TW201212891A - Method of two-dimentional Ensemble Empirical Mode Decomposition for analyzing brain disease - Google Patents

Method of two-dimentional Ensemble Empirical Mode Decomposition for analyzing brain disease Download PDF

Info

Publication number
TW201212891A
TW201212891A TW99131480A TW99131480A TW201212891A TW 201212891 A TW201212891 A TW 201212891A TW 99131480 A TW99131480 A TW 99131480A TW 99131480 A TW99131480 A TW 99131480A TW 201212891 A TW201212891 A TW 201212891A
Authority
TW
Taiwan
Prior art keywords
image
brain
deconstruction
dimensional
lesion
Prior art date
Application number
TW99131480A
Other languages
Chinese (zh)
Inventor
Ping-Huang Tsai
Meng-Tsung Lo
Chen Lin
Jen-Ho Tsao
Yi-Chung Chang
Original Assignee
Nat Yang Ming University Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Yang Ming University Hospital filed Critical Nat Yang Ming University Hospital
Priority to TW99131480A priority Critical patent/TW201212891A/en
Publication of TW201212891A publication Critical patent/TW201212891A/en

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention provides a method of two-dimentional ensemble empirical mode decomposition (2D EEMD) for analyzing brain disease. It comprises the followed steps: providing a medical image; using the 2D EEMD method to decompose the medical image and to generate several decomposed images; choosing two or more decomposed images as texture images; combining the several texture images to get one target image; using convoluted calculation on the target image to get a first image; normalizing the first image to get a second image; using color-mapping method on the second image to get a color image; fusing the color image with the medical image to get a reference image; using the reference image to diagnose the disease area.

Description

201212891 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種腦部病變分析之方法,用二 維經驗模態解構法進行腦部病變分析之方法。 【先前技術】 中風為腦血管内部產生局部性的阻塞或出血,如:缺血性检 # 塞(emb〇Usm)、缺血性梗塞(如〇她〇咖)或出血性破裂 (hem_age),將使腦部組織受雌迫,發生血腫或缺血,進而 導致神經症狀與現象,使患者意識障礙、四_或有其他神經 系統缺損。 腦中風居國人十大關H僅次於所有紐腫瘤的總 合,如果以侧惡性腫瘤來比較,腦巾風則遠高於任何單一麵 的惡性腫瘤。 研究顯示,時間對腦中風的治療影響很大,尤其是對急性缺 參血性腦中風’若能夠在黃金時間内給予適當的治療,可增加腦中 風康復的機會或降低殘障等級。 其中,此黃金時間為發病内三個小時,給予的治療則是使用 靜脈内注射錄溶解劑(Rec〇mbinant氾臟plasmin〇gen Activator, rt_PA) ’在三個小時内立刻給予rt_PA治療,得到較佳的治療結果 機會為未給藥的1.6^2.8倍,因此血栓溶解劑用於治療急性缺血 性腦中風可視為特效藥。 然而,目前臨床用以檢測腦中風病灶位置常用之無顯影劑腦 部電腦斷層Non-ContractCT(NCCT)在超急性期的缺血性中風的 201212891 缺血變化並不敏感,往往將錯失治療的黃金期。 過去關於此問題之研究有日本之Norituki Takahashi團隊,利 用可適性濾波器提升電腦斷層影像之訊雜比進而提升病灶區域 的辨識率,但NoritukiTakahashi團隊僅提升訊雜比,並無利用影 $本身所取得之生理訊號進行特徵之分析,若能利用運算強調此 電腦斷層影像之病灶特徵(texture),將更能提升臨絲查之準確 性’做出最利於病人之治療。201212891 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for analyzing brain lesions, and a method for analyzing brain lesions by a two-dimensional empirical mode deconstruction method. [Prior Art] A stroke causes local obstruction or bleeding inside the cerebral blood vessels, such as an ischemic test (emb〇Usm), an ischemic infarction (such as her coffee), or a hemorrhagic rupture (hem_age). The brain tissue will be subjected to females, and hematoma or ischemia will occur, which will lead to neurological symptoms and phenomena, which may cause the patient to have disturbance of consciousness, or have other nervous system defects. The stroke of the brain is the second highest in the country. It is second only to the total of all neoplasms. If compared with the side malignant tumors, the brain towel is much higher than any single malignant tumor. Studies have shown that time has a great impact on the treatment of stroke, especially for acute cerebral apoplexy. If given appropriate treatment during prime time, it can increase the chance of stroke rehabilitation or reduce the level of disability. Among them, the prime time was three hours within the onset of the disease, and the treatment was given by intravenous injection of the lysing agent (Rec〇mbinant plasmin〇gen Activator, rt_PA), and rt_PA was given immediately within three hours. The chance of a good treatment outcome is 1.6^2.8 times that of unadministered, so thrombolytic agents can be considered as a specific drug for the treatment of acute ischemic stroke. However, the current non-developer brain computerized tomography Non-ContractCT (NCCT), which is commonly used to detect the location of stroke in the brain, is not sensitive to the ischemic changes in the ultra-acute ischemic stroke 201212891, and will often miss the gold of treatment. period. In the past, the Nortuki Takahashi team in Japan used the adaptive filter to improve the signal-to-noise ratio of computerized tomographic images to improve the recognition rate of the lesion area. However, the Norituki Takahashi team only increased the signal-to-noise ratio and did not use the film itself. The analysis of the characteristics of the acquired physiological signals, if the operation can be used to emphasize the lesion features of the computed tomography image, will improve the accuracy of the clinical investigations to make the most favorable treatment for patients.

【發明内容】[Summary of the Invention]

本發明提供一種利用二維經驗模態解構法進行腦部病變分 析之方法,包含以下步驟:提供一醫學影像;利用一二維鎌模 態解構法將該醫學影像進行解構處理,而制複數張解構影像; 藉由人工或自㈣取的方式由該些解構影像愤選丨複數張合 適的解構影像作為複數張特徵影像;將該些概影像進行合併處 理’以得到-目標影像;對該目標影像進行紋理運算以得到一第 一影像;賴第-職斯蝴⑽糊—第二鱗;將該第二 影像進行色彩圖像映射以得到—色彩影像;將該色彩影像與該醫 學影像進行融合處理以得到一參考影像;糊該參考影像满一 病灶虑。 參考雜帽包細鉍_目#__冑,參考影像 ^所包含_巾風之腦㈣職顧伽狄結雛娜,因此 雜的齡,簡使 出病灶的仂罟。 4 4 201212891 考斷層影像之生理訊號為非線性訊號,而該參 考影像中"色娜像的資訊,相當有利於病灶特徵之判讀。 因此,本發明所提供的_二_^_^0 方法能有效計算出該影像之特徵區域,提供病灶位置更快速且準 確之解讀。當·腦部_病_麟,可顧在紐缺血性腦 中風、巴絲氏症、義、_後遺病、麵職及阿贿默症、 頭部外傷致齡骨折、顧㈣血、腦挫傷、腦中風、腦血管破裂The invention provides a method for analyzing a brain lesion by using a two-dimensional empirical mode deconstruction method, comprising the steps of: providing a medical image; destructuring the medical image by using a two-dimensional 镰 mode deconstruction method; Deconstructing the image; manually or self-receiving the image to invert a plurality of suitable deconstructed images as a plurality of feature images; combining the images to obtain a target image; Performing a texture operation on the image to obtain a first image; Lai's first-child butterfly (10) paste-second scale; mapping the second image to a color image to obtain a color image; and merging the color image with the medical image Processing to obtain a reference image; paste the reference image full of a lesion. Reference miscellaneous caps 铋 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 4 201212891 The physiological signal of the tomographic image is a non-linear signal, and the information of the color image in the reference image is quite conducive to the interpretation of the lesion characteristics. Therefore, the _二_^_^0 method provided by the present invention can effectively calculate the feature region of the image and provide a faster and more accurate interpretation of the lesion location. When the brain _ disease _ lin, can be considered in the neonatal ischemic stroke, Ba's disease, righteousness, _ after disease, face and a bribery, head traumatic age-related fractures, Gu (four) blood, brain Contusion, stroke, cerebrovascular rupture

出血、腦動脈瘤、先天性動靜脈畸型、良性腦瘤、腦内惡性瘤、 腦膿瘍、腦結核或水腦症等疾病。特別是對於超急性缺錄腦中 風的情況,更需要在黃金時間内快速判斷病症,以即啦出最利 於病人之治療。 關於本發明之優點與精神,以及更詳細的實施方式可以藉由 以下的實施方式以及所附圖式得到進一步的瞭解。 【實施方式】 • 本發明提供一種利用二維經驗模態解構法(two dimentionalHemorrhage, cerebral aneurysm, congenital arteriovenous malformation, benign brain tumor, intracranial malignant tumor, brain abscess, brain tuberculosis or hydrocephalus. Especially for the case of hyperacute cerebral apoplexy, it is more necessary to quickly judge the disease in prime time, so that the treatment is most beneficial to the patient. The advantages and spirit of the present invention, as well as the more detailed embodiments, can be further understood by the following embodiments and the accompanying drawings. [Embodiment] The present invention provides a two-dimensional empirical mode deconstruction method (two dimentional)

Ensemble Empirical Mode Decomposition^ 2D EEMD)進行腦部病 變分析之方法’用以利用此分析方法快速判讀腦中風影像之病灶 位置’尤其是對急性缺血性腦中風的情況’能夠即時爭取於黃金 時間内進行治療。 其中所提到的二維經驗模態解構法為黃鍔(Huang Ν· E.)等人 過去提出經驗模態分解(Empirical Mode Decompositioiij EMD)方 法。在2000年以後此技術被運用在圖像處理上,圖像處理是二 維經驗模態解構法的運用範疇%經驗模態分解法是由篩選程序經 201212891 過多次的迭代來完成,透過方程式可提取出數個解構娜,其中 能明顯呈現出不同的紋理圆像,將可以作進一步的分析應用,進 而運算其特徵區域。 請參考第-圖,其為本發明糊二維經驗模態解構法進行腦 部病變分析之方法步驟圖;而以下為本發明利用二維麵模態解 構法進行腦部病變分析之方法步驟:Ensemble Empirical Mode Decomposition^ 2D EEMD) A method for brain lesion analysis 'used to quickly interpret the location of a lesion in a stroke image by using this analysis method, especially for acute ischemic strokes' Treatment. The two-dimensional empirical mode deconstruction method mentioned above is the method of empirical mode decomposition (Empirical Mode Decompositioiij EMD) by Huang et al. After 2000, this technology is applied to image processing. Image processing is the application of two-dimensional empirical mode deconstruction. The empirical mode decomposition method is completed by the screening process through multiple iterations of 201212891. A number of deconstructed nas are extracted, in which different texture round images can be clearly displayed, which can be used for further analysis and calculation of the feature regions. Please refer to the first-graph, which is a method step of analyzing the brain lesions by the two-dimensional empirical mode deconstruction method of the present invention; and the following is the method step of analyzing the brain lesions by the two-dimensional surface mode destructive method:

St印1 :提供-醫學影像;該醫學影像具有_像素,於本 實施例中’此醫學影像為一腦中風之腦部電腦斷層影像;St. 1: providing a medical image; the medical image has _pixels, and in this embodiment, the medical image is a brain computerized tomographic image of a stroke;

SteP2 :將該腦部電腦斷層影像去除頭骨訊號;該腦部電腦斷 層影像包含一原始訊號,且 下包絡資訊;SteP2: the brain computerized tomographic image is removed from the skull signal; the brain computerized tomographic image contains an original signal, and the lower envelope information;

Step3 ·利用二維經驗模態解構法將該腦部電腦斷層影像進行 _處理’而得到複數張解構影像;該些解構影像皆具有. 像素,將該上包絡資訊以及該下包絡資訊進行平均,以得到一平 均包絡資訊,再將該原始訊號減去該平均包絡資訊,以對應得到 第解構影像IMF(l) ’其中該平均包絡資訊之總合為零。 _該第一解構影像歷⑴包含第一原始訊號,且該第一原始 訊號包含第-上包絡資訊以及第—下包絡資訊,再以該第一解構 衫像IMF(l)作為基準’將第一上包絡資訊以及第一下包絡資訊進 行平均’以得到—第一平均包絡資訊,再將第一原始訊號減去第 平均包絡資訊,以對應得到一第二解構影像^^⑺;再以第二 解構跡(2)影像為基準,以此類推,得到第三解構影像_(3)、 第四解構影像IMF(4)·..;於本實施例中,解構處理得到6^張解 構影像為最佳,但並不以此為限。 201212891 田然’第一解構影像祕(1)、第二解構影像IMF(2)、第三 解構影像驗(3)、第啸娜像⑷』具有_像素且 第-平均包絡資訊、第二平均包絡資訊、第三平均包絡資訊、第 四平均包絡資訊...之個職訊總合皆為零。 、Step4 ·藉由人工或自動選取的方式由該些解構影像中挑選出 紐槪影像;人玉的方式如醫師 姻織對第一解構影像祕⑴、第二解構影像·(2)、第三 解構〜像IMF(3)、帛四解構影像祕⑷...断觸,魏出數 張具_賈值的解構影像作為特徵影像;自動選取的方式如侧 计算複數張解構影像的能量,即震幅絕對值的總和,並依能量大 彡像作為複數張特徵影像。當然,該些 特徵影像亦皆具有m*n像素。Step3: Performing a plurality of deconstructed images by using a two-dimensional empirical mode deconstruction method to obtain a plurality of deconstructed images; the deconstructed images have pixels, and the upper envelope information and the lower envelope information are averaged. To obtain an average envelope information, the average envelope information is subtracted from the original signal to obtain a first deconstructed image IMF(1) 'where the sum of the average envelope information is zero. The first deconstructed image history (1) includes a first original signal, and the first original signal includes first-up envelope information and first-lower envelope information, and then the first de-constructed shirt image IMF(l) is used as a reference An upper envelope information and a first lower envelope information are averaged to obtain a first average envelope information, and then the first original signal is subtracted from the first envelope information to obtain a second deconstructed image ^^(7); The second deconstructed trace (2) image is used as a reference, and so on, the third deconstructed image_(3), the fourth deconstructed image IMF(4)·.. is obtained; in this embodiment, the deconstructed processing results in 6^ deconstructed images. Best, but not limited to this. 201212891 Tian Ran's first deconstructed image secret (1), second deconstructed image IMF (2), third deconstructed image test (3), and the second image (4) have _pixel and first-average envelope information, second average The envelope information, the third average envelope information, and the fourth average envelope information are all zero. Step4 · Selecting the image from the deconstructed images by manual or automatic selection; the method of human jade is as follows: the first deconstructed image secret (1), the second deconstructed image (2), and the third Deconstruction ~ like IMF (3), 解 four deconstructed image secret (4) ... break, Wei out a number of deconstructed images with _ Jia value as feature images; automatic selection method such as side calculation of multiple pieces of deconstructed image energy, ie The sum of the absolute values of the amplitude, and the energy image is used as a plurality of feature images. Of course, the feature images also have m*n pixels.

St6p5 : #_特徵影像進行合併處理’以制_目標影像, 該目標影像同樣具有m*n像素。St6p5: #_Feature image is merged to make a target image, which also has m*n pixels.

SteP6 :利用- i*j ;慮波器對該目標影像進行紋理運算 (_〇luti〇n),以得到-第一影像,該第一影像具有,像素; 其中’該i*j值小於該x*y值,且i值可以等於』值,χ值也可以 等於y值;於本實施例中’ i值以及』值以5為最佳,但並不以此 為限。 其中,該I*j濾波器為一計算熵值(entlOpy)_H 處理中’烟的意義是-種用來測量隨意灰階分布的特徵數值,也 就是說’若有一群離散資訊,我們要得到這群離散資訊的平均資 訊量,會⑽來表示,這個量代表資轉的不確定性 (uncertainty),在本實施例中,以第一影像為例,第一影像上的每 -個i*j範圍都有-侧值,_網值分別代表此範圍的不確定 201212891SteP6: using -i*j; the filter performs a texture operation (_〇luti〇n) on the target image to obtain a first image having a pixel; wherein 'the i*j value is smaller than the The value of x*y, and the value of i can be equal to the value of 』, and the value of χ can also be equal to the value of y; in the embodiment, the value of 'i value and 』 is 5, but not limited thereto. Wherein, the I*j filter is a calculated entropy value (entlOpy)_H. The meaning of the 'smoke is the characteristic value used to measure the random gray scale distribution, that is, if there is a group of discrete information, we need to get The average amount of information of the discrete information will be expressed by (10). This quantity represents the uncertainty of the transfer. In this embodiment, the first image is taken as an example, and each i* on the first image is used. j range has - side value, _ net value represents the uncertainty of this range respectively 201212891

It也就疋此圍的資訊具有一特定的彈性範圍變化量,而計算 熵(H)值的公式為: H=-I(p*l〇g2(p)) 、P為該第影像之直方圖色階(histogram counts)出現 機率。 炎P將該第衫像進行正規化(normalization),以制一 、.該第—影像亦具有X*y像素;正規化的目的是使該第 每—靜】細娜有個別的滴 值但疋該些燜值是經過對應標準值進行相對調整後的。 y汾印8 ·將該第二影像進行色彩圖像映射(color_mapping),以 得到色彩影像,將第二影像標準化後的烟值依照數值大小分別 對應不同色彩’ ^得耻彩色影像。 。Step9 ·將該色彩影像與該醫學影像進行融她麵處理, 以得到-參考树;在本實施僧,雜色郷像與腦中風之腦 部電腦斷層影像進行融合處理,融合處理包括將上述二張影像進 行對位、對色彩影像半透明化以及將上述二張疊和,以制一參 考影像。It also has a specific elastic range change, and the formula for calculating the entropy (H) value is: H=-I(p*l〇g2(p)), P is the histogram of the first image. The probability of histogram counts appears. Inflammation P normalizes the figure of the first shirt to make one. The first image also has X*y pixels; the purpose of normalization is to make the first every static number have individual drops but疋The 焖 values are relative adjusted by the corresponding standard values.汾Print 8 · Color image mapping (color_mapping) of the second image to obtain a color image, and the smoke value normalized by the second image corresponds to a different color according to the numerical value. . Step9: Combining the color image with the medical image to obtain a reference tree; in this embodiment, the variegated image is merged with the brain computerized tomographic image of the brain stroke, and the fusion processing includes the above two The image is aligned, the color image is translucent, and the two sheets are superimposed to form a reference image.

SteplO ·利用該參考影像判斷一病灶處;在本實施例中,醫 師可以透過該參考影像’輕易判斷出腦中風的病灶處。 〃請參考第二圖’縣一像素512*512腦中風之腦部電腦斷層 影像’以下將哺腦巾風之腦部電腦斷層影像作為本發明之 施例說明。 凊參考第二圖’其為將該腦巾風之腦部電腦斷層影像頭骨的 資訊去除後的影像,利用調整影像閥值恤esh〇ld)或是利關選的 方式將頭骨的資訊去除。 201212891 請參考第四圖,其為利用2DEEMD將該腦中風之腦部電腦 斷層影像進行解構處理,而得到六張解構影像m〇del〜m〇de6 ;該 些解構影像model〜mode6皆具有512*512像素。 之後’醫師利用經驗對該些解構影 斷,挑選出數張具判斷價值的解構影像作為特徵影像 model〜mode5,該些特徵影像model〜mode5亦皆具有512*512 像素° ' 請參考第五圖’其為將該些特徵影像m〇del〜m()de5進 併處理所得觸目獅像;該目娜像同樣姑512*512像素。 利用一 5*5濾波器對該目標影像進行紋理運算以得到一第一 影像,該第一影像具有507*507像素。 將該第一影像進行正規化以得到一第二影像,該第二影像亦 具有507*507像素。 凊參考第六® ’絲二影像進行色_像映射轉到一色彩 影像’請參考第七圖’再將該色彩影像與該腦中風之腦部電腦斷 層影像進行融合處理以得到一參考影像。醫師可以透過該參考影 像輕易判斷出腦中風的病灶處N,中風的病灶處通常發生在參 考影像上顏色為較極獻财對稱.置。以本實酬為例,病 灶位置發生細值較小的位置,錄色表示。 參考影像憎包含的I絲像相當於功雛影像,參考影像 中所包含的腦中風之腦部電腦斷層影侧當於結構性影像,因此 藉由功能性影像以及結構性影像的結合,能夠使醫師更容易判斷 出病灶的位置。 此外,因為電腦斷層影像之生理訊號為非線性訊號,而該參 影像中包含色彩影像的資訊,這部分的資訊能相當有利於病灶 9 201212891 特徵之判讀。 、因此,本發明所提供的利用二維經驗模態解構法之資料分 ,法此有H算驗f彡像之槪區域提彳__細立 夬速且準確之解讀。特別是對购急性缺血性腦中風的情況 需要在黃金時間織速判斷病症,以即雜出最利於病人 療。 、本發嚇峨佳實例购如上,麟並非肋限定本發明精 神與發明實體僅止於上述實施例爾。對熟悉此項技術者,當可輕 易了解並利用其它元件或方式來產生相同的功效。是以,在不脫 神與範_所作之佩,均應包含 【圖式簡單說明】 藉由以下詳細之描述結合所附圖示 發明之諸多優點,其中: 將可輕易的了解上述内容及此項 第一圖:本發明利用2DEEMD進行腦部病變分析之方法步驟圖; 第二圖:本發明之腦中風之腦部電腦斷層影像; 第二圖:本發明之將該腦中風之腦部電腦斷層影綱骨的資訊去除後 的影像; 第四圖:本發明之糊2DEEMD·腦巾風之辦__影像進 行解構處理,而得到六張解構影像^^^^ ; 第五圖:神狀賴些概影行合_理簡_目標影像; 第六圖:本侧之將第二影像進行色彩圖像映射所得到之色彩影像; 201212891SteplO uses the reference image to determine a lesion; in this embodiment, the physician can easily determine the lesion of the stroke through the reference image. 〃Please refer to the second figure 'County One-pixel 512*512 Brain Stroke Brain Computer Tomography Image' The brain computerized tomography image of the brain towel is described below as an example of the present invention.凊 Refer to the second figure, which is the image of the skull of the computerized tomographic image of the brain, and the information of the skull is removed by adjusting the image threshold esh〇ld or by selecting it. 201212891 Please refer to the fourth figure, which is to deconstruct the brain tomographic image of the brain stroke by 2DEEMD, and obtain six deconstructed images m〇del~m〇de6; the deconstructed images model~mode6 have 512* 512 pixels. After that, the physician used the experience to deconstruct the deconstruction and selected several deconstructed images with the judgment value as the feature image model~mode5. The feature images model~mode5 also have 512*512 pixels ° 'Please refer to the fifth figure. 'It is the lion image that the feature image m〇del~m() de5 enters and processes; the Muna is similar to 512*512 pixels. The target image is textured using a 5*5 filter to obtain a first image having 507*507 pixels. The first image is normalized to obtain a second image, and the second image also has 507*507 pixels.凊 Refer to the sixth® 'single image for color image mapping to a color image. Please refer to the seventh image and fuse the color image with the brain computerized tomographic image of the brain stroke to obtain a reference image. The doctor can easily determine the lesion at the lesion of the stroke through the reference image. The lesion at the stroke usually occurs on the reference image and the color is more symmetrical. Taking this actual remuneration as an example, the position of the lesion occurs at a position where the fine value is small, and the color is indicated. The reference image contained in the reference image is equivalent to the image of the phantom, and the brain computed tomography side of the brain stroke included in the reference image is a structural image, so that the combination of functional images and structural images enables It is easier for the physician to determine the location of the lesion. In addition, because the physiological signal of the computed tomography image is a non-linear signal, and the reference image contains color image information, this part of the information can be quite beneficial for the interpretation of the lesion 9 201212891. Therefore, the data segmentation method using the two-dimensional empirical mode deconstruction method provided by the present invention has the H test area and the 槪 细 细 细 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In particular, the purchase of acute ischemic stroke requires the need to judge the disease at prime time, so that it is most beneficial to the patient. The present invention is based on the above, and the lining is not limited to the spirit and inventive entity of the present invention only in the above embodiments. Those skilled in the art will be able to easily understand and utilize other components or means to produce the same effect. Therefore, the advantages of the invention should be included in the following description. The following detailed description combines the advantages of the invention with the accompanying drawings, in which: The first figure: the method step diagram of the brain lesion analysis using 2DEEMD; the second picture: the brain computerized tomography image of the brain stroke of the present invention; the second picture: the brain computer of the brain stroke of the present invention The image after the removal of the information of the faulty shadow bone; the fourth picture: the paste of the invention 2DEEMD·the brain towel wind __ image is deconstructed, and six deconstructed images ^^^^ are obtained; fifth figure: godlike Depending on the image of the target image; the sixth image: the color image obtained by mapping the second image to the color image on this side; 201212891

第七圖:本發明之將色彩影像與腦中風之腦部電腦斷層影像進行融合 處理以得到之參考影像。 【主要元件符號說明】 無 % 11Seventh figure: The reference image of the present invention is obtained by fusing a color image with a brain computerized tomographic image of a brain stroke. [Main component symbol description] None % 11

Claims (1)

201212891 七、申請專利範圍·· 進行腦部病變分析之方法,包含以下 步驟: a. -醫學影像’該醫學影像具有的像素; b. 提供一二維_莫態解構法將該醫學影像進行解構處理,而 得到複數張解構影像; c藉由人工或自_取财式由鼬_彡像愧選出複數 張合適的解構影像作為複數張特徵影像; d將該些概娜断合贿理,崎到—目標影像; e.利用-i*i濾波器對該目標影像進行紋理運算,以制一第 一影像,該第一影像具有x*y像素; f·將該第-影像進行色糊像映射,以制—色彩影像; &將該色彩影像與該醫學影像進行融合處理,以制一參考影 像;以及 / h.利用該參考影像判斷一病灶處。 2. 如申請專利細第i項所述糾用二維_模態纖法進行腦部病 變分析之方法,其中該醫學影像為一電腦斷層影像。 3. 如申、請專利範圍第i項所述犧二維經驗模態解構法進行腦部病 變物之方法,其中在步驟e得到該第一影像後,先將該第一影像 進行正規化’以得到一第二影像,再將該第二影像進行色彩 6,1 * ' 牙Γ 0 申4專利範圍第1項所述^姻二轉職態解構法進行腦部病 12 201212891 變分析之方法,其中該些解構影像、該特徵影像、該目標影 有像素。 白具 5·如申請專利範圍第i項所述之利用二維經驗模態解構法進行腦部病 變刀析之方法’其中該第二影像具有x*y像素》 ; 6·如申凊專利範圍第j項所述之利用二維經驗模態解構法進行腦部病 變分析之方法,其中該n值小於該m值。 “ 7.如申a月專利範圍第J項所述之^用二維纖模態解構法進行腦部病 • 變分析之方法,其中該i值小於該m值。 8·如申請專利範圍第1項所述切用二維纖模態解構法進行腦部病 變刀析之方法,其中步驟a更包含一去除頭骨訊號之步驟。 9·如申請專利範圍第1項所述“消二維經驗模態解構法進行腦部病 變分析之方法,其中該醫學影像更包含一原始訊號,且該原始訊號 L 3上包絡資訊以及一下包絡資訊。 10·如申請專利範圍第9項所述找用二維織模態解構法進行腦部 籲 病變分析之方法’其中步驟b的解構處理包含將該上包絡資訊以及 該下包絡t訊進辨均,轉到-平驰職訊,再職原始訊號 減去該平均包絡資訊,以對應得到一第一解構影像。 .如申凊專利範圍第1〇項所述切用二雜^模態解構法進行腦部 病變分析之方法,其中該平均包絡資訊之總合為零。 12·如申凊專利範圍第1撕述之利用二維織模態解構法進行腦部 病變分析之雜’其中步驟e之該i*j敝m計襲值的滤波 器。 13 201212891 13. 如申請專利範圍第1項所述之利用二維經驗模態解構法進行腦部 病變分析之方法,其中該病灶為腦部病變之病灶。 14. 如申凊專利麵第13項所述之用二維經驗模態解構法進行腦部 病變分析之方法,其巾綱部病變為級缺錄财風、巴金 森氏症、癲癇、腦瘤後遺病、腦膜腦炎及阿茲海默症、頭部外傷致 骨月折顱内出血、腦挫傷、腦中風、腦血管破裂出血、腦動脈 瘤先天性動靜脈畸型、良性腦瘤、腦内惡性瘤、腦膿痛、腦結核 或水腦症。201212891 VII. Patent application scope · The method for brain lesion analysis includes the following steps: a. - medical image 'the pixel of the medical image; b. providing a two-dimensional _ state destructuring method to deconstruct the medical image Processing, and obtaining a plurality of deconstructed images; c selecting a plurality of suitable deconstructed images as a plurality of characteristic images by means of artificial or self-funding 鼬 彡 ; ; ; ; ; ; ; ; ; ; ; ; ; d d d d d d d Go to the target image; e. texture-calculate the target image with the -i*i filter to create a first image having x*y pixels; f· coloring the first image Mapping, to produce a color image; & combining the color image with the medical image to create a reference image; and /h. using the reference image to determine a lesion. 2. A method for correcting brain lesions by using a two-dimensional modal modal method as described in the patent application, wherein the medical image is a computed tomography image. 3. The method for performing a brain lesion according to the two-dimensional empirical mode deconstruction method described in claim i of the patent scope, wherein after the first image is obtained in step e, the first image is first normalized. In order to obtain a second image, and then the second image is subjected to a color 6,1 * ' Γ Γ 0 4 4 patent scope 1st item ^ marriage two turn state deconstruction method for brain disease 12 201212891 variation analysis method The deconstructed image, the feature image, and the target image have pixels. White tool 5 · A method for performing brain lesion analysis using a two-dimensional empirical mode deconstruction method as described in item i of the patent application scope, wherein the second image has x*y pixels; The method of performing brain lesion analysis using the two-dimensional empirical mode deconstruction method according to item j, wherein the n value is smaller than the m value. " 7. For the method of brain disease change analysis by the two-dimensional fiber mode deconstruction method described in item J of the patent scope of the application of the month, wherein the value of i is smaller than the value of m. A method for cutting a brain lesion by a two-dimensional fiber mode deconstruction method, wherein the step a further comprises the step of removing the skull signal. 9. The "two-dimensional experience" as described in claim 1 The modal destructive method is a method for analyzing a brain lesion, wherein the medical image further comprises an original signal, and the original signal L 3 is enveloped with information and the following envelope information. 10. The method for finding a brain lesion analysis using the two-dimensional weaving mode deconstruction method as described in claim 9 of the patent application scope, wherein the deconstructing process of step b includes the upper envelope information and the lower envelope t-information Go to - Pingchi Jobs, re-submit the original signal minus the average envelope information to correspondingly get a first deconstructed image. A method for analyzing brain lesions by using a two-mode modal deconstruction method as described in claim 1 of the claim, wherein the sum of the average envelope information is zero. 12. The filter of the i*j敝m estimator value of the step e in the case of the brain lesion analysis by the two-dimensional weaving mode deconstruction method as claimed in the first claim. 13 201212891 13. A method for brain lesion analysis using a two-dimensional empirical mode deconstruction method as described in claim 1, wherein the lesion is a lesion of a brain lesion. 14. For the method of brain lesion analysis using the two-dimensional empirical mode deconstruction method described in Item 13 of the patent application, the lesions of the genus of the genus are classified as stagnation, financial dysfunction, Parkinson's disease, epilepsy, brain tumor. Aftereffects, meningoencephalitis and Alzheimer's disease, head trauma caused by intracranial hemorrhage, brain contusion, stroke, cerebrovascular rupture, cerebral aneurysm congenital arteriovenous malformation, benign brain tumor, intracranial malignancy Tumor, brain pus, brain tuberculosis or hydrocephalus.
TW99131480A 2010-09-16 2010-09-16 Method of two-dimentional Ensemble Empirical Mode Decomposition for analyzing brain disease TW201212891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99131480A TW201212891A (en) 2010-09-16 2010-09-16 Method of two-dimentional Ensemble Empirical Mode Decomposition for analyzing brain disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99131480A TW201212891A (en) 2010-09-16 2010-09-16 Method of two-dimentional Ensemble Empirical Mode Decomposition for analyzing brain disease

Publications (1)

Publication Number Publication Date
TW201212891A true TW201212891A (en) 2012-04-01

Family

ID=46786088

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99131480A TW201212891A (en) 2010-09-16 2010-09-16 Method of two-dimentional Ensemble Empirical Mode Decomposition for analyzing brain disease

Country Status (1)

Country Link
TW (1) TW201212891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400052A (en) * 2013-08-22 2013-11-20 武汉大学 Combined method for predicting short-term wind speed in wind power plant
CN110097952A (en) * 2019-05-10 2019-08-06 图兮深维医疗科技(苏州)有限公司 A kind of medical image display processing unit and equipment
CN113327223A (en) * 2020-02-13 2021-08-31 中央大学 System for analyzing brain tissue components based on computed tomography and operating method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400052A (en) * 2013-08-22 2013-11-20 武汉大学 Combined method for predicting short-term wind speed in wind power plant
CN103400052B (en) * 2013-08-22 2017-02-08 武汉大学 Combined method for predicting short-term wind speed in wind power plant
CN110097952A (en) * 2019-05-10 2019-08-06 图兮深维医疗科技(苏州)有限公司 A kind of medical image display processing unit and equipment
CN113327223A (en) * 2020-02-13 2021-08-31 中央大学 System for analyzing brain tissue components based on computed tomography and operating method thereof

Similar Documents

Publication Publication Date Title
Wu et al. Automatic detection of microaneurysms in retinal fundus images
Dai et al. Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
Gandhamal et al. Local gray level S-curve transformation–a generalized contrast enhancement technique for medical images
Slomka et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits
Liu et al. Automatic whole heart segmentation using a two-stage u-net framework and an adaptive threshold window
Mannil et al. Texture analysis of paraspinal musculature in MRI of the lumbar spine: analysis of the lumbar stenosis outcome study (LSOS) data
JP2016064004A (en) Medical image display processing method, medical image display processing device and program
US20040057607A1 (en) Display of image data information
Chang et al. Solid breast masses: neural network analysis of vascular features at three-dimensional power Doppler US for benign or malignant classification
CN109498046A (en) The myocardial infarction quantitative evaluating method merged based on nucleic image with CT coronary angiography
Zhang et al. Sonoelastography shows that Achilles tendons with insertional tendinopathy are harder than asymptomatic tendons
Chun-Cheng et al. A single-blinded pilot study assessing neurovascular contact by using high-resolution MR imaging in patients with trigeminal neuralgia
TW201212891A (en) Method of two-dimentional Ensemble Empirical Mode Decomposition for analyzing brain disease
CN114494320A (en) Three-dimensional MRI focus image segmentation method and system
Sayed et al. Automatic classification of breast tumors using features extracted from magnetic resonance images
Zhao et al. Effect of coronary calcification severity on measurements and diagnostic performance of CT-FFR with computational fluid dynamics: results from CT-FFR China trial
Dogar et al. Space occupying lesions of central nervous system: A radiological and histopathological correlation
Liu et al. A practical PET/CT data visualization method with dual-threshold PET colorization and image fusion
Takahashi et al. Z-score mapping method for extracting hypoattenuation areas of hyperacute stroke in unenhanced CT
Almi'ani et al. Automatic segmentation algorithm for brain MRA images
Chintada et al. A novel elastographic frame quality indicator and its use in automatic representative-frame selection from a cine loop
JP2012500040A (en) A method for enhancing vascular patterns in cervical images
TW201309264A (en) Automatic nailfold microcirculation analysis system
Liu et al. Assessment of early anthracycline-induced cardiotoxicity using segmental strain of cardiac magnetic resonance compared with global strain and functional parameters: an animal study
Koszegi et al. Holistic polar map for integrated evaluation of cardiac imaging results