TW201212247A - Multi-junction photovoltaic cell devices - Google Patents

Multi-junction photovoltaic cell devices Download PDF

Info

Publication number
TW201212247A
TW201212247A TW99129451A TW99129451A TW201212247A TW 201212247 A TW201212247 A TW 201212247A TW 99129451 A TW99129451 A TW 99129451A TW 99129451 A TW99129451 A TW 99129451A TW 201212247 A TW201212247 A TW 201212247A
Authority
TW
Taiwan
Prior art keywords
junction
layer
superlattice structure
superlattice
photovoltaic cell
Prior art date
Application number
TW99129451A
Other languages
Chinese (zh)
Inventor
Chan-Shin Wu
Original Assignee
Solapoint Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solapoint Corp filed Critical Solapoint Corp
Priority to TW99129451A priority Critical patent/TW201212247A/en
Publication of TW201212247A publication Critical patent/TW201212247A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

III-V compound multi-junction photovoltaic cell devices are presented. The multi-junction photovoltaic device includes a germanium substrate with a shallow junction thereon. The shallow junction is sandwiched between a p-type doped germanium substrate and a phosphorous-containing n-type shallow diffusion region. A dual-junction cell structure with multiple stacked phosphide layers is disposed on the germanium substrate. A superlattice structure is interposed between the dual-junction cell structure and the germanium substrate.

Description

201212247 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種多接面光電池元件,特另 關於具有超晶格結構的ΙΠ-V族多接面太陽能電池。有 【先前技術】 太陽能電池為將太陽能轉換成電能的關鍵元件 -,目前已發展的太陽能電池技術包括:秒晶太陽= 電池(smcon based solar ee丨丨)、矽薄膜太陽能電;^ (SiHC〇n tMn film 8〇1訂CeH)、染料敏化太陽能電池(d% sensitized solar cell)、銅銦较 rjIL,广 τ _ 卜 ;』囚蜂碼(CuInGaSe,簡稱CIGS) 太1¼能電池、及III-V族太陽+、L /201212247 VI. Description of the Invention: [Technical Field] The present invention relates to a multi-junction photocell element, and more particularly to a ΙΠ-V-group multi-junction solar cell having a superlattice structure. [Prior Art] Solar cells are the key components for converting solar energy into electrical energy. Currently, the developed solar cell technologies include: smcon based solar ee 矽, 矽 thin film solar power; ^ (SiHC〇 n tMn film 8〇1 order CeH), dye-sensitized solar cell (d% sensitized solar cell), copper indium is more than rjIL, wide τ _ 卜; 』 In 蜂 码 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 囚 囚 囚 囚 囚 囚 囚 囚 囚 囚 囚 囚 囚 囚-V family sun +, L /

考月b 電池(concentrator ΙΠ-V compound solar cell)等 °Concentrat b b battery (concentrator V-V compound solar cell), etc. °

傳統III-V無多接面太陽能電池(III-V ΓΐίΠ,Cell)指利用元素週期表中第m族 ^ ν族兀素組合成具有光電效應的元件其具有整The conventional III-V multi-junction solar cell (III-V ΓΐίΠ, Cell) refers to an element having a photoelectric effect by combining the m-th group of ν 兀 elements in the periodic table.

a =組化的潛力。典型的此v族多接面太陽能電池 ,繁/應用領域’其中以應用石申化鎵(GaAS)的串疊型 陽此電池最廣泛,例如GalnP/GaAs/Ge和 alnP/GaAs等。再者’使用ϊιι ν族多接面太陽能電 ^主要因素為將能夠吸收不同波長⑽的晶片堆疊起 ^因:同波長範圍的太陽光,充分利用太 、由y 0 1效率。再者,由於吸收太陽光能量的 „較廣,且光電轉換欵率比一般矽基太陽能電 =件高:f/匕所使用的枓料也比-般石夕基太陽能電 ’ ^太陽月匕電池的電力輪出會受照光強度而改變’ 201212247 曰照強度越大時電力輸出也會隨之增加。因此,若太 陽能電池元件更有效地吸收利用太陽光頻譜,則將會 大大提昇元件的能量轉換效率。a = potential for grouping. Typical of this v-type multi-junction solar cell, the field of application / which is the most widely used, such as GalnP / GaAs / Ge and alnP / GaAs, is applied to the tandem type of gallium (GaAS). Furthermore, the use of ϊιι ν multi-junction solar power is mainly due to the fact that wafers capable of absorbing different wavelengths (10) are stacked due to: sunlight in the same wavelength range, making full use of the efficiency of y 0 1 . Furthermore, due to the absorption of solar energy, the photoelectric conversion rate is higher than that of the general 矽-based solar power=f: 匕 匕 匕 - - - - - - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The battery's power rotation will be changed by the intensity of the light' 201212247 The power output will increase as the intensity of the illumination increases. Therefore, if the solar cell component absorbs the solar spectrum more effectively, it will greatly increase the energy of the component. Conversion efficiency.

於已公開的相關技術中,美國專利第US 7,339,109 號揭露一種改善光吸收效率的多接面太陽能電池。藉 由設置一 InGaP層做為孕核層於鍺基板和雙接面磊晶 疊層之間,降低上層含磷化合物半導體的沉積溫度, 以控制鍺基板中η型摻雜物的擴散深度。所述InGaP • 層亦可做為擴散阻障層,以防止砷從上層的磊晶疊層 擴散進入鍺基板的擴散區域,避免影響η型摻雜物的 擴散深度。然而,除了有效地控制η型摻雜物的擴散 濃度和深度之外,InGaP叠層和錯基板之間的界面平 滑度和缺陷(如帶電粒子和差排)亦影響光電池的光電 轉換效率。 有鑑於此,業界亟需發展一種III-V族多接面太陽 能電池,能改善InGaP疊層和鍺基板之間的界面平滑 • 度和降低缺陷的影響,以期有效地提升光電轉換效率。 【發明内容】 根據本發明之一實施例,一種多接面光電池元 件,包括:一鍺基板,於表面具有一淺接面;一多接 面的堆疊電池結構設置於該鍺基板之上;以及一超晶 格結構夾置於該多接面的堆疊電池結構與該鍺基板之 間。於一實施例中,所述超晶格結構可為短程週期超 晶格結構,其包括一含磷化合物半導體的超晶格結構 磊晶層。於一實施例中,所述超晶格結構包括含 201212247A multi-junction solar cell that improves light absorption efficiency is disclosed in U.S. Patent No. 7,339,109. By setting an InGaP layer as the pregnancy layer between the germanium substrate and the double junction epitaxial stack, the deposition temperature of the upper phosphorus-containing compound semiconductor is lowered to control the diffusion depth of the n-type dopant in the germanium substrate. The InGaP • layer can also serve as a diffusion barrier layer to prevent diffusion of arsenic from the epitaxial stack of the upper layer into the diffusion region of the germanium substrate to avoid affecting the diffusion depth of the n-type dopant. However, in addition to effectively controlling the diffusion concentration and depth of the n-type dopant, the interface smoothness and defects (such as charged particles and poor rows) between the InGaP stack and the wrong substrate also affect the photoelectric conversion efficiency of the photovoltaic cell. In view of this, there is an urgent need for the development of a III-V multi-junction solar cell, which can improve the interface smoothness and the effect of defects between the InGaP stack and the germanium substrate, in order to effectively improve the photoelectric conversion efficiency. SUMMARY OF THE INVENTION According to one embodiment of the present invention, a multi-junction photocell device includes: a germanium substrate having a shallow junction on a surface; a multi-junction stacked battery structure disposed on the germanium substrate; A superlattice structure is interposed between the stacked battery structure of the multiple junctions and the germanium substrate. In one embodiment, the superlattice structure may be a short-period superlattice structure comprising a superlattice structure epitaxial layer of a phosphorus-containing compound semiconductor. In an embodiment, the superlattice structure includes 201212247

InGaxAU交替排列的一材料層,其中χ為介於0到 1之間的數值。 根據本發明另一實施例,一種多接面光電池元件 包括:一鍺基板結構具有一 Ρ型摻雜鍺基板和一 η+型 淺擴散區域,其中一淺η+-ρ接面形成介於該ρ型摻雜 鍺基板和該η+型淺擴散區域之間;一超晶格結構設置 於該η+型淺擴散區域上;以及一雙接面堆疊電池結構 設置於該超晶格結構上。 為使本發明能更明顯易懂,下文特舉實施例,並 配合所附圖式,作詳細說明如下: 【實施方式】 以下以各實施例詳細說明並伴隨著圖式說明之範 例,做為本發明之參考依據。在圖式或說明書描述中, 相似或相同之部分皆使用相同之圖號。且在圖式中, 實施例之形狀或是厚度可擴大,並以簡化或是方便標 φ 示。再者,圖式中各元件之部分將以分別描述說明之, 值得注意的是,圖中未繪示或描述之元件,為所屬技 術領域中具有通常知識者所知的形式,另外,特定之 實施例僅為揭示本發明使用之特定方式,其並非用以 限定本發明。 根據本發明之主要實施例和樣態,提供一種多接 面光電池元件,藉由一超晶格結構夾置於鍺基板與具 有至少一接面的多層結構之間。所述超晶格結構可為 蟲晶成長於錯基板上的短程週期超晶格(short-period 201212247 superlattice,簡稱SPSL),由於超晶格結構具有陷補缺 陷的顯著效果,因此能有效地控制砷和磷擴散進入鍺 基板中,以提升光的有效轉換效率。再者,所述超晶 格結構具有改善界面的平滑度、控制磷和砷的擴散、 及制約來自下層的差排移動的特性。應注意的是,所 述超晶格結構可為η型重摻雜的InGaxAl,_XP交替排列 的材料層,與鍺基板的之間形成大能隙的異質接面, 使鍺基板内的淺n+-p接面形成足夠厚度的空乏區,增 加内建電場,提升光電轉換電流。 第1圖顯示本揭露之一實施例具淺p-n接面的鍺 基板的剖面示意圖。於第1圖中,一錯基板100,例如 P型錯基板於表面具有一 n+型淺摻雜區域,構成一淺 n+-p接面110。所述淺n+-p接面110介於一 p型摻雜 鍺基板101和一含磷的η型淺擴散區域120之間。此 淺η+-ρ接面110的形成方式可藉由將磷及/或砷等η型 摻雜物擴散進入含Ρ型摻雜的鍺基板100中。應瞭解 的是,所述淺η+-ρ接面110作為多接面光電池元件的 ❿ 底電池元件,因此η+型淺摻雜區域的擴散濃度和深度 會直接影響到光電池元件的最佳光電轉換效率。 第2Α和2Β圖顯示本揭露另一實施例的III-V族 多接面光電池元件的剖面示意圖。請參閱第2Α圖,一 III-V族多接面光電池元件200包括一多接面堆疊電池 結構250設置於鍺基板210之上,且一超晶格結構220 夾置於所述多接面堆疊電池結構250與鍺基板210之 間。於一實施例中,所述超晶格結構包括一含磷化合 物半導體的超晶格結構磊晶層,例如η+型重摻雜的含 201212247 替排列的一材料層’其中x為介於0到 六替心| =。例如,所述n+型重換雜的InG〜All-xp 又替卜列的材料層與鍺基板的之 接=:?的是,此⑽雜的== ==2的空乏區’增加内建電場,提升光A layer of material in which InGaxAU is alternately arranged, where χ is a value between 0 and 1. According to another embodiment of the present invention, a multi-junction photocell device includes: a germanium substrate structure having a germanium-doped germanium substrate and an n+-type shallow diffusion region, wherein a shallow η+-ρ junction is formed between a p-type doped germanium substrate and the n+ type shallow diffusion region; a superlattice structure disposed on the n+ type shallow diffusion region; and a double junction stacked cell structure disposed on the superlattice structure. The present invention will be described in detail below with reference to the accompanying drawings, in which: FIG. Reference basis of the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or convenient. In addition, the components of the drawings will be described separately, and it is noted that elements not shown or described in the drawings are known to those of ordinary skill in the art, and The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention. In accordance with a primary embodiment and aspect of the present invention, a multi-junction photovoltaic cell assembly is provided that is sandwiched between a germanium substrate and a multilayer structure having at least one junction by a superlattice structure. The superlattice structure may be a short-period super-lattice (short-period 201212247 superlattice, SPSL for short), and the super-lattice structure has a significant effect of trapping defects, so that it can be effectively controlled Arsenic and phosphorus diffuse into the ruthenium substrate to enhance the effective conversion efficiency of light. Furthermore, the superlattice structure has the characteristics of improving the smoothness of the interface, controlling the diffusion of phosphorus and arsenic, and restricting the shifting movement from the lower layer. It should be noted that the superlattice structure may be an n-type heavily doped InGaxAl, _XP alternately arranged material layer, and a heterojunction between the ruthenium substrate forming a large energy gap, so that the shallow n+ in the ruthenium substrate The -p junction forms a depletion region of sufficient thickness to increase the built-in electric field and increase the photoelectric conversion current. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a ruthenium substrate having a shallow p-n junction in one embodiment of the present disclosure. In Fig. 1, a wrong substrate 100, such as a P-type wrong substrate, has an n+-type shallow doped region on the surface to form a shallow n+-p junction 110. The shallow n+-p junction 110 is interposed between a p-type doped germanium substrate 101 and a phosphorus-containing n-type shallow diffusion region 120. The shallow η+-ρ junction 110 can be formed by diffusing an n-type dopant such as phosphorus and/or arsenic into the germanium-doped germanium substrate 100. It should be understood that the shallow η+-ρ junction 110 acts as the bottom cell component of the multi-junction photocell element, so the diffusion concentration and depth of the n+-type shallow doped region directly affects the optimal photovoltaic of the photovoltaic element. Conversion efficiency. 2 and 2 are schematic cross-sectional views showing a III-V multi-junction photocell device according to another embodiment of the present disclosure. Referring to FIG. 2, a III-V multi-junction photocell device 200 includes a multi-junction stacked cell structure 250 disposed on the germanium substrate 210, and a superlattice structure 220 is interposed on the multi-junction stack. The battery structure 250 is between the substrate 210. In one embodiment, the superlattice structure comprises a superlattice structure epitaxial layer of a phosphorus-containing compound semiconductor, such as an n+ type heavily doped material layer comprising 201212247, wherein x is between 0. To six to replace the heart | =. For example, the n+-type heavily-incorporated InG~All-xp is further connected to the germanium substrate and the germanium substrate is::?, the (10) heterogeneous ====2 of the depletion region increases the built-in Electric field

II InGaxM,xP 結構,:第II InGaxM, xP structure,:

〜/主的疋,由ιη〇3χΑ1ι、χρ疊層22〇a22〇n構成 的超晶格結構產生量子井效應或阻障效應,具有陷補 帶電荷換雜物或缺陷(如差排)的特性。因此,適當調整 InGaP/InAlP超晶格的細部結構,可改善界面=平滑 度、控制上層的化合物半導體結構中碟和坤的擴散進 入鍺基板中、和制約來自下層的差排移動。於」實施 例中,InGaP/InAlP超晶格可為n+摻雜的InG p石曰~/Main 疋, the superlattice structure composed of ιη〇3χΑ1ι, χρ laminate 22〇a22〇n produces quantum well effect or barrier effect, with trapped charge substitution or defect (such as difference row) characteristic. Therefore, proper adjustment of the detailed structure of the InGaP/InAlP superlattice can improve the interface=smoothness, control the diffusion of the disc and Kun in the upper compound semiconductor structure into the germanium substrate, and restrict the shifting movement from the lower layer. In the embodiment, the InGaP/InAlP superlattice may be n+ doped InG p sarcophagus

和n+摻雜的^八斤磊晶層的交替疊層結構,此 層結構的各InGaP蠢晶層和ΙηΑΙΡ磊晶層的厚度範^ 可介於10〜50埃(A),大抵重複3〜20週期。所述/摻 雜的InGaP朴n+掺雜的InA1P層的摻雜物例如為 碲(Te) ’摻雜濃度範圍大抵介於1018〜10i9cm-3之間 由於InGaP/InAlP超晶格結構為n+摻雜’因此可 層的P型鍺基板的n+型淺摻雜區域形成—異質^面 (heterojunction)。一般而言,n+型淺摻雜區域/非常薄, 因此藉著n+摻雜的InGaP/InAlP超晶格結構的辅助, 進而可使p型鍺基板内產生足夠厚度的載子空乏區, 並造成足夠大的内建電場,以有效地產生電子電/同分 201212247 離。於另一實施例中,可選擇或替代不形成n+型淺摻 雜區域,直接將n+摻雜的InGaP/InAlP超晶格結構形 成在p型鍺基板上。應暸解的是,上述實施例所揭露 的超晶格結構並不限定於InGaxAU疊層,在不脫離 本發明的範疇,亦可選擇以其他適合的化合物半導體 材料替換,然必需符合以下條件,選用的超晶格材料 必須與底層的鍺基板的晶格常數匹配,且其能隙(例如 InGaxAU的能隙1.86eV)應大於p型鍺基板的能隙 (例如Ge的能隙0.67eV),亦即所選用的超晶格材料不 • 吸收長波長的入射光。再者,高能隙異質p-n接面應 能產生足夠厚度載子空乏區,以產生足夠數量的電子-電洞分離,但仍應注意厚度過高會導致電阻增加。 所述超晶格結構220的形成方法可採用物理性或 化學性沉積法,例如有機金屬氣相磊晶法(MOVPE)、 有機金屬化學氣相沉積法(MOCVD)、原子層沉積法 (ALD)、或其他適合的沉積法磊晶成長於鍺基板上。 • 再請參閱第2A圖,所述具有至少一接面的多層堆 疊電池結構250可為一單接面或一雙接面的多層化合 物半導體結構。於一實施例中,一雙接面含InGaP與 (In)GaAs的多層化合物半導體結構250設置於超晶格 結構220上。所述多層化合物半導體結構250可為一 疊層結構,例如包括一 GaAs緩衝層232、一中間電池 元件(例如GaAs次電池疊層)236、和一頂電池元件(例 如InGaP次電池疊層)244,一第一穿隧接面234夾置 於GaAs緩衝層232和中間電池元件236之間,及一第 二穿隧接面242夾置於中間電池元件236和頂電池元 201212247 件244之間。採用雙接面磷化合物半導體結構與具淺 p-n接面(可視為底電池元件)的鍺基板的組合可構成三 接面太陽能電池(triple-junction solar cell) ’有效地延伸 太陽光吸收光譜波長上限範圍達〗800nm,並使光電池 元件200達到最佳的光電轉換效率。 本發明雖以各種實施例揭露如上,然其並非用以 限定本發明的範圍,任何所屬技術領域中具有通常知 識者,在不脫離本發明之精神和範圍内,當可做些許 _ 的更動與潤飾。本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1圖顯示本揭露之一實施例具淺p-n接面的鍺 基板的剖面示意圖。 第2A和2A圖顯示本揭露另一實施例的III-V族 多接面光電池元件的剖面示意圖 • 【主要元件符號說明】 100錯基板 ιοί P型鍺基板 110淺p-n接面 120含磷的η型淺擴散區域 200 III-V族多接面光電池元件 210鍺基板 220超晶格結構 220a-220n 交替 InGaxAl】_xP 疊層 232 GaAs緩衝層 9 201212247 234第一穿隧接面 235中間電池元件 236中間電池元件 242第二穿隧接面 244頂電池元件 250至少一接面的多層電池結構And an alternating stack structure of n + doped ^ 8 kg epitaxial layer, the thickness of each InGaP stray layer and the Ιη ΑΙΡ epitaxial layer of the layer structure may be between 10 and 50 angstroms (A), which is substantially repeated 3~ 20 cycles. The doping of the /Doped InGaP Pu's n+ doped InA1P layer is, for example, yttrium (Te)' doping concentration range is generally between 1018 and 10i9 cm-3 because the InGaP/InAlP superlattice structure is n+ doped Therefore, the n+-type shallow doped region of the p-type germanium substrate of the layer can be formed as a heterojunction. In general, the n+ type shallow doped region is very thin, so that with the aid of the n+ doped InGaP/InAlP superlattice structure, a carrier thickness depletion region of sufficient thickness can be generated in the p-type germanium substrate, and A large enough built-in electric field to effectively generate electronic electricity / the same point 201212247. In another embodiment, the n+ doped InGaP/InAlP superlattice structure may be directly formed on the p-type germanium substrate instead of forming an n+ type shallow doped region. It should be understood that the superlattice structure disclosed in the above embodiments is not limited to the InGaxAU stack, and may be replaced with other suitable compound semiconductor materials without departing from the scope of the present invention. The superlattice material must match the lattice constant of the underlying germanium substrate, and its energy gap (eg, InGaxAU's energy gap 1.86eV) should be greater than the energy gap of the p-type germanium substrate (eg, the energy gap of Ge is 0.67eV). That is, the selected superlattice material does not absorb long-wavelength incident light. Furthermore, the high-gap heterogeneous p-n junction should produce a sufficient thickness of the carrier depletion region to produce a sufficient number of electron-hole separations, but it should be noted that excessive thickness will result in increased resistance. The superlattice structure 220 can be formed by physical or chemical deposition methods such as organometallic vapor phase epitaxy (MOVPE), organometallic chemical vapor deposition (MOCVD), and atomic layer deposition (ALD). Or other suitable deposition methods for epitaxial growth on a germanium substrate. • Referring again to Figure 2A, the multi-layer stack cell structure 250 having at least one junction can be a single junction or a double junction multilayer semiconductor structure. In one embodiment, a double-layered compound semiconductor structure 250 comprising InGaP and (In) GaAs is disposed on the superlattice structure 220. The multilayer compound semiconductor structure 250 can be a stacked structure including, for example, a GaAs buffer layer 232, an intermediate cell component (eg, a GaAs secondary cell stack) 236, and a top cell component (eg, an InGaP secondary cell stack) 244. A first tunnel junction 234 is interposed between the GaAs buffer layer 232 and the intermediate cell element 236, and a second tunnel junction 242 is interposed between the intermediate cell element 236 and the top cell element 201212247. The combination of a double junction phosphor compound semiconductor structure and a germanium substrate having a shallow pn junction (which can be regarded as a bottom cell element) can constitute a triple-junction solar cell 'effectively extending the upper limit of the wavelength of the solar absorption spectrum The range is up to 800 nm, and the photovoltaic element 200 is optimized for photoelectric conversion efficiency. The present invention has been disclosed in the above various embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can change the scope of the invention without departing from the spirit and scope of the invention. Retouching. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a ruthenium substrate having a shallow p-n junction according to an embodiment of the present disclosure. 2A and 2A are cross-sectional views showing a III-V multi-junction photocell device according to another embodiment of the present disclosure. [Main component symbol description] 100 wrong substrate ιοί P-type substrate 110 shallow pn junction 120 phosphorus-containing η Type shallow diffusion region 200 III-V multi-junction photocell element 210 锗 substrate 220 superlattice structure 220a-220n alternating InGaxAl] _xP lamination 232 GaAs buffer layer 9 201212247 234 first tunnel junction 235 intermediate battery element 236 Multi-layer battery structure of battery element 242 with second tunneling surface 244 and at least one junction of top battery element 250

Claims (1)

201212247 七、申請專利範圍: 1. 一種多接面光電池元件,包括: 一鍺基板,於表面具有一淺接面; 二多,面的堆疊電池結構設置於該鍺基板之上 ;以及 超晶格結構夾置於該多接面的堆疊電池結構與該鍺 基扳之間。 層 2㈣請專利範圍第1項所述的多接面光電池元件,其 =.晶格結構包括—含填化合物半導體的超晶格結構蠢 曰曰 3由姑^請專利範圍第1項所述的多接面光電池元件,其 中該超晶格結構包括—短程超晶格結構。 申°月專利範圍第1項所述的多接面光電池元件,其 ::超包括-含1nGaxAll,xP交替排列的材料層, 八中X為;I於〇到!之間的數值。 tt申請專利範圍第4項所述的多接面光電池元件,其 石Ιη,Α1ι·χΡ交替排列的材料層包括- n+型摻雜的 構Λ二t —n+型摻雜的In Aip蟲晶層的交替疊層結 中㈣’其 7.如申請專利範圍第J項所述的多接面光電池元件,其 201212247 能隙 中該超晶格結構的能隙大於該鍺基板的 8.;如申請專利範圍第!項所述的多接 立 擴散區域。 L雜鍺基板和-含雜雜的η型淺 9中第1項所述的多接面光電池元件,其 的豐電池結構包括-一的多層化合物 10.—種多接面光電池元件,包括: ㈣一=板結構具有—摻雜錯基板和~ η+型淺擴散 :二二淺"接面形成介於該ρ型換雜鍺基板和該 η型淺擴散區域之間; 一超晶格結構設置於該η+型淺擴散區域上;以及 —雙接面堆疊電池結構設置於該超晶格結構上。 日層 11 .如申明專利範圍第丨〇項所述的多接面光電池元件,其 中4超晶格結構包括一含磷化合物半導體的超晶格結構磊 曰曰 12. 如申凊專利範圍第1 〇項所述的多接面光電池元件,其 中該超晶格結構包括一短程週期超晶格結構。 13. 如申請專利範圍第1 〇項所述的多接面光電池元件,其 中5亥超晶格結構包括含InGa/U交替排列的一材料層, 其中x為介於0到1之間的數值。 m 12 201212247 14. 如申請專利範圍第13項所述的多接面光電池元件,其 中該含InGaxAl^P交替排列的材料層包括一 n+型摻雜的 InGaP蠢晶層和一 n+型摻雜的ΙηΑΙΡ蟲晶層的交替疊層結 構,其中該交替疊層結構的各InGaP磊晶層和ΙηΑΙΡ磊晶 層的厚度範圍可介於1〇〜50埃’且大抵重複3〜20週期。 15. 如申請專利範圍第10項所述的多接面光電池元件,其 中該超晶格結構與該鍺基板之間形成一異質接面。 16. 如申請專利範圍第10項所述的多接面光電池元件,其 中該超晶格結構的能隙大於該鍺基板的能隙。 17. 如申請專利範圍第10項所述的多接面光電池元件,其 中該雙接面堆疊電池結構包括一中間電池元件和一頂電池 元件。201212247 VII. Patent application scope: 1. A multi-junction photovoltaic cell component, comprising: a germanium substrate having a shallow junction on the surface; and a plurality of stacked battery structures disposed on the germanium substrate; and a superlattice The structure is sandwiched between the stacked battery structure of the multiple junctions and the crucible base. Layer 2 (4) The multi-junction photovoltaic cell component described in the first paragraph of the patent scope, wherein the lattice structure includes a superlattice structure containing a compound semiconductor, and is described in the first item of the patent scope. A multi-junction photovoltaic cell component, wherein the superlattice structure comprises a short-range superlattice structure. The multi-junction photocell element described in the first paragraph of the patent scope of the invention has a :: super-including material layer containing 1nGaxAll and xP alternately arranged, and the eighth is X; The value between. Tt. The multi-junction photovoltaic cell component described in claim 4, wherein the material layers alternately arranged by stone Ι, Α1ι·χΡ include - n+ type doped Λ2 t-n+ type doped In Aip worm layer In the alternating laminated layer of the fourth embodiment of the present invention, the multi-junction photocell device according to claim J, wherein the energy gap of the superlattice structure in the 201212247 energy gap is greater than that of the tantalum substrate; Patent scope! The multiple diffusion regions described in the item. The multi-junction photocell device according to the first aspect of the present invention, wherein the multi-junction photovoltaic cell structure comprises a multilayer compound 10. A multi-junction photovoltaic element comprises: (4) A = plate structure has - doped wrong substrate and ~ η + type shallow diffusion: two shallow " junction formation between the p-type hybrid substrate and the n-type shallow diffusion region; a superlattice The structure is disposed on the n+ type shallow diffusion region; and the double junction stacked battery structure is disposed on the superlattice structure. 11. The multi-junction photocell device according to the above-mentioned claim, wherein the superlattice structure comprises a superlattice structure of a phosphorus-containing compound semiconductor. The multi-junction photocell device of the above aspect, wherein the superlattice structure comprises a short-period superlattice structure. 13. The multi-junction photovoltaic cell component of claim 1, wherein the 5H superlattice structure comprises a layer of material comprising AlGa/U alternately arranged, wherein x is a value between 0 and 1. . The multi-junction photocell element according to claim 13, wherein the material layer comprising the InGaxAlP alternating arrangement comprises an n+ type doped InGaP doped layer and an n+ type doped layer The alternating stack structure of the Ιη ΑΙΡ 晶 layer, wherein the thickness of each of the InGaP epitaxial layer and the Ιn ΑΙΡ epitaxial layer of the alternating stacked structure may range from 1 〇 to 50 Å and is substantially repeated for 3 to 20 cycles. 15. The multi-junction photocell device of claim 10, wherein the superlattice structure forms a foreign junction with the germanium substrate. 16. The multi-junction photocell device of claim 10, wherein the superlattice structure has an energy gap greater than an energy gap of the germanium substrate. 17. The multi-junction photovoltaic cell component of claim 10, wherein the dual junction stacked battery structure comprises an intermediate battery component and a top battery component.
TW99129451A 2010-09-01 2010-09-01 Multi-junction photovoltaic cell devices TW201212247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99129451A TW201212247A (en) 2010-09-01 2010-09-01 Multi-junction photovoltaic cell devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99129451A TW201212247A (en) 2010-09-01 2010-09-01 Multi-junction photovoltaic cell devices

Publications (1)

Publication Number Publication Date
TW201212247A true TW201212247A (en) 2012-03-16

Family

ID=46764535

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99129451A TW201212247A (en) 2010-09-01 2010-09-01 Multi-junction photovoltaic cell devices

Country Status (1)

Country Link
TW (1) TW201212247A (en)

Similar Documents

Publication Publication Date Title
Yamaguchi et al. Multi-junction solar cells paving the way for super high-efficiency
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
CN101720511B (en) Single p-n junction tandem photovoltaic device
US8309843B2 (en) Photovoltaic cells based on nanoscale structures
US20140209149A1 (en) Superstrate sub-cell voltage-matched multijunction solar cells
US20090173373A1 (en) Group III-Nitride Solar Cell with Graded Compositions
US20090314337A1 (en) Photovoltaic devices
TW201203576A (en) Single junction CIGS/CIS solar module
US20150340528A1 (en) Monolithic tandem voltage-matched multijuntion solar cells
KR20080045598A (en) Solar cell and method of manufacturing the same
TW201228017A (en) Solar cell
KR20120034965A (en) Solar cell
JP2014072530A (en) Solar cell and method of manufacturing the same
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
TWI424582B (en) Method of fabricating solar cell
RU2539102C1 (en) Multijunction solar cell
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
US11437537B2 (en) Perovskite-silicon tandem solar cell
JP3724272B2 (en) Solar cell
JP2009253269A (en) Photoelectric conversion device using semiconductor nanomaterials, and method of manufacturing the same
JP5669228B2 (en) Multi-junction solar cell and manufacturing method thereof
JP2012231142A (en) Solar cell
TWI409959B (en) Solar cells and apparatus comprising the same
JP7344593B2 (en) Semiconductor device, solar cell, and semiconductor device manufacturing method
Mil'shtein et al. Solar cells with built-in cascade of intrinsic regions