TW201213232A - Method for producing fullerene derivatives - Google Patents

Method for producing fullerene derivatives Download PDF

Info

Publication number
TW201213232A
TW201213232A TW100133011A TW100133011A TW201213232A TW 201213232 A TW201213232 A TW 201213232A TW 100133011 A TW100133011 A TW 100133011A TW 100133011 A TW100133011 A TW 100133011A TW 201213232 A TW201213232 A TW 201213232A
Authority
TW
Taiwan
Prior art keywords
fullerene derivative
fullerene
producing
organic
layer
Prior art date
Application number
TW100133011A
Other languages
Chinese (zh)
Inventor
Benjamin Friebe
Markus Hummert
Annette Petrich
Martin Hermenau
Sebastain Scholz
Rico Meerheim
Selina Olthof
Original Assignee
Novaled Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaled Ag filed Critical Novaled Ag
Publication of TW201213232A publication Critical patent/TW201213232A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention describes an improved method for producing halogenated fullerenes, represented by a reaction of fullerene with at least one halogen atom. The invention contains a production method for obtaining a halogenated fullerene selectively and at the same time isolating the halogenated fullerene produced thereby. The invention contains a production method with which relatively large quantities of materials can be reacted and simultaneously isolated. The invention describes the use of the fullerene C60F36 as the p-dopant for hole transport layers in semiconductive organic components with a layer arrangement including an electrode and a counter electrode as well as a series of organic layers arranged between the electrode and the counter electrode.

Description

201213232 六、發明說明: 【發明所屬之技術領域】 [0001] 【先前技術】 []例如有機發光一極體(OLED )以及有機太陽能電池之類 的有機半導體組件的效能與使用壽命在最近幾年中已經 歷顯著的改進。一個決定性的標準是由有機材料構成之 電荷傳導層的增加傳導性[K. Walzer,B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev.107, 1233 (2007)]。為了此目的’電荷傳導層之p摻雜以及n摻雜 的概念是相關的。分子的摻雜使在基質中能夠增加電荷 載體密度,且此補償了基質不佳的内部電荷載體移動性 。分子摻雜的概念使傳導層的傳導性能夠增加數階的強 度[材.?(61!于6]:,1(.1^〇,又.2匕〇11,夂5·201213232 VI. Description of the Invention: [Technical Field of the Invention] [0001] [Prior Art] [The efficacy and service life of organic semiconductor components such as organic light-emitting diodes (OLEDs) and organic solar cells in recent years Significant improvements have been made. A decisive criterion is the increased conductivity of charge-conducting layers composed of organic materials [K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 107, 1233 (2007)]. The concept of p-doping and n-doping of the charge-conducting layer is relevant for this purpose. The doping of the molecules increases the charge carrier density in the matrix and this compensates for the poor internal carrier charge mobility of the matrix. The concept of molecular doping allows the conductivity of the conductive layer to increase the strength of the order [material. (61! at 6]:,1 (.1^〇, again.2匕〇11,夂5·

Huang, M. Hofmann, A. fferner, J. Blochwitz-Huang, M. Hofmann, A. fferner, J. Blochwitz-

Nimoth,Org. Electron.4,89 (2003)]。因為〇LED 中的操作電壓降低且有機太陽能電池中串聯電阻減低, 此接著導致效能的顯著增加。電荷載體的注入能障降低 以及空乏區形成可輕易地由電荷載體經由穿隧過程來克 服[J. Blochwitz, T, Fritz, M. Pfeiffer, K.Nimoth, Org. Electron. 4, 89 (2003)]. This results in a significant increase in performance because the operating voltage in the 〇LED is reduced and the series resistance in the organic solar cell is reduced. The charge energy barrier of the charge carrier is reduced and the formation of the depletion region can be easily overcome by the charge carrier via the tunneling process [J. Blochwitz, T, Fritz, M. Pfeiffer, K.

Leo, D. M. Alloway, P. A. Lee, N. R. Am- strong,Org. Electron· 2,97 (2001 )]。現今可用 的最有效單色[R. Meerheim,R. Nitscht 1L Leo, Appl. Phys. Lett. 93,04331 0 (2008)]以及白色 [S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussera, K. Leo, 100133011 表單編號A0101 第4頁/共26頁 innq 201213232Leo, D. M. Alloway, P. A. Lee, N. R. Am- strong, Org. Electron 2, 97 (2001)]. The most effective monochrome available today [R. Meerheim, R. Nitscht 1L Leo, Appl. Phys. Lett. 93, 04331 0 (2008)] and white [S. Reineke, F. Lindner, G. Schwartz, N. Seidler , K. Walzer, B. Lussera, K. Leo, 100133011 Form No. A0101 Page 4 of 26 innq 201213232

Nature459, 234 (2009)]讥肋以及有機太陽能電池 [press release from Heliatek GmbH: ht-tp://heliatek.de/,April 2〇1〇]使用這種摻雜的 層。摻雜可藉由同時蒸發兩種材料而達成。在氣相尹的 摻雜物以低比例與基質混合並沉積在表面上。在?摻雜( 電洞傳輸)的例子申,這種基質可含有例*ν,ν,ν,,ν,_ 四-u-甲氧基苯基)聯苯胺(Me0_TPD))。為了讓摻雜 為可能的,基質必須具有等於(+/_〇· 3 eV)或低於摻 雜物電子親和力的電離電位。p摻雜物(富勒烯衍生物) 關於二茂鐵(Fc / Fc+)應具有大於或等於約_〇 3 乂的 還原電位,較佳為大於或等於約〇. 〇 v ,更佳為大於或等 於約0.24 V。掺雜分子應能夠被平均地導入基質中,且 • 應具有低的擴散傾向。一些具有高電子親和力(E )的pNature 459, 234 (2009)] ribbed and organic solar cells [press release from Heliatek GmbH: ht-tp://heliatek.de/, April 2〇1〇] use this doped layer. Doping can be achieved by simultaneously evaporating the two materials. The dopant in the gas phase is mixed with the substrate in a low ratio and deposited on the surface. in? An example of doping (hole transport) is that the matrix may contain the formula *ν,ν,ν,,ν,_tetra-u-methoxyphenyl)benzidine (Me0_TPD)). In order for doping to be possible, the substrate must have an ionization potential equal to (+/_〇·3 eV) or lower than the electron affinity of the dopant. P-dopant (fullerene derivative) The ferrocene (Fc / Fc+) should have a reduction potential greater than or equal to about _〇3 ,, preferably greater than or equal to about 〇. 〇v, more preferably greater than Or equal to about 0.24 V. Doped molecules should be able to be introduced evenly into the matrix and • should have a low tendency to diffuse. Some p with high electron affinity (E)

A 摻雜分子為已知的,例如相對弱的電子接受體(四氰基苯 酿二曱烧(TCNQ))[M. Maitrot,G. Guillaud,B. Boudjema, J. J. Andre, J. Simon, J. Appl.A doped molecules are known, such as relatively weak electron acceptors (tetracyanobenzene diterpene (TCNQ)) [M. Maitrot, G. Guillaud, B. Boudjema, JJ Andre, J. Simon, J . Appl.

Phys.60, 2396 (1986); R· C. Wheland, J. L 0Phys. 60, 2396 (1986); R. C. Wheland, J. L 0

Gillson, J. Am. Chem. Soc.98, 3916 (1976)]或 氟化的修飾物(3, 6-二氟-2, 5, 7, 7, 8, 8-六氰基笨醌二 甲烷(F2-HCNQ))[Z. Q. Gao, B.X. Mi, G.Z. Xu, Y.Q. Wan, M. L. Gong, K. W. Cheah, C. H. Chen, Chem. Commun.,1 17 (2008)]以及常使用的 2,3,5,6-四氟-7,7,8,8-四氯基笨醌二甲烷(卩4-1^叫 )[J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett.73, 729 (1998); W.Y. Gao and A. Kahn, Appl. Phys. Lett.79, 4040 100133011 表單編號A0101 第5頁/共26頁 1003451854-0 201213232 (200 1 )]。因為其低分子量,此材料類型具有高蒸氣壓且 傾向造成療氣沉積室之不受控制的汙染,因此也造成之 後所沉積的層的汗染。在此例子中,組件中層的汙染可 導致激子被抑制,且因此損害組件的性能[Βχ· Mi, Z.Q. Gao, K.W. Cheah, C. H. Chen, Appl. Phys. Lett. 94,073507 (2009)]。以此材料類型摻雜的層 也可具有低的熱穩定性[Ρ· WeUmann,M. Hofmann, 0. Zeika, A. Werner, J. Birnstock, R. Meer-heim, G. He, K. Walzer, M. Pfeiffer, K. Leo, J· Soc. Inf. Disp. 13,393 (2005)]。此縮短了組 件的使用壽命。 全氟化的富勒烯也具有大約5eV之可相比的電子親和力 [N. Liu, Y. Morio, F. Okino, H. Touhara, 0. V. Boltalina, V.K. Pavlovich, Synth.Gillson, J. Am. Chem. Soc. 98, 3916 (1976)] or a fluorinated modification (3,6-difluoro-2, 5, 7, 7, 8, 8-hexacyanobenzidine dimethane (F2-HCNQ)) [ZQ Gao, BX Mi, GZ Xu, YQ Wan, ML Gong, KW Cheah, CH Chen, Chem. Commun., 1 17 (2008)] and often used 2,3,5,6 -tetrafluoro-7,7,8,8-tetrachloro alum methane (卩4-1^) [J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett. 73, 729 (1998); WY Gao and A. Kahn, Appl. Phys. Lett. 79, 4040 100133011 Form No. A0101 Page 5 of 26 1003451854-0 201213232 (200 1 )]. Because of its low molecular weight, this material type has a high vapor pressure and tends to cause uncontrolled contamination of the therapeutic gas deposition chamber, thus also causing the subsequent deposition of the layer. In this example, contamination of the layers in the assembly can cause excitons to be suppressed and thus impair the performance of the assembly [Βχ·Mi, Z.Q. Gao, K.W. Cheah, C. H. Chen, Appl. Phys. Lett. 94, 073507 (2009)]. Layers doped with this material type can also have low thermal stability [Ρ·WeUmann, M. Hofmann, 0. Zeika, A. Werner, J. Birnstock, R. Meer-heim, G. He, K. Walzer , M. Pfeiffer, K. Leo, J. Soc. Inf. Disp. 13, 393 (2005)]. This reduces the life of the component. Perfluorinated fullerenes also have comparable electron affinities of approximately 5 eV [N. Liu, Y. Morio, F. Okino, H. Touhara, 0. V. Boltalina, V.K. Pavlovich, Synth.

Metals 86,2289 (1997)]。全氟化的富勒烯C F在 60 36 之前已被研究’作為聚合物層中的p掺雜物,該聚合物層 在溶液為基礎的製程中被沉積[0. Solomeshch,Y.J. Yu, A.A. Goryunkov, L.N. Sidorov, R.F. Tuk-tarov, D.H. Choi, J.-Il Jin, N. Tessler,Metals 86, 2289 (1997)]. Perfluorinated fullerene CF has been studied as a p-dopant in a polymer layer before 60 36. This polymer layer was deposited in a solution-based process [0. Solomeshch, YJ Yu, AA Goryunkov , LN Sidorov, RF Tuk-tarov, DH Choi, J.-Il Jin, N. Tessler,

Adv. Mater.21, 4456 (2009)]。 該文獻包括關於製造氟化富勒烯的少數已公開報告。 Boltalina等人使用各種氟錯酸鹽[P· A. Tro shin, 0.V. Boltalina, N.V. Polykova, Z.E. Klink-ina,J. Fluor· Chem· 110,157,(2001 )]、鑭系元 素的氟化物[A. A. Goryunkov,Z. Mazej,B. emva,S.H. Strauss,0.V. Boltalina, Mendeleev 100133011 表單編號A0101 第6頁/共26頁 1003451854-0 201213232Adv. Mater. 21, 4456 (2009)]. This document includes a few published reports on the manufacture of fluorinated fullerenes. Boltalina et al. use various fluorochemical salts [P. A. Tro shin, 0. V. Boltalina, NV Polykova, ZE Klink-ina, J. Fluor Chem. 110, 157, (2001)], lanthanides Fluoride [AA Goryunkov, Z. Mazej, B. emva, SH Strauss, 0.V. Boltalina, Mendeleev 100133011 Form No. A0101 Page 6 of 26 1003451854-0 201213232

Commun. 16’ 1 59 (2006)]或過渡金屬氟化物結合氟氣 [N.S. Chilingarov, A. V. Nikitin, J. y. Rau, I.V. Golyshevsky, A. V. Kepraan, F. M. Spiridonov, L.N. Sidorov, J. Fluor Chem. 113,219(2002)]來合成氟化富勒稀。在前述引 用的所有方法是在氟化作用期間或在合成適合試劑的氟 化作用期間基於分子氟氣的使用》氟被分類為高度毒性 的且對於儀器設置中許多常用的材料具有腐蝕性。必要 的工作場所安全預防措施視這些製造範例為高度不切實 際且過度昂貴的。同時,該方法只展示了關於c F普通 60 3 6 好的選擇性以及非常低至普通的產率(低於3〇%)。Commun. 16' 1 59 (2006)] or transition metal fluoride combined with fluorine gas [NS Chilingarov, AV Nikitin, J. y. Rau, IV Golyshevsky, AV Kepraan, FM Spiridonov, LN Sidorov, J. Fluor Chem. 113, 219 (2002)] to synthesize fluorinated fullerene. All of the methods cited above are based on the use of molecular fluorine during fluorination or during the fluorination of synthetic suitable reagents. Fluorine is classified as highly toxic and corrosive to many commonly used materials in instrument settings. The necessary workplace safety precautions are considered to be highly impractical and overly expensive. At the same time, this method only shows good selectivity for c F ordinary 60 3 6 and very low to normal yield (less than 3〇%).

Boltalina等人公開了用於不使用氟氣來合成^ ρ的 60 3 6 不同版本,其中具有一端封閉的鎳管以氟化錳(ΙΠ)以及 C6()的粉末填充[〇. Boltalina,A. Borschevskii, L. Sidrov, J. Street, R. Taylor, Chem.Boltalina et al. disclose a different version of 60 3 6 for the synthesis of ρ without the use of fluorine gas, in which a nickel tube with one end closed is filled with powder of manganese fluoride (ΙΠ) and C6() [〇. Boltalina, A. Borschevskii, L. Sidrov, J. Street, R. Taylor, Chem.

Comm.,529 ( 1 996)]。將經填充的鎳管放在玻璃昇華 ^ 管中。將該玻璃管在管式爐中於^^岵以壓力下在3〇分 鐘之内加熱至33(TC,並維持在此溫度達24 h。在此時 間期間,各種氟化富勒烯的混合物冷凝在冷的玻璃壁上 。根據質譜分析,此混合物由51% C6〇F36、33%C (未 反應的富勒烯)、8% C6〇F34以及15% C6〇F32構成。所有 描述的方法都有一個缺點就是不能提升至毫莫耳的規模 〇 【發明内容】 [0003]因此本發明的目的是呈現一種用於製造富勒烯衍生物的 1003451854-0 改進方法。此目的藉由如申請專利範圍第丨項所述以及相 100133011 表單編號A0101 第7頁/共26頁 201213232 應的從屬申請專利範圍的製造方法來解決。. 在用於製造富料衍生物的方法巾,在反顏中,富勒 烯與至自素反應,其中至少_額外的化學元素也被 加至該反應器令。 此方法的優勢包括該製造不牽涉氟氣的使用、產率較高 以及所製造的物質具有較高的純度。 該富勒稀較佳選自分子气,其中m選自36、6〇、7〇、 76 78 80 82 ' 84 ' 86、9〇、94或能夠形成這種球 形分子的任何其他整數。較佳地,m = 60、70、76、80 、82、84 ' 86、90或94。 此齒素選自F、C1、Br 1為較佳的。較佳的是㈣是以 鹵素—金屬離子-鹽類化合物(在此上下文中被提及為齒 素化合物)的形式使用。該金屬離子可選自下列:鉻( Cr)、猛(Μη)、釘(Ru)、翻(M〇)、鐵(Fe)、嫣 (W)、姑(Co)、錢(Rh)、銀(Ir)、錄(Ni)、 把(Pd)、翻(Pt)、銅(Cu)、銀(Ag)、金(Au) 、銘(τι)、錫(Sn)、綈(Sb)、碲(Te)、鉛⑽ )、錢(Bi)、爛(La)、鈽(Ce)、镨(pr)、敍( M)、釤(Sm)、銪(Eu)、釓(⑷、铽(几)、鏑 (Dy)、鈥(Ho)、斜(Er)、ϋ(Τπι)、镱(Yb)、 镏(Lu)。較佳的化合物是MnF。 3 額外的化學元素以任何大小的金屬線、車屑或粉末的形 式使用。其可以純的形式導入,成為合金或混合物。 額外的化學元素較佳選自鈦(Ti)、鍅(Zr)、飢(v) 、鈮(Nb)、钽(Ta)、鉻(Cr)、鉬(M〇)、鎢(w )、錳(Μη)、銖(Re)、鐵(Fe)、釕(Ru)、锇( 100133011 1003451854-0 表單編號A0101 第8頁/共26頁 201213232 〇s)、銘(c〇)、|^(Rh)、银(Ir)、錄(Ni)、把 (Pd)、l6(Pt)、銅(Cu)、銀(Ag)、金(An)、 鋅(Zn)、編(Cd) ήμ)、嫁(Ga)、鋼⑴) 、蛇(τι)、鍺(Ge)、錫(Sn)、船(pb)、砷… )、錄(Sb)、^(Bi)、砸(Se)、碲(Te)、鋼(Comm., 529 (1 996)]. Place the filled nickel tube in a glass sublimation tube. The glass tube was heated to 33 (TC) in a tube furnace under pressure for 3 minutes, and maintained at this temperature for 24 h. During this time, various fluorinated fullerenes were mixed. Condensed on a cold glass wall. According to mass spectrometry, this mixture consisted of 51% C6〇F36, 33%C (unreacted fullerenes), 8% C6〇F34, and 15% C6〇F32. All described methods There is a disadvantage that it cannot be upgraded to the scale of millimolar. [Invention] [0003] It is therefore an object of the present invention to present an improved method for producing a fullerene derivative of 1003451854-0. The patent scope is described in the third paragraph and the phase 100133011 Form No. A0101, page 7 / 26 pages 201213232 shall be solved by the manufacturing method of the subordinate patent application scope. In the method for manufacturing a rich derivative, in the opposite , fullerene reacts with a self-reagent, wherein at least - additional chemical elements are also added to the reactor. Advantages of this method include the use of fluorine gas in the manufacture, higher yields, and the materials produced Higher purity. The Fuller The dilute is preferably selected from the group consisting of molecular gases wherein m is selected from the group consisting of 36, 6 〇, 7 〇, 76 78 80 82 ' 84 ' 86, 9 〇, 94 or any other integer capable of forming such a spherical molecule. Preferably, m = 60, 70, 76, 80, 82, 84 '86, 90 or 94. It is preferred that the dentate is selected from the group consisting of F, C1 and Br 1. Preferably, the halogen is a metal ion-salt compound. It is used in the form of (referred to as a dentate compound in this context). The metal ion may be selected from the group consisting of chromium (Cr), 猛 ()η), nail (Ru), 翻 (M〇), iron (Fe) , 嫣 (W), 姑 (Co), money (Rh), silver (Ir), recorded (Ni), put (Pd), turn (Pt), copper (Cu), silver (Ag), gold (Au) , Ming (τι), Tin (Sn), Sb (Sb), 碲 (Te), Lead (10), Qian (Bi), Rotten (La), 钸 (Ce), 镨 (pr), Syria (M),钐 (Sm), 铕 (Eu), 釓 ((4), 铽 (several), 镝 (Dy), 鈥 (Ho), oblique (Er), ϋ (Τπι), 镱 (Yb), 镏 (Lu). The preferred compound is MnF. 3 The extra chemical elements are used in the form of wires, scraps or powders of any size. They can be introduced in pure form and become Alloy or mixture. The additional chemical elements are preferably selected from the group consisting of titanium (Ti), niobium (Zr), hunger (v), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (M〇), tungsten ( w ), Mn (Μη), 铢 (Re), iron (Fe), 钌 (Ru), 锇 (100133011 1003451854-0 Form No. A0101 Page 8 of 26 201213232 〇s), Ming (c〇), |^(Rh), silver (Ir), recorded (Ni), put (Pd), l6 (Pt), copper (Cu), silver (Ag), gold (An), zinc (Zn), edit (Cd) Ήμ), marry (Ga), steel (1)), snake (τι), 锗 (Ge), tin (Sn), ship (pb), arsenic...), recorded (Sb), ^ (Bi), 砸 (Se) , 碲 (Te), steel (

La)、飾(Ce)、镨(Pr)、敍(Nd) 、#(Sm)、錢 (EU)、釓(Gd)、铽(Tb),(Dy)、鈥(H〇)、La), Ce (Ce), 镨 (Pr), Syria (Nd), #(Sm), money (EU), 釓 (Gd), 铽 (Tb), (Dy), 鈥 (H〇),

斜(Er)、_(Tm)、镱(Yb)、鍵(Lu)所組成的群 組。鎳(Ni )是特別佳的。 备勒烯-鹵素衍生物較佳具有分子式C^n,其中n可為= 1 至m。C6〇F36 (m = 60,η = 36)以及C6〇F34至48 (m =60,n = 34) 〇 在本發明的一個具體實施例中,富勒烯在反應之前與至 丨’額外的化學元素混合。富勒烯、至少一額外的化學 元素以及画素化合物較佳在該反應之前混合。A group consisting of oblique (Er), _ (Tm), 镱 (Yb), and (Lu). Nickel (Ni) is particularly preferred. The presene-halogen derivative preferably has the formula C^n, wherein n can be from 1 to m. C6〇F36 (m = 60, η = 36) and C6〇F34 to 48 (m = 60, n = 34) 〇 In a specific embodiment of the invention, fullerene is added to the 之前 before the reaction Chemical elements are mixed. Fullerenes, at least one additional chemical element, and a pixel compound are preferably mixed prior to the reaction.

反應器是在反應期間接近環境(例如,大氣)的化學反 應器。該化學反應器可為鍋爐、輸送管或、例如一些其 他的容器。也可使用一些連接的容器。 在本發明的有利配置中,反應器是延長的容器,例如昇 華管,其中製造是經由昇華與同時分離而發生。 假定富勒烯衍生物是使用於有機半導體層中。該富勒烯 衍生物可形成有機半導體層。 100133011 也與本發明一致的是,有機半導體層是包含作為基質的 有機電洞傳輸半導體材料以及作為p摻雜物的摻雜層的富 勒烯衍生物。可藉由執行根據本發明的方法來製造具有 增加電荷載體密度以及有效電荷載體移動性的摻雜半導 表單編號A0101 第9頁/共26頁 1003451854-0 201213232 體材料。 該富勒稀衍生物有利地為有機二極體、有機光活性組件 的組件’特別’是太陽能電池、光偵測器或、發光二極體 的組件。 含有至少一有機半導體層的組件被視為是有機組件。為 了本發明的目的,富勒烯以及其衍生物也包括在此有機 的疋義中。有機半導體層也含有稱為「小分子」的有機 分子、或也含有有機聚合物,其中作為單層或在與其他 有機物混合之混合物(例如於US2〇〇5 〇11〇〇〇9中描述的 那些)中或在有機材料中的有機分子以及有機聚合物具 有半導體或類似金屬的性質。有機發光二極體通常從許 多不同的有機材料層來建構,至少一層(發光層)含有 電致發光物質,當對其施加電壓時,電致發光物質可被 誘導以發光(Tang,US 4, 76 9, 292 )。例如,在US 7, 074, 500中描述了高效率的〇led。太陽能電池的建構 對於本領域中具有通常知識者是已知的,見Epi861886 以及EP1859494。特別佳的組件是.如Walzer等人所描述 的摻雜組件[Chem. Rev. 107,1 233 (2007)]。 富勒烯衍生物有利地構成電池的一部分,較佳為陰極[N, Liu, H. Touhara, F. Okino, S. Kawasaki, Y. Nakacho, J. Electrochem. Soc.143, 2267 (1996)]。 【實施方式】 [0004] 100133011 合成C6()F36的範例 在1(Γ3 mbai·壓力下以及2〇(Γ(:溫度下,於24 h内從用於 合成的MnF3(ABCR,98%)中示蹤微量的水以及氧。從 表單編號A0101 第10頁/共26頁 inn, 化學供應商(例如American Dye Source)購買富勒稀 、〇,並藉由二次昇華而純化。在氮環境中將該富勒烯ς 6〇 (1· 00 g; 1. 388 mraol )以及MnF3 ( 5 59 g; 6〇· 15 mmol )在磨砂盤完全磨碎。將鎳粉末(6.6 1〇%)加 至在鎳坩堝中的混合物中,且將經填充的鎳坩堝放在如 第1圖中所示的昇華裝置中。在4xl〇-4 mbar壓力下,將昇 華管加熱至330°C的溫度達24 h,在該期間,經氟化的 反應產物以帶黃色-白色固體的形式(〇 76 g)在該昇華 管的冷卻器部分上冷凝。裝載有冷凝物的環經歷進一步 昇華步驟的,在其最後分離出〇· 75 g ( 0 534 mmol, 38%理論產率)的產物。為了分析昇華產物的剩餘物,將 樣本完全溶解於曱笨中,並在質譜儀中完全蒸發。測量 所有的總離子電流,並將其示於第2圖中。樣本中存在的The reactor is a chemical reactor that is close to the environment (e.g., the atmosphere) during the reaction. The chemical reactor can be a boiler, a transfer pipe or, for example, some other container. Some connected containers can also be used. In an advantageous configuration of the invention, the reactor is an elongated vessel, such as a sublimation tube, wherein the manufacture takes place via sublimation and simultaneous separation. It is assumed that a fullerene derivative is used in an organic semiconductor layer. The fullerene derivative can form an organic semiconductor layer. 100133011 Also in accordance with the present invention, the organic semiconductor layer is a fullerene derivative comprising an organic hole transport semiconductor material as a host and a doped layer as a p-dopant. Doped semiconductors having an increased charge carrier density and effective charge carrier mobility can be fabricated by performing the method according to the present invention. Form No. A0101 Page 9 of 26 1003451854-0 201213232 Body material. The fullerene derivative is advantageously an organic diode, and the component of the organic photoactive component is 'special' a component of a solar cell, a photodetector or a light emitting diode. An assembly containing at least one organic semiconductor layer is considered to be an organic component. For the purposes of the present invention, fullerenes and derivatives thereof are also included herein. The organic semiconductor layer also contains an organic molecule called a "small molecule" or an organic polymer, which is a single layer or a mixture mixed with other organic substances (for example, as described in US Pat. No. 5, No. 11-9). The organic molecules and organic polymers in those or in organic materials have semiconductor or metal-like properties. Organic light-emitting diodes are typically constructed from a number of different organic material layers, at least one layer (light-emitting layer) containing an electroluminescent material that can be induced to emit light when a voltage is applied thereto (Tang, US 4, 76 9, 292 ). For example, high efficiency 〇led is described in US 7,074,500. The construction of solar cells is known to those of ordinary skill in the art, see Epi 861 886 and EP 1859494. A particularly preferred component is a doping component as described by Walzer et al. [Chem. Rev. 107, 1 233 (2007)]. The fullerene derivative advantageously forms part of a battery, preferably a cathode [N, Liu, H. Touhara, F. Okino, S. Kawasaki, Y. Nakacho, J. Electrochem. Soc. 143, 2267 (1996)] . [Embodiment] [0004] 100133011 An example of synthesizing C6()F36 is at 1 (Γ3 mbai·pressure and 2〇(Γ(:temperature, within 24 h from MnF3 (ABCR, 98%) for synthesis) Trace traces of water and oxygen. Purify from the form number A0101, page 10 of 26 inn, a chemical supplier (eg American Dye Source), and purify it by secondary sublimation. In a nitrogen environment The fullerene ς 6〇 (1·00 g; 1. 388 mraol) and MnF3 (5 59 g; 6〇·15 mmol) were completely ground in a sanding disc. Nickel powder (6.6 1%) was added to In a mixture of nickel crucibles, and place the filled nickel crucible in a sublimation device as shown in Figure 1. The sublimation tube is heated to a temperature of 330 ° C up to 24 at a pressure of 4 x 1 〇 -4 mbar h, during which the fluorinated reaction product condenses on the cooler portion of the sublimation tube in the form of a yellow-white solid (〇76 g). The ring loaded with condensate undergoes a further sublimation step in which Finally, a product of 〇·75 g (0 534 mmol, 38% theoretical yield) was isolated. To analyze the residue of the sublimation product, the sample was finished. Yue stupid dissolved in and completely evaporated in a mass spectrometer. All measured total ion current, and 2 are shown in FIG. Present in the sample

所有化合物的強度比例對應於下列組成物:84% C F 60 36 、14% c6QF34以及2% c6De 製程範例1 與L-TCNQ相較之下,摻雜物之汙染行為的說明。 4 01) 〇〇 這個的目的是為.了檢驗摻雜*F4-TCNQ以及C6QF36的揮發 性,以及為了提供不像F4-TCNQ、c6()f36不會顯示任何腔 室汙染的證據。 使用X射線光電子光譜法(XPS)、參照摻雜物F4-TCNQ 以及CenFQC的氟訊號來檢驗未摻雜的Me〇-TPD層中摻雜物 F4-TCNQ以及C6QF36的揮發性。第4圖顯示了在10 nm厚 的内部Me〇-TPD層上在XPS測量中所獲得之Is氟核心訊號 的比較。這些在腔室中產生,該腔室不含有該些摻雜物 或者含有在未加熱來源中的兩個摻雜物中的其中一個。 表單編號A0101 第11頁/共26頁 201213232 在腔至中存有f「tcnq下,經歷蒸發的層上只可觀察到 689. 5eV束If%的顯著氟訊號。在紫外光光電子光譜法( _)中’此層也以朝向Me〇一TpD之最高佔據分子軌道( _〇)的費米能量(eb= 0eV)的顯著位移的形式表露 了摻雜效果。相對於在(;;⑹、的存在τ經歷蒸發的樣本, 此汙染證實了F4*~tcnq分子的汙染可能。在來自具有 Ce〇F36之腔室的樣本中,在xps中沒有觀察到氟訊號,以 及在UPS中沒有HOMO位移,也就是說沒有觀察到在該 MeO-TPD層的汙染。考慮到處理電洞傳導層,與F4_tcnq 相較之下’ C6〇F36的非常低揮發性代表了顯著的優勢。 製程範例2 相較於FrT⑽,具有摻雜c6Gf36的電洞傳導層之熱穩定 性的說明。該目的是為了呈現以C60f36摻雜之電洞傳導的 熱穩定性。 為了測試熱穩定性,因為基質材料N,N,_((二笨基_ N,N’-雙)9,9,-二曱基-第-2-基)-聯苯胺(BF_DpB)高 的玻璃轉變溫度(TG= 160°C) (US20020171358 A1) ’從而選擇了該基質材料N,N,-((二苯基-N,N,-雙 )9,9,-一甲基-葬-2-基)-聯笨胺(BF-DPB)。取決於 達到TG之溫度的其傳導性行為因此可歸因於該摻雜物。 具有26mol%的F -TCNQ以及21 mol%的C F的比例, 該兩個層在室溫下展現了 3 · 1 〇_6S era-1的可比較傳導性 (第6圖)。在此上下文中’以C6〇F36的較低摻雜是該掺 雜物較高摻雜效率的表現。由於F4-TCNQ的LUM0是非常 幾乎與根據UPS所測定的BF-DPB的HOMO位準(-5. 23eV )相同,在此系統中產生的電荷轉移是沒有效率的。因 100133011 表單編號A0101 第12頁/共26頁 1003451854-0 201213232 此可假設CuFu具有較F厂TCNQ強的電子親和力。當溫度 60 36 4 提升時,該兩層的傳導性增加,f4—tcnQ活化能265meV 以及CenFQe活化能692meV達到最大,以及如果溫度增加 6 0 〇 b ,進一步的傳導性不瓦解。145°C,在BF-DPB/F4-TCNQ 層中觀察到較低的穩定性,有傳導性的下降。在BF_ DPB/C F。。層中,在18(TC之前瓦解不會發生且因此高 6 0 3 6 於基質材料的。傳導性的下降因此不可直接歸因於The strength ratios of all compounds correspond to the following compositions: 84% C F 60 36 , 14% c6QF34, and 2% c6De Process Example 1 Description of the contamination behavior of the dopant compared to L-TCNQ. 4 01) 〇〇 The purpose of this is to verify the volatilization of doped *F4-TCNQ and C6QF36, and to provide evidence that does not show any chamber contamination unlike F4-TCNQ, c6()f36. The volatility of the dopants F4-TCNQ and C6QF36 in the undoped Me〇-TPD layer was examined using X-ray photoelectron spectroscopy (XPS), reference dopants F4-TCNQ, and CenFQC fluorine signals. Figure 4 shows a comparison of the Is fluorine core signals obtained in XPS measurements on a 10 nm thick internal Me〇-TPD layer. These are created in a chamber that does not contain the dopants or contains one of the two dopants in the unheated source. Form No. A0101 Page 11 of 26201213232 In the cavity to the middle of f "tcnq, only 689. 5eV beam If% of the significant fluorine signal can be observed on the layer undergoing evaporation. In the ultraviolet photoelectron spectroscopy ( _ In this layer, the layer also exhibits a doping effect in the form of a significant displacement toward the Fermi energy (eb = 0eV) of the highest occupied molecular orbital ( _ 〇 ) of Me 〇 TpD. Relative to (;; (6), There is a sample of τ undergoing evaporation, which confirms the contamination of the F4*~tcnq molecule. In the sample from the chamber with Ce〇F36, no fluorine signal was observed in xps, and there was no HOMO displacement in the UPS. That is to say, no contamination is observed in the MeO-TPD layer. Considering the treatment of the hole conducting layer, the very low volatility of 'C6〇F36' represents a significant advantage compared to F4_tcnq. Process Example 2 FrT (10), a description of the thermal stability of a hole conducting layer doped with c6Gf36. The purpose is to present the thermal stability of the hole conduction doped with C60f36. To test the thermal stability, because the matrix material N, N, _ ((二笨基_ N,N'-double) 9,9,-two High glass transition temperature (TG = 160 ° C) (US20020171358 A1) 'The substrate material N, N, - ((diphenyl-N, N,-bis) 9,9,-monomethyl-burial-2-yl)-biphenylamine (BF-DPB). Its conductive behavior depending on the temperature at which TG is reached is therefore attributable to the dopant. With a ratio of 26 mol% F-TCNQ and 21 mol% CF, the two layers exhibit comparable conductivity of 3 · 1 〇_6 S era-1 at room temperature (Fig. 6). In this context 'The lower doping with C6〇F36 is a higher doping efficiency of the dopant. Since the LUM0 of F4-TCNQ is very close to the HOMO level of BF-DPB according to UPS (-5. 23 eV) The same, the charge transfer generated in this system is inefficient. Because 100133011 Form No. A0101 Page 12 of 26 1003451854-0 201213232 It can be assumed that CuFu has stronger electron affinity than F plant TCNQ. When the temperature is 60 36 4 When lifting, the conductivity of the two layers increases, f4—tcnQ activation energy 265meV and CenFQe activation energy 692meV reach the maximum, and if the temperature increases by 60 〇b, further The conductivity is not disintegrated. At 145 ° C, a lower stability is observed in the BF-DPB/F4-TCNQ layer, and there is a decrease in conductivity. In the layer of BF_DPB/CF, the layer collapses before 18 (TC). Will occur and therefore be high in the matrix material. The decline in conductivity is therefore not directly attributable to

G c60f36摻雜物。 製程範例3 Ο 相較於F4-TCNQ,在OLED中使用摻雜C6〇F36的電洞傳導 層的說明。具有橘紅色發光的磷光p_i_n 0LED被用於比 較組件中的摻雜物。 在第7圖中描繪了所製造組件的層結構。有機層位於9〇nm 厚的氧化銦錫(ITO)陽極以及1〇〇 nm厚的銀覆蓋接點 之間的玻璃基板上。以1重量百分比之F4-TCNQ或8重量百 分比之掺雜的60 nm厚的MeO-TPD層作為電洞傳導 層(HTL),以該電洞傳導層達成了約2.1〇_5S cm_1的 傳導性。65nm摻雜鉋的4, 7-二苯基-1,10-鄰菲囉淋( BPhen)作為電子傳導層(ETL),並提供類似的傳導性 。為了濃縮在發光層(EML)中所注入的電荷,在該EML 的任一侧包括了 2, 2’,7, 7’ -四- (N,N-二笨基胺基 )_9,9 _螺雙第(Spiro_TAD)以及BPhen之10 nm厚的 電子以及電洞阻擋層(EBL、HBL)。20 nm厚的EML由以 10重量百分比的三重發光體雙(2 -甲基二笨並—[f,h]〇|; 噁哨0乙醯基丙酮酸银(III) (Ir(MDQ) (acac))摻雜 的Ν,Ν’ -二(萘-2-基)-Ν,Ν’ -二苯基-聯笨胺(a_NpD) 100133011 表單編號A0101 第13頁/共26頁 1003451854-0 201213232 組成。如第8圖所示’兩個〇LED都展現了防止c F寄 6 0 3 6 ~ ^ 吸收的相同電致發光光譜。該兩個比較組件的電流-電壓 曲線是類似的(第9圖),雖然具有c^Fm_摻雜物的 I (V)特徵曲線較為陡峭,指出電洞注入對於相等的層傳 導性較好。較大的電洞注入增加了電荷載體密度以及偏 移了 EML中的電荷载體平衡,導致C60F36〇LED的較高效率 (第10圖)。 製程範例4 相較於F4-TCNQ,在有機太陽能電池中使用摻雜c F的G c60f36 dopant. Process Example 3 说明 A description of the hole conducting layer doped with C6〇F36 in an OLED compared to F4-TCNQ. Phosphorescent p_i_n 0LEDs with orange-red illumination are used to compare dopants in the assembly. The layer structure of the fabricated assembly is depicted in Figure 7. The organic layer was placed on a glass substrate between a 9 Å thick indium tin oxide (ITO) anode and a 1 〇〇 thick silver covered joint. As a hole conducting layer (HTL) with 1% by weight of F4-TCNQ or 8 weight percent doped 60 nm thick MeO-TPD layer, a conductivity of about 2.1〇_5S cm_1 was achieved with the hole conducting layer. . The 65 nm doped planer 4,7-diphenyl-1,10-phenanthrenequinone (BPhen) acts as an electron conducting layer (ETL) and provides similar conductivity. In order to concentrate the charge injected in the luminescent layer (EML), 2, 2', 7, 7'-tetra-(N, N-diphenylamino)_9,9 _ is included on either side of the EML. Spiro_TAD and BPhen's 10 nm thick electrons and hole barriers (EBL, HBL). 20 nm thick EML consists of 10 weight percent triplet bis(2-methyldibenzo-[f,h]〇|; whistle 0 acetylpyruvyl pyruvate (III) (Ir(MDQ) ( Acac)) doped yttrium, Ν'-bis(naphthalen-2-yl)-indole, Ν'-diphenyl- phenylideneamine (a_NpD) 100133011 Form No. A0101 Page 13 of 26 1003451854-0 201213232 Composition. As shown in Figure 8, 'two LEDs show the same electroluminescence spectrum that prevents c F from sending 6 0 3 6 ~ ^. The current-voltage curves of the two comparison components are similar (9th Figure), although the I (V) characteristic curve with c ^ Fm_ dopant is steep, indicating that hole injection is better for equal layer conductivity. Larger hole injection increases charge carrier density and offset The charge carrier balance in EML leads to higher efficiency of C60F36〇LED (Fig. 10) Process Example 4 Compared to F4-TCNQ, doping c F is used in organic solar cells.

60 36 J 電洞傳導層的說明。由此獲得的組件的使用壽命測量顯 示了使用該組件的穩定性,該組件使用酞氣化鋅(ZnPc )以及C60的混雜層作為提供者-接受者-吸收者對。 由此製造的組件的層結構示於第U圖中。以2重量百分比 的F4-TCNQ或8重量百分比的CsqF36摻雜的60 nn^Me〇_ TPD層作為電洞傳導層(JJTL)。C6〇以及ZnPc (1:1)的 30 nm混雜層作為吸收層,其貼近3〇⑽厚的内部c居 60 s 。由摻雜有3重量百分比的3, 6-雙(二甲基胺基)吖啶( AOB)的15 nm厚C6()層來確保電子傳輸。反射陰極是由 100 nm厚的鋁層形成。如第12圖中所示,兩個太陽能電 池就所有的參數方面是可相比的,且只展現了落於測量 不择定性範圍内的最小的差異。開放端電壓(V )不受 \J V»/ 摻雜物質的影響。以(:6{^36摻雜造成串聯電阻中非常些微 的減少。 太%能電池在50 °C以及在來自具有500 mW cm-2輪出之 白色LED的照明下老化。第13圖描繪了有機太陽能電池耐 久性的差異。因為f4-tcnq的低玻璃轉換溫度,具有此摻 100133011 表單編號A0101 第14頁/共26頁 1003451854-0 201213232 〇 [0005] 雜物的太陽能電池展現了少於一百小時的使用壽么 °Ρ ’使 得此材料完全不適合用於商業用途。相反地,含有c 的電池具有超過500小時週期的固定電池參數。田&6<) 36 W此,這 些電池的穩定性顯著地大於含有F4〜TCNQ的電池穩定座 關於其作為P-i-n OLED以及有機太陽能電池中的p換 物的用途’因此可斷定,取代FfTCNQ與組件的改進 以及較好的組件穩定性有關。此外’ Ce()F36摻雜物的低: 氣壓意指在製造過程期間腔室不會被汙染。 ~ 【圖式簡單說明】 第1圖:用於以毫莫耳規模製造c60f36之設備的示意圖。 第2圖:反應產物的質譜儀分析。 第3圖:p摻雜物C6〇F36分子結構的ORTEP圖像以及p摻雜 物卩厂TCNQ以及MeO-TPD的結構。 第4圖:使用UPS以及XPS對p摻雜物F,-TCNQ以及C F 4 60 36 之汙染行為的測量。 第5圖:BF-DPB的結構。 Ο 第δ圖:含#F4-TCNQ或C6qF36之電洞傳輸層的熱穩定性 0 100133011 第7圖:0LED的層建構以及組成物,還有Bphen、 Spiro-TAD、a-NPIUx&Ir(MDQ)2acac的結構。 第8圖:0LED之電致發光光譜的比較。 第9圖:兩種0LED之特徵I(v)曲線以及冷光的比較。 第10圖:0LED之能量產量以及外部量子效率的比較。 第11圖·有機太陽能電池的層建構以及組成物、以及 ZnPc的結構。 第12圖:兩種有機太陽能電池在以太陽模擬器(AM1.5) 表單編號AG1G1 第15頁/共26頁 1003451854-0 201213232 照明下以及在黑暗中的特徵I ( v )曲線以及特徵效能參數 的比較。 第13圖:以按時間排列的老化之特徵參數的比較。 【主要元件符號說明】 [0006] a-NPD Ν,Ν’ _二(萘-2-基)-n, N,-二苯基-聯苯胺 Α0Β 3, 6-雙(二曱基胺基)吖咬 BF-DPB N,Ν’ -((二苯基-N,N’ _雙)9, 9, _二甲基-第— 2 -基聯苯胺 BPhen 4, 7-二笨基-1,ι 〇-鄰菲囉啉 F4_TCNQ 2,3,5,6 -四氟-7,7,8,8 -四氰基笨酿>二甲燒 Ir(MDQ)2acac 三重發光體雙(2-甲基二笨並-[f, h] 喹噁琳)乙醯基丙酮酸銀(Π I) ITO 氧化銦錫60 36 J Description of the hole conducting layer. The service life measurement of the assembly thus obtained shows the stability of the use of the assembly using a hybrid layer of zinc hydride (ZnPc) and C60 as a provider-receiver-absorber pair. The layer structure of the assembly thus produced is shown in Figure U. A 60 nn^Me〇_ TPD layer doped with 2% by weight of F4-TCNQ or 8 weight percent of CsqF36 was used as the hole conducting layer (JJTL). C6〇 and ZnPc (1:1) 30 nm hybrid layer act as an absorption layer, which is close to 3〇(10) thick internal c 60s. Electron transport was ensured by a 15 nm thick C6() layer doped with 3 weight percent of 3,6-bis(dimethylamino)acridine (AOB). The reflective cathode is formed from a 100 nm thick aluminum layer. As shown in Figure 12, the two solar cells are comparable in terms of all parameters and exhibit only the smallest differences that fall within the range of measurement uncertainty. The open-end voltage (V) is not affected by the \J V»/ dopant. The (:6{^36 doping caused a very slight decrease in series resistance. Too% of the battery was aged at 50 °C and under illumination from a white LED with a 500 mW cm-2 turn. Figure 13 depicts The difference in durability of organic solar cells. Because of the low glass transition temperature of f4-tcnq, there is less than one solar cell with 10013311 Form No. A0101 Page 14/26 Page 1003451854-0 201213232 〇[0005] The use of a hundred hours of life Ρ ' makes this material completely unsuitable for commercial use. Conversely, batteries containing c have fixed battery parameters of more than 500 hours. Field & 6 <) 36 W, the stability of these batteries The properties are significantly greater than the use of F4~TCNQ cell stabilizers for their use as Pin OLEDs and p-substitutes in organic solar cells'. It can therefore be concluded that replacing FfTCNQ is associated with improved components and better component stability. In addition, the low of ' Ce()F36 dopant: Barometric pressure means that the chamber will not be contaminated during the manufacturing process. ~ [Simple description of the diagram] Fig. 1: Schematic diagram of equipment for manufacturing c60f36 on a millimolar scale. Figure 2: Mass spectrometer analysis of the reaction product. Figure 3: ORTEP image of the molecular structure of the p-dopant C6〇F36 and the structure of the p-doping plant TCNQ and MeO-TPD. Figure 4: Measurement of the contamination behavior of p-dopants F, -TCNQ and C F 4 60 36 using UPS and XPS. Figure 5: Structure of BF-DPB. Ο δ: Thermal stability of the hole transport layer containing #F4-TCNQ or C6qF36 0 100133011 Figure 7: Layer construction and composition of OLED, as well as Bphen, Spiro-TAD, a-NPIUx & Ir (MDQ ) The structure of 2acac. Figure 8: Comparison of electroluminescence spectra of OLEDs. Figure 9: Comparison of the characteristic I(v) curves of two OLEDs and cold light. Figure 10: Comparison of energy production and external quantum efficiency of OLED. Figure 11 - Layer construction and composition of organic solar cells, and structure of ZnPc. Figure 12: Two organic solar cells in the solar simulator (AM1.5) Form No. AG1G1 Page 15 of 26 1003451854-0 201213232 Illumination and feature I ( v ) curves in the dark and characteristic performance parameters Comparison. Figure 13: Comparison of characteristic parameters of aging in chronological order. [Explanation of main component symbols] [0006] a-NPD Ν, Ν' _ bis(naphthalen-2-yl)-n, N,-diphenyl-benzidine Α0Β 3,6-bis(didecylamino) Bite BF-DPB N, Ν'-((diphenyl-N,N' _bis) 9,9-dimethyl- -2-phenylbenzidine BPhen 4, 7-di-phenyl-1, ι 〇-o-phenanthroline F4_TCNQ 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano styrene> dimethyl sulphide Ir(MDQ) 2acac triple illuminant bis (2-A Base two stupid-[f, h] quinoxaline) silver acetyl phthalate (Π I) ITO indium tin oxide

MeO-TPD Ν,Ν,Ν’,Ν’ -四-(4-甲氧基苯基)聯苯胺MeO-TPD Ν,Ν,Ν’,Ν’-tetra-(4-methoxyphenyl)benzidine

Spiro-TAD 2, 2’,7, 7,-四-(N,N-二苯基胺基 )-9, 9’ -螺雙第 UPS 紫外光光電子光譜法 XPS X射線光電子光譜法Spiro-TAD 2, 2',7, 7,-tetra-(N,N-diphenylamino)-9, 9'-spirobis UPS UV photoelectron spectroscopy XPS X-ray photoelectron spectroscopy

ZnPc 献氰化鋅 100133011 表單編號A0101 第16頁/共26頁 1003451854-0ZnPc zinc cyanide 100133011 Form No. A0101 Page 16 of 26 1003451854-0

Claims (1)

201213232 七、申請專利範圍: .一種用於製造一富勒烯衍生物的方法,其中一富勒烯在一 反應器中與至少一鹵素原子反應,其特徵在於,至少—額 外的化學元素被加至該反應器中。 .如申請專利範圍第1項所述用於製造一富勒烯衍生物的方 法’其特徵在於,至少一鹵素原子選自F、C1、Βι·。 .如前述申請專利範圍任一項所述用於製造—富勒烯衍生物 的方法,其特徵在於,該富勒烯為具有分子式、的球形碳201213232 VII. Patent application scope: A method for producing a fullerene derivative, wherein a fullerene is reacted with at least one halogen atom in a reactor, characterized in that at least - additional chemical elements are added To the reactor. The method for producing a fullerene derivative as described in claim 1 is characterized in that at least one halogen atom is selected from the group consisting of F, C1, and Β. The method for producing a fullerene derivative according to any one of the preceding claims, wherein the fullerene is a spherical carbon having a molecular formula 〇 鎮’其中m選自 36、60、70、76、78、80、82、84或適 合形成這種球形分子的任何其他自然數。 .如前述中請專利範圍任-項所述用於製造—富勒缔衍生物 的方法,其特徵在於,該函素原子以至少一鹽或鹽混合物 的形式使用,其中該鹽含有一金屬離子,以 離子選^、Mn、Ru、Mo、Fe、[co'Rh、'IrrN^ Pd'Pt、CU、Ag、AU、Tl、Sn、Sb、Te、Pb、Bi、La 、Ce、Pr、Nd、Sm ' Eu、Gd、Tb、Dy、H〇 ' Er、Tm、 Yb、Lu。 .如則述巾請專利範圍任—項所述用於製造—富勒稀衍生物 7的方法,其特徵在於’該至少—額外的化學元素可為Ti、 r、V、Nb、Ta、Cr、M〇、w、Mn、Re、Fe、Ru、〇s、 C0、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、cdAi 、Ga、In、T1、Ge、Sn、Pb、AS、Sb、Bi、Se、Te、 La Ce ' Pr、Nd、如、Eu、Gd、扑、^、n、 之這 'Yb'Ub任何大小之金屬線、車屑或粉末形式 些元素的一混合物。 · 100133011 表單編號A0101 * 17頁/共26頁 1003451854-0 201213232 6 .如别述申請專利範圍任一項所述用於製造一富勒稀衍生物 的方法’其中該額外的化學元素是鎳。 7 .如則述申請專利範圍任一項所述用於製造一富勒歸街生物 的方法,其中該製造經由昇華而與分離同時發生。 8 · 一種有機半導體層’其特徵在於,含有在如前述中請專利 範圍第1至7項中任-項所述的一製程中已製造的—材料。 9· -種經摻雜的有機半導體層,其特徵在於,含有在如前述 申請專利範圍第!至7項中任-項所述的—製程中已製造的 一有機電洞傳輸半導體材料以及_富勒烯衍生物。 如申請專利範圍第9項所述的經摻雜的有機半導體層其 特徵在於’該富勒婦衍生物是用於該有機電洞體 材料的一 p摻雜物。 11 12 一-—多層構造的有機二極體、有機光活性組件特 別是太陽能電池、光制器或發光二_,其中該多片中 的至少一層含有根據如前述申請專利範圍中任—項料 已製造的一富勒烯衍生物。 富勒烯衍生物的電池,該富勒稀衍生物如前述 申請專利範圍第1至7項中—所述的-製程製造。 100133011 表單編號Α0101 第18頁/共26頁 1003451854-镇 town' where m is selected from 36, 60, 70, 76, 78, 80, 82, 84 or any other natural number suitable for forming such spherical molecules. The method for producing a Fullerene derivative according to any one of the preceding claims, wherein the functional atom is used in the form of at least one salt or a mixture of salts, wherein the salt contains a metal ion. , by ion selection, Mn, Ru, Mo, Fe, [co'Rh, 'IrrN^ Pd'Pt, CU, Ag, AU, Tl, Sn, Sb, Te, Pb, Bi, La, Ce, Pr, Nd, Sm 'Eu, Gd, Tb, Dy, H〇' Er, Tm, Yb, Lu. The method for producing a Fullerene derivative 7 according to the scope of the patent, wherein the at least the additional chemical elements may be Ti, r, V, Nb, Ta, Cr. , M〇, w, Mn, Re, Fe, Ru, 〇s, C0, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, cdAi, Ga, In, T1, Ge, Sn, Pb , AS, Sb, Bi, Se, Te, La Ce ' Pr, Nd, such as, Eu, Gd, flutter, ^, n, the 'Yb' Ub any size of metal wire, car scrap or powder form elements a mixture. 100133011 Form No. A0101 * 17 pages/total 26 pages 1003451854-0 201213232 6. A method for producing a fullerene derivative according to any one of the claims, wherein the additional chemical element is nickel. 7. A method for making a Fuller-backed creature as described in any one of the claims, wherein the manufacturing occurs simultaneously with the separation via sublimation. An organic semiconductor layer is characterized in that it contains a material which has been produced in a process as described in any one of the above-mentioned claims. A doped organic semiconductor layer characterized by being contained in the scope of the aforementioned patent application! An organic hole transport semiconductor material and a fullerene derivative which have been fabricated in the process described in any of the items of the seventh item. The doped organic semiconductor layer according to claim 9 is characterized in that the Fuller compound is a p-dopant for the organic hole material. 11 12 - a multi-layered organic diode, an organic photoactive component, in particular a solar cell, a light-emitting device or a light-emitting device, wherein at least one of the plurality of layers contains any of the materials according to the scope of the aforementioned patent application A fullerene derivative has been produced. A fullerene derivative battery which is produced by the process described in the above-mentioned Patent Application Nos. 1 to 7. 100133011 Form NumberΑ0101 Page 18 of 26 1003451854-
TW100133011A 2010-09-22 2011-09-14 Method for producing fullerene derivatives TW201213232A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010046040.0A DE102010046040B4 (en) 2010-09-22 2010-09-22 Process for the production of fullerene derivatives

Publications (1)

Publication Number Publication Date
TW201213232A true TW201213232A (en) 2012-04-01

Family

ID=45768963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133011A TW201213232A (en) 2010-09-22 2011-09-14 Method for producing fullerene derivatives

Country Status (4)

Country Link
KR (1) KR20120031153A (en)
CN (1) CN102557000A (en)
DE (1) DE102010046040B4 (en)
TW (1) TW201213232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644447B (en) * 2017-06-16 2018-12-11 國立臺灣大學 Method for preparing bulk heterojunction perovskite solar cell

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015082046A2 (en) 2013-12-06 2015-06-11 Merck Patent Gmbh Substituted oxepines
KR20240005971A (en) 2013-12-06 2024-01-12 메르크 파텐트 게엠베하 Compounds and organic electronic devices
CN106629666A (en) * 2015-12-30 2017-05-10 深圳市优宝惠新材料科技有限公司 Fluorinated fullerene and preparation method and application thereof
JP2020522876A (en) 2017-04-13 2020-07-30 メルク パテント ゲーエムベーハー Composition for organic electronic device
WO2019002198A1 (en) 2017-06-26 2019-01-03 Merck Patent Gmbh Homogeneous mixtures
JP7247121B2 (en) 2017-07-05 2023-03-28 メルク パテント ゲーエムベーハー Compositions for organic electronic devices
US11591320B2 (en) 2017-07-05 2023-02-28 Merck Patent Gmbh Composition for organic electronic devices
TWI785142B (en) 2017-11-14 2022-12-01 德商麥克專利有限公司 Composition for organic electronic devices
WO2019229011A1 (en) 2018-05-30 2019-12-05 Merck Patent Gmbh Composition for organic electronic devices
DE102018125307A1 (en) * 2018-10-12 2020-04-16 Novaled Gmbh Organic light emitting device
US20220127286A1 (en) 2019-03-04 2022-04-28 Merck Patent Gmbh Ligands for nano-sized materials

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
RU2160226C2 (en) 1998-02-16 2000-12-10 Институт нефтехимии и катализа АН РБ Method of production of chlorine derivatives of fullerene c60
US6386468B1 (en) * 1999-11-29 2002-05-14 Ceramoptec Industries, Inc. Mechano-chemical flourination: improved method of fullerene fluorination
DE10058578C2 (en) 2000-11-20 2002-11-28 Univ Dresden Tech Light-emitting component with organic layers
JP2002343575A (en) 2001-03-15 2002-11-29 Canon Inc Charge injected light-emitting element
CN1732581A (en) * 2002-10-31 2006-02-08 三菱化学株式会社 Additive for positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the positi
DE10339772B4 (en) 2003-08-27 2006-07-13 Novaled Gmbh Light emitting device and method for its production
DE102005010978A1 (en) 2005-03-04 2006-09-07 Technische Universität Dresden Photoactive component with organic layers
DE102005010979A1 (en) 2005-03-04 2006-09-21 Technische Universität Dresden Photoactive component with organic layers
JP2006306636A (en) * 2005-04-26 2006-11-09 Mitsubishi Heavy Ind Ltd Method for refining nanocarbon material and nanocarbon material
JP5246699B2 (en) * 2006-11-14 2013-07-24 独立行政法人科学技術振興機構 Method for producing fullerene derivative
WO2010029542A1 (en) * 2008-09-09 2010-03-18 Technion Research & Development Foundation Ltd. Derivatized fullerene-based dopants for organic semiconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644447B (en) * 2017-06-16 2018-12-11 國立臺灣大學 Method for preparing bulk heterojunction perovskite solar cell

Also Published As

Publication number Publication date
CN102557000A (en) 2012-07-11
DE102010046040B4 (en) 2021-11-11
DE102010046040A1 (en) 2012-03-22
KR20120031153A (en) 2012-03-30

Similar Documents

Publication Publication Date Title
TW201213232A (en) Method for producing fullerene derivatives
TWI473781B (en) Quinoid compounds and their use in semiconductive matrix materials, electronic and optoelectronix structural elements
TWI597875B (en) Organic electronic device and use thereof
CN106220638B (en) A kind of compound and its application based on xanthone
US10749115B2 (en) N-doped semiconducting material comprising polar matrix and metal dopant
KR20160102529A (en) N-doped semiconducting material comprising phosphine oxide matrix and metal dopant
KR20120102518A (en) Organic semiconductive material and organic component
EP3689867B1 (en) Composition, organic semiconductor layer and electronic device
CN106220645B (en) Compound based on monosubstituted-9-fluorenone and application thereof
KR102450200B1 (en) Compounds for electronic devices, electronic devices and display devices
JP7503521B2 (en) Organic light-emitting device including a polar matrix, a metal dopant, and a silver cathode
EP4036080A1 (en) Organic compound of formula (i) for use in organic electronic devices, an organic electronic device comprising a compound of formula (i) and a display device comprising the organic electronic device
US20220131115A1 (en) Method for Preparing an Organic Semiconducting Layer, a Composition for Use Therein and an Organic Electronic Device
WO2021105518A1 (en) Organic electronic device and display device comprising the organic electronic device as well as organic compounds for use in organic electronic devices
CN108292706B (en) Metal layer comprising alkali metal and second metal
CN116584178A (en) An organic compound of formula (I) for use in an organic electronic device, a composition comprising a compound of formula (IV) and at least one compound of formulae (IVa) to (IVd), an organic semiconductor layer comprising the compound or composition, an organic electronic device comprising the organic semiconductor layer, and a display device comprising the organic electronic device
EP3840076A1 (en) Organic electronic device comprising a compound of formula (1), display device comprising the organic electronic device as well as compounds of formula (1) for use in organic electronic devices
US20190322642A1 (en) Compound and Organic Semiconducting Layer, Organic Electronic Device, Display Device and Lighting Device Comprising the Same
CN113224248B (en) Organic electroluminescent device and display device
CN113508113B (en) Composition, organic semiconductor layer, and electronic device
EP3989304A1 (en) Organic compound of formula (i) for use in organic electronic devices, an organic electronic device comprising a compound of formula (i) and a display device comprising the organic electronic device
US20230225141A1 (en) Organic Compound of Formula (I) for Use in Organic Electronic Devices, an Organic Electronic Device Comprising a Compound of Formula (I) and a Display Device Comprising the Organic Electronic Device
JP2024523229A (en) Organic Electronic Devices Including Metal Compounds Having High Dipole Moment Fragments - Patent application
KR20240023386A (en) Organic electronic devices comprising compounds of formula (I), display devices comprising organic electronic devices, as well as compounds of formula (I)
CN114981997A (en) Organic electronic device comprising compound of formula (1), display device comprising the same, and compound of formula (1) for organic electronic device