201215513 六、發明說明 【發明所屬之技術領域】 本發明係有關於印表機領域,特別是有關於噴墨印 頭。本發明主要係開發來改善高解析列印頭的列印品質及 列印頭效能。 【先前技術】 已有許多不同類型的列印頭被發明,其中的大多數列 印頭目前仍在使用中。習知形式的列印有各種方法來讓列 印媒介(m e d i a)帶有一相關的標記媒介。一般所使用的列 印形式包括平版列印(〇 f f s e t p r i n t i n g),雷射列印及複印裝 置、點矩陣式撞擊印表機、熱紙式印表機、薄膜記錄機、 熱蠟式印表機、染料昇華印表機及噴墨印表機,其兼具按 需噴液(drop on demand)式及連續流式兩種類型。當考量 成本、速度、品質、構造及操作的簡單性等等因素時,每 一類型的印表機都有其優點及缺點。 最近幾年,每一個別的墨水像素都是來自於一或多個 墨水噴嘴的噴墨列印因爲其便宜及多變的本質,使得它變 得愈來愈受歡迎。 關於噴墨列印,已有許多不同的技術被發明。爲了對 此領域的槪括論述,可參考·r Moore發表在Output Hard Copy Devices, Editors R Dubeck and S Sherr pages 2 0 7-220 ( 1 98 8 )上的文章"Non-Impact Printing: Introduction and Historical Perspective” 。 -5- 201215513 噴墨印表機本身有許多不同的類型。在噴墨列印時使 用連續的墨水流的類型可回溯到至少1929年,Hans ell擁 有的美國專利第1941 001號揭露一種簡單型式的連續流靜 電式噴墨列印。201215513 VI. Description of the Invention [Technical Field of the Invention] The present invention relates to the field of printers, and more particularly to inkjet printheads. The present invention has been primarily developed to improve the print quality and print head performance of high resolution printheads. [Prior Art] Many different types of print heads have been invented, and most of the print heads are still in use today. The conventional form of printing has various methods for the printing medium (m e d i a) to carry an associated marking medium. Commonly used printing formats include lithographic printing (〇ffsetprinting), laser printing and copying equipment, dot matrix impact printers, thermal paper printers, film recorders, thermal wax printers, Dye sublimation printers and inkjet printers, which are available in both drop on demand and continuous flow types. Each type of printer has its advantages and disadvantages when considering factors such as cost, speed, quality, construction and ease of operation. In recent years, each individual ink pixel has been inkjet printed from one or more ink nozzles because of its cheap and versatile nature, making it increasingly popular. Many different techniques have been invented for ink jet printing. For an overview of this area, see the article by r Moore on Output Hard Copy Devices, Editors R Dubeck and S Sherr pages 2 0 7-220 (1 98 8 )"Non-Impact Printing: Introduction and Historical Perspective. -5- 201215513 There are many different types of inkjet printers. The type of continuous ink flow used in inkjet printing dates back to at least 1929, and Hansell has US Patent No. 1941 001. A simple version of continuous flow electrostatic inkjet printing is disclosed.
Sweet擁有的美國專利第3 596275號亦揭露一種連續 噴墨列印處理,中該噴墨流係介由高頻靜電場來加以調 變,用以造成液滴分離。此技術仍爲數個製造商所使用, 包括Elmjet Scitex(參見Sweet等人所擁有的美國專利第 3373437 號)》 壓電式噴墨印表機亦是一種常見的噴墨列印裝置。壓 電系統被Kyser等人揭露在美國專利第3946398號( 1 970) 中其利用隔膜模式的操作,被Zolten揭露在美國專利第 3 68 3 2 1 2號( 1 970)中其揭露一壓電晶體的擠壓模式的操 作,被Stemme揭露在美國專利第3 747 1 20號( 1 9 72)中其 揭露一彎曲模式的壓電操作,被Ho wkins揭露在美國專利 第4459601號中其揭示一種壓電推送模式的噴墨致動及被 Fischbeck揭露於美國專利第45 845 90號中其揭示一種剪 力模式類型的壓電換能器元件。 最近,熱噴墨列印已變成一種極受歡迎的噴墨列印形 式。該等噴墨列印技術包括Endo等人揭露於英國專利第 20041 62號(1 979)及 Vaught等人揭露在美國專利第 4490728號中的技術。前述這兩個專利前案揭露的噴墨列 印技術依賴一電熱致動器的作用,其會造成一氣泡產生在 —受限制的空間內’譬如一噴嘴內,因而造成墨水從一連 -6 - 201215513 接至該受限制的空間的孔噴射到一相關連的列印媒介上。 運用此電熱致動器的列印裝置係由像是Canon及Hewlett Packard等製造商所製造。 由上面的敘述可知’有許多不同類型的列印技術。理 想中’一種列印技術應具有數種所想要的特性。這些特性 包括建造及操作上是便宜的、高速作業、安全且連續的長 期作業等等。每一種技術在成本、速度、品質、可靠度、 電力運用、建造及操作上的簡單性、耐用性及可用盡性 (consumable)等領域上各有其優缺點。 本案申請人已揭不過許多頁寬式列印頭設計。當與傳 統的橫移式噴墨列印頭相比時,不動的頁寬式列印頭(其 延伸於一頁面的整個寬度)包含許多獨特的設計挑戰。例 如,頁寬式列印頭典型地是由多個獨立的列印頭積體電路 (IC)所構成’它們必需被無縫地相結合以提供高列印品 質。本案申請人迄今已揭示過具有一移位示噴嘴區段的列 印頭,其可讓橫跨整個頁寬的噴嘴列(row)在對接的列印 頭積體電路之間作無縫地列印(參見美國專利第7,3 90,07 1 號及 7,290,852號)。其它的頁寬列印方法(如,HP Edgeline™技術)使用交錯式列印頭模組,其無可避免地加 大了列印區的尺寸並對於媒介饋送機構有額外的要求,用 以與該列印區保持適當的對準。提供另一種能夠讓頁寬式 列印頭有新的構造方式的噴嘴設計設是所想要的。 典型地,頁寬式列印頭具有‘多餘的(redundant)’噴 嘴列,其可被用於廢噴嘴補償(dead nozzle compensation) 201215513 或用於該列印頭的高峰電力需求的調節(參見美國專利第 7,465,017號及第7,252,353號’其內容藉由此參照而被倂 於本文中)。與橫移式列印頭相反地,廢噴嘴補償是不動 的頁寬式列印頭中—個特殊的問題’因爲在列印期間該媒 介基材只通過該列印頭的每一噴嘴—次而已。多餘的噴嘴 列無可避免地會增加頁寬式列印頭的成本及複雜度’因 此,所想要的是,在將多餘的噴嘴列減至最少的同時仍可 對於廢噴嘴補償提供適當的機制。 提供能夠控制例如像是液滴放置及/或液滴解析度之 更多樣性的頁寬式列印頭更是所想要。 提供具有MEMS及CMOS層之交替的整合的列印頭 亦是進一步所想要的。將所不想要的‘接地彈跳(ground bounce)’現象減至最小並藉以改善列印頭的整體電效率 是特別想要的。 【發明內容】 在第一態樣中,一種噴墨噴嘴組件被提供,其包含: —用來容納墨水的噴嘴室,該噴嘴室包含一底壁及一 頂壁其具有一噴嘴開孔被界定於其中;及 多個可動的槳片,其界定該頂壁的至少一部分,該等 多個槳片是可致動的,以造成墨水小液滴從該噴嘴開孔射 出’每一槳片包括一熱彎曲致動器,其包含: 一上熱彈性樑,其被連接至驅動電路;及 —下被動樑,其被熔接(fused)至該熱彈性樑,使 201215513 得當電流通過該熱彈性樑時,該熱彈性樑相對於該被動樑 膨脹,造成各自的槳片朝向該噴嘴室的底壁彎曲, 其中每一致動器可被各自的驅動電路獨立地控 制,使得來自該噴嘴開孔的小液滴噴射方向可被每一槳片 的獨立運動控制。 當使用於本文中時,“噴嘴組件”及“噴嘴”係被可 互換地使用。因此,“噴嘴組件”或“噴嘴”係指一裝 置,其在作動時噴出墨水液滴。該“噴嘴組件”或“噴 嘴”通常包含一噴嘴室其具有一噴嘴開口及至少一致動 器。 選擇上地(optionally),該噴嘴組件被設置在一基材 上,及其中該基材的一鈍化層界定該噴嘴室的底壁。 選擇上地,該頂壁與該底壁被隔開來且側壁延伸於該 頂壁與該底壁之間以界定該噴嘴室。 選擇上地,該噴嘴組件包含一對相對立的槳片其被設 置在該噴嘴開口的兩側。 選擇上地,該噴嘴組件包含兩對相對立的槳片其相對 於該噴嘴開口被設置。 選擇上地,該等槳片相對於該噴嘴開口係可動的。 選擇上地,每一槳片界定該噴嘴開口的一部分使得該 噴嘴開口及該等槳片相對於底壁係可動的。 選擇上地,該熱彈性樑包含釩鋁合金。 選擇上地,該被動樑包含至少一選自於由氧化矽、氮 化矽及氮氧化矽組成的組群中的材料。 -9- 201215513 選擇上地’該被動樑包含一第一上被動樑其由氧化砂 構成及一第二下被動樑由氮化矽構成。 選擇上地’該頂壁被塗覆一聚合材料。該聚合材料可 被建構來提供一機械式密封於每一槳片與該頂壁的一不動 的部分之間,藉以將槳片致動期間的漏墨最小化。或者, 該聚合材料可具有界定於其內的開口,使得每一槳片與頂 壁的一不動的部分之間有一射流密封(fluidic seal)。 選擇上地,該聚合材料包含聚合物化的矽氧烷。 選擇上地,該聚合物化的矽氧烷係選自於由聚倍半石夕 氧烷及聚二甲基矽氧烷組成的組群中。 選擇上地,致動器係藉由控制下列的至少一者而可獨 立地控制: 送至該等致動器的每一者的驅動訊號的時序,用以提 供該等多個槳片的一協同一致的動作;及 送至該等致動器的每一者的驅動訊號的功率。 選擇上地,該等驅動訊號的功率是由下列的至少 來控制: 該等驅動訊號的電壓;及 該等驅動訊號的脈衝寬度。 在與第一態樣相關的進一步態樣中,一種噴墨列印頭 積體電路被提供,其包含: 一基材,其包含驅動電路;及 多個設置在該基材上的噴墨噴嘴組件,每一噴墨噴嘴 組件包含: -10- 201215513 一用來容納墨水的噴嘴室,該噴嘴室包含一底壁其由 該基材的上表面所界定及一頂壁其具有一噴嘴開孔被界定 於其中;及 多個可動的槳片,其界定該頂壁的至少一部分,該等 多個槳片是可致動的,以造成墨水小液滴從該噴嘴開孔射 出’每一槳片包括一熱彎曲致動器,其包含: 一上熱彈性樑,其被連接至驅動電路;及 ~下被動樑,其被熔接(fused)至該熱彈性樑,使 得當電流通過該熱彈性樑時,該熱彈性樑相對於該被動樑 膨脹,造成各自的槳片朝向該噴嘴室的底壁彎曲, 其中每一致動器可被各自的驅動電路獨立地控制,使 得來自該噴嘴開孔的小液滴噴射方向可被每一槳片的獨立 運動控制。 選擇上地,該基材的上表面是由一鈍化層界定,該鈍 化層係設置在一驅動電路層上。 在第二態樣中,一種固定式頁寬噴墨列印頭被提供, 其由多個以端部接著端部相對接(butting)橫跨頁寬的列印 頭積體電路構成,該列印頭包含一或多個沿著該列印頭的 縱軸線延伸的噴嘴列’每一噴嘴列包含多個噴嘴其中一或 多個噴嘴每一者都被建構來在沿著該縱軸線的多個預定的 不同點位置發射一墨水小液滴(droP1 et)。 選擇上地,該一或多個噴嘴每一者都被建構來沿著該 縱軸線的2、3、4、5' ό或7個不同的點位置發射一墨水 小液滴。 -11 - 201215513 選擇上地,每一噴嘴被建構來在一具有預定的尺度的 二維度區域內的多個預定的不同點位置發射一墨水小液 滴。 選擇上地,該區域係實質圓形或實質橢圓形,及其中 該區域的中心對應於該噴嘴的質量中心。 選擇上地,該一或多個噴嘴被建構來在一主要點位置 及在該主要點位置的兩側的至少一次要點位置發射一墨水 小液滴。 選擇上地,在一第一組中的每一噴嘴組件被建構來在 沿著該縱軸線的多個預定的不同點位置發射一墨水小液 滴,在該第一組中的每一噴嘴被設置在該列印頭中一廢噴 嘴的兩個噴嘴節距之內,其中一個噴嘴節距被界定爲在同 一噴嘴列中一對噴嘴之間的最小縱向距離。 選擇上地,在一噴嘴列中的每一噴嘴被建構來在沿著 該縱軸線的多個預定的不同點位置發射一墨水小液滴,使 得被列印的點密度超過該列印頭的噴嘴密度。 選擇上地,每一對接的列印頭積體電路對界定一接合 區,及其中一橫跨該接合區的噴嘴節距超過一個噴嘴節 距,一個噴嘴節距被界定爲在同一噴嘴列中—對噴嘴之間 的最小縱向距離。 選擇上地,其中在一第二組中的每一噴嘴被建構來在 沿著該縱軸線的多個預定的不同點位置發射一墨水小液 滴,該等多個預定的點位置包括至少一在該接合區內的點 位置 -12- 201215513 在第三態樣中’一種固定式頁寬噴墨列印頭被提供, 其包含一或多個沿著該列印頭的縱軸線延伸的噴嘴列,其 中每一噴嘴被建構來在沿著該縱軸線的多個預定的不同點 位置發射一墨水小液滴,使得被列印的點密度超過該列頭 的噴嘴密度。 選擇上地’該一或多個噴嘴每一者都被建構來沿著該 縱軸線的2、3、4、5、6或7個不同的點位置發射一墨水 小液滴。 選擇上地’每一噴嘴可被建構來在沿著該列印頭的橫 向軸線的多個預定的不同點位置發射一墨水小液滴。 選擇上地’該被列印的點密度是該列印頭的噴嘴密度 的至少兩倍。 選擇上地,每一噴嘴被建構來在一個線時間(one line-time)內發射多於一次,其中一個線時間被界定爲一 列印媒介前進通過該列印頭一條線所花的時間。 在第四態樣中,一種固定式頁寬噴墨列印頭被提供, 其包含一或多個沿著該列印頭的縱軸線延伸的噴嘴列,其 中每一噴嘴被建構來在沿著該縱軸線的多個預定的不同點 位置發射墨水小液滴,毎一噴嘴具有一與其相關連的點位 置’其中該列印頭被建構來藉由從位在與一廢噴嘴同一噴 嘴列中的一被選取的機能性噴嘴(functioning nozzle)列印 來補償該廢噴嘴,該被選取的機能性噴嘴被建構來在與該 廢噴嘴相關連的主要點位置發射至少一些墨水小液滴及在 其本身的主要點位置發射至少一些墨水小液滴。 -13- 201215513 選擇上地,該被選取的機能性噴嘴係位在離該廢噴嘴 —個、兩個、三個或四個噴嘴節距的距離處,其中一個噴 嘴節距被界定爲在同一噴嘴列中一對噴嘴之間的最小縱向 距離。 選擇上地,該列印頭被建構來用下列的步驟補償該廢 噴嘴: 識別出該廢噴嘴; 選取一機能性噴嘴來補償該廢噴嘴:及 建構該被選取的機能性噴嘴用以在與該廢噴嘴相關連 的主要點位置發射至少一些墨水小液滴。 選擇上地,該被選取的機能性噴嘴被建構來在一個線 時間的期間內在與該廢噴嘴相關連的主要點位置發射第一 墨水小液滴及在其本身的主要點位置發射第二墨水小液 滴,其中一個線時間被界定爲一列印媒介前進通過該列印 頭一條線所花的時間。 選擇上地,每一噴嘴可進一步被建構來在沿著該列印 頭的橫向軸線的多個預定的不同點位置發射一墨水小液 滴。 選擇上地,該被選取的機能性噴嘴被建構來在一大於 一個線時間及小於五個線時間的期間內在與該廢噴嘴相關 連的主要點位置處發射第一墨水小液滴及在其本身的主要 點位置處發射第二墨水小液滴。 選擇上地,每一垂直於該列印頭的噴墨表面被射出的 小液滴會造成將該小液滴落在各自的主要點位置。 -14- 201215513 選擇上地,該列印頭 取的機能性噴嘴列印來補 選擇上地,該列印頭 在與第四態樣相關的 頁寬噴墨列印頭的列印頭 電路包含一或多個沿著其 噴嘴被建構來在沿著該縱 射墨水小液滴,每一噴嘴 中該列印頭積體電路被建 噴嘴列中的一被選取的機 該被選取的機能性噴嘴被 要點位置發射至少一些墨 置發射至少一些墨水小液 在第五態樣中,一種 其包含一或多列沿著該列 列印頭包含多個具有第一 等列印頭模組被對接橫跨 模組對界定一共同的接合 節距超過一個噴嘴節距, 嘴列中一對噴嘴之間的最 的列印頭模組對的一第一 一噴嘴被建構來發射墨水 選擇上地,被設置在 列印頭模組的第二端的至 被建構成藉由從對應的多個被選 償多個廢噴嘴。 沒有多餘的噴嘴列。 進一步態樣中,一種用於固定式 積體電路被提供,該列印頭積體 縱軸線延伸的噴嘴列,其中每一 軸線的多個預定的不同點位置發 具有一與其相關連的點位置,其 構來藉由從位在與一廢噴嘴同一 能性噴嘴列印來補償該廢噴嘴, 建構來在與該廢噴嘴相關連的主 水小液滴及在其本身的主要點位 滴。 固定式頁寬噴墨列印頭被提供, 印頭的縱軸線延伸的噴嘴列,該 及第二相反端的列印頭模組,該 一頁的寬度,每一對接的列印頭 區,其中一橫跨該接合區的噴嘴 一個噴嘴節距被界定爲在同一噴 小縱向距離,及其中位在一對接 列印頭模組的第一端的至少一第 小液滴至一各自的接合區內。 該對接的列印頭模組對的一第二 少一第二噴嘴被建構來發射墨水 -15- 201215513 小液滴至一各自的接合區內,使得來自對接的列印頭模組 的對立的第一及第二端的第一及第二噴嘴發射墨水小液滴 至該共同的接合區內。 選擇上地,每一第一噴嘴被建構來在沿著該縱軸線的 多個預定的不同點位置發射墨水小液滴,該等多個不同的 點位置包括至少一點位置在該接合區內。 選擇上地,每一第一及第二噴嘴被建構來在沿著該縱 軸線的各別多個預定的不同點位置發射墨水小液滴,每一 各自的多個不同的點位置包括至少一點位置在該接合區 內。 選擇上地,在該接合區內的一個點節距與一個噴嘴節 距實質地相等。 選擇上地,每一第一及第二噴嘴被建構來在一個線時 間(one line-time)內發射多於一次,其中一個線時間被界 定爲一列印媒介前進通過該列印頭一條線所花的時間》 選擇上地,設置在接近該第一端的噴嘴被建構來發射 被朝向第一端歪斜的墨水小液滴及設置在接近該第二端的 噴嘴被建構來發射被朝向第二端歪斜的墨水小液滴。 選擇上地,歪斜程度與每一噴嘴離各自的列印頭模組 的中心的距離有關,使得位在靠近發射墨水小液滴的中心 的噴嘴被歪斜的程度小於位在離該中心較遠的噴嘴。 選擇上地,平均點節距大於一個噴嘴節距。 選擇上地,平均點節距比一個噴嘴節距大了不到 -16- 1%。 201215513 選擇上地,在該列印頭中的每一噴嘴被建構來除非是 補償一廢噴嘴,否則只在一個點位置發射墨水小液滴。 在第六態樣中,一種列印頭積體電路(IC)被提供’其 包含一或多列沿著其縱軸線延伸的噴嘴列,該列印頭1C 具有用來與其它列印頭IC對接嚙合的第一及第二端,用 以界定一頁寬列印頭,每一噴嘴具有一與其相關連的主要 點位置,其中至少一位在該第一端的第一噴嘴被建構來除 了在其本身的主要點位置發射至少一些墨水小液滴之外還 發射至少一些被朝向該第一端歪斜的墨水小液滴。 選擇上地,至少一位在該第二端的第二噴嘴被建構來 除了在其本身的主要點位置發射至少一些墨水小液滴之外 還發射至少一些被朝向該第二端歪斜的墨水小液滴。 選擇上地,該第一噴嘴被建構來在一個線時間或更短 的時間內發射一朝向該第一端歪斜的墨水小液滴及在其本 身的主要點位置發射一墨水小液滴,其中一個線時間被界 定爲一列印媒介前進通過該列印頭一條線所花的時間。 選擇上地,每一第二噴嘴被建構來在一個線時間或更 短的時間內發射一朝向該第二端歪斜的墨水小液滴及在其 本身的主要點位置發射一墨水小液滴。 選擇上地,該列印頭1C的噴嘴節距與被列印的點的 點節距相同,其中該列印頭的噴嘴節距被界定爲在同 ~噴嘴列中一對噴嘴之間的縱向距離及點節距被界定爲在 同一列印線內一對點之間的縱向距離。 選擇上地,該第一噴嘴被建構來發射至少一些被朝向 -17- 201215513 該第一端歪斜一介於1至3個噴嘴節距之間的距離的墨水 小液滴。 選擇上地,每一噴嘴列延伸於該第一端的第一接合區 與該第二端的第二接合區之間。 選擇上地,該第一及第一接合區具有一寬度其被界定 爲該列印頭1C的邊緣與一噴嘴之間的最小距離。 選擇上地,該第一接合區具有一介於0.5至3.5噴嘴 節距之間的寬度,及該第二接合區具有一介於〇·5至3.5 噴嘴節距之間的寬度。 選擇上地,當該噴嘴列印IC是固定不動時,至少一 噴嘴列的一可列印區比該噴嘴列的縱向長度還長。 在第七態樣中,一種用於固定式頁寬列印頭的列印頭 積體電路(1C)被提供,該列印頭1C包含至少一沿著其縱 軸線延伸的噴嘴列,其中對應於該噴嘴列的一可列印區的 長度比該噴嘴列的長度還長。 選擇上地,該可列印區的長度比該噴嘴列的長度長了 至少一個噴嘴節距,其中一個噴嘴節距被界定爲在同一噴 嘴列中一對噴嘴之間的最小縱向距離。 選擇上地,該可列印區比該噴嘴列長了多達八個噴嘴 節距。 選擇上地,該可列印區對應於被該噴嘴列列印的一條 點線。 選擇上地,該列印頭包含多個噴嘴列,其中該可列印 區對應於每一噴嘴列的長度比每一列印列的長度還長。 -18- 201215513 選擇上地,該可列印區延伸超過該噴嘴列的每一端。 選擇上地,位在該列印頭1C的一第一端的至少一第 一噴嘴被建構來發射被朝向該第一端歪斜的墨水小液滴。 選擇上地,歪斜的程度與每一噴嘴離該第一端的距離 有關,使得位在愈靠近該第一端的噴嘴發射的墨水小液滴 比位在遠離該第一端的噴嘴發射的墨水小液滴更朝向該第 —端歪斜。 選擇上地,位在該列印頭1C的一相反的第二端的至 少一第二噴嘴被建構來發射被朝向該第二端歪斜的墨水小 液滴。 選擇上地,歪斜的程度與每一噴嘴離該列印頭1C的 中心的距離有關,使得位在愈靠近該中心的噴嘴發射的墨 水小液滴比位在遠離該中心的噴嘴發射的墨水小液滴較不 歪斜。 選擇上地,位在該列印頭1C的中心區的噴嘴被建構 來相對於該列印頭I C的噴墨面實質垂直地發射墨水小液 滴。 選擇上地’在該可列印區內的平均點節距大於一個噴 嘴節距。 選擇上地,平均點節距比一個噴嘴節距大了不到 1 %。 選擇上地’在該列印頭中的每一噴嘴被建構來除非是 補償一廢噴嘴’否則只在一個點位置發射墨水小液滴。 在第八態樣中’一種控制從一噴墨噴嘴射出的小液滴 -19- 201215513 的方向的方法被提供,該噴墨噴嘴包含一噴嘴室,該噴嘴 室具有一頂壁其有一噴嘴開口界定於其內及多個可動的槳 片其界定該頂壁的至少一部分,每一槳片包括一熱彎曲致 動器,該方法包含的步驟爲: 經由各自的(respective)第一驅動電路致動第一熱彎 曲致動器,使得各自的第一槳片朝向該噴嘴室的底壁彎 曲; 經由各自的第二驅動電路致動第二熱彎曲致動器,使 得各自第二槳片朝向該噴嘴室的底壁彎曲;及 藉以將一墨水小液滴從該噴嘴開口射出, 其中該第一及第二熱彎曲致動器的致動經由該第一及 第二驅動電路被獨立地控制,用以控制小液滴從該噴嘴開 口射出的方向。 選擇上地,該第一及第二致動器係藉由下列至少一者 而被獨立地控制: 送至該第一及第二致動器的每一者的驅動訊號的時 序,用以提供該等多個槳片的一協同一致的動作;及 送至該等致動器的每一者的驅動訊號的功率,用以造 成該等多個槳片的不對稱運動。 選擇上地,若不是該第一致動器在該第二致動器之前 被致動以提供在第一方向上的小液滴射出,就是該第二致 動器在該第一致動器之前被致動以提供在第二方向上的小 液滴射出。 選擇上地,若不是該第一致動器被提供比該第二致動 -20- 201215513 器大的功率’就是該第二致動器被提供比該第一致動器大 的功率。 選擇上地,該等驅動訊號的功率是由下列的至少一者 來控制: 該等驅動訊號的電壓;及 該等驅動訊號的脈衝寬度。 選擇上地,兩對相對的槳片係相對於該噴嘴開口被設 置。 選擇上地,該方法包含進一步的步驟爲: 經由各自的第一驅動電路致動一第三熱彎曲致動器, 使得各自的第三槳片朝向該噴嘴室的底壁彎曲; 經由各自的第二驅動電路致動一第四熱彎曲致動器’ 使得各自的第二槳片朝向該噴嘴室的底壁彎曲’ 其中該第一、第二、第三及第四熱彎曲致動器的致動 係經由各自的第一、第二、第三及第四驅動電路加以獨立 地控制,用以控制從該噴嘴開口射出的小液滴的方向。 選擇上地,該等槳片相對於該噴嘴開口是可動的。 選擇上地,每一槳片界定該噴嘴開口的一部分,使得 該噴嘴開口及該等槳片相對於該底壁是可動的。 在第九態樣中’一種補償一固定式頁寬列印頭中的一 廢噴嘴的方法被提供,該列印頭具有一或多個沿著該列印 頭的縱軸線延伸的噴嘴列’每一噴嘴包含多個熱彎曲致動 的槳片其可建構來在沿著該縱軸線的多個預定的不同點位 置發射墨水小液滴,每一噴嘴具有一與其相關連的主要點 -21 - 201215513 位置,該方法包含的步驟爲: 識別出該廢噴嘴; 在與該廢噴嘴同一噴嘴列中選取一機能性噴嘴;及 在與該廢噴嘴相關連的主要點位置從該被選取的機能 性噴嘴發射至少一些墨水小液滴。 選擇上地,該方法進一步包含的步驟爲: 在該被選取的機能性噴嘴本身的主要點位置處從該被 選取的機能性噴嘴發射至少一些墨水小液滴。 選擇上地,該被選取的機能性噴嘴係位在離該廢噴嘴 一個、兩個、三個或四個噴嘴節距的距離處,其中一個噴 嘴節距被界定爲在同一噴嘴列中一對噴嘴之間的最小縱向 距離。 選擇上地,該方法進一步包含的步驟爲: 在一個線時間的期間內將一列印媒介前進橫向地通過 該固定式列印頭一條線; 在與該廢噴嘴相關連的主要點位置從該被選取的機能 性噴嘴發射一第一墨水小液滴;及 在該被選取的機能性噴嘴本身的主要點位置處從該被 選取的機能性噴嘴發射一第二墨水小液滴, 其中該被選取的機能性噴嘴在該一個線時間的期間內 發射該第一及第二墨水小液滴》 選擇上地,該被選取的機能性噴嘴係以任何順序發射 該第一及第二墨水小液滴。 選擇上地,每一噴嘴可進一步建構來在沿著該列印頭 -22- 201215513 的一橫向軸線的多個預定的不同點位置發射墨水小液滴。 選擇上地,該方法進一步包含的步驟爲: 以每一個線時間前進一條線的速率將一列印媒介橫向 地通過該固定式列印頭; 在與該廢噴嘴相關連的主要點位置從該被選取的機能 性噴嘴發射一第一墨水小液滴:及 在該被選取的機能性噴嘴本身的主要點位置處從該被 選取的機能性噴嘴發射一第二墨水小液滴, 其中該被選取的機能性噴嘴在一大於一個線時間及小 於五個線時間的期間內發射該第一及第二墨水小液滴。 選擇上地,該廢噴嘴係藉由偵測一或多個與該廢噴嘴 相關連的致動器的電阻來識別出來。 在第十態樣中,一種以點密度超過一固定式頁寬列印 頭中的噴嘴密度來列印的方法,該固定式頁寬列印頭包含 多個以端部-對-端部對接橫跨該頁寬的列印頭積體電路, 該列印頭具有至少一沿著該列印頭的縱軸線延伸的噴嘴 列’該方法包含的步驟爲: 以每一個線時間前進一條線的速率將一列印媒介橫向 地通過該固定式列印頭; 從該噴嘴列中預定的噴嘴發射墨水小液滴以產生連續 的列印線, 其中該等預定的噴嘴的至少一些噴嘴,每一者在一個 線時間的期間內在沿著該縱軸線的多個預定的不同位置發 射墨水小液滴,使得在每一列印線中之被列印的點密度超 -23- 201215513 過該噴嘴密度。 在第十一態樣中,一種噴墨列印頭被提供,其包含: 一基材,其包含一驅動電路層; 多個噴嘴組件,其被設置在該基材的一上表面上且被 配置成一或多個沿著該列印頭縱向地延伸的噴嘴列,每一 噴嘴組件包含:一噴嘴室其具有一由該上表面界定的底 壁,一與該底壁分隔開的頂壁,及一致動器,用來將墨水 從一界定於該頂壁中之噴嘴開口射出; 一延伸橫跨該列印頭的噴嘴板,該噴嘴板至少部分地 界定該等頂壁:及 至少一設置在該噴嘴板上的導電跡線,該導電跡線沿 著該列印頭縱長地延伸且平行於該等噴嘴列,其中該導電 跡線經由多個延伸於該驅動電路層與該導電跡線之間的導 體柱而被連接至該驅動電路層中的一共同的參考平面。 選擇上地,該共同的參考平面界定一接地平面或電源 平面。 選擇上地,該列印頭包含至少一第一導電跡線,其中 該第一導電跡線被直接連接至與該第一導電跡線相鄰的至 少一噴嘴列中的多個致動器。 選擇上地,該列印頭進一步包含至少一第二導電跡 線,該第二導電跡線沒有直接連接至任何致動器。 選擇上地,該第一導電跡線沿著該列印頭連續地延伸 以提供一用於該噴嘴列中的每一致動器的共同的參考平 面。 -24- 201215513 選擇上地,該第一導電跡線沿著該列印頭不連續地延 伸以提供一用於該噴嘴列中的一組致動器的共同的參考平 面。 選擇上地,該第一導電跡線被設置在各自的噴嘴列對 之間,該第一導電跡線提供用於該對噴嘴列的兩噴嘴列中 的多個致動器的共同的參考平面。 選擇上地,每一致動具有一直接連接至該第一導電跡 線的第一端子及連接至該驅動電路層中的一驅動電晶體的 第二端子。 選擇上地,每一頂壁包含至少一致動器及每一致動器 的該第一端子經由相對於該第一導電跡線橫向地延伸橫跨 該噴嘴板的橫向連接器而被連接至該第一導電跡線。 選擇上地,該第二端子經由一延伸於該驅動電路層與 該第二端子之間的致動器柱而被連接至該驅動電晶體。 選擇上地,該等致動器柱垂直於該第一導電跡線的平 面。 選擇上地,每一頂壁包括至少一可動的槳片其包含一 各自的熱彎曲致動器,該槳片係可朝向各自的噴嘴室的底 壁運動以造成墨水從該噴嘴開口射出,其中該熱彎曲致動 器包含: 一上熱彈性樑,其具有該第一及第二端子;及 一下被動樑,其被熔接至該熱彈性樑,使得當電流通 過該熱彈性樑時,該熱彈性樑相對於該被動樑擴展’造成 各自的槳片朝向該噴嘴室的底壁彎曲。 -25- 201215513 選擇上地,該熱彈性樑與該導電跡線共平面。 選擇上地,該熱彈性樑與該導電跡線包含同一材料。 選擇上地,該噴嘴板包含陶瓷材料。 選擇上地,該驅動電路層包含用於每一致動器的一驅 動場效電晶體(FET),每一驅動FET包含一用來接受一邏 輯發射訊號的閘極,一與電源平面電連通的源極,及一與 接地平面電連通的汲極,該驅動FET是下列中的一者: —pFET,其中該致動器被連接在該汲極與該接地平 面之間;或 一 nFET,其中該致動器被連接在該電源平面與該源 極之間。 選擇上地,該驅動FET爲pFET且該第一導電跡線提 供該接地平面,及其中該致動器的第一端子被連接至該第 一導電跡線及該致動器的第二端子被連接至該PFET的汲 極。 選擇上地,該第二導電跡線提供該電源平面且被連接 至該pFET的源極。 選擇上地,該驅動FET爲nFET且該第一導電跡線提 供該電源平面,及其中該致動器的第一端子被連接至第一 導電跡線及該致動器的第二端子被連接至該nFET的源 極。 選擇上地,該第二導電跡線提供該接地平面且被連接 至該nFET的汲極。 在第十二態樣中,一種用於噴墨列印頭的列印頭積體 -26- 201215513 電路(1C)被提供,該列印頭積體電路 一基材,其包含一驅動電路層: 多個噴嘴組件,其被設置在該基 配置成一或多個沿著該列印頭I c縱 每一噴嘴組件包含:一噴嘴室其具有 底壁,一與該底壁分隔開的頂壁’及 水從一界定於該頂壁中之噴嘴開口射 一延伸橫跨該列印頭IC的噴嘴 分地界定該等頂壁;及 至少一熔接至該噴嘴板的導電跡 該列印頭縱長地延伸且平行於該等噴 線經由多個延伸於該驅動電路層與該 柱而被連接至該驅動電路層中的一共 選擇上地,該共同的參考平面界 平面。 選擇上地,該導電跡線被設置1 下。 【實施方式】 用於包含可活動的頂壁槳片的噴 爲了完整起見及作爲發明背景, 活動的頂壁槳片(其具有熱彎曲致動 (或“噴嘴”)的製程現將被描述。示:! 整的噴墨噴嘴組件1 〇〇利用熱彎曲致 包含: 材的一上表面上且被 向地延伸的噴嘴列, 一由該上表面界定的 一致動器,用來將墨 出; 板,該噴嘴板至少部 線,該導電跡線沿著 嘴列,其中該導電跡 導電跡線之間的導體 同的參考平面。 定一接地平面或電源 £該噴嘴板上方或底 墨噴嘴組件的製程 一種用來製造包含可 器)的噴墨噴嘴組件 冷圖1 5及1 6中之完 動器,藉此,在一噴 -27- 201215513 嘴室頂壁中的可活動的槳片4朝向基材1彎曲,造成墨水 噴射出的結果。此製程被描述在申請人較早的美國專利申 公開案第2008/0309728號及第2008/0225077號中’其內 容藉此參照被倂於本文中。然而,將被瞭解的是’對應的 製程可被用來製造描述於本文中的任何噴墨噴嘴組件’及 列印頭與列印頭積體電路(1C)。 MEMS製造的起點爲一標準的CMOS晶圓其具有設置 在一鈍化的矽晶圓的上層中的CMOS驅動電路。在MEMS 製程的末了,此晶圓被分切成個別的列印頭積體電路 (1C),每一 1C包含一 CMOS驅動電路層及多個噴嘴組 件。 在圖1及2所示的步驟順序中’一 8微米的二氧化矽 層被沉積在該基材1'的上表面上。該二氧化矽層的深度界 定一用於該噴墨噴嘴的噴嘴室5的深度。在沉積該二氧化 矽(Si02)層之後’它被蝕刻’用以界定壁4 ’其將成爲噴 嘴室5的側壁,如圖2中所示。 如圖3及4所示’該噴嘴室5被塡入光阻劑或聚醯亞 胺6,其作用係如一用於後續的沉積步驟之犧牲性質的支 架一般。該聚醯亞胺6係使用標準的技術、UV硬化及/或 硬烘烤而被旋轉塗佈於該晶圓上’然後接受化學機械平坦 化(CMP)處理’其在該二氧化矽壁4處停止。 在圖5及6中,該噴嘴室5的頂壁7被形成’以及向 下延伸至電極2之高度導電的致動器柱8亦被形成。一開 始,一 1.7微米的二氧化矽層被沉積在該聚醯亞胺6及壁 28 - 201215513 4上。此二氧化矽層界定該噴組室5的頂壁7。接下來, 一對介層孔(via)藉由使用標準的非等向性DRIE而被形成 在壁4中’向下達到該等電極2。此蝕刻讓該對電極2經 由各自的介層孔外露出來。接下來,該等介層孔藉由使用 無電電鍍而被塡入高度導電的金屬,譬如像是銅。該等被 沉積的銅柱8接受C Μ P處理,其停止在該二氧化矽的頂 壁件7處’用以提供一平的結構。在無電銅電鑛期間形成 的該等銅致動器柱8與各自的電極2相遇以提供一上達該 頂壁7的直線導電路徑。 在圖7及8中,金屬墊9藉由沉積及蝕刻一 0.3微米 的鋁層而被形成。任何高度導電的金屬(如,鋁、鈦等等) 都可被使用且應被沉積一約0 · 5微米或更小的厚度,用以 不會對該噴嘴組件的整體平坦度造成太大的影響。金屬墊 9係藉由該蝕刻來界定,用以被設置在該熱彈性主動樑件 的預定的‘彎曲區’內的致動器柱8上及該頂壁件7上。 將可被瞭解的是,該等金屬墊9並不是絕對不可或缺的且 圖7及8中所示的步驟亦可從該製程中被去除。 在圖9及1 〇中,一熱彈性主動樑件1 0被形成在該二 氧化矽頂壁7上。由於被熔接至該主動樑件1 〇的關係, 一部分的二氧化矽頂壁7係如一機械式熱彎曲致動器的下 被動樑件般地作用,該機械式熱彎曲致動器係由該主動樑 1 〇及該被動樑1 6所界定。該熱彈性主動樑件1 0可包含 任何適當的熱彈性材料,譬如氮化鈦、氮化鈦鋁及鋁合 金。如在申請人於2002年1 2月4日提申的美國專利申請 -29- 201215513 案第1 1 /607,976號中所說明的(該案的內容藉此參照被倂 於本文中)’釩-鋁合金是較佳的材料因爲該合金結合高熱 膨脹性、低密度及高楊氏模數等有利的特性。 爲了要形成該主動樑件10’ 一 1.5微米的主動樑材料 層藉由標準PECVD最初被沉積。該操材料然後用標準的 金屬蝕刻加以蝕刻,以界定該熱彈性主動樑件1 〇。在完 成該金屬蝕刻之後,如圖9及10所示,該熱彈性主動樑 件10包含部分的噴嘴開口 11及一曲折的樑件12其兩端 部分別經由致動器柱8被電連接至電源及接地電極2。該 平的樑件12從一第一(電源)致動器柱的頂部延伸並彎折 約1 80度以回到一第二(接地)致動器柱的頂部。 仍參考圖9及10’該等金屬墊9被設置來促進電流 流動於較高電阻的區域中。一金屬墊9被設置在該樑件 12的彎折區,且被夾在該主動樑件10與該被動樑件16 之間。其它的金屬墊9被設置在致動器柱8的頂部與樑件 1 2的端部之間。 參考圖1 1及1 2 ’該二氧化矽頂壁7然後被蝕刻以界 定一完整的噴嘴開口 13及一可動的懸臂樑式槳片14於該 頂壁中。該槳片14包含一熱彎曲致動器15其本身由該主 動熱彈性樑件10及底下的被動樑件16構成。該噴嘴開口 13被界定在該頂壁的槳片14中,使得該噴嘴開口在致動 期間與該致動器一起運動。該噴嘴開口 13相對於該槳片 Μ是不動的構造可以與描述於申請人的美國專利申請案 第1 1/607,976號的構造相同。 -30- 201215513 在該可動的槳片14的周圍的周邊空間或間隙I?將該 槳片與該頂壁的一不動的部分1 8分隔開來。該間隙1 7容 許該可動的槳片14在致動器丨5的致動期間彎曲至該噴嘴 室5內並朝向該基材1。 參考圖13及14,一聚合物層19然後被沉積在整個 噴嘴組件上’且被蝕刻以再界定該噴嘴開口 1 3。該聚合 物層1 9在蝕刻該噴嘴開口丨3之前可被一薄的,可去除的 金屬層(未示出)保護,如美國公開案第2008/〇225077號所 描述者’該案的內容藉此參照被倂於本文中。 該聚合物層1 9具有數項功能。第一,它塡滿該間隙 1 7以提供一機械式的密封於該槳片丨4與該頂壁7的不動 部分8之間。只要該聚合物具有夠低的楊氏模數,該致動 器仍可朝向該基材1彎曲’同時防止墨水在致動期間從該 間隙1 7漏出。第二,該聚合物具有高疏水性,這可將墨 水流出該相對親水的噴嘴室並流至該列印頭的噴墨面上的 可能性減至最小。第三’該聚合物像一保護層般地作用, 這有利於該列印頭的維修。 該聚合物層19可包含一聚合物化的矽氧烷,譬如像 是聚二甲基矽氧烷(PDMS)或來自該聚二甲基矽氧烷的家 族的任何聚合物’譬如描述在美國專利申請案第 1 2/5 08,5 64號中者’該案的內容藉此參照被倂於本文中。 聚倍半矽氧烷典型地具有(RSiO^h的實驗式,其中r爲 氫或有機基團及η爲整數其代表該聚合物鏈的長度。該有 機基團可以是C1〇2烷基(如’甲基)、Cl_1()芳香族羥基 -31 - 201215513 (如’苯基)或c,.l6芳烷基(如,苯甲基)。該聚合物鏈可以 是此技藝中習知的任何長度(如,η是從2至1 0000、10 至50 00或50至1〇〇〇)。適當的聚二甲基矽氧烷的特定例 子爲聚(甲基倍半矽氧烷)及聚(苯基倍半矽氧烷)。 回到如圖1 5及6所示之最終製造步驟,一墨水供應 通道2 0從該基材的背側被蝕刻穿透至該噴嘴室5。雖然 圖15及16中所示的該墨水供應通道20與該噴嘴開口 13 對準,但它亦可被設置成偏離該噴嘴開口。 在蝕刻該墨水供應通道之後,塡入到該噴嘴室5中的 該聚醯亞胺 6藉由使用例如氧氣電漿的電漿清洗 供 提 以 除 去 被 而 洗 清 漿 電 側 背 或 洗 清 漿。 電 ο ο 側 1 前件 Μ組 g η 嘴 Shi噴 (a該 具對立的可動頂壁槳片對的噴墨噴嘴組件 如圖1 2所示,本案申請人前面描述的噴墨噴嘴組件 包含一可動的槳片14,用來將墨水經由該噴嘴開口 13射 出。 現參考圖17,一種包含一對相對立的頂壁槳片14Α 及14Β的噴墨噴嘴組件200示意地以平面圖示出。在所有 描述於本文中之以平面圖來顯示的噴墨噴嘴中,該上聚合 物層19都爲了清楚起見而被去除掉。又,爲了清晰起 見,對於所有描述於本文中之噴墨噴嘴而言是共同的特徵 都被標以相似的標號。 每一槳片14Α及14Β都具有與上述之噴墨噴嘴1〇〇 -32- 201215513 相同的方式用上熱彈性樑及下被動樑來界定的各自的熱彎 曲致動器15A及15B。又,每一熱彎曲致動器(及每一槳 片)都可經由在基材1的該CMOS驅動電路層中各自的驅 動電路加以獨立地控制。這可讓第一致動器1 5A(及第一 槳片14A)獨立於第二致動器1SB(及第二槳片14B)之外地 被控制。 圖17顯示一具有對立的槳片14A及14B的噴嘴組件 2 00,每一槳片界定該噴嘴開口 1 3的一部分。因此,該噴 嘴開口 1 3在致動期間將與槳片一起運動。 圖18顯示具有對立的槳片14A及14B之另一噴嘴組 件2 1 0 ’每一槳片係可相對於該噴嘴開口 1 3運動。換言 之’該噴嘴開口 13被界定在該頂壁7的不動的部分中。 將被瞭解的是,圖1 7及1 8中所示的噴嘴組件200及2 1 0 都是在本發明的範圍內。 圖1 9顯示一用來控制供應至該噴嘴組件200的每一 致動器15A及15B之相對電量的簡單電路圖。致動器 1 5A接受完整的電量,而供應給致動器1 5B的電量則使用 該電位計2 0 2加以改變。 使用一組不同的電位計電阻的實驗測量値顯示出,不 同的最大槳片速度可藉由減少供應至該致動器15B的電量 來達到。例如,在相同的電量下,最大槳片速度大致相 等。然而,當該電位計電阻値被提高時,槳片14B的最大 槳片速度相對於槳片1 4A被顯著地降低。例如,槳片1 4B 的最大槳片速度可被降低至比槳片14A的最大槳片速度 -33- 201215513 低7 5 %、低5 Ο %或低2 5 %。 此最大槳片速度上的差異對於液滴方向具有重大的影 響。因此,藉由控制供應至每一致動器15Α及15Β之相 對電量,從該噴嘴開口 13射出的小液滴的方向可被控 制。實驗上地,小液滴方向可被歪斜高達一被列印的頁面 的 4 個點節距。因此,-4、-3、-2、-1、〇、+1、+2、+3 及+4個點節距(以及所有中間的非整數點位置)都可由一個 噴嘴來達成,其中‘〇’被界定爲垂直於該噴墨面的小液 滴噴射所得到的主要點位置。此結果對於頁寬噴墨列印頭 的設計具有重要的分枝(ramification),這將於下文中更詳 細討論。 當然,爲了實驗上的目的,使用電位計202可以讓一 個範圍的電力參數被很方便地調查。然而,歪斜的小液滴 噴射亦可藉由控制致動的時機來達成,其可作爲控制供應 至每一致動器的電量的替代方法或是額外的方法。例如, 致動器15A可在致動器15B接受其致動訊號之前或之後 才接受其致動訊號,產生不對稱槳片運動及歪斜的小液滴 噴射的結果。 又,供應至每一致動器的電量可藉由改變驅動訊號的 脈衝寬度來控制。此改變供應至每一致動器的電量的方法 使用CMOS驅動電路是最可行的,特別是在想要快速地改 變小液滴方向的例子中。 具四個可動的頂壁槳片的噴墨噴嘴組件 -34- 201215513 示於圖1 7及1 8中的噴嘴組件2 0 0及2 1 0讓小液滴射 出的方向可沿著一軸線被控制。典型地(且最有用地)’此 軸線將會是一細長形的頁寬列印頭的縱軸線’噴嘴列係沿 著此軸線延伸。然而,小液滴方向的進一步控制可藉由使 用相對於該噴嘴開口被配置之多於兩個的槳片來達成。 圖20顯示一包含噴嘴組件22〇的列印頭的一部分, 每一噴嘴組件220包含四個相對於該不動的噴嘴開口 13 被配置的可動槳片 MA'MB'MC及14D。從噴嘴室的 側壁突伸出的阻尼柱2 2 1在控制液滴射出特徵及室再塡充 上提供協助,特別是在該等致動器中的一者失去作用時。 在圖2 0所示的四槳片結構中,小液滴噴射可藉由四 個槳片之協同的運動而沿著一軸線或兩軸線(即,縱軸線 與橫向軸線)被歪斜。因此’一墨水小液滴可被射至一列 印媒介的二維度區域上的任何地方,該二維度區域典型地 爲該發射噴嘴(firing nozzle)位於中心的一個圓形或橢圓 形的區域。 圖21顯示一具有多個噴嘴220的噴嘴列的一部分, 該等噴嘴彼此沿著該噴嘴列的縱軸線間隔一個噴嘴節距的 距離。一列印媒介的一個橢圓形區域222顯示出一位在該 橢圓形區域的中心的發射噴嘴(‘ 〇 ’)可將墨水小液滴發 射於其上的區域。如在圖21中所見,該發射噴嘴(‘〇’ ) 可在該二維度的橢圓形區域222內的任何點位置發射墨水 小液滴。 可沿著一橫向軸線(即,垂直於縱向的噴嘴列軸線)發 -35- 201215513 射墨水小液滴的能力意謂著來自噴嘴組件220的小液滴噴 射無需嚴格地與在同一噴嘴列中的其它噴嘴同步發生。典 型地,在頁寬列印頭中的所有發射噴嘴必需在一個線時間 (line-time)的期間內發射,該線時間爲被界定爲一列印媒 介前進橫向地通過該列印頭一條線所花的時間。然而,具 有能夠沿著該列印頭的橫向軸線發射墨水小液滴能力的發 射噴嘴可被建構來在列印的一條線已通過該噴嘴之前或之 後發射一墨水小液滴並仍能將該墨水小液滴導引到同一列 印的線上。據此,該噴嘴組件220讓頁寬列印頭的設計比 噴嘴組件200及2 1 0有更大的彈性。 此外,多個頂壁槳片可增加每一噴嘴可用的整體射出 動力。因此,四槳片噴嘴的設計比二槳片噴嘴或單槳片噴 嘴的設計更適合黏稠流體的噴射。相類似地,二槳片噴嘴 的設計比單槳片噴嘴的設計更有力。 每一獨立的致動器的動力亦可藉由增加致動器樑的長 度及/或提供具有多個迴轉之蜿蜒的致動器樑。蜿蜒的致 動器樑被描述在本案申請人的美國專利第7,611,22 5號 中,該專利的內容藉此參照被倂於本文中。因此,本發明 亦提供適合噴射具有相對高的黏性(如,比水的黏性高)的 流體的高動力式噴墨噴嘴。 具有高的點密度的噴墨列印頭 在典型地頁寬列印頭中,每一發射噴嘴(亦即,被選 取來發射的噴嘴,藉以將該列印頭接收到的資料列印出來) -36- 201215513 在一個線時間內只發射一次。又,每一噴嘴射出一墨 液滴使得該小液滴落在與該噴嘴相關連的主要點位置 當一噴嘴射到與其相關連的主要點位置上時’小液滴 通常係垂直於該列印頭的噴墨面。因此’在傳統的頁 印頭中,列印頭的噴嘴密度對應於被列印的頁面上的 度。例如,一噴嘴節距爲η的頁寬列印頭將會列印出 點節距爲η的的線’其中該噴嘴節距與點節距分別被 爲相鄰的噴嘴與點的中心之間的距離。 然而,噴嘴組件2 0 0 ’ 2 1 0及2 2 0讓列印頭可被 成被列印的點節距小於該列印頭的噴嘴節距’因此被 的點的密度大於該列印頭的噴嘴密度。 圖22顯示一頁寬列印頭230的一部分,其中該 印的點的節距小於該列印頭的噴嘴節距。在同一噴嘴 的三個噴嘴2 3 1被示出’且被間隔一個噴嘴節距η。 個噴嘴中的每一噴嘴可由例如該噴嘴組件2 1 0(如圖 示)所構成。來自每一噴嘴的墨水小液滴係可在沿著 2 3 6所標示的縱軸線的多個不同的點位置處射到一列 介23 5上。如圖22、23、29及30所示,該列印媒{ 被送出該圖的紙張(即,朝向觀看者且橫貫該列印頭 印頭1C的縱軸線)。 仍參考圖22,每一噴嘴23 1被建構來在一個線 的期間內在兩個不同的點位置射出墨水一一個點位置 垂直該列印頭表面的小液滴噴射所得到的主要點 232 ;另一點位置23 4係由歪斜的墨水噴射得到的, 水小 處。 噴射 寬列 點密 一條 界定 設計 列印 被列 列中 這三 18所 箭頭 印媒 r 235 或列 :時間 ί是由 位置 其將 -37- 201215513 墨水小液滴落在該等主要點位置之間的半途。得到的點節 距d因而小於噴嘴節距η,使得被列印的點的密度大於該 列印頭的噴嘴的密度。 在圖22所示的例子中,噴嘴節距η是點節距d的兩 倍,但將被瞭解的是,該列印頭可建構出n>d的噴嘴節距 η與點節距d的任何比率。例如,如果在一個線時間內每 —噴嘴都在其主要點位置及兩個其它的點位置(如,在該 主要點位置的兩旁)列印的話,則點節距爲n = 3d的列印可 被達成。 可達成的實際點節距只受限於相對於列印媒介被饋送 通過該列印頭的速率之墨水室再塡充率。本案申請人的模 型顯示,在每分鐘60頁時,墨水室在一個線時間內可被 再塡充兩次,以實施典型的不動式頁寬列印頭通常能夠達 成的點密度兩倍點密度的列印。當然,減慢該列印媒介饋 送的速率(如,減至30ppm)可達到更高的點密度。 以此方式,不動式頁寬列印頭可達到類似於掃描式列 印頭的多功能性。在掃描式列印頭中,被列印的點的密度 可藉由以較低的速度列印來提高,因爲該掃描式列印頭掃 過每一條線且根據掃描速度而有機會在許多不同的點位置 列印。雖然用比傳統掃描式列印頭的速度列印高很多的速 度列印,但示於圖22中的該不動式頁寬列印頭23 0仍具 有類似的多功能性且能夠以極高的點密度(如,3200dpi)來 列印。 -38- 201215513 廢噴嘴補償 本案申請人之前已描述用於不動式頁寬列印頭中之廢 噴嘴補償的機制。當使用於本文中時,‘廢噴嘴(dead nozzle)’意指沒有射出任何墨水的噴嘴,或用控制不足的 液滴速度或液滴方向來射出墨水的噴嘴。通常‘廢噴嘴’ 是因爲致動器故障所造成的(其爲可以用偵測電路最快地 找出來的噴嘴故障原因),但亦可以是因爲該噴嘴開口中 無法移除的阻塞所造成的或在該噴墨面上阻礙或部分地阻 礙該噴嘴開口之無法移除的碎屑所造成的。 典型地,在不動式頁寬列印頭中的廢噴嘴補償需要來 自多餘的噴嘴列的列印(如美國專利第 7,46 5,0 1 7號及第 7,2 5 2,3 5 3號中所描述的,該等專利的內容藉此參照而被 倂於本文中)。它的缺點是,列印頭需要多餘的噴嘴列, 這將不利地增加列印頭成本。 或者,一廢噴嘴的視覺效果可藉由發射(較佳地‘過 負載(overpowering)’ )—與該廢噴嘴相鄰的噴嘴來補償 (如美國專利第6,757,549號中所描述的,該專利的內容藉 此參照被倂於本文中)。事實上,這涉及了列印罩幕的修 改’使得該廢噴嘴的整體視覺效果被最小效化。 噴墨噴嘴組件2 00 ' 210及220可在無需多餘的噴嘴 列或改變列印罩幕下實施廢噴嘴補償。圖2 3顯示一頁寬 列印頭240的一部分,其中一廢噴嘴242被位在同一噴嘴 列中的一相鄰的機能性噴嘴(functi〇ning n〇zzle)243補 償。 -39- 201215513 在同一噴嘴列有三個噴嘴,每一噴嘴係由噴嘴組件 2 1 0(如圖18所示)所構成。該中央噴嘴242是廢噴嘴或是 故障的噴嘴,而在該中央噴嘴242兩側的相鄰的噴嘴243 及244是功能正常的噴嘴。 來自每一機能性噴嘴243及244的墨水小液滴可被射 至(在觀看圖23時係朝向觀看者的方向被饋送的)該列印 媒介2 3 5上沿著該縱軸線2 3 6的多個不同的點位置處。在 一個線時間的期間內,該噴嘴243在其本身的主要點位置 247處及在與該廢噴嘴242相關連的主要點位置248處射 出一墨水小液滴。因此,噴嘴243藉由在一個線時間的期 間內列印兩個點來補償在同一噴嘴列中的該廢噴嘴242。 當然,在下一個線時間中,是噴嘴244,而非噴嘴243, 補償該廢噴嘴242,使得噴嘴243及244共同分擔了該廢 噴嘴的工作負荷。又,該補償性噴嘴無需緊鄰該廢噴嘴, 端視可達到之歪斜的小液滴噴射的程度而定。例如,該補 償性噴嘴可位在離該廢噴嘴-4、-3、-2、-1、+1、+2、+3 及+4個噴嘴節距處,讓許多不同的噴嘴可以分擔一廢噴 嘴的工作負荷。 圖23顯示噴嘴243被要求在一個線時間的期間內在 其本身的主要點位置247處及在與該廢噴嘴242相關連的 主要點位置248處射出一墨水小液滴的方案。當然,該列 印罩幕主要是控制哪些被要求要在特定的一個線時間內發 射,然後一適當的機能性噴嘴被給予用於補償的優先權, 如果該機能性噴嘴並沒有在該特定的一個線時間內在其本 -40- 201215513 身的主要點位置發射墨水的話。以此方式來選擇補償 嘴可進一步將對於一廢噴嘴附近的機能性噴嘴的需求 化。在許多情況中及與該列印罩幕有關地,避免一補 噴嘴在一個線時間內被要求發射兩次是可能的。 或者,一由噴嘴組件2 2 0構成的列印頭可以不一 在找出該廢噴嘴發射的同一個線時間內發射補償性噴 實施該廢噴嘴補償。因爲噴嘴組件220可將墨水小液 射至一個二維度區域(其包括沿著該列印頭的橫向軸 點位置在內)的任何點位置處,所以廢噴嘴的補償可 到稍後的線時間或被提前至稍早的線時間。這讓補償 的選擇及時機上更有彈性。 廢噴嘴典型地係藉由偵測一或多個對應於該廢噴 致動器的點阻値來鑑別的。此方法的好處在於能夠動 只出並補償廢噴嘴。然而,其它用來找出廢噴嘴的 (如,使用預定的列印圖案的光學技術)亦可被使用。 具無縫接合的頁寬列印頭 排除晶圓良率極低的整塊式(monolithic)頁寬 頭,本發明的頁寬列印頭是以端部對端部橫跨頁寬度 式將多個列印頭1C對接在一起。 圖2 4顯示五個以端部對端部相對接以形成一頁 印頭2 5 0的列印頭IC 2 5 I A - E的配置’單一的列印丨 251則被示於圖25中。將可被瞭解的是’更長的頁 印頭(如,A 4列印頭及寬格式列印頭)可藉由將更多 性噴 最小 償性 定要 嘴來 滴發 線的 被延 噴嘴 嘴的 態地 方法 列印 的方 寬列 I 1C 寬列 列印 -41 - 201215513 頭IC 251對接在一起來製造。以此方式將列印頭IC對接 在一起具有將列印區域的寬度最小化的優點,而此優點可 排除對於列印媒介與列印頭之間精確對準的要求。然而, 參考圖26及27,對接在一起的列印頭1C有一個缺點, 亦即,橫跨對接的列印頭1C對之間的接合區257的列印 是很困難的。這是因爲噴嘴25 5不能被製造到非常靠近每 —列印頭1C的邊緣25 8 —爲了結構上的強固及爲了允許列 印頭1C被對接在一起,一無法避免的‘死空間(dead space)’ 259必需被留在邊緣處。因此,介於對接的IC之 間的實際噴嘴節距無可避免地大於一列印頭1C的一噴嘴 列中的一個噴嘴節距。 因此,頁寬列印頭必需被設計成可無縫地橫跨接合區 來列印墨水點。再次參考圖24至27,本案申請人已在上 文中描述了關於以對接列印頭IC的方式建構頁寬列印頭 的問題的解決方案。如圖2 7所示,一移位的噴嘴三角形 2 53從相鄰的對接列頭1C有效地塡補噴嘴之間的間隙。 藉由調整在該移位的三角形253內的噴嘴255的發射的時 序(即,將這些噴嘴在比與它們相對應的噴嘴列晚的時間 點發射),點可被無縫地列印橫跨該接合區257 °該移位 的噴嘴三角形253的作用被詳細地描述於美國專利第 7,390,071號及第7,290,852號中,該等專利的內容藉此參 照而被併於本文中。 圖27亦顯示沿著該列印頭1C的縱向邊緣設置的黏合 墊75與對準基準點76。黏合墊75係藉由打線結合 -42- 201215513 (wirebond)(未示出)來連接,用以提供電力及邏輯訊號至 該列印頭1C內的CMOS驅動電路。對準基準點76可讓對 接的列印頭1C在列印頭的建造期間使用適當的光學對準 工具(未示出)來彼此對準。 雖然該移位的噴嘴三角形25 3對橫跨接合區列印的問 題提供了一適當的解決方案,但仍存在數個問題。首先’ 該移位的三角形2 5 3被需被供應墨水’且在縱向地延伸於 背側之墨水供應管道內的尖銳扭結(sharP kink)對於供應 墨水至該三角形253內的噴嘴有不利的影響。其次’該移 位的噴嘴三角形2 5 3降低晶圓良率’因爲它增加每一列印 頭IC 2 5 1的寬度;每一列印頭IC必需具有一足以容納 r + 2個噴嘴列的寬度,即使是列印頭1 c只具有r個噴嘴列 亦然。 描述於本文中的噴嘴組件200、210及220因爲它們 具有在沿著一縱軸線的多個預定的不同點位置發射墨水小 液滴的能力,所以對於將列印頭1C對接在一起的問題可 提供一解決方案並可橫跨每一接合區保持一固疋的點節 距。又,如圖2 8所示’具有未被中斷的噴嘴列的列印頭 1C 260(即,沒有圖27所示的移位的噴嘴二角形253)可被 對接在一起。此列印頭1C的設計不只可促進 '沿著噴嘴列 供應墨水,還可提高晶圓良率。原則上’有兩種方式可被 用來補償橫跨該接合區25 7的‘無(absent)’噴嘴地帶。 在第一種方式中,設置在該列印頭1 C 2 6 0的兩端的 噴嘴被建構來射出朝向各自端部歪斜的墨水小液滴’而設 -43- 201215513 置在該列印頭ic 260的中央部分的噴嘴則射出垂直於該 噴墨面的墨水小液滴。參考圖29,一列印頭ic 260被示 出’其中設置在右手邊的噴嘴2 64被建構來射出被朝向右 手邊歪斜的墨水小液滴。相類似地,設置在左手邊的噴嘴 2 62被建構來射出被朝向左手邊歪斜的墨水小液滴。設置 在列印頭1C的中央部分的噴嘴266被建構來射出垂直於 該噴墨面的墨水小液滴。雖然噴嘴262、264及266具有 不同的小液滴射出特性,但從它們是圖1 8、1 9或2 0所示 之具有控制小液滴方向的能力的噴嘴類型的方面來看,這 些噴嘴都是相同的。 歪斜的程度與特定噴嘴離該列印頭1C 260的中心的 距離有關。位在該列印頭I C的末端處的噴嘴被建構來射 出被歪斜的墨水小液滴,其歪斜的程度大於設置在該列印 頭I C的中央的噴嘴射出的墨水小液滴。從列印頭I c 2 6 0 的中央往外逐漸的呈喇叭型展開讓一致的點節距得以被維 持在該列印頭1C的整個長度上。 雖然小液滴噴射的‘喇叭型外擴(flaring)’在圖29 中被有一點誇大地示出,但可被瞭解的是,被射出的墨水 小液滴的平均點節距因爲此喇叭型外擴的關係而比列印頭 1C 2 60的噴嘴節距稍大。然而,因爲在每一噴嘴列中有數 百或數千個噴嘴,所以點密度相對於噴嘴密度變小的程度 是可忽略的。典型地,儘管有該喇叭型外擴的小液滴噴 射,該平均點節距還是比列印頭的噴嘴節距大了不到1 % 的程度。 • 44 - 201215513 由於在列印頭I c 2 6 0的邊緣處之歪斜的小液滴噴射 的關係,一特定的噴嘴列的實際可列印區比該噴嘴列的長 度還要長。該可列印區可以比該噴嘴列長1至8個噴嘴節 距。此一被加長的可列印區讓該列印頭I C可列印至介於 對接的列印頭IC 2 6 0之間的接合區2 5 7內,藉以省掉圖 27中所示的該移位的噴嘴三角形253。 當然,只讓位在該列印頭IC的一端的噴嘴具有歪斜 的小液滴噴射亦是可能的。然而’在給定一典型的接合區 2 5 7的寬度下(即’介於同一噴嘴列中之一對相對接的列 印頭I C的噴嘴之間的寬度)圖2 9所示之具有喇叭型外擴 式小液滴噴射的配置是較佳的。這可括大該對接的列印頭 I C對所能夠補償之該接合區2 5 7內的‘無’噴嘴地帶。 示於圖2 9中之具有喇叭型外擴式小液滴噴射的列印 頭IC 2 6 0具有的優點爲,在沒有廢噴嘴補償或無需以較 高的點密度來列印之下’每一噴嘴在一個線時間的期間內 只發射一次,同時將可列印區的長度擴張爲大於一對應的 噴嘴列的長度。在另一種方式中’一列印頭1C 270可被 建構成,在每一噴嘴列的末端處之被選取的噴嘴在一個線 時間內發射多於一次,用以補償在接合區內之‘無’噴嘴 地帶。 參考圖30,列印頭1C 270被示出,其中大多數的噴 嘴射出垂直於該列印頭1C的噴墨面的墨水小液滴。然 而,在一噴嘴列的末端處的至少一個噴嘴272被建構來射 出一墨水小液滴於一主要點位置274(即,垂直於該噴墨 -45 - 201215513 面)及射出一墨水小液滴於次要點位置2 7 6其被朝向該列 印頭ic的各自端部歪斜。換言之,噴嘴272被建構來用 類似於高密度列印頭230中的噴嘴231的方式在一個線時 間內射出兩滴墨水小液滴》然而,該等噴嘴2 7 2保持著一 致的點節距d,使得噴嘴節距n在列印頭】c 2 7 0的整個可 列印區中典型地等於該點節距d。 雖然該列印頭1C 270的優點爲點節距相對於噴嘴節 距沒有犧牲’但它的缺點爲在每一噴嘴列的末端處的噴嘴 272射出墨水的頻率必需是其它噴嘴271的兩倍。因此, 噴嘴272更容易因爲疲勞而故障,因此對於對接在—起的 列印頭IC而言,列印頭IC 2 6 0是較佳的。 改良的MEMS/COMS整合 MEMS列印頭設計的一個重要的面向爲MEMS致動器 與底下的CMOS驅動電路的整合。爲了要讓噴嘴致動發 生,來自CMOS中的驅動電晶體的電流必需向上流入該 MEMS層,通過該致動器並向下回到該CMOS驅動電路層 (如’回到CMOS層的接地平面)。因爲有數千個致動器在 一個列印頭1C中,所以電流流路的效率應被最大化,用 以將整體列印頭效率的損失最小化。 到目前爲止,本案申請人已描述了具有一對延伸於 MEMS致動器(其位置該噴嘴室頂壁中)與底下的CMOS驅 動電路層之間之直的柱狀物的噴嘴組件。此等平行的致動 器柱的製造被示於圖5及6中,且在本文中被描述。與迂 -46- 201215513 迴曲折的電流路徑相反地,向上延伸至該MEMS層的直 的銅柱已被證明可改善列印頭效率。然而,本案申請人的 Μ E M S列印頭(及列印頭I C )的電效率仍有可改善之處。 與使用共同的CMOS電源平面及接地平面來控制數千 個致動器有關的一個問題被稱爲‘接地彈跳(ground bounce)'。接地彈跳在積體電路設中是一個習知的問 題,它在有一大數量的裝置在共同的電源平面與接地平面 之間被供能(powered)的情況中會更加惡化。接地彈跳通 常是描述一橫跨電源平面或接地平面之所不想要的電壓下 降,其可因爲許多不同的原因而產生。接地彈跳的典型原 因包括:串連的電阻(“ IR 下降”)、自感(selfinductance)、 及接 地平面 與電源 平面間 的互感 。這 些現象 中的任何一者都會因爲所不想要地降低接地平面與電源平 面間的電位差而造成接地彈跳。此被降低的電位差無可避 免地造成該積體電路(更明確地,在此例子中爲列印頭1C) 的電效率下降。將可被瞭解的是,接地平面與電源平面的 配置及組態,以及連接到它們的連線會根本上地影響接地 彈跳及列印頭的整體效率。 參考圖31,一列印頭1C 300的一部分的平面圖被示 出,其中該列印頭1C具有縱長向地延伸且平行於噴最列 的導電跡線。在圖3 1中,爲了清楚起見,最上面的聚合 物層1 9已被移除。 多個噴嘴2 1 0(其已參考圖1 8加以詳細描述)被配置在 沿著該1C 3 00縱軸線延伸的噴嘴列中。圖3 1顯示一對噴 47 - 201215513 嘴列302A及3(ΠΒ,當然,列印頭IC 3 00可包含更多的 噴最列。噴嘴列 302A及3 02B被配對且彼此偏位 (offset),其中噴嘴列3 02a負則責列印‘偶數’點及另一 噴嘴列302B負責列印‘奇數’點。在本案申請人的列印 頭中,噴嘴列典型地係以此方式被配對,且可在例如圖 28中被更清楚地看出來。 —第一導電跡線33被設置在噴嘴列302A及302B之 間。該第一導電跡線303被沉積在列印頭1C 3 00的噴嘴 板3 04(其界定噴嘴室頂壁7(參見圖10))上。因此,該第 一導電跡線3 0 3與致動器1 5的熱彈性樑1 0係大致共平面 且可藉由與該熱彈性樑材料(如,釩鋁合金)共同沉積而在 MEMS製造期間被形成。導電跡線3 03的導電性可藉由在 MEMS製造期間沉積另一導電金屬層(如,銅、鈦、鋁等 等)而被進一步改善。例如,將可被瞭解的是,一金屬層 可在沉積該熱彈性樑材料之前被沉積(如,與圖8所示的 金屬墊9共同被沉積)》簡單修改用於金屬墊9的蝕刻罩 幕就可用來界定導電跡線303»因此,導電跡線303可包 含多層金屬層,用以將導電性最佳化。 每一致動器15具有一經由橫向連接器3 05而直接連 接至該第一導電跡線3 03的第一端子。如圖31中所見, 來自於噴嘴列3 02A及3 02B兩者的每一致動器具有連接 至該第一導電跡線3 0 3的第一端子。該第一導電跡線3 0 3 經由多個導體柱3 07(其與上文中參考圖6加以描述的致 動器柱8相類似地被製造)而被連接至在底下的CMOS驅 -48- 201215513 動電路層內的一共同的參考平面。因此’該導電跡線 可沿著該列印頭1 C 3 0 0連續地延伸,用以提供一用 對噴嘴列中的每一致動器的共同的參考平面。如將於 中更詳細描述的,介於噴嘴列302A及302B之間的 同的參考平面可以是一電源平面或一接地平面,這 nFET或是pFET被使用在該CMOS驅動電路中有關。 或者,該導電跡線3 03可沿著該列印頭IC 300 續地延伸,該導電跡線的每一部分提供一用於一組致 的共同的參考平面。在導電跡線的剝落會是一個問題 況中,雖然該導電跡線仍以上文所述的方式作用,但 連續的導電跡線3 0 3是較佳的。 每一致動器15的第二端子經由一延伸在該致動 該CMOS驅動電路層之間的致動器柱8而被連接至 CMOS驅動電路層內的一底下的驅動FET。每一致動 8與圖6所示的致動器柱8完全類似且係以此方 MEMS製造期間被形成。因此,每一致動器15被各 驅動F E T獨立地控制。 在圖3 1中,一對第二導電跡線3 1 0A及3 1 0B亦 列印頭1C 300縱長地延伸且在該對噴嘴列3 02A及 的側腹。該第二導電跡線310A及310B與第一導電 3 03互補。換言之,如果第一導電跡線3 03是一電源 的話,則兩個第二導電跡線都是接地平面。相反地, 第一導電跡線3 0 3是一接地平面的話,則兩個第二導 線都是電源平面。第二導電跡線310A及310B並沒 3 03 於該 下文 該共 與是 不連 動器 的情 — 器與 在該 器柱 式在 自的 沿著 3 02B 跡線 平面 如果 電跡 有直 -49- 201215513 接連接至該等致動器15;然而’它們經由多個導體柱3 07 而被連接至該CMOS驅動電路層中的對應參考平面(電源 或接地平面)。 將可被瞭解的是’第二導電跡線310可用完全類似於 上文所述的第一導電跡線3 0 3的方式在Μ E M S製造期間 被形成。據此,第二導電跡線3 1 0典型地是由熱彈性樑材 料構成且可以是多層式結構用以加強導電性。 第一及第二導電跡線303及310的作用主要是用來降 低在該CMOS驅動電路層中對應的參考平面的串聯電阻 値。因此,藉由提供導電跡線於與該CMOS層中的對應參 考平面並聯地連接的該MEMS層中,這些參考平面的整 體電阻値可藉由歐姆定律的簡單應用而被顯著地降低。通 常,導電跡線係被建構來例如藉由將它們的寬度或深度儘 可能地最大化來將它們的電阻値最小化。 一接地平面或電源平面的串聯電阻値可因爲在該 MEMS層中的導電跡線的關係而被降低至少25%,至少 50%,至少75%或至少90%。同樣地,一接地平面或電源 平面的自感可被類似地製造。接地平面及電源平面兩者在 串聯電阻値與自感上的顯著減小有助於將列頭1C 300的 接地彈跳最小化,因而改善列印頭效率。本案發明人瞭解 到,在圖3 1所示的列印頭IC 3 0 0中’電源平面與接地平 面之間的互感亦被降低’雖然互感的定量分析需要複雜的 模型,但這已超出本案的範圍。 圖32及33提供用於pFET及nFET驅動電晶體的簡 -50- 201215513 化的CMOS驅動電路圖。該驅動電晶體(nFET或pFET)如 圖31所示係經由致動器柱8而被直接連接至每一致動器 1 5的第二端子。 在圖32中,致動器15被連接在pFET的汲極與接地 平面(“ Vss” )之間。電源平面(“ Vpos” )被連接至該 pFET的源極,而閘極則接受該邏輯發射訊號。當該pFET 在閘極處(由於N AN D閘的關係)接受一低電壓時,電流流 經該pFET使得致動器15被致動。在該pFET電路中,致 動器的第一端子被連接至由該第一導電跡線3 03提供的接 地平面,同時,該致動器的第二端子被連接至該pFET。 因此,該等第二導電跡線提供電源平面。 在圖33中,致動器15被連接於該電源平面 (“ Vpos”)與一nFET的源極之間。當該nFET (因爲AND 閘的關係)接受一高電壓時,電流流經該nFET使得致動器 15被致動。在該nFET電路中,致動器的第一端子被連接 至由該第一導電跡線303提供的電源平面,同時,該致動 器的第二端子被連接至該nFET。因此,該等第二導電跡 線提供接地平面。 從圖3 2及3 3可瞭解到的是,第一及第二導電跡線 303及310可以與pFET或nFET相容。 當然,使用如上文所述的導電跡線的好處並不侷限於 圖3 1所示的噴嘴2 1 0。具有任何類型的致動器的列印頭 1C原則上都可受惠於上文所述的導電跡線。 圖34顯示一包含多個噴嘴1〇〇(其類似於參考圖16 -51 - 201215513 描述的噴嘴類型)的列印頭IC 400,該等噴嘴被配置成縱 長向延伸的噴嘴列對302A及302B。第一導電跡線303延 伸於該對噴嘴列302A及302B之間’且第二導電跡線 3 1 0A及3 1 0B位在該對噴嘴列的側腹。一個別的噴嘴1 〇〇 的每一致動器15具有一第一端子其經由一橫向的連接器 305連接至第一導電跡線303,及一第二端子其經由一致 動器柱8連接至底下的FET。因此,將可被瞭解的是’在 導電跡線303及310因連接至底下的CMOS驅動電路中對 應的參考平面而提供共同的參考平面此觀念上,該列印頭 1C 400如列印頭1C 300般地運作。又,第一·導電跡線 303被直接連接至每一致動器的一個端子用以提供一用於 兩個噴嘴列3 02A及302B中的每一致動器的共同的參考 平面。 熟習此技藝者將可瞭解的是,在不偏離本發明最廣義 地界定的精神或範圍下,可對特定的實施例中所示的本發 明實施各式的變化及/或修改。因此,這些實施例在各方 面都應被認定爲是示範性的而非限制性的實施例。 【圖式簡單說明】 本發明的選擇上的實施例現將以舉例的方式參考附圖 加以描述,其中 圖1爲在第一步驟順序之後被部分地製造的噴墨噴嘴 組件的側剖面圖,其中噴嘴室側壁被形成; 圖2爲示於圖1中之被部分地製造的噴墨噴嘴組件的 -52- 201215513 立體圖; 圖3爲在第二步驟順序之後被部分地製造的噴墨噴嘴 組件的側剖面圖,其中該噴嘴室側壁被塡入聚醯亞胺; 圖4爲示於圖3中之被部分地製造的噴墨噴嘴組件的 立體圖1 圖5爲在第三步驟順序之後被部分地製造的噴墨噴嘴 組件的側剖面圖,其中該等連接器柱被形成到達室底壁; 圖6爲示於圖5中之被部分地製造的噴墨噴嘴組件的 立體圖; 圖7爲在第四步驟順序之後被部分地製造的噴墨噴嘴 組件的側剖面圖,其中該等導電金屬板被形成; 圖8爲示於圖7中之被部分地製造的噴墨噴嘴組件的 立體圖; 圖9爲在第五步驟順序之後被部分地製造的噴墨噴嘴 組件的側剖面圖,其中該一熱彎曲致動器的主動樑件被形 成; 圖10爲示於圖9中之被部分地製造的噴墨噴嘴組件 的立體圖; 圖11爲在第六步驟順序之後被部分地製造的噴墨噴 嘴組件的側剖面圖,其中該一包含該熱彎曲致動器之活動 的頂壁部分被形成; 圖1 2爲示於圖1 1中之被部分地製造的噴墨噴嘴組件 的立體圖; 圖1 3爲在第七步驟順序之後被部分地製造的噴墨噴 -53- 201215513 嘴組件的側剖面圖,其中疏水性聚合物層被沉積及被光圖 案化; 圖14爲示於圖13中之被部分地製造的噴墨噴嘴組件 的立體圖; 圖1 5爲一被完整地製造的噴墨噴嘴組件的側剖面 圖, 圖16爲示於圖15中之該噴墨噴嘴組件的且開立體 圖, 圖17爲一噴墨噴嘴的平面圖,其具有相對立的可活 動的頂壁槳片及一可活動的噴嘴開口; 圖18爲一噴墨噴嘴的平面圖,其具有可相對於一不 動的噴嘴開口活動之對立的可活動的頂壁槳片; 圖19爲一用來獨立地控制圖17中所示的噴墨噴嘴的 兩個致動器的簡化的電路圖: 圖20爲一列印頭的一部分的平面圖,其包含具有四 個可活動的頂壁槳片的噴墨噴嘴; 圖21顯示用於圖20中所示的噴墨噴嘴的二維度可列 印區; 圖22爲一被建構成使列印點密度高於列印頭的噴嘴 密度的噴墨列印頭的一部分的側視圖; 圖23爲一被建構來補償廢噴嘴的噴墨列印頭的一部 分的側視圖: 圖24爲包含五個對接的列印頭IC的噴墨列印頭的平 面圖; -54- 201215513 圖2 5爲一個別的列印頭IC的平面圖; 圖2 6爲示於圖2 5中之列印頭IC的端部區的立體 圖; 圖27爲一介於一對示於圖25中的列印頭1C之間的 接合區的立體圖; 圖28爲一對列印頭1C的接合區的立體圖,其包含被 建構來列印至該接合區內的噴嘴: 圖2 9爲一列印頭IC的側視圖,其中一可列印區比一 對應的噴嘴列還長; 圖30爲一列印頭1C的側視圖,其中端部噴嘴被建構 來列印至各自的接合區內; 圖31爲一具有設置在一噴嘴板上的導電跡線的列印 頭IC的平面圖; 圖32爲一用於連接至驅動PFET的致動器的簡化的 電路圖; 圖3 3爲一用於連接至驅動n F E T的致動器的簡化的 電路圖;及 圖34爲一具有設置在一噴嘴板上的導電跡線的另一 列印頭1C的平面圖。 【主要元件符號說明】 1 :基材 4 :壁 5 :噴嘴室 -55- 201215513 6 :聚醯亞胺 7 :頂壁 8 :致動器柱 2 :電極 9 :金屬墊 16 :被動樑(件) 10 :主動樑(件) 1 1 :部分噴嘴開口 1 2 :樑件 1 3 :噴嘴開口 14 :可動的槳片 1 5 :致動器 1 7 :間隙 18 :不動的部分 1 9 :聚合物層 2 1 :噴墨面 20 :供墨管道 1 〇 〇 :噴嘴組件 14A :頂壁槳片 14B :頂壁槳片 2 0 0 :噴墨噴嘴組件 15A :熱彎曲致動器 15B :熱彎曲致動器 2 1 0 :噴嘴組件 -56 - 201215513 印頭 介A continuous ink jet printing process is also disclosed in U.S. Patent No. 3,596,275, the entire disclosure of which is incorporated herein by reference. This technology is still used by several manufacturers, including Elmjet Scitex (see U.S. Patent No. 3,373,437, issued to Sweet et al.). A piezoelectric inkjet printer is also a common inkjet printing device. The piezoelectric system is disclosed by Kyser et al. in U.S. Patent No. 3,946,398 (1,970), which utilizes the operation of the diaphragm mode, which is disclosed by Zolten in U.S. Patent No. 3,68,312 (1,970). The operation of the extrusion mode of the crystal is disclosed in US Pat. Inkjet actuation of a piezoelectric push mode and a piezoelectric transducer element of the shear mode type are disclosed in U.S. Patent No. 45,845, the disclosure of which is incorporated herein by reference. Recently, thermal inkjet printing has become a very popular inkjet printing format. Such ink jet printing techniques include those disclosed in U.S. Patent No. 20041 62 (1 979) to U.S. Pat. The ink jet printing technique disclosed in the foregoing two patents relies on the action of an electrothermal actuator which causes a bubble to be generated in a restricted space, such as a nozzle, thereby causing ink to flow from one to six. 201215513 A hole that is connected to the restricted space is ejected onto an associated printing medium. Printing devices using such electrothermal actuators are manufactured by manufacturers such as Canon and Hewlett Packard. As can be seen from the above description, there are many different types of printing techniques. Ideally, a printing technique should have several desirable characteristics. These features include construction and operation that are inexpensive, high-speed operation, safe and continuous long-term work, and more. Each technology has its own advantages and disadvantages in terms of cost, speed, quality, reliability, power utilization, simplicity of construction and operation, durability and consumable. The applicant of this case has revealed many page wide print head designs. The fixed pagewidth printhead (which extends over the entire width of a page) contains many unique design challenges when compared to conventional traverse inkjet printheads. For example, a pagewidth printhead is typically constructed of a plurality of separate printhead integrated circuits (ICs) that must be seamlessly combined to provide high print quality. The applicant of the present application has heretofore disclosed a print head having a shifting nozzle section that allows a row of nozzles across the entire page width to be seamlessly aligned between the butted print head integrated circuits. Printing (see U.S. Patent Nos. 7, 3, 90, 07 1 and 7,290,852). Other pagewidth printing methods (eg, HP EdgelineTM technology) use an interleaved printhead module that inevitably increases the size of the print area and has additional requirements for the media feed mechanism to The print area remains properly aligned. It is desirable to provide another nozzle design that allows the page width printhead to have a new construction. Typically, a page-wide printhead has a 'redundant' nozzle column that can be used for dead nozzle compensation 201215513 or for adjustment of peak power demand for the print head (see US Patent Nos. 7, 465, 017 and 7, 252, 353, the contents of each of which are incorporated herein by reference. Contrary to the traverse printhead, waste nozzle compensation is a special problem in a fixed pagewidth printhead because the media substrate passes only through each nozzle of the printhead during printing. Only. The extra nozzle array inevitably increases the cost and complexity of the page wide print head. Therefore, it is desirable to provide adequate nozzle compensation for waste nozzles while minimizing excess nozzle rows. mechanism. It would be desirable to provide a pagewidth printhead capable of controlling, for example, more uniform droplet placement and/or droplet resolution. It is further desirable to provide an alternate print head with alternating MEMS and CMOS layers. It is particularly desirable to minimize unwanted "ground bounce" phenomena and thereby improve the overall electrical efficiency of the printhead. SUMMARY OF THE INVENTION In a first aspect, an inkjet nozzle assembly is provided comprising: - a nozzle chamber for containing ink, the nozzle chamber including a bottom wall and a top wall having a nozzle opening defined And a plurality of movable paddles defining at least a portion of the top wall, the plurality of paddles being actuatable to cause ink droplets to be ejected from the nozzle opening - each paddle comprising A thermal bending actuator comprising: an upper thermoelastic beam coupled to the drive circuit; and a lower passive beam fused to the thermoelastic beam to enable 201215513 to pass current through the thermoelastic beam At time, the thermoelastic beam expands relative to the passive beam, causing the respective paddles to bend toward the bottom wall of the nozzle chamber, wherein each actuator can be independently controlled by a respective drive circuit such that the aperture from the nozzle is small The droplet ejection direction can be controlled by the independent motion of each paddle. As used herein, "nozzle assembly" and "nozzle" are used interchangeably. Thus, "nozzle assembly" or "nozzle" refers to a device that ejects ink droplets as it is actuated. The "nozzle assembly" or "nozzle" typically includes a nozzle chamber having a nozzle opening and at least an actuator. Optionally selected, the nozzle assembly is disposed on a substrate, and a passivation layer of the substrate defines a bottom wall of the nozzle chamber. The upper wall is selected to be spaced apart from the bottom wall and the side wall extends between the top wall and the bottom wall to define the nozzle chamber. The upper nozzle is selected to include a pair of opposed paddles disposed on either side of the nozzle opening. The upper nozzle is selected to include two pairs of opposed paddles that are disposed relative to the nozzle opening. The upper pad is selected and the paddles are movable relative to the nozzle opening. Selecting the upper ground, each pad defines a portion of the nozzle opening such that the nozzle opening and the paddles are movable relative to the bottom wall. Selecting the upper layer, the thermoelastic beam comprises a vanadium aluminum alloy. Preferably, the passive beam comprises at least one material selected from the group consisting of cerium oxide, cerium nitride, and cerium oxynitride. -9- 201215513 Selecting the upper ground' The passive beam consists of a first upper passive beam made of oxidized sand and a second lower passive beam made of tantalum nitride. The top wall is selected to be coated with a polymeric material. The polymeric material can be constructed to provide a mechanical seal between each paddle and a stationary portion of the top wall to minimize ink leakage during actuation of the paddle. Alternatively, the polymeric material can have openings defined therein such that there is a fluidic seal between each paddle and a stationary portion of the top wall. Optionally, the polymeric material comprises a polymerized decane. Preferably, the polymerized oxane is selected from the group consisting of polysesquioxanes and polydimethyl methoxynes. Selecting the upper ground, the actuators are independently controllable by controlling at least one of: a timing of driving signals to each of the actuators for providing one of the plurality of blades Coordinated actions; and the power of the drive signals sent to each of the actuators. Selecting the ground, the power of the driving signals is controlled by at least: the voltage of the driving signals; and the pulse width of the driving signals. In a further aspect related to the first aspect, an inkjet printhead integrated circuit is provided comprising: a substrate comprising a drive circuit; and a plurality of inkjet nozzles disposed on the substrate The assembly, each ink jet nozzle assembly comprises: -10- 201215513 a nozzle chamber for containing ink, the nozzle chamber including a bottom wall defined by an upper surface of the substrate and a top wall having a nozzle opening Divided therein; and a plurality of movable paddles defining at least a portion of the top wall, the plurality of paddles being actuatable to cause ink droplets to be ejected from the nozzle opening - each paddle The sheet includes a thermal bending actuator comprising: an upper thermoelastic beam coupled to the drive circuit; and a lower passive beam fused to the thermoelastic beam such that when current passes through the thermoelastic In the case of a beam, the thermoelastic beam expands relative to the passive beam, causing the respective paddles to bend toward the bottom wall of the nozzle chamber, wherein each actuator can be independently controlled by a respective drive circuit such that the opening from the nozzle Small droplet ejection direction Each individual motion control paddles. The upper surface of the substrate is selected by a passivation layer which is disposed on a driving circuit layer. In a second aspect, a fixed pagewidth inkjet printhead is provided that is comprised of a plurality of printhead integrated circuits that are butted across the width of the page with ends that follow the end, the column The printhead includes one or more nozzle rows extending along a longitudinal axis of the print head. Each nozzle row includes a plurality of nozzles, one or more of which are each constructed to be along the longitudinal axis. A predetermined droplet of ink is emitted at a predetermined different point position (droP1 et). Optionally, the one or more nozzles are each configured to emit an ink droplet along the 2, 3, 4, 5' inch or 7 different point locations of the longitudinal axis. -11 - 201215513 Selecting the upper ground, each nozzle is constructed to emit a small droplet of ink at a plurality of predetermined different point positions in a two-dimensional area having a predetermined dimension. The upper land is selected to be substantially circular or substantially elliptical, and the center of the region corresponds to the center of mass of the nozzle. Preferably, the one or more nozzles are configured to emit an ink droplet at a primary point location and at least one point location on either side of the primary point location. Selecting the upper ground, each nozzle assembly in a first group is configured to emit an ink droplet at a plurality of predetermined different point locations along the longitudinal axis, each nozzle in the first group being Within the two nozzle pitches of a waste nozzle in the printhead, one of the nozzle pitches is defined as the minimum longitudinal distance between a pair of nozzles in the same nozzle row. Selecting the upper ground, each nozzle in a nozzle row is configured to emit an ink droplet at a plurality of predetermined different point locations along the longitudinal axis such that the printed dot density exceeds the printhead Nozzle density. Selecting the upper ground, each butted print head integrated circuit pair defines a joint zone, and one of the nozzle pitches across the joint zone exceeds a nozzle pitch, and one nozzle pitch is defined as being in the same nozzle row - The minimum longitudinal distance between the nozzles. Selecting a ground, wherein each nozzle in a second set is configured to emit an ink droplet at a plurality of predetermined different point locations along the longitudinal axis, the plurality of predetermined point locations including at least one Point position in the joint zone -12-201215513 In a third aspect, a fixed page width inkjet printhead is provided that includes one or more nozzles extending along the longitudinal axis of the printhead A column wherein each nozzle is configured to emit an ink droplet at a plurality of predetermined different point locations along the longitudinal axis such that the printed dot density exceeds the nozzle density of the column head. The upper or lower nozzles are each configured to emit an ink droplet along 2, 3, 4, 5, 6, or 7 different point locations of the longitudinal axis. Selecting the upper ground' each nozzle can be configured to emit an ink droplet at a plurality of predetermined different point locations along the transverse axis of the printhead. Selecting the upper land's printed dot density is at least twice the nozzle density of the printhead. Selecting the upper level, each nozzle is constructed to emit more than one time in one line-time, one of which is defined as the time it takes for a printing medium to advance through a line of the printing head. In a fourth aspect, a fixed pagewidth inkjet printhead is provided that includes one or more nozzle rows extending along a longitudinal axis of the printhead, wherein each nozzle is constructed to follow a plurality of predetermined different point positions of the longitudinal axis emit ink droplets, the first nozzle having a point position associated therewith, wherein the head is constructed to be in the same nozzle row as a waste nozzle A selected functioning nozzle is printed to compensate for the waste nozzle, the selected functional nozzle being configured to emit at least some of the ink droplets at a primary point associated with the waste nozzle and At least its ink droplets are emitted from its main point location. -13- 201215513 Selecting the upper ground, the selected functional nozzle is at a distance of one, two, three or four nozzle pitches from the waste nozzle, one of the nozzle pitches being defined as the same The minimum longitudinal distance between a pair of nozzles in a nozzle row. Selecting the upper head, the print head is constructed to compensate the waste nozzle by the following steps: identifying the waste nozzle; selecting a functional nozzle to compensate the waste nozzle: and constructing the selected functional nozzle for use in The primary point location associated with the waste nozzle emits at least some of the ink droplets. Selecting the upper ground, the selected functional nozzle is configured to emit the first ink droplet at a primary point location associated with the waste nozzle and to emit a second ink at its primary point location during a line time period A small droplet, one of which is defined as the time it takes for a column of media to advance through a line of the printhead. Alternatively, each nozzle can be further configured to emit a small droplet of ink at a plurality of predetermined different point locations along the transverse axis of the printhead. Selecting the upper ground, the selected functional nozzle is configured to emit the first ink droplet at a primary point location associated with the waste nozzle during a period greater than one line time and less than five line times A second ink droplet is emitted at its primary point location. Selecting the upper layer, each droplet that is ejected perpendicular to the inkjet surface of the printhead will cause the droplet to land at its respective primary point location. -14- 201215513 Selecting the upper floor, the functional nozzle of the print head is printed to complement the upper surface, and the print head includes a print head circuit of the page width inkjet print head associated with the fourth aspect Or a plurality of nozzles are constructed along the nozzle to be along the longitudinally ejected ink droplets, and each of the nozzles in the nozzle is configured to select a selected one of the nozzles in the nozzle array At least some of the ink is emitted by the point position to emit at least some of the ink liquid in the fifth aspect, and one of the plurality of columns includes one or more columns along the column, and the plurality of print heads having the first print head are docked The cross-module pair defines a common joint pitch exceeding one nozzle pitch, and a first nozzle of the pair of the largest print head module between the pair of nozzles in the nozzle array is constructed to emit ink to the ground, The second end disposed at the print head module is constructed to be selected from a plurality of waste nozzles by a plurality of corresponding nozzles. There are no extra nozzle columns. In a further aspect, a nozzle array for a fixed integrated circuit is provided, the nozzle column extending a longitudinal axis of the nozzle, wherein a plurality of predetermined different point positions of each axis have a point position associated therewith The structure is configured to compensate the waste nozzle by printing from the same energy nozzle as the waste nozzle, and is constructed to drop the main water droplet associated with the waste nozzle and the main point at itself. A fixed page width inkjet printhead is provided, a nozzle column extending the longitudinal axis of the printhead, and a second printhead module at the opposite end, the width of the page, the printhead area of each butt, wherein a nozzle across the junction zone has a nozzle pitch defined as a small longitudinal distance at the same spray, and at least one of the first droplets at a first end of the pair of adjacent printhead modules to a respective junction Inside. A second, second, and second nozzle of the pair of mating head modules is configured to emit ink -15-201215513 droplets into a respective nip, such that the opposing printhead modules are opposite The first and second nozzles of the first and second ends emit ink droplets into the common landing zone. Optionally, each of the first nozzles is configured to emit ink droplets at a plurality of predetermined different point locations along the longitudinal axis, the plurality of different point locations including at least one location within the junction region. Selecting the upper ground, each of the first and second nozzles is configured to emit ink droplets at respective plurality of predetermined different point locations along the longitudinal axis, each respective plurality of different point locations including at least one point The location is within the junction area. The upper land is selected such that a point pitch in the land is substantially equal to a nozzle pitch. Selecting the upper ground, each of the first and second nozzles is constructed to emit more than one time in one line-time, wherein one line time is defined as a line of printing medium advancing through a line of the printing head The time of flowering is selected, the nozzle disposed near the first end is configured to emit ink droplets that are skewed toward the first end, and the nozzle disposed adjacent to the second end is constructed to be emitted toward the second end Skewed droplets of ink. Selecting the upper ground, the degree of skew is related to the distance of each nozzle from the center of the respective print head module, such that the nozzle located near the center of the droplet of the emitted ink is skewed to a lesser extent than the farther from the center. nozzle. Select the upper ground, the average point pitch is greater than one nozzle pitch. Choosing the upper ground, the average point pitch is less than -16-1% larger than the nozzle pitch. 201215513 Selecting the upper ground, each nozzle in the print head is constructed to emit ink droplets only at one point unless it is to compensate for a waste nozzle. In a sixth aspect, a printhead integrated circuit (IC) is provided that includes one or more columns of nozzles extending along a longitudinal axis thereof, the printhead 1C having an IC for use with other printheads a first and a second end of the butt joint for defining a one-page wide print head, each nozzle having a primary point position associated therewith, wherein at least one of the first nozzles at the first end is constructed At least some of the ink droplets are emitted at their primary point locations in addition to at least some of the ink droplets that are skewed toward the first end. Selecting the upper ground, at least one second nozzle at the second end is constructed to emit at least some of the ink liquid that is skewed toward the second end in addition to emitting at least some of the ink droplets at its primary point location drop. Selecting the upper nozzle, the first nozzle is configured to emit a droplet of ink that is skewed toward the first end and emit an ink droplet at a primary point of its own position in one line time or less, wherein A line time is defined as the time it takes for a column of media to advance through a line of the print head. Preferably, each of the second nozzles is configured to emit a droplet of ink that is skewed toward the second end and emit an ink droplet at its primary point in one line time or less. Selecting the upper land, the nozzle pitch of the print head 1C is the same as the dot pitch of the printed dots, wherein the nozzle pitch of the print head is defined as the longitudinal direction between a pair of nozzles in the same nozzle column The distance and point pitch are defined as the longitudinal distance between a pair of points within the same print line. Selecting the upper nozzle, the first nozzle is configured to emit at least some of the ink droplets that are skewed toward the first end toward a distance between 1 and 3 nozzle pitches toward -17-201215513. Optionally, each nozzle row extends between the first land of the first end and the second land of the second end. The upper and lower joint regions are selected to have a width which is defined as the minimum distance between the edge of the print head 1C and a nozzle. Selecting the upper ground, the first joint zone has a value of 0. 5 to 3. 5 nozzle width between the pitch, and the second joint zone has a 〇·5 to 3. 5 Width between nozzle pitches. When the nozzle printing IC is fixed, the printable area of at least one nozzle row is longer than the longitudinal length of the nozzle row. In a seventh aspect, a printhead integrated circuit (1C) for a fixed pagewidth printhead is provided, the printhead 1C comprising at least one nozzle row extending along a longitudinal axis thereof, wherein The length of a printable area of the nozzle row is longer than the length of the nozzle row. Preferably, the printable zone has a length that is at least one nozzle pitch longer than the length of the nozzle row, wherein one nozzle pitch is defined as the minimum longitudinal distance between a pair of nozzles in the same nozzle row. Selecting the upper land, the printable area is up to eight nozzle pitches longer than the nozzle row. The upper print area is selected, and the printable area corresponds to a dotted line printed by the nozzle row. The upper print head is selected to include a plurality of nozzle rows, wherein the printable area corresponds to the length of each nozzle row being longer than the length of each of the print columns. -18- 201215513 Selecting the upper level, the printable area extends beyond each end of the nozzle row. Selecting the upper ground, at least a first nozzle positioned at a first end of the print head 1C is constructed to emit ink droplets that are skewed toward the first end. Selecting the upper ground, the degree of skew is related to the distance of each nozzle from the first end such that the ink droplets emitted at the nozzle closer to the first end are emitted than the ink positioned at the nozzle remote from the first end The droplets are more skewed toward the first end. Selecting the upper ground, at least one second nozzle positioned at an opposite second end of the print head 1C is configured to emit ink droplets that are skewed toward the second end. Selecting the upper ground, the degree of skew is related to the distance of each nozzle from the center of the print head 1C, such that the ink droplets emitted at the nozzle closer to the center are smaller than the ink emitted from the nozzles located farther from the center. The droplets are less skewed. The upper nozzle is selected, and the nozzle located in the central portion of the print head 1C is constructed to emit ink droplets substantially perpendicularly with respect to the ink ejection face of the print head I C . The upper point in the printable area is selected to have an average dot pitch greater than one nozzle pitch. Selecting the upper ground, the average point pitch is less than 1% larger than the nozzle pitch. Selecting the upper ground 'each nozzle in the print head is constructed unless it is to compensate for a waste nozzle', otherwise the ink droplets are only emitted at one point. In the eighth aspect, a method of controlling the direction of a small droplet -19-201215513 ejected from an ink-jet nozzle is provided, the ink-jet nozzle including a nozzle chamber having a top wall and a nozzle opening Defining therein and a plurality of movable paddles defining at least a portion of the top wall, each paddle comprising a thermal bending actuator, the method comprising the steps of: via a respective first drive circuit Moving the first thermal bending actuator such that the respective first paddles are curved toward the bottom wall of the nozzle chamber; actuating the second thermal bending actuator via respective second drive circuits such that the respective second paddles face the The bottom wall of the nozzle chamber is curved; and an ink droplet is ejected from the nozzle opening, wherein actuation of the first and second thermal bending actuators is independently controlled via the first and second driving circuits, Used to control the direction in which small droplets emerge from the nozzle opening. Selecting the upper ground, the first and second actuators are independently controlled by at least one of: timing of driving signals sent to each of the first and second actuators for providing A coordinated action of the plurality of blades; and power of the drive signals to each of the actuators for causing asymmetric movement of the plurality of blades. Selecting the upper actuator, if not the first actuator is actuated prior to the second actuator to provide ejection of small droplets in the first direction, ie the second actuator is at the first actuator It was previously actuated to provide small droplets in the second direction. Selecting the upper ground, if not the first actuator is provided with a greater power than the second actuation -20-201215513, is that the second actuator is provided with greater power than the first actuator. Selecting the ground, the power of the driving signals is controlled by at least one of: the voltage of the driving signals; and the pulse width of the driving signals. Selecting the upper ground, two pairs of opposing paddles are set relative to the nozzle opening. Selecting the upper ground, the method includes the further steps of: actuating a third thermal bending actuator via respective first drive circuits such that the respective third paddles are curved toward the bottom wall of the nozzle chamber; The second drive circuit actuates a fourth thermal bending actuator 'such that the respective second paddles are bent toward the bottom wall of the nozzle chamber' wherein the first, second, third and fourth thermal bending actuators The actuators are independently controlled via respective first, second, third and fourth drive circuits for controlling the direction of the droplets emerging from the nozzle opening. The upper pad is selected and the paddles are movable relative to the nozzle opening. Optionally, each pad defines a portion of the nozzle opening such that the nozzle opening and the paddles are movable relative to the bottom wall. In a ninth aspect, a method of compensating for a waste nozzle in a fixed pagewidth printhead having one or more nozzle rows extending along a longitudinal axis of the printhead is provided Each nozzle includes a plurality of thermally curved actuated blades that are configured to emit ink droplets at a plurality of predetermined different point locations along the longitudinal axis, each nozzle having a primary point associated with it-21 - 201215513 position, the method comprises the steps of: identifying the waste nozzle; selecting a functional nozzle in the same nozzle row as the waste nozzle; and selecting a function from the selected function at a main point position associated with the waste nozzle The sexual nozzle emits at least some of the ink droplets. Preferably, the method further comprises the step of: emitting at least some of the ink droplets from the selected functional nozzle at a primary point location of the selected functional nozzle itself. Selecting the upper ground, the selected functional nozzle is at a distance of one, two, three or four nozzle pitches from the waste nozzle, wherein one nozzle pitch is defined as a pair in the same nozzle row The minimum longitudinal distance between the nozzles. Selecting the upper layer, the method further comprises the steps of: advancing a column of printing media laterally through the line of the stationary printing head during a line time; from the main point position associated with the waste nozzle Selecting a functional nozzle to emit a first ink droplet; and emitting a second ink droplet from the selected functional nozzle at a main point position of the selected functional nozzle itself, wherein the selected The functional nozzle emits the first and second ink droplets during the one line time period, the selected functional nozzles emitting the first and second ink droplets in any order . Alternatively, each nozzle can be further configured to emit ink droplets at a plurality of predetermined different point locations along a transverse axis of the print head -22-201215513. Selecting the upper layer, the method further comprising the steps of: passing a column of printing media laterally through the stationary printing head at a rate at which each line advances a line; from the primary point location associated with the waste nozzle Selecting a functional nozzle to emit a first ink droplet: and emitting a second ink droplet from the selected functional nozzle at a primary point location of the selected functional nozzle itself, wherein the selected The functional nozzles emit the first and second ink droplets during a period of more than one line time and less than five line times. The upper nozzle is selected to be identified by detecting the resistance of one or more actuators associated with the waste nozzle. In a tenth aspect, a method of printing with a dot density exceeding a nozzle density in a fixed page width print head, the fixed page width print head comprising a plurality of end-to-end dockings a printhead integrated circuit across the width of the page, the printhead having at least one nozzle row extending along a longitudinal axis of the printhead. The method comprises the steps of: advancing a line at each line time Rate passing a column of printing media laterally through the stationary printhead; ejecting ink droplets from predetermined nozzles in the nozzle row to produce a continuous print line, wherein at least some of the nozzles of the predetermined nozzles, each The ink droplets are emitted at a plurality of predetermined different locations along the longitudinal axis during a line time such that the printed dot density in each of the print lines exceeds the nozzle density by -23-201215513. In an eleventh aspect, an ink jet print head is provided comprising: a substrate comprising a drive circuit layer; a plurality of nozzle assemblies disposed on an upper surface of the substrate and Disposed as one or more nozzle rows extending longitudinally along the print head, each nozzle assembly comprising: a nozzle chamber having a bottom wall defined by the upper surface, a top wall spaced apart from the bottom wall And an actuator for ejecting ink from a nozzle opening defined in the top wall; a nozzle plate extending across the print head, the nozzle plate at least partially defining the top wall: and at least one a conductive trace disposed on the nozzle plate, the conductive trace extending lengthwise along the printhead and parallel to the nozzle rows, wherein the conductive trace extends through the plurality of drive circuit layers and the conductive The conductor posts between the traces are connected to a common reference plane in the drive circuit layer. Selecting the ground, the common reference plane defines a ground plane or power plane. Optionally, the printhead includes at least one first conductive trace, wherein the first conductive trace is directly coupled to a plurality of actuators in at least one nozzle row adjacent the first conductive trace. Optionally, the printhead further includes at least one second conductive trace that is not directly connected to any of the actuators. Optionally, the first conductive trace extends continuously along the printhead to provide a common reference plane for each actuator in the nozzle train. - 24 - 201215513 Selecting the ground, the first conductive trace extends discontinuously along the print head to provide a common reference plane for a set of actuators in the nozzle train. Selecting the upper ground, the first conductive trace is disposed between respective nozzle row pairs, the first conductive trace providing a common reference plane for the plurality of actuators in the two nozzle rows of the pair of nozzle rows . Selecting the ground, each actuating has a first terminal directly connected to the first conductive trace and a second terminal connected to a driving transistor in the driving circuit layer. Selecting a ground, each top wall including at least an actuator and the first terminal of each actuator being coupled to the first connector via a transverse connector extending transversely across the nozzle plate relative to the first conductive trace A conductive trace. The upper terminal is selected to be coupled to the drive transistor via an actuator post extending between the drive circuit layer and the second terminal. The upper actuator is selected to be perpendicular to the plane of the first conductive trace. Selecting the upper floor, each top wall comprising at least one movable paddle comprising a respective thermal bending actuator movable toward the bottom wall of the respective nozzle chamber to cause ink to exit from the nozzle opening, wherein The thermal bending actuator includes: an upper thermoelastic beam having the first and second terminals; and a lower passive beam fused to the thermoelastic beam such that when current passes through the thermoelastic beam, the heat The expansion of the spring beam relative to the passive beam causes the respective paddles to bend towards the bottom wall of the nozzle chamber. -25- 201215513 Selecting the upper ground, the thermoelastic beam is coplanar with the conductive trace. Selecting the upper layer, the thermoelastic beam and the conductive trace comprise the same material. The upper nozzle is selected and the nozzle plate contains a ceramic material. Selecting the upper layer, the driver circuit layer includes a driving field effect transistor (FET) for each actuator, each driving FET including a gate for receiving a logic transmission signal, and one electrically connected to the power plane a source, and a drain in electrical communication with the ground plane, the drive FET being one of: - a pFET, wherein the actuator is coupled between the drain and the ground plane; or an nFET, wherein The actuator is coupled between the power plane and the source. Selecting the ground, the drive FET is a pFET and the first conductive trace provides the ground plane, and wherein the first terminal of the actuator is coupled to the first conductive trace and the second terminal of the actuator is Connect to the drain of the PFET. Selecting the ground, the second conductive trace provides the power plane and is connected to the source of the pFET. Selecting the ground, the drive FET is an nFET and the first conductive trace provides the power plane, and wherein the first terminal of the actuator is connected to the first conductive trace and the second terminal of the actuator is connected To the source of the nFET. Selecting the ground, the second conductive trace provides the ground plane and is connected to the drain of the nFET. In a twelfth aspect, a printhead assembly -26-201215513 circuit (1C) for an ink jet print head is provided, the print head integrated circuit-substrate comprising a drive circuit layer a plurality of nozzle assemblies disposed at the base configured in one or more along the print head I c. Each nozzle assembly includes: a nozzle chamber having a bottom wall and a top spaced apart from the bottom wall a wall 'and water defining a top wall from a nozzle opening defined in the top wall and extending across the head of the print head IC; and at least one conductive trace fused to the nozzle plate The common reference plane boundary plane extends lengthwise and parallel to the nozzle lines via a plurality of extensions extending from the driver circuit layer and the pillars to the driver circuit layer. Select the upper ground and the conductive trace is set to 1. [Embodiment] For a spray containing a movable top wall paddle For the sake of completeness and as a background of the invention, a movable top wall paddle having a process of hot bending actuation (or "nozzle") will now be described The entire inkjet nozzle assembly 1 〇〇 utilizes thermal bending to include: a nozzle array on an upper surface of the material that is extended toward the ground, an actuator defined by the upper surface for discharging ink a plate having at least a portion of the nozzle plate, the conductive trace being along the mouth column, wherein the conductive traces of the conductive traces are the same reference plane. A ground plane or power supply is provided above the nozzle plate or the bottom ink nozzle The process of the assembly is used to make an inkjet nozzle assembly containing the actuators. The actuators in the cold maps 15 and 16 are used to thereby move the movable blades in the top wall of the nozzle -27-201215513. 4 is bent toward the substrate 1 to cause the ink to be ejected. This process is described in the Applicant's earlier U.S. Patent Application Serial No. 2008/0309,728, the entire disclosure of which is incorporated herein by reference. However, it will be appreciated that the 'corresponding process can be used to fabricate any of the ink jet nozzle assemblies' and print head and print head integrated circuits (1C) described herein. The starting point for MEMS fabrication is a standard CMOS wafer having a CMOS driver circuit disposed in the upper layer of a passivated germanium wafer. At the end of the MEMS process, the wafer is divided into individual print head integrated circuits (1C), each of which contains a CMOS drive circuit layer and a plurality of nozzle assemblies. In the sequence of steps shown in Figures 1 and 2, an 8 μm layer of ruthenium dioxide is deposited on the upper surface of the substrate 1'. The depth of the ruthenium dioxide layer defines a depth for the nozzle chamber 5 of the ink jet nozzle. After depositing the cerium oxide (SiO 2 ) layer, it is etched to define the wall 4 ' which will become the sidewall of the nozzle chamber 5, as shown in FIG. As shown in Figures 3 and 4, the nozzle chamber 5 is impregnated with a photoresist or polyimide 9, which acts as a support for the sacrificial nature of subsequent deposition steps. The polyimine 6 is spin coated onto the wafer using standard techniques, UV hardening and/or hard bake and then undergoes a chemical mechanical planarization (CMP) treatment on the ceria wall 4 Stop at. In Figures 5 and 6, the top wall 7 of the nozzle chamber 5 is formed and the highly conductive actuator post 8 extending downwardly to the electrode 2 is also formed. At the beginning, one A 7 micron layer of ruthenium dioxide was deposited on the polyimine 6 and wall 28 - 201215513 4 . This ruthenium dioxide layer defines the top wall 7 of the spray booth chamber 5. Next, a pair of vias are formed in the wall 4 by using standard anisotropic DRIE to reach the electrodes 2 downward. This etching exposes the pair of electrodes 2 through the respective via holes. Next, the via holes are broken into highly conductive metals, such as copper, by using electroless plating. The deposited copper posts 8 are subjected to a C Μ P treatment which is stopped at the top wall member 7 of the cerium oxide to provide a flat structure. The copper actuator posts 8 formed during the electroless copper electrowinning meet the respective electrodes 2 to provide a linear conductive path to the top wall 7. In Figures 7 and 8, the metal pad 9 is deposited and etched by a 0. A 3 micron layer of aluminum is formed. Any highly conductive metal (eg, aluminum, titanium, etc.) can be used and should be deposited to a thickness of about 0.5 μm or less to not cause too much overall flatness of the nozzle assembly. influences. The metal pad 9 is defined by the etching for being disposed on the actuator post 8 and the top wall member 7 in a predetermined 'bending region' of the thermoelastic active beam member. It will be appreciated that the metal pads 9 are not absolutely indispensable and the steps shown in Figures 7 and 8 can also be removed from the process. In Figs. 9 and 1, a thermoelastic active beam member 10 is formed on the top wall 7 of the cerium oxide. Due to the relationship being welded to the active beam member 1 , a portion of the ceria top wall 7 acts like a lower passive beam member of a mechanical thermal bending actuator, the mechanical thermal bending actuator being The active beam 1 〇 and the passive beam 16 are defined. The thermoelastic active beam member 10 can comprise any suitable thermoelastic material such as titanium nitride, titanium aluminum nitride and aluminum alloy. As described in U.S. Patent Application Serial No. </RTI> </RTI> </RTI> </RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; Aluminum alloys are preferred materials because of their advantageous properties such as high thermal expansion, low density, and high Young's modulus. In order to form the active beam member 10' A 5 micron active beam material layer was initially deposited by standard PECVD. The material is then etched using standard metal etching to define the thermoelastic active beam member 1 〇. After the metal etching is completed, as shown in FIGS. 9 and 10, the thermoelastic active beam member 10 includes a portion of the nozzle opening 11 and a meandering beam member 12, the two ends of which are electrically connected to each other via the actuator column 8 to Power and ground electrode 2. The flat beam member 12 extends from the top of a first (power) actuator post and is bent about 180 degrees to return to the top of a second (grounded) actuator post. Still referring to Figures 9 and 10', the metal pads 9 are arranged to promote current flow in the region of higher resistance. A metal pad 9 is disposed in the bent portion of the beam member 12 and sandwiched between the active beam member 10 and the passive beam member 16. Other metal pads 9 are disposed between the top of the actuator post 8 and the end of the beam member 12. Referring to Figures 11 and 12', the ceria top wall 7 is then etched to define a complete nozzle opening 13 and a movable cantilever blade 14 in the top wall. The paddle 14 includes a thermal bending actuator 15 which itself is comprised of the primary thermoelastic beam member 10 and the underlying passive beam member 16. The nozzle opening 13 is defined in the paddle 14 of the top wall such that the nozzle opening moves with the actuator during actuation. The configuration in which the nozzle opening 13 is stationary relative to the paddle can be the same as that described in the applicant's U.S. Patent Application Serial No. 1 1/607,976. -30- 201215513 The peripheral space or gap I around the movable paddle 14 separates the paddle from a stationary portion 18 of the top wall. This gap 17 allows the movable paddle 14 to flex into the nozzle chamber 5 and towards the substrate 1 during actuation of the actuator 丨5. Referring to Figures 13 and 14, a polymer layer 19 is then deposited over the entire nozzle assembly and etched to redefine the nozzle opening 13. The polymer layer 19 can be protected by a thin, removable metal layer (not shown) prior to etching the nozzle opening 丨3, as described in US Publication No. 2008/〇225077. This reference is hereby incorporated by reference. The polymer layer 19 has several functions. First, it fills the gap 17 to provide a mechanical seal between the paddle 4 and the stationary portion 8 of the top wall 7. As long as the polymer has a sufficiently low Young's modulus, the actuator can still bend toward the substrate 1 while preventing ink from escaping from the gap 17 during actuation. Second, the polymer is highly hydrophobic, which minimizes the possibility of ink flowing out of the relatively hydrophilic nozzle chamber and onto the ink jet surface of the printhead. The third 'the polymer acts like a protective layer, which facilitates the maintenance of the print head. The polymer layer 19 may comprise a polymerized decane, such as, for example, polydimethyl methoxy oxane (PDMS) or any polymer from the family of polydimethyl siloxanes, as described in US patents. The contents of the application No. 1 2/5 08, 5 64 'the contents of this case are hereby incorporated by reference. The polysesquioxanes typically have the formula (RSiO^h where r is hydrogen or an organic group and η is an integer which represents the length of the polymer chain. The organic group may be a C1〇2 alkyl group ( Such as 'methyl), Cl_1 () aromatic hydroxy-31 - 201215513 (such as 'phenyl) or c,. L6 aralkyl (eg, Benzyl). The polymer chain can be of any length known in the art (e.g., η is from 2 to 1 0000, 10 to 50 00 or 50 to 1 〇〇〇). Specific examples of suitable polydimethyl siloxanes are poly(methylsesquioxanes) and poly(phenylsesquioxanes). Returning to the final manufacturing steps shown in Figures 5 and 6, An ink supply passage 20 is etched from the back side of the substrate to the nozzle chamber 5. Although the ink supply passage 20 shown in Figs. 15 and 16 is aligned with the nozzle opening 13, However, it can also be arranged to deviate from the nozzle opening. After etching the ink supply channel, The polyimine 6 impregnated into the nozzle chamber 5 is washed or cleaned by plasma cleaning using, for example, oxygen plasma to remove the electric side or wash the slurry. Electric ο ο side 1 front piece Μ group g η mouth Shi spray (a the inkjet nozzle assembly with the opposite movable top wall paddle pair as shown in Figure 12, The inkjet nozzle assembly previously described by the applicant of the present application comprises a movable paddle 14, It is used to eject ink through the nozzle opening 13. Referring now to Figure 17, An inkjet nozzle assembly 200 comprising a pair of opposed top wall blades 14A and 14A is shown schematically in plan view. In all of the ink jet nozzles described in plan view in this document, The upper polymer layer 19 is removed for clarity. also, For the sake of clarity, Features that are common to all of the inkjet nozzles described herein are labeled with similar reference numerals. Each of the paddles 14A and 14B has its own heat bending actuators 15A and 15B defined by the upper thermo-elastic beam and the lower passive beam in the same manner as the above-described ink-jet nozzles 1 - 32 - 201215513. also, Each of the thermal bending actuators (and each paddle) can be independently controlled via respective drive circuits in the CMOS drive circuit layer of the substrate 1. This allows the first actuator 15A (and the first paddle 14A) to be controlled independently of the second actuator 1SB (and the second paddle 14B). Figure 17 shows a nozzle assembly 2 00 having opposing paddles 14A and 14B, Each pad defines a portion of the nozzle opening 13. therefore, The nozzle opening 13 will move with the paddle during actuation. Figure 18 shows that each of the nozzle assemblies 2 1 0 ' with opposing paddles 14A and 14B are movable relative to the nozzle opening 13 . In other words, the nozzle opening 13 is defined in the stationary portion of the top wall 7. Will be understood, The nozzle assemblies 200 and 210 shown in Figures 17 and 18 are all within the scope of the present invention. Figure 19 shows a simplified circuit diagram for controlling the relative charge of each of the actuators 15A and 15B supplied to the nozzle assembly 200. Actuator 1 5A accepts full power, The amount of power supplied to the actuator 15B is changed using the potentiometer 220. An experimental measurement using a different set of potentiometer resistors shows that Different maximum paddle speeds can be achieved by reducing the amount of power supplied to the actuator 15B. E.g, Under the same amount of electricity, The maximum paddle speed is approximately equal. however, When the potentiometer resistance is increased, The maximum paddle speed of the paddle 14B is significantly reduced relative to the paddle 14A. E.g, The maximum paddle speed of the paddle 1 4B can be reduced to 75 percent lower than the maximum paddle speed of the paddle 14A -33 - 201215513, 5 Ο % lower or 2 5 % lower. This difference in maximum paddle speed has a significant impact on the direction of the drop. therefore, By controlling the relative amount of power supplied to each of the actuators 15 Β and 15 ,, The direction of the small droplets ejected from the nozzle opening 13 can be controlled. Experimentally, The droplet direction can be skewed up to a 4-point pitch of a printed page. therefore, -4, -3, -2, -1, Oh, +1 +2 The +3 and +4 dot pitch (and all intermediate non-integer point positions) can be achieved with a single nozzle. Where '〇' is defined as the primary point location resulting from the small droplet ejection perpendicular to the ink ejection face. This result has important ramification for the design of pagewidth inkjet printheads. This will be discussed in more detail below. of course, For experimental purposes, The use of potentiometer 202 allows a range of power parameters to be easily investigated. however, Skewed droplets can also be achieved by controlling the timing of actuation. It can be used as an alternative or an additional method of controlling the amount of power supplied to each actuator. E.g, The actuator 15A can accept its actuation signal before or after the actuator 15B receives its actuation signal. Produces the result of asymmetric paddle motion and skewed droplet ejection. also, The amount of power supplied to each actuator can be controlled by changing the pulse width of the drive signal. This method of changing the amount of power supplied to each actuator is most feasible using a CMOS driver circuit. Especially in the case of wanting to quickly change the direction of small droplets. Inkjet nozzle assembly with four movable top wall blades - 34 - 201215513 The nozzle assemblies 2 0 0 and 2 1 0 shown in Figures 17 and 18 allow the direction in which small droplets are ejected to be along an axis control. Typically (and most usefully) 'this axis will be the longitudinal axis of an elongated page-width printhead' nozzle array extending along this axis. however, Further control of the direction of the droplets can be achieved by using more than two paddles that are configured relative to the nozzle opening. Figure 20 shows a portion of a printhead including a nozzle assembly 22〇, Each nozzle assembly 220 includes four movable paddles MA'MB'MC and 14D that are configured relative to the stationary nozzle opening 13. The damper column 2 2 1 projecting from the side wall of the nozzle chamber assists in controlling the droplet ejection characteristics and the chamber refilling. Especially when one of the actuators is out of action. In the four-blade structure shown in Figure 20, Small droplet ejection can be along an axis or two axes by coordinated motion of four blades (ie, The longitudinal axis and the lateral axis are skewed. Thus, an ink droplet can be incident anywhere on a two-dimensional area of a column of print media. The two-dimensional region is typically a circular or elliptical region in the center of the firing nozzle. Figure 21 shows a portion of a nozzle array having a plurality of nozzles 220, The nozzles are spaced from each other along the longitudinal axis of the nozzle row by a nozzle pitch. An elliptical region 222 of a row of print media shows a region of the firing nozzle ('〇') at the center of the elliptical region that can be used to eject ink droplets thereon. As seen in Figure 21, The firing nozzle ('〇') can emit ink droplets at any point within the two-dimensional elliptical region 222. Can be along a transverse axis (ie, The ability to eject small droplets of ink from the nozzle column axis perpendicular to the longitudinal direction means that the droplet ejection from the nozzle assembly 220 does not need to occur strictly in synchronism with other nozzles in the same nozzle column. Typically, All firing nozzles in the page width printhead must be emitted during a line-time period. The line time is defined as the time it takes for a column of ink to advance laterally through a line of the print head. however, An emission nozzle having the ability to emit ink droplets along a transverse axis of the printhead can be constructed to emit an ink droplet before or after a line of print has passed the nozzle and still be able to dispense the ink The droplets are directed onto the same printed line. According to this, The nozzle assembly 220 allows the design of the page width printhead to be more resilient than the nozzle assemblies 200 and 210. In addition, Multiple top wall blades increase the overall injection power available to each nozzle. therefore, The design of the four-blade nozzle is more suitable for the injection of viscous fluids than the design of the two-blade nozzle or the single-blade nozzle. Similarly, The design of the two paddle nozzles is more powerful than the design of the single paddle nozzles. The power of each individual actuator can also be increased by increasing the length of the actuator beam and/or providing an actuator beam having a plurality of turns. The actuator beam of the crucible is described in the applicant's U.S. Patent No. 7, 611, 22 No. 5, The contents of this patent are hereby incorporated by reference. therefore, The present invention also provides suitable spray for relatively high viscosity (e.g., High-dynamic inkjet nozzle for fluids that are more viscous than water. Inkjet printhead with high dot density in a typical pagewidth printhead, Each firing nozzle (ie, The nozzle selected to be launched, In order to print out the data received by the print head) -36- 201215513 Only once in one line time. also, Each nozzle ejects an ink droplet such that the droplet falls at a primary point associated with the nozzle when a nozzle strikes a primary point location associated therewith 'the droplet is typically perpendicular to the printhead The inkjet surface. So in the traditional page head, The nozzle density of the print head corresponds to the degree on the page being printed. E.g, A page width printhead with a nozzle pitch of η will print a line with a point pitch of η where the nozzle pitch and point pitch are respectively the distance between adjacent nozzles and the center of the point . however, The nozzle assembly 2 0 0 ' 2 1 0 and 2 2 0 allows the print head to be printed with a dot pitch that is smaller than the nozzle pitch of the print head 'so the density of the dots is greater than the nozzle of the print head density. Figure 22 shows a portion of a one-page wide print head 230, Wherein the pitch of the printed dots is less than the nozzle pitch of the printhead. Three nozzles 2 3 1 at the same nozzle are shown 'and spaced one nozzle pitch η. Each of the nozzles can be constructed, for example, by the nozzle assembly 210 (shown). The droplets of ink from each nozzle can be incident on a column 23 at a plurality of different point locations along the longitudinal axis indicated by 236. As shown in Figure 22, twenty three, As shown in 29 and 30, The print medium { the paper that was sent out of the picture (ie, It is toward the viewer and traverses the longitudinal axis of the print head 1C). Still referring to Figure 22, Each of the nozzles 23 1 is constructed to eject ink at two different point positions during a line to a point position perpendicular to the main point 232 of the droplet ejection from the surface of the head; Another point 23 4 is obtained by a skewed ink jet. Small water. Jet wide column dense one defined design print is listed in the three 18 arrows ink r 235 or column: The time ί is determined by the position of the -37- 201215513 ink droplets halfway between the main point positions. The resulting point pitch d is thus smaller than the nozzle pitch η, The density of the printed dots is made larger than the density of the nozzles of the print head. In the example shown in Figure 22, The nozzle pitch η is twice the point pitch d. But what will be understood is that The print head can be constructed as n> Any ratio of the nozzle pitch η of d to the pitch d of the point. E.g, If each nozzle is in its main point position and two other point positions within one line time (eg, If you print on both sides of the main point, A print with a dot pitch of n = 3d can be achieved. The actual point pitch that can be achieved is limited only by the ink chamber refill rate relative to the rate at which the print medium is fed through the print head. The model of the applicant of the case shows that At 60 pages per minute, The ink chamber can be refilled twice in one line time. To achieve a typical immovable pagewidth printhead, a dot density of twice the dot density can typically be achieved. of course, Slow down the rate at which the print media feeds (eg, Higher point density can be achieved by reducing to 30 ppm). In this way, The non-moving pagewidth printhead achieves versatility similar to a scanning printhead. In the scanning head, The density of the printed dots can be increased by printing at a lower speed. Because the scanning head sweeps through each line and has the opportunity to print at many different point locations depending on the scanning speed. Although printing at a much higher speed than the speed of a conventional scanning head, However, the immovable pagewidth printhead 203 shown in Fig. 22 still has similar versatility and is capable of extremely high dot density (e.g., 3200dpi) to print. -38- 201215513 Waste Nozzle Compensation The applicant has previously described the mechanism for waste nozzle compensation in a fixed page width print head. When used in this article, 'dead nozzle' means a nozzle that does not emit any ink, Or use a nozzle that controls the insufficient droplet velocity or droplet direction to eject the ink. Usually the 'waste nozzle' is caused by an actuator failure (which is the fastest way to find the nozzle failure with the detection circuit). However, it may also be caused by a blockage in the nozzle opening that cannot be removed or which obstructs or partially blocks the unremovable debris of the nozzle opening. Typically, Waste nozzle compensation in a fixed pagewidth printhead requires printing from redundant nozzle columns (eg, US Patent No. 7, 46 5, 0 1 7 and 7, 2 5 2, As described in 3 5 3, The contents of these patents are hereby incorporated by reference. Its disadvantage is that The print head requires an extra nozzle column. This will disadvantageously increase the cost of the print head. or, The visual effect of a waste nozzle can be compensated by firing (preferably 'overpowering') - a nozzle adjacent to the spent nozzle (e.g., U.S. Patent No. 6, 757, As described in 549, The contents of this patent are hereby incorporated by reference. In fact, This involves the modification of the print mask' to minimize the overall visual effect of the waste nozzle. The inkjet nozzle assemblies 2 00 '210 and 220 can implement waste nozzle compensation without the need for redundant nozzle rows or changing the print mask. Figure 2 3 shows a page wide portion of the print head 240, One of the waste nozzles 242 is compensated by an adjacent functional nozzle 243 located in the same nozzle row. -39- 201215513 There are three nozzles in the same nozzle row, Each nozzle is constructed by a nozzle assembly 210 (shown in Figure 18). The central nozzle 242 is a waste nozzle or a malfunctioning nozzle. Adjacent nozzles 243 and 244 on either side of the central nozzle 242 are normally functioning nozzles. Ink droplets from each of the functional nozzles 243 and 244 can be directed (feeded in the direction toward the viewer when viewing Figure 23) along the longitudinal axis 2 3 6 along the longitudinal axis 2 3 6 Multiple different point locations. During a line time period, The nozzle 243 emits an ink droplet at its own primary point location 247 and at a primary point location 248 associated with the waste nozzle 242. therefore, Nozzle 243 compensates for the waste nozzle 242 in the same nozzle row by printing two points during one line time. of course, In the next line time, Is the nozzle 244, Instead of nozzle 243, Compensating the waste nozzle 242, The nozzles 243 and 244 are shared to share the workload of the waste nozzle. also, The compensating nozzle does not need to be adjacent to the waste nozzle. It depends on the extent to which the sinusoidal droplets can be ejected. E.g, The compensating nozzle can be located at the waste nozzle-4, -3, -2, -1, +1 +2 +3 and +4 nozzle pitches, Many different nozzles can share the workload of a waste nozzle. Figure 23 shows a scheme in which nozzle 243 is required to eject an ink droplet at its own primary point location 247 and at a primary point location 248 associated with the waste nozzle 242 during a line time period. of course, The printed mask is mainly used to control which ones are required to be launched within a specific line time. Then a suitable functional nozzle is given priority for compensation, If the functional nozzle does not emit ink at the main point of its own -40-201215513 during that particular line time. Selecting the compensation nozzle in this manner further increases the need for a functional nozzle in the vicinity of a waste nozzle. In many cases and in relation to the printing mask, It is possible to avoid a fill nozzle that is required to fire twice in one line time. or, A print head formed by the nozzle assembly 220 can be compensated for by performing a compensating spray on the same line time as the waste nozzle is fired. Because the nozzle assembly 220 can direct the ink to a point of any two-dimensional area (which includes the position along the lateral axis of the print head), Therefore, the compensation of the waste nozzle can be delayed to a later line time or earlier to an earlier line time. This makes the choice of compensation more flexible on time. Waste nozzles are typically identified by detecting one or more point stops corresponding to the spent spray actuator. The advantage of this method is that it can move out and compensate for the waste nozzle. however, Others used to find waste nozzles (eg, An optical technique using a predetermined print pattern can also be used. Page width print head with seamless joints Eliminate monolithic page width heads with very low wafer yields, The page width print head of the present invention is abutting a plurality of print heads 1C in an end-to-end spanning page width. Fig. 24 shows the configuration of five print heads IC 2 5 I A - E which are end-to-end opposite to form a one-page print head 250. The single print 丨 251 is shown in Fig. 25. What will be known is the 'longer page printhead' (eg, A 4 print head and wide format print head) can be printed by the method of the method of the method of the method of the method of the method of the method of the method of the present invention. Print -41 - 201215513 Head IC 251 is butted together to manufacture. Interfacing the print head ICs in this manner has the advantage of minimizing the width of the print area, This advantage eliminates the need for precise alignment between the print medium and the print head. however, Referring to Figures 26 and 27, The print head 1C that is docked together has a disadvantage. that is, Printing across the land 257 between the mating print head 1C pairs is difficult. This is because the nozzles 25 5 cannot be fabricated very close to the edge 25 8 of each of the print heads 1C - in order to be structurally strong and to allow the print heads 1C to be butted together, An unavoidable 'dead space' 259 must be left at the edge. therefore, The actual nozzle pitch between the mating ICs is inevitably larger than one of the nozzle rows in a nozzle row of a row of print heads 1C. therefore, The page width printhead must be designed to seamlessly print ink dots across the land. Referring again to Figures 24 through 27, The applicant of the present application has described in the above a solution to the problem of constructing a page wide print head in a manner of docking the print head IC. As shown in Figure 27, A displaced nozzle triangle 2 53 effectively fills the gap between the nozzles from adjacent butt rows 1C. By adjusting the timing of the emission of the nozzle 255 within the shifted triangle 253 (i.e., These nozzles are fired at a later time point than the nozzle row corresponding to them) The dots can be seamlessly printed across the land 257. The effect of the displaced nozzle triangle 253 is described in detail in U.S. Patent No. 7, 390, 071 and 7, 290, In No. 852, The contents of these patents are hereby incorporated by reference. Figure 27 also shows the adhesive pad 75 and the alignment reference point 76 disposed along the longitudinal edges of the print head 1C. The adhesive pad 75 is connected by wire bonding -42-201215513 (wirebond) (not shown). It is used to supply power and logic signals to the CMOS driver circuit in the print head 1C. Aligning the fiducials 76 allows the mating printheads 1C to be aligned with each other during construction of the printhead using a suitable optical alignment tool (not shown). Although the displaced nozzle triangle 25 3 provides an appropriate solution to the problem of printing across the land, But there are still several problems. First, the shifted triangle 2 5 3 is required to be supplied with ink' and the sharp kinks in the ink supply conduit extending longitudinally on the back side adversely affect the supply of ink to the nozzles in the triangle 253. . Secondly, the shifted nozzle triangle 2 5 3 reduces the wafer yield because it increases the width of each column of print ICs 251; Each print head IC must have a width sufficient to accommodate r + 2 nozzle rows. Even the print head 1 c has only r nozzle rows. The nozzle assembly 200 described herein, 210 and 220 have the ability to emit ink droplets at a plurality of predetermined different point locations along a longitudinal axis, Therefore, a solution to the problem of mating the print heads 1C together provides a solution and maintains a solid dot pitch across each land. also, As shown in Fig. 28, the print head 1C 260 having the nozzle row which is not interrupted (i.e., The displaced nozzle dies 253), which are not shown in Fig. 27, can be butted together. The design of this print head 1C not only facilitates the supply of ink along the nozzle column. It also increases wafer yield. In principle, there are two ways to compensate for the 'absent' nozzle zone across the land 25 7 . In the first way, The nozzles disposed at both ends of the print head 1 C 2 60 are constructed to emit ink droplets that are skewed toward the respective ends. -43 - 201215513 The nozzles disposed in the central portion of the print head ic 260 are An ink droplet perpendicular to the ink ejection face is ejected. Referring to Figure 29, A row of print heads ic 260 is shown 'where the nozzles 2 64 disposed on the right hand side are constructed to eject ink droplets that are skewed toward the right hand side. Similarly, The nozzle 2 62 disposed on the left hand side is constructed to eject ink droplets that are skewed toward the left hand side. A nozzle 266 disposed at a central portion of the print head 1C is constructed to eject ink droplets perpendicular to the ink ejection face. Although the nozzle 262, 264 and 266 have different droplet ejection characteristics, But from them is Figure 18. Aspect of the type of nozzle having the ability to control the direction of the droplets as shown by 1 9 or 20, These nozzles are all the same. The degree of skew is related to the distance of a particular nozzle from the center of the print head 1C 260. A nozzle positioned at the end of the print head I C is constructed to eject a droplet of ink that is skewed, The degree of skew is greater than the ink droplets ejected from the nozzles disposed in the center of the print head I C . The gradual flare development from the center of the print head I c 2 6 0 allows the uniform dot pitch to be maintained over the entire length of the print head 1C. Although the 'flare type flare' of small droplet ejection is shown somewhat exaggerated in Fig. 29, But what can be understood is that The average dot pitch of the ejected ink droplets is slightly larger than the nozzle pitch of the print head 1C 2 60 due to the flared outer diameter relationship. however, Because there are hundreds or thousands of nozzles in each nozzle column, Therefore, the point density is reduced relative to the nozzle density to a negligible extent. Typically, Despite the small droplet ejection of the flared type, The average point pitch is still less than 1% larger than the nozzle pitch of the print head. • 44 - 201215513 Due to the skewed droplet ejection at the edge of the print head I c 2 60, The actual printable area of a particular nozzle row is longer than the length of the nozzle train. The printable area can be from 1 to 8 nozzle pitches longer than the nozzle row. The elongated printable area allows the print head I C to be printed into the lands 2 57 between the butt print head ICs 260. This shifted nozzle triangle 253 shown in Fig. 27 is omitted. of course, It is also possible to have only a small droplet ejection having a skew at the nozzle located at one end of the print head IC. However, 'given the width of a typical junction area 257 (ie, the width between one of the nozzle rows of the opposite nozzle row in the same nozzle row) has a horn as shown in FIG. A configuration of a type of expanded droplet ejection is preferred. This may include a 'none' nozzle zone within the lands 257 that can be compensated for by the docking head I C pair. The print head IC 260 having the flare-type expanded droplet ejection shown in Fig. 29 has the advantage that In the absence of waste nozzle compensation or printing at a higher dot density, 'each nozzle is fired only once during one line time, At the same time, the length of the printable area is expanded to be greater than the length of a corresponding nozzle row. In another mode, a row of print heads 1C 270 can be constructed. The selected nozzle at the end of each nozzle row is fired more than once in one line time, Used to compensate for the 'no' nozzle zone in the joint zone. Referring to Figure 30, The print head 1C 270 is shown, Most of the nozzles eject ink droplets perpendicular to the ink ejection face of the print head 1C. However, At least one nozzle 272 at the end of a nozzle row is constructed to eject an ink droplet at a primary point location 274 (i.e., Vertically to the ink jet -45 - 201215513) and an ink droplet is ejected at the secondary point position 2 7 6 which is skewed toward the respective ends of the print head ic. In other words, The nozzle 272 is constructed to eject two drops of ink droplets in one line time in a manner similar to the nozzle 231 in the high density print head 230. The nozzles 2 7 2 maintain a consistent point pitch d, The nozzle pitch n is typically equal to the point pitch d in the entire printable area of the print head c 2 70. Although the print head 1C 270 has the advantage that the pitch of the dots is not sacrificed with respect to the nozzle pitch, it has the disadvantage that the nozzles 272 at the end of each nozzle row must emit twice as much ink as the other nozzles 271. therefore, The nozzle 272 is more susceptible to failure due to fatigue. Therefore, for the print head IC that is docked, The print head IC 2 60 is preferred. Improved MEMS/COMS integration An important aspect of MEMS printhead design is the integration of MEMS actuators with the underlying CMOS driver circuitry. In order for the nozzle to act, The current from the drive transistor in the CMOS must flow up into the MEMS layer. The actuator is passed down and back down to the CMOS driver circuit layer (e.g., back to the ground plane of the CMOS layer). Because there are thousands of actuators in one print head 1C, Therefore, the efficiency of the current flow path should be maximized. Used to minimize the loss of overall print head efficiency. so far, The applicant of the present application has described a nozzle assembly having a pair of straight posts extending between a MEMS actuator positioned in the top wall of the nozzle chamber and a bottom CMOS drive circuit layer. The manufacture of such parallel actuator columns is shown in Figures 5 and 6. And is described herein. Contrary to the current path of 迂 -46- 201215513 Straight copper posts that extend up to the MEMS layer have been shown to improve printhead efficiency. however, The electrical efficiency of the applicant's Μ E M S print head (and print head I C ) is still improved. One problem associated with the use of a common CMOS power plane and ground plane to control thousands of actuators is known as 'ground bounce'. Ground bounce is a well-known problem in integrated circuit design. It is exacerbated in the case where a large number of devices are powered between a common power plane and a ground plane. Ground bounce is often used to describe an unwanted voltage drop across a power plane or ground plane. It can be produced for a number of different reasons. Typical causes of ground bounce include: Series resistance ("IR drop"), Selfinductance, And the mutual inductance between the ground plane and the power plane. Any of these phenomena can cause ground bounce due to undesired reduction of the potential difference between the ground plane and the power plane. This reduced potential difference inevitably causes the integrated circuit (more specifically, In this example, the electrical efficiency of the print head 1C) is lowered. What will be understood is that Configuration and configuration of the ground plane and power plane, And the connections to them will fundamentally affect the overall efficiency of the ground bounce and printhead. Referring to Figure 31, A plan view of a portion of a print head 1C 300 is shown. Wherein the print head 1C has conductive traces extending longitudinally and parallel to the ejection column. In Figure 31, For the sake of clarity, The topmost polymer layer 19 has been removed. A plurality of nozzles 210 (which have been described in detail with reference to Figure 18) are disposed in a nozzle row extending along the longitudinal axis of the 1C3 00. Figure 3 1 shows a pair of sprays 47 - 201215513 mouth columns 302A and 3 (ΠΒ, of course, The print head IC 3 00 can contain more spray columns. Nozzle columns 302A and 302B are paired and offset from each other, Where nozzle column 032a is negative, the "even" dot is printed and the other nozzle column 302B is responsible for printing the ‘odd number. In the print head of the applicant of the case, The nozzle rows are typically paired in this way, And it can be seen more clearly in, for example, Figure 28. - The first conductive trace 33 is disposed between the nozzle columns 302A and 302B. The first conductive trace 303 is deposited on the nozzle plate 310 of the print head 1C3 00 (which defines the nozzle chamber top wall 7 (see Figure 10)). therefore, The first conductive trace 3003 is substantially coplanar with the thermoelastic beam 110 of the actuator 15 and can be coupled to the thermoelastic beam material (e.g., Vanadium aluminum alloys are co-deposited and formed during MEMS fabrication. Conductivity of conductive traces 303 can be achieved by depositing another layer of conductive metal during fabrication of the MEMS (eg, copper, titanium, Aluminum, etc.) was further improved. E.g, What will be understood is that A metal layer can be deposited prior to depositing the thermoelastic beam material (eg, It is deposited together with the metal pad 9 shown in Fig. 8) "Simple modification of the etching mask for the metal pad 9 can be used to define the conductive traces 303» Conductive trace 303 can comprise multiple layers of metal. Used to optimize conductivity. Each actuator 15 has a first terminal that is directly coupled to the first conductive trace 303 via a lateral connector 305. As seen in Figure 31, Each actuator from both nozzle rows 032A and 322B has a first terminal connected to the first conductive trace 303. The first conductive trace 3 0 3 is connected to the underlying CMOS drive-48- via a plurality of conductor posts 3 07 (which are fabricated similarly to the actuator post 8 described above with reference to FIG. 6). 201215513 A common reference plane within the dynamic circuit layer. Thus the conductive trace can extend continuously along the print head 1 C 3 0 0, Used to provide a common reference plane for each actuator in the nozzle row. As will be described in more detail in The same reference plane between nozzle columns 302A and 302B can be a power plane or a ground plane. This nFET or pFET is used in the CMOS driver circuit. or, The conductive traces 303 may extend continuously along the printhead IC 300. Each portion of the conductive trace provides a common reference plane for a set. The peeling of the conductive traces can be a problem, Although the conductive traces still function in the manner described above, However, continuous conductive traces 300 are preferred. A second terminal of each actuator 15 is coupled to a bottom drive FET within the CMOS driver circuit layer via an actuator post 8 extending between the layers of the CMOS driver circuit. Each actuator 8 is completely similar to the actuator post 8 shown in Figure 6 and is formed during manufacture of the MEMS. therefore, Each actuator 15 is independently controlled by each drive F E T . In Figure 31, A pair of second conductive traces 3 1 0A and 3 1 0B also extend printhead 1C 300 lengthwise and in the side of the pair of nozzle rows 302A and . The second conductive traces 310A and 310B are complementary to the first conductive 303. In other words, If the first conductive trace 03 is a power source, Then the two second conductive traces are both ground planes. Conversely, If the first conductive trace 3 0 3 is a ground plane, Then the two second wires are all power planes. The second conductive traces 310A and 310B are not 303. In the following, the commonality is not connected to the actuator and the trace is along the 3 02B trace plane if the trace is straight-49- 201215513 is connected to the actuators 15; However, they are connected to corresponding reference planes (power or ground planes) in the CMOS drive circuit layer via a plurality of conductor posts 307. It will be appreciated that the 'second conductive trace 310 can be formed during fabrication of the Μ E M S in a manner substantially similar to the first conductive trace 300 described above. According to this, The second conductive trace 310 is typically constructed of a thermoelastic beam material and may be a multi-layer structure to enhance electrical conductivity. The first and second conductive traces 303 and 310 function primarily to reduce the series resistance 値 of the corresponding reference plane in the CMOS driver circuit layer. therefore, By providing conductive traces in the MEMS layer connected in parallel with corresponding reference planes in the CMOS layer, The overall resistance of these reference planes can be significantly reduced by the simple application of Ohm's law. usually, Conductive traces are constructed to minimize their resistance 例如, for example by maximizing their width or depth as much as possible. The series resistance of a ground plane or power plane can be reduced by at least 25% due to the relationship of the conductive traces in the MEMS layer, At least 50%, At least 75% or at least 90%. Similarly, The self-inductance of a ground plane or power plane can be similarly fabricated. A significant reduction in the series resistance and self-inductance of both the ground plane and the power plane helps to minimize the ground bounce of the column head 1C 300, This improves the efficiency of the print head. The inventor of the case learned that In the print head IC 300 shown in Fig. 31, the mutual inductance between the power plane and the ground plane is also reduced, although the quantitative analysis of the mutual inductance requires a complicated model. But this is beyond the scope of this case. Figures 32 and 33 provide a CMOS driver circuit diagram for a pFET and nFET driver transistor. The drive transistor (nFET or pFET) is directly connected to the second terminal of each of the actuators 15 via the actuator post 8 as shown in FIG. In Figure 32, Actuator 15 is connected between the drain of the pFET and the ground plane ("Vss"). A power plane ("Vpos") is connected to the source of the pFET, The gate accepts the logic to transmit the signal. When the pFET receives a low voltage at the gate (due to the N AN D gate), Current flows through the pFET causing the actuator 15 to be actuated. In the pFET circuit, A first terminal of the actuator is coupled to a ground plane provided by the first conductive trace 303, Simultaneously, A second terminal of the actuator is coupled to the pFET. therefore, The second conductive traces provide a power plane. In Figure 33, Actuator 15 is coupled between the power plane ("Vpos") and the source of an nFET. When the nFET receives a high voltage (due to the AND gate), Current flowing through the nFET causes the actuator 15 to be actuated. In the nFET circuit, A first terminal of the actuator is coupled to a power plane provided by the first conductive trace 303, Simultaneously, A second terminal of the actuator is coupled to the nFET. therefore, The second conductive traces provide a ground plane. As can be seen from Figures 3 2 and 3 3, The first and second conductive traces 303 and 310 can be compatible with a pFET or nFET. of course, The benefit of using conductive traces as described above is not limited to the nozzle 210 of Figure 31. A print head 1C having any type of actuator can in principle benefit from the conductive traces described above. Figure 34 shows a printhead IC 400 comprising a plurality of nozzles 1 (similar to the nozzle types described with reference to Figures 16-51 - 201215513), The nozzles are configured as longitudinally extending nozzle train pairs 302A and 302B. The first conductive trace 303 extends between the pair of nozzle columns 302A and 302B and the second conductive traces 3 1 0A and 3 1 0B are located at the flank of the pair of nozzle rows. Each of the actuators 15 of one of the other nozzles 1 has a first terminal that is connected to the first conductive trace 303 via a lateral connector 305. And a second terminal connected to the underlying FET via the actuator column 8. therefore, It will be appreciated that the concept of providing a common reference plane for the conductive traces 303 and 310 to be connected to the corresponding reference plane in the underlying CMOS driver circuit is The print head 1C 400 operates as the print head 1C 300. also, The first conductive trace 303 is directly connected to one terminal of each actuator for providing a common reference plane for each of the two nozzle rows 302A and 302B. Those skilled in the art will understand that Without departing from the spirit or scope broadly defined by the invention, Variations and/or modifications may be made to the invention as shown in the specific embodiments. therefore, The embodiments are to be considered in all respects as illustrative and not restrictive. BRIEF DESCRIPTION OF THE DRAWINGS Selected embodiments of the present invention will now be described by way of example with reference to the accompanying drawings. 1 is a side cross-sectional view of an inkjet nozzle assembly partially fabricated after the first sequence of steps, Wherein the side wall of the nozzle chamber is formed; Figure 2 is a perspective view of -52 - 201215513 of the partially fabricated ink jet nozzle assembly shown in Figure 1; Figure 3 is a side cross-sectional view of the ink jet nozzle assembly partially fabricated after the second sequence of steps, Wherein the side wall of the nozzle chamber is entangled with polyimide; Figure 4 is a perspective view of a partially fabricated ink jet nozzle assembly shown in Figure 3; Figure 5 is a side cross-sectional view of the ink jet nozzle assembly partially fabricated after the third step sequence, Where the connector posts are formed to reach the bottom wall of the chamber; Figure 6 is a perspective view of the partially manufactured ink jet nozzle assembly shown in Figure 5; Figure 7 is a side cross-sectional view of the ink jet nozzle assembly partially fabricated after the fourth step sequence, Where the conductive metal plates are formed; Figure 8 is a perspective view of the partially manufactured ink jet nozzle assembly shown in Figure 7; Figure 9 is a side cross-sectional view of the ink jet nozzle assembly partially manufactured after the fifth step sequence, Wherein the active beam member of the thermal bending actuator is formed; Figure 10 is a perspective view of the partially manufactured ink jet nozzle assembly shown in Figure 9; Figure 11 is a side cross-sectional view of the ink jet nozzle assembly partially manufactured after the sixth step sequence, Wherein the top wall portion including the activity of the thermal bending actuator is formed; Figure 12 is a perspective view of the partially fabricated ink jet nozzle assembly shown in Figure 11; Figure 13 is a side cross-sectional view of the ink jet spray-53-201215513 nozzle assembly partially manufactured after the seventh step sequence, Where the hydrophobic polymer layer is deposited and photopatterned; Figure 14 is a perspective view of the partially manufactured ink jet nozzle assembly shown in Figure 13; Figure 15 is a side cross-sectional view of a fully fabricated inkjet nozzle assembly, Figure 16 is an open perspective view of the ink jet nozzle assembly shown in Figure 15; Figure 17 is a plan view of an ink jet nozzle, It has opposite movable movable top wall blades and a movable nozzle opening; Figure 18 is a plan view of an ink jet nozzle, Having a movable top wall paddle that is movable relative to a stationary nozzle opening; Figure 19 is a simplified circuit diagram of two actuators for independently controlling the ink jet nozzle shown in Figure 17: Figure 20 is a plan view of a portion of a print head, It comprises an inkjet nozzle having four movable top wall blades; Figure 21 shows a two-dimensional printable area for the ink jet nozzle shown in Figure 20; Figure 22 is a side elevational view of a portion of an ink jet printhead constructed to provide a print dot density greater than the nozzle density of the printhead; Figure 23 is a side elevational view of a portion of an ink jet printhead constructed to compensate for waste nozzles: Figure 24 is a plan view of an ink jet printhead including five docking head ICs; -54- 201215513 Figure 2 5 is a plan view of another print head IC; Figure 26 is a perspective view of the end region of the print head IC shown in Figure 25; Figure 27 is a perspective view of a land between a pair of print heads 1C shown in Figure 25; Figure 28 is a perspective view of a joint area of a pair of print heads 1C, It contains nozzles that are configured to print into the joint zone: Figure 29 is a side view of a print head IC, One of the printable areas is longer than a corresponding nozzle row; Figure 30 is a side view of a row of printing heads 1C, Wherein the end nozzles are constructed to be printed to their respective joint zones; Figure 31 is a plan view of a print head IC having conductive traces disposed on a nozzle plate; Figure 32 is a simplified circuit diagram of an actuator for connection to a driving PFET; Figure 3 is a simplified circuit diagram for connecting to an actuator that drives n F E T ; And Figure 34 is a plan view of another print head 1C having conductive traces disposed on a nozzle plate. [Main component symbol description] 1 : Substrate 4 : Wall 5 : Nozzle chamber -55- 201215513 6 : Polyimine 7 : Top wall 8 : Actuator column 2 : Electrode 9 : Metal pad 16 : Passive beam (piece) 10 : Active beam (piece) 1 1 : Part of the nozzle opening 1 2 : Beam parts 1 3 : Nozzle opening 14 : Movable paddles 1 5 : Actuator 1 7 : Clearance 18 : Immobile part 1 9 : Polymer layer 2 1 : Inkjet surface 20 : Ink supply pipe 1 〇 〇 : Nozzle assembly 14A: Top wall paddle 14B: Top wall paddles 2 0 0 : Inkjet nozzle assembly 15A: Thermal Bending Actuator 15B: Thermal Bending Actuator 2 1 0 : Nozzle assembly -56 - 201215513
印頭 噴嘴 噴嘴 位置 位置 印頭 Ρ頭I C 2 2 0 :噴嘴 2 2 2 :橢圓形 2 3 0 :頁寬列 2 3 1 :噴嘴 2 3 5 :列印媒 2 3 6 :箭頭 2 3 2 :點位置 2 3 4 :點位置 d :點節距 η :噴嘴節距 240 :頁寬列 2 4 2 :廢噴嘴 2 4 3 :機能性 2 44 :機能性 2 3 6 :縱軸線 247 :主要點 2 4 8 :主要點 2 5 0 :頁寬列 25 1 Α-Ε :歹IJ Ε 2 5 7 :接合區 2 5 5 :噴嘴 2 5 8 :邊緣 2 5 9 :死空間 2 5 3 :移位的噴嘴三角形 201215513 75 :黏合墊 76 :對準基準點 2 6 0 :列印頭IC 264 :噴嘴 262 :噴嘴 266 :噴嘴Head nozzle nozzle position position head hoe IC 2 2 0 : nozzle 2 2 2 : ellipse 2 3 0 : page width column 2 3 1 : nozzle 2 3 5 : printing medium 2 3 6 : arrow 2 3 2 : Point position 2 3 4 : Point position d : Point pitch η : Nozzle pitch 240 : Page width column 2 4 2 : Waste nozzle 2 4 3 : Functionality 2 44 : Functionality 2 3 6 : Vertical axis 247 : Main point 2 4 8 : Main point 2 5 0 : Page width column 25 1 Α-Ε :歹IJ Ε 2 5 7 : Junction area 2 5 5 : Nozzle 2 5 8 : Edge 2 5 9 : Dead space 2 5 3 : Shift Nozzle triangle 201215513 75 : adhesive pad 76 : alignment reference point 2 6 0 : print head IC 264 : nozzle 262 : nozzle 266 : nozzle
2 7 0 :列印頭IC 272 :噴嘴 2 7 4 :主要點位置 2 7 6 :次要點位置 271 :噴嘴 3 0 0 :列印頭I C 3 0 2 A :噴嘴列 3 0 2 B :噴嘴列 3 0 3 :第一導電跡線 304 :噴嘴板 3 05 :橫向連接器 3 0 7 :導體柱 3 1 0 A :第二導電跡線 3 1 0 B :第二導電跡線 400 :列印頭1C 1 4C :可動的槳片 1 4D :可動的槳片 2 2 1 :阻尼柱 -58-2 7 0 : Print head IC 272 : Nozzle 2 7 4 : Main point position 2 7 6 : Sub-point position 271 : Nozzle 3 0 0 : Print head IC 3 0 2 A : Nozzle column 3 0 2 B : Nozzle column 3 0 3 : First conductive trace 304 : Nozzle plate 3 05 : Transverse connector 3 0 7 : Conductor post 3 1 0 A : Second conductive trace 3 1 0 B : Second conductive trace 400 : Print head 1C 1 4C : movable paddle 1 4D : movable paddle 2 2 1 : damper column -58-