201216757 六、發明說明: 【發明所屬之技術領域】 本發明主要係有關於無線通訊網路,特別是有關於在 無線通訊系統中停止次要細胞(SCell)的方法與裝置。 【先前技術】 隨著由行動網路通訊設備大量資料的收送需求急速地 成長,傳統行動語音通訊網路已經進化成使用資料封包的 網際網路協定來進行溝通。此網際網路協定資料封包通訊 可提供行動通訊設備使用者IP電話、多媒體、群播、以及 隨選通訊服務。 進化通用移動通訊系統陸面無線存取網路(evolved universal terrestrial radio access network,£-11丁尺人1^)係為一 種正在制定的標準網路架構。進化通用移動通訊系統陸面 無線存取網路系統可提供高效能處理能力進而實現上述提 到的IP電話以及多媒體服務。第三代通信系統標準組織 (3rd Generation Partnership Project,3GPP)正在進行進化通 用移動通訊系統陸面無線存取網路系統的標準化作業。因 此’第三代通信系統標準組織的標準目前正在不斷的改進 中’以使其更完善。 【發明内容】 本發明提供一種停止次要細胞(SCell)的方法,適用在 無線通訊系統網路中,上述方法包括:啟動關於一 Sceu 的一隨機存取(RA)程序;以及當關於SCell.的RA程序已啟 動或關於SCell的RA程序正在進行,則不隱含地停止 SCell 〇 0990l66-TW-Dl/9l32-A43367TW/fmal 3 201216757 本發明提供一種通訊裝置’適用於一無線通訊系統 中,通訊裝置包括:一控制電路;一處理器,配置於控制 電路中;以及一記憶體,配置於控制電路中,且麵接至處 理器;其中處理器用以執行儲存在上述記憶體中之一程式 碼進行下列步驟,包括:啟動關於一 SCell的一隨機存取 (RA)程序;當有關於SCell的RA程序已啟動或關於SCdl 的RA程序正在進行,則不隱含地停止sCell。 【實施方式】 在本發明之實施例中的無線通訊系統與設備係為採用 支援廣播服務之一種無線通訊系統,無線通訊系統廣泛地 用來提供多樣的通訊服務,如語音、數據等,這些系統可 建立在分碼多重存取(CDMA)、分時多重存取(tdma)、正 交分頻多重存取(OFDMA)、3GPP長期演進技術(lte)無線 存取、3GPP長期演進進階技術(LTE-A)、3GPP 2超行動 寬頻(Ultra Mobile Broadband)、全球互通微波存取(WiMax) 及其他調變技術上。 仔細而言’實施例中的無線通訊系統設備可設計成支 援一或多數規格,如由第三代通信系統標準組織所制定的 規格’其中包括文件R2-105220 (載波聚合導論)、rp_i〇〇380 (載波聚合配置與多重時序提前的發展)、3GPP TS 36.331, V9.3.0 (2010-06) (E-UTRA; RRC 協定規格)、3GPP TS 36.321,V9.3.0 (2010-06) (E-UTRA; MAC 協定規格)、 R2-104626 (在 TAT 逾時 UE 的行為)、3GPP TS 36,321, V10.2.0 (E-UTRA; MAC 協定規格)、R2-1 13578 (載波聚合 協議的更新)、3GPP TS 36.331 V10.2.0 (E-UTRA; RRC 協定 0990166^TW-Dl/9132-A43367TW/fmal 4 201216757 規格)以及 3GPP TS 36.213 V10.2.0 (E-UTRA;實體層程 序)’上述的規格與文件明確地被納入本案中。 第1圖係根據本發明之一實施例的示意圖。其係以進 化通用移動通訊系統陸面無線存取(E-UTRA)的網路架構 100為例。該E-UTRAN系統也可被參照為長期演進技術或 長期演進進階技術,該E-UTRAN —般包括進化基地台 (evolved node B, eNB) 102,作用相似於行動語音通訊網路 的基地台,每個進化基地台102之間由X2介面連接,進 化基地台102透過無線介面連接至端點或是用戶設備 104,並透過S1介面連接至移動管理實體(MME)或服務閘 道(S-GW)106。 在第2圖與第3圖中,根據本發明之一實施例,長期 演進技術系統被分為控制平面(control plane)108的協定堆 疊(第3圖)與用戶平面(user plane)110的協定堆疊(第2 圖)’控制平面108的功能為在用戶設備與進化基地台間交 換控制信號,用戶平面110的功能為在用戶設備與進化基 地台間傳送用戶資料。根據第2圖與第3圖,控制平面108 與用戶平面110皆包括一封包資料壓縮協定(PDCP)層、一 無線連結控制(RLC)層、一媒體存取控制(MAC)層、以及一 實體(PHY)層,控制平面更多包括無線資源控制(rrc)層以 及#存取(NAS)層,非存取層用以執行進化封包系統(bps) 承載管理、認證、以及安全控制。 實體層利用無線傳輸技術來提供訊息傳輸服務,其可 對應至開放式通訊系統(0SI)的第一層。該實體層透過傳輸 通道連接媒體存取控制層,媒體存取控制層與實體層之間 〇99〇 ] 66-TW-D1 /9132-A43 3 67TW/fmal 5 201216757 的資料交換是藉由通過傳輸通道所完成,傳輸通道係透過 一實體層中特定處理資料的方法來定義傳輸通道。 媒體存取控制層的功能為透過一邏輯通道接收來自無 線連結控制層之資料,再經由一適當的傳輸通道將資料送 至貫體層。另外,媒體存取控制層也可透過傳輸通道接收 來自實體層的資料,再經由一適當的邏輯通道將資料送至 無線連結控制層。此外,媒體存取控制層加入額外訊息至 由邏輯通道接收到的資料,以及分析從傳輸通道接收到的 資料裡所附加的額外訊息,藉此執行適當的運作,另外媒 體存取控制層也控制隨機存取程序。 媒體存取控制層與無線連結控制層之間透過〆邏輯通 道連接,無線連結控制層用以控制邏輯通道的設定與釋 放,並可運作在確認模式(AM)運作模式、' 部:來說,無線連 運作模式、或透明模式(TM)運作模式。, 地^ 科 卓元(SDU)分割 結控制層用以將由上層接收到的服務資 成適當大小’反之亦然。再者,無線連沾 ·’、、、冰思、、,。控制層用以負責 透過自動重傳請求(ARQ)進行錯誤修正。 、 封包資料壓縮協定層設置於無線連結控制層的上方, 其功能為執行以IP封包形式所傳送之眘 貢枓的標頭壓縮,並 且即使g進化基地台由於用戶設備移動而提供服務變更 時,亦可無損地傳送資料。 層在端點與 無線資源控制層只被定義在控制平面,無線資源控制 層用以控制邏輯通道、傳輸通道以及實體__無^承 載(Radio Bearers)的建立、重設置以及釋玫。此處,無線 承載意指由開放式通訊系統層的第- 0990166-TW-Dl/9132-A43367TW/final 201216757 Ε-UTRAN之間傳輸的服務。如果在用戶設備的無線資源控 制層與無線網路的無線資源控制層之間建立一條無線資源 控制連結’則表不用戶設備是處在無線資源控制連結 (RRC—CONNECTED).,否則用戶設僙則處.在無線資源 控制閒置(RRC_IDLE)模式。 第4圖為一多輸入多輸出(ΜΙΜΟ)系統2〇〇中之一傳送 系統210(亦可為-存取網路)與—接㈣統25()(亦可為一 存取端點或用戶設備)的實施例。在傳送系統⑽中,資料 串流的流量資料係由資料源212提供至傳送資料處理器 在-實施例中,每-資料串流都是經由各自的傳送天 線來傳送,傳送資料處理器214用以根據為資料串所選擇 之-歡編碼方式’為每―資料串進行格式化、編碼、以 及分流流量資料,以便提供編碼資料。 每-資料串流的編碼資料係利用正交分頻多工技術與 引導數據⑽。t data)進行多工,引導數據是短由已知的方式 =處理之-已知=數據樣本,也可被用在接收系統對其 測通道響應。接著’根據為資料串流選用之—特定的調 變方式(BPSK、QPSK、M_PSK或M_QAM),對每一資料串 ::已多工的引導數據與加密資料進行調變,用以提供調 變^元。每一資料串流的傳輸速率、編如及調變係由處 理器230所執行的指令來決定。 所有資料串流的調變符元被傳送到傳送多輸入 正交分頻叫,錢乡符元做處理(如 〇99〇166-tw-〇1/913,A4336~ 夕輸出處理 $220 接著提供 7 201216757 Ντ個調變符元流給Ντ個傳送器(TMTR)222a至222t。在某 些實施例中’傳送多輸入多輪出處理器22〇在資料串流的 符元與即將傳送之符元經由的天線上使用波束形成之權重 方法。 每一傳送器222接收與處理各自的符元流,以便提供 一或多個類比訊號,並且更進一步處理(如放大、濾波以及 升頻)類比訊號’用以提供適合透過多輸入多輸出通道傳送 的調變訊號,傳送器222a至222t之Ντ個調變訊號各自經 由Ντ個天線224a至224t傳送。 接收系統250中’傳送的調變訊號經由Nr個天線252a 至252r接收,且將經由每一天線252接收的訊號各自提供 給接收器(RCVR)254a至254r。每一接收器254處理(如放 大、濾波以及降頻)各自接收的訊號,將這些處理過的信號 數位化用以提供樣本,並進一步處理樣本用以提供相對應 之“所接收的”符元流。 接收資料處理器260根據一特別的接收處理技術,接 收並處理NR個接收器254的NR個所接收的符元流,進而 提供Ντ個“偵測到的”符元流。接著,接收資料處理器 260進行解調變、匯流以及解碼每—個偵測到的符元流, 以還原資料串的流量資料。接收資料處理器26〇的處理過 程與傳送系統210的傳送多輸入多輸出處理器220和傳送 資料處理器214所執行的處理過程剛好相反。 處理器270週期性地決定使用哪一預編碼矩陣(下面討 淪),處理器270訂定一反向連結訊息(reverse Hnk message) ’該反向連結訊息包括一矩陣索引畑扣咖 0990166-TW-D1/9132-A43367TW/fmal 8 201216757 部分以及一秩值(rank value)部分。 反向連結訊息包含多種與通訊連結及/或接收到的資科 串流相關的訊息,該反向連結訊息接著由傳送資料處理器 238進行處理,再經由調變器28〇調變,通過傳送器25如 至254r處理,並回傳至傳送系統21〇,其中該傳送資料處 理盗238也接收來自資料源236之數個資料串流的流量資 料。 在傳送系統210中,來自接收系統25〇的調變訊號由 天線224接收,再通過接收器222處理,由解調器240解 調,再由接收資料處理器242得到接收系統250所傳送的 反向連結訊息。接著,由處理器23〇決定使用哪一預編碼 矩陣,以決定波束形成之權重,再處理所得到的訊息。 根據一實施例,第5圖係為一通訊設備之簡化示意圖。 無線通訊系統中的通訊設備300可被用來實現第丨圖中的 用戶設備104 ’並且此無線通訊系統最好是使用長期演進 技術或長期演進進階技術的無線通訊系統。通訊設備3〇〇 包括一輸入裝置302、一輸出裝置3〇4、一控制電路306、 一中央處理器308、一記憶體31〇、一程式碼312、以及一 收發器314。程式碼312包括應用層和控制平面1〇8的所 有層以及用戶平面110的所有層,除了實體層沒有包括在 内。控制電路306透過中央處理器308執行記憶體31〇中 儲存的程式碼312,由此控制通訊設備3〇〇的運作。通訊 没備300可以接收由用戶透過輸入裝置3〇2(如鍵盤或小型 鍵盤)輸入的信號,亦可以透過輸出裝置3〇4(如螢幕或放大 益)輸出影像及聲音。收發器可用來接收及傳送無線訊 0990166-TW-Dl/9132-A43367TW/fmal 0 201216757 號,傳遞所接收的訊號至控制電路306,並且在無線傳輸 的狀態下輸出控制電路306產生的信號。 長期演進技術(1^丁£)下行鏈路(〇〇\¥1111111<:,01^)的傳送機 制係根據正交分頻多重存取(Orthogonal Frequency Division Multiple Access,OFDMA)所實現,長期演進技術 (LTE)上行鏈路(Uplink,UL)的傳送機制係根據單一載波 (Single-Carrier,SC)離散傅立葉轉換(Discrete Fourier Transform,DFT)擴展正交分頻多重存取(DFT-S-OFDMA) 或單一載波分頻多工存取所實現。然而,長期演進進階技 術(Long Term Evolution Advanced, LTE-A)是設計用來達到 在UL與DL中更高頻寬的需求。為了提供更高頻寬的需 求’長期演進進階技術使用載波聚合(CA)技術來聚合多個 分量載波。具有載波聚合之接收及/或傳送能力的用戶設備 能夠在多個分量載波上同步接收及/或傳送。載波係可藉由 頻寬與中心頻率所定義。 在實體層中使用的數個實體控制通道與載波聚合運作 有關。實體下行鏈路控制通道(PDCCH)告知用戶設備有關 傳呼通道(PCH)與下行鏈路共享通道(dl-SCH)的資源分 配’以及與下行鏈路共享通道有關的HARQ資訊。PDCCH 有可能帶有上行鏈路排程允諾,該上行鏈路排程允諾用以 告知用戶設備有關上行鏈路傳送的資源分配。實體下行鏈 路共享通道(PDSCH)帶有DL-SCH資料。實體控制格式指 標通道(PCFICH)告知用戶設備有關用在PDCCH之OFDM 符元的數目’ PCFICH在每一副框都會傳送。實體混合式 自動重送請求指標通道(PHICH)帶有對應於上行鏈路傳送 0990166-TW-D1 /9132-A43 367TW/final ]〇 201216757 的HARQ ACK/NACK信號。實體上行鏈路控制通道 (PUCCH)帶有上行鏈路控制資訊如對應於下行鏈路傳送的 HARQ ACK/NACK信號、排程請求以及通道品質指標 (CQI) 〇實體上行鏈路共享通道(pusCH)帶有上行鏈路共享 通道(UL-SCH)資料。 在長期演進進階技術中,主要細胞(PCell)為在主要頻 率中運作的服務細胞或在交遞過程中指定作為主要細胞的 細胞’其中該主要頻率係用戶設備可執行初始連結建立程 序或連結重建程序的頻率。用戶設備也利用主要細胞以產 生用以作為安全功能的參數以及用以作為上層系統資訊如 NAS行動資訊的參數。次要細胞(SCell)包括在次要頻率運 作的服務細胞’該次要頻率係於RRC連結建立後即可配置 給用戶設備的頻率’用以提供額外的無線資源以實現載波 聚合。當SCell被加入到用戶設備的配置中時,與該SCell 運作相關的系統資訊係利用專用信號提供給用戶設備。基 本上PCell包括一上行鏈路分量載波(c〇與一下行鏈路 CC ;而配置到用戶設備的scell可包括一下行鏈路CC或 是在一下行鏈路CC之外再加一上行鏈路CC。 為使來自不同UE的傳送訊號能夠正交,在LTE中的 上行鏈路傳送訊號須在eNB之訊框時間抵達eNB的接收 端。在LTE-A中’為了上行鏈路時間校準(alignment),配 置給UE的PCell與SCell可能需要不同的時序提前值 (Timing Advance value)。當時間尚未校準或因為一段時間 沒有資料交換,因而eNB不維持時間校準時,則必須利用 一隨機存取(RA)程序以獲取時間校準。因此,RA程序係用 0990166-TW-D1 /9132-A43367TW/final η 201216757 於自一閒置狀態(RRC一IDLE)之初始存取;用於無線連結失 敗時;用於換手過程;用於當可能因為電力節省運作而導 致UL非同步後,在RRC_CONNECTED狀態時有DL或 UL資料抵達;用於有UL資料抵達而沒有位於pucCH上 可用的專用排程請求。RA程序有兩種形式,競爭式的RA 程序以及非競爭式的RA程序。競爭式的RA程序可應用至 上述四種情況,然而非競爭式的RA程序僅可應用至換手 程序以及DL資料抵達。 有關競爭式與非競爭式的RA程序之相關細節記載在 3GPP TS36.321 V9.3.0 與 3GPP TS 36.321 V10.2.0。在競爭 式的RA程序中,上行鏈路時間校準係由四種階段 (four-phase)的程序所建立,其中包括ra前導資料 (Preamble)、RA 回應(Response)、訊息 3(Msg3)與競爭解決 (Contention Resolution)。在RA前導資料的階段中,UE自 細胞中之可利用序列組中隨機選取RA前導資料序列,且 在隨機存取通道(Random Access channel, RACH)中傳送 RA前導資料序列。在RA回應階段中,eNB偵測前導資 料的傳送,預測UE上行鏈路傳送的時間,以及以RA回 應回報給UE,以提供UE正確的時序提前值以進行接下來 的傳送,以及一第一允諾用以進行上行鏈路傳送。在MSg3 的階段中,因為隨機選擇的RA前導資料並未能用以判斷 UE的身分,UE使用RA回應提供的允諾以提供UE身分 給eNB以及第一已排程的上行鍵路傳送。在競爭解決階段 中,eNB接收Msg3。因為即使多個正在競爭的ue傳送 Msg3,eNB也只會接收到一個Msg3,eNB藉由回應傳送 0990166-TW-D1 /9132-A43 367TW/final 12 201216757 該Msg3的UE以解決競爭。當UE接收到回應(例如一 =CH傳送或-包含UE身分的dl_sch傳送)時,证則 疋R A私序已經成功完成且上行鏈路時間已經校準完成。 RA程序可能會關聯到等待時間。舉例而言,UE可 月b而要等待RA回應或競爭解決或在一後移時間作扣“迀 tjme)等待。後移時間於下面描述。若ue因為傳送的前導 ^料並未被eNB所债測到或UE沒收到競爭解決而導致尺八 嘗^失敗’則UE必需重新開始RA前導資料階段。為了避 免競爭以及負載,在UE再次嘗試傳送RA前導資料前,舰 可告知UE需要等待一段時間。用以控制等待時間的參數 為後移參數,係eNB藉由RA回應提供。如此,UE再次嘗 試傳送RA前導資料前,eNB可強迫UE等待一段時間。1 移時間的最大長度係eNB藉由後移參數告知UE,上述方 法係eNB藉由傳送一指標給UE。後移參數藉由單位為毫 秒的實際等待時間來表示且該等待時間係稱為後移時間。 因此’後移時間定義為RA嘗試失敗後至UE可再次嘗試之201216757 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to wireless communication networks, and more particularly to methods and apparatus for stopping secondary cells (SCells) in a wireless communication system. [Prior Art] With the rapid growth in the demand for large amounts of data from mobile network communication devices, traditional mobile voice communication networks have evolved into Internet protocols using data packets for communication. This Internet Protocol Data Packet Communication provides IP telephony, multimedia, multicast, and on-demand communication services for mobile device users. The evolved universal terrestrial radio access network (£11 ft. 1^) is a standard network architecture being developed. The evolutionary universal mobile communication system land-based wireless access network system provides high-performance processing capabilities to implement the IP telephony and multimedia services mentioned above. The 3rd Generation Partnership Project (3GPP) is undergoing standardization of the evolutionary general-purpose mobile communication system land-based wireless access network system. Therefore, the standards of the third-generation communication system standards organization are currently being improved to make them more perfect. SUMMARY OF THE INVENTION The present invention provides a method of stopping a secondary cell (SCell) suitable for use in a wireless communication system network, the method comprising: initiating a random access (RA) procedure for a Sceu; and when referring to the SCell. The RA program has been started or the RA program for SCell is in progress, and the SCell is not implicitly stopped. 〇0990l66-TW-Dl/9l32-A43367TW/fmal 3 201216757 The present invention provides a communication device 'suitable for use in a wireless communication system, The communication device includes: a control circuit; a processor disposed in the control circuit; and a memory disposed in the control circuit and connected to the processor; wherein the processor is configured to execute a program stored in the memory The code performs the following steps, including: initiating a random access (RA) procedure for an SCell; when an RA procedure for the SCell has been initiated or an RA procedure for the SCdl is in progress, the sCell is not implicitly stopped. [Embodiment] A wireless communication system and device in an embodiment of the present invention is a wireless communication system that supports a broadcast service, and a wireless communication system is widely used to provide various communication services such as voice, data, and the like. Can be established in code division multiple access (CDMA), time division multiple access (tdma), orthogonal frequency division multiple access (OFDMA), 3GPP long term evolution (LTE) wireless access, 3GPP long-term evolution advanced technology ( LTE-A), 3GPP 2 Ultra Mobile Broadband, Worldwide Interoperability for Microwave Access (WiMax) and other modulation technologies. In detail, the wireless communication system equipment in the embodiment can be designed to support one or more specifications, such as those specified by the third generation communication system standards organization, including the document R2-105220 (Introduction to Carrier Aggregation), rp_i〇〇 380 (carrier aggregation configuration and development of multiple timing advance), 3GPP TS 36.331, V9.3.0 (2010-06) (E-UTRA; RRC protocol specification), 3GPP TS 36.321, V9.3.0 (2010-06) (E- UTRA; MAC protocol specification), R2-104626 (behavior of TAT time-out UE), 3GPP TS 36,321, V10.2.0 (E-UTRA; MAC protocol specification), R2-1 13578 (update of carrier aggregation protocol), 3GPP TS 36.331 V10.2.0 (E-UTRA; RRC Protocol 0990166^TW-Dl/9132-A43367TW/fmal 4 201216757 Specifications) and 3GPP TS 36.213 V10.2.0 (E-UTRA; Physical Layer Procedure) 'The above specifications and documents are clear The land was included in the case. Figure 1 is a schematic illustration of an embodiment of the invention. For example, the network architecture 100 of the Land Mobile Radio Access (E-UTRA) of the Universal Mobile Communication System is taken as an example. The E-UTRAN system can also be referred to as a long term evolution technology or a long term evolution advanced technology. The E-UTRAN generally includes an evolved node B (eNB) 102, which acts like a base station of a mobile voice communication network. Each evolution base station 102 is connected by an X2 interface, and the evolution base station 102 is connected to the endpoint or user equipment 104 through a wireless interface, and is connected to the mobility management entity (MME) or the service gateway (S-GW) through the S1 interface. ) 106. In FIGS. 2 and 3, according to an embodiment of the present invention, the long term evolution technology system is divided into a protocol stack (Fig. 3) of the control plane 108 and a user plane 110. Stacking (Fig. 2) The function of control plane 108 is to exchange control signals between the user equipment and the evolution base station. The function of user plane 110 is to transfer user data between the user equipment and the evolution base station. According to FIG. 2 and FIG. 3, both the control plane 108 and the user plane 110 include a packet data compression protocol (PDCP) layer, a radio link control (RLC) layer, a media access control (MAC) layer, and an entity. (PHY) layer, the control plane further includes a radio resource control (rrc) layer and a #access (NAS) layer, and the non-access layer is used to perform evolutionary packet system (bps) bearer management, authentication, and security control. The physical layer utilizes wireless transmission technology to provide messaging services that correspond to the first layer of the Open Communications System (OSI). The physical layer is connected to the media access control layer through the transmission channel, and the data exchange between the media access control layer and the physical layer is performed by transmitting through the transmission path of the device 6699〇] 66-TW-D1 /9132-A43 3 67TW/fmal 5 201216757 The channel is completed, and the transmission channel defines the transmission channel by a method of processing data in a physical layer. The function of the media access control layer is to receive data from the wireless connection control layer through a logical channel, and then send the data to the cross layer through an appropriate transmission channel. In addition, the media access control layer can also receive data from the physical layer through the transmission channel, and then send the data to the wireless connection control layer via an appropriate logical channel. In addition, the media access control layer adds additional information to the data received by the logical channel, and analyzes additional information attached to the data received from the transmission channel to perform appropriate operations, and the media access control layer also controls Random access procedure. The media access control layer and the wireless link control layer are connected through a logical channel, and the wireless link control layer is used to control the setting and release of the logical channel, and can operate in an acknowledge mode (AM) mode of operation, 'part: Wireless mode of operation, or transparent mode (TM) mode of operation. SDU segmentation The junction control layer is used to fund the services received by the upper layer to the appropriate size and vice versa. In addition, wireless smear · ',,, ice thinking,,,. The control layer is responsible for error correction through automatic repeat request (ARQ). The packet data compression protocol layer is disposed above the wireless link control layer, and functions to perform header compression of the Shen Gongyi transmitted in the form of an IP packet, and even if the g evolution base station provides a service change due to user equipment movement, Data can also be transmitted without loss. The layer is defined only in the control plane at the endpoint and the RRC layer. The RRC layer is used to control the establishment, reset, and release of logical channels, transport channels, and entity __Radio Bearers. Here, the wireless bearer means a service transmitted between the - 0990166-TW-Dl/9132-A43367TW/final 201216757 Ε-UTRAN of the open communication system layer. If a radio resource control link is established between the radio resource control layer of the user equipment and the radio resource control layer of the radio network, the user equipment is in the radio resource control link (RRC-CONNECTED). Otherwise, the user setting Then, in the radio resource control idle (RRC_IDLE) mode. Figure 4 is a transmission input system 210 (also can be - access network) and - (4) system 25 () in a multiple input multiple output (ΜΙΜΟ) system 2 (also can be an access endpoint or An embodiment of a user equipment). In the transport system (10), the traffic data of the data stream is provided by the data source 212 to the transport data processor. In the embodiment, each data stream is transmitted via a respective transmit antenna, and the transport data processor 214 is used. Formatting, encoding, and shunting traffic data for each data string based on the selected encoding method for the data string to provide encoded data. The coded data for each data stream uses orthogonal frequency division multiplexing techniques and boot data (10). t data) To perform multiplex, the boot data is short by known methods = processed - known = data samples, and can also be used in the receiving system to respond to its channel. Then, according to the specific modulation method (BPSK, QPSK, M_PSK or M_QAM) selected for the data stream, each data string: the multiplexed boot data and the encrypted data are modulated to provide modulation. ^ yuan. The transmission rate, coding, and modulation of each data stream is determined by the instructions executed by processor 230. All data stream modulation symbols are transmitted to the transmission multi-input orthogonal frequency division, and the Qianxiang symbol is processed (such as 〇99〇166-tw-〇1/913, A4336~ 夕 output processing $220, then provide 7 201216757 Ντ modulating elements are streamed to Ντ transmitters (TMTR) 222a through 222t. In some embodiments, 'transmitting multiple input multiple rounds out processor 22' is the symbol of the data stream and the symbol to be transmitted. A beamforming weighting method is used on the passing antennas. Each transmitter 222 receives and processes a respective symbol stream to provide one or more analog signals, and further processes (eg, amplifies, filters, and upconverts) analog signals' To provide a modulated signal suitable for transmission through the multiple input multiple output channel, the τ modulating signals of the transmitters 222a to 222t are respectively transmitted via the Ντ antennas 224a to 224t. The receiving system 250 transmits the modulated modulated signals via Nr The antennas 252a through 252r receive and provide signals received via each antenna 252 to receivers (RCVR) 254a through 254r. Each receiver 254 processes (e.g., amplifies, filters, and downconverts) the respective received signals, These processed signals are digitized to provide samples and further processed to provide a corresponding "received" symbol stream. Receive data processor 260 receives and processes NR received according to a particular receive processing technique NR received symbol streams of 254, which in turn provide τ "detected" symbol streams. Next, receive data processor 260 performs demodulation, sinking, and decoding each detected symbol stream. To restore the traffic data of the data string, the processing of the receiving data processor 26 is exactly the opposite of the processing performed by the transmitting MIMO processor 220 and the transport data processor 214 of the transmitting system 210. The processor 270 periodically Determining which precoding matrix to use (the following discussion), the processor 270 sets a reverse Hnk message. The reverse link message includes a matrix index 畑 咖 0 0990166-TW-D1/9132- A43367TW/fmal 8 201216757 part and a rank value part. The reverse link message contains a variety of messages related to the communication link and/or the received streaming stream. The reverse link message is then processed by the transport data processor 238, modulated by the modulator 28, processed by the transmitter 25 to 254r, and transmitted back to the transport system 21, where the data is processed. 238 also receives traffic data from a plurality of data streams of data source 236. In transmission system 210, modulation signals from receiving system 25A are received by antenna 224, processed by receiver 222, and demodulated by demodulator 240. Then, the receiving data processor 242 obtains the reverse link message transmitted by the receiving system 250. Next, the processor 23 determines which precoding matrix to use to determine the weight of the beamforming and processes the resulting message. According to an embodiment, FIG. 5 is a simplified schematic diagram of a communication device. The communication device 300 in the wireless communication system can be used to implement the user equipment 104' in the figure and the wireless communication system is preferably a wireless communication system using long term evolution technology or long term evolution advanced technology. The communication device 3A includes an input device 302, an output device 3〇4, a control circuit 306, a central processing unit 308, a memory unit 31, a program code 312, and a transceiver 314. The code 312 includes all layers of the application layer and control planes 〇8 and all layers of the user plane 110, except that the physical layer is not included. The control circuit 306 executes the code 312 stored in the memory 31 through the central processing unit 308, thereby controlling the operation of the communication device 3. The communication device 300 can receive signals input by the user through the input device 3〇2 (such as a keyboard or a small keyboard), and can also output images and sound through the output device 3〇4 (such as a screen or a zoom). The transceiver can be used to receive and transmit the wireless 0990166-TW-Dl/9132-A43367TW/fmal 0 201216757, transmit the received signal to the control circuit 306, and output the signal generated by the control circuit 306 in the state of wireless transmission. The long-term evolution technology (1^丁£) downlink (〇〇\¥1111111<:, 01^) transmission mechanism is based on Orthogonal Frequency Division Multiple Access (OFDMA), long-term evolution The technology (LTE) uplink (UL) transmission mechanism is based on Single-Carrier (SC) Discrete Fourier Transform (DFT) extended orthogonal frequency division multiple access (DFT-S-OFDMA) ) or single carrier frequency division multiplexing access. However, Long Term Evolution Advanced (LTE-A) is designed to meet the needs of higher bandwidths in UL and DL. In order to provide higher frequency bandwidth requirements, the Long Term Evolution Advanced Technology uses Carrier Aggregation (CA) technology to aggregate multiple component carriers. User equipment with carrier aggregation reception and/or transmission capabilities is capable of simultaneous reception and/or transmission over multiple component carriers. The carrier system can be defined by the bandwidth and the center frequency. The number of entity control channels used in the physical layer is related to the carrier aggregation operation. The Physical Downlink Control Channel (PDCCH) informs the user equipment about the resource allocation of the paging channel (PCH) and the downlink shared channel (dl-SCH) and the HARQ information related to the downlink shared channel. The PDCCH is likely to carry an uplink scheduling grant that is used to inform the user equipment about the resource allocation for the uplink transmission. The Physical Downlink Shared Channel (PDSCH) carries DL-SCH data. The Entity Control Format Indicator Channel (PCFICH) informs the user equipment that the number of OFDM symbols used in the PDCCH 'PCFICH is transmitted in each sub-frame. Entity Hybrid The Automatic Repeat Request Indicator Channel (PHICH) has a HARQ ACK/NACK signal corresponding to the uplink transmission 0990166-TW-D1 /9132-A43 367TW/final ]〇 201216757. The Physical Uplink Control Channel (PUCCH) carries uplink control information such as HARQ ACK/NACK signals corresponding to downlink transmissions, scheduling requests, and Channel Quality Indicators (CQI) 〇 Entity Uplink Shared Channel (pusCH) With uplink shared channel (UL-SCH) data. In the long-term evolution advanced technology, a primary cell (PCell) is a serving cell operating in a primary frequency or a cell designated as a primary cell during a handover process, wherein the primary frequency user device can perform an initial link establishment procedure or link The frequency of rebuilding the program. The user equipment also utilizes the primary cells to generate parameters for use as security functions and as parameters for upper system information such as NAS action information. The secondary cell (SCell) includes the serving cell at the secondary frequency 'this secondary frequency is the frequency that can be configured for the user equipment after the RRC connection is established' to provide additional radio resources for carrier aggregation. When the SCell is added to the configuration of the user equipment, system information related to the operation of the SCell is provided to the user equipment using dedicated signals. Basically, the PCell includes an uplink component carrier (c〇 and the downlink CC; and the scell configured to the user equipment may include a downlink CC or an uplink in addition to a downlink CC) CC. In order for the transmission signals from different UEs to be orthogonal, the uplink transmission signal in LTE must arrive at the receiving end of the eNB at the frame time of the eNB. In LTE-A, 'for uplink time alignment (alignment) The PCell and SCell configured for the UE may require different Timing Advance values. When the time has not been calibrated or there is no data exchange for a period of time, and thus the eNB does not maintain time calibration, then a random access must be utilized ( RA) program to obtain time calibration. Therefore, the RA program uses 0990166-TW-D1 /9132-A43367TW/final η 201216757 for initial access from an idle state (RRC-IDLE); for wireless connection failure; In the handoff process; used for DL or UL data arrival in the RRC_CONNECTED state when UL is not synchronized due to power saving operation; used for UL data arrival without PcapCH available With scheduling requests, the RA program has two forms, a competitive RA program and a non-competitive RA program. The competitive RA program can be applied to the above four cases, but the non-competitive RA program can only be applied to the change. Hand program and DL data arrival. Details about the competitive and non-competitive RA procedures are documented in 3GPP TS 36.321 V9.3.0 and 3GPP TS 36.321 V10.2.0. In competitive RA procedures, uplink time alignment It is established by a four-phase procedure, including ra preamble, RA response, message 3 (Msg3) and contention resolution. In the stage of RA preamble data The UE randomly selects the RA preamble data sequence from the available sequence groups in the cell, and transmits the RA preamble data sequence in a random access channel (RACH). In the RA response phase, the eNB detects the preamble data. Transmit, predict the time of UE uplink transmission, and report the RA response to the UE to provide the UE with the correct timing advance value for the next transmission, and a first promise for uplink In the phase of MSg3, because the randomly selected RA preamble data is not used to judge the identity of the UE, the UE uses the promise provided by the RA response to provide the UE identity to the eNB and the first scheduled uplink link transmission. . In the contention resolution phase, the eNB receives Msg3. Because even if multiple competing ues transmit Msg3, the eNB will only receive one Msg3, and the eNB will respond to the UE by responding by transmitting 0990166-TW-D1 /9132-A43 367TW/final 12 201216757. When the UE receives a response (eg, a =CH transmission or a dl_sch transmission containing the UE identity), the certificate 疋R A private sequence has been successfully completed and the uplink time has been calibrated. The RA program may be associated with latency. For example, the UE may wait for the RA response or contention resolution or wait for a "后tjme" waiting time at the back time. The back-shift time is described below. If the ue is not transmitted by the eNB The UE may restart the RA preamble data phase if the debt is detected or the UE does not receive the contention resolution. In order to avoid competition and load, the ship may inform the UE that it needs to wait for a period of time before the UE attempts to transmit the RA preamble again. The parameter used to control the waiting time is the backward parameter, which is provided by the eNB through the RA response. Thus, before the UE attempts to transmit the RA preamble again, the eNB may force the UE to wait for a period of time. 1 The maximum length of the handover time is borrowed by the eNB. The UE is informed by the backward shift parameter, and the foregoing method is performed by the eNB by transmitting an indicator to the UE. The backward shift parameter is represented by an actual waiting time in milliseconds and the waiting time is called a back shifting time. After the RA fails, the UE can try again.
間的時間。根據 3GPP TS 36.321 V9.3.0 以及 3GPP TS 36·321 V10.2.0 ’後移時間的範圍介於〇到96〇毫秒間。 在非競爭式的RA程序中,上行鏈路時間校準以兩種 階段的程序建立,其中包括RA前導資料階段與RA回應階 段。在RA前導資料階段中,UE使用一預先指定的RA前Time between. The range of back-shift time according to 3GPP TS 36.321 V9.3.0 and 3GPP TS 36·321 V10.2.0 is between 〇 and 96 〇 milliseconds. In the non-competitive RA procedure, uplink time alignment is established in two phases, including the RA preamble phase and the RA response phase. In the RA preamble data phase, the UE uses a pre-specified RA before
導資料序列且在RACH上傳送RA前導資料序列。在rA 回應中,eNB偵測前導資料傳送,預測UE的上行鏈路傳 送時間,以及以RA回應回報給UE ’ eNB提供UE正確的 時序提前值以進行接下來的傳送,以及一第一允諾用以進 0990166-TW-D1/9132-A43367TW/fmal iq 201216757 行上行鏈路傳送。當UE接收到RA回應時,UE則認定RA 程序已經成功完成且上行鏈路時間已經校準完成。 當使用多個時序提前(TA)時,SCell可能需要執行RA 程序以取得其對應的TA值’且會有複數服務細胞可以執 行RA程序。舉例而言’每一服務細胞使用ra程序取得 TA值對應於一 TA群組,該TA群組中的服務細胞共享同 一 TA。因此,至少PDCCiI命令可引發在sCeU上的RA 程序。在引發在SCell上的RA程序的一可能實施例中,首 先eNB配置一 SCeU,其需要不同於PCell的τα值,接著 eNB啟動該SCeU,然後eNB傳送PDCCH命令以引發在 SCell上的RA程序,使得SCell的IJL時間可被校準。 SCell的停止計時器用以隱含地停止(impUcitly deactivate) —已配置的SCell。停止計時器的運作記載於 R2-105220 (載波聚合導論)與 3GPP TS 36.321, V10.2.0 (E-UTRA; MAC協定規格)。當§cell啟動時,SCell的停止 計時器則會啟動。根據文件R2_1〇4626所記載,停止計時 器具有一有限的範圍介於10到5〇毫秒間,或根據文件 3GPP TS 36.331 V10.2.0 (E-UTRA; RRC 協定規格)所記 載’停止計時器具有一有限的範圍介於2〇到128〇毫秒間。 因為在SCell上執行的ra程序可能會關聯到一等待時間 (例如等待RA回應、競爭解決或當在後移時間〇_96〇毫秒 中)’當在SCell上執行隨機存取程序期間,UE有可能因為 停止計時器逾時而隱含地停止SCeU、然而,此為不預期的 行為因為RA程序會被中斷,_需要再次被啟動,且 RA矛王序也需要再次被弓|發。因此需要額外的信號以及在 0990166-T W-D1 /9132-A43 367TW/final 201216757 SCell的UL時間校準上造成更多的延遲。為了避免隱含地 停止SCeU’eNB可能需要持續傳送下行鏈路指派或上行鏈 路允諾給SCell以重新啟動停止計時器,而該作法會造成 信號負載及資源浪費。 根據本發明實施例,當8(>11上的RA程序已啟動或正 在進行時,SCell不應該被隱含地停止。第6圖所示係根據 本發明實施例之停止SCell的方法400。在步驟402中,啟 動關於SCell的RA程序。在步驟404中,當關於scell的 RA已啟動或關於SCeU的RA正在進行,則不隱含地停止 SCell。因此,可以防止正在進行RA程序的SCdl隱含地 停止。 根據另一實施例,在步驟404中不隱含地停止SCell 的步驟包括當RA程序在SCell上啟動時,UE重新啟動或 啟動SCell的停止計時器。重新啟動或啟動SCeU的停止計 時器的時間可為當接收到該SCell的PDCCH命令時。當利 用SCell的實體RA通道(prACh)傳送前導資料時或當命令 實體層用SCell的PRACH傳送前導資料時,1}£可重新啟 動SCell的停止計時器。所有上述步驟可被部分戋完全地 執行。 根據另一實施例,在步驟404中不隱含地停止SCdi 的步驟包括當RA程序在SCell上啟動時,UE停止或暫^ (stop or suspend)SCell的停止計時器。在以下的情兄中 可不重新啟動或啟動SCell的.停止計時器:(1、+” 在 SCell 上 的RA程序正在進行中;(2)在SCell上接收到指配給一隨 機存取無線網路暫時識別符(RA-RNTI)的一實辦 、隨下行鍵路 0990166-TW-Dl/9132-A43367TW/final 15 201216757 控制通道(PDCCH);(3)在SCell上接收到指配給一細胞無 線網路暫時識別符(C-RNTI)的一 PDCCH。當RA程序成功 完成時’ SCell的停止計時器可被重新啟動、啟動或繼續。 在SCell上的RA私序執行期間,當UE開始執行後移,SCell 的停止計時器可被停止或暫停。然而,當後移停止時,UE 則可重新啟動或繼續SCell的停止計時器。當SCeu上 程序的競爭解決計時器(contention res〇lutiori timer)被啟動 時,SCell的停止計時器可被停止或暫停。此外,當競爭解 決計時器被停止或逾時’ UE可重新啟動或繼續SCeli的停 止計時器。所有上述步驟可被部分或完全地執行。 根據另一實施例’在步驟404中不隱含地停止scei】 的步驟包括一 UE設定SCell的停止計時器的值為無限,或 停止SCell的隱含停止機制。當RA程序成功完成時:⑴ SCell之停止計時器的值可被設定為eNB所配置的值;或(2) 可恢復SCell的隱含停止機制,或(3) SCell的停止計時哭 可被啟動或重新啟動。所有上述步驟可被部分或完全地執 行。 根據另一實施例,在步驟404中不隱含地停止SCell 的步驟包括若對應於SCell的時間校準計時器(time alignment timer)不運作時,UE則不啟動SCell的停止計時 器。當成功完成SCell啟動後在SCell上所進行的第一Ra 程序時,可啟動SCell的停止計時器。所有上述步驟可被 部分或完全地執行。 根據另一實施例,在步驟404中不隱含地停止SCell 的步驟包括若SCell上的RA程序正在進行中或對應於 0990166-TW-D1 /9132-A43 367TW/final 16 201216757 SCell的RA知序正在進行中,而關於SCeu的停止計時器 逾時’ UE則不停止SCeU。SCell上的RA程序意指RA程 序的RA前導資料在SCell上傳送。在另一實施例中,對應 於SCell的RA程序意指RA程序的RA前導資料在另_ SCell上傳送,其中SCell與另—SCell屬於相同群組。 當停止計時器逾時,SCell的停止計時器可被啟動或重新啟 動。所有與SCe11有關的HARQ緩衝器可能不會因為停止 °十%益逾時而被清空。停止計時器可為 sCellDeactivationTimer。RA程序可為競爭式的RA程序或 者非观爭式的RA程序。若在SCell上的RA程序或對應於 SCell的RA程序非正在進行,當停止計時器逾時,停止計 時器則可能不會被啟動或重新啟動。若SCell上的RA程序 或對應於SCell的RA程序非正在進行,#停止計時器逾 時,與SCell有關的HARQ緩衝器可被清空。當停止計時 器逾時,與SCe11有關的HARQ缓衝器可被清空(根據3Gpp TS 36.213 V10.2.0 “E_UTRA;實體層過程,,中定義的時 間的傳送時間期間(TTI)不會遲於n+8個副框,其中停止計 時器在副框n逾時)。若SCell上的RA程序或對應於SCdl 的RA程序非正在進行,當停止計時器逾時,則可停止 SCell(根據 3GPP TS 36.213 V10.2.0 “E-UTRA ;實體層過 程”中定義的時間的傳送時間期間(ΤΉ)不會遲於n+8 ;= 框,其中停止計時器在副框η逾時)。SCell可能屬於一 /a 軸’該ΤΑ群只具有—(有上行鏈路的)已啟動服務細胞或 一(有上行鏈路的)服務細胞,即SCell。所有上述步 部分或完全地執行。 , 〇99〇166-TW-Dl/9132-A43367TW/f]nal 17 201216757 根據另一實施例,在步驟404中不隱含地停止SCell 的步驟包括當第一 SCell用以執行RA程序時,在RA程序 完成前,eNB不致能或永遠不致能第一 SCell的隱含停止 功能。當第一 SCell用以執行RA程序時,eNB可不致能或 永遠不致能第一 SCell的隱含停止功能。然而,在RA程序 完成後,eNB可致能第一 SCell的隱含停止功能。此外, eNB可致能不用以執行RA程序的第二SCell的隱含停止功 能。不致能第一 SCell的停止功能亦即不配置有關於第一 SCell 的 sCellDeactivationTimer 值(例如不提供 sCellDeactivationTimer資訊單元(IE)),或設定關於第一The data sequence is guided and the RA preamble sequence is transmitted on the RACH. In the rA response, the eNB detects the preamble data transmission, predicts the UE's uplink transmission time, and provides the UE 'eNB with the correct timing advance value for the next transmission in the RA response report, and a first promise. Take the 0990166-TW-D1/9132-A43367TW/fmal iq 201216757 line uplink transmission. When the UE receives the RA response, the UE determines that the RA procedure has been successfully completed and the uplink time has been calibrated. When multiple timing advances (TAs) are used, the SCell may need to execute the RA procedure to obtain its corresponding TA value' and there will be multiple serving cells that can perform the RA procedure. For example, 'each serving cell uses the ra program to obtain a TA value corresponding to a TA group, and the serving cells in the TA group share the same TA. Therefore, at least the PDCCiI command can cause the RA program on sCeU. In a possible embodiment of initiating the RA procedure on the SCell, the eNB first configures an SCeU that requires a τα value different from the PCell, then the eNB initiates the SCeU, and then the eNB transmits a PDCCH order to trigger the RA procedure on the SCell, The IJL time of the SCell can be calibrated. The SCell's stop timer is used to implicitly stop (impUcitly deactivate) - the configured SCell. The operation of the stop timer is described in R2-105220 (Introduction to Carrier Aggregation) and 3GPP TS 36.321, V10.2.0 (E-UTRA; MAC Protocol Specification). When §cell starts, SCell's stop timer will start. According to the document R2_1〇4626, the stop timer has a limited range between 10 and 5 〇 milliseconds, or according to the document 3GPP TS 36.331 V10.2.0 (E-UTRA; RRC protocol specification), the stop timer has a limited The range is between 2 〇 and 128 〇 milliseconds. Because the ra program executing on the SCell may be associated with a wait time (eg, waiting for an RA response, contention resolution, or when in the back-shift time 〇 _96 〇 milliseconds) 'When the random access procedure is performed on the SCell, the UE has The SCeU may be implicitly stopped because the stop timer expires. However, this is an unexpected behavior because the RA program is interrupted, _ needs to be started again, and the RA spears need to be sent again. Therefore, additional signals are required and more delay is caused by the UL time calibration of the 0990166-T W-D1 /9132-A43 367TW/final 201216757 SCell. In order to avoid implicitly stopping the SCeU' eNB, it may be necessary to continuously transmit a downlink assignment or an uplink grant to the SCell to restart the stop timer, which would result in wasted signal load and resources. In accordance with an embodiment of the present invention, the SCell should not be implicitly stopped when the RA program on 8 (>11 has been initiated or is in progress. Figure 6 illustrates a method 400 of stopping the SCell in accordance with an embodiment of the present invention. The RA procedure for the SCell is initiated in step 402. In step 404, when the RA for the scell has been initiated or the RA for the SCeU is in progress, the SCell is not implicitly stopped. Therefore, the SCdl that is performing the RA procedure can be prevented. In accordance with another embodiment, the step of not implicitly stopping the SCell in step 404 includes the UE restarting or starting the SCell's stop timer when the RA program is started on the SCell. Restarting or starting the SCeU The time of stopping the timer may be when the PDCCH command of the SCell is received. When the preamble data is transmitted by using the physical RA channel (prACh) of the SCell or when the command entity layer transmits the preamble data by using the PRACH of the SCell, the The stop timer of the SCell is started. All of the above steps can be partially performed completely. According to another embodiment, the step of not implicitly stopping SCdi in step 404 includes when the RA program is started on the SCell When the time is up, the UE stops or suspends the SCell's stop timer. In the following brothers, the SCell may not be restarted or started. Stop timer: (1, +) The RA program on the SCell is in progress. (2) receiving an assignment to the random access wireless network temporary identifier (RA-RNTI) on the SCell, with the downlink key 0990166-TW-Dl/9132-A43367TW/final 15 201216757 control Channel (PDCCH); (3) receiving a PDCCH assigned to a Cell Radio Network Temporary Identifier (C-RNTI) on the SCell. When the RA procedure is successfully completed, the SCell stop timer can be restarted and started. Or continue. During the RA private sequence execution on the SCell, the SCell's stop timer can be stopped or paused when the UE starts performing the backward shift. However, when the back shift stops, the UE can restart or continue the SCell stop timing. When the contention res〇lutiori timer of the program on the SCeu is started, the stop timer of the SCell can be stopped or suspended. In addition, when the contention resolution timer is stopped or expired, the UE can be restarted. Or continue SCeli Stopping the timer. All of the above steps may be performed partially or completely. According to another embodiment, the step of not implicitly stopping scei in step 404 includes a UE setting the stop timer value of the SCell to infinity, or stopping SCell's implicit stop mechanism. When the RA procedure is successfully completed: (1) the value of the SCell stop timer can be set to the value configured by the eNB; or (2) the implicit stop mechanism of the SCell can be restored, or (3) the stop timing of the SCell can be started. Or reboot. All of the above steps can be performed partially or completely. According to another embodiment, the step of not implicitly stopping the SCell in step 404 includes not suspending the SCell stop timer if the time alignment timer corresponding to the SCell is not operational. When the first Ra program is performed on the SCell after the SCell is successfully started, the SCell stop timer can be started. All of the above steps can be performed partially or completely. According to another embodiment, the step of not implicitly stopping the SCell in step 404 includes if the RA procedure on the SCell is in progress or corresponds to the OR sequence of 0990166-TW-D1 /9132-A43 367TW/final 16 201216757 SCell Ongoing, while the stop timer for SCeu expires 'UE' does not stop SCeU. The RA procedure on the SCell means that the RA preamble of the RA procedure is transmitted on the SCell. In another embodiment, the RA procedure corresponding to the SCell means that the RA preamble of the RA procedure is transmitted on another SCell, where the SCell and the other SCell belong to the same group. When the stop timer expires, the SCell's stop timer can be started or restarted. All HARQ buffers associated with SCe11 may not be emptied because of the stop time. The stop timer can be sCellDeactivationTimer. The RA program can be a competitive RA program or a non-obtrusive RA program. If the RA program on the SCell or the RA program corresponding to the SCell is not in progress, when the stop timer expires, the stop timer may not be started or restarted. If the RA program on the SCell or the RA program corresponding to the SCell is not in progress, the #STOP timer expires, and the HARQ buffer associated with the SCell can be cleared. When the stop timer expires, the HARQ buffer associated with SCe11 can be emptied (according to 3Gpp TS 36.213 V10.2.0 "E_UTRA; physical layer process, the time of transmission time (TTI) defined in the time is no later than n +8 sub-frames, where the stop timer expires in sub-frame n.) If the RA program on the SCell or the RA program corresponding to SCdl is not in progress, the SCell may be stopped when the stop timer expires (according to 3GPP TS 36.213 V10.2.0 "E-UTRA; physical layer procedure" The time of transmission time (ΤΉ) is not later than n+8; = box, where the stop timer expires in sub-frame η. SCell may belong A/a axis 'This group has only - (uplink) activated service cells or one (uplink) service cells, ie SCell. All of the above steps are partially or completely performed. , 〇99〇 166-TW-Dl/9132-A43367TW/f]nal 17 201216757 According to another embodiment, the step of not implicitly stopping the SCell in step 404 includes when the first SCell is used to execute the RA procedure, before the RA procedure is completed The eNB does not enable or never enable the implicit stop function of the first SCell. When the first SCell is used to perform the RA procedure, the eNB may not enable or never enable the implicit stop function of the first SCell. However, after the RA procedure is completed, the eNB may enable the implicit stop function of the first SCell. In addition, the eNB may enable an implicit stop function of the second SCell that does not need to execute the RA procedure. The stop function of the first SCell is not enabled, that is, the sCellDeactivationTimer value for the first SCell is not configured (eg, the sCellDeactivationTimer information element is not provided (IE) )), or set about the first
SCell 的 sCellDeactivationTimer 的值為無限。SCell 執行 RA 程序意指在SCell上傳送RA程序的RA前導資料。所有上 述步驟可被部分或完全地執行。 對於上述所有的實施例,可在RA程序中使用一專用 的前導資料。再者’ SCell的RA程序可藉由SCell的PDCCH 命令所啟動。此外,於RA程序執行期間中eNB不使用指The value of SCell's sCellDeactivationTimer is infinite. The SCell implementation of the RA procedure means that the RA preamble of the RA program is transmitted on the SCell. All of the above steps can be performed partially or completely. For all of the above embodiments, a dedicated preamble can be used in the RA procedure. Furthermore, the 'SCell's RA procedure can be initiated by the SCell's PDCCH command. In addition, the eNB does not use the finger during the execution of the RA procedure.
配給C-RNTI的PDCCH傳送在SCell上的DL指派或UL 允諾。SCell的PDCCH命令亦可在pcell上接收。對於上 述所有的實施例,在一實施例中所述之每一程序或過程可 適用至上述另一實施例中。所有上述步驟可被部分或完全 地執行。 第5圖係為-通訊設備之簡化示意圖。無線通訊系統 中的通訊設備300在一實施例中可為UE。通訊設備綱包 括儲存在記憶體310中的程式碼312。CPU308執行程式碼 312以啟動有關於SCell的RA程序,當有關於scdi的ra 0990166-TW-Dl/9132-A43367TW/final ]g 201216757 程序已啟動或有關於SCell的RA程序正在進行中則不啟動 SCell。CPU308也可執行程式碼312以執行上述多種實施 例所述之方法的步驟。 以上·^又洛使用多種層面描述。顯然的,本文的教示可 以多種方式實現,而在範例中揭露之任何特定架構或功能 僅為一代表性之狀況。根據本文之教示,任何熟知此技藝 之人士應理解在本文揭露之各層面可獨立實作或兩種以上 之層面可以合併實作。舉例說明,某種裝置或某種方法可 遵照前文中提到任何方式數目之層面來實作或實現。此 外,一裝置之實作或一種方法之實現可用任何其他架構、 或功能性、又或架構及功能性附加於或不同於在前文所討 論的一種或多種層面上。再舉例說明以上觀點,在某些情 況,併行之頻道可基於脈衝重複頻率所建立。又在某些情 況,併行之頻道也可基於脈波位置或偏位所建立。在某些 情況,併行之頻道可基於時序跳頻建立。在某些情況,併 行之頻道可基於脈衝重複頻率、脈波位置或偏位、以及時 序跳頻建立。 熟知此技藝之人士將了解訊息及信號可用多種不同科 技及技巧展現。舉例’在以上描述所#可能引㈣之數據、 &令'命令 '訊息、信號、位元、符元、以及碼片(响) 可以伏特、電流、電磁波、磁場或磁粒、光場或光粒、或 以上任何組合所呈現。 熟知此技蟄之人士更會了解在此描述各種說明性之邏 輯區塊、模組、處理器、裝置、電路、以及演算步驟盘以 上所揭露之各種情況可料切體(例如㈣料或其他 0990166-TW-Dl/9132-A43367TW/fmal 10 201216757 技術設計之數位實施、類比實施、或兩者之組合)、與指示 作連結之各種形式之程式或與指示作連結之設計碼(在内 文中為方便而稱作”軟體”或”軟體模組”)、或兩者之組 合。為清楚說明此硬體及軟體間之可互換性,多種具描述 性之元件、方塊、模組、電路及步驟在以上之描述大致上 以其功能性為主。此功能以硬體或軟體型式實作將視加注 在整體系統上之特定應用及設計限制而定。熟知此技藝之 人士可為每一特定應用將描述之功能以各種不同方法實 作,但此實作之決策不應被解讀為偏離本文所揭露之範圍。 此外,多種各種說明性之邏輯區塊、模組、及電路以 及在此所揭露之各種情況可實施在積體電路(ic)、存取終 端、存取點;或由積體電路、存取終端、存取點執行。積 體電路可由一般用途處理器、數位信號處理器(DSP)、特定 應用積體電路(ASIC)、現場可編程閘列(FPGA)或其他可編 程邏輯裝置、離散閘或電晶體邏輯、離散硬體元件、電子 元件、光學元件、機械元件、或任何以上之組合之設計以 完成在此文内描述之功能;並可能執行存在於積體電路 内、積體電路外、或兩者皆有之執行碼或指令。一般用途 處理器可能是微處理器,但也可能是任何常規處理器、控 制器、微控制器、或狀態機。處理器可由電腦設備之組合 所構成,例如:數位訊號處理器(DSP)及一微電腦之組合、 多組微電腦、一組至多組微電腦以及一數位訊號處理器核 心、或任何其他類似之配置。 在此所揭露程序之任何具體順序或分層之步驟純為一 舉例之方式。基於設計上之偏好,必須了解到程序上之任 0990166-TW-D1 /9132-A43 367TW/fmal 20 201216757 2八體順序或分層之步被重新安排,然 =的範圍内。伴隨之方法權利要求以-示= .或階層所^之元件,也因此不應被此所展示之特定順序 與文中所揭露型式有關之方法或演算法之步驟可 Ά施於一麻*g# _j. 人 哎體’―處理器所執行之軟體模組,或兩者之袓 (包括可執行之指令以及相關資料)以及其他 記憶體、紀憶體(例如隨機存取記憶體、快閃 可抹除可編可抹除可編程唯讀記憶體、電子式 唯讀光碑、隐體、暫存$、硬碟、可移除式磁碟、 可讀取錯存==2==1可其:型式存在之電腦 例如-可由儲在 儲存媒可輕合至-台機器, 技坡人 存媒介讀取資料(例如編碼)或編寫 存媒介之電腦/處理器(在本文中t = j貝科至儲 二ί及)。一樣本儲存媒介亦可整:至處理心處理 積體電路可駐於用戶=電,观)。此特定應用 —用戶設傷之一離散^器:樣錢存媒介 任何適合之電腦程式可包括心 s A型式中, 露型式相關之編碼之電腦可®至多個在本文中所揭 中’-個電腦程式產品可包:成。在某些情況 雖然本發明已以較佳實::枓層。 限定本發明,任何熟習此技 路如上’然其並非用以 和範圍内,當可作些許之更 在不脫離本發明之精神 範圍當視後附之申請專利範’因此本發明之保護 0990166-TW-D1/9132-A43367TW/final 1 疋者為準。 21 201216757 【圖式簡單說明】 第1圖所示為Ε-UTRAN的網路架構之一實施例; 第2圖所示為用戶平面協定堆疊之一實施例; 第3圖所示為控制平面協定堆疊之一實施例; 第4圖所示為傳送與接收系統的簡化方塊圖之一實施 例; 第5圖所示為用戶設備的方塊圖之一實施例; 第6圖所示為停止SCell的方法之一實施例。 【主要元件符號說明】 100〜Ε-UTRAN的網路架構; 102、eNB〜進化基地台.; 104、UE〜用戶設備; 106〜移動管理實體/服務閘道; 10 8〜控制平面; 110〜用戶平面; 200〜多輸入多輸出系統; 210〜傳送系統; 212、236〜資料源; 214、238〜傳送資料處理器; 220〜傳送多輸入多輸出處理器; 222a〜222t〜傳送器/接收器; 224a〜224t、252a〜252r 〜天線; 230、270〜處理器; 232、272、310〜記憶體; 240〜解調器; 242、260〜接收資料處理器; 250〜接收系統; 0990 ] 66-丁 W-D1 /9132-A43367TW/final 22 201216757 254a〜254r〜接收器/傳送器; 280〜調變器; 300〜通訊設備; 302〜輸入裝置; 304〜輸出裝置; 306〜控制電路; 308〜中央處理器; 312〜程式碼; 314〜收發器; 400〜方法; 402、404〜步驟; E_UTRAN~進化通用通訊系統陸面無線存取網路; MAC〜媒體存取控制層; MME〜移動管理實體; NAS〜非存取層 PDCP〜封包資料壓縮協定層; RLC〜無線連結控制層; PHY〜實體層; RRC〜無線資源控制層; S-GW〜服務閘道。 S1、X2〜介面' 0990166-TW-D1/9132-A43367TW/fmal 23The PDCCH assigned to the C-RNTI transmits a DL assignment or UL grant on the SCell. The PDCCH command of the SCell can also be received on the pcell. For all of the above embodiments, each of the procedures or processes described in one embodiment can be applied to the other embodiment described above. All of the above steps can be performed partially or completely. Figure 5 is a simplified schematic of a communication device. The communication device 300 in the wireless communication system can be a UE in one embodiment. The communication device includes code 312 stored in memory 310. The CPU 308 executes the program code 312 to start the RA program with respect to the SCell, and does not start when there is a ra 0990166-TW-Dl/9132-A43367TW/final]g 201216757 program for the scdi or the RA program for the SCell is in progress. SCell. The CPU 308 can also execute the code 312 to perform the steps of the methods described in the various embodiments above. The above ^^ Luo uses a variety of levels to describe. Obviously, the teachings herein can be implemented in a variety of ways, and any particular architecture or function disclosed in the examples is merely representative. In light of the teachings herein, it will be understood by those skilled in the art that the various aspects disclosed herein can be implemented independently or in combination. By way of example, a device or a method may be implemented or implemented in the form of any number of ways mentioned in the foregoing. In addition, implementation of a device or implementation of a method may be applied to or different from one or more of the layers discussed above in any other architecture, or functionality, or architecture and functionality. Again, the above is exemplified. In some cases, parallel channels can be established based on the pulse repetition frequency. In some cases, parallel channels can also be established based on pulse position or offset. In some cases, parallel channels can be established based on timing hopping. In some cases, parallel channels can be established based on pulse repetition frequency, pulse position or offset, and timing hopping. Those skilled in the art will understand that messages and signals can be presented in a variety of different technologies and techniques. For example, the data in the above description may be cited (4), the & order 'command' message, signal, bit, symbol, and chip (sound) can be volts, current, electromagnetic waves, magnetic or magnetic particles, light field or Light particles, or any combination of the above. Those skilled in the art will appreciate that various illustrative logical blocks, modules, processors, devices, circuits, and computational steps described herein may be described above (eg, (four) materials or other 0990166-TW-Dl/9132-A43367TW/fmal 10 201216757 Digital implementation of technical design, analogy implementation, or a combination of both), various forms of programming linked to instructions or design codes linked to instructions (in the text) For convenience, it is called "software" or "software module", or a combination of both. To clearly illustrate the interchangeability of the hardware and software, a variety of descriptive elements, blocks, modules, circuits, and steps are generally described above in terms of functionality. This feature is implemented in hardware or software and will depend on the specific application and design constraints on the overall system. Those skilled in the art can implement the described functionality in a variety of different ways for each particular application, but the implementation of the present invention should not be construed as a departure from the scope of the disclosure. In addition, a variety of illustrative logical blocks, modules, and circuits, and the various aspects disclosed herein can be implemented in integrated circuits (ic), access terminals, access points; or by integrated circuits, access Terminal, access point execution. The integrated circuit can be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hard Body elements, electronic components, optical components, mechanical components, or any combination thereof, are designed to perform the functions described herein; and may be performed within integrated circuits, integrated circuits, or both. Execution code or instruction. General Purpose A processor may be a microprocessor, but it could be any conventional processor, controller, microcontroller, or state machine. The processor may be comprised of a combination of computer devices, such as a combination of a digital signal processor (DSP) and a microcomputer, a plurality of sets of microcomputers, a group of groups of microcomputers, and a digital signal processor core, or any other similar configuration. Any specific sequence or layering of the procedures disclosed herein is purely exemplary. Based on the design preferences, it must be understood that the program is 0990166-TW-D1 /9132-A43 367TW/fmal 20 201216757 2 The order of the eight-body sequence or layering is rearranged, then within the range of =. The accompanying method claims the elements of the <RTIgt; </ RTI> or <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Human body's software module executed by the processor, or both (including executable instructions and related materials) and other memory, memory (such as random access memory, flash erasable) In addition to programmable erasable programmable read-only memory, electronic read-only optical monument, hidden body, temporary storage $, hard disk, removable disk, readable error == 2==1 : The type of computer exists, for example - can be stored in the storage medium can be lightly coupled to the - machine, the computer can read the data (such as coding) or write the computer / processor (in this paper t = j Becco As for the storage and the storage medium can be the same: the processing core processing circuit can be stationed in the user = electricity, view). This particular application—the user sets up one of the discrete devices: the sample money storage medium. Any suitable computer program can include the heart type A, the type code of the related type of computer can be used to multiple '- Computer program products can be packaged: Cheng. In some cases, although the invention has been described in detail: a layer of germanium. The invention is not limited by the scope of the invention, and may be made without departing from the spirit and scope of the invention, and thus the protection of the invention is 0990166- TW-D1/9132-A43367TW/final 1 shall prevail. 21 201216757 [Simple diagram of the diagram] Figure 1 shows an embodiment of the network architecture of Ε-UTRAN; Figure 2 shows an embodiment of the user plane protocol stack; Figure 3 shows the control plane protocol. One embodiment of the stack; Figure 4 shows an embodiment of a simplified block diagram of the transmitting and receiving system; Figure 5 shows an embodiment of a block diagram of the user equipment; Figure 6 shows an example of stopping the SCell. One embodiment of the method. [Main component symbol description] 100~Ε-UTRAN network architecture; 102, eNB~ evolution base station; 104, UE~user equipment; 106~mobile management entity/service gateway; 10 8~ control plane; 110~ User plane; 200~multiple input multiple output system; 210~transmission system; 212, 236~ data source; 214, 238~ transmission data processor; 220~ transmission multi-input multi-output processor; 222a~222t~transmitter/receive 224a~224t, 252a~252r~antenna; 230, 270~ processor; 232, 272, 310~memory; 240~ demodulator; 242, 260~ receiving data processor; 250~ receiving system; 0990] 66-丁 W-D1 /9132-A43367TW/final 22 201216757 254a~254r~receiver/transmitter; 280~ modulator; 300~communication device; 302~input device; 304~output device; 306~control circuit; 308~ central processing unit; 312~code; 314~ transceiver; 400~ method; 402, 404~step; E_UTRAN~ evolutionary universal communication system land surface wireless access network; MAC~media access control layer; MME~ Mobile management entity; NAS ~ non-access layer PDCP ~ packet data compression protocol layer; RLC ~ wireless link control layer; PHY ~ physical layer; RRC ~ radio resource control layer; S-GW ~ service gateway. S1, X2~Interface' 0990166-TW-D1/9132-A43367TW/fmal 23