TW201217402A - adopting a continuous stirred-tank reactor (CSTR) and/or a plug flow reactor (PFR) to prepare high impact polystyrene (HIPS), thereby the product stream can have an ESCR value at least 10% toughness retained with smaller than 10 wt% rubber content - Google Patents
adopting a continuous stirred-tank reactor (CSTR) and/or a plug flow reactor (PFR) to prepare high impact polystyrene (HIPS), thereby the product stream can have an ESCR value at least 10% toughness retained with smaller than 10 wt% rubber content Download PDFInfo
- Publication number
- TW201217402A TW201217402A TW100139290A TW100139290A TW201217402A TW 201217402 A TW201217402 A TW 201217402A TW 100139290 A TW100139290 A TW 100139290A TW 100139290 A TW100139290 A TW 100139290A TW 201217402 A TW201217402 A TW 201217402A
- Authority
- TW
- Taiwan
- Prior art keywords
- linear flow
- flow reactor
- reactor
- product stream
- polymerization
- Prior art date
Links
- 0 CC1(C)*=CCC1 Chemical compound CC1(C)*=CCC1 0.000 description 1
Landscapes
- Graft Or Block Polymers (AREA)
Abstract
Description
201217402 四、指定代表圖: (一)本案指定代表圖為:第(2)圖。 (二)本代表圖之元件符號簡單說明: 205〜進料管線; 215〜輸出管線; 222〜電動機; 2 2 5〜管線; 2 3 5〜管線; 2 4 5〜管線; 2 5 5〜管線。 200〜反應器系統; 210〜第一線性流動反應器 220〜聚合反應器; 224〜攪拌器; 230〜第二聚合反應器; 240〜第三聚合反應器; 250~第四聚合反應器; 五、本案若有化學式時’請揭示最能顯示發明特徵的化與 無。 予式 六、發明說明: 【發明所屬之技術領域】 本發明總體上有關聚苯乙烯的製造。更具體地,本發 明有關使用連續攪拌罐式反應器或活塞流動反應器或其組 合製造高抗沖聚笨乙稀。 ' 【先前技術】 單亞乙烯基芳族化合物例如苯乙烯、α _甲基苯乙烯和 %上取代的苯乙稀的彈性體增強的聚合物被廣泛用於寬範 圍的商業應用t。例如’離散的彈性體顆粒例如交聯橡膠 201217402 分散遍及笨乙烯聚合物基體的彈性體增強的苯乙烯聚合物 可用:寬範圍的應用,包括食品包裝、辦公用纟、汽車部 件、家用品和消費品、建築絕緣體和化妝品包裝。這樣的 彈性體增強的聚合物通常稱為高抗沖聚笨乙烯(Hips)。 、聚合物例如HIPS的製造方法可採用使用連續流動方 法的聚。連續流動方法有關包括多個相繼佈置的反應器 的設備,其中從一個反應器到下一反應器,聚合程度增加。 HIPS的製造中使用的反應器類型可包括連續攪拌罐式反應 器(㈣)和/或活塞流動反應器(PFR)。例如反應容器的佈 置和反應條件的因素影響所製造的HIps的特性。在各反應 器内的聚合程度(其導致不同的機械和/或光學性質)以及 彈性體内容物的量可決定所製造的HIPS的等級。 順的物理特性和機械性質取決於許多因素例如交聯 橡膠顆粒的顆粒尺寸。 丁 材枓的重要品質為這樣的材料 的肊力。該忐力必須與高抗沖強度的特性 結合以便可用於製品例如食σ J如艮00谷态0此外,這樣的製品的 其他重要性質包括撓曲強度和拉伸強度。 對於用於製備舍〇交奖# TTTm 表侑艮〇口谷益的HIPS或者任何其他熱塑性 聚合物’耐應力開裂性戎去 次者耐%境應力開裂性(ESCR)的性 質是特別重要的。彳古接Μ取入 k樣的聚合物容器的食品内容物通常不 可使製成上述容器的HTPC 4、i s或者任何其他類型的聚合物 料降解,但是當埶塑枓 '、、、i陡聚s物由擠出片材熱成型時, 應力被鎖在模塑製σ_ lL ^ 、 2 口中。这些應力使聚合物開始受上 合物通常不受影響的物曹的卢般 耵物質的钕襲。由使用橡膠改性以提高 201217402 抗沖強度的苯乙稀聚合物製造的這樣的製品在與存在 機食品中的普通物質例如脂肪和油接觸時易於應力開裂。 同樣’這樣的產品在與含有氟和演的有機發泡劑例如函代 烴接觸時也經歷應力開裂。在家用物品例如冰箱槪裏中通 常存在這些聚合物’在用聚m束填充冰箱中的空腔 時,由於上述泡沫中採用的發泡劑,其可開裂。 過j,防止或減輕環境應力開裂的努力由通常有關其 中在聚苯乙烯層與發泡劑之間或者 品材料之間設置聚合物中間伴護層=^乙稀層與脂肪食 初中間保濩層的多層聚合物結構的複 雜程式組成。用於將上述苯乙烯與這些物質隔離的—種這 樣的材料層為稱作ABS或丙稀腈_丁二稀_苯乙烯的三元共 聚物材料。改善高抗沖單烯 性的其他嘗試包括提…耐應力開裂 述聚δ物中混入的橡膠的量。然 二::的橡膠含量可降低拉伸和撓曲強度並且典型地將 提咼成本。 方法的類型'以及所利用的彈性體 ==删製造成本。因此,期望開發用於製造具 ==械性質例如抗沖強度、延性和咖的具有降低 且有改:3量的_的設備和方法。還期望開發用於製造 。的耐環境應力開裂性的HIPS的設備和方法。 【發明内容】 包括=明的一個實施例為製造高抗沖聚苯乙婦的方法, 將至少—種乙稀基芳族單體、彈性體、和自由基引發 4 201217402 劑進料到第一線性流動反應器中以形成反應混合物。使上 述第一線性流動反應器中的上述反應混合物聚合至在相轉 化發生的點之下的點以製造第一聚合混合物。將來自上述 第一線性流動反應器的上述第一聚合混合物進料至第二線 I"生抓動反應器’在上述第二線性流動反應器中使上述第一 聚合混合物進一步聚合至至少上述混合物的相轉化點以製 造第二聚合混合物。然後將來自上述第二線性流動反應器 的上述第二聚合混合物進料至第三線性流動反應器並且任 選地更多反應器,以進行上述第二聚合混合物的後轉化聚 合。 本發明的一個實施例為製造高抗沖聚苯乙烯的方法, 包括將至少一種乙烯基芳族單體、彈性體、和自由基引發 劑進料至合罐以形成反應混合物,之後將上述反應混合 物從上述混合罐進料至第—線性流動反應器並且如上述方 法中那樣進行。 〇〇本發明的一個替代實施例包括將至少一種乙烯基芳族 早體、彈性體、和自由基引發劑進料至加熱的混合罐以形 成反應混合物;及將上述加熱的混合罐中的上述反應混合 物進行加熱,之後將上述反應混合物從上述混合罐進料至 第一線性流動反應器並且如上述方法中那樣進行。 ^文中進一步公開了通過將至少一種乙烯基芳族單 :::性體、#自由基引發劑進料至一系列聚合反應器而 ::尚抗沖聚笨乙烯的連續方法。上述一系列聚合反應器 可包括至少兩個線性流動反應器。在聚合之後,可使用在 201217402 降低的溫度下運行的預熱器使產物脫揮發分。上述預熱器 可在低於470°F的溫度下運行以得到提高的eSCR值。 本發明的實施例可以低於1 0%的橡膠含量製造具有至 少1 0%殘餘韌性(toughness retained)的ESCR值的產物。 本發明的實施例可製造具有高於5#m的橡膠顆粒尺寸 (RPS)的產物。 【實施方式】 圖1說明美國專利No· 4, 777, 210的現有.技術高抗沖聚 苯乙烯(HIPS)製造方法,將該專利完全引入本文作為參 考。該方法包括:連續攪拌罐式反應器(CSTR)預轉化反應 器R100 ’之後為CSTR轉化反應器R101,之後為至少一個 活塞流動後轉化反應器R-丨。將的輸出物輸送至常規 的加熱器H-1 ’之後常規的脫揮器DV-i。 圖2描繪用於連續製造彈性體增強的聚合物的反應器 系統200的示意圖。在一個實施例中,反應器系統2〇〇可 用於連續HIPS製造方法。參照圖2,可通過總體表示為2〇5 的一個或多個進料管線將包括苯乙烯、彈性體例如聚丁二 烯橡膠、和自由基引發劑的反應混合物進料至第一線性流 動反應器21G。在-個替代實施例中,反應混合物包括苯 乙稀 '彈性體例如聚丁二稀橡膠、鏈轉移劑和額外組分例 如HIPS製造領域中已知的那些。在另一實施例中,反應混 合物包括:苯乙烯;彈性體例如聚丁二烯橡膠;自由基引 發劑與鏈轉移劑的組合;以及額外組分例> 製造領域 6 201217402 中已知的那些。可如本 域a通技術人員已知的那樣包括 用於製造hips的自由其2丨* 由基引發劑、鏈轉移劑和額外組分的選 擇和量。 、'刀j % 在一個實施例中,進料至拿痒 疋7寸主逑續hips製造方法的反應混 合物可包括約75%〜約99%莖7祕的 M/t)本乙稀、約1%〜約聚丁 二烯、約0.001%〜約 勹〇. 2/6自由基引發劑以及為賦予任何 所需的物理性質而, 買而而要的額外組分。存在值為全部組成的 重量百分數。 術語線性流動反應器包括活塞流動反應H(削)。第一 線性流動反應器或PFR 21G可在容許聚合反應進行至相轉 化發生之前的任何點的條件下運行。在—個實施例中,第 一線性流動反應器2H在預轉化條件下運行,gp,其中的 連續相$笨乙;if橡膠溶液和不連續相$丨乙稀聚苯乙 稀在自實k例中,苯乙稀稀釋劑可包括其他稀釋劑例 如乙苯、曱苯、二曱笨、以及其組合。在一個實施例中, 第線性流動反應器210或預轉化反應器(piR)直接位於 聚合反應器之前’使得笨乙稀聚丁二缔、自由基引發劑和 其他組分進料至PIR210並且離開PIR的混合物隨後進料至 聚合反應器220。 在一個實施例中,聚合反應器22〇為第二線性流動反 應器。在一個實施例中,上述線性流動反應器包括活塞流 動反應器(PFR)。在一個實施例中’聚合反應器22〇或第二 PFR垂直佈置。在另一實施例中,第二pFR 22〇水準佈置。 在一個實施例中,聚合反應器22〇或第二線性流動反 / 7 201217402 應器可在如下條件下運#:在冑反應混合物引入至任何額 外的聚合反應ϋ之前’容許聚合反應進行至至少相轉化 點。因此,聚合反應器220稱為活塞流動轉化反應器 (PFIR)。換而言之,聚合反應器22〇中的反應物在離開該 反應器(此處稱為PFIR 22〇)之前經歷相轉化。201217402 IV. Designated representative map: (1) The representative representative of the case is: (2). (2) A brief description of the symbol of the representative figure: 205~feed line; 215~output line; 222~motor; 2 2 5~ pipeline; 2 3 5~ pipeline; 2 4 5~ pipeline; 2 5 5~ pipeline . 200 to reactor system; 210 to first linear flow reactor 220 to polymerization reactor; 224 to agitator; 230 to second polymerization reactor; 240 to third polymerization reactor; 250 to fourth polymerization reactor; 5. If there is a chemical formula in this case, please disclose the best and no features of the invention. PREPARATION VI. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to the manufacture of polystyrene. More specifically, the present invention relates to the manufacture of high impact polystyrene using a continuous stirred tank reactor or a piston flow reactor or a combination thereof. [Prior Art] Elastomer-reinforced polymers of monovinylidene aromatic compounds such as styrene, α-methylstyrene and % substituted styrene are widely used for a wide range of commercial applications. For example 'discrete elastomer particles such as cross-linked rubber 201217402 Elastomer-reinforced styrene polymers dispersed throughout the stupid ethylene polymer matrix are available: a wide range of applications including food packaging, office enamel, automotive parts, household goods and consumer goods , building insulation and cosmetic packaging. Such elastomer-reinforced polymers are commonly referred to as high impact polystyrene (Hips). A method of producing a polymer such as HIPS may employ a polymerization using a continuous flow method. The continuous flow process relates to an apparatus comprising a plurality of reactors arranged one after the other, wherein the degree of polymerization increases from one reactor to the next. The type of reactor used in the manufacture of HIPS may include a continuous stirred tank reactor ((iv)) and/or a plug flow reactor (PFR). Factors such as the arrangement of the reaction vessel and the reaction conditions affect the properties of the manufactured HIps. The degree of polymerization within each reactor, which results in different mechanical and/or optical properties, and the amount of elastomeric content can determine the level of HIPS produced. The physical and mechanical properties of the cis depends on many factors such as the particle size of the crosslinked rubber particles. The important quality of Ding Lu is the strength of such materials. This force must be combined with the characteristics of high impact strength so that it can be used in articles such as sigma, such as 谷 00 00. In addition, other important properties of such articles include flexural strength and tensile strength. It is particularly important for the properties of the HIPS or any other thermoplastic polymer that is used to prepare the 〇 〇 〇 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T The food contents of the k-like polymer container taken from the Μ Μ 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 通常 或者 或者 或者 或者 或者 或者 HT HT HT HT HT HT HT HT HT HT HT HT HT 制成 HT HT HT 制成 制成 制成 制成 制成 制成When the material is thermoformed from the extruded sheet, the stress is locked in the molding σ_lL ^ , 2 ports. These stresses cause the polymer to begin to attack by the Lu's sputum material, which is usually unaffected by the composition. Such articles made from styrene polymers modified with rubber to improve the impact strength of 201217402 are susceptible to stress cracking when contacted with common materials such as fats and oils present in organic foods. Similarly, such products undergo stress cracking when contacted with fluorine-containing organic blowing agents such as functional hydrocarbons. These polymers are usually present in household goods such as refrigerators. When the cavity in the refrigerator is filled with a polym bundle, it can be cracked due to the foaming agent employed in the above foam. Through j, the effort to prevent or mitigate environmental stress cracking is usually related to the middle intermediate layer of the polymer between the polystyrene layer and the blowing agent or between the materials. The complex composition of the layer's multilayer polymer structure. Such a material layer for isolating the above styrene from these materials is a ternary copolymer material called ABS or acrylonitrile-butadiene-styrene. Other attempts to improve high impact monoolefinic properties include stress cracking, the amount of rubber incorporated in the poly delta. However, the rubber content of the second:: can reduce the tensile and flexural strength and will typically increase the cost. The type of method 'and the elastomer used == delete manufacturing costs. Accordingly, it is desirable to develop an apparatus and method for manufacturing a reduced and modified amount of _ with mechanical properties such as impact strength, ductility, and coffee. It is also expected to be developed for manufacturing. Equipment and methods for environmentally resistant stress cracking HIPS. SUMMARY OF THE INVENTION One embodiment including = Ming is a method for producing a high impact polystyrene, feeding at least an ethylene-based aromatic monomer, an elastomer, and a radical-initiating agent 4 201217402 to the first The linear flow reactor was used to form a reaction mixture. The above reaction mixture in the above first linear flow reactor is polymerized to a point below the point at which phase transformation occurs to produce a first polymerization mixture. Feeding the first polymerization mixture from the first linear flow reactor described above to a second line I"raw-grip reactor' in the second linear flow reactor to further polymerize the first polymerization mixture to at least the above The phase inversion point of the mixture is used to make a second polymerization mixture. The second polymerization mixture from the second linear flow reactor described above is then fed to a third linear flow reactor and optionally more reactors for post-conversion polymerization of the second polymerization mixture described above. One embodiment of the present invention is a method of making high impact polystyrene comprising feeding at least one vinyl aromatic monomer, an elastomer, and a free radical initiator to a canister to form a reaction mixture, followed by the above reaction The mixture was fed from the above mixing tank to the first linear flow reactor and was carried out as in the above method. An alternative embodiment of the present invention comprises feeding at least one vinyl aromatic precursor, an elastomer, and a free radical initiator to a heated mixing tank to form a reaction mixture; and the above-described heated mixing tank The reaction mixture is heated, after which the above reaction mixture is fed from the above mixing tank to the first linear flow reactor and as in the above process. Further, a continuous process for feeding at least one vinyl aromatic single:::, free radical initiator to a series of polymerization reactors is also disclosed herein. The series of polymerization reactors described above may comprise at least two linear flow reactors. After polymerization, the product can be devolatilized using a preheater operating at a reduced temperature of 201217402. The preheater described above can be operated at temperatures below 470 °F to achieve an increased eSCR value. Embodiments of the present invention can produce a product having an ESCR value of at least 10% toughness retained with a rubber content of less than 10%. Embodiments of the present invention can produce products having a rubber particle size (RPS) above 5 #m. [Embodiment] Figure 1 illustrates a prior art high impact polystyrene (HIPS) manufacturing process of U.S. Patent No. 4,777,210, the entire disclosure of which is incorporated herein by reference. The process comprises a continuous stirred tank reactor (CSTR) pre-conversion reactor R100' followed by a CSTR conversion reactor R101 followed by at least one piston flow post-conversion reactor R-丨. The output is sent to the conventional devolatilizer DV-i after the conventional heater H-1'. Figure 2 depicts a schematic of a reactor system 200 for the continuous manufacture of elastomer-reinforced polymers. In one embodiment, the reactor system 2 can be used in a continuous HIPS manufacturing process. Referring to Figure 2, a reaction mixture comprising styrene, an elastomer such as polybutadiene rubber, and a free radical initiator can be fed to the first linear flow through one or more feed lines generally indicated as 2〇5. Reactor 21G. In an alternate embodiment, the reaction mixture comprises a styrene elastomer such as a polybutadiene rubber, a chain transfer agent, and additional components such as those known in the art of HIPS manufacturing. In another embodiment, the reaction mixture comprises: styrene; an elastomer such as polybutadiene rubber; a combination of a free radical initiator and a chain transfer agent; and additional composition examples > those known in the manufacturing field 6 201217402 . The selection and amount of free radicals, chain transfer agents, and additional components used to make the hips can be included as known to those skilled in the art. , 'knife j % In one embodiment, the reaction mixture fed to the itch 7 inch main continuous hips manufacturing process may include about 75% to about 99% of the stem 7 secret M / t) the present, about 1% ~ about polybutadiene, about 0.001% ~ about 勹〇. 2 / 6 free radical initiator and additional components to give any desired physical properties. There are weight percentages for all components. The term linear flow reactor includes a piston flow reaction H (sharp). The first linear flow reactor or PFR 21G can be operated at any point that allows the polymerization to proceed until the phase transition occurs. In one embodiment, the first linear flow reactor 2H is operated under pre-conversion conditions, gp, wherein the continuous phase is stupid; the if-rubber solution and the discontinuous phase are: In the k example, the styrene diluent may include other diluents such as ethylbenzene, toluene, hydrazine, and combinations thereof. In one embodiment, the first linear flow reactor 210 or the pre-conversion reactor (piR) is located directly in front of the polymerization reactor' such that the stupid ethylene polybutane, the free radical initiator and other components are fed to the PIR 210 and exit The mixture of PIR is then fed to polymerization reactor 220. In one embodiment, polymerization reactor 22 is a second linear flow reactor. In one embodiment, the linear flow reactor described above comprises a plug flow reactor (PFR). In one embodiment, the polymerization reactor 22 or the second PFR is vertically arranged. In another embodiment, the second pFR 22 is horizontally arranged. In one embodiment, the polymerization reactor 22 or the second linear flow inverse / 7 201217402 can be operated under the following conditions: 'allowing the polymerization to proceed until at least the ruthenium reaction mixture is introduced to any additional polymerization oxime Phase transition point. Thus, polymerization reactor 220 is referred to as a plug flow conversion reactor (PFIR). In other words, the reactants in polymerization reactor 22 are subjected to phase inversion before leaving the reactor (herein referred to as PFIR 22).
彳轉化#曰在ΗIPS製備期間發生的形態轉變。用於η I 製備的原料通常包括聚了二烯橡膠和苯乙烯單體。這兩種 組分通常是可溶混的。在製造的預轉化階段,#乙烯和聚 丁二烯的混合物形成聚苯乙稀和苯乙烯分散在其中的混人 物的連續相。隨著苯乙烯向聚苯乙稀的反應的進行以及二 苯乙烯的量增加’相轉化發生,之後聚苯乙烯/笨乙烯混人 物形成橡膠顆粒分散在其中的連續相。該相轉化導致豆中 橡膠以包圍被包藏的聚笨乙料的膜的形式存在的複人橡 膠顆粒的形成。橡膠顆粒的尺寸和分佈可影響咖的物理 和機械性質。 在一個實施例中,聚合反應考99 應器220可在容許聚合反應 進行至相轉化發生之前的任何點的條件下運行。在一個實 施例中’聚合反應器、220在預轉化條件下運行,即豆中的 連續相為笨乙烯-橡膠溶液並且不連續 八 貝彳目马本乙烯_聚苯乙 烯。在另一實施例中,第一線性流 初久應Is 210和聚合反 應器220各自在預轉化條件下運件。+、 .^ 。在進—步的實施例 中,第一線性流動反應器210、聚合反庫 入嗎益2 2 0和任何直 接相繼的PFR各自在預轉化條件下運r 丁。在一個方面中, 第一線性流動反應器210以及在pf丨R a m的任何其他反應 8 201217402 器各自在預轉化條件下運行。 隨可在各種溫度範圍下運行。在—個實施例中,㈣ 在230 F或更高的溫度下運行。在另一實施例中,咖在 230 F。300 F的^皿度下運行。在更具體的實施例中,pm 在240°F〜280°F的溫产下,番—士 #彳Transformation# The morphological transformation that occurs during the preparation of ΗIPS. The starting materials for the η I preparation generally comprise a polydiene rubber and a styrene monomer. These two components are usually miscible. In the pre-conversion stage of manufacture, a mixture of #ethylene and polybutadiene forms a continuous phase of a mixture of polystyrene and styrene dispersed therein. As the reaction of styrene to the polystyrene progresses and the amount of stilbene increases, the phase inversion occurs, after which the polystyrene/stupid ethylene blend forms a continuous phase in which the rubber particles are dispersed. This phase transformation results in the formation of the rubber particles in the bean in the form of a film surrounding the film of the occluded polystyrene. The size and distribution of the rubber particles can affect the physical and mechanical properties of the coffee. In one embodiment, the polymerization reactor 220 can be operated at any point that allows the polymerization to proceed until the phase inversion occurs. In one embodiment the 'polymerization reactor, 220 is operated under pre-conversion conditions, i.e., the continuous phase in the beans is a stupid ethylene-rubber solution and discontinuous octopus equine ethylene-polystyrene. In another embodiment, the first linear stream is initially transported by Is 210 and polymerization reactor 220 under pre-conversion conditions. +, .^ . In a further embodiment, the first linear flow reactor 210, the polymerization anti-injection 2200 and any directly sequential PFR are each run under pre-conversion conditions. In one aspect, the first linear flow reactor 210 and any other reaction 8 201217402 at pf 丨 R am are each operated under pre-conversion conditions. It can be operated in a wide range of temperatures. In one embodiment, (iv) operates at a temperature of 230 F or higher. In another embodiment, the coffee is at 230 F. Run at 300 F. In a more specific embodiment, pm is at a temperature of 240 ° F to 280 ° F, Fan - Shi #
度下運订。在進一步的實施例中,PFIR 在260T〜270T的溫度下運行。 ,活塞抓動特性可用於轉化反應器中以優化橡膠顆粒的 形成。再次參照圖2,PF ΤΡ 99Π -Γ A A , 固< 〇IR 220可包含由電動機222驅動 的攪拌器224。這樣的攪拌器可促進反應物的徑向分散, 但不意在提供軸向混合,以使反應器中的回混最小化。在 個實知例中,可調整線性流動反應器中的授拌器紫葉構 型以改善活塞流動特性。 在一個實施例中,運行該活塞流動反應器的㈣号以 :到低於,的剪切速率。在一個實施例中,該活塞流 動反應&㈣拌器以8s_】〜15()s.,的剪切速率運行。在另一 貫施例中,該活塞流動反應器的授拌器以8s.1〜的f =速率運行。在—個實施例中,該活塞流動反應H的搜拌 器以2 5 s —1〜7 5 s-1的剪切祙I、番—, 们畀切速率運仃。在進一步的實施例中, 該活塞流動反應器的攪拌器卩以〜^的剪㈣率運 丁在個方面中,該活塞流動轉化反應器^叩的擾摔器 以低於ππ的剪切速率運行。在另一方面中,mR的授 拌器以35〜90s]的剪切速率運行。在一個替代方面中, PFIR的授拌器以5。〜70s-,的剪切速率運行。改變系統内 在轉化點處的剪切速率的能力可導致改善的產物形態。反 201217402 應器尺寸、製造速率、攪拌器速度和攪拌器構型是可改變 以控制系統内在轉化點處的剪切速率和導致改善的產物形 態的因素。 再次參照圖2,示出了反應器過程2〇〇,其中來自線性 流動預轉化反應器PIR 210的輸出管線215可導向聚合反 應器220。來自反應器220的輸出物可經由管線225導向 第二聚合反應器230。來自反應器230的輸出物可經由管 線235導向第三聚合反應器240 〇來自反應器240的輸出 物可經由管線245導向第四聚合反應器250。在一個實施 例中’上述聚合反應器各自為線性流動反應器。在另一實 施例中’第一聚合反應器220為轉化反應器。在進一步的 實施例中,第一聚合反應器2 3 0為轉化反應器。在分別經 由管線225、235和245將來自聚合反應器220的輸出物進 料至額外的聚合反應器230、240和250的情況下,苯乙稀 向聚苯乙烯的聚合可繼續。在一個實施例中,反應器23〇、 240和250可為線性流動反應器例如活塞流動反應器,其 還可裝配有通過電動機驅動的攪拌器。在圖2中所示的實 施例中,如用戶所期望的,三個線性流動反應器23〇、 和250水準地定位並且與聚合反應器22〇串聯連接。本領 域技術人員可基於例如所需要的製造能力或者所需的產物 轉化程度的要求確定線性流動反應器的數量、定位(例如, 水準的或垂直的)以及連接性(例如,串聯或並聯)。可經由 官線2 5 5從最終反應器例如反應器2 5 〇取出所得η I 聚合 物和任何其他剩餘化合物,並且之後可收取HIps聚合物並 10 201217402 且任選對纟進行進-步加工例如造粒。 在個實施例中,上述線性流動反應器包括直接位於 預轉化反應器之後的至少2個串聯佈置的反應器。在另一 貫施例中’ 2〜1 G個串聯佈置的反應器直接位於預轉化反 應器之後。在進-步的實施例中,4 Μ串聯佈置的反應器 直接位於預轉化反應器之後。上述線性流動反應器可串聯 或並聯佈I在—個貫施例中,上述線性流動反應器的至 >、2個以並聯方式佈置。在一個替代實施例中,參照圖2, 反應器210、220、230、240、250的一個或多個代表並聯 的超過一個的反應器。例如,反應器23〇可代表並聯的兩 個反應器和反應器240可代表並聯的三個反應器。 圖3描緣用於連續製造彈性體增強的聚合物的反應器 系統300的示意圖,其中在圖2的反應器方案之前加上混 合罐306。在一個實施例中’反應器系統300可用於連續 ΗIPS製造方法。參照圖3,包括苯乙烯 '彈性體例如聚丁 一稀橡膠、和自由基引發劑的反應混合物可通過總體表示 為305的一個或多個進料管線進料至混合罐306,並且可 包含通過電動機316驅動的攪拌器318。 在一個實施例中’混合罐3 〇 6在圖2的線性流動反應 器系統之前。在圖3中,來自該混合罐的輸出管線307進 入線性流動預轉化反應器PIR 310。來自PIR 310的輸出 物可經由管線315導向聚合物反應器302(轉化反應器), 其可包含通過電動機322驅動的攪拌器324。來自反應器 320的輸出物可經由管線325導向第二聚合反應器330。來 11 201217402 自反應态330的輸出物可經由管線335導向第三聚合反應 器340。來自反應器34〇的輸出物可經由管線導向第 四聚合反應II 350。來自反應器35〇的輸出物可經由管線 355離開上述方法。在一個實施例中,上述聚合反應器各 自為線1± "IL動反應器。在另一實施例中,第一聚合反應器 320為轉化反應器。纟進一纟的實施例巾,第二聚合反應 器330為轉化反應器。在分別經由管線和將 來自聚σ反應益320的輸出物進料至額外的聚合反應器 330、340和350的情況下’苯乙烯向聚苯乙烯的聚合可繼 續。在—個實施例中,反應器⑽、34G和35G可為線性流 動反應器例如活塞流動反應器’其還可裝配有通過電動機 驅動的攪拌器。在目3中所示的實施例中,三個線性流動 反應器330 340和350水準地定位並且與聚合反應器32〇 串聯連接本領域技術人員可基於例如所需要的製造能力 或者:需的產物轉化程度的要求破定線性流動反應器的數 量疋位(例如,水準的或垂直的)以及連接性(例如,串聯 或並:)。可經由管線355從最終反應器例如反應器35。取 出所侍HIPS聚合物和任何其他剩餘化合物並且之後可收 取HIPS聚合物並且任選對其進行進一步加工例如造粒。 在一個實施例中,混合罐306為授拌罐式反應器例如 CSTR。在—個實施例中,該混合罐的内部容積與線性流動 反應器之比為1:4〜8:卜在—個替代實施例中,該混合罐 的容積與線性流動反應器之比為1:2〜4:卜在進一步的實 施例中,該混合罐的容積與線性流動反應器之比為Η 12 201217402 2 ·· 1。在一個實施例中,該混合罐的液位百分數在該罐容積 的100%處。在另一實施例中,該混合罐的液位百分數為5 〜99. 9%。在一個替代實施例中,該混合罐的液位為1〇〜 95%。在進一步的實施例中’該混合罐的液位為25〜9〇%。 在其中該混合罐為CSTR的另一具體實施例中,上述液位在 足以完全浸沒該CSTR的攪拌器的最低水準處。 在一個實施例中,混合罐3 〇 6不經受來自外部來源的 熱。在這樣的實施例中,供應至該混合罐的僅有的熱來自 進料物流。在另一實施例中,經由外部來源向該混合罐施 :熱ϋ方面中,外部熱源包括蒸汽套和用於加熱混 口罐的任何其他已知設備。在一個實施例中,將該混合罐 内的混合物加熱至低於2,f的溫度。在另一實施例中, 將該混合物加熱至15〇卞〜225。?的溫度。在進一步的實施 例中’將該混合物加熱i 1 75°F〜220°F的溫度。 、英在一:實施例中,將離開最終聚合反應器的產物流輸 :至脫揮器,以在擠出步驟之前從溶融聚合物產物除去揮 ^組分。上述脫揮11可包括預熱器。上述脫揮器和/或預 =可選自任何合適的脫揮器設計和脫揮器預熱器 管式脫揮器和板式脫揮器。在—個㈣财,上述 =^=47_溫度叫。…步的實施例 較低的脫# 〜45GF的溫度下運行。已經發現, 實施例 度可導致改善的產物形態。 給出以下實施例作為 已經對實施例進行了概括描述 13 201217402 本公開内容的具體實 上述實施例作為說明 或申請專利範圍進行 施例並且示範其實踐和優點。理解, 給出並且不意圖以任何方式對說明查 限制。 在-個實施例中,如圖 她六ESW r所不的容器V-1A相 拌谷器例如CSTRe在—個實施例令 為與 性流動反應器之比為w〜2十在/的内…與勒 混合罐的容積與線性、二個替代實施例中1 令顸興踝性机動反應器之比為i: 2〜 步的實施例中,哕珲人挪 ·在進一 H U合罐的容積與線㈣動 1 : 1〜2 : 1 〇 、匕為 在-個實施例中’如圖4、5和6中所示的容器 擾拌容器例如CSTR。在—個實施例中,卜2的内部容積與 線性流動反應器之比為1:1〜8:1。在_個替代實施例中: 該混合罐的容積與線性流動反應器之比為2:1〜6:卜在進 -步的實施例中,該混合罐的容積與線性流動反應器之比 為 3 :1 〜5 : 1。 實施例1 使用第一水準活塞流動轉化反應器(HPFIR)方法製造 高抗沖聚苯乙烯。如圖4中所示,基線(baseline)方法以 兩個CSTR開始,之後為3個或4個HPFIR。所使用的橡膠 為 Texas,Orange 的 Firestone Diene 55 (D55)和 LanxessUnder the order. In a further embodiment, the PFIR operates at a temperature of 260T to 270T. Piston grip characteristics can be used in the conversion reactor to optimize the formation of rubber particles. Referring again to Figure 2, PF ΤΡ 99 Π - Γ A A , solid < 〇 IR 220 may include agitator 224 driven by motor 222. Such agitators can promote radial dispersion of the reactants, but are not intended to provide axial mixing to minimize back mixing in the reactor. In one embodiment, the agitator purple leaf configuration in a linear flow reactor can be adjusted to improve piston flow characteristics. In one embodiment, the (iv) number of the piston flow reactor is operated to: a shear rate below. In one embodiment, the piston flow reaction & (four) mixer operates at a shear rate of 8 s to 15 () s. In another embodiment, the agitator of the plug flow reactor operates at an f = rate of 8 s. 1 〜. In one embodiment, the stirrer of the piston flow reaction H is operated at a shear rate of 2 5 s -1 to 7 5 s-1. In a further embodiment, the agitator of the plug flow reactor is transported at a shear rate of ~^, which is at a shear rate below ππ. run. In another aspect, the mR mixer operates at a shear rate of 35 to 90 s]. In an alternative aspect, the PFIR is at a dose of 5. ~70s-, the shear rate runs. The ability to alter the shear rate at the transformation point within the system can result in improved product morphology. Counter 201217402 The reactor size, manufacturing rate, agitator speed, and agitator configuration are factors that can be varied to control the shear rate at the conversion point within the system and result in improved product morphology. Referring again to Figure 2, a reactor process 2 is illustrated in which the output line 215 from the linear flow pre-conversion reactor PIR 210 can be directed to the polymerization reactor 220. The output from reactor 220 can be directed to second polymerization reactor 230 via line 225. The output from reactor 230 can be directed to third polymerization reactor 240 via line 235. The output from reactor 240 can be directed to fourth polymerization reactor 250 via line 245. In one embodiment, the above polymerization reactors are each a linear flow reactor. In another embodiment, the first polymerization reactor 220 is a conversion reactor. In a further embodiment, the first polymerization reactor 230 is a conversion reactor. In the case where the output from the polymerization reactor 220 is fed to the additional polymerization reactors 230, 240 and 250 via lines 225, 235 and 245, respectively, the polymerization of styrene to polystyrene can be continued. In one embodiment, reactors 23, 240, and 250 can be linear flow reactors such as piston flow reactors, which can also be equipped with an agitator driven by an electric motor. In the embodiment shown in Figure 2, three linear flow reactors 23, and 250 are positioned horizontally and connected in series with polymerization reactor 22, as desired by the user. One skilled in the art can determine the number of linear flow reactors, positioning (e.g., level or vertical), and connectivity (e.g., in series or in parallel) based on, for example, the required manufacturing capabilities or the desired degree of product conversion. The resulting η I polymer and any other remaining compounds may be withdrawn from the final reactor, such as reactor 2 5 via a line 2 5 5 , and may then be subjected to a HIps polymer and 10 201217402 and optionally further processed to the crucible, for example Granulation. In one embodiment, the linear flow reactor described above includes at least two reactors arranged in series directly after the pre-conversion reactor. In another embodiment, '2 to 1 G of reactors arranged in series are located directly after the pre-conversion reactor. In an advanced embodiment, the 4 Μ reactors arranged in series are located directly after the pre-conversion reactor. The above linear flow reactors may be arranged in series or in parallel, in each of the above embodiments, the <> of the above-mentioned linear flow reactors, and two of them are arranged in parallel. In an alternate embodiment, referring to Figure 2, one or more of the reactors 210, 220, 230, 240, 250 represent more than one reactor in parallel. For example, reactor 23A can represent two reactors in parallel and reactor 240 can represent three reactors in parallel. Figure 3 depicts a schematic of a reactor system 300 for the continuous manufacture of an elastomer-enhanced polymer with a mixing tank 306 added prior to the reactor scheme of Figure 2. In one embodiment, the reactor system 300 can be used in a continuous Η IPS manufacturing process. Referring to Figure 3, a reaction mixture comprising a styrene 'elastomer such as a polybutadiene rubber, and a free radical initiator can be fed to the mixing tank 306 through one or more feed lines, generally indicated at 305, and can include Agitator 318 driven by motor 316. In one embodiment, the mixing tank 3 〇 6 precedes the linear flow reactor system of FIG. In Figure 3, the output line 307 from the mixing tank is passed to a linear flow pre-reforming reactor PIR 310. The output from PIR 310 can be directed via line 315 to polymer reactor 302 (conversion reactor), which can include agitator 324 driven by motor 322. The output from reactor 320 can be directed to second polymerization reactor 330 via line 325. The output from the reaction state 330 can be directed to the third polymerization reactor 340 via line 335. The output from reactor 34A can be directed via line to fourth polymerization II 350. The output from reactor 35A can exit the above process via line 355. In one embodiment, the above polymerization reactors are each a line 1 &< IL dynamic reactor. In another embodiment, the first polymerization reactor 320 is a conversion reactor. In the embodiment, the second polymerization reactor 330 is a conversion reactor. The polymerization of styrene to polystyrene can be continued in the case where the output from the poly-sigma reaction benefit 320 is fed to the additional polymerization reactors 330, 340 and 350, respectively, via a line. In one embodiment, reactors (10), 34G, and 35G can be linear flow reactors such as piston flow reactors. They can also be equipped with a stirrer driven by an electric motor. In the embodiment shown in item 3, the three linear flow reactors 330 340 and 350 are positioned horizontally and in series with the polymerization reactor 32, and those skilled in the art can based on, for example, the required manufacturing capabilities or: desired products. The degree of conversion requirements breaks the number of linear flow reactors (eg, level or vertical) and connectivity (eg, tandem or parallel:). From the final reactor, such as reactor 35, via line 355. The desired HIPS polymer and any other remaining compounds are removed and the HIPS polymer can then be taken and optionally further processed, such as granulated. In one embodiment, the mixing tank 306 is a stirred tank reactor such as a CSTR. In one embodiment, the ratio of the internal volume of the mixing tank to the linear flow reactor is 1:4 to 8: In an alternative embodiment, the ratio of the volume of the mixing tank to the linear flow reactor is 1 : 2 to 4: In a further embodiment, the ratio of the volume of the mixing tank to the linear flow reactor is Η 12 201217402 2 ··1. In one embodiment, the mixing tank has a liquid level percentage of 100% of the tank volume. 9%。 In another embodiment, the mixing tank has a liquid level percentage of 5 to 99.9%. In an alternate embodiment, the mixing tank has a liquid level of from 1 〇 to 95%. In a further embodiment the liquid level of the mixing tank is from 25 to 9 %. In another embodiment in which the mixing tank is a CSTR, the liquid level is at a minimum level sufficient to completely immerse the stirrer of the CSTR. In one embodiment, the mixing tank 3 〇 6 is not subjected to heat from an external source. In such an embodiment, the only heat supplied to the mixing tank is from the feed stream. In another embodiment, the mixing tank is applied via an external source: the external heat source includes a steam jacket and any other known equipment for heating the mixing tank. In one embodiment, the mixture in the mixing tank is heated to a temperature below 2,f. In another embodiment, the mixture is heated to 15 Torr to 225. ?temperature. In a further embodiment the mixture is heated to a temperature of from 1 75 °F to 220 °F. In one embodiment, the product leaving the final polymerization reactor is passed: to a devolatilizer to remove the volatile component from the molten polymer product prior to the extrusion step. The above devolatilization 11 may include a preheater. The devolatilizer and/or pre = above may be selected from any suitable devolatilizer design and devolatilizer preheater tube devolatilizer and plate devolatilizer. In the case of (four), the above =^=47_ temperature is called. ...step embodiment of the lower run off ~ ~ 45GF temperature. It has been found that embodiments can result in improved product morphology. The following examples are given as a general description of the embodiments. 13 201217402 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The above-described embodiments are described by way of example and the scope of the claims. It is understood that the description is not intended to limit the description in any way. In one embodiment, as shown in her six ESW r container V-1A phase mixture, such as CSTRe, in an embodiment, the ratio to the flow reactor is w~2 ten in /... The volume and linearity of the mixing tank and the ratio of the two alternative embodiments in the case of the 机动 踝 机动 机动 机动 机动 机动 i i i i i i i i i i i i i i i 实施 实施 实施 实施 实施 HU HU Line (4) Movement 1: 1 to 2: 1 〇, 匕 is a container spoiler such as CSTR as shown in Figures 4, 5 and 6 in an embodiment. In one embodiment, the ratio of the internal volume of the Bu 2 to the linear flow reactor is 1:1 to 8:1. In an alternative embodiment: the ratio of the volume of the mixing tank to the linear flow reactor is 2:1 to 6: In the embodiment of the advanced step, the ratio of the volume of the mixing tank to the linear flow reactor is 3 : 1 ~ 5 : 1. Example 1 High impact polystyrene was produced using a first level piston flow conversion reactor (HPFIR) process. As shown in Figure 4, the baseline method begins with two CSTRs followed by three or four HPFIRs. The rubber used is Texas, Orange's Firestone Diene 55 (D55) and Lanxess
Corp 的 Tactene(1202)。 表1包含在基線方法配置中使用Lacqrene 7240(可得 自 Total Petrochemicals Europe 的商業 HIPS 聚苯乙稀等 級)的試驗的結果: 14 201217402 試驗編號 1 2 3 4 5 6 7 樣品描述 50%D55 50%1202 75%D55 25%1202, 100%D55 100%D55 基線 在V-2頂 部進料並 且再迴圈 降低的V-2 攪拌, 141s] 降低的 R卜R4攪拌 橡膠類型(濃度9%) 50%D55 50%1202 75%D55 25%1202 100%D55 100%D55 100%D55 100%D55 100%D55 W稀釋劑,% 6.3 6.9 6. 5 6.7 6.6 6. 6 6 製造速率,磅/小時 91 91 91.5 91 91 91 93 Gardner 衝擊 82.8 100.5 116.8 125.6 133.6 119.6 136.7 .缺口懸臂梁衝擊 3.47 3. 35 3.17 3. 02 2.9 3. 04 3.19 熔體流動速率 3.97 4.15 4.01 4.43 4.38 4.37 3. 88 _橡膠顆粒尺寸 5. 22 4.41 4.51 3.62 3.65 3.84 3. 83 _ 拉伸模量 235100 232700 235900 266600 257100 240000 245100 屈服拉伸強度 3146 3254 3242 3177 3017 3368 3328 斷裂拉伸強度 3049 3011 3122 2989 2937 3190 3059 斷裂伸長率 52.5 50.8 50.1 57.3 56.5 50.9 49.4 撓曲模量 354600 353900 346000 288700 277900 347700 344200 撓曲強度 6987 7146 7191 5884 5752 7409 7349 溶脹指數 14 13 13 13 12 13 13 __凝膠含量 20.11 21.39 21.75 23.45 24. 23 23.51 23.78 接枝 130.4 143.6 151.4 167.4 171 167.2 171.5 _凝膠:橡膠 2. 30 2.44 2.51 2.67 2.71 2.67 2.71 _ Μη 81837 82096 77559 75205 72569 76731 76165 _ Mw 196983 196432 188307 178653 173682 182794 183167 多分散性 2.4 2.4 2.4 2.4 2.4 2.4 2.4 光澤度,20° 7.7 10.8 12.5 17.8 19.7 16.1 20.7 _光澤度,60° 33 42.5 47.2 55.6 58.7 52.6 59 … RPVF 29.8 27.5 29.9 28.3 31.1 29.6 實施例2 然後使用圖5和6中所示的新的配置進行試驗。圖5 被描繪為具有第一 CSTR(V-l),之後為第一和第二 HPFIR(R-1和R-2),之後為第二CSTRCV-2),之後為第三 和第四HPFIR(R-3和R-4)。對於這些試驗,選擇可得自 Total Petrochemicals Europe 的商業 HIPS 聚苯乙稀等級 的兩種等級825E PS和7240 PS。 使用7240等級進行2種試驗。試驗8使用如圖5中所 示配置的方法。試驗9與8相同,但是除去V-1使得進料 被輸送至R-1,如圖6中所示。 15 201217402 表2顯示關鍵的工藝條件和所得性質。 試驗編號 8 9 描述 熱 7240,使用 V-1 熱 7240,省略 V-.1 使用V-1? 是 否 使用V-2? 是 是 製造速率,磅/小時 68 82 熔體流動速率 2.7 3 粒料RPS 3.9 4.4 拉伸模量,psi 258900 278420 斷裂伸長率,% 42.4 37.4 撓曲模量,psi 311940 298980 溶脹指數 11 10 凝膠含量 23.72 23.02 接枝 182.1 175 凝膠:橡膠 2.88 2.75 RPVF 20.9 20.8 實施例3 在實施例3中,除去反應器V-1和V-2,導致在該方 法中沒有CSTR,如圖7中所示。該變化產生凝膠:橡膠比 方面的改善。進行2種試驗。試驗12使用該新的方法配置, 但是除去V-1和V-2,如圖7中所示。試驗13與試驗12 相同,但是以Luperso 1 L233引發。 表3顯示實施例3的結果。表3還顯示,與表1中的 現有技術方法和表2中的實施例2的方法相比,實施例3 的方法實現更高的凝膠:橡膠比。 試驗編號 12 13 描述 7240 熱 7240 W/L233 引發劑 L233 引發劑濃度,ppm 100 製造速率,磅/小時 56 63 16 201217402 熔體流動速率 3.6 4.3 粒料RPS 4.1 4 拉伸模量,psi 258000 251200 斷裂伸長率,% 49.3 58.4 挽曲模量,psi 288400 283100 溶脹指數 12 12 凝膠含量 24.87 24. 88 接枝 182 203.5 凝膠:橡膠 2.8 3.03 RPVF 21.3 26.7 實施例4 使用第一垂直活塞流動轉化反應器(VPFIR)方法製造 高抗沖聚苯乙烯。進行試驗以確定該VPFIR方法的產物的 ESCR值。結果不於下表5中: 試驗編號 23 24 25 26 產物/描述 8260 8260 高的PFIR固體物 使用V-2 使用V-2? 否 否 否 是 再迴圈流速 19 25 21.7 26.8 製造速率,磅/小時 76 71 73 74 粒料RPS,// (體積) 5.85 8. 77 9.08 8.08 炫體流動,dg/10min 3.3 4.3 3.6 3.2 拉伸模量 224640 243370 257850 255100 撓曲模量 292850 267340 284890 284810 溶脹指數 13 15 14 10 凝膠:橡膠 2.79 2.58 2.65 2.97 RPVF 33.6 37.1 35.1 30.6 ESCR,殘餘韌性% 1 4.6 2.5 1.3 利用第一垂直活塞流動轉化反應器的試驗導致差的 ESCR 值。 實施例5 使用如圖7中所示的具有四個水準活塞流動反應器的 HPFIR方法製造高抗沖聚苯乙烯,其中第二水準反應器為 17 201217402 轉化反應器。將離開第四反應器的產物輸送至兩個脫揮器 並且將來自上述脫揮器的除去的揮發性組分再迴圈至進 料。在該方法中進行試驗31。 該方法的產物的ESCR性能非常高,具有約26. 5%的 值。RPS分佈明顯比典型地在CSTR轉化下獲得的那些窄。Corp's Tactene (1202). Table 1 contains the results of a test using Lacqrene 7240 (commercial HIPS polystyrene grade available from Total Petrochemicals Europe) in a baseline method configuration: 14 201217402 Test No. 1 2 3 4 5 6 7 Sample Description 50% D55 50% 1202 75%D55 25%1202, 100%D55 100%D55 Baseline is fed at the top of V-2 and recirculated to reduce V-2 agitation, 141s] Reduced Rb R4 agitated rubber type (concentration 9%) 50% D55 50%1202 75%D55 25%1202 100%D55 100%D55 100%D55 100%D55 100%D55 W thinner,% 6.3 6.9 6. 5 6.7 6.6 6. 6 6 Manufacturing rate, pounds per hour 91 91 91.5 91 91 91 93 Gardner Impact 82.8 100.5 116.8 125.6 133.6 119.6 136.7 . Notched Izod Impact 3.47 3. 35 3.17 3. 02 2.9 3. 04 3.19 Melt Flow Rate 3.97 4.15 4.01 4.43 4.38 4.37 3. 88 _Rubber Particle Size 5. 22 4.41 4.51 3.62 3.65 3.84 3. 83 _ tensile modulus 235100 232700 235900 266600 257100 240000 245100 yield tensile strength 3146 3254 3242 3177 3017 3368 3328 tensile strength at break 3049 3011 3122 2989 2937 3190 3059 elongation at break 52.5 50.8 50.1 57.3 56.5 50.9 49.4 Flexural modulus 354600 353900 346000 288700 277900 347700 344200 Flexural strength 6987 7146 7191 5884 5752 7409 7349 Swelling index 14 13 13 13 12 13 13 __ Gel content 20.11 21.39 21.75 23.45 24. 23 23.51 23.78 Grafting 130.4 143.6 151.4 167.4 171 167.2 171.5 _gel: rubber 2. 30 2.44 2.51 2.67 2.71 2.67 2.71 _ Μ 837 81837 82096 77559 75205 72569 76731 76165 _ Mw 196983 196432 188307 178653 173682 182794 183167 Polydispersity 2.4 2.4 2.4 2.4 2.4 2.4 2.4 Gloss, 20° 7.7 10.8 12.5 17.8 19.7 16.1 20.7 _Gloss, 60° 33 42.5 47.2 55.6 58.7 52.6 59 ... RPVF 29.8 27.5 29.9 28.3 31.1 29.6 Example 2 The test was then carried out using the new configuration shown in Figures 5 and 6. Figure 5 is depicted as having a first CSTR (Vl) followed by first and second HPFIR (R-1 and R-2) followed by a second CSTRCV-2) followed by a third and fourth HPFIR (R -3 and R-4). For these experiments, two grades of 825E PS and 7240 PS available from the commercial HIPS polystyrene grade of Total Petrochemicals Europe were selected. Two tests were performed using the 7240 grade. Test 8 uses the method configured as shown in FIG. Runs 9 and 8 were identical except that V-1 was removed so that the feed was delivered to R-1 as shown in FIG. 15 201217402 Table 2 shows the key process conditions and properties obtained. Test No. 8 9 Description Heat 7240, using V-1 Heat 7240, omitting V-.1 Using V-1? Is V-2 used? Yes, manufacturing rate, pounds per hour 68 82 Melt flow rate 2.7 3 pellets RPS 3.9 4.4 tensile modulus, psi 258900 278420 elongation at break, % 42.4 37.4 flexural modulus, psi 311940 298980 swelling index 11 10 gel content 23.72 23.02 graft 182.1 175 gel: rubber 2.88 2.75 RPVF 20.9 20.8 Example 3 In Example 3, reactors V-1 and V-2 were removed, resulting in no CSTR in the process, as shown in FIG. This change produces a gel: improvement in rubber ratio. Two tests were performed. Run 12 was configured using this new method, but with V-1 and V-2 removed, as shown in FIG. Run 13 was the same as Test 12, but was initiated with Luperso 1 L233. Table 3 shows the results of Example 3. Table 3 also shows that the method of Example 3 achieves a higher gel: rubber ratio than the prior art method in Table 1 and the method of Example 2 in Table 2. Test No. 12 13 Description 7240 Heat 7240 W/L233 Initiator L233 Initiator Concentration, ppm 100 Manufacturing Rate, Pounds/Hour 56 63 16 201217402 Melt Flow Rate 3.6 4.3 Pellet RPS 4.1 4 Tensile Modulus, psi 258000 251200 Fracture Elongation, % 49.3 58.4 Flexural modulus, psi 288400 283100 Swelling index 12 12 Gel content 24.87 24. 88 Grafting 182 203.5 Gel: Rubber 2.8 3.03 RPVF 21.3 26.7 Example 4 Using a first vertical piston flow conversion reactor The (VPFIR) method produces high impact polystyrene. An experiment was conducted to determine the ESCR value of the product of the VPFIR method. The results are not in Table 5 below: Test No. 23 24 25 26 Product / Description 8260 8260 High PFIR solids using V-2 using V-2? No No No Recirculation flow rate 19 25 21.7 26.8 Manufacturing rate, lb / Hours 76 71 73 74 pellets RPS, / / (volume) 5.85 8. 77 9.08 8.08 glare flow, dg/10min 3.3 4.3 3.6 3.2 tensile modulus 224640 243370 257850 255100 flexural modulus 292850 267340 284890 284810 swelling index 13 15 14 10 Gel: Rubber 2.79 2.58 2.65 2.97 RPVF 33.6 37.1 35.1 30.6 ESCR, Residual Toughness % 1 4.6 2.5 1.3 The test using the first vertical piston flow conversion reactor resulted in a poor ESCR value. Example 5 A high impact polystyrene was produced using the HPFIR process with four level piston flow reactors as shown in Figure 7, wherein the second level reactor was a 17 201217402 conversion reactor. The product leaving the fourth reactor is sent to two devolatilizers and the removed volatile components from the devolatilizer described above are recycled back to the feed. Test 31 was carried out in this method. The 5% of the value of the product is very high, with a value of about 26.5%. The RPS distribution is significantly narrower than those typically obtained under CSTR transformation.
表6A 試驗編號 31 32 33 34 流動配置 HPFIR HPFIR HPFIR HPFIR 產物/評價 基線 低轉化率 進料組成 產物表徵 熔體流動,dg/10min 4.45 4.2 3. 22 3.4 橡膠含量,% 8. 52 8.58 8.32 8.57 粒料RPS,mm 2. 73 8.82 5.12 6.55 溶脹指數 10 14 10 10 凝膠含量 27.9 25.5 29.8 31.1 Μη 68375 69151 67555 66118 Mw 180153 178272 180612 多分散性 2.6 2.6 2.7 2.7 RPVF 28.2 35.8 36.6 40 缺口型懸臂梁斷裂 1.7 2.06 1.62 1.63 拉伸模量 255193 233134 221436 215765 屈服拉伸強度 3107 2511 2604 2480 斷裂拉伸強度 3274 3190 3567 3342 斷裂伸長率 46.5 57.4 65.2 55.7 撓曲模量 275550 259081 243284 236660 撓曲強度 6400 5668 5874 5684 ESCR韌性 未處理 815 1119 1090 ESCR韌性 經處理 175 45 65 ESCR,殘餘韌性% 21.5 4 6Table 6A Test No. 31 32 33 34 Flow Configuration HPFIR HPFIR HPFIR HPFIR Product / Evaluation Baseline Low Conversion Rate Feed Composition Product Characterization Melt Flow, dg/10min 4.45 4.2 3. 22 3.4 Rubber Content, % 8. 52 8.58 8.32 8.57 Material RPS, mm 2. 73 8.82 5.12 6.55 Swelling index 10 14 10 10 Gel content 27.9 25.5 29.8 31.1 Μη 68375 69151 67555 66118 Mw 180153 178272 180612 Polydispersity 2.6 2.6 2.7 2.7 RPVF 28.2 35.8 36.6 40 Notched cantilever beam break 1.7 2.06 1.62 1.63 Tensile modulus 255193 233134 221436 215765 Yield tensile strength 3107 2511 2604 2480 Tensile strength at break 3274 3190 3567 3342 Elongation at break 46.5 57.4 65.2 55.7 Flexural modulus 275550 259081 243284 236660 Flexural strength 6400 5668 5874 5684 ESCR Toughness untreated 815 1119 1090 ESCR toughness treated 175 45 65 ESCR, residual toughness % 21.5 4 6
試驗編號 35 36 流動配置 HPFIR HPFIR 18 201217402 產物/評價 進料組成 再迴圈流速,磅/小時 21.1 21.0 製造速率,磅/小時 68 67 產物表徵 溶體流動,dg/10min 3.76 4. 05' 橡膠含量,% 8.53 8.41 粒料 RPS,μιη 7.07 8.82 溶脹指數 11 11 凝膠含量 31 30.8 Μη 65753 66589 Mw 177539 172753 多分散性 2.7 2.6 RPVF 40.7 40.9 缺口型懸臂梁斷裂 1.63 1.76 拉伸模量 211718 210802 屈服拉伸強度 2348 2329 斷裂拉伸強度 3348 3371 斷裂伸長率 62.3 63 撓曲模量 235965 231541 撓曲強度 5413 5386 ESCR勒性,未處理 1219 1036 ESCR韌性,經處理 139 113 ESCR,殘餘韌性% 11.4 10.9 實施例7 使用具有4個水準活塞流動反應器的HPF IR方法製造 高抗沖聚苯乙烯,其中第二水準反應器為轉化反應器。將 離開第四反應器的產物輸送至兩個脫揮器並且將來自上述 脫揮器的除去的揮發性組分再迴圈至進料。來自實施例5 的樣品38實現優異的橡膠利用和ESCR性能。樣品38是在 上述轉化反應器處以300°F的升高的反應器溫度製造的。 該高溫導致該反應器中非常高的固體含量(34. 8% ),並且 因此導致6. 81 μιη的相對高的粒料平均RPS。在該實施例 19 201217402 中,在較低的溫度下對樣品38 -Γ ^ ^ . 仃冉現。在新的較低溫度 — Μ 8巾’將上迷試驗的條件和結果斑 貫施例5的試驗38比較。 '、 ,在較低的溫度下對來自實施例5的樣品38的再現實現 拍微較低、仍令人滿意的橡膠利用。與單一的低溫催化劑 體系相比,1:1比率的低溫催化劑和高溫催化劑的混合物 未導致更好或更壞的結果。Test No. 35 36 Flow Configuration HPFIR HPFIR 18 201217402 Product/Evaluation Feed Composition Recirculation Flow Rate, Pounds/Hour 21.1 21.0 Manufacturing Rate, Pounds/Hour 68 67 Product Characterization Solution Flow, dg/10min 3.76 4. 05' Rubber Content , % 8.53 8.41 Pellet RPS, μιη 7.07 8.82 Swelling index 11 11 Gel content 31 30.8 Μη 65753 66589 Mw 177539 172753 Polydispersity 2.7 2.6 RPVF 40.7 40.9 Notched cantilever beam fracture 1.63 1.76 Tensile modulus 211718 210802 Yield stretch Strength 2348 2329 Tensile strength at break 3348 3371 Elongation at break 62.3 63 Flexural modulus 235965 231541 Flexural strength 5413 5386 ESCR suitability, untreated 1219 1036 ESCR toughness, treated 139 113 ESCR, residual toughness % 11.4 10.9 Example 7 High impact polystyrene was produced using the HPF IR process with 4 level piston flow reactors, where the second level reactor was a conversion reactor. The product leaving the fourth reactor is sent to two devolatilizers and the removed volatile components from the devolatilizer described above are recycled back to the feed. Sample 38 from Example 5 achieved excellent rubber utilization and ESCR performance. Sample 38 was made at the above described conversion reactor at an elevated reactor temperature of 300 °F. This high temperature results in a very high solids content (34.8%) in the reactor and thus results in a relatively high average pellet RPS of 6.81 μηη. In this example 19 201217402, the sample 38 - Γ ^ ^ . is present at a lower temperature. At the new lower temperature - Μ 8 towels, the conditions and results of the above test were compared to test 38 of Example 5. ', Reproduction of the sample 38 from Example 5 at a lower temperature achieved a lower, still satisfactory rubber utilization. A 1:1 ratio of a mixture of a low temperature catalyst and a high temperature catalyst does not result in better or worse results than a single low temperature catalyst system.
在樣品52中’利用29rF的升高的轉化反應器溫度並 且進料與38中的進料相同,除了在樣品52中不使用piB 樣。α 52實現反應器内容物的窄的顆粒尺寸分佈和 U6的橡膠顆粒尺寸;&而,在產物粒料中,顆粒尺寸分 佈寬,表明在最終製造階段中形態的退化。樣品52的結果 示於圖9的圖中。 將可得自 Total Petrochemicals Europe 的 Lacqrene 8260用於該實施例中和實施例5中。對於試驗33-39、48、 5〇和51 ’在圖8中將該配方的殘留韌性百分數值對Rps作 圖。The elevated conversion reactor temperature of 29 rF was used in sample 52 and the feed was the same as the feed in 38 except that no piB was used in sample 52. α 52 achieves a narrow particle size distribution of the reactor contents and a rubber particle size of U6; & However, in the product pellets, the particle size distribution is broad, indicating the deterioration of morphology in the final manufacturing stage. The results of sample 52 are shown in the graph of Fig. 9. Lacqrene 8260 available from Total Petrochemicals Europe was used in this example and in Example 5. The residual percent toughness values for this formulation are plotted against Rps for Runs 33-39, 48, 5 and 51'.
表8A __3驗編號 38 48 49 _產物/描述/評僧 製造速率,碎/小時 67 65 58 _ 熔體流動i亲案 4.2 5.8 4 橡膠顆粒尺寸 6.81 5.57 4. 87 _爸伸模量 广 206590 211850 229730 屈服拉伸強度 2370 2450 2620 —if拉伸強度 3170 2880 3020 ___^裂伸長率_ 撓曲模量 70.5 58.1 65.6 228700 233770 2470040 20 201217402Table 8A __3 Test No. 38 48 49 _Product / Description / Evaluation Manufacturing rate, broken / hour 67 65 58 _ Melt flow i pro-4.2 4.2 5.8 4 rubber particle size 6.81 5.57 4. 87 _ dad stretch modulus 206590 211850 229730 Yield tensile strength 2370 2450 2620 — if tensile strength 3170 2880 3020 ___^ Split elongation _ Flexural modulus 70.5 58.1 65.6 228700 233770 2470040 20 201217402
撓曲強度 5130 5020 5380 溶脹指數 11 12 12 凝膠:橡膠 3.41 3.24 3.10 RPVF 39.9 35.5 33.8 ESCR勤性,未處理 1125 954 ESCii韌性,經處理 288 154 ESCR,殘餘韌性% 25.6 16.1 表8B 試驗編號 50 51 52 產物/描述/評價 Ref 48 製造速率,磅/小時 66 61 61 熔體流動速率 3.6 3.7 3.6 橡膠顆粒尺寸 5.54 6.2 7. 76 拉伸模量 211040 221570 211820 屈服拉伸強度 2430 2510 2380 斷裂拉伸強度 3020 3100 3130 斷裂伸長率 64.1 44.1 44.7 撓曲模量 224000 240550 230200 撓曲強度 5070 5390 5340 溶脹指數 11 10 10 凝膠:橡膠 3. 26 3.47 3.61 RPVF 36.4 36.7 40.2 ESCR勒性,未處理 1128 1016 ESCR韌性,經處理 246 50 ESCR,殘餘韌性% 21.8 4.9 實施例9 使用具有三個或更多個水準活塞流動反應器(其中轉 化反應器為上述水準活塞流動反應器之一)的方法可實現 改善的RPVF和橡膠利用。使上述轉化反應器隔離以及使其 在受控的攪拌速率下運行的能力可改善對橡膠顆粒尺寸和 期望形態的控制。較小且較多反應器的優點是控制在轉化 處的攪拌速率的能力。多個HPF反應器的使用能夠實現更 受控的方法,其中可在更大程度上控制預轉化、轉化和後 21 201217402 轉化反應的量,從而能夠實現對橡膠顆粒尺寸、橡膠利用 和所得形態以及物理性質的更大控制。以本文中描述的方 法,使用處於降低溫度下的脫揮器預熱器,可進一步改善 ESCR值。在-個實施例中,以本文中描述的方法使用在 480卞或更低溫度下的脫揮器預熱器,可改善escr值。實 施例可包括使用在46(TF或更低、任選地44〇τ或更低、任 選地43(TF或更低、任選地響F或更低的溫度下的脫揮器 預熱器。 凝膠百分數和溶脹指數的測定 高抗沖聚笨乙烯的溶脹指數是作為(用甲苯提取的)溶 脹的凝膠的重量與幹凝膠的重量之比測定的。凝膠含量是 作為(在聚苯乙烯樣品的甲苯提取之後的)凝膠的幹重除以 樣品的總重量測定的。其通常是作為百分數報導的。 接枝百分數和橡膠百分數的測定 通過甲乙酮(MEK)提取將.遊離的聚苯乙烯(未接枝的、 未交聯的)與“不溶物’,(即,橡膠、接枝和交聯的聚苯乙 烯)分離。將所得殘留物溶解在二氯甲院中並且測定橡膠百 分數。 曰接枝:橡膠的t匕率百分數定義為接枝的聚苯乙稀的重 量除以橡耀的重量乘以1〇〇。 HIPS中的橡膠百分數是通過使橡膠中的雙鍵與過量的 虱化碘(IC1)反應測定的。經歷該反應的橡膠的量是通過 用標準化的硫代硫酸鹽對過量的⑹進行反駭並且與 IC1的空白滴定的比較而確定的。 22 201217402 ESCR的試驗測定 說明:在65。匚(149±2卞)的烘箱中,將拉伸樣條暴露 於人造黃油(無鹽)不同時間。通過測量伸長百分數確定 ESCR。通過暴露和未暴露的拉伸樣條的比較確定使用殘餘 韌性的ESCR。如本文中使用的使用殘餘韌性的ES(:r等級 為.0-9差;10-19好;20-30非常好;及>3〇優異。 樣品製備:樣品根據ASTM程式壓縮模塑。優選地在不 使用有機矽脫模劑的情況下模塑十個拉伸樣條。油、澗滑 月曰或者其他化學品不應與待測試的樣條接觸。不應觸摸待 暴露於人造黃油的表面。在測試之前,應讓樣條搁置丨小 時。 測試:將拉伸樣條置於樣品夾具中。然後,用薄的人 造黃油塗層塗抹上述樣條從它們的中點±1”(即,鋪展上述 樣品的約2"範圍 > 將上述樣品暴露在65〇c (149卞)的烘箱 中。一將樣品從烘箱取出就將人造黃油從樣品上擦去。在 根據ASTM程式測定伸長百分率之前,讓樣品擱置1〜2小 時。根據下式計算最大應變(ASTM D-790 ):應變= (6Dd/L2), 其中D=中心梁的最大撓度(偏轉,deflecti〇n),L=支架跨 度(support span) ’和d =樣品的深度或厚度。 RPVF的實驗測定 最終的聚合物複合材料經歷動態力學分析(DMA)。由 DMA 結果’利用 Stephane Jouenne 等在 Macromolecules 2008’第41卷,第9823-9830頁中的出版物中討論的技術, 可計算橡膠相體積分數RPVF。 23 201217402 測試標準和注釋 1) 懸臂梁衝擊通過ASTM D256測試 2) 溶體流動通過astm D1238測試 3) 橡膠顆粒尺寸(單位,微米)由Malvern2⑽〇 使用甲乙酮作為溶劑測量。 儀 4) 拉伸性質通過ASTM D638測試 5) 撓曲性質通過astm D790測試 6) 溶服指數、凝膠含量和接枝描述于本文中和 利4, m,210中,將該專利完全引入本文作為參考。、國專 7) ESCR值根據美國專利N〇 4,777,2l〇測定,將該 利完全引入本文作為參考。 8) 所有測試通過…以標準進行,除非另有說明。 取決於上下文’本文中對本“發明,,的所有介 一些情況下僅有關-些具體實施例。在其他情況下,其可 有關在申請專利範圍的一個或多個(但不一定是全部)中所 列舉的主題。雖然以上有關本發明的實施例、變型和實施 例(包括其以使本領域普通技術人員在將該專利令的資訊 與可用的資訊和技術結合時能夠進行和利用本發明),本發 明不限於僅這些具體實施例、變型和實施例。在不脫離本 發明基本範圍的情況下’可想到本發明的其他和進一步的 實施例、變型和實施例’並且本發明的範圍由所附申請專 利範圍確定。 24 201217402 【圖式簡單說明】 圖1為現有技術的HIPS製造方法的示意圖。 圖2為本發明的HPFIR方法的實施例的示意圖。 圖3為包含混合罐的本發明的hpF丨R方法的實施例的 示意圖。 圖4為實施例1中使用的現有技術方法的示意圖。 圖5為實施例2的第一試驗中使用的方法的示意圖。 圖6為實施例2的第二試驗中使用的方法的示意圖。 圖7為實施例3的試驗中使用的方法的示意圖。 圖8為殘餘韌性百分數隨Rps變化的圖。 圖9為在多反應器方法中的反應器内容物以及所得產 物粒料的平均顆粒尺寸分佈的圖。 圖1〇為ESCR值(殘餘韌性%)對脫揮器預熱器溫度的 【主要元件符號說明】 R100〜連續攪拌罐式反應器(CSTR)預轉化反應器; H-1〜加熱器; 200~反應器系統; 215〜輸出管線; 225~管線; 235〜管線; 2 4 5〜管線; 2 5 5〜管線;Flexural strength 5130 5020 5380 Swelling index 11 12 12 Gel: Rubber 3.41 3.24 3.10 RPVF 39.9 35.5 33.8 ESCR serviceability, untreated 1125 954 ESCii toughness, treated 288 154 ESCR, residual toughness % 25.6 16.1 Table 8B Test No. 50 51 52 Product / Description / Evaluation Ref 48 Manufacturing rate, pounds per hour 66 61 61 Melt flow rate 3.6 3.7 3.6 Rubber particle size 5.54 6.2 7. 76 Tensile modulus 211040 221570 211820 Yield tensile strength 2430 2510 2380 Tensile strength at break 3020 3100 3130 Elongation at break 64.1 44.1 44.7 Flexural modulus 224000 240550 230200 Flexural strength 5070 5390 5340 Swelling index 11 10 10 Gel: Rubber 3. 26 3.47 3.61 RPVF 36.4 36.7 40.2 ESCR, untreated 1128 1016 ESCR toughness Treated 246 50 ESCR, Residual Toughness % 21.8 4.9 Example 9 Improved RPVF can be achieved using a method with three or more level piston flow reactors, wherein the conversion reactor is one of the above-described level piston flow reactors And rubber utilization. The ability to isolate the above described conversion reactor and operate it at a controlled agitation rate improves the control of rubber particle size and desired morphology. The advantage of a smaller and more reactor is the ability to control the rate of agitation at the conversion. The use of multiple HPF reactors enables a more controlled process in which the amount of pre-conversion, conversion, and post-return 21 201217402 conversion reactions can be controlled to a greater extent, enabling rubber particle size, rubber utilization, and resulting morphology. Greater control of physical properties. The ESCR value can be further improved by using the devolatilizer preheater at a reduced temperature in the manner described herein. In one embodiment, the escr value can be improved by using a devolatilizer preheater at 480 Torr or lower in the methods described herein. Embodiments may include using a devolatilizer preheating at 46 (TF or lower, optionally 44 Torr or lower, optionally 43 (TF or lower, optionally F or lower) Determination of Gel Percentage and Swelling Index The swelling index of high impact polystyrene is determined as the ratio of the weight of the swollen gel (extracted with toluene) to the weight of the xerogel. The dry weight of the gel after the toluene extraction of the polystyrene sample is determined by dividing the total weight of the sample. It is usually reported as a percentage. The percentage of grafting and the percentage of rubber are determined by extraction with methyl ethyl ketone (MEK). The polystyrene (ungrafted, uncrosslinked) is separated from the "insolubles" (ie, rubber, grafted, and crosslinked polystyrene). The resulting residue is dissolved in the dichlorocarbyl and The percentage of rubber is determined. 曰 Grafting: The percentage of rubber t匕 is defined as the weight of the grafted polystyrene divided by the weight of the rubber yoke multiplied by 1 〇〇. The percentage of rubber in HIPS is obtained by making the double bond in the rubber. Determined by reaction with excess deuterated iodine (IC1) The amount of rubber that undergoes this reaction is determined by rumination of excess (6) with standardized thiosulfate and comparison to blank titration of IC1. 22 201217402 ESCR test determination: at 65. 匚 (149 ± In an oven of 2 卞), the tensile splines were exposed to margarine (no salt) for different times. The ESCR was determined by measuring the percent elongation. The ESCR using residual toughness was determined by comparison of exposed and unexposed tensile splines. The ES using residual toughness used herein (: r grade is .0-9 poor; 10-19 is good; 20-30 is very good; and > 3 is excellent. Sample preparation: Samples are compression molded according to ASTM program. Ten stretched splines are molded without the use of an organic germanium release agent. Oil, slick or other chemicals should not be in contact with the sample to be tested. Do not touch the margarine to be exposed. The surface should be left in the sample for a few hours before the test. Test: Place the stretched strip in the sample holder. Then apply a thin margarine coating to the spline from their midpoint ±1” (ie Spread the above Approx. 2"Range> Expose the above sample to an oven at 65 ° C (149 ° C.) Remove the margarine from the sample as soon as the sample is removed from the oven. Allow the sample to be sampled before determining the percent elongation according to the ASTM program. Hold for 1 to 2 hours. Calculate the maximum strain (ASTM D-790) according to the following formula: strain = (6Dd/L2), where D = maximum deflection of the center beam (deflection, deflecti〇n), L = bracket span (support span 'and d = depth or thickness of the sample. Experimental determination of RPVF The final polymer composite undergoes dynamic mechanical analysis (DMA). From DMA results 'Using Stephane Jouenne et al. in Macromolecules 2008' Vol. 41, pp. 9823-9830 The technique discussed in the publication can calculate the rubber phase volume fraction RPVF. 23 201217402 Test Standards and Notes 1) Cantilever beam impact is tested by ASTM D256 2) Solution flow is tested by astm D1238 3) Rubber particle size (units, micrometers) is measured by Malvern 2 (10) using methyl ethyl ketone as solvent. Instrument 4) Tensile properties tested by ASTM D638 5) Flexural properties tested by astm D790 6) Dissolution index, gel content and grafting are described herein and in 4, m, 210, the patent is fully incorporated herein. Reference. , National Standard 7) The ESCR value is determined according to U.S. Patent No. 4,777,2, which is incorporated herein by reference. 8) All tests are carried out by standard... unless otherwise stated. Depending on the context, 'in this context, the present invention, in some cases, is only relevant to some specific embodiments. In other cases, it may be related to one or more (but not necessarily all) of the scope of the patent application. The subject matter recited, although the embodiments, variations, and embodiments of the present invention are described above, including that the present invention can be used and utilized by those of ordinary skill in the art, in conjunction with the information and techniques available. The invention is not limited to the specific embodiments, modifications and embodiments, and other and further embodiments, modifications and embodiments of the invention are conceivable without departing from the basic scope of the invention and the scope of the invention is The scope of the appended patent application is determined. 24 201217402 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a prior art HIPS manufacturing method. Fig. 2 is a schematic view of an embodiment of the HPFIR method of the present invention. Fig. 3 is a view of the present invention including a mixing tank. Schematic diagram of an embodiment of the hpF丨R method. Figure 4 is a schematic diagram of a prior art method used in Example 1. Figure 5 is an implementation A schematic diagram of the method used in the first experiment of Example 2. Figure 6 is a schematic diagram of the method used in the second experiment of Example 2. Figure 7 is a schematic diagram of the method used in the experiment of Example 3. Figure 8 is the residual toughness Figure Percentage as a function of Rps. Figure 9 is a graph of the reactor contents and the average particle size distribution of the resulting product pellets in the multi-reactor process. Figure 1 is the ESCR value (% residual toughness) versus devolatilizer [Main component symbol description of heat exchanger temperature] R100~Continuous stirred tank reactor (CSTR) pre-conversion reactor; H-1~heater; 200~reactor system; 215~output pipeline; 225~ pipeline; 235~ Pipeline; 2 4 5~ pipeline; 2 5 5~ pipeline;
Rl〇l~CSTR轉化反應器; DV-卜脫揮器; 21 0〜第一線性流動反應器; 220〜聚合反應器; 230~第二聚合反應器; 240〜第三聚合反應器; 250~第四聚合反應器; 25 201217402 300〜反應器系統; 302〜聚合物反應器 3 0 5〜進料管線; 306〜混合罐; 310〜線性流動預轉化反應器; 315〜管線; 316〜電動機; 318〜攪拌器; 320~第一聚合反應器; 322~電動機; 324〜攪拌器; 325〜管線; 330~第二聚合反應器; 335~管線; 340〜第三聚合反應器; 345〜管線; 350〜第四聚合反應器; 3 5 5〜管線。 26Rl〇l~CSTR conversion reactor; DV-de-vortexing device; 21 0~first linear flow reactor; 220~polymerization reactor; 230~second polymerization reactor; 240~third polymerization reactor; ~4th polymerization reactor; 25 201217402 300~reactor system; 302~polymer reactor 3 0 5~feed line; 306~mix tank; 310~ linear flow pre-conversion reactor; 315~ pipeline; 316~ motor 318~ stirrer; 320~first polymerization reactor; 322~motor; 324~ stirrer; 325~ pipeline; 330~second polymerization reactor; 335~ pipeline; 340~third polymerization reactor; 350~4th polymerization reactor; 3 5 5~ pipeline. 26
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40803510P | 2010-10-29 | 2010-10-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201217402A true TW201217402A (en) | 2012-05-01 |
TWI518099B TWI518099B (en) | 2016-01-21 |
Family
ID=46216258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100139290A TWI518099B (en) | 2010-10-29 | 2011-10-28 | A method for achieving high rubber efficiency in a high impact polystyrene reactor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102504119B (en) |
TW (1) | TWI518099B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103992739B (en) * | 2014-05-24 | 2016-07-06 | 南京武家嘴船舶制造有限公司 | A kind of hull processes technique |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6177512B1 (en) * | 1999-08-02 | 2001-01-23 | Chevron Chemical Company Llc | High impact polystyrene containing polyphenylene oxide |
-
2011
- 2011-10-28 TW TW100139290A patent/TWI518099B/en active
- 2011-10-28 CN CN201110333600.6A patent/CN102504119B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102504119B (en) | 2016-01-20 |
TWI518099B (en) | 2016-01-21 |
CN102504119A (en) | 2012-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2971351B2 (en) | Multi-stage bulk process for production of ABS graft copolymer with controlled grafting, phase inversion and crosslinking | |
JPH03103414A (en) | Manufacture of rubber-toughened aromatic monovinylidene polymer | |
EP0015752B1 (en) | A continuous mass polymerization process for the production of polyblends having a dispersed rubber phase with bimodal rubber particle size | |
EP1943306A1 (en) | Low temperature initiators for improving the rubber phase volume of hips formulations | |
TW200914523A (en) | Compositions exhibiting high ESCR and comprising monovinylidene aromatic polymer and ethylene/alpha-olefin copolymer | |
EP1245599A2 (en) | Process for manufacturing impact resistant monovinylaromatic polymers | |
JPS6356895B2 (en) | ||
DK2315784T3 (en) | Process for the synthesis of functionalized poly (1,3-alkadienes) and their use in the production of impact-resistant vinyl aromatic polymers | |
US9481740B2 (en) | Methods of making high impact polystyrene | |
US6177512B1 (en) | High impact polystyrene containing polyphenylene oxide | |
US9527945B2 (en) | Increasing rubber phase volume in rubber-modified polystyrene | |
EP2358773B1 (en) | Rubber-reinforced vinyl aromatic (co)polymer, having an optimum balance of physico-mechanical properties and a high gloss | |
TW201217402A (en) | adopting a continuous stirred-tank reactor (CSTR) and/or a plug flow reactor (PFR) to prepare high impact polystyrene (HIPS), thereby the product stream can have an ESCR value at least 10% toughness retained with smaller than 10 wt% rubber content | |
CN105745238B (en) | Rubber-modified styrene resin and use piece, food containers and lid, particularly for foodstuff containers made of the resin | |
JP2006528713A (en) | Styrenic resin composition and articles produced therefrom | |
EP2230260A1 (en) | Rubber modified monovinylaromatic polymer composition | |
CN104610694B (en) | Styrene resin composition and molded article obtained therefrom | |
US6221969B1 (en) | Method for producing rubber-modified styrenic resin having high gloss and high impact strength | |
CN104558429B (en) | Polyphenylacetylene combination production method and thus obtained polyphenylacetylene combination | |
KR101469268B1 (en) | Continuous process for preparing thermoplastic resin from conjugated diene and thermoplastic resin prepared therefrom | |
EP1353967B1 (en) | High impact polystyrene containing polyphenylene oxide | |
EA040086B1 (en) | RUBBER-MODIFIED MONOVINYLAROMATIC POLYMER, METHOD FOR ITS PRODUCTION, PRODUCT CONTAINING RUBBER-MODIFIED MONOVINYLAROMATIC POLYMER, AND METHOD FOR PRODUCING THE SPECIFIED PRODUCT | |
CN106867127A (en) | Thermoplastic resin composition and molded article formed therefrom |