microfluidic system 丨02 to protect the coating layer. In alternative embodiments, other storage means known in the art 40 201217781 may be used, such as dry, cold, or vacuum storage. The use of the repellency material on the surface of the device not covered by the microelectrode array 300 reduces the non-specific attachment of the organism and adds specific detection of the target organism, which is quite helpful when the number of target organisms is relatively small. The figure shows the technical diagram of the plastic chamber structure according to the embodiment. Figure 4 shows the top, bottom and cross-sectional views of the plastic chamber 3〇2, while the dimensions of the plastic chamber structure 3〇2 are mm—). Figure 5A shows a top view of a microchip 5 according to one embodiment, which may be provided in the microfluidic system of various embodiments. The microchip 500 can include a microelectrode array 502 and a plurality of electrical interconnects, such as 5〇4a, 5〇4b 504c, 504d, 504e' for connection to a plurality of contact pads 5〇6. A plurality of contact pads 506 can be coupled to a printed circuit board (pcB) for electrically controlling the microelectrode array 502 and processing. The microchip 5 can be a germanium microchip. The use of PCB-based signal processing reduces the processing and detection time of the organism to less than one hour, which allows the microfluidic system of each embodiment to be used in the focus care detection (p〇C) setting. For diagnosis and surveillance of acute and chronic diseases such as heart disease and progression of atherosclerosis. Fig. 5B shows a top view of the microelectrode array 5〇2 according to one embodiment provided on the microchip 500 of Fig. 5A. As shown in Fig. 5E; the microelectrode array 502 includes 24 pairs of electrodes arranged in a 4x6 array. The number of 'multiple contact pads 506' in each embodiment may correspond to the number of electrode pairs. In various embodiments, each pair of electrodes can be identified by each of its column numbers (as indicated on the left side of Figure 5B) and each row number (as indicated by the 201217781 indicator at the top of Figure 5B). The pair of 24 pairs of electrode wipes can have internal electrodes (for example, 5_, 5_, 508 (;, 5〇8〇 and external electrodes (for example, 5 hearts, ·, 51〇c, 51〇d) Each of the embodiments t, such as 鸠, 卜, 5, the inner electrode of the side may be a working electrode and is r-shaped, and the electrodes may be A, for example, 5 〇 a, 5 j 〇 b, 510c, 510d |+ kg is a reference electrode and is shaped like a horseshoe that substantially surrounds the inner electrodes (eg, 508a, 5〇8b, MSb, 508c, 5〇8d). External electrodes (eg 51〇a, 510b, 51〇uuc, 51) 〇d) may be short-circuited or electrically connected to each other to act together as a tape n to collect the electrodes with horses, while providing a relatively large surface area to increase sensitivity, while internal electrodes (eg, 508a, 508b, 508c, 5〇) 8d) may be individually controlled 'for relatively highly sensitive impedance measurements, or - shorted or in electrical communication with each other to act as a collecting electrode to generate a spatially non-uniform electric field to induce dielectrophoresis (DEp), thus Causing dielectrophoretic force. Figure 6A shows a simulated plot 600 of a non-uniform electric field generated by a microelectrode array according to various embodiments. The non-uniform electric field causes a dielectrophoretic field. As shown in Fig. 6A, the generated electric field has a minimum value of the electric field occurring at the inner electrode of the inner electrode, which can guide and concentrate the target cell when used for negative dielectrophoresis (DEp). The center of the inner electrode is for impedance measurement. Fig. 6B shows an optical microscope image 602 of a microelectrode array with cells according to various embodiments, the peak-to-peak amplitude of the applied electronic signal is about 1. 5V, and the frequency is about 1MHz. Fig. 6B shows that a plurality of cells 604 due to negative DEp are concentrated in the center of the inner electrodes 6〇6 of the microelectrode array 6〇2. Referring to Figure 5, in various embodiments, the inner electrode 42 201217781 of the first column of electrode pairs can connect a plurality of contact pads 5 〇 6 through interconnects 504a, 504e. The inner electrodes of the second and third columns of the electrode pair may be connected to a plurality of contact pads 506 through interconnections 504b, 504d. The inner electrodes of the fourth column of electrode pairs can be connected to a plurality of contact ports 506 via interconnects 504c. The outer electrodes (which are shorted and in electrical communication with one another) can connect a plurality of contact pads 506 through interconnects 504b, 504d. In various embodiments, surface chemistry can be performed to functionalize the microelectrode array 502 with a linker such as a thiol. Internal electrodes (eg, 508a, 508b, 508c, 508d) and external electrodes (eg, 51〇a, 51〇b, 51〇c, 51〇d). Capture molecules (such as antibodies) for specific cell capture can be attached via EDAC/NHS coupled to a linker. The surface of the ruthenium microchip 104 (which may be ruthenium oxide) that is not covered by the microelectrode array 3 can be cell passivated, such as polyethylene glycol (PEG). Embodiments will now be described by way of the following illustrative but non-limiting examples.

Jurkat細胞過據 為了助於發展及測試各實施例的微流體系統,使用培 養的細胞(諸如T淋巴細胞的jurkat細胞)之樣本溶液, 其具有與PBMC在血液中相同的濃度(即約6 X 1〇6 cells/ml (每毫升細胞數)),且體積足以飽和偵測區域, 例如約2 μΐ中有約ι2〇〇〇個細胞。 使用先前描述的各實施例之流程將該等細胞提供至各 實施例的微流體系統,並且以不同流率過濾並且以不同 43 201217781 流率倒沖(backflush)或回流。細胞隨後以DEP培養,以 建立微電極陣列的表面覆蓋。第7A圖至第7C圖顯示根 據各實施例具有細胞的微電極陣列之光學顯微鏡影像。 光學顯微鏡影像是透過Olympus BX51 Upright High Power Microscope 而得。 第7A圖顯示以約400 μΐ/min的流率(即過據流率) 過濾並且以DEP培養約5分鐘後於微電極陣列702上的 細胞700之光學顯微鏡影像。第7B圖顯示後續以約800 μΐ/min的流率(即回流流率)回流並且以DEP培養約5 分鐘後於微電極陣列702上的細胞704之光學顯微鏡影 像。第7C圖顯示以約800 μΐ/min的流率回流並且以DEP 培養約16分鐘後於微電極陣列702上的細胞706之光學 顯微鏡影像。 如從第7A圖可見,過濾程序後,細胞700存在於微電 極陣列702的表面上,其意味並非所有細胞朝半透膜濾 片移動並且通過半透膜濾片,而因此可在具DEP之培養 期間沈降。各實施例中’可執行多道過濾程序,以使樣 本(可為血液樣本)朝半透膜濾片流動。 此外,透過使用螢光染劑(例如Invitrogen的Calcein AM )亦將細胞於濾片膜上著染而確定回流效能,該染劑 著染活細胞並且產生綠色螢光。第7D圖與第7E圖各別 顯示根據各實施例之留在半透膜濾片710處的細胞708 之螢光顯微鏡影像以及過濾後在廢棄物中的細胞712。 螢光顯微鏡影像是透過具FITC (螢光異硫氰酸鹽)濾片 44 201217781 的 Olympus BX61 Upright Fluorescent Microscope 而得。 留在半透膜濾片的細胞708估計數量為約20 1個細胞。 應瞭解亦可執行其他習知方法以建立死細胞數及通過 濾片的細胞數。 留在膜濾片上的細胞數(約2〇〇個細胞)相對上為大 罝,並且可能影響稀少細胞的偵測,稀有細胞可能以相 對低的數罝呈現,例如丨〇個細胞以下。此外,如第7Β 圖與第7C圖所示,回流後,細胞7〇4、7〇6可受回流速 率影響且可在微電極陣列7〇2的一側上培養,而非實質 上均勻地於微電極陣列7〇2之表面上培養。 第8Α圖顯示無DEP培養且以約2〇〇 μ1/ιηίη的流率過 濾後於微電極陣列8〇〇上的細胞之光學顯微鏡影像。第 8Β圖顯示後續以約600 μ1/ιηίη的流率回流並且以 培養約10分鐘後於微電極陣列8〇0表面上的細胞之光學 員微鏡影像。第8C圖顯示第8B圖的特寫剖面視圖,指 示相對大量的細胞存在於微電極陣列8〇〇上,其可能影 響用於各貫施例之微流體系統的特異性細胞之偵測效 能。 因此,各實施例中,可不需提供過濾流率與回流速率, 使得在微電極陣列上可提供實質上最適層級的細胞數目 以供偵測。 第9圖顯示根據各實施例的樣本準備效能之圖表 900。圖表900是基於由血液樣本準備與過濾pBMc而 侍,且以相對回流速率9〇4的濾片上細胞數(以12〇〇〇 45 201217781 個細胞輸入之百分比)902。根據各實施例,濾片上的細 胞數是指過濾與回流處理後’留在濾片上的細胞數目。 圓資料點(以906所代表)是以流率約2〇〇 pi/min之 過濾程序而獲得,而方資料點(以908所代表)是以流 率約400 μΐ/min之過濾程序而獲得。 第1 0A圖顯示約200 μΐ/min之流率過渡及以dep培養 約5分鐘後微電極陣列1002表面上的PBMC 1000之光 學顯微鏡圖。第10B圖顯示約600 μΐ/min之流率回流及 以DEP培養約10分鐘後微電極陣列1 〇〇6表面上的 PBMC 10 04之光學顯微鏡圖。 如第10B圖所示,回流後的細胞1 〇〇4實質上均勻地在 微電極陣列1006的表面上培養。 摻雜ik液的準備 將約750個CD34細胞(或内皮前驅細胞,EPC)摻雜 於約1 μΐ的血液中,並且將CD34細胞提供至各實施例 的微流體系統’而根據先前所述的各實施例之流程處 理。此外,亦準備純血樣本,並且根據先前所述之各實 施例處理之。使用負介電泳(DEP )、特異性抗體辨認、 以及沖洗非特異性細胞的微流體法,將CD34 +細胞特異 性式捕獲於微電極陣列上。 第11Α圖顯示純化PbmC後具有來自純血樣本的 PBMC的微電極陣列之光學顯微鏡影像,該純化涉及以 約50 μΐ/min的流率過渡約2分鐘與以約600 μΙ/min之流 46 201217781 率執订一-人回机(_ PBMc傳送進入開放腔室),而第 11B圖顯不以、、勺5〇 μι/ηιίη的流率執行約2分鐘的進一步 冲洗程序彳i與第丨丨Α圖相同的微電極陣列之光學顯微 鏡影像。 第11C圖顯示具有爽白扶 h 、力木目穋雜血液樣本的細胞之微電極 陣列的光學顯微鏡影德,与r 1、六β丄 兄办像’該血液樣本經約50 μ1/ιηίη的流 率過濾、約2分鐘與以的6 Λ η丨/ . X 4 600 pl/min之流率執行二次回流 (將細胞傳送進入開始肿它、 Ί敌L至)’而第11D圓顯示以約5 0 μ/min的流率執行約2分鐘的進—步沖洗程序後,與第 11C圖相同的微電極陣列之光學顯微鏡影像。 雖回抓知序後相對大量的細胞存在(第i i Α圖與第i⑴ 圖)在冲洗私序後,多數細胞移除,而留下cD34+細胞 於微電極陣列表面上。 在約1μ1血液中摻雜的CD34-細胞與CD34 +細 胞的分別的樣本接你_ 5久# > v , ‘ 杈仏至各Λ細例的微流體系統,並且根 據前述的各實施例程序處理之。使用貞猜與用於 CD34 +細胞的特異性捕獲分子執行細胞捕獲。 第以圖與第12Β圖顯示具有含cd34_細胞的樣本、 於以約400 μι/ηιίη之流率執 Λ仃J 2分鐘的沖洗程序前後 之微電極陣列1200的光學顯料锫家你他 一 J兀*予硝微鏡影像。第12C圖與第 12D圖顯示具有含CD34 匕的樣本、於以約400 μΐ/min 之級率執行約2分鐘的沖洗程序前德 β别俊之铽電極陣列1202 的光學顯微鏡影像。 如第12Α圖與第12C圖所示 T ’无私序对,相對大量 47 201217781 的細胞出現在微電極陣列1 200、1 202上《沖洗程序後, 包括CD34-細胞的多數細胞從微電極陣列ι2〇〇沖離(如 第12B圖所示),而CD34 +細胞留在微電極陣列12〇2上 (如第12D圖所示)’這是由於透過微電極陣列12〇〇、 1202的捕獲分子對CD34 +細胞的特異性捕獲之故。 摻雜的血液,具有整合的阻抗偵測 使用上文所述各實施例用於準備與處理摻雜的血液樣 本的流程’可執行阻抗測量或阻抗光譜法,以偵測捕獲 於微電極陣列上的細胞。細胞受批次操作模式中的阻抗 光譜法偵測,其能夠偵測相對少量的細胞(<1〇〇〇個細 胞)’具相對上比臨床顯著的截除(cut_〇ff)iiL液中約0.5% EPC 更佳的敏感度(Hill j.m.、「Circulating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk」’ N· Engl. J, Med. ’ 2003,348(7),593 )。 第13A圖顯示根據各實施例用於測量阻抗的系統 1300。系統13〇〇可為整合式Pcb為基礎之電子系統, 用於同時基於微流體系統13〇4之微電極陣列的24對電 極偵測及測量阻抗。系統13〇〇包括pCB為基礎的測量 系統1302 ’其包括對應24對電極的24個通道^ PCB為 基礎之測量系統1 302可連接到電腦並且使用例如 Labview之軟體控制之。 系統1300進—步包括泵1308a、1308b,各別耦接微 流體系統1304的第一通口與第二通口。泵n〇8a、13〇扑 48 201217781 用於供應緩衝溶液到微流體系統丨304,並且沿流體的微 通道與微流體系統1 304的腔室移動緩衝溶液。 第13B圖顯示概略圖,其說明第13A圖實施例的PCB 為基礎之互連。PCB為基礎的測量系統1302透過電互連 1310連接到(fpga)板1306 〇(FPGA)板1306可包括連接 器1312 ’其適於與Pcb卡(子卡)1316的連接器1314 配合。PCB卡1316進一步包括連接器1318,用於連接 微流體系統1 304的微電極陣列(第1 3 A圖)。 對於偵測目標生物體或細胞(例如CD34細胞)而言, 最初在存在緩衝溶液但缺乏生物體或細胞的情況下記錄 阻抗測量,以測量背景值。接著,根據各實施例之過濾、 回流與沖洗程序後,多數樣本中的生物體移除,留下目 標細胞在微電極陣列的表面上。隨後記錄阻抗測量,阻 抗中的改變於微電極陣列的所有電極上加總。 第13C圖顯示阻抗測量的圖表U2〇,其pBS溶液含有 用於第13A圖實施例的系統之通道的細胞。為了比較, 亦顯示根據習知設置的系統的阻抗測量之圆表1322。圖 表1320、1322顯示用於通道的不同系統之相對良好的相 關性。以1324表示的虛線指示阻抗改變或敏感度最高的 頻率。 第14圖顯示根據各實施例用於一些樣本的阻抗測量 圖表1400。圖表1400是按照阻抗的改變百分比“”對 頻率(以對數刻度)1404顯示。 第14圖顯示無細胞的磷酸鹽緩衝鹽水(pBs)緩衝溶 49 201217781 液之結果(如方資料點1406所代表)、無細胞以pBs預 清洗後之結果(如圓資料點i彻所代表)以及根據各實 施例之沖洗方案後具細胞之樣本的結果(如以三角形資 料點1410所代表)。資料點14〇6、工彻上觀察到的阻抗 的改變百分比刚為低度,因僅存在PBs而無細胞添 加’故做為背景測量。 第14圖顯示細胞特異性地附著在電極上,造成阻抗實 部增加,峰1412為在約380 kHz(按照對數刻度的頻率, 對應到大約5.58的值)。峰1412的頻率指示對該等細胞 而言觀察到的最高敏感度的頻率’因而做為測量期間應 用於偵測該等細胞的頻率之基礎。 第15圖顯示根據各實施例的用於一些樣本之阻抗測 量的圖表1500。圖表1500是在化與特異性 細胞捕獲後獲得,且按照阻抗改變丨5〇2對樣本中摻雜的 CD34細胞的百分比15〇4而顯示。圖表15〇〇是基於在約 380 kHz的頻率執行阻抗測量或光譜法而獲得。用於該樣 本的偵測時間大約每批次處理約20分鐘。 第1 5圖顯示負控制15 〇 6的樣本之結果,其為體積約 4 μΐ的PBS緩衝溶液,無細胞。用於負控制ι5〇6的測 量指示相對應緩衝溶液的背景訊號,且此測量結果從其 他具細胞之樣本的測量結果移除,使得測量結果代表各 樣本中細胞所誘導的改變’而排除緩衝溶汶的效應。 第15圖進一步顯示以下結果:約1 μ1血液中摻雜約 20%的CD34(或EPC)之樣本1508、PBS緩衝溶液中播雜 50 201217781 約330/〇的CD34細胞之約4 μΐ樣本151〇 ( pBs中約每毫 升99萬個CD34細胞)、PBS緩衝溶液中摻雜約8〇%的 CD34細胞之約4 μΐ之樣本1S12 (PBS中約每毫升24〇 萬個CD34細胞)、以及PBS緩衝溶液中摻雜約1〇〇%的 CD34細胞之約4 μ1之樣本1514 (PBS中約每毫升34〇 萬個CD34細胞)。第15圖顯示觀察到的訊號和樣本中 出現的細胞數相關。 第16圖顯示根據各實施例之一些樣本的阻抗測量圖 表1 600。圖表1 6〇〇是在細胞純化與特異性細胞捕獲之 後獲得,且按照22對電極之總阻抗改變(% )丨6〇2對樣 本類型1604而顯示。圖表1600是基於在約3 80 kHz之 頻率下執行的阻抗測量或光譜法而獲得。用於樣本的偵 測時間為每批次處理大約20分鐘。 第16圖顯示以下結果:無細胞的約4 μΐ的PBS緩衝 溶液樣本1606、Jurkat細胞的純樣本1 608 ( Jurkat細胞 為每毫升300萬個細胞,約4 μΐ)、具約1% CD34 +細胞 的樣本1610 (約4 μΐ的樣本,取自約5 μΐ的CD34+細胞 (每毫升11.3萬個細胞)以及約10 μΐ的jurlcat細胞(每毫 升444萬個細胞)之混合物)、具約5%的CD34 +細胞的樣 本U12 (約4 μΐ的樣本,取自約5 μΐ的CD34 +細胞(每 毫升56.3萬個細胞)以及約1〇 μΐ的jurkat細胞(每毫升 422萬個細胞)的混合物)以及CD34 +細胞的純樣本1614 (CD34 +細胞為每毫升300個細胞,4 μΐ)。 第17圖顯示根據各實施例的用於批次處理一些樣本 51 201217781 之阻抗測量的圖表1 700。圖表1 700是在細胞純化與特 異性細胞捕獲之後獲得,且按照22對電極之總阻抗改變 (%) 1702對樣本類型1704而顯示。圖表1700是基於 在約3 80 kHz之頻率下執行的阻抗測量或光譜法而獲得。 第17圖顯示約24000個PBMC細胞的樣本1706a的結 果(批次1 )以及摻雜約240個CD34 +細胞的約24000 個PBMC細胞的樣本1708a之結果(批次1)。第17圖 進一步顯示,當後續約24000個PBMC細胞或以約240 個CD34 +細胞批次樣本摻雜的約24000個PBMC細胞之 樣本相對應地提供至批次1樣本時,總阻抗改變增加, 如約24000個PBMC細胞的樣本1706b (批次2 )與以約 240個CD34 +細胞摻雜的約24000個PBMC細胞之樣本 1708b (批次2 )所示。第三批次處理的結果顯示為約 24000個PBMC細胞的樣本1706c (批次3 )與以約240 個CD34 +細胞摻雜的約24000個PBMC細胞之樣本1708c (批次3 )。第17圖顯示可偵測到PBMC溶液中摻雜的 約720個CD34 +細胞。用於該三批次的偵測時間大約90 分鐘。對於第17圖而言,約24000個PBMC細胞之每一 樣本含有約4 μΐ的 6000000 cells/ml (每薨升細胞數) 之PBMC,而以約 240個CD34 +細胞摻雜的約24000 PBMC細胞之每一樣本含有約4 μΐ的樣本,該樣本取自 約5 μΐ的CD3 4 +細胞(每毫升11.3萬個細胞)及約10 μΐ 的PBMC細胞(每毫升888萬個細胞)。 52 201217781 選擇性細胞溶化與彳貞測 製備尺寸1 μιη且以抗CD34之抗體預先塗佈的磁珠, 並且以適當的濃度在溶化緩衝溶液中稀釋。該製備的具 磁珠之溶化緩衝溶液體積約4 μ1,含有最終濃度,其為 約 150 mM 的 NH4C1、1〇 mM 的 NaHC〇3、〇」福的 edta 與約2000個磁珠,其比例為每i個細胞2個磁珠,適用 於 50-1000 個 CD34 +細胞。 血液樣本隨後與溶化緩衝溶液混合,以形成具有溶化 緩衝各液.血液之體積比為4:1的混合物,且隨後製備 約10 μΐ的混合溶液。混合物培養約丨〇分鐘。各實施例 中’混合物溶液可製備於約5_1〇〇μ1的範圍内。 微流體系統(例如第1 Α圖中的實施例)隨後用於過濾 與偵測。以約30 μΐ/min之流率提供約又分鐘的pBS緩 衝溶液執行微流體系統之腔室的預裝載與起始。 腔室隨後維持以PBS溶液半填滿。所製備的1〇 μ1混 合物溶液中的大約5 μΐ直接裝載進腔室或通過入口通 口。隨後執行根據各實施例的過濾與回流程序。 過濾流率約3 μΐ/min的PBS溶液透過入口通口(即第 —通口)提供約6分鐘以移除非目標的生物體或細胞, 諸如RBC。在過濾程序的終端,腔室維持半填滿並且保 持停滯約5分鐘。過隸,多數Epc留在^,同時多 數紅血球細胞與其他細胞移除以透過出口通口(即第二 通口)廢棄。 為了回復留在濾片的EPC並且能夠捕獲及偵測Epc, 53 201217781 在回流程序中透過出口通口提供pBS溶液,以推出遽片 . 上的細胞’因而從渡片移出細胞,並且將細胞傳送到腔 , 室或腔室的須測區域。以約600 μ1/πιίη的回流速率提供 PBS溶液通過出口通口直到腔室完全填滿為止。 透過以約3μ1/ηιίη的過據流率將pBS溶液流過入口通 、勺2刀|里而重複過渡程序。在過滤程序的終端,腔室 維持半填滿。 透過以約6〇〇μ1/ΐΠίη的回流流率將PBS溶液流過出口 通口直到腔室完全填滿為止而重複過濾程序。 應瞭解,可執行過滤程序任何次數,以最大化Epc的 留駐並且透過滤片移除其他生物體,而可執行回流程序 任何次數以增加回復效能。 具有EPC的樣本隨後在腔室培養約15分鐘。 EPC可在腔室的债測區域中、微電極陣列上被基於抗 體抗原辨識的特異性細胞捕獲法所捕獲。為了增強EPC 於微電極陣列上的捕捉效能,將可移動式排列的磁鐵(設 以提供或生成磁場)設於微電極陣列附近。該所生成的 磁場可幫助微電極陣列上捕捉已磁性標記的Epc。 磁鐵隨後移除,並且以約i 5 μ i / m i n的沖洗速率執行沖 洗程序約3分鐘’其透過使pBS溶液流過出口通口進入 腔室並且從入口通口排出而達成。 接著’可使用根據各實施例的阻抗測量法執行Epc的 備測。 第18圖顯示概略剖面視圖,其說明根據各實施例之内 54 201217781 皮前驅細胞(EPC) 1800的選擇性捕獲。Epc 18〇〇的選 擇性捕獲是透過以CD34抗體(例如18〇4)結合Epc 18〇〇 上的CD34抗原(例如1802)而發生,該CD34抗體沉 積或塗佈在金(Au)電極1 806上^ Epc進一步與抗體連 接的磁珠(例如18〇8 )耦接。如第丄8圖所示,金電極 1 806與微晶片! 8 i 〇設置或整合。微晶片j 8 i 〇可為 Si/Si〇2微晶片。微晶片181〇不受電極18〇6覆蓋的其餘 部份可以除拒材料1 8 12 (例如聚乙二醇(Peg))鈍化。 微流體系統設有可移動式排列的磁鐵丨8丨4 (例如永久磁 鐵),其位於電極1806附近以助選擇性磁性捕捉 EPC 1800。如第18圖所示’白血球不會被α)34抗體1804 捕捉。 相較於非磁性的捕捉方式,使用免疫磁力可增強平均 EPC捕捉效能約80%-1〇〇%。進一步言之,捕捉力可以近 場流(near-field flow)及/或震盪流而增強。各實施例中, 近場流是指樣本的流動使得磁性標記的細胞可盡可能提 供至位在微電極陣列附近的磁鐵,而得以增強對磁性標 記的細胞的捕捉。此舉可例如透過降低開放腔室的高度 達成。各貫施例中’震盪流是指重複地樣本流動,或往 復通過微電極陣列或偵測區域,例如透過瓮複執行各實 施例之過濾與回流程序’以增強磁性標記的細胞被捕捉 於微電極陣列上的或然率。 此述的實施例可用於多重指標分離。例如,第一抗體 可耦接目標細胞並且提供用於磁性捕捉,同時對目標細 55 201217781 胞具特異性的第二抗體可於電極表面上功能化。移除其 他非目標的細胞後(例如沖洗程序後)’僅有與第一和第 二抗體耦接的特異性細胞會留在電極上。各實施例中, 多重標記分離可基於不同標記CD34與CI) 133而執行。 溶化緩衝溶液中NHWl對RBC與CD34+細胞的效應受 到檢驗。平均約每毫升220萬個細胞的CD34+細胞與溶 化緩衝溶液混合,並且培養約丨〇、2〇、或3〇分鐘,或 無培養。在PBS溶液中培養的CD34 +細胞用為控制測 量。培養後,將CD34 +細胞稀釋,並且使用血球計數器 計數。第19圖顯示細胞計數的圖表19〇〇,並且按照細 胞數1902對培養時間19〇4顯示。第! 9 _顯示對於丄〇 分鐘與20分鐘的培養時間而言,觀察到溶化缓衝溶液中 無實質上的CD34+細胞損失。然而,當培養時間為3〇 分鐘實,CD34+的細胞存活率大約下跌5〇%,其指示較 佳的以溶化緩衝溶液培養的時間為2〇分鐘。在個別的測 量中(未顯示結果)’具有RBC的全血樣本以溶化緩衝 溶液培養約1 0分鐘,結果顯示大約9 9.9 %的RB C被溶 .化。 透過施加約3000個磁珠至一範圍的血液中的摻雜 CD34 +細胞(大約1000、2000、及3〇〇〇個細胞)而執行 比較性測量,以確定相較於相對應數目的無磁珠之 CD34+細胞’使用磁珠的免疫磁性分離法在捕獲效能上 的改善。第20A圖顯示細胞技術的圖表2〇〇〇 ,且其按照 EPC在電極上的數目2002對血液樣本中摻雜的epc 56 201217781 20〇4顯示。該結果顯示根據免疫磁性法被捕獲的CD34 + 細胞數目增加,而相較於無磁性標記的CD34 +細胞,平 均捕捉效能改善約800/0-1〇〇〇/。。第20B圖(左邊影像) 顯示微電極陣列的光學顯微鏡影像2〇〇6,其EPC無磁性 & s己;而第2〇B圖(右邊影像)顯示微電極陣列的光學 顯微鏡影像2008 ’其EPC受磁性標記。第20B圖顯示微 電極陣列上捕捉了實質上更高數目的磁性標記Epc。亦 然,可觀察到,EPC主要是在金微電極區域被捕捉,而 非微晶片表面,因而暗示對於後續阻抗測量而言,極少 訊號損失。 第21圖顯示清洗程序前後電極上細胞計數之圖表 2100 ’且按照電極上的EPC 2102對培養時間2丨〇4顯示。 培養時間2104是指提供用於將磁珠附接到Epc的時 間。大約2000個磁珠施加到血液中摻雜的CD34 +細胞, 而血液樣本隨後提供到各實施例的微流體系統以供處 理。可移動式排列的磁鐵用於幫助於電極上(例如微電 極陣列)捕捉CD34 +細胞,而隨後磁珠於清洗前移除。 該結果顯示許多磁性標記的EPC可透過清洗程序洗離。 該結果亦指出,就培養時間為10分鐘與2〇分鐘而古, 微電極上EPC的駐留時間(即’留在微電極陣列上的細 胞數)差異極微’其指出約10分鐘的培養時間即足夠。 透過施加約2000個磁珠至一範圍的血液中的摻雜 CD34 +細胞(大約簡、·、及3〇〇〇個細胞)而執行 比較性測量,以獲得移除磁鐵後與最終清洗後磁性標乂己 57 201217781 之CD34+細胞的留駐率(相較於相應數目的無磁珠的 CD34 +細胞)。表1顯示具磁珠之Epc及無磁珠之Epc 在不同濃度下於微電極陣列上EPC的留駐率。該結果顯 示,無磁珠的情況下,50%左右的CD34+細胞在最終清 洗步驟期間被洗離。然而,在有磁珠的情況下,當細胞 對磁珠比分別為1:1與1:2時,各別的留駐率改善到大約 72.1 /〇與8 0.8 /〇。5亥結果指出,對於範圍在個 細胞(基於20 μΐ血液中約0·1〇/〇_1%的pBMc)的cd34 + 細胞之濃度而言,較佳的磁珠數目是2〇〇〇個磁珠。 表1: EPC的留駐率 留駐率 EPC數目 無磁珠 有磁珠 1000 57.3% 80.8% 2000 57.6% 72.1% 3000 50.7% 50.3% 執行全範圍特徵化,以確定各實施例的偵測極限。約 5〇-i〇〇(m固血液中摻雜& CD34+細胞使用各實施例的程 序培養與過濾,而最終細胞數是透過使用顯微鏡在金電 極區域上計數CD34+細胞而檢驗。第22a固顯示過濾與 捕捉效能的圖表2200’且按照電極上捕獲的細胞數22〇2 對輸入細胞計數22〇4顯示,而第22B顯示第Μ圖的 過渡與捕捉效能的結果之線性圖表與線性擬合。顯示於 /、第22B的結果指出,偵測極限可為約^ 個摻 58 201217781 雜的CD34 +細胞(大約ο」%的pbmc),其與全範圍的 捕捉效能有良好的線性關係(〆=〇96)。捕捉效能為約 15_20°/〇 (例如可捕捉每1〇〇〇個輸入細胞中的约150-200 個細胞) 亦執行比較性測量’以獲得磁性標記的CD34 +細胞用 於多批次處理的捕捉效能(相較於相對應數目的無磁珠 的CD34+細胞)。表2顯示不同批次有磁珠的Epc及無 磁珠的.EPC在微電極陣列上的Epc捕捉效能。對測量而 言,每一批EPC含有約1000個EPC。該結果顯示,對 第一批1000個EPC執行根據各實施例之過濾程序後, 對於無磁珠的EPC而言,1〇〇〇個細胞中有62個細胞被 捕捉於微電極陣列上,而對有磁珠的Epc而言,丨53個 細胞被捕捉。接著,添加第二批的約1〇〇〇個Epc,之後 是過濾程序。該結果顯示,無磁珠的Epc與有磁珠的Epc 各被捕捉到68個£1>〇與214個Epc。添加第三批的約 1000個EPC,之後是過濾程序。該結果顯示,無磁珠的 EPC與有磁珠的EPC各被捕捉到71個與個 EPO涉及三個批次、總計約3〇〇〇個Ερ(:的過濾程序後, 執订根據各實施例的回流程序,以將濾片上所留駐的 EPC傳送到微電極陣列。該結果顯示,無磁珠的Epc與 有磁珠的EPC各被捕捉到78個Epc與35:;個Epc。 有磁珠 表2:多批次處理 EPC數目 無磁珠 59 201217781 第一次 62 153 第二次 68 214 第三次 71 310 回流 78 355 第23A圖至第23D圖顯示純化後具cd34細胞的微電 極陣列的光學顯微鏡影像。各實施例之具溶化緩衝溶液 的最初樣本含有約1000個CD34細胞、2〇〇〇個磁珠與 3500個RBC於約5 μ1的體積中。CD34的純化與提取涉 及以約3 μ1/ηύη之流率過濾約6分鐘以及培養約5分 鐘。隨後執行兩次回流製程,其流率為約6〇〇 μ1/ιηίη, 將EPC傳送到開放腔室,並且之後培養約丨5分鐘。接 著以流率約15 μΐ/min執行清洗程序約3分鐘。第23八 圖與第23Β圖顯示清洗程序前具CD34細胞的微電極陣 列的光學顯微鏡影像’而第23C圖與第23D圖顯示清洗 程序後具CD34細胞的微電極陣列的光學顯微鏡影像。 雖已特別顯示本發明並且參考特定實施例描述本發 明’熟習此技藝者應暸解,在此可製做各種形式與細節 上的改變但不背離由隨後的申請專利範圍所界定的本發 明之精神與範疇。本發明的範疇因此是由隨後的申請專 利範圍所指定,因此申請人希望涵蓋所有在該意義内的 改變與申請專利範圍的等效範圍。 60 201217781 【圖式簡單說明】 在該等圖式中’類似的元件符號大體上指通篇不同的 視圖中的相同部件。該等圖式不需按照比例尺,相反地, 為說明本發明之原理而大體上可誇張化。在說明書中, 本發明各實施例是參考隨後的圖式而描述,其中: 第1A圖至第1C圖顯示根據各實施例之微流體系統的 透視圖。 第2圖顯示流程圖,其說明根據各實施例之用於製造 微流體糸統的方法。 第3A圖至第3D圖顯示根據一個實施例的微流體系統 之概略視圖。 第3E圖顯示根據一個實施例的微流體系統之概略側 視圖。 第4圖顯示根據一個實施例的微流體系統之技術圖 式。在第4圖中的尺度為毫米(mm)。 第5A圖顯示根據一個實施例的微晶片顶視圖。 第5B圖顯示根據一個實施例的微電極陣列之頂視 圖’其設於第5A圖的實施例之微晶片上。 第6A圖顯示根據各實施例由微電極陣列生成的非均 勻電場的模擬繪圖。 第6B圖顯示根據各實施例之具有細胞的微電極陣列 的光學顯微鏡影像。 第7八圖至第7C圖顯示根料實施例具有細胞的微電 201217781 極陣列之光學顯微鏡影像。 . 第7D圖和第7E圖個別顯+ 4« ^ . 乃』顯不根據各實施例在膜濾片與 • 廢棄物中細胞的螢光顯微鏡影像。Jurkat cells were used to aid in the development and testing of the microfluidic systems of the various examples, using a sample solution of cultured cells (such as Jurkat cells of T lymphocytes) having the same concentration as PBMC in the blood (ie, about 6 X). 1 〇 6 cells/ml (cells per ml)), and the volume is sufficient to saturate the detection area, for example, about 2 ΐ cells in about 2 μΐ. The cells were provided to the microfluidic systems of the various examples using the procedures of the various embodiments previously described and filtered at different flow rates and backflushed or refluxed at different flow rates of 43 201217781. The cells are then cultured in DEP to establish surface coverage of the microelectrode array. Figures 7A through 7C show optical microscopy images of microelectrode arrays with cells according to various embodiments. Optical microscope images are obtained through the Olympus BX51 Upright High Power Microscope. Figure 7A shows an optical microscopy image of cells 700 on a microelectrode array 702 after filtration at a flow rate of about 400 μΐ/min (i.e., over flow rate) and incubation with DEP for about 5 minutes. Figure 7B shows an optical microscopy image of cells 704 on the microelectrode array 702 after subsequent reflux at a flow rate of about 800 μΐ/min (i.e., reflux flow rate) and incubation with DEP for about 5 minutes. Figure 7C shows an optical microscopy image of cells 706 on microelectrode array 702 after refluxing at a flow rate of about 800 μΐ/min and culturing with DEP for about 16 minutes. As can be seen from Figure 7A, after the filtration procedure, cells 700 are present on the surface of the microelectrode array 702, which means that not all cells move toward the semipermeable membrane filter and pass through the semipermeable membrane filter, and thus can be in DEP Settling during cultivation. In various embodiments, a multi-pass filtration procedure can be performed to allow a sample (which can be a blood sample) to flow toward the semipermeable membrane filter. In addition, reflux performance is determined by staining the cells on a filter membrane using a fluorescent dye (e.g., Calcein AM from Invitrogen), which stains the living cells and produces green fluorescence. 7D and 7E, respectively, shows a fluorescent microscope image of the cells 708 remaining at the semipermeable membrane filter 710 and the cells 712 in the waste after filtration according to various embodiments. Fluorescence microscopy images were obtained with an Olympus BX61 Upright Fluorescent Microscope with FITC (fluorescent isothiocyanate) filter 44 201217781. The estimated number of cells 708 remaining in the semipermeable membrane filter is about 20 1 cells. It will be appreciated that other conventional methods can be performed to establish the number of dead cells and the number of cells passing through the filter. The number of cells (about 2 cells) left on the membrane filter is relatively large, and may affect the detection of rare cells, which may be present in relatively low numbers, such as below one cell. Furthermore, as shown in Figures 7 and 7C, after reflow, the cells 7〇4, 7〇6 can be affected by the reflux rate and can be cultured on one side of the microelectrode array 7〇2, rather than substantially uniformly The cells were cultured on the surface of the microelectrode array 7〇2. Fig. 8 shows an optical microscope image of cells which were cultured without DEP and filtered on a microelectrode array 8 以 at a flow rate of about 2 〇〇 μ1/ιηίη. Fig. 8 shows an optical micromirror image of cells which were subsequently refluxed at a flow rate of about 600 μl/ιηίη and cultured on the surface of the microelectrode array 8〇0 after about 10 minutes of incubation. Fig. 8C shows a close-up cross-sectional view of Fig. 8B showing that a relatively large number of cells are present on the microelectrode array 8〇〇, which may affect the detection efficiency of specific cells for the microfluidic system of each embodiment. Thus, in various embodiments, it is not necessary to provide a filtered flow rate and a reflow rate such that a substantially optimal level of cells can be provided on the microelectrode array for detection. Figure 9 shows a graph 900 of sample preparation performance in accordance with various embodiments. Graph 900 is based on the number of cells on the filter (as a percentage of 12〇〇〇 45 201217781 cells input) 902 from the blood sample preparation and filtration pBMc and at a relative reflux rate of 9〇4. According to various embodiments, the number of cells on the filter refers to the number of cells remaining on the filter after filtration and reflux treatment. Circular data points (represented by 906) were obtained with a flow rate of approximately 2 〇〇 pi/min, and square data points (represented by 908) were obtained with a flow rate of approximately 400 μΐ/min. . Figure 10A shows a flow rate transition of about 200 μΐ/min and an optical micrograph of PBMC 1000 on the surface of the microelectrode array 1002 after about 5 minutes of dep incubation. Fig. 10B shows an optical micrograph of PBMC 10 04 on the surface of the microelectrode array 1 〇〇6 after reflux at a flow rate of about 600 μΐ/min and after incubation with DEP for about 10 minutes. As shown in Fig. 10B, the cells 1 〇〇 4 after the reflow were substantially uniformly cultured on the surface of the microelectrode array 1006. Preparation of doped ik solution Approximately 750 CD34 cells (or endothelial progenitor cells, EPC) were doped into approximately 1 μΐ of blood and CD34 cells were provided to the microfluidic system of each example', as previously described The process of each embodiment is processed. In addition, a pure blood sample is also prepared and processed according to the various embodiments previously described. CD34+ cell specific expression was captured on the microelectrode array using negative dielectric electrophoresis (DEP), specific antibody recognition, and microfluidic methods for washing non-specific cells. Figure 11 shows an optical microscopy image of a microelectrode array with PBMC from a pure blood sample after purification of PbmC, the purification involving a transition at a flow rate of about 50 μΐ/min for about 2 minutes and a flow of about 600 μΙ/min 46 201217781 rate The one-person return machine (_ PBMc is transferred into the open chamber), and the 11B chart shows that the flow rate of the spoon 5〇μι/ηιίη is performed for about 2 minutes for further rinsing procedures 彳i and 丨丨Α An optical microscope image of the same microelectrode array. Figure 11C shows an optical microscopy image of a microelectrode array of cells with a white blood sample, and a flow of about 50 μl/ιηίη with the r 1 and 6 β丄 brothers. Rate filtration, about 2 minutes and 6 Λ η 丨 / . X 4 600 pl / min flow rate to perform a secondary reflux (transfer the cells into the beginning of swelling, Ί enemy L to) ' and the 11D circle shows An optical microscope image of the same microelectrode array as in Fig. 11C after performing a 2 minute feed rinsing procedure at a flow rate of 50 μl/min. Although a relatively large number of cells are present after grasping the order (i i Α and i (1)), after rinsing the private sequence, most of the cells are removed, leaving cD34+ cells on the surface of the microelectrode array. A separate sample of CD34-cells and CD34+ cells doped in about 1 μl of blood is taken from the microfluidic system of each of the fine examples, and according to the procedures of the various embodiments described above Handle it. Cell capture was performed using a specific capture molecule for CD34+ cells using 贞 guess. Figure 1 and Figure 12 show the optical display of the microelectrode array 1200 before and after the rinsing procedure with a sample containing cd34_ cells at a flow rate of about 400 μm/ηιίη for 2 minutes. J兀* pre-nitrogen microscopy image. Fig. 12C and Fig. 12D show optical microscope images of a ruthenium electrode array 1202 having a sample containing CD34 、 and performing a rinsing procedure on the order of about 400 μΐ/min for about 2 minutes. As shown in Figure 12 and Figure 12C, there is a T's private sequence pair. A relatively large number of cells of 201217781 appear on the microelectrode arrays 1 200, 1 202. After the flushing procedure, most cells including CD34-cells are from the microelectrode array ι2. 〇〇 离 (as shown in Figure 12B), while CD34 + cells remain on the microelectrode array 12 〇 2 (as shown in Figure 12D) 'This is due to the capture molecules through the microelectrode array 12 〇〇, 1202 Specific capture of CD34+ cells. Doped blood with integrated impedance detection using the above described embodiments for preparing and processing a doped blood sample 'executable impedance measurement or impedance spectroscopy to detect capture on a microelectrode array Cell. Cells are detected by impedance spectroscopy in a batch mode of operation, which is capable of detecting relatively small amounts of cells (<1 cells) with relatively significant clinically significant cuts (cut_〇ff) iiL Approximately 0.5% EPC has better sensitivity (Hill jm, "Circulating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk" 'N. Engl. J, Med. '2003, 348(7), 593). Figure 13A shows a system 1300 for measuring impedance in accordance with various embodiments. System 13A can be an integrated Pcb-based electronic system for detecting and measuring impedance based on 24 pairs of electrodes of a microelectrode array of microfluidic systems 13〇4. System 13A includes a pCB based measurement system 1302' which includes 24 channels corresponding to 24 pairs of electrodes. The PCB based measurement system 1 302 can be connected to a computer and controlled using software such as Labview. System 1300 further includes pumps 1308a, 1308b, each coupled to a first port and a second port of microfluidic system 1304. Pumps n〇8a, 13 48 48 201217781 are used to supply a buffer solution to the microfluidic system 丨 304 and move the buffer solution along the microchannels of the fluid and the chamber of the microfluidic system 1 304. Figure 13B shows a schematic diagram illustrating the PCB-based interconnection of the embodiment of Figure 13A. The PCB-based measurement system 1302 is coupled to the (fpga) board 1306 via an electrical interconnect 1310. The FPGA board 1306 can include a connector 1312' that is adapted to mate with the connector 1314 of the Pcb card (subcard) 1316. The PCB card 1316 further includes a connector 1318 for connecting the microelectrode array of the microfluidic system 1 304 (Fig. 13A). For detection of a target organism or cell (e. g., CD34 cells), impedance measurements are initially recorded in the presence of a buffer solution but lacking organisms or cells to measure background values. Next, after filtration, reflux, and rinsing procedures in various embodiments, the organisms in most of the samples are removed, leaving the target cells on the surface of the microelectrode array. Impedance measurements were then recorded and the changes in impedance were summed over all of the electrodes of the microelectrode array. Figure 13C shows a graph U2 of the impedance measurement, the pBS solution containing cells for the channels of the system of the Figure 13A example. For comparison, a circle 1322 of impedance measurements of the system according to conventional settings is also shown. Figures 1320, 1322 show relatively good correlations for different systems for the channel. The dotted line indicated by 1324 indicates the frequency at which the impedance change or sensitivity is the highest. Figure 14 shows an impedance measurement chart 1400 for some samples in accordance with various embodiments. Graph 1400 is displayed as a percentage change in impedance "" versus frequency (in logarithmic scale) 1404. Figure 14 shows the results of cell-free phosphate buffered saline (pBs) buffer solution 49 201217781 (as represented by data point 1406), and the results of cell-free pre-cleaning with pBs (represented by circle data point) And the results of a sample of cells after the rinsing protocol according to various embodiments (as represented by triangle data point 1410). At the data point 14〇6, the percentage change in impedance observed on the work is just low, because there is only PBs and no cells are added, so it is used as a background measurement. Figure 14 shows that cells are specifically attached to the electrodes, causing an increase in impedance realities, peak 1412 being at about 380 kHz (according to a logarithmic scale, corresponding to a value of about 5.58). The frequency of peak 1412 indicates the frequency of the highest sensitivity observed for the cells' and thus serves as the basis for detecting the frequency of such cells during the measurement. Figure 15 shows a graph 1500 for impedance measurements of some samples in accordance with various embodiments. Graph 1500 is obtained after chemugination and specific cell capture, and is shown by the impedance change 丨5〇2 to the percentage of CD34 cells doped in the sample of 15〇4. Figure 15 is based on performing impedance measurements or spectroscopy at a frequency of approximately 380 kHz. The detection time for this sample is approximately 20 minutes per batch. Figure 15 shows the result of a negative control of 15 〇 6 sample, which is a PBS buffer solution with a volume of approximately 4 μΐ, without cells. The measurement for the negative control ι5〇6 indicates the background signal of the corresponding buffer solution, and this measurement is removed from the measurement results of other cell-like samples, so that the measurement results represent the changes induced by the cells in each sample' and the buffer is excluded. The effect of dissolving Wen. Figure 15 further shows the following results: about 1 μ1 of blood is doped with about 20% of CD34 (or EPC) sample 1508, PBS buffer solution is mixed 50 201217781 about 330/〇 of CD34 cells of about 4 μΐ sample 151〇 (about 990,000 CD34 cells per ml in pBs), about 4 μM of about 8 μ% of CD34 cells in PBS buffer solution, 1S12 (about 240,000 CD34 cells per ml), and PBS buffer The solution was doped with about 4 μl of a sample of about 14 μl of CD34 cells, 1514 (about 340,000 CD34 cells per ml in PBS). Figure 15 shows that the observed signal correlates with the number of cells present in the sample. Figure 16 shows an impedance measurement chart 1 600 for some samples in accordance with various embodiments. Figure 1 6 is obtained after cell purification and specific cell capture, and is shown as a total change in impedance of 22 pairs of electrodes (%) 丨 6 〇 2 for sample type 1604. Graph 1600 is obtained based on impedance measurements or spectroscopy performed at a frequency of about 3 80 kHz. The detection time for the sample is approximately 20 minutes per batch. Figure 16 shows the following results: cell-free PBS buffer solution sample 1606, Jurkat cell pure sample 1 608 (Jurkat cells are 3 million cells per ml, approximately 4 μM), with approximately 1% CD34 + cells Sample 1610 (approximately 4 μΐ of sample, taken from approximately 5 μΐ of CD34+ cells (113,000 cells per ml) and approximately 10 μΐ of jurlcat cells (4.44 million cells per ml)), approximately 5% Sample U12 of CD34+ cells (approximately 4 μΐ of sample, taken from approximately 5 μΐ of CD34 + cells (563,000 cells per ml) and approximately 1 μ〇 of jurkat cells (4.22 million cells per ml)) and Pure sample 1614 of CD34+ cells (CD34+ cells are 300 cells per ml, 4 μΐ). Figure 17 shows a chart 1 700 for batch processing impedance measurements of some samples 51 201217781, in accordance with various embodiments. Graph 1 700 was obtained after cell purification and specific cell capture, and is shown as a total impedance change (%) 1702 versus sample type 1704 for 22 pairs of electrodes. Graph 1700 is based on impedance measurements or spectroscopy performed at a frequency of about 3 80 kHz. Figure 17 shows the results of sample 1706a (batch 1) of about 24,000 PBMC cells and the result of sample 1708a of about 24,000 PBMC cells doped with about 240 CD34+ cells (batch 1). Figure 17 further shows that when approximately 24,000 PBMC cells or approximately 24,000 PBMC cells doped with approximately 240 CD34 + cell batch samples are correspondingly supplied to the Batch 1 sample, the total impedance change is increased. Sample 1706b (batch 2), such as approximately 24,000 PBMC cells, and sample 1708b (batch 2) of approximately 24000 PBMC cells doped with approximately 240 CD34+ cells. The results of the third batch treatment showed sample 1706c (batch 3) of approximately 24,000 PBMC cells and sample 1708c (batch 3) of approximately 24000 PBMC cells doped with approximately 240 CD34+ cells. Figure 17 shows that about 720 CD34+ cells doped in the PBMC solution can be detected. The detection time for the three batches is approximately 90 minutes. For Figure 17, each sample of approximately 24,000 PBMC cells contained approximately 4 μΐ of 6 million cells/ml (per liters per cell) of PBMC, while approximately 240 CD34 + cells were dosed with approximately 24,000 PBMC cells. Each sample contained approximately 4 μΐ of sample taken from approximately 5 μΐ of CD3 4 + cells (113,000 cells per ml) and approximately 10 μΐ of PBMC cells (8.88 million cells per ml). 52 201217781 Selective cell solubilization and speculation A magnetic bead of 1 μm in size and pre-coated with an anti-CD34 antibody was prepared and diluted in a dissolution buffer at an appropriate concentration. The prepared magnetic beads-containing melting buffer solution has a volume of about 4 μ1 and contains a final concentration of about 150 mM of NH4C1, 1 〇 mM NaHC 〇 3 , ed 福 ed edta and about 2000 magnetic beads in a ratio of 2 beads per i cell, suitable for 50-1000 CD34 + cells. The blood sample was then mixed with the dissolution buffer solution to form a mixture having a volume ratio of 4:1 of the dissolution buffer liquid to the blood, and then a mixed solution of about 10 μM was prepared. The mixture was incubated for about 丨〇 minutes. The mixture solution in each of the examples can be prepared in the range of about 5 to 1 μl. The microfluidic system (e.g., the embodiment in Figure 1) is then used for filtering and detection. Approximately one minute of pBS buffer solution is provided at a flow rate of about 30 μΐ/min to perform preloading and initiation of the chamber of the microfluidic system. The chamber was then maintained half filled with PBS solution. Approximately 5 μΐ of the prepared 1 μ μl mixture solution was loaded directly into the chamber or through the inlet port. The filtration and reflow procedures according to various embodiments are then performed. A PBS solution having a filtration flow rate of about 3 μΐ/min is supplied through the inlet port (ie, the first port) for about 6 minutes to remove non-target organisms or cells, such as RBC. At the end of the filter program, the chamber is half filled and held for about 5 minutes. Most of the Epc remains in the ^, while most of the red blood cells and other cells are removed to be discarded through the outlet port (ie, the second port). In order to recover the EPC remaining in the filter and to capture and detect Epc, 53 201217781 In the reflow procedure, the pBS solution is supplied through the outlet port to push out the sputum. The cells on the 'throws' are removed from the tablets and the cells are transferred. The area to be tested in the chamber, chamber or chamber. The PBS solution was supplied through the outlet port at a reflux rate of about 600 μl/πιηη until the chamber was completely filled. The transition procedure was repeated by flowing the pBS solution through the inlet pass and the scoop 2 at a flow rate of about 3μ1/ηιίη. At the end of the filter program, the chamber is half filled. The filtration procedure was repeated by flowing the PBS solution through the outlet port at a reflux flow rate of about 6 〇〇μ1/ΐΠίη until the chamber was completely filled. It should be appreciated that the filter can be executed any number of times to maximize the residence of the Epc and remove other organisms through the filter, and the reflow procedure can be performed any number of times to increase the recovery performance. Samples with EPC were then incubated in the chamber for approximately 15 minutes. The EPC can be captured by a specific cell capture method based on antigen recognition based on antigen-antibody recognition in the defect region of the chamber and on the microelectrode array. In order to enhance the capture efficiency of the EPC on the microelectrode array, a movable array of magnets (provided to provide or generate a magnetic field) is placed adjacent to the microelectrode array. The resulting magnetic field assists in capturing the magnetically labeled Epc on the microelectrode array. The magnet is then removed and the flushing procedure is performed at a flush rate of about i 5 μi / m i n for about 3 minutes' which is achieved by passing the pBS solution through the outlet port into the chamber and exiting the inlet port. Next, the preparation of the Epc can be performed using the impedance measurement method according to each embodiment. Figure 18 shows a schematic cross-sectional view illustrating selective capture of skin precursor cells (EPC) 1800 according to various embodiments. Selective capture of Epc 18〇〇 occurs by binding to a CD34 antigen (eg, 1802) on Epc 18〇〇 with a CD34 antibody (eg, 18〇4) deposited or coated on a gold (Au) electrode 1 806 The upper Epc is further coupled to a magnetic bead (eg, 18〇8) to which the antibody is attached. As shown in Figure 8, gold electrode 1 806 and microchip! 8 i 〇Set up or integrate. The microchip j 8 i 〇 can be a Si/Si 〇 2 microchip. The remainder of the microchip 181 that is not covered by the electrodes 18 〇 6 can be stripped of material 1 8 12 (e.g., polyethylene glycol (Peg)) passivation. The microfluidic system is provided with a movable array of magnets 丨8丨4 (e.g., permanent magnets) located adjacent the electrodes 1806 to facilitate selective magnetic capture of the EPC 1800. As shown in Figure 18, the white blood cells are not captured by the α)34 antibody 1804. Compared to the non-magnetic capture mode, the use of immunomagnetic force can enhance the average EPC capture performance by about 80%-1%. Further, the capture force can be enhanced by near-field flow and/or oscillating flow. In various embodiments, near field flow refers to the flow of the sample such that magnetically labeled cells can be provided as close as possible to the magnets in the vicinity of the microelectrode array to enhance capture of the magnetically labeled cells. This can be achieved, for example, by reducing the height of the open chamber. In each embodiment, 'oscillation flow refers to repeated sample flow, or reciprocating through the microelectrode array or detection region, for example, by performing the filtration and reflow procedures of the various embodiments, to enhance the magnetically labeled cells captured in the micro-electrode. Probability on the electrode array. The embodiments described herein can be used for multiple indicator separations. For example, a first antibody can be coupled to a target cell and provided for magnetic capture, while a second antibody specific for the target cell can be functionalized on the electrode surface. After removal of other non-target cells (eg, after the rinsing procedure), only specific cells coupled to the first and second antibodies will remain on the electrodes. In various embodiments, multiple marker separation can be performed based on different markers CD34 and CI) 133. The effect of NHW1 on RBC and CD34+ cells in the lysis buffer solution was examined. On average, about 2.2 million cells per ml of CD34+ cells were mixed with the lysis buffer solution and cultured for about 丨〇, 2 〇, or 3 〇 minutes, or without culture. CD34+ cells cultured in PBS solution were used for control measurements. After the incubation, CD34+ cells were diluted and counted using a hemocytometer. Fig. 19 shows a graph of cell counts of 19 〇〇, and is shown by the number of cells 1902 versus the culture time of 19 〇 4. The first! 9 _ shows that for 丄〇 min and 20 min incubation time, no substantial loss of CD34+ cells was observed in the solubilization buffer solution. However, when the culture time was 3 minutes, the cell viability of CD34+ decreased by about 5%, indicating that the time for culturing with the lysis buffer solution was 2 minutes. In individual measurements (no results shown), whole blood samples with RBC were incubated in a lysis buffer for about 10 minutes, and the results showed that about 99.9% of RB C was dissolved. Comparative measurements were performed by applying about 3000 magnetic beads to a range of blood-doped CD34+ cells (approximately 1000, 2000, and 3 cells) to determine no magnetic compared to the corresponding number The improvement of capture efficiency of the bead CD34+ cells using immunomagnetic separation of magnetic beads. Figure 20A shows a graph of cell technology 2〇〇〇 and it is shown in the blood sample doped epc 56 201217781 20〇4 according to the number of EPCs on the electrodes 2002. This result shows an increase in the number of CD34 + cells captured according to the immunomagnetic method, and an average capture efficiency improvement of about 800/0-1 〇〇〇 / compared to the non-magnetically labeled CD34 + cells. . Figure 20B (left image) shows the optical microscope image of the microelectrode array 2〇〇6, its EPC is non-magnetic & and the second 〇B diagram (right image) shows the optical microscopy image of the microelectrode array 2008 The EPC is magnetically marked. Figure 20B shows that a substantially higher number of magnetic labels Epc are captured on the microelectrode array. Also, it can be observed that the EPC is primarily captured in the gold microelectrode region, rather than the microchip surface, thus suggesting minimal signal loss for subsequent impedance measurements. Fig. 21 shows a graph 2100' of the cell count on the electrodes before and after the washing procedure and is shown by the EPC 2102 on the electrode for the culture time 2丨〇4. Culture time 2104 refers to the time provided for attaching the magnetic beads to the Epc. Approximately 2000 magnetic beads were applied to the doped CD34+ cells in the blood, and blood samples were then provided to the microfluidic systems of the various examples for processing. The movably arranged magnets are used to assist in capturing CD34+ cells on the electrodes (e.g., microelectrode arrays), and then the magnetic beads are removed prior to cleaning. The results show that many magnetically labeled EPCs can be washed away by a cleaning procedure. The results also indicate that for a culture time of 10 minutes and 2 minutes, the residence time of the EPC on the microelectrode (ie, the number of cells remaining on the microelectrode array) is extremely small, indicating that the culture time of about 10 minutes is enough. Performing comparative measurements by applying about 2000 magnetic beads to a range of blood-doped CD34+ cells (approximately simplifications, ·, and 3 细胞 cells) to obtain magnetism after removal of the magnet and after final cleaning The retention rate of CD34+ cells of the standard 201257 201217781 (compared to the corresponding number of non-magnetic beads of CD34+ cells). Table 1 shows the retention of EPC on the microelectrode array at different concentrations of Epc with magnetic beads and Epc without magnetic beads. This result shows that, in the absence of magnetic beads, about 50% of CD34+ cells are washed away during the final washing step. However, in the case of magnetic beads, when the cell-to-magnetic ratio is 1:1 and 1:2, respectively, the respective retention ratios are improved to approximately 72.1 / 〇 and 8 0.8 / 〇. The results of 5H indicate that the number of preferred beads is 2〇〇〇 for the concentration of cd34+ cells in a single cell (pBMc based on about 0.1 μM/〇_1% of pBMc in 20 μΐ blood). Magnetic beads. Table 1: Retention rate of EPC Retention rate EPC number No magnetic beads Magnetic beads 1000 57.3% 80.8% 2000 57.6% 72.1% 3000 50.7% 50.3% Perform full range characterization to determine the detection limits of the various examples. About 5 〇-i 〇〇 (m solid blood doping & CD34+ cells were cultured and filtered using the procedures of the respective examples, and the final cell number was examined by counting CD34+ cells on the gold electrode region using a microscope. The graph 2200' showing the filtration and capture performance is shown by the number of cells captured on the electrode 22〇2 for the input cell count 22〇4, while the 22B shows the linear graph and linear fit of the transition and capture performance results of the map The results shown in /, 22B indicate that the detection limit can be about a total of 58 201217781 heterozygous CD34 + cells (about ο"% pbmc), which has a good linear relationship with the full range of capture performance (〆 = 〇 96). The capture efficiency is about 15-20 ° / 〇 (for example, can capture about 150-200 cells per 1 input cell) also perform comparative measurements 'to obtain magnetically labeled CD34 + cells for Capturing performance of multiple batches of treatment (compared to the corresponding number of non-magnetic beads of CD34+ cells). Table 2 shows Epc capture efficiency of EPC and non-magnetic beads of different batches of magnetic beads on the microelectrode array. For measurement, every The batch EPC contains about 1000 EPCs. The results show that after performing the filtration procedure according to each example for the first 1000 EPCs, for the EPC without magnetic beads, 62 cells out of 1 cell were Captured on the microelectrode array, and for Epc with magnetic beads, 丨53 cells were captured. Then, add about 1 E Epc of the second batch, followed by a filtering procedure. The result shows no magnetic The Epc of the bead and the Epc with the magnetic bead were captured to 68 £1> and 214 Epc. The third batch of approximately 1000 EPCs was added, followed by a filtering procedure. The results showed that the EPC without the magnetic beads had The EPCs of the magnetic beads were each captured with 71 EPOs involving three batches, totaling about 3 Ερ (: after the filter program, the reflow procedure according to each embodiment was imposed to retain the filter The EPC was transferred to the microelectrode array. The results showed that EPC without magnetic beads and EPC with magnetic beads were captured to 78 Epcs and 35: Epcs. Magnetic beads Table 2: Number of EPCs processed in multiple batches Magnetic Beads 59 201217781 First 62 153 Second 68 214 Third 71 310 Reflow 78 355 23A to 23D An optical microscopy image of the purified microelectrode array with cd34 cells is shown. The initial sample of the dissolution buffer solution of each example contains about 1000 CD34 cells, 2 magnetic beads and 3500 RBCs in a volume of about 5 μl. Purification and extraction of CD34 involves filtration at a flow rate of about 3 μl/ηύη for about 6 minutes and incubation for about 5 minutes. Then two reflow processes are performed, the flow rate is about 6〇〇μ1/ιηίη, and the EPC is transferred to The chamber was opened and cultured for about 5 minutes. The cleaning procedure was then performed at a flow rate of approximately 15 μΐ/min for approximately 3 minutes. Fig. 23 and Fig. 23 show optical microscope images of the microelectrode array with CD34 cells before the cleaning procedure, and Fig. 23C and Fig. 23D show optical microscope images of the microelectrode array with CD34 cells after the cleaning procedure. While the invention has been particularly shown and described with reference to the specific embodiments of the present invention, it will be understood And category. The scope of the invention is therefore intended to be limited by the scope of the appended claims. 60 201217781 [Simple description of the drawings] In the drawings, like reference numerals generally refer to the same parts throughout the different views. The drawings are not necessarily to scale and, in the alternative, are generally exaggerated to illustrate the principles of the invention. In the specification, embodiments of the invention are described with reference to the following drawings, wherein: Figures 1A through 1C show perspective views of a microfluidic system in accordance with various embodiments. Figure 2 shows a flow diagram illustrating a method for fabricating a microfluidic system in accordance with various embodiments. Figures 3A through 3D show schematic views of a microfluidic system in accordance with one embodiment. Figure 3E shows a schematic side view of a microfluidic system in accordance with one embodiment. Figure 4 shows a technical diagram of a microfluidic system in accordance with one embodiment. The scale in Figure 4 is millimeters (mm). Figure 5A shows a top view of a microchip in accordance with one embodiment. Figure 5B shows a top view of a microelectrode array according to one embodiment, which is disposed on a microchip of the embodiment of Figure 5A. Figure 6A shows a simulated plot of a non-uniform electric field generated by a microelectrode array in accordance with various embodiments. Figure 6B shows an optical microscope image of a microelectrode array with cells in accordance with various embodiments. Figures 7-8 through 7C show optical microscopy images of the micro-electric 201217781 polar array of the root embodiment. Fig. 7D and Fig. 7E show the fluorescence microscope image of the cells in the membrane filter and the waste according to the respective examples.

第8A圖至第8C圖顯示根摅夂杳& , , s , ^ L 夺媒各實施例之具有細胞的微 電極陣列的光學顯微鏡影像。 第9圖顯示根據各實施例的樣本過渡效能之圖表。 第10 A圖與第1 〇B圖顯不根據各實施例具有細胞的微 電極陣列之光學顯微鏡影像。 第11A圖與第1 ιΒ圖顯示根據各實施例具有來自純血 之樣本的細胞的微電極陣列之光學顯微鏡影像。 第11C圖與第11D圖顯示根據各實施例具有來自換雜 的金液樣本的細胞的微電極陣列之光學顯微鏡影像。 第12A圖及帛12B圖顯示根據各實施例之具有CD34- 細胞的微電極陣列的光學顯微鏡影像。 第12 C圖及第12 D固如-i n D圖顯不根據各實施例之具有CD3 4 + 細胞的微電極陣列的光學顯㈣㈣。 第13 A圖顯不根據各實施例之用於測量阻抗的系統。 第13B圖顯示說明笛1>>A ^ °兄明第13Α圖的實施例之PCB為基礎的 互連的概略圖。 第13C圖顯示第 13 A圖之實施例的基於糸統通道之阻 * 抗測量的圖表》 . 第14圖顯示根播々& 很'據各實施例的阻抗測量圖表。 第15圖顯示根擔女 m媒各實施例的用於一些椒本之阻抗測 量的圖表。 62 201217781 第16圖Sg 旦 "、不根據各實施例的用於一些樣本之阻抗測 I的圖表。 、 第1 7圖顯示根據各實施例的用於批次處理一些樣太 之阻抗測量的圖表。 第 18圖- 貝示根據各實施例之說明選擇性捕獲内皮前 驅細胞的概略剖面視圖。 第19圖gg - h .、、貝不根據各實施例之細胞計數圆表。 第 2 〇 A圓批_ 闺顯不根據各實施例的電極上細胞計數的圖 表。 2 0 圖顯示根據各實施例具有細胞的微電極陣列之 光學顯微鏡影像。 第21圖顯不根據個實施例的電極上細胞計數之圖表。 第22A圖與第22B圖顯示根據各實施例之過濾與捕捉 效能之圖表。 第23 A圖至第23D圖顯示根據各實施例之具有細胞的 微電極陣列之光學顯微鏡影像。 【主要元件符號說明】 10〇整合微流體系統 102微流體系統 104微晶片 l〇6a、i〇6b 腔室 l〇8a、i〇8b偵測區域 63 201217781 110 第一通口 112 第二通口 114濾片 116接觸墊 118金屬中空針 200流程圖 202-206 步驟 3 00微電極陣列 3 02塑膠腔室結構 304居中膠帶層 306底部膠帶層 308虛線方塊 310a、3 10b 開口 3 12 開口 314a ' 314b 開口 316 開口 3 1 8微流體系統 320濾片 322 第二通口 500微晶片 502微電極陣列 504a-e電互連 506接觸墊 508a、508b、508c、508d 内電極 64 201217781 5 10a ' 5 10b、5 10c、5 10d 夕卜電極 600模擬繪圖 602光學顯微鏡影像 604細胞 606 内電極 700、704、706、708、712 細胞 702微電極陣列 71 0半透膜濾片 800微電極陣列 900 圖表 902濾片上細胞數 904回流速率 906、908 資料點 1000、1004 PBMC 1002、1006微電極陣列 1200、1202微電極陣列 1300系統 1302測量系統 1304微流體系統 1306 (FPGA)板 1308a、b 泵 1310電互連 1312、1314、1318 連接器 1316 PCB 卡 65 201217781 1320 、 1322 圖表 13 24虛線 1400 圖表 1402阻抗的改變百分比 1404頻率 1406、1408、1410 資料點 1500 圖表 1 502 阻抗改變 1504樣本中摻雜的CD34細胞的百分比 1506負控制 1508-15 14 樣本 1600圖表 1 602 22對電極之總阻抗改變(% ) 1604樣本類型 1606-1614 樣本 1700圖表 1 702 22對電極之總阻抗改變(°/〇 ) 1704樣本類型 1706a-c、1708a-c 樣本 1800 内皮前驅細胞 1802 CD34 抗原 1804 CD34 抗體 1806電極 1808抗體連接的磁珠 66 201217781 1 8 1 0微晶片 1 8 12除拒材料 1 8 14可移動排列的磁鐵 1 8 1 6 白血球細胞 1900 圖表 1902細胞數 1904培養時間 2000 圖表 2002 EPC在電極上的數目Fig. 8A to Fig. 8C show optical microscope images of the microelectrode array having cells of the respective embodiments of roots &, s, ^ L. Figure 9 shows a graph of sample transition performance in accordance with various embodiments. Fig. 10A and Fig. 1B show an optical microscope image of a microelectrode array having cells according to each embodiment. Figure 11A and Figure 1 show an optical microscopy image of a microelectrode array with cells from a sample of pure blood in accordance with various embodiments. Figures 11C and 11D show optical microscopy images of microelectrode arrays with cells from a mixed gold sample according to various embodiments. Figures 12A and 12B show optical microscopy images of microelectrode arrays with CD34- cells according to various embodiments. Fig. 12C and Fig. 12D are diagrams showing the optical display of the microelectrode array with CD3 4 + cells according to the respective examples (4) (d). Fig. 13A shows a system for measuring impedance according to various embodiments. Fig. 13B is a diagram showing an outline of a PCB-based interconnection illustrating an embodiment of a flute 1 > A ^ ° 兄明第13Α. Fig. 13C is a graph showing the resistance measurement based on the system channel of the embodiment of Fig. 13A. Fig. 14 shows the impedance measurement chart of the rootcasting & Fig. 15 is a graph showing the impedance measurements of some peppers in various embodiments of the roots. 62 201217781 Figure 16 Sg Dan ", a graph of impedance measurements for some samples not according to various embodiments. Figure 17 shows a graph of some of the impedance measurements for batch processing in accordance with various embodiments. Figure 18 - Bie's schematic cross-sectional view of selective capture of endothelial pro-driver cells in accordance with the teachings of the various examples. Figure 19 gg - h ., , is not according to the cell count round table of each embodiment. The second 〇A round batch _ shows a graph of cell counts on the electrodes not according to the respective examples. Figure 20 shows an optical microscope image of a microelectrode array with cells according to various embodiments. Figure 21 shows a graph of cell counts on the electrodes according to one embodiment. Figures 22A and 22B show graphs of filtering and capture performance in accordance with various embodiments. Figures 23A through 23D show optical microscopy images of microelectrode arrays with cells in accordance with various embodiments. [Main component symbol description] 10〇 integrated microfluidic system 102 microfluidic system 104 microchip l〇6a, i〇6b chamber l〇8a, i〇8b detection area 63 201217781 110 first port 112 second port 114 filter 116 contact pad 118 metal hollow needle 200 flow chart 202-206 step 3 00 microelectrode array 3 02 plastic chamber structure 304 centering tape layer 306 bottom tape layer 308 dashed squares 310a, 3 10b opening 3 12 opening 314a ' 314b Opening 316 opening 3 1 8 microfluidic system 320 filter 322 second port 500 microchip 502 microelectrode array 504a-e electrical interconnect 506 contact pad 508a, 508b, 508c, 508d inner electrode 64 201217781 5 10a ' 5 10b, 5 10c, 5 10d 电极 电极 electrode 600 simulation drawing 602 optical microscope image 604 cells 606 internal electrodes 700, 704, 706, 708, 712 cells 702 microelectrode array 71 0 semipermeable membrane 800 microelectrode array 900 chart 902 filter Cell number 904 reflow rate 906, 908 data point 1000, 1004 PBMC 1002, 1006 microelectrode array 1200, 1202 microelectrode array 1300 system 1302 measurement system 1304 microfluidic system 1306 (FPGA) plate 1308a, b pump 1310 Interconnects 1312, 1314, 1318 Connector 1316 PCB Card 65 201217781 1320, 1322 Chart 13 24 Dotted Line 1400 Chart 1402 Impedance Change Percentage 1404 Frequency 1406, 1408, 1410 Data Point 1500 Chart 1 502 Impedance Change 1504 Doped CD34 in Sample Percentage of cells 1506 Negative control 1508-15 14 Sample 1600 Chart 1 602 Total impedance change of 22 pairs of electrodes (%) 1604 Sample type 1606-1614 Sample 1700 Chart 1 702 Total impedance change of 22 pairs of electrodes (°/〇) 1704 sample Type 1706a-c, 1708a-c Sample 1800 Endothelial precursor cell 1802 CD34 Antigen 1804 CD34 Antibody 1806 Electrode 1808 Antibody-linked magnetic beads 66 201217781 1 8 1 0 Microchip 1 8 12 Releasing material 1 8 14 Removable magnet 1 8 1 6 White blood cells 1900 Chart 1902 Cell number 1904 Incubation time 2000 Chart 2002 EPC number on the electrode

2004血液樣本中摻雜的EPC 2006光學顯微鏡影像 2100 圖表EPC 2006 optical microscope image doped in blood samples in 2004 2100 Chart

2102電極上的EPC 2104培養時間 2200圖表 2202電極上捕獲的細胞數 2204輸入細胞計數 <:ί 67EPC 2104 incubation time on 2102 electrode 2200 chart 2202 number of cells captured on the electrode 2204 input cell count <: ί 67

Claims (1)

201217781 七、申請專利範圍: 1. 一種用於在一樣本體積中偵測一生物體的微流體系 統’該微流體系統包含: —腔室’其設以接收該樣本體積,其中該腔室 包含一偵測區域以供偵測該生物體; ~第一通口,與該腔室流體連通;以及 —第二通口,其包含一濾片且與該腔室流體連 通;並且 其中提供至該第一通口或該第二通口的一流體 在該第一通口與該第二通口之間流動通過該腔室。 2. 如請求項第1項所述之微流體系統,其進一步包含: 至少一個設以將該第一通口耦接該腔室的微流 體通道;以及 至少一個設以將該第二通口耦接該腔室的微流 體通道D 3. 如晴求項第1項所述之微流體系統,其進一步包含: —第三通口或更多通口,其與該腔室流體連通。 4. 如请求項第1項至第3項任一項所述之微流體系統, 其中該偵測區域設以用一無標記偵測方法偵測該生 物體。 68 201217781 5_如請求項第1項所述之微流體系統,其令該偵測區域 包含—微電極陣列。 6.如:求項第5項所述之微流體系統,其進一步包含捕 獲分子,其設以附接該微電極陣列的一表面。 .月求項第6項所述之微流體系統,其中提供至該第 一通口的該流體設以流過該腔室與該濾片,使得該生 物體被為;慮片留住,而提供至該第二通口的該流體設 、流過"亥濾片,使得該生物體從該濾片移出到該腔 至以由附接至該微電極陣列的該表面之該等捕獲分 子所捕獲。 8.如請求項第5項至第7項任一項所述之微流體系統, 其中該微電極陣列設以生成一介電泳力。 9·如请求項第5項至第7項任一項所述之微流體系統, 其進一步包含一微晶片,該微晶月形成於該微電極陣 列上或該微電極陣列中。 1〇·如請求項第i項至第3項任一項所述之微流體系統, 其中§亥腔室包含一開放腔室。 69 201217781 11.如睛求項笛 ―第1項至第3項任一項所述之微流體系統, 其中該據片包含一半透膜(membrane)。 如清求項第丨項至第3項任一項所述之微流體系統, -rf* ’、—V包含一可移動式排列的磁性元件,其設以提 供一磁場於該偵測區域附近。 13·如明求項第1項至第3項任一項所述之微流體系統, 其中該生物體是選自一群組,該群組由一生物指標、 細胞、一原核細胞、一真核細胞、一哺乳類動物細 1 酵母菌細胞、一腫瘤細胞、一循環腫瘤細胞、 一血液細胞、一周邊血液單核細胞、一免疫系統之一 細胞、—白血球細胞、一 T細胞、一辅助T細胞、一 淋巴細胞、一 CD4淋巴細胞、一前驅細胞、一内皮前 驅細胞、一胚胎細胞、一胞器、一病毒粒子、一生物 高分子、一多肽類、一核酸、一脂類、一寡糖、及任 何前述者之組合所構成。 14. 一種用於製造一微流體系統以供偵測一樣本體積中 之一生物體所用的方法,該方法包含以下步驟: 提供設以接收該樣本體積的一腔室’其中該腔 室包含一偵測區域以偵測該生物體; 提供與該腔室流體連通的一第一通口;以及 提供與該腔室流體連通的一第二通口,該第二 70 201217781 通口包含一濾片;並且 其中提供至該第一通口或該第二通口的一流體 在該第一通口與該第二通口之間流過該腔室。 15. —種使用一微流體系統偵測一樣本體積中的一生物 體的方法,該微流體系統用於該偵測樣本體積中的該 生物體,該微流體系統包含: 設以接收該樣本體積的一腔室,其中該腔室包 括一偵測區域以偵測該生物體; 與該腔室流體連通的一第一通口;以及 與該腔室流體連通的一第二通口,該第二通口 包含一渡片;且 其中提供至該第一通口或該第二通口的一流體 在該第一通口與該第二通口之間流過該腔室; 該方法包含以.下步驟: 提供該樣本體積至該腔室; 提供該流體至該第一通口,以使該樣本體積通 過該濾片以留住該生物體; 從該濾片移出該生物體至該腔室的該偵測區 域;以及 偵測該生物體。 16. 如請求項第15項所述之方法,其進一步包含以下步 驟: 71 201217781 透過一可移動式排列的磁性元件在該偵測區域 附近捕捉該生物體。 17. 如請求項第15項或第16項所述之方法,其中提供該 流體至該第一通口以使該樣本體積通過該濾片而留 住該生物體之步驟重複至少一次。 18. 如請求項第15項或第16項所述之方法,其中從該渡 出該生物體至該腔室的該偵測區域之步驟重複 至少—次。 19.如清求項帛15項或帛16項所述之方法,其中 片移出該生物體至該腔室之步驟包含以下步驟: 提供該流體至該第二通口 20. 如明求項第15項或第16項所述 生物體之步驟包含以下步驟: 之方法,其中偵測該 培養該生物體;以及 執行測量,以偵測該生物體。 2 1.如4求項第丨5項或第16 含-製程,該製程選自由介電:;二法,其進一步 阻抗夠量、及前述者之任!Γ獲分子之_ 之任何組合所構成之群組。 72 201217781 22如古主韦 月〆項第15項或第16項所述之方法,其中該流體 包含一緩衝溶液。 23.如印求項第15項或第16項所述之方法,其中該樣本 體積包含: —血液樣本;以及 —溶化緩衝溶液;且 其中該溶化緩衝溶液包含: 一溶化劑; 一 PH緩衝液;以及 一抗凝聚劑。 2 4 ·如請求箱结 ^弟23項所述之方法,其中該溶化緩衝溶液 進步包含複數個磁珠以耦接該生物體。 25 ·如明求項第23項所述之方法,其中該溶化劑包含氣 4 匕 ~ pH緩衝液包含碳酸鈉,且該抗凝聚劑包含 乙 JL.脫 四乙酸(ethylenediaminetetraacetic acid)。 26.如叫求項第25項所述之方法,其中該氣化銨的濃度 為約l〇mM至約i50mM。 2 7 ·如請求堪势 、第25項所述之方法,其中該氣化銨對該血 、本的體積比為介於1:1至1:1 〇之間。 73 201217781 28. 如請求項第25項所述之方法,其中該碳酸鈉的濃度 為約10 mM至約100 mM。 29. 如請求項第25項所述之方法,其中該乙二胺四乙酸 的濃度為約0.01 mM至約1.0 mM或約0.1 mM。 74201217781 VII. Patent Application Range: 1. A microfluidic system for detecting an organism in a sample volume. The microfluidic system comprises: a chamber configured to receive the sample volume, wherein the chamber comprises a chamber Detecting an area for detecting the living body; - a first port in fluid communication with the chamber; and - a second port including a filter and in fluid communication with the chamber; and wherein the A fluid of a port or the second port flows through the chamber between the first port and the second port. 2. The microfluidic system of claim 1 , further comprising: at least one microfluidic channel configured to couple the first port to the chamber; and at least one to set the second port A microfluidic channel coupled to the chamber. The microfluidic system of claim 1, further comprising: - a third port or more ports in fluid communication with the chamber. 4. The microfluidic system of any of claims 1 to 3, wherein the detection zone is configured to detect the biological object by a markerless detection method. The method of claim 1, wherein the detection region comprises a microelectrode array. 6. The microfluidic system of clause 5, further comprising a capture molecule configured to attach a surface of the array of microelectrodes. The microfluidic system of claim 6, wherein the fluid supplied to the first port is configured to flow through the chamber and the filter such that the organism is retained; The fluid provided to the second port flows through the filter to move the organism from the filter to the cavity to the capture molecules attached to the surface of the microelectrode array Captured. 8. The microfluidic system of any one of clauses 5 to 7, wherein the microelectrode array is configured to generate a dielectrophoretic force. The microfluidic system of any of claims 5 to 7, further comprising a microchip formed on the microelectrode array or in the microelectrode array. The microfluidic system of any of claims 1 to 3, wherein the §Hail chamber comprises an open chamber. A microfluidic system according to any one of the preceding claims, wherein the sheet comprises a half membrane. The microfluidic system of any one of clauses 3 to 3, wherein -rf* ', -V comprise a movable magnetic element arranged to provide a magnetic field adjacent to the detection area . The microfluidic system according to any one of the items 1 to 3, wherein the organism is selected from the group consisting of a biological indicator, a cell, a prokaryotic cell, and a true Nuclear cells, a mammalian fine yeast cell, a tumor cell, a circulating tumor cell, a blood cell, a peripheral blood mononuclear cell, a cell of an immune system, a white blood cell, a T cell, an auxiliary T Cell, lymphocyte, CD4 lymphocyte, a precursor cell, an endothelial progenitor cell, an embryonic cell, a cell, a virion, a biopolymer, a polypeptide, a nucleic acid, a lipid, a An oligosaccharide, and a combination of any of the foregoing. 14. A method for manufacturing a microfluidic system for detecting an organism of the same volume, the method comprising the steps of: providing a chamber configured to receive the sample volume, wherein the chamber contains a Detector Measuring a region to detect the living body; providing a first port in fluid communication with the chamber; and providing a second port in fluid communication with the chamber, the second 70 201217781 port including a filter; And a fluid provided to the first port or the second port flows through the chamber between the first port and the second port. 15. A method of detecting an organism in the same volume using a microfluidic system for detecting the organism in the sample volume, the microfluidic system comprising: configured to receive the sample volume a chamber, wherein the chamber includes a detection area to detect the living body; a first port in fluid communication with the chamber; and a second port in fluid communication with the chamber, the The two port includes a ferrite; and a fluid provided to the first port or the second port flows through the chamber between the first port and the second port; The following step: providing the sample volume to the chamber; providing the fluid to the first port to pass the sample volume through the filter to retain the living body; removing the living body from the filter to the cavity The detection area of the chamber; and detecting the organism. 16. The method of claim 15, further comprising the step of: 71 201217781 capturing the organism near the detection area by a movable magnetic element. 17. The method of claim 15 or claim 16, wherein the step of providing the fluid to the first port such that the sample volume passes through the filter to retain the organism is repeated at least once. 18. The method of claim 15 or 16, wherein the step of withdrawing the organism to the detection region of the chamber is repeated at least one time. 19. The method of claim 15 or claim 16, wherein the step of removing the living body to the chamber comprises the steps of: providing the fluid to the second port 20. The step of the organism of item 15 or item 16 comprises the steps of: detecting the culture of the organism; and performing a measurement to detect the organism. 2 1. If the item is item 5 or the 16th-containing process, the process is selected from the group consisting of dielectric:; two methods, further impedance, and the foregoing; any combination of the seized molecules The group that makes up. The method of claim 15 or claim 16, wherein the fluid comprises a buffer solution. The method of claim 15 or claim 16, wherein the sample volume comprises: - a blood sample; and - a dissolution buffer solution; and wherein the dissolution buffer solution comprises: a solvent; a pH buffer ; and a primary coagulant. The method of claim 23, wherein the dissolution buffer solution advance comprises a plurality of magnetic beads to couple the organism. The method of claim 23, wherein the solvating agent comprises a gas 匕 ~ pH buffer comprising sodium carbonate, and the anti-agglomerating agent comprises ethylenediaminetetraacetic acid. 26. The method of claim 25, wherein the concentration of the vaporized ammonium is from about 1 mM to about 50 mM. 2 7 The method of claim 25, wherein the volume ratio of the vaporized ammonium to the blood to the blood is between 1:1 and 1:1 〇. The method of claim 25, wherein the sodium carbonate has a concentration of from about 10 mM to about 100 mM. 29. The method of claim 25, wherein the concentration of the ethylenediaminetetraacetic acid is from about 0.01 mM to about 1.0 mM or about 0.1 mM. 74
TW100107946A 2010-10-20 2011-03-09 Microfluidic system for detecting a biological entity in a sample TW201217781A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SG201007702-2A SG170703A1 (en) 2009-10-20 2010-10-20 Microfluidic system for detecting a biological entity in a sample

Publications (1)

Publication Number Publication Date
TW201217781A true TW201217781A (en) 2012-05-01

Family

ID=46581469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100107946A TW201217781A (en) 2010-10-20 2011-03-09 Microfluidic system for detecting a biological entity in a sample

Country Status (1)

Country Link
TW (1) TW201217781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817291B (en) * 2021-12-20 2023-10-01 國立中山大學 Device and method for culturing tissue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817291B (en) * 2021-12-20 2023-10-01 國立中山大學 Device and method for culturing tissue

Similar Documents

Publication Publication Date Title
US8372657B2 (en) Microfluidic system for detecting a biological entity in a sample
JP7453653B2 (en) Particle separation systems and methods
US10527568B2 (en) Counting particles using an electrical differential counter
US10232371B2 (en) Microfluidic devices and methods for cell processing
US20150118728A1 (en) Apparatus and method for separating a biological entity from a sample volume
JP6639906B2 (en) Biological sample detection method
US20150076049A1 (en) Microfilter and apparatus for separating a biological entity from a sample volume
TWI616534B (en) Method and device for purifying and separating blood circulation tumor cells using non-contact and automatic identification
JP2022153471A (en) Methods, devices, and systems for sample analysis
JP6936984B2 (en) How to Predict the Prognosis of Cancer Patients Using Rare Cells
Kuan et al. Recent advancements in microfluidics that integrate electrical sensors for whole blood analysis
Zhang et al. Microfluidic flow cytometry for blood-based biomarker analysis
CN109416314A (en) Mthods, systems and devices for concentrated granular
Watkins et al. On a chip
TW201217781A (en) Microfluidic system for detecting a biological entity in a sample
Zhou et al. Development and prospects of microfluidic platforms for sperm inspection
CN110709694A (en) Microfluidic devices and methods of using the same
JP7413692B2 (en) Pretreatment method for samples containing cells
KR102418963B1 (en) Apparatus and method for microparticle analysis
Wu et al. Optofluidic lab-on-a-chip devices for photomedicine applications
JP2016106622A (en) Separation and recovery method of cells
Rodrigues An integrated liquid biopsy microfluidic device for the isolation, recovery, encapsulation and sorting of circulating cancer cells
OA17023A (en) Counting particles using an electrical differential counter.