TW201212140A - Advanced Process Control system and method utilizing Virtual Metrology with Reliance Index and computer program product thereof - Google Patents
Advanced Process Control system and method utilizing Virtual Metrology with Reliance Index and computer program product thereof Download PDFInfo
- Publication number
- TW201212140A TW201212140A TW100126401A TW100126401A TW201212140A TW 201212140 A TW201212140 A TW 201212140A TW 100126401 A TW100126401 A TW 100126401A TW 100126401 A TW100126401 A TW 100126401A TW 201212140 A TW201212140 A TW 201212140A
- Authority
- TW
- Taiwan
- Prior art keywords
- batch
- value
- controller
- algorithm
- historical
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 211
- 238000004886 process control Methods 0.000 title claims abstract description 24
- 238000004590 computer program Methods 0.000 title claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 178
- 238000005259 measurement Methods 0.000 claims abstract description 48
- 238000004422 calculation algorithm Methods 0.000 claims description 83
- 230000009471 action Effects 0.000 claims description 18
- 238000013528 artificial neural network Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000009826 distribution Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000010238 partial least squares regression Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000012706 support-vector machine Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 11
- 238000004088 simulation Methods 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 240000005528 Arctium lappa Species 0.000 description 1
- 235000003130 Arctium lappa Nutrition 0.000 description 1
- 235000008078 Arctium minus Nutrition 0.000 description 1
- 101100008044 Caenorhabditis elegans cut-1 gene Proteins 0.000 description 1
- 101100289061 Drosophila melanogaster lili gene Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 101001095088 Homo sapiens Melanoma antigen preferentially expressed in tumors Proteins 0.000 description 1
- 102100037020 Melanoma antigen preferentially expressed in tumors Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102100033213 Teneurin-1 Human genes 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000004161 brilliant blue FCF Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011257 shell material Substances 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 108010063973 teneurin-1 Proteins 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41835—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by programme execution
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32135—APC advanced process control applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Feedback Control In General (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
201212140 六、發明說明: 【相關申請案】 本申請案係請求美國專利臨時申請案第61/369,761號 的優先權,美國專利臨時申請案第61/369,761號係於2010 年8月2日申請。上述申請案之全部内容以引用方式併入 本案(Incorporated by Reference) ° 【發明所屬之技術領域】 本發明疋有關於一種先進製程控制(Advanced Process Control; APC)系統與方法,且特別是有關於一種使用具有 信心指標(Reliance Index ; ri)之虛擬量測(virtuai Metrology ; VM)的APC系統與方法。 【先前技術】 批次至批次(Run-to-Run ; R2R)的先進製程控制已被廣 泛地應用於半導體及TFT-LCD廠中以改善製程的產能。如 SEMI E133規格所定義,R2R的控制係一種修改配方參 數的技術;或於批次間選擇控制參數,以改善處理效能。 一(製程)批次(Run)可為一批量(Batch)、一批貨(Lot)或一個 別的工件(Workpiece),其中當一批次係一批貨時,此R2R APC便成為批貨至批貨(L〇t-to-Lot ; L2L)的APC ;當一批 次係一工件時,此R2R的先進製程控制成為一工件至工件 (Workpiece-to-Workpiece ; W2W)的先進製程控制。此工件 可為半導體業之晶圓或TFT-LCD業之玻璃基板。L2L的先 進製程控制現被廣泛地應用以應付先進的技術。在應用批 201212140 貨至批貨(Lot-to-Lot ; L2L)的控制時,只需量測整個批貨 中之單一工件’以做為回饋和前饋控制的目的。然而,當 元件尺寸進一步縮小時,便需要使用更嚴格的製程控制。201212140 VI. INSTRUCTIONS: [RELATED APPLICATIONS] This application claims priority to U.S. Patent Provisional Application No. 61/369,761, which is incorporated herein by reference. The entire contents of the above application are incorporated herein by reference. [Incorporated by Reference] [Technical Field of the Invention] The present invention relates to an Advanced Process Control (APC) system and method, and in particular An APC system and method using virtual measurement (virtuai Metrology; VM) with confidence index (Reliance Index; ri). [Prior Art] Batch-to-Run (R2R) advanced process control has been widely used in semiconductor and TFT-LCD plants to improve process throughput. As defined by the SEMI E133 specification, R2R control is a technique for modifying recipe parameters; or selecting control parameters between batches to improve processing performance. A (process) batch can be a batch, a lot or a workpiece. When a batch is a batch, the R2R APC becomes a batch. To the APC of L(t〇-to-Lot; L2L); when a batch is a workpiece, the advanced process control of this R2R becomes a workpiece-to-workpiece (W2W) advanced process control . This workpiece can be a wafer for the semiconductor industry or a glass substrate for the TFT-LCD industry. L2L's first-pass control is now widely used to cope with advanced technologies. In the application of batch 201212140 cargo-to-Lot (L2L) control, it is only necessary to measure a single workpiece in the entire batch as the purpose of feedback and feedforward control. However, as component sizes shrink further, more stringent process control is required.
在此情況下’ L2L的控制可能不夠精確,而必須採用W2W 的控制。在W2W的控制中’批貨中之每一個工件均需被 量測。為量測批貨中之每一個工件,使用者需使用大量的 量測工具和大幅增加的生產周期時間。此外,當進行工件 的實際量測時,不可避免地會造成量測延誤,而此量測延 誤則會引起複雜的控制問題,亦將使先進製程控制的性能 降級。 為解決上述問題,虛擬量測(VM)被提出。虛擬量測係 一種使用推估模型,依據每一個工件之製程狀態的資訊來 預測工件之量測值的技術。若VM推估模型是足夠新鮮和 精確的’則其可在收集到一工件之完整的機台製程資料後 數秒内產生一虛擬量測(VM)值。因此,此VM值可被應用 至W2W控制。 請參照第1圖,其繪示指數加權移動平均 (Exponentially Weighted Moving Average ; EWMA ) R2R 控 制之習知模型的示意方塊圖,其係由M.-F. Wu等人所提出 的論文所揭示(“Performance Analysis of EWMA ControllersIn this case, the control of L2L may not be accurate enough, and the control of W2W must be used. In the control of W2W, each workpiece in the batch must be measured. In order to measure each of the workpieces, the user has to use a large number of measuring tools and a significantly increased production cycle time. In addition, when the actual measurement of the workpiece is performed, measurement delays are inevitably caused, and this measurement delay causes complicated control problems and degrades the performance of advanced process control. To solve the above problem, a virtual measurement (VM) is proposed. Virtual Measurement System A technique that uses an estimation model to predict the measured value of a workpiece based on information about the process status of each workpiece. If the VM estimation model is sufficiently fresh and accurate, then it can generate a virtual measurement (VM) value within seconds of collecting the complete machine process data for a workpiece. Therefore, this VM value can be applied to W2W control. Please refer to FIG. 1 , which is a schematic block diagram of a conventional model of Exponentially Weighted Moving Average ( EWMA ) R2R control, which is disclosed by a paper proposed by M.-F. Wu et al. "Performance Analysis of EWMA Controllers
Subject to Metrology Delay55, M.-F. Wu, C.-H. Lin, D. S.-H. Wong, S.-S. Jang, and S.-T. Tseng, published in IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 3, pp. 413-425, August 2008),此論文以引用方式併入本案。 首先,考慮一種具有線性輸入和輸出關係之製程模型: 201212140 其中a係生產機台之輸出;%係製程批次々所採取的控制 動作;爲係製程初始偏權值(Initial Bias);爲係製程增益 (Gain);以及%係擾動模型(DisturbanceM〇del)輸入。 已知一製程預測模型乂叫,其中乂係針對系統估計之增 益參數(例如:化學機械研磨(chemical Mechanical Polishing ; CMP)的去除率)’而其初始值可由實際之機台/ 配方性能獲得。 (2) 當使用EWMA過濾器時,第&+7次製程批次之模型 偏移量或擾動可被估計為 f1k+{=a{yk-Auk) + {\-a^k 其中α係介於0至1之間的EWMA係數。 第女+i次製程批次控制動作為 (3)Subject to Metrology Delay55, M.-F. Wu, C.-H. Lin, DS-H. Wong, S.-S. Jang, and S.-T. Tseng, published in IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 3, pp. 413-425, August 2008), this paper is incorporated herein by reference. First, consider a process model with linear input and output relationships: 201212140 where a is the output of the production machine; % is the control action taken by the process batch; is the initial bias of the process (Initial Bias); Gain; and the % DisturbanceM〇del input. A process prediction model is known, in which the tether is for a system-estimated gain parameter (e.g., chemical mechanical polishing (CMP) removal rate) and its initial value can be obtained from the actual machine/recipe performance. (2) When using the EWMA filter, the model offset or disturbance of the &+7 process batch can be estimated as f1k+{=a{yk-Auk) + {\-a^k where α is EWMA coefficient between 0 and 1. The female +i process batch control action is (3)
u Tgt-ή^ k+l A 其中项代表目標值。 請參照第2圖’其繪示習知使用虛擬量測之W2W控 制機制的方塊示意圖,其中义係由量測機台20所測量之第 z次製程批次之抽樣工件的實際量測值;夂係第a次製程批 次之虛擬量測值;以及A係第々次製程批次之製程機台10 的製程參數資料。在以下所示之論文中:“On the Quality of Virtual Metrology Data for Use in the feedback Process Control”,A. A. Khan, J. R. Moyne, and D. M. Tilbury, published in Proc. AEC/APC Symposium XIX - North America, Palm Springs, CA. USA,Sep. 2007 ; “An Approach for Factory-Wide Control Utilizing 201212140u Tgt-ή^ k+l A where the term represents the target value. Please refer to FIG. 2, which is a block diagram showing the conventional W2W control mechanism using virtual measurement, wherein the actual measured value of the sampled workpiece of the zth process batch measured by the measuring machine 20 is used; The virtual measurement value of the first process batch of the system; and the process parameter data of the process machine 10 of the A-stage process batch. In the paper shown below: "On the Quality of Virtual Metrology Data for Use in the feedback Process Control", AA Khan, JR Moyne, and DM Tilbury, published in Proc. AEC/APC Symposium XIX - North America, Palm Springs , CA. USA, Sep. 2007; “An Approach for Factory-Wide Control Utilizing 201212140
Virtual Metrology”,A. A. Khan, J. R. Moyne,and D. M. Tilbury, published in IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 4, pp. 364-375, November 2007 ;以及“Virtual Metrology and Feedback Control for Semiconductor Manufacturing Process Using Recursive Partial Least Squares55, A. A. Khan, J. R. Moyne, and D. M. Tilbury, published in Journal of Process Control, vol. 18, pp. 961-974, 2008,此些論文以引用方式併入本案,Khan等人針對R2R 控制器40提出修改上述方程式(2)如下: 當凡係由實際量測機台20所測量出時,其成為凡,並 使用EWMA係數%於下列方程式(4)中: 7*+ι = a\{y. ~ ^uk) + (1_a\)Vk (4) 當八係由虛擬量測模組30所推估或預測出現時,其成 為Λ,並使用EWMA係數α2於下列方程式(5)中: %+1 = α2(Α —办*) + (1 -《2)4 (5)Virtual Metrology", AA Khan, JR Moyne, and DM Tilbury, published in IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 4, pp. 364-375, November 2007; and "Virtual Metrology and Feedback Control for Semiconductor Manufacturing Process Using Recursive Partial Least Squares 55, AA Khan, JR Moyne, and DM Tilbury, published in Journal of Process Control, vol. 18, pp. 961-974, 2008, these papers are incorporated herein by reference, Khan et al. The controller 40 proposes to modify the above equation (2) as follows: When the system is measured by the actual measuring machine 20, it becomes a normal, and uses the EWMA coefficient % in the following equation (4): 7*+ι = a \{y. ~ ^uk) + (1_a\)Vk (4) When the eight systems are estimated or predicted by the virtual measurement module 30, they become Λ and use the EWMA coefficient α2 in the following equation (5) Medium: %+1 = α2(Α-办*) + (1 - "2)4 (5)
Khan等人指出% >α2(通常’視虛擬量測資料的品質而 定)。此時,應用虛擬量測之控制器增益的問題是注重在如 何設定α2,其中基本原則是α2應視虛擬量測資料的品質而 定,且% < % )。Khan等人提出兩種虛擬量測品質計量 (Metrics)來考慮將量測資料的品質併入R2R控制器40的控 制器增益中: 1. 量測批次之預測誤差:Error = -j) (6) 2. 若7和$為與目標值之平均值為零的高斯偏差 (zero-mean Gaussian Deviations),貝1J 基於 j)之 y 的最小均方差估 計式(Min mean-square-error (MSE) estimator)為: 201212140 ⑺ 其中關聯系數為: p c〇vb,j)] (8) 而5和σ》分別為_y和3>之標準差。 然而,以上所提出之兩種計量有下列缺點: 1. 方程式⑹和⑺需要實際量測資料“少”;然而,若可 獲得貫際^:測資料(實際量測值),則根本不需要虛擬 量測值(j)); 2. 由於因p的緣故;^的值可為正或負,故u能無 法被正規化成介於0至1之間。 基於上述理由’習知技術無法容易地結合如方程式 和(7)所示之資料品質計量至R2R控制器中。 【發明内容】 就是在提供-種先進製程控制 /,藉以有效地將虛擬量測的資料品質考慮 至R2R控制器中,來香服盔 貝可應 饋迴路中的可信賴^ 22 控制之虛擬量測回 X 使_製程㈣性能升級。 根據本發明之一態檨, 測機台、;^ ιj 、統包含.製程機台、量 /只J微口 I擬里測模組、信心指椤捃 程機台#用以桐祕★ & ^挺組和R2R控制器。製 程機口係心根據複數組歷史製 歷史工件,並根據複數組製料:;數^來處理複數個 行複數次製程批次。量測料來對複數個工件進 J機口係用以測量歷史工件和選自 201212140 前述工件之複數個抽樣工件’來提供歷史工件的複數個歷 史量測資及已在製程批次中被處理之抽樣卫件的複數 個實際量測值。虛擬量測模㈣用以藉由輸人此些组製程 參數資料至-推估模型中,來提供製姉次之複數個虛擬 量測值’其中推估模型的建立係根據—推估演算法並使用 歷史製程參數資料和歷史量測值,其中歷史量測值係分別 根據歷史製程參數資料所製造之歷史卫件的—對 量測值。信^指標模組係用以產生製程批次之複數個作: 指標值(Reliance Index ;及/),每一個對應至製程批次之 心指標值係藉由計算工件之虛M量測值的統計分酉: (Statistics Distribution)與工件之參考預测值的統計分配 間的重疊面積而產生,其中工件之參考預測值係藉 工件之製程參數資料至一參考模型中而產生,且中^ 型的建立係根據一參考演算法並使用歷史製^ Z模 與上述歷史製程參數資料一一對應之歷史# 資料和 之推估演算法與參考演算法必須為不同的演算法。= 面積愈大,則信心指標值愈高,代表對應至信心指:且 虛擬量測值的可信度愈高。R2R控制器係^ ^不值之 係式控制製程機台來進行製程批次:、 下列關 w*+i _ 茗(G2,i,G2,2,…,G2,y,九), G2,,=/W)xGm ; 其中若私<叫,則〇2广〇,或採用&而不 批次至批次控制器; 來。周整 若且MC ’則/(/%) = % ; 201212140 若 RlkkRJT ΜΛ>(〇 ’ 則八叫=1_队., —其中少2代表已在第2次製程批次中被處理之抽樣工件 的貫際量測值,Wz+1代表當採用少Ζ時之第ζ+ /次製程批次的 控制動作;Gu•代表當採用凡時之應用於R2R控制器中的 控制器增益(Gain),其中z•代表應用於R2R控制器中之控 制器增益的數目,久代表已在第A次製程批次中被處理之 工件的虛擬量測值;w糾代表當採用久時之第灸+7次製程批 次的控制動作;Gy代表當採用丸時之應用於R2R控制器 中的控制器增益,及/t代表第&次製程批次的信心指標值; 及4代表基於一最大可容許誤差上限之一及/門檻值,該最 大可容許誤差上限係藉由從該推估模型所獲得之虛擬量測 值的誤差來定義;以及C代表一預設製程批次的數目。 在一實施例中,前述之APC系統更包含整體相似度指 標模組’用以藉由輸入製程參數資料至一統計距離模型 中’來提供製程批次之複數個整體相似度指標值(G1〇bal Similarity Index ; G57),統計距離模型的建立係根據一統計 距離演算法並使用歷史製程參數資料,其中若 則(¾产0’或採用九_,而不是久來調整R2R控制器,其中(7¾ 代表第次製程批次的整體相似度指標值;GS/r代表基於 一 之門檻值,此G57門檻值的定義為歷史製程參數資 料之最大GS/值的2至3倍。 根據本發明之又一態樣’在一先進製程控制(APC)方法 中,進行一步驟,以獲取複數組歷史製程參數資料,其中 此些組歷史製程參數資料係被一製程機台所使用來處理複 數個歷史工件。進行又一步驟,以獲取歷史工件被一量測 201212140 機台所量狀複數錄〇測:㈣ 程rr料和與歷史製程參數資料-2應之歷 二推估演算法來建立-推估模型,及根據 卜次算法來建立一參考模型,其中推估演篡牛盥春老 採用的演算法必須不同。進行又H祕一 進行==夠根據前述之關係式控制前述之製程機台來 距離t實關巾,前述之APC方法更包含:根據一統計 =離^法並^歷史製程參數資料來建立-統計距離模 以^使則述之R2 R控制器能夠根據下列關係式控制 =之製程機台來進行製程批次’若卿〉观,則化,产0, 用而不是久來調整R2R控制器,其巾卿代表第灸 -人製程批次的整體相似度指標值;G57r代表一(7*S/門檻 值,此伽門椴值的定義為歷史製程參數資料之最大整: 相似度指標值的2至3倍。 根據本發明之又一態樣,提供一種電腦程式產品,當 、腦载入此電腦程式產品並執行後,可完成所述之APC方 法0 々 次、因此,應用本發明之實施例,可有效地將虛擬量測 ^料品質指標考慮至跳控制H巾,藉以克服無法考慮 2R控制之虛擬量測回饋迴路中的可信賴度問題, = 先進製程控制性能升級。 吏 實施方式】 在此詳細參照本發明之實施例,其例子係與圖式一起 201212140 說明。儘可能地,圖式中所以使用的相同元件符號係指相 同或相似組件。 请參照第3A圖,其緣示依照本發明之一實施例之 W2W APC系統的示意圖。本實施例之Apc系統包含:製 程機台100、量測機台110、虛擬量測(VM)模組12〇、信心 指標(RI)模組122、整體相似度指標(Gsi)模組丨24和R2R 控制器130。製程機台1〇〇係被操作以根據複數組歷史製 程參數資料來處理複數個歷史工件,並可被操作以根據複 數組製程參數資料來對複數個工件進行複數次製程批次。 一製程批次係被R2R控制器130所控制的單位,其中當一 製程批次為一批貨(Lot)時’ R2R控制器130為一 L2L控制 器,其係一個批貨一個批貨地控制製程機台1〇〇 ;當一製 程批次為一工件時,R2R控制器130為一 W2W控制器, 其係一個工件一個工件地控制製程機台1 〇〇。通常,一個 批貨包含複數個工件’例如:25個工件,意指L2L控制器 以一組製程參數資料控制一次製程批次來處理25個工 件。量測機台110係被操作以測量歷史工件和選自歷史工 件之複數個抽樣工件’來提供歷史工件的複數個歷史量測 資料’及已在製程批次中被處理之抽樣工件的複數個實際 量測值。 針對虛擬量測模組120、信心指標模組122、和整體相 似度指標模組124 ’須先建立推估模型、參考模型和統計 距離模型。推估模型的建立係根據一推估演算法並使用歷 史製程參數資料和歷史量測值’其中歷史量測值係根據與 該歷史製程參數資料所製造之一一對應的歷史工件的實際 12 201212140 量測值;參考模型的建立係根據一參考演算法並使用歷史 製程參數資料和—對應的歷史量測值;統計距離模型的 建立係根據一統計距離演算法並使用歷史製程參數資料。 推估演算法和參考演算法可為複迴歸(Multi-Regression ; MR)演算法、支持向量機(Support-Vector-Regression ; SVR) 演算法、類神經網路(Neural-Networks ; NN)演算法、偏 最小平方(Partial-Least-Squares Regression ; PLSR)演算法 或高斯程序回歸(Gaussian-process-regression ; GPR)演算 法。統計距離演算法可為馬氏距離(Mahalanobis Distance) 演算法或歐氏距離(Euclidean-Distance)演算法。以上所述 之演算法僅係舉例說明,而其他演算法當然亦適用於本發 明。本發明實施例所使用之RI和GSI可參考美國專利前案 第7,593,912號,其全部内容在此以引用方式併入本案。本 發明實施例所使用之RI模型、GSI和VM模型可參考美國 專利前案第7,603,328號和美國專利公開案第20090292386 號’其在此以引用方式併入本案。值得一提的是,美國專 利前案第7,593,912號、美國專利前案第7,603,328號和美 國專利公開案第20090292386號具有與本案相同的受讓 人。 虛擬量測模組120係用以藉由輸入製程參數資料至推 估楔型中,來提供製程批次之虛擬量測值。信心指標模組 1係用以產生製程批次之虛擬量測信心指標值(及乃,每一 個對應至製程批次之信心指標值係藉由計算工件之虛擬量 測值的統計分配與工件之參考預測值的統計分配之間的重 疊面積而產生,其中工件之參考預測值係藉由輸入工件之 13 201212140Khan et al. pointed out that % > α2 (usually depending on the quality of the virtual measurement data). At this point, the problem of applying the controller gain of the virtual measurement is to focus on how to set α2, where the basic principle is that α2 should be based on the quality of the virtual measurement data, and % < % ). Khan et al. proposed two virtual metrology metrics (Metrics) to consider incorporating the quality of the measurement data into the controller gain of the R2R controller 40: 1. The prediction error of the measurement batch: Error = -j) ( 6) 2. If 7 and $ are zero-mean Gaussian Deviations with a mean value of the target value, Bayi 1J is based on the minimum mean square error estimate of y (Min mean-square-error (MSE) ) estimator) is: 201212140 (7) where the correlation coefficient is: pc〇vb,j)] (8) and 5 and σ are the standard deviations of _y and 3> respectively. However, the two measures proposed above have the following disadvantages: 1. Equations (6) and (7) require actual measurement data to be “less”; however, if a continuous measurement data (actual measurement value) is available, then it is not necessary at all. Virtual measurement (j)); 2. Because of the value of p; ^ can be positive or negative, so u can not be normalized to between 0 and 1. For the above reasons, the prior art cannot easily combine the data quality measurement as shown in equations and (7) into the R2R controller. [Summary of the Invention] It is to provide an advanced process control /, in order to effectively take the virtual measurement data quality into the R2R controller, to the virtual amount of the reliable ^ 22 control in the yoke Test back to X to make the _process (four) performance upgrade. According to one aspect of the present invention, the measuring machine, the ^^ιj, the system includes the processing machine, the quantity/J-micro port I, the analog measuring module, the confidence indexing machine ##用桐秘★ & ; ^ Ting group and R2R controller. The process machine core system processes the historical workpiece according to the complex array history, and processes a plurality of process batches according to the complex array material:; The measuring material is used to measure a plurality of workpieces into a J-port for measuring historical workpieces and a plurality of sampled workpieces selected from the above-mentioned workpieces of 201212140 to provide a plurality of historical quantities of historical workpieces and have been processed in the process batches. The actual measured values of the sampled guards. The virtual quantity measurement module (4) is used to provide a plurality of virtual measurement values of the system by inputting the group process parameter data to the estimation model, wherein the estimation model is based on the estimation algorithm. The historical process parameter data and the historical measurement value are used, wherein the historical measurement value is the measured value of the historical security member manufactured according to the historical process parameter data. The signal module is used to generate a plurality of process batches: index values (Reliance Index; and /), each of which corresponds to the heart value of the process batch is calculated by calculating the virtual M quantity of the workpiece. Statistical distribution: (Statistics Distribution) is generated by the overlapping area between the statistical distribution of the reference prediction values of the workpiece, wherein the reference prediction value of the workpiece is generated by using the process parameter data of the workpiece into a reference model, and The establishment is based on a reference algorithm and uses the historical system Z-mode to correspond to the historical process parameter data one-to-one history # data and the estimation algorithm and the reference algorithm must be different algorithms. = The larger the area, the higher the confidence indicator value, representing the correspondence to confidence: and the higher the credibility of the virtual measurement. The R2R controller is a system that does not have a value to control the process to make a batch of the process:, the following off w*+i _ 茗 (G2, i, G2, 2, ..., G2, y, nine), G2, , = / W) xGm ; where if private < call, then 〇 2 〇, or use & not batch to batch controller; Weekly and if MC 'th/(/%) = % ; 201212140 If RlkkRJT ΜΛ>(〇' then 八叫=1_队., - 2 of them represent samples that have been processed in the second process batch The measured value of the workpiece, Wz+1 represents the control action of the ζ+/th process batch when less Ζ is used; Gu• represents the controller gain applied to the R2R controller when using 凡 (Gain ), where z• represents the number of controller gains applied to the R2R controller, and for a long time represents the virtual measurement of the workpiece that has been processed in the A-process batch; w correction represents the use of a long time moxibustion +7 process batch control actions; Gy represents the controller gain applied to the R2R controller when pill is used, and /t represents the confidence indicator value for the & process batch; and 4 represents a maximum based on One of the upper limit of the allowable error and the /th threshold, which is defined by the error of the virtual measurement obtained from the estimation model; and C represents the number of a predetermined process batch. In one embodiment, the foregoing APC system further includes an overall similarity indicator module for Enter the process parameter data into a statistical distance model to provide a plurality of overall similarity index values (G1〇bal Similarity Index; G57). The statistical distance model is based on a statistical distance algorithm and uses historical processes. Parameter data, if it is (3⁄4 yield 0' or adopt 9_, instead of adjusting the R2R controller for a long time, where (73⁄4 represents the overall similarity index value of the first process batch; GS/r represents the threshold based on one) The G57 threshold is defined as 2 to 3 times the maximum GS/value of the historical process parameter data. According to still another aspect of the present invention, in an advanced process control (APC) method, a step is performed to obtain a complex number Group history process parameter data, wherein the group history process parameter data is used by a process machine to process a plurality of historical workpieces. A further step is performed to obtain a historical workpiece that is measured by a quantity measurement 201212140 machine : (4) The process of estimating the estimator and the historical process parameter data-2 to estimate the model, and based on the algorithm to establish a reference model, in which The algorithm used in the interpretation of the burdock spring must be different. The implementation of the H secret one == enough to control the aforementioned process machine according to the above relationship to the distance t real towel, the aforementioned APC method further includes: according to a statistic = away ^法和^Historical process parameter data to establish - statistical distance model to ^ the R2 R controller can be controlled according to the following relationship control = process machine to process batch batch '若卿> view, then, production 0, used instead of long to adjust the R2R controller, its towel represents the overall similarity index value of the moxibustion-human process batch; G57r represents a (7*S/threshold value, the definition of this gamma threshold is history Maximum processing parameter data: 2 to 3 times the similarity index value. According to still another aspect of the present invention, a computer program product is provided. When the brain is loaded into the computer program product and executed, the APC method can be completed 0 times. Therefore, the embodiment of the present invention can be effectively applied. The virtual quality measurement index is considered to be the jump control H towel, so as to overcome the reliability problem in the virtual measurement feedback loop that cannot be considered 2R control, = advanced process control performance upgrade.实施 Embodiments Referring in detail to the embodiments of the present invention, examples thereof are described in conjunction with the drawings 201212140. Wherever possible, the same reference numerals are used in the drawings to refer to the same or similar components. Referring to Figure 3A, there is shown a schematic diagram of a W2W APC system in accordance with an embodiment of the present invention. The Apc system of this embodiment includes: a processing machine 100, a measuring machine 110, a virtual measuring (VM) module 12, a confidence indicator (RI) module 122, and an overall similarity index (Gsi) module. And R2R controller 130. The process machine 1 is operated to process a plurality of historical workpieces according to the complex array history process parameter data, and is operable to perform a plurality of process batches for the plurality of workpieces according to the complex array process parameter data. A process batch is a unit controlled by the R2R controller 130, wherein when a process batch is a batch (Lot), the R2R controller 130 is an L2L controller, which is controlled by a batch of goods. The process machine 1〇〇; when a process batch is a workpiece, the R2R controller 130 is a W2W controller, which controls the process machine 1 by one workpiece and one workpiece. Typically, a lot of goods consists of a plurality of workpieces, for example: 25 workpieces, meaning that the L2L controller controls a process batch to process 25 workpieces with a set of process parameters. The measuring machine 110 is operated to measure historical workpieces and a plurality of sampled workpieces selected from historical workpieces to provide a plurality of historical measurements of historical artifacts and a plurality of sampled workpieces that have been processed in the process batches. Actual measured value. The virtual measurement module 120, the confidence indicator module 122, and the overall similarity indicator module 124' must first establish an estimation model, a reference model, and a statistical distance model. The estimation model is established according to a calculation algorithm and uses historical process parameter data and historical measurement values. The historical measurement value is based on the actual workpiece of the historical workpiece corresponding to the historical process parameter data. 2012 12140 The measurement model is based on a reference algorithm and uses historical process parameter data and corresponding historical measurements; the statistical distance model is based on a statistical distance algorithm and uses historical process parameter data. The estimation algorithm and reference algorithm can be Multi-Regression (MR) algorithm, Support-Vector-Regression (SVR) algorithm, Neural-Networks (NN) algorithm. Partial-Least-Squares Regression (PLSR) algorithm or Gaussian-process-regression (GPR) algorithm. The statistical distance algorithm can be a Mahalanobis Distance algorithm or an Euclidean-Distance algorithm. The algorithms described above are for illustrative purposes only, and other algorithms are of course also applicable to the present invention. The RI and GSI used in the embodiments of the present invention can be referred to the U.S. Patent No. 7,593,912, the entire disclosure of which is incorporated herein by reference. The RI model, the GSI, and the VM model used in the embodiments of the present invention can be referred to the U.S. Patent No. 7,603,328 and U.S. Patent Publication No. 20090292386, the disclosure of which is incorporated herein by reference. It is worth mentioning that the same assignee as in this case is disclosed in U.S. Patent No. 7,593,912, U.S. Patent No. 7,603,328, and U.S. Patent Publication No. 20090292386. The virtual measurement module 120 is configured to provide a virtual measurement value of the process batch by inputting the process parameter data to the estimation wedge type. Confidence indicator module 1 is used to generate the virtual measurement confidence indicator value of the process batch (and, each confidence indicator value corresponding to the process batch is calculated by calculating the virtual measurement value of the workpiece and the workpiece The reference area between the statistical distribution of the predicted values is generated, wherein the reference prediction value of the workpiece is input by the workpiece 13 201212140
·τ日你值為 擬量測值的可信度愈高。 基於一最大可容許誤差J 在本實施例中,及/門襤值(似9係 >考演算法不同即可。當前述之重疊面積 1曰你值戆高,代表對應至信心指標值之虛 上限,此最大可容許誤差上限係藉 由從推估模型所獲得之虛擬量測值的誤差來定義。整體相 5指標模組124係Μ藉由輸人製程參數資料至統計距 极型中’來提供製程批次之複數個整體相似度指標值 (卿。⑽係評估新進任何—組製程參數資料與建模的所 有製程資料(歷史製程參數資料)間的相似度。在本實施例 :代表基於一 門檻值,此GjS7門檻值的 定義為歷史製程參數資料之最大G57值的2至3倍。 以下’為方便說明’ R2R控制器130係例示為EWMA 控制器。然而,R2R控制器130亦可為一移動平均(M〇ving Average; ΜΑ)控制器、一指數加權移動平均(Exp〇nentiaUy Weighted Moving Average ; EWMA )控制器、一雙重指數加 權移動平均(0〇111)16£墀]\4人;(1-£\¥]\4八)控制器、或一比例_ 積分-微分(Proportional-Integral-Derivative ; PID)控制器。 請參照第3B圖,第3B圖係繪示依照本發明之一實施 例之EWMA控制器的示意圖。本發明實施例的特徵係在於 克服關於如何設定方程式(5)之EWMA係數α2之應用虛擬 量測的控制器增益問題,其中基本原則是α2應視虛擬量測 資料的品質而定,且。本發明實施例使用和G57 201212140 來估測虛擬量測值的品質或可信賴度。由於的數值係一 種優良的虛擬i測評估指數且0 <沿< 1,較高的似代表較 • 佳之虛擬量測可信賴度,因而EWMA係數α2可自然地被設 定如下: a2 =RIxal (9) 其中EWMA係數%係相同於方程式(2)之〇。 當R2R控制器130需要相對較高的增益時,將應用方 程式(9)。需要高控制器增益的狀況是:凡遠離目標值或生 產製程相對不穩定。相反地,若八接近目標值或生產製程 相對穩定,則控制器增益應取較小值。為產生一較小的控 制器增益值,EWMA係數七亦可被設定如下: a2 =(l-Rl)xai (10) 只有當及/夠好時方程式(9)和(10)才有效。換言之’ 必須大於妳。若似〈叫,則此虛擬量測值不能被採用來調 整R2R控制器增益。此外,由於係設計來輔助W判 斷虛擬量測值的可信賴度,所以當仍時’其對應之 虛擬量測值亦不能被採用。結論是’若似 < 或GiS7〉 G*S7r,則將内設定為〇。 以下考慮在實際生產環境中,每當製程機台100進行 維修或調機時,R2R控制器增益管理的議題。通常’第一 個批貨(就在進行維修或調機後)的生產製程是相對不穩定 的,因此控制器增益值應是相對高的。在完成第一個批貨 的生產製程後,生產製程會變得比較穩定。換言之’其餘 • 之批貨應具有較小的控制器增益值。 - 綜上所述,A可被設定為: 15 201212140 a2=f(RI, GSI^a, (u)· τ 日 Your value is the higher the credibility of the measured value. Based on a maximum allowable error J, in this embodiment, the / threshold value (like 9 system > test algorithm may be different. When the aforementioned overlapping area 1 曰 your value is high, representing the value corresponding to the confidence index The upper limit of the maximum allowable error is defined by the error of the virtual measurement obtained from the estimation model. The overall phase 5 indicator module 124 is used to input the process parameter data to the statistical distance type. 'To provide a plurality of overall similarity index values for the process batch (Q) is to evaluate the similarity between any new process data and all process data (historical process parameter data). In this example: The representative is based on a threshold value, which is defined as 2 to 3 times the maximum G57 value of the historical process parameter data. The following 'for convenience of explanation' R2R controller 130 is exemplified as an EWMA controller. However, the R2R controller 130 It can also be a moving average (ΜΑ) controller, an exponent weighted moving average (EWMA) controller, a double exponential weighted moving average (0〇111) 16£墀]\4人;(1-£\¥]\4 8) Controller, or a Proportional-Integral-Derivative (PID) controller. Please refer to Figure 3B, Figure 3B shows A schematic diagram of an EWMA controller in accordance with an embodiment of the present invention. The present invention is characterized by overcoming the controller gain problem of how to set the EWMA coefficient α2 of equation (5) for application virtual measurement, wherein the basic principle is α2 It should be determined according to the quality of the virtual measurement data, and the embodiment of the present invention uses G57 201212140 to estimate the quality or reliability of the virtual measurement value. The numerical value is an excellent virtual i measurement evaluation index and 0 < Along the < 1, the higher representation represents better than the virtual measurement reliability, so the EWMA coefficient α2 can be naturally set as follows: a2 = RIxal (9) where the EWMA coefficient % is the same as equation (2) Equation (9) is applied when the R2R controller 130 requires a relatively high gain. The condition that requires high controller gain is that it is relatively unstable from the target value or the production process. Conversely, if eight is close to the target value Or production process relative For stability, the controller gain should be taken as a small value. To generate a smaller controller gain value, the EWMA coefficient seven can also be set as follows: a2 = (l-Rl)xai (10) Only if and / is good enough Equations (9) and (10) are valid. In other words, 'must be greater than 妳. If it is called, this virtual measurement cannot be used to adjust the R2R controller gain. In addition, because the system design is used to assist W to determine the virtual quantity. The reliability of the measured value, so when it is still 'the corresponding virtual measured value can not be used. The conclusion is that if 'should be < or GiS7> G*S7r, the inner is set to 〇. The following considerations are given to the R2R controller gain management issues in the actual production environment whenever the process machine 100 is being serviced or tuned. Usually the production process of the first batch (just after repair or adjustment) is relatively unstable, so the controller gain value should be relatively high. After the completion of the production process of the first batch, the production process will become more stable. In other words, the rest of the shipment should have a smaller controller gain value. - In summary, A can be set to: 15 201212140 a2=f(RI, GSI^a, (u)
• r 0, iiRI<RIToi· CrSI> GSIT• r 0, iiRI<RIToi· CrSI> GSIT
f(RI, GSI) = ^ RI? iiRI>RIT and GSI < GSITmd for k < C -\-RI, if RI>RIT and GSI < GSIT and f〇r /c > C (12) C代表一預設製程批次的數目。以半導體產業之W2W 控制為例,C可為25。 由於R2R控制器130亦可為MA控制器、雙重指 EWMA控制器、或HD控制器,故提供通用型之主控方程 如下。 (13) (14)f(RI, GSI) = ^ RI? iiRI>RIT and GSI < GSITmd for k < C -\-RI, if RI>RIT and GSI < GSIT and f〇r /c > C (12) C Represents the number of preset process batches. Taking the W2W control of the semiconductor industry as an example, C can be 25. Since the R2R controller 130 can also be an MA controller, a dual-finger EWMA controller, or an HD controller, a general-purpose main control equation is provided as follows. (13) (14)
Wz+1 =容(Gl,丨,G 丨,2,".,GM,少J WA+1 =g(G2,l,G22,...,G2,,;pA) G2J=f(RIki GSIk)xGl. (15) 其中若或GS7>GS7r,則(}2尸〇,或採用九^而不 是λ來調整批次至批次控制器; 苦 RIk>RlT瓦GSIksGSITmc,对卿⑷抑:队 浩 RIkkRIT 見 GSIkSGSITXk>CjyUpGsiM — jUk 其中h代表已在第z次製程批次中被處理之抽樣工件的實 際量測值;Mz+1代表當採用%時之第z+7次製程批次的控制 動作’ Gu代表當採用%時之應用於R2R㈣器中的控制 器增益(Gain) ’其中z•代表應用於R2R控制器中之控制器 增益的數目’域表已在第欠製程批次中被處理之工件 的虛擬量雜絲時之第⑴讀程批次的 16 201212140 控制動作;G2,,代表當制λ時之應用於r2 r控制器 控制器增益⑽代表第A次製程抵次的信心指標值;私 ,表基於-最大可料憾上限之陳值,該最大可 ,許誤差上限賴由從該推賴型所獲得之虛擬量測值的 誤差來定義;代表基於-⑽門檀值,此⑽門播值 的定義為歷史製程參數資料之最大(;沿的2至3倍;以及 c代表一預設製程批次的數目。 MA控制器和EWMA控制器為單一增益控制器;雙重 指數加權移動平均控制器和PID控制器為多重增益控制 器’其描述如下。 M_A控制器 η-項(terms)MA控制器之第z十7次批次(Run)的控制動 作,《ζ+ι,係推導自Wz+1 =容(Gl,丨,G 丨,2,".,GM, less J WA+1 =g(G2,l,G22,...,G2,,;pA) G2J=f(RIki GSIk)xGl. (15) Where if GS7>GS7r, then (}2 corpse, or use IX instead of λ to adjust the batch to batch controller; bitter RIk> RlT watt GSIksGSITmc, against Qing (4): Team RIkkRIT See GSIkSGSITXk>CjyUpGsiM — jUk where h represents the actual measured value of the sampled workpiece that has been processed in the zth process batch; Mz+1 represents the z+7th process batch when % is used The control action 'Gu represents the controller gain (Gain) applied to the R2R (4) when % is used. 'where z• represents the number of controller gains applied to the R2R controller'. The domain table is already in the under-process batch. The virtual quantity of the processed workpiece is the first (1) read batch of 16 201212140 control action; G2, which represents the application of λ to the r2 r controller controller gain (10) represents the A process offset Confidence indicator value; private, the table is based on the maximum value of the maximum regrettable upper limit, and the maximum allowable error upper limit depends on the virtual measurement value obtained from the deferred type The difference is defined; the representative is based on the -(10) gate value, which is defined as the maximum of the historical process parameter data (2 to 3 times the edge; and c represents the number of a preset process batch. MA controller And the EWMA controller is a single gain controller; the double exponentially weighted moving average controller and the PID controller are multiple gain controllers' which are described below. M_A controller η-terms MA controller's zth 7th batch Control action of "Run", "ζ+ι, is derived from
U 2+1 THi_ (16) 其中錢針對系統估計之增益參數(例如:化學機械研磨去 除率),系第z+7次批次的目標值,而L係第z+7次 批次之模型偏移量或擾動。n_項MA控制器之第z+7次批 -人的模型偏移量或擾動可表示如下: = -(y,~Auz)+-(yz^Au ) 1 n 1 w = «Σ(Λ- ήζ+, = -Ir,, ^ a.. \ , 1 / . 、L... + 丄(Λ-(”-ι)如1)U 2+1 THi_ (16) where the money is estimated for the gain parameter of the system (eg chemical mechanical polishing removal rate), which is the target value of the z+7th batch, and the L system is the model of the z+7th batch Offset or disturbance. The z+7th batch-human model offset or disturbance of the n_term MA controller can be expressed as follows: = -(y,~Auz)+-(yz^Au) 1 n 1 w = «Σ(Λ - ήζ+, = -Ir,, ^ a.. \ , 1 / . , L... + 丄(Λ-("-ι)如1)
Au2) M\hMA{q){yz- Auz) 17 (17) 201212140 其^代表第Z次批次控制輸出之實際量測值;g代表延遲 運算子,亦即疒、=Λ1 ; M尸W為控制器增益;而 08) 、⑷= (l + g-1 +...切十_1)) 接著,由方程式(16)可得Au2) M\hMA{q){yz- Auz) 17 (17) 201212140 Its ^ represents the actual measured value of the Zth batch control output; g represents the delay operator, ie 疒, =Λ1; M 尸W Gain for the controller; and 08), (4) = (l + g-1 +... cut ten_1)) Next, available from equation (16)
U ζ+1 1&:U ζ+1 1&:
A SMA{^^yz) (19) 結論是,η-項ΜΑ控制器之第z+7次批次的控制 心+1’可被表示為第z次批次控制輸出之實際量測值, 與控制器增益,M;,的函數。 义, EWMA # ^.[ s 、EWMA控制器之第z+7 :欠批次(Run)的控制動 被表示為方程式(16)。 亦可 ~針對EWMA控制器,可推導心+1如下: ^z+i = «ι{yz ~Auz) + {\~αχ)ήζ +♦咖:-也)+·..切 1(1—「峰(1_αι^ =gαι(1 -αι广’Ο,―也,),初始條件々。=〇 設 C0=«l 02=^(1-^)2 201212140 則 -(z-l) ){yz-Auz) (21) :l-c〇z-V(z-1)_ (22) ~ ^ SEWh4Aiavyz) (23) ^z+i ~ (c〇 + c, · 1 η-----hc(. -q~' + —μ c 丨.< = αΑ_(αρ《)(凡-A) 且 lEWMAy 結論是’ EWMA控制器之第2+7次批次的控制動作, «ζ+1 ’可表示為第z次批次控制輸出之實際量測值 器增益%的函數。 〃&制 d-EWMA控制器 為 d-EWMA㈣|]器之第z+/次批次的控制動作可被表示A SMA{^^yz) (19) The conclusion is that the control heart +1' of the z+7th batch of the η-item controller can be expressed as the actual measured value of the zth batch control output. With the controller gain, M;, the function. Meaning, EWMA # ^.[ s , the z+7 of the EWMA controller: The control of the run is represented as equation (16). Also for the EWMA controller, you can derive the heart +1 as follows: ^z+i = «ι{yz ~Auz) + {\~αχ)ήζ +♦Cake:-also)+·..cut 1(1— "Peak (1_αι^ =gαι(1 -αι广'Ο, ―,,), initial condition 々.=〇C0=«l 02=^(1-^)2 201212140 Then-(zl) ){yz- Auz) (21) : lc〇zV(z-1)_ (22) ~ ^ SEWh4Aiavyz) (23) ^z+i ~ (c〇+ c, · 1 η-----hc(. -q~ ' + —μ c 丨.< = αΑ_(αρ“)(凡-A) and lEWMAy The conclusion is the control action of the 2+7th batch of the EWMA controller, «ζ+1' can be expressed as the zth The function of the actual measured value gain % of the sub-batch control output. The control action of the z+/time batch of the d-EWMA controller for the d-EWMA(4)|] can be expressed
uz+l=^izinz£^L A (24) 請參照方程式(2〇)、(21)和(22),1可被表示為: ^ζ+ι = «1,1 (λ ~ ) + (1 - or,, )ήζ =a^hEfVMA(al l,q)(yz _ (25) 同樣地,可推導Λ+1為: Λ+ι =ai2(y2-^z-^) + (\~al2)pz =CC^EWMA (^1,25^)(λ ~ Auz-η2) (26) 最後’ wz+】可被表示為: ai,2,少z) 結論是’ d-EWMA控制器之第z+/ u , (27 次批次的控制! Z+I A ~ ^d-EWMAK^iiy 201212140 作κ可表示為第之次批次控 與控制器料㈣數。^之實際量測值π gID控制1§ 广D控制器之第2+/次批次的控制動作可被表示為: 如(28) =wn《o,又) Z+/次批次的控制動作,仏+1, 之實際量測值,叉,與控制器 結論是,PID控制器之第 可表示為第z次批次控制輸出 增益、尤Λ/和尤ΛΖ)的函數。 觀察方程式(19)、(23)、(27)和(28)可知,MA控制器、 EWMA控制器、d_EWMA控制器和nD控制器之第z+y 人批-人的控制動作’ Wz+"可表示為第z次批次控制輸出之 實際量測值&與控制器增益Gii、Gi,2..々%的函數,其 中z•代表存在於控制器中之增益的數目。 〜=购,丨,G 丨y’GuJ (29) 對MA控制器而言’戸1而Gl l =从;對ewma控制 器而言’ /=1而Gu=% ;對d-EWMA控制器而言,戸2而 GM=au及GU2= au ;對PID控制器而言,戸3而Gi,i = i^、 gi,2 =尺;,/及事實上,方程式(29)已在方程式(13) 中提到。 當使用虛擬量測時,只將被夂所取代,而控制器增益 將變成Gy、G2,2、…和G2)i· ’其中/代表存在於控制器中之 20 201212140 增益的數目。因此,藉由使用虛擬量測,帛…次批次之 控制動作,wz+1的通用型式為: (30) ^+1=^〇2ιΙ,ο2 25...>〇2,,^) 對ΜΑ控制器而言,/=1而G21喝;對EWMA控制器而 吕〒1而Gm ;對d_EWMA控制器而言十2而G2 α 及知:气2;對PID控制器而言十3而广‘、 及G2,3心。事實上’方程式(3〇)已在方程式(14)中提到。 ^擬量測被採用為R2R控㈣的_時,可使用伴 Ik虛擬1測之及/和GiS7來調整控制器增益如下: ^2,/ = f{RI, GSI) X G, 事實上,方程式(31)已在方程式(15)中提到。 (31) 特定地,對MA的情況: (32) M2=fMA{RI,GSI)xMx 對EWMA的情況: (33) (34) (35) ~ Iewma GSI) X CKj 對d-EWMA的情況: a2,i=fai ⑻,GSI)xau 0^2,2 =fa2(^>GSI)xal2 對PID的情況: K2P=fp(RI,GSI)xKlp κ,^/^ιυ,ΟΞηχκ,,Uz+l=^izinz£^LA (24) Please refer to equations (2〇), (21) and (22), where 1 can be expressed as: ^ζ+ι = «1,1 (λ ~ ) + (1 - or,, )ήζ =a^hEfVMA(al l,q)(yz _ (25) Similarly, Λ+1 can be derived as: Λ+ι =ai2(y2-^z-^) + (\~al2 ) pz =CC^EWMA (^1,25^)(λ ~ Auz-η2) (26) The last 'wz+} can be expressed as: ai,2, less z) The conclusion is the d+EWMA controller's z+ / u , (27 batch control! Z+IA ~ ^d-EWMAK^iiy 201212140 κ can be expressed as the number of batch control and controller materials (four). ^ Actual measurement value π gID control 1 § The control action of the 2+th/sub-batch of the wide D controller can be expressed as: (28) = wn "o, again" Z+ / sub-lot control action, 仏 +1, the actual measured value The fork, and the controller conclude that the PID controller can be expressed as a function of the zth batch control output gain, especially Λ/和尤ΛΖ). Observing equations (19), (23), (27), and (28), the z+y human-human control action of the MA controller, EWMA controller, d_EWMA controller, and nD controller 'Wz+" ; can be expressed as a function of the actual measured value of the zth batch control output & and the controller gain Gii, Gi, 2..々%, where z• represents the number of gains present in the controller. ~=购,丨,G 丨y'GuJ (29) For the MA controller '戸1 and Gl l = slave; for the ewma controller ' /=1 and Gu=% ; for the d-EWMA controller For example, 戸2 and GM=au and GU2= au; for the PID controller, 戸3 and Gi,i = i^, gi,2 = 尺;, / and in fact, equation (29) is already in the equation Mentioned in (13). When virtual measurement is used, only the buffer is replaced, and the controller gain becomes Gy, G2, 2, ..., and G2)i· ' where / represents the number of 20 201212140 gains present in the controller. Therefore, by using virtual measurement, 帛...sub-lot control action, the general type of wz+1 is: (30) ^+1=^〇2ιΙ, ο2 25...>〇2,,^) For the controller, /=1 and G21 drink; for the EWMA controller and Lu Wei 1 and Gm; for the d_EWMA controller, 12 and G2 α and know: gas 2; for the PID controller, 13 And wide ', and G2, 3 hearts. In fact, the equation (3〇) has been mentioned in equation (14). ^ When the quasi-measurement is used as the R2R control (4), the controller gain can be adjusted using the Ik virtual 1 and / and GiS7 as follows: ^2, / = f{RI, GSI) XG, in fact, the equation (31) has been mentioned in equation (15). (31) Specifically, for the case of MA: (32) M2=fMA{RI, GSI)xMx For EWMA: (33) (34) (35) ~ Iewma GSI) X CKj For d-EWMA: A2,i=fai (8), GSI)xau 0^2,2 =fa2(^>GSI)xal2 For the case of PID: K2P=fp(RI,GSI)xKlp κ,^/^ιυ,ΟΞηχκ,,
^2,D=fD(RI,GSI)xK]D 、結論是,所有的Gu控制器增益可被指定為常數或被 適應的機制或函數所調整。當採用實際量測值匕)時,可 21 201212140 據以设計和指定G,,,·。在指定Glw.後,若採用虛擬量測值(幻 來替代凡時’可設計和指定Gf如方程式(31)-(35)所示。 • 方程式(31)-(35)只有在穴/和G57足夠好時才有效;換^2, D = fD(RI, GSI)xK]D, and conclude that all Gu controller gains can be specified as constants or adjusted by the mechanism or function being adapted. When the actual measured value 匕) is used, 21 201212140 can be designed and specified G,,,. After specifying Glw., if the virtual measurement value is used (the magic is used instead of the time), the Gf can be designed and specified as shown in equations (31)-(35). • Equations (31)-(35) are only in the hole/and Only when G57 is good enough;
h ’ RI 簏大於 rjt^_ GSI 藤,\、於 GSIT。若 ri<rjt 氣 GSI > GS7r’則其對應之虛擬量測值不能被用來調整R2R控制 器增益。結論是,若沿<你或GS7> GS/r,則 對ΜΑ的情況.§史= &,即採用而不是久來調整 R2R控制器; 對EWMA的情況:設或% = 〇 (即G2/=〇); 對d-E WMA的情況:設①且A+|=A ;或設%」=^ 2 = 〇 (即 G2/=0); 對PID的情況:設叫+7 =叫,即採用九―i而不是久來調 整R2R控制器。 以下提出關於似的演算法與其運算過程。 信心指標an 如表1所示,假設目前蒐集到《組量測的資料,包含 製程參數資料(υ=/,2,··_,„)及其對應的實際量測值資料(乃 戶1,2,…,其中每組製程資料包含有Ρ個參數(自參數 至參數p) 。此外,亦蒐集到(_)筆實際 工 生產時製程參數資料’但除〜+1外,並無實際量測值資料, 即在(m-η)筆實際生產的工件中,僅抽測例如第一筆工件進 行實際量測,再以其實際量測Λ+1來推斷其他 件的品質。 表1原始資料範例 22 201212140h ′ RI 簏 is greater than rjt^_ GSI vine, \, in GSIT. If ri<rjt gas GSI > GS7r' then its corresponding virtual measurement cannot be used to adjust the R2R controller gain. The conclusion is that if you follow </ br> or GS7> GS/r, then the situation is .. § History = &, that is, instead of long time to adjust the R2R controller; for EWMA: set or % = 〇 (ie G2/=〇); For dE WMA: set 1 and A+|=A; or set %"=^ 2 = 〇 (ie G2/=0); For PID: set +7 = call, ie Use a nine-i instead of a long time to adjust the R2R controller. The following describes the algorithm and its operation process. Confidence indicator an As shown in Table 1, it is assumed that the data of the group measurement is currently collected, including the process parameter data (υ=/, 2,··_, „) and its corresponding actual measured value data. , 2, ..., where each set of process data contains one parameter (from parameter to parameter p). In addition, (_) the process parameter data of the actual production process is collected, but there is no actual except for +1 The measured value data, that is, in the workpiece actually produced by the (m-η) pen, only the first workpiece is measured, for example, the actual measurement is performed, and then the actual measurement is performed by Λ +1 to infer the quality of the other parts. Information example 22 201212140
在表1中,少、v 在生產中之工件1 2笛二〜為歷史量測值,〜為正 常,-組實際量測值.=】/固工件的實際量測值。通 準差•,力為具有平均數卜標 實際均數與標準差將所有 =,_))’其中每—個Z;數夂均數=亦二 0差為卜即V·)。對實際量测資料而言,若 下則表讀職料愈接近規格中心值。其標準化5式如 7 _ yj~y % i = 1,2,···,ηIn Table 1, less, v in the production of the workpiece 1 2 flute 2 is the historical measurement, ~ is normal, - the actual measured value of the group. =] / the actual measured value of the solid workpiece. The standard deviation is . The force is the average number. The actual mean and the standard deviation will be all =, _))' where each - Z; the number 夂 mean = also 0 is the difference is V ·). For the actual measurement data, if the next reading is closer to the specification center value. Its standardization is 5 such as 7 _ yj~y % i = 1,2,···,η
(v/ +少2+…+少„) (36) (37) 23 201212140 °y=^~j{yi~y)2 +(y2-y)2 +---+(^-37)2. (38) 其中 少,為第/組實際量測值資料; &為在第/組資料標準化後的實際量測值資料; V為所有實際量測值資料的平均數; 5為所有實際量測值資料的標準差。 此處之說明係應用類神經網路(NN)演算法之推估演 算法來建立進行虛擬量測的推估模式,並以例如複迴歸演 算法之參考演算法來建立驗證此推估模式的參考模式。然 而,本發明亦可使用其他演算法為推估演算法或參考演算 法,只要參考演算法係不同於推估演算法即可,如複迴歸 演算法、支持向量機演算法、類神經網路演算法、偏最小 平方演算法或高斯程序回歸演算法,故本發明並不在此 限。 在應用類神經網路演算法和複迴歸演算法時,如其收 斂條件均為誤差平方和(Sum of Square Error ; SSE)最小 的條件下,且時,此兩模式各自標準化後的實際量 測值定義為與、,則其均應與真正標準化後的實際量 測值^相同。換言之,當《+〇〇時,= = 均代表標 準化後的實際量測值,但為因應不同模式之目的而改變其 名稱。因此V,〜斗',σ! J,且〜~ ,吃),表示^與Ζ风.為相 同分配,但由於不同的估計模式,使得該兩種預測演算法 之平均值與標準差的估計值不同。亦即ΝΝ推估模式標準 24 201212140 化後的平均數估計式與標準差估計式(<^ 將與複迴歸模式標準化後的平均數估計式(Α 準差估計式(吃不同。 y' 信心指標值係被設計來判斷虛擬量測值的可信 度,因此信心指標值應考量到虛擬量測值之統計分配% 與實際量測值之統計分配〜兩者之間的相似程度。= 而,當應用虛擬量測時,並無實際量測值可被使用來評ς 虛,量測值的可信賴度(明顯地,若獲得實際量測值則便 不需要虛擬量測了)。所以本發明採用由參考演算法(例如 複迴歸演算法)所估算之統計分配&來取代之統計分 配本發明之參考演算法亦可為其他相關之預測演算法, 故本發明並不在此限。 °月參照第4Α圖,其繪示說明本發明之較佳實施例之 L %心標值的示意圖。本發明之信心指標值的定義為計算 ,估模式(例如採用類神經網路(NN)演算法)之預測(虛擬 量測值)的分配2机與參考模式(例如採用複迴歸演算之 預冽(參考量測值)的分配兩者之間的交集面積覆蓋值 (重疊面積A)。因此,信心指標值的公式如下:(v/ + less 2+...+ less „) (36) (37) 23 201212140 °y=^~j{yi~y)2 +(y2-y)2 +---+(^-37)2 (38) where is less, is the actual measurement data of the group / group; & is the actual measured value data after standardization of the /group data; V is the average of all actual measured data; 5 is all actual The standard deviation of the measured value data. The description here is based on the application of the neural network (NN) algorithm estimation algorithm to establish the estimation model for the virtual measurement, and the reference algorithm such as complex regression algorithm To establish a reference mode for verifying the estimation mode. However, the present invention may also use other algorithms as a estimation algorithm or a reference algorithm, as long as the reference algorithm is different from the estimation algorithm, such as a complex regression algorithm. , support vector machine algorithm, neural network algorithm, partial least squares algorithm or Gaussian program regression algorithm, so the invention is not limited to this. When applying neural network algorithm and complex regression algorithm, such as its convergence condition Under the condition that the Sum of Square Error (SSE) is the smallest, and the two modes are respectively The actual measured values after normalization are defined as AND, and they should all be the same as the actual measured actual values ^. In other words, when "+〇〇, = = represents the actual measured value after standardization, But change the name for the purpose of different modes. So V, ~ bucket ', σ! J, and ~~, eat), means ^ and hurricane. For the same assignment, but due to different estimation modes, make the two The average of the prediction algorithms is different from the estimated value of the standard deviation. That is, the average and the standard deviation estimation formula after the 201212140 conversion (<^ will be averaged with the complex regression model) Estimation formula (Α 准 estimator (different eating. y' confidence index value is designed to judge the credibility of the virtual measurement value, so the confidence indicator value should be considered to the statistical distribution of the virtual measurement value % and actual measurement The statistical distribution of values ~ the degree of similarity between the two. = And, when applying virtual measurements, no actual measured values can be used to evaluate the imaginary, reliable value of the measured values (obviously, if obtained The actual measurement does not require virtual measurement. Therefore, the present invention uses a statistical distribution estimated by a reference algorithm (for example, a complex regression algorithm) to replace the statistical allocation. The reference algorithm of the present invention may also be other related prediction algorithms, so the present invention is not here. Referring to Figure 4, there is shown a schematic diagram illustrating the L% heartmark value of a preferred embodiment of the present invention. The confidence index value of the present invention is defined as a calculation, estimation mode (e.g., using a neural network ( NN) algorithm) prediction (virtual measurement) allocation 2 machine and reference mode (for example, the use of complex regression calculus (reference measurement) allocation between the intersection area coverage value (overlap area A ). Therefore, the formula for the confidence indicator value is as follows:
22
(39) 其中當則^ = 2〜 當 < 2j>Ni 則0 = 2^ σ係設為1 25 201212140 k心指標值係隨著重疊面積A的增加而增加。此現象 指出使用推估模式所獲得的結果係較接近於使用參考模式 所獲仟的結果,因而相對應之虛擬量測值較可靠。否則相 對應之虛擬量測值的可#度係隨著重疊面積A的減少而降 低:當由2爲所估計之分配與由、所估計之分配&完全 重疊時’依照統計學的分配理論,其信心指標值等於i . 而當兩分配幾乎完全分_,其信4標值闕近於〇。 以下說明推估模式計算虛擬量測值 孝口 分配的方法。 之 估模式中’若收斂條件為最小化誤差平方和 、可假a又厂在給定心〜下,z的分配 二=為伽配」,即給定、下,^^ y丨、、〜°十式為'=2辦,σ1的NN估計式為呤=矻。 在進行ΝΝ推估桓★的诸描々‘ 資料標準化的步驟。建4之别,需先進行製程參數 不 NN推估模式製程參數㈣標準化公式如下所 zx . t ,,J aXj j = .p (40)(39) where ^^ 2~ When <2j>Ni then 0 = 2^ σ is set to 1 25 201212140 k The heart index value increases as the overlap area A increases. This phenomenon indicates that the results obtained by using the estimation mode are closer to those obtained by using the reference mode, and thus the corresponding virtual measurement value is more reliable. Otherwise, the corresponding degree of the virtual measured value decreases as the overlap area A decreases: when 2 is the estimated allocation and the estimated allocation & completely overlaps 'according to the statistical distribution theory The value of the confidence indicator is equal to i. And when the two distributions are almost completely divided, the letter 4 value is close to 〇. The following describes the estimation method to calculate the virtual measurement value 孝口 allocation method. In the estimation mode, if the convergence condition is to minimize the sum of the squared errors, the false a can be given to the given heart~, the distribution of z is = the gamma, ie, given, down, ^^ y丨, ~ ° Ten is '=2, the NN estimate of σ1 is 呤=矻. In the process of ΝΝ ΝΝ 的 的 的 々 々 々 ‘ data standardization steps. For the 4th construction, the process parameters must be processed first. The NN estimation mode process parameters (4) The standardization formula is as follows: zx . t ,, J aXj j = .p (40)
X; .+JCX; .+JC
(41) ~/ + (X2J-Xj)2+... + (xnj-3c.y] 其中 (42) 〜為程資射之第y.轉程參數; %為第Ζ·組製”射之心個標耗後的製程參 26 201212140 數; ^為第7個製程參數資料的平均值; '為第y.個製程參數資料的標準差。 使用此A7組標準化後的製程 此A7組標準化後的實際量測 '枓=以.··,吣= 與 式。然後,於人、、〜^7,2,..,《)來建構>^推估模 (Z~,,=U...,W"=U )至 NN 矛王貝料 準化後的虛擬量丄…式中,以獲得相對應之標 yNi .·· 、 2V > γΛ 、 因此’ ~ (即Α -ζ〇的仕呌伯 〜...、^。 41 , 〜〜_Ζ〜)的估叶值和σ7 …、 计值可由如下所示之公式來計算:,(P 的估(41) ~/ + (X2J-Xj)2+... + (xnj-3c.y) where (42) ~ is the y. turn parameter of Cheng Jin shot; % is the third set system The number of processes after the standard consumption is 26 201212140; ^ is the average of the 7th process parameter data; 'is the standard deviation of the y. process parameter data. Use this A7 group standardization process to standardize this A7 group After the actual measurement '枓 = with .··, 吣 = and then. Then, in person, ~^7,2,.., ") to construct > ^ estimation model (Z ~,, = U ...,W"=U ) to the virtual quantity after the NN spear king material is normalized, in order to obtain the corresponding standard yNi .·· , 2V > γΛ , thus ' ~ (ie Α -ζ 〇 呌 〜 〜 ~ ..., ^. 41, ~ ~ _ Ζ ~) estimated leaf value and σ7 ..., the value can be calculated by the formula shown below:, (P estimate
Syi 〜ΖρΝί,ί=^,2,··、η}η+Ι,··、 mSyi ~ΖρΝί, ί=^,2,··, η}η+Ι,··, m
(43) (44) (45) Z^=iSZh^ZyN2^^Zhn) 其中^標準化後之虛擬量測值的平均值。 :下說明由複迴歸模式計算參考預測值 複迴歸演算法的基本假設為「在給定 )的 配為平均數等於%,變賤Μ的分配」,即給定 Ζ-〜#k,,,4)。而'的複迴歸估計式為 >;的分 下 气=¾,呤的複迴歸 為求得A7組標準化後的製程資料k 27 201212140 此/7組標準化後的實際晉 丁、里冽值間的關係,須定 • 義利用複迴歸分析中柃此 , -(βββ β , ,, 二户個參數所對應的權重為m‘。建構夂與、關係如下: 〜+H//+久〜+. … 2,P y2 0r〇 + fif.fZY +β 7 Ά\2+··.+ΑνΛ ”·ρ y" 1,2 ’ ‘ +PrpZx,=2' (46) 假設Ζ, ,ζ 、 (47)(43) (44) (45) Z^=iSZh^ZyN2^^Zhn) where ^ is the average of the virtual measured values after normalization. : The following is a description of the basic prediction of the complex prediction algorithm by the complex regression model. The basic assumption of the complex regression algorithm is "the given number is equal to %, the distribution of the change", that is, given Ζ-~#k,,, 4). And the complex regression estimator is >; the sub-gas = 3⁄4, and the complex regression of 呤 is the process data obtained after the standardization of the A7 group. k 27 201212140 The actual Jinding and Lili value of this /7 group standardization The relationship must be determined by the use of complex regression analysis, -(βββ β , ,, the weight corresponding to the two households is m'. The construction and relationship are as follows: ~+H//+久~+ . 2,P y2 0r〇+ fif.fZY +β 7 Ά\2+··.+ΑνΛ ”·ρ y" 1,2 ' ' +PrpZx,=2' (46) Suppose Ζ, ,ζ , ( 47)
ζ yn Ί ·* 2 \ Λ1, 1 Z, · ;-P ·_ 2 Zx = 2.1 • · « xIp • · • · 1 A , · • 2 \ nj X n,P J (48) 數===析:的最小平方法,可求得參 fir=\2lXZ: ζ. 然後,複迴歸模式可得到 (49)ζ yn Ί ·* 2 \ Λ1, 1 Z, · ;-P ·_ 2 Zx = 2.1 • · « xIp • · • · 1 A , · • 2 \ nj X n, PJ (48) Number === The least flat method of : can be obtained by reference fir=\2lXZ: ζ. Then, the complex regression mode can be obtained (49)
^γη ~ Κ〇+ β,· jZ^γη ~ Κ〇+ β,· jZ
XU^K2ZX i,2+ …+ 為rpZx 1 >2,...,n,n+1XU^K2ZX i,2+ ...+ is rpZx 1 >2,...,n,n+1
,-.P 28 (50) 201212140 因此’在推估階段時,製程參數資料進來後,依公式 (5〇)即可求出其所對應的複迴歸估計值&,。標準變異數^ - 的複迴歸估計式為心具有: ' ^ h 、 %,, -.P 28 (50) 201212140 Therefore, in the estimation stage, after the process parameter data comes in, the corresponding complex regression estimate & can be obtained according to the formula (5〇). The complex regression estimate of the standard variogram ^ - is for the heart: ' ^ h , %,
+izyr2~^py+---+{zyr„~^yy (51) (52) 當求得NN推估模式的估計式,與及複迴歸模式 的估計式^與後,可繪出如第4A圖所示之常態分配 圖’計算使用推估模式(例如採用類神經網路(NN)演算法) 之預測(虛擬量測值)的分配與參考模式(例如採用複迴歸演 算法)之預測(參考量測值)的分配兩者之間的交集面積覆蓋 值(重疊面積A) ’即可求出每一個(虛擬量測值的信心指標 值0 門播= 定一— Γ,則虛擬罝測值的可靠程度係3 又的°以下描述決定信心指標門健陶的方法: —在訂定信心指標門播值㈣之前,首先需 上限⑹。虛擬量測值的誤差怜—為實際量 ,域由ΝΝ推估模式所獲得之^的差值2 = 實際量測㈣平均⑽之絕對㈣百分率,即 所有 29 201212140+izyr2~^py+---+{zyr„~^yy (51) (52) When the estimator of the NN estimation model is obtained, and the estimation formula of the complex regression model is used, it can be drawn as 4A. The normal distribution map shown in the figure 'calculates the prediction of the prediction (virtual measurement) using the estimation mode (for example, using a neural network (NN) algorithm) and the prediction of the reference mode (for example, using a complex regression algorithm) ( The reference area coverage value (overlap area A) between the assignments of the reference measurement values can be obtained for each one (the confidence value of the virtual measurement value is 0. The gate broadcast = fixed one - Γ, then the virtual measurement The reliability of the value is 3 and the following describes the method of determining the confidence indicator: - Before setting the confidence indicator (4), the upper limit (6) is required first. The error of the virtual measurement is the actual amount, the domain The difference between the ^ obtained by the estimation model 2 = the actual measurement (four) the average (10) absolute (four) percentage, that is, all 29 201212140
Error) y^-ym y :100% (53) 然後,可根據公式(53)所定義之誤差與虛擬量測之精 確度規格來指定最大可容許誤差上限(五〇。因此,信心指 標門檻值(係被定義為對應至最大可容許誤差上限(A) 之信心指標值(及/),如第4B圖所示。即, Γ=〇 1 -卢)! dx (Μ) //和σ係定義於公式(39)中;及 ZCerMr=Z,NI+\yx{EL/2)]/ay (55) 其中%係定義於公式(38)中。 以下提出關於的演算法與其運算過程。 整體相似度指標 當應用虛擬量測時,並未有實際量測值可獲得來驗證 虛擬量測值的精確度。因此,以標準化後的複迴歸估計值 &,取代標準化後的實際量測值 ' 來計算信心指標值(及/)。 然而,此種取代可能會造成信心指標值(/?/)的誤差,為了 補償這種情形,本發明提出製程參數的整體相似度指標 (GS7)來幫助判斷虛擬量測的可靠程度。 30 201212140 本發明所提出之OS7的概念是將 測系統之輸人的設備製程參數資料與喊絲當虛擬量 數資料相比較,得到—輸人之製程參2時的所有歷史參 數資料的相似程度指標。 數資料與所有歷史參 本發明可用各種不同的統計距離 離演算法)來量化相似度。馬氏距離^ #法(例如馬氏距 於西元1936年所介紹之統計距離演算P.C. Mahalanobl) 基於變數間的關聯性以辨識和分析不间。此種技術手段係 未4樣本組與已知樣本== 方法’此方法考^資料組間的關聯性並具有尺度不變性Error) y^-ym y :100% (53) Then, the maximum allowable error upper limit can be specified according to the error defined by equation (53) and the accuracy of the virtual measurement (five 〇. Therefore, the confidence threshold value (Defined as the confidence indicator value (and /) corresponding to the maximum allowable error upper bound (A), as shown in Figure 4B. That is, Γ = 〇 1 - Lu)! dx (Μ) // and σ Defined in equation (39); and ZCerMr=Z, NI+\yx{EL/2)]/ay (55) where % is defined in equation (38). The algorithm and its operation process are presented below. Overall similarity indicator When applying virtual measurement, there is no actual measurement available to verify the accuracy of the virtual measurement. Therefore, the confidence index value (and /) is calculated by substituting the normalized complex regression estimate &, instead of the normalized actual measured value '. However, such substitution may result in an error in the confidence indicator value (/?/). To compensate for this situation, the present invention proposes an overall similarity indicator (GS7) of the process parameters to help determine the reliability of the virtual measurement. 30 201212140 The concept of OS7 proposed by the present invention is to compare the data of the process parameters of the input system of the test system with the data of the virtual quantity, and obtain the similarity degree of all the historical parameter data when the input process of the process is entered. index. The number of data and all historical reference inventions can be quantified using a variety of different statistical distance departure algorithms). The Markov distance ^ # method (for example, the Markov's distance from P.C. Mahalanobl introduced in 1936) is based on the correlation between variables to identify and analyze. This technical means is not 4 sample groups and known samples == method 'This method is related to the data group and has scale invariance
Invariant),即不與量測值的大小相關。若資料具有 尚相似度,則所計算出之馬氏距離將會較小。 本發明係利用所計算出之⑽(馬氏距離)的大小,來分 辨新進之製程參數資料是否相似於建模的所有製程㈣。 f計i出小’則表示新進之製程參數資料類似於建 模的製程負料’因此新進之製程參數資料(高相似度)的虛 擬量測值將純準確。反之’若計算出之⑽過大, 示新進之製程參數資料與建模的製程“㈣μ =進之製程參數資料(低相似度)之虛擬量難的準確性的 信心度較低。 推估模式之標準化製程參數資料^ 式(4。)、⑼和^ ·/ ·Ζ~·ί,々·.,ρ。如此,择進 :i:r〇rr^ "中之所有參數均 31 201212140 為〇。接下來計算各個標準化後建模參數之間的相關係數。 ’ 假設第s個參數與第t個參數之間的相關係數為rst,而 • 其中有1愈資料,則 I k j 〜=ΙΓ7(Ζ"· wz,2+...+Zsr〜) (56) 在完成計算各參數間的相關係數之後,可得到相關係 數矩陣如下: 1 rl2 ··· rIp R = (57) r2l 1 ··· r2p • · · · • · · · • · · · ^pi ^p2 …1 假設λ的反矩陣(ir;)係被定義為j,則 a=r! all α2ιInvariant), ie not related to the magnitude of the measured value. If the data is similar, the calculated Mahalanobis distance will be smaller. The present invention utilizes the calculated magnitude of (10) (Machine distance) to distinguish whether the new process parameter data is similar to all of the modeled processes (4). If f is small, it means that the new process parameter data is similar to the process recipe of the model. Therefore, the virtual measurement value of the new process parameter data (high similarity) will be purely accurate. Conversely, if the calculated (10) is too large, the confidence of the new process parameter data and the modeling process “(4) μ = the accuracy of the virtual parameter of the process parameter data (low similarity) is low. Standardized process parameter data ^ (4.), (9) and ^ · / · Ζ ~ · ί, 々 ·., ρ. So, select: i: r 〇 rr ^ " all parameters are 31 201212140 〇 Next, calculate the correlation coefficient between each standardized modeling parameter. ' Assume that the correlation coefficient between the sth parameter and the tth parameter is rst, and • where there is 1 more data, then I kj ~=ΙΓ7 ( Ζ"· wz,2+...+Zsr~) (56) After completing the calculation of the correlation coefficient between the parameters, the correlation coefficient matrix can be obtained as follows: 1 rl2 ··· rIp R = (57) r2l 1 ·· · r2p • · · · · · · · ^pi ^p2 ...1 Assuming that the inverse matrix of λ (ir;) is defined as j, then a=r! all α2ι
。!2 …p 。22 …A p ap2 .· app (58) 如此,第2筆標準化之製程參數資料(猶標準化之樣 版參數資料(zj間的馬氏距離㈤)計算公式如下. ~ λ ~ ^ Μ ) ^ ^zJr~1zx (59) 可得 32 - ^ (60) 201212140 . 而第J筆製程資料之G沿值為蚵今。 在獲得⑽值後,應定義出⑽門根值(哪)。通常, —=G57門檻值為歷史製程參數資料吼(其中“代表 母一,、且歷史製程參數資料)之最大值的2至3倍。 明參照第5圖’鱗示㈣本發明之—實施例之w2w 、隹去的流程不思圖。在歧製程控制(APC)方法中, 仃ッ驟200,以獲取複數組歷史製程參數資料,其中此 =歷史製程參數,貝料係被一製程機台所使用來處理複數 固土史工件。進行步驟21〇,以獲取歷史工件被一量測機 。所量測之複數個歷史量測#料,其中歷史量測資料係分 別根據步驟200所述之歷史製程參數資料所製造之歷史工 件一一對應所量得的實際量測值。進行步驟22〇,以使用 歷史製程參數資料和與歷史製程參數資料一一對應的歷史 量測值並根據-推估演算法來建立一推估模型;使用歷史 製程參數資料和與歷史製程參數資料一一對應的歷史量測 值並根參考演算法來建立一參考模型;及根據一統計 距離演算法並使用歷史製程參數資料來建立一統計距離模 型。進行步驟230,以使R2R控制器能夠根據前述之方程 式(13)至(15)控制前述之製程機台來進行製程批次。 上述實施例可利用電腦程式產品來實現,其可包含儲 . 存有多個扣令之機器可讀取媒體,這些指令可程式化 . (programming)電腦來進行上述實施例中的步驟。機器可讀 33 201212140 =體可為但不限定於軟碟、 唯讀記憶體、隨機存取記 7 >柄、磁光碟、 (EPROM)、電子可抹除二^抹除可程式唯讀記憶體 卡_Cal card)或磁卡;記、光 指令的機H可魏㈣ \體或任何適於儲存電子 電腦程式產品來下载,Α 本表明之實施例也可做為 線之類的連接)之資料崎來接(例如網路連 〜從遠端電腦轉移至請求電腦。 女由目士 較例證性例子,來說明本發明實施例係 有用且具有優勢的。 4知弛例係 選擇具刪片晶圓定期維修(Periodic Maintenance;PM) 循環之⑽機台的™控制為例證性例子,以進行評估) 與比較。以下列舉模擬條件和情節。 1./“系量測機台所量測到的膜厚實際去除量,而 戶係CMP機台執行第A次批次後之晶圓實際膜厚值。 /W,的規格為細±15G埃(A),其巾麵係目標值,稱為 。因而得到: P〇stYk = PreYk~yk (61) yk ~ ARRk * (62) 其中J係第々次批次之實際去除率,而叫代表本例 子中的研磨時間。 在此提出著名的Preston方程式來預測CMP的去除 率,此Preston方程式係由西元1927年的玻璃拋光時間實 驗所發現。根據Preston方程式,材料去除率係被下列因素 所影響:接觸點上之固定壓力(亦稱為機台壓力)分佈;晶 34 201212140 圓與研磨墊間之接觸點的相對速度大小(亦稱為機台轉 速);代表其餘參數之效應的常數,此些參數包含有研磨漿 流體速度、研磨墊性質等。因而被下列方程式所模擬: ,=(4x(^^M^^)x(^^))+_+m2) + — (63). !2 ...p . 22 ...A p ap2 .· app (58) In this way, the second standardization process parameter data (the standard parameter data of the standardization (the Mahalanobis distance between zj (five)) is calculated as follows. ~ λ ~ ^ Μ ) ^ ^ zJr~1zx (59) can get 32 - ^ (60) 201212140 . The G-edge value of the J-th order process data is now. After obtaining the (10) value, the (10) gate root value (which) should be defined. Generally, the -= G57 threshold is 2 to 3 times the maximum value of the historical process parameter data (where "representing the parent one, and the historical process parameter data"). Referring to Figure 5, the scale (4) of the present invention - implementation For example, in the process control (APC) method, step 200 is performed to obtain the complex array history process parameter data, wherein this = historical process parameter, the shell material system is a process machine The stage is used to process the plurality of solid soil history workpieces. Step 21 is performed to obtain the historical workpieces being measured by a measuring machine. The plurality of historical measuring materials are measured, wherein the historical measuring data is respectively according to step 200. The historical workpieces produced by the historical process parameter data correspond to the measured actual measured values one by one. Step 22 is performed to use the historical process parameter data and the historical measurement values corresponding to the historical process parameter data one by one and according to The estimation algorithm is used to establish a prediction model; the historical process parameter data and the historical measurement value corresponding to the historical process parameter data are used to establish a reference model by reference to the algorithm; The distance algorithm is used and the historical process parameter data is used to establish a statistical distance model. Step 230 is performed to enable the R2R controller to control the aforementioned process machine to perform the process batch according to the aforementioned equations (13) to (15). The above embodiments may be implemented by a computer program product, which may include a machine readable medium having a plurality of deductions, and the instructions may be programmed to perform the steps in the above embodiments. Read 33 201212140=Body is not limited to floppy disk, read-only memory, random access memory 7 > handle, magneto-optical disk, (EPROM), electronic erasable two erasable programmable read-only memory card _Cal card) or magnetic card; the machine of the recording and optical command can be Wei (4) \ body or any suitable for storing electronic computer program products to download, Α The embodiment shown in this example can also be used as a connection such as a line) The connection (for example, the network connection - from the remote computer to the requesting computer. The female exemplified example to illustrate the embodiments of the present invention is useful and advantageous. Regular maintenance (Periodi c Maintenance; PM) The TM control of the cycle (10) machine is an illustrative example for evaluation and comparison. The simulation conditions and plots are listed below. 1./ “The actual removal of the film thickness measured by the measurement machine And the actual film thickness of the wafer after the A batch is executed by the household CMP machine. /W, the specification is fine ±15G angstrom (A), and its towel surface is the target value, called . Thus: P〇stYk = PreYk~yk (61) yk ~ ARRk * (62) where J is the actual removal rate of the second batch, and is called the grinding time in this example. The famous Preston equation is proposed here to predict the CMP removal rate. This Preston equation was discovered by the 1927 glass polishing time experiment. According to the Preston equation, the material removal rate is affected by the following factors: the fixed pressure at the contact point (also known as the machine pressure); the relative velocity of the contact point between the circle and the polishing pad at 201212140 (also known as the machine). Table speed); a constant representing the effect of the remaining parameters, including the slurry fluid velocity, the polishing pad properties, and the like. It is thus simulated by the following equation: , =(4x(^^M^^)x(^^))+_+m2) + — (63)
Stress 1、Stress2、Rotspdl、R〇tspd2、Sfuspdl、Sfuspd2、PMl、 PM2和五mW系列示於表2。方程式(63)之小係公稱(Nominal) 去除率’其係被定期維修間(稱為由1變化至600的PU)零 件使用次數的多項式曲線配適所模擬。 4t=(4xl0"6)x(/>t/-l)3-(3.4x10_3)x(Pt/-l)2+(6.9xl0~3)x(/>C/-1)+(1.202xl03) (64) 2. 代表尸〇对灯的預測值,然後,由方程式(61)和 (62),可得 yk = ARRk*uk (65)Stress 1, Stress 2, Rotspdl, R〇tspd 2, Sfuspdl, Sfuspd 2, PM1, PM 2 and five mW series are shown in Table 2. The Nominal removal rate of equation (63) is modeled by a polynomial curve fit of the number of parts used by the regular maintenance room (referred to as PU varying from 1 to 600). 4t=(4xl0"6)x(/>t/-l)3-(3.4x10_3)x(Pt/-l)2+(6.9xl0~3)x(/>C/-1)+( 1.202xl03) (64) 2. Represents the predicted value of the lamp on the corpse, then, by equations (61) and (62), yk = ARRk*uk (65)
PostYk = PreYk -yk= PreYk - ARRk * uk (66) 其中 ARRk = /(Stress, Rotspd, Sfuspd, PU,PU2,PUy) (67) ^係乂兄心的虛擬量測(VM)值,其具有製程參數及(= Stress 1+Stress2) 、 Rotspd {^Rotspdl+Rotspd2) 、 Sfuspd l=Sfuspdl+Sfuspd2)、PU、PU2、PU3。稼两 Stress, Rotspd, Sfuspd, Ft/,尸t/, and Pt/為製程參數的原因係基於Preston方程式、 方程式(63)和(64)。被模擬之製程參數的設定值係列示於表 35 201212140 表2模擬-參數定義與設定值 縮寫 定義 設定值 平均 變異 Error 白噪音所代表隨機誤差 0 300 PM1 由定期維修所引起之機台零件變異而 造成的誤差 0 100 PM2 機台零件變異隨機誤差 0 6 Stress 1 因定期維修期間重新組裝所造成機台 壓力誤差 1000 2000 Stress2 機台壓力的隨機擾動 0 20 Rotspdl 因定期維修期間重新組裝所造成機台 轉速誤差 100 25 Rotspd2 機台轉速的隨機擾動 0 1.2 Sfuspdl 因定期維修期間重新組裝所造成研磨 漿流體速度誤差 100 25 Sfuspd2 研磨漿流體速度的隨機擾動 0 1.2 PreYk 影響第A:次批次之製程結果的前處理 (蝕刻深度)值 3800 2500 3.第k+Ι次批次的控制行動係導自PostYk = PreYk -yk= PreYk - ARRk * uk (66) where ARRk = /(Stress, Rotspd, Sfuspd, PU,PU2,PUy) (67) ^The virtual measurement (VM) value of the brother-in-law, which has Process parameters and (= Stress 1+Stress2), Rotspd {^Rotspdl+Rotspd2), Sfuspd l=Sfuspdl+Sfuspd2), PU, PU2, PU3. The two Stress, Rotspd, Sfuspd, Ft/, corpse t/, and Pt/ process parameters are based on the Preston equation, equations (63) and (64). The set value series of the simulated process parameters are shown in Table 35 201212140 Table 2 Simulation - Parameter definition and set value Abbreviation Definition Setting value Average variation Error White noise represents random error 0 300 PM1 Variation of machine parts caused by regular maintenance Error caused by 0 100 PM2 Machine part variation random error 0 6 Stress 1 Machine pressure error caused by reassembly during regular maintenance 1000 2000 Stress2 Random disturbance of machine pressure 0 20 Rotspdl Machine due to reassembly during regular maintenance Speed error 100 25 Rotspd2 Random disturbance of machine speed 0 1.2 Sfuspdl Slurry fluid velocity error due to reassembly during regular maintenance 100 25 Sfuspd2 Random disturbance of slurry fluid velocity 0 1.2 PreYk Effect A: Batch process results Pre-treatment (etching depth) value of 3800 2500 3. The control action of the k+th batch is derived from
Tgtk+l = P^Yk+l -Tgtp〇stY 砂“1 — 4+1 Λ +1 4.當以一實際量測機台量測時,則當以一虛擬量測模組推估PiwiA時,則 ^Λ+1 = «2,* (λ - ) + (! - «2.Α )vk 其中 (68)(69) (70) 36 (71) 201212140 a2^f(RIk, GSIk)xa] (72)Tgtk+l = P^Yk+l -Tgtp〇stY Sand “1 – 4+1 Λ +1 4. When measuring with a physical measuring machine, when PiwiA is estimated with a virtual measurement module , ^Λ+1 = «2,* (λ - ) + (! - «2.Α )vk where (68)(69) (70) 36 (71) 201212140 a2^f(RIk, GSIk)xa] (72)
^ r 〇, if RIk<RITor GSIk > GSIT ^ 其中 f(Rlk, GSIk) = 4 T^hiiRJk>RITandGSIk<GSITmdiork<C (73)^ r 〇, if RIk<RITor GSIk > GSIT ^ where f(Rlk, GSIk) = 4 T^hiiRJk>RITandGSIk<GSITmdiork<C (73)
1 -/?/, . if RJ, > RJ^ and GSJ, < GSJ^ and for k > C 在此例子中,025。 5. 1個批貨(Lot) = 25個工件,其中第2個工件為抽樣 工件。 6. CpA:係代表製程能力,其方程式如下:1 -/?/, . if RJ, > RJ^ and GSJ, < GSJ^ and for k > C In this example, 025. 5. 1 lot (Lot) = 25 pieces, the second part is the sampled part. 6. CpA: represents the process capability, and its equation is as follows:
Cpk (Process Capabilit)·) = niin UCL-mean(PostY) mean{PostYyLCL 3'Kstd{PostY) ’ 3xstd{PostY) (74) 其中 ί/CZ = 2950 ,LCX = 2650。Cpk (Process Capabilit)·) = niin UCL-mean(PostY) mean{PostYyLCL 3'Kstd{PostY) ' 3xstd{PostY) (74) where ί/CZ = 2950 and LCX = 2650.
ΣI (PostYi - TgtP0StY) / TgtP0SlY I 7* MAPE Process =~-_k-><腦 (75) 8.在樣本 5〇、in、179、251、349 和 503 上,亦加 入由具有平均值(Mean)=0與變異值(Variance)=0.36之 S/wpW所引起之額外的隨機擾動。換言之,在樣本50、 111、179、251、349 和 503 之 奶/2 的結合變異為 1.2 + 〇·36 = 1·56。當具有這些額外的隨機擾動時,相應之j?/和/ 或GS/值可能超過其門檻值。 進行5回合具不同隨機種子的模擬,以評估和比較性 能。對每—回合而言,先分別基於表2的設定值,與方程 式(68)、(64)和(63)來產生女=1〜600之PreA、Γ执、和 的模擬結果。然後,設%= 0·35及吃=0,以計算吣、 並應用方程式(62)、(70)、(69)和(61)來分別計算出5種案 37 201212140 例肀針對卜1和2之九4+1、叫+;和尸。至於是=3 ~ _, 此5種案例之控制機制均不同,並敘述如下。ΣI (PostYi - TgtP0StY) / TgtP0SlY I 7* MAPE Process =~-_k-><brain (75) 8. On samples 5〇, in, 179, 251, 349 and 503, also added by the mean (Mean) = 0 and additional random perturbations caused by S/wpW of Variance = 0.36. In other words, the combined variation of milk/2 in samples 50, 111, 179, 251, 349, and 503 was 1.2 + 〇·36 = 1.56. When these additional random perturbations are present, the corresponding j?/ and / or GS/ values may exceed their threshold values. Five rounds of simulations with different random seeds were performed to evaluate and compare performance. For each round, the simulation results of PreA, Γ, and _ of women = 1 to 600 are generated based on the set values of Table 2 and equations (68), (64), and (63), respectively. Then, set %=0·35 and eat=0 to calculate 吣, and apply equations (62), (70), (69), and (61) to calculate five cases respectively. 2 out of 5 4+1, called +; and corpse. As for =3 ~ _, the control mechanisms of the five cases are different and are described below.
案例1 :使且塵邊量測(Insitu)的R2R 設0=〇.35,並應用方程式(62)、(7〇)、(69)和(61)來分 別計算出无=3〜600之义,_和户⑽心。 宰例2 :無及/的R2R+VM(虑橱詈湔、 設α2 = α,= 0.35,並應用方程式(65)、(71)、(69)、(66) 和(61)來分別計算出々=3〜600之H、%+/、/和 PostYk °Case 1: Let R2R of Insitu be set to 0=〇.35, and use equations (62), (7〇), (69), and (61) to calculate no =3~600 respectively. Righteousness, _ and household (10) heart. Slaughter 2: R2R+VM without and / (α2 = α, = 0.35, and using equations (65), (71), (69), (66) and (61) to calculate separately Exit = 3~600 of H, %+/, / and PostYk °
率例3 :传用/?/的R2R+VM 設%= 0.35。若 或 GS7〉GS7r,則設叫=〇 ;否Rate Example 3: R2R+VM with /?/ is set to %= 0.35. If or GS7>GS7r, set ==〇; No
則設α2,*=私叫。應用方程式(65)、(71)、(69)、(66)和(61) 來分別計算出灸=3〜600之Α,么+1、z/糾、尸⑽ή和/>如3^。 y例4 :柹用(1-兄Π的R2R+VM 設 % = 0.35。若 /?/ < 或 C?57 > GSTj·,則設 α2 = 〇 ;否 則設 ^=(1 一私)ΧΑ。應用方程式(65)、(71)、(69)、(66)和 (61)來分別計算出A = 3〜600之久,4+1、叫+7、p⑽$和 PostYk。Then set α2, *= private call. Apply equations (65), (71), (69), (66), and (61) to calculate moxibustion = 3 to 600, +1, z/correction, corpse (10) ή, and />; . y Example 4: 柹 (1- R2R+VM of the brother-in-law sets % = 0.35. If /?/ < or C?57 > GSTj·, then set α2 = 〇; otherwise set ^=(1 a private) ΧΑ Apply Equations (65), (71), (69), (66), and (61) to calculate A = 3 to 600, 4+1, +7, p(10)$, and PostYk, respectively.
案例s :作南Θ//Π 的R2R+VM 設%= 0.35。應用如方程式(72)和(73)所示之似/(1-似) 切換機制來設定A ;並應用方程式(65)、(71)、(69)、(66) 和(61)來分別計算出灸=3〜600之Λ,&+1、w糾、和Case s: R2R+VM for Nanxun//Π Set %= 0.35. Apply a similar/(1-like) switching mechanism as shown in equations (72) and (73) to set A; and apply equations (65), (71), (69), (66), and (61) to respectively Calculate moxibustion = 3 to 600, & +1, w correction, and
PostYk ° 應用分別如方程式(74)和(75)所示之cPk(製程能力指 數)和 MAPEPr。⑽(Mean Absolute Percentage Error ;相對於製程 38 201212140 目標值之平均絕對誤差),來評估和比較這5種事例的表 現。5種事例之Cpk值和MAPEP_S值係分別列示於表3和 表4。 觀察表3和表4並以事例1為比較基線後明顯可知, 事例2(其沒使用及//GS/)的表現最差。事例3(其使用及//GS/ 過濾掉不良品質的对iUVM)值並設α2 = /?/χαι)係最自然的 方法且具可接受的表現。除回合1之外,事例4(其使用 及//仍/過濾掉不良品質的尸0·^ (VM)值並設α2 = (1 -似)X %) 的平均表現優於事例3。事例5(其使用過濾掉不良 品質的P⑽^ (VM)值並採方程式(73)之切換機制)修 復事例4於回合1的問題;事例5的表現與事例1(使用臨 場實際量測)相當一致。 表3 5種APC方法事例之Cpk值 回合 Ψ Ή 1: In situ 事例2: VM 事你 3: VM+RI ¢#14: VM+ fl-RI) 寧例 5: VM+RI/il-Rll 1-25 1 〜200 1-600 1-25 1-200 1 〜600 1-25 1-200 卜600 卜25 1-200 1-600 1〜25 1~200 1-600 —1 1.09 1.58 1.62 1.14 1.42 1.31 1.14 1.54 1.49 1.12 1.29 1.38 1.14 1.57 1.55 2 1.73 1.89 1.86 1.51 1.64 1.72 1.51 1.73 1.77 1.89 2.00 2.04 1.51 1.71 1.74 3 1.60 1.74 1.77 1.72 1.64 1.77 1.72 1.72 1.80 1.76 1.79 1.87 1.72 1.85 1.90 4 1.43 1.95 1.87 1.45 1.74 1.72 1.45 1.89 1.76 1.51 1.95 1.87 1.45 1.94 1.87 5 1.32 1.85 1.81 1.41 1.78 1.71 1.41 1.83 1.79 1.33 1.77 1.81 1.41 1.89 1.86 _平均 1.43 1.80 1.80 1.45 1.64 1.65 1.45 1.74 1.72 1.52 1.76 1.80 1.45 L79 1.78 表4 5種APC方法事例之MAPEPlOcess值 回合 事例 1: Insitu 事例2: VM 事例 3: VM+RI 事例 4: VM+(1-RI> 事例S: VM+RI/(1-RI) 1~25 1-200 1-600 1〜25 卜200 1400 N25 1-200 1-600 卜25 卜200 1-600 1-25 1 〜200 1^600 -J 1.13% 0.86% 0.86% 1.35% 1.00% 1.07% 1.35% 0.94% 1.00% 2.52% 1.45% 1.15% 1.35% 0.98% 0.97% 2 0.85% 0.75% 0.76% 0.98% 0.87% 0.81% 0.97% 0.84% 0.79% 0.80% 0.72% 0.69% 0.97% 1.05% 0.82% 3 0.84% 0.85% 0.82% 0.94% 0.86% 0.81% 0.94% 0.83% 0.79% 1.03% 0.80% 0.76% 0 94% 0.77% 0.75% 4 0.93% 0.73% 0.76% 1.11% 0.83% 0.83% 1.11% 0.78% 0.82% 1.07% 0.84% 0.79% 1.11% 0.84% 0.79% 5 0.99% 0.75% 0.78% 1.05% 0.78% 0.82% 1.05% 0.77% 0.80% 1.41% 0.83% 0.78% 1.05% 0.77% 0.76% 平均 0.95 % 0.79% 0.80% 1.08% 0.87% 0.87% 1.09% 0.83% 0.84% 1.37% 0.93% 0.83% 1.09% 0.88% 0.82% 5種事例之回合1的模擬結果係如第6A圖至第6E圖 39 201212140 所示,其中繪示有前400個工件。由於在樣本50、111、 179、251、349和503上,加入有由具有平均值(Mean)=0 與變異值(Variance)=0.36之*所引起之額外的隨機 擾動,故產生不良品質的值並繪示於如第6B 圖。如第6B圖所示之這些不良VM值可被和/或GS/所 偵測到。 在此例子中,分別設定和GiS/t1為0.7和9。回合1 之樣本50的似和GS/>GS/r的事例;以及回合1之樣 本349的GS/>G*S7r的事例係被放大並繪示於第7圖和第8 圖。 如第7圖所示’樣本50各種事例的也(VM)值係由 加入至S/ks/^2的額外變異值0.36而產生偏離。由於似</^ 和GS/>GS7r’藉於設定%=〇來過濾掉事例3、4和5的P⑽4 值’而事例2的户㈣匕值仍被採用以α2 = αι=〇35來調整R2R 控制器增益。此過濾掉不良品質之户^对匕值的效果係顯示 在樣本51,其顯示出:由於樣本5〇之户仍^^值太高,事例 2的值被控制器拉下來。至於其他事例,和 的數值無太大不同。 由觀察第8圖可知,樣本349各種事例的值係 由加入至5/7心的額外變異值〇.36而產生偏離。在此事 例中,僅有OS7超過其門檻值。同樣地,事例3、4和5 之不良品質的值會被丟棄,但事例2之不良品質的 值不會被丟棄。因此,如第8圖所示,事例2因採 用不當的办值所產生的R2R控制會產生突然飆高的 201212140 。第7圖和第8圖所示之證據顯示出採用不可作賴 之VM值的結果比完全不用VM的事例差。 ° 如前所述,當遠離目標值或生產製程相對不穩 定時’設% =Λ/χαι。相反地’若PosiA接近目標值或生產^ 程相對穩定時,則設。 雖然本發明已以實施例揭露如上,然其並非用以限a 本發明’任何在此技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内’當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者 準。 為 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1圖係繪示指數加權移動平均(EWMA)R2R控制之 習知模型的方塊示意圖。 第2圖係繪示習知使用虛擬量測之W2W控制機制的 方塊示意圖。PostYk ° applies cPk (process capability index) and MAPEPr as shown in equations (74) and (75), respectively. (10) (Mean Absolute Percentage Error; relative to the process 38 201212140 average absolute error of the target value) to evaluate and compare the performance of these five cases. The Cpk value and the MAPEP_S value of the five cases are shown in Tables 3 and 4, respectively. Observing Tables 3 and 4 and comparing Case 1 with the baseline, it is clear that Case 2 (which was not used and //GS/) performed the worst. Case 3 (which uses and //GS/ filters out bad quality iUVM) values and sets α2 = /?/χαι) is the most natural method and has acceptable performance. Except for Round 1, Case 4 (which uses and/or still/filters out poor quality corpse 0·^ (VM) values and sets α2 = (1 -like) X %) performs better than Case 3. Case 5 (which uses the P(10)^(VM) value that filters out bad quality and uses the switching mechanism of equation (73)) to fix the problem of case 4 in round 1; the performance of case 5 is equivalent to case 1 (using actual field measurement) Consistent. Table 3 Cpk value rounds for five APC method cases Ψ In 1: In situ Case 2: VM Things 3: VM+RI ¢#14: VM+ fl-RI) Example 5: VM+RI/il-Rll 1- 25 1 ~ 200 1-600 1-25 1-200 1 ~ 600 1-25 1-200 卜 600 卜 25 1-200 1-600 1~25 1~200 1-600 —1 1.09 1.58 1.62 1.14 1.42 1.31 1.14 1.54 1.49 1.12 1.29 1.38 1.14 1.57 1.55 2 1.73 1.89 1.86 1.51 1.64 1.72 1.51 1.73 1.77 1.89 2.00 2.04 1.51 1.71 1.74 3 1.60 1.74 1.77 1.72 1.64 1.77 1.72 1.72 1.80 1.76 1.79 1.87 1.72 1.85 1.90 4 1.43 1.95 1.87 1.45 1.74 1.72 1.45 1.89 1.76 1.51 1.95 1.87 1.45 1.94 1.87 5 1.32 1.85 1.81 1.41 1.78 1.71 1.41 1.83 1.79 1.33 1.77 1.81 1.41 1.89 1.86 1.7 Average 1.43 1.80 1.80 1.45 1.64 1.65 1.45 1.74 1.72 1.52 1.76 1.80 1.45 L79 1.78 Table 4 MAPEPlOcess value round of 5 APC method examples Case 1: Insitu Case 2: VM Case 3: VM+RI Case 4: VM+(1-RI> Case S: VM+RI/(1-RI) 1~25 1-200 1-600 1~25 Bu 200 1400 N25 1-200 1-600 Bu 25 Bu 200 1-600 1-25 1 ~200 1^600 -J 1.13% 0.86% 0.86% 1.35% 1.00% 1.07% 1.35% 0.94% 1.00% 2.52% 1.45% 1.15% 1.35% 0.98% 0.97% 2 0.85% 0.75% 0.76% 0.98% 0.87% 0.81% 0.97% 0.84% 0.79% 0.80% 0.72% 0.69% 0.97% 1.05% 0.82% 3 0.84% 0.85% 0.82% 0.94% 0.86% 0.81% 0.94% 0.83% 0.79% 1.03% 0.80% 0.76% 0 94% 0.77% 0.75% 4 0.93% 0.73% 0.76% 1.11% 0.83% 0.83% 1.11% 0.78% 0.82% 1.07% 0.84% 0.79% 1.11% 0.84% 0.79% 5 0.99% 0.75% 0.78% 1.05% 0.78% 0.82% 1.05% 0.77% 0.80% 1.41% 0.83% 0.78% 1.05% 0.77% 0.76% Average 0.95 % 0.79% 0.80% 1.08% 0.87% 0.87% 1.09% 0.83% 0.84% 1.37% 0.93% 0.83% 1.09% 0.88% 0.82% The simulation results of the rounds 1 of the five cases are shown in Fig. 6A to Fig. 6E, Fig. 39201212140, in which the first 400 workpieces are shown. Since additional random perturbations caused by * having a mean value (Mean) = 0 and a variation value (Variance) = 0.36 are added to the samples 50, 111, 179, 251, 349, and 503, poor quality is generated. Values are plotted as shown in Figure 6B. These bad VM values as shown in Figure 6B can be detected by &/or GS/. In this example, the setting and GiS/t1 are respectively 0.7 and 9. The case of the sample 50 of the round 1 and the case of GS/>GS/r; and the case of the GS/>G*S7r of the sample of the round 1 are enlarged and shown in Figs. 7 and 8. As shown in Fig. 7, the (VM) value of the various cases of the sample 50 is deviated by the additional variation value of 0.36 added to S/ks/^2. Since </^ and GS/>GS7r' filter the P(10)4 values of cases 3, 4, and 5 by setting %=〇', the household (four) value of case 2 is still used as α2 = αι=〇35 To adjust the R2R controller gain. The effect of filtering the bad quality of the households on the 匕 value is shown in the sample 51, which shows that the value of the case 2 is pulled down by the controller because the value of the sample is still too high. As for other cases, the values of and are not much different. As can be seen from the observation of Fig. 8, the values of the various cases of the sample 349 are deviated from the additional variation value 〇.36 added to the 5/7 heart. In this case, only OS7 exceeds its threshold. Similarly, the values of the bad qualities of Cases 3, 4, and 5 are discarded, but the value of the bad quality of Case 2 is not discarded. Therefore, as shown in Figure 8, the R2R control generated by Case 2 due to improper use of the value will result in a sudden high 201212140. The evidence shown in Figures 7 and 8 shows that the result of using the unworthy VM value is worse than the case of not using the VM at all. ° As mentioned earlier, when away from the target value or the production process is relatively unstable, set %=Λ/χαι. Conversely, if PosiA is close to the target value or the production process is relatively stable, then it is set. The present invention has been disclosed in the above embodiments, and is not intended to limit the invention to any of the ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the description of the drawings is as follows: Figure 1 shows an exponentially weighted moving average (EWMA) A block diagram of a conventional model of R2R control. Figure 2 is a block diagram showing the conventional W2W control mechanism using virtual measurement.
第3 A圖係繪示依照本發明之一實施例之W2W APC 系統的示意圖。 第3B圖係繪示依照本發明之一實施例之EWMA控制 器的示意圖。 第4A圖為繪示定義應用於本發明之實施例之信心指 標值的示意圖。 第4B圖為繪示依照本發明之實施例定義信心指標門 201212140 楹值的示意圖。 第5圖係繪示依照本發明之一實施例之W2W APC方 法的流程不意圖。 第6A圖至第6E圖係繪示前400個工件於5個事例中 的模擬結果。 第7圖係繪示第45至55個工件於5個事例中的模擬 結果。 第8圖係繪示第344至354個工件於5個事例中的模 擬結果。 製程機台 虛擬量測模組 整體相似度指標模組 【主要元件符號說明 10 :製程機台 30 :虛擬量測模組 100 120 124 20 :量測機台 40 : R2R控制器 110 :量測機台 122 :信心指標模組 130 : R2R控制器 2 00獲取複數組歷史製程參數資料 210獲取複數個歷史量測資料 220建立推估模型、參考模型和統計距離模型 230使R2R控制器能夠控制製程機台來進行製程批次 42Figure 3A is a schematic diagram showing a W2W APC system in accordance with an embodiment of the present invention. Figure 3B is a schematic diagram of an EWMA controller in accordance with an embodiment of the present invention. Figure 4A is a schematic diagram showing the confidence index values defined for use in embodiments of the present invention. FIG. 4B is a schematic diagram showing the definition of the confidence indicator gate 201212140 in accordance with an embodiment of the present invention. Figure 5 is a flow chart showing the flow of the W2W APC method in accordance with an embodiment of the present invention. Figures 6A through 6E show the simulation results of the first 400 workpieces in five cases. Figure 7 shows the simulation results for the 45th to 55th workpieces in 5 cases. Figure 8 shows the simulation results of the 344th to 354th workpieces in 5 cases. Process machine virtual measurement module overall similarity index module [main component symbol description 10: process machine 30: virtual measurement module 100 120 124 20: measurement machine 40: R2R controller 110: measuring machine Station 122: Confidence Index Module 130: R2R Controller 2 00 Acquires Complex Array History Process Parameter Data 210 Acquires Multiple Historical Measurement Data 220 Establishes Estimation Model, Reference Model, and Statistical Distance Model 230 to enable the R2R controller to control the process machine Taiwan to process batches 42
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36976110P | 2010-08-02 | 2010-08-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201212140A true TW201212140A (en) | 2012-03-16 |
TWI427722B TWI427722B (en) | 2014-02-21 |
Family
ID=45527530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100126401A TWI427722B (en) | 2010-08-02 | 2011-07-26 | Advanced process control system and method utilizing virtual metrology with reliance index and computer program product thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US8688256B2 (en) |
JP (1) | JP5292602B2 (en) |
KR (1) | KR101335896B1 (en) |
CN (1) | CN102375413B (en) |
TW (1) | TWI427722B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI476549B (en) * | 2013-07-15 | 2015-03-11 | China Steel Corp | Method and apparatus for identifying a process model |
TWI721408B (en) * | 2019-04-25 | 2021-03-11 | 鴻齡科技股份有限公司 | Device and method for managing production processs, and storage medium |
US12111922B2 (en) | 2020-02-28 | 2024-10-08 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
US12111923B2 (en) | 2019-10-08 | 2024-10-08 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8565910B2 (en) * | 2011-02-04 | 2013-10-22 | International Business Machines Corporation | Manufacturing execution system (MES) including a wafer sampling engine (WSE) for a semiconductor manufacturing process |
US9110465B1 (en) * | 2011-05-04 | 2015-08-18 | Western Digital (Fremont), Llc | Methods for providing asymmetric run to run control of process parameters |
TWI463334B (en) * | 2012-07-20 | 2014-12-01 | Univ Nat Cheng Kung | Baseline predictive maintenance method for target device and computer program product thereof |
US9213322B1 (en) * | 2012-08-16 | 2015-12-15 | Western Digital (Fremont), Llc | Methods for providing run to run process control using a dynamic tuner |
TWI549007B (en) * | 2013-02-07 | 2016-09-11 | 先知科技股份有限公司 | Method for searching and analyzing process parameters and computer program product thereof |
US9164398B2 (en) * | 2013-02-27 | 2015-10-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Overlay metrology method |
CN104078381B (en) * | 2013-03-26 | 2018-07-20 | 中芯国际集成电路制造(上海)有限公司 | A kind of method of measurement platform monitoring figure specification limit setting |
US9070622B2 (en) * | 2013-09-13 | 2015-06-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Systems and methods for similarity-based semiconductor process control |
TWI521360B (en) * | 2014-03-26 | 2016-02-11 | 國立成功大學 | Metrology sampling method and computer program product thereof |
TWI641934B (en) | 2014-08-05 | 2018-11-21 | 聯華電子股份有限公司 | Virtual metrology system and method |
TWI530809B (en) * | 2015-02-12 | 2016-04-21 | 力晶科技股份有限公司 | Quality management system and method thereof |
US20160274570A1 (en) * | 2015-03-18 | 2016-09-22 | United Microelectronics Corp. | Method of virtual metrology using combined models |
TWI539298B (en) * | 2015-05-27 | 2016-06-21 | 國立成功大學 | Metrology sampling method with sampling rate decision scheme and computer program product thereof |
JP6562883B2 (en) | 2016-09-20 | 2019-08-21 | 株式会社東芝 | Characteristic value estimation device and characteristic value estimation method |
TWI614699B (en) * | 2016-12-30 | 2018-02-11 | 國立成功大學 | Product quality prediction method for mass customization |
KR20190098254A (en) * | 2017-02-09 | 2019-08-21 | 미쓰비시덴키 가부시키가이샤 | Defective Factor Estimation Device and Defective Factor Estimation Method |
JP2018160290A (en) * | 2017-03-22 | 2018-10-11 | 株式会社東芝 | Manufacturing method of magnetic recording medium, film deposition system of multilayer film and film deposition adjustment method |
CN111061148A (en) * | 2018-10-17 | 2020-04-24 | 帆宣系统科技股份有限公司 | Intelligent pre-diagnosis and health management system and method |
TWI708197B (en) | 2019-04-26 | 2020-10-21 | 國立成功大學 | Predictive maintenance method for component of production tool and computer program product thereof |
CN111109643B (en) * | 2019-12-12 | 2021-10-22 | 河南中烟工业有限责任公司 | Method and system for controlling water content of cut tobacco of sheet cut tobacco drying |
TWI742709B (en) | 2020-06-04 | 2021-10-11 | 國立成功大學 | Method for predicting occurrence of tool processing event and virtual metrology application and computer program product thereof |
CN113971365A (en) * | 2020-07-23 | 2022-01-25 | 郑芳田 | Virtual measurement method using convolutional neural network |
US12040240B2 (en) | 2021-07-19 | 2024-07-16 | Changxin Memory Technologies, Inc. | Semiconductor manufacturing process control method and apparatus, device, and storage medium |
KR20240106629A (en) * | 2022-12-29 | 2024-07-08 | (주)아이티공간 | Predictive maintenance method of equipment using absolute deviation |
KR20240106626A (en) * | 2022-12-29 | 2024-07-08 | (주)아이티공간 | Predictive maintenance method of equipment using absolute deviation |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4774651A (en) * | 1985-06-03 | 1988-09-27 | Vickers, Incorporated | Power transmission |
US6445963B1 (en) * | 1999-10-04 | 2002-09-03 | Fisher Rosemount Systems, Inc. | Integrated advanced control blocks in process control systems |
US6802045B1 (en) * | 2001-04-19 | 2004-10-05 | Advanced Micro Devices, Inc. | Method and apparatus for incorporating control simulation environment |
US6901300B2 (en) * | 2002-02-07 | 2005-05-31 | Fisher-Rosemount Systems, Inc.. | Adaptation of advanced process control blocks in response to variable process delay |
US7363099B2 (en) * | 2002-06-07 | 2008-04-22 | Cadence Design Systems, Inc. | Integrated circuit metrology |
US7067333B1 (en) * | 2002-06-28 | 2006-06-27 | Advanced Micro Devices, Inc. | Method and apparatus for implementing competing control models |
US7103426B2 (en) * | 2003-01-28 | 2006-09-05 | Rosemount Analytical Inc. | Anticipatory high frequency noise compensation in a distributed process control system |
US8032348B2 (en) * | 2003-09-30 | 2011-10-04 | Tokyo Electron Limited | System and method for using first-principles simulation to facilitate a semiconductor manufacturing process |
US8050900B2 (en) * | 2003-09-30 | 2011-11-01 | Tokyo Electron Limited | System and method for using first-principles simulation to provide virtual sensors that facilitate a semiconductor manufacturing process |
US8036869B2 (en) * | 2003-09-30 | 2011-10-11 | Tokyo Electron Limited | System and method for using first-principles simulation to control a semiconductor manufacturing process via a simulation result or a derived empirical model |
US7451011B2 (en) * | 2004-08-27 | 2008-11-11 | Tokyo Electron Limited | Process control using physical modules and virtual modules |
US20060129257A1 (en) * | 2004-12-13 | 2006-06-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Novel method and apparatus for integrating fault detection and real-time virtual metrology in an advanced process control framework |
US7477960B2 (en) * | 2005-02-16 | 2009-01-13 | Tokyo Electron Limited | Fault detection and classification (FDC) using a run-to-run controller |
US7359759B2 (en) * | 2005-10-31 | 2008-04-15 | Taiwan Semiconductor Manufacturing Company | Method and system for virtual metrology in semiconductor manufacturing |
TWI315054B (en) * | 2006-05-10 | 2009-09-21 | Nat Cheng Kung Universit | Method for evaluating reliance level of a virtual metrology system in product manufacturing |
US7974728B2 (en) * | 2007-05-04 | 2011-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | System for extraction of key process parameters from fault detection classification to enable wafer prediction |
TWI338916B (en) * | 2007-06-08 | 2011-03-11 | Univ Nat Cheng Kung | Dual-phase virtual metrology method |
US7974723B2 (en) * | 2008-03-06 | 2011-07-05 | Applied Materials, Inc. | Yield prediction feedback for controlling an equipment engineering system |
JP5125754B2 (en) * | 2008-05-14 | 2013-01-23 | 国立大学法人広島大学 | PID controller tuning apparatus, PID controller tuning program, and PID controller tuning method |
TWI349867B (en) | 2008-05-20 | 2011-10-01 | Univ Nat Cheng Kung | Server and system and method for automatic virtual metrology |
US8392009B2 (en) * | 2009-03-31 | 2013-03-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Advanced process control with novel sampling policy |
US8108060B2 (en) * | 2009-05-13 | 2012-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for implementing a wafer acceptance test (“WAT”) advanced process control (“APC”) with novel sampling policy and architecture |
US8437870B2 (en) * | 2009-06-05 | 2013-05-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for implementing a virtual metrology advanced process control platform |
US8433434B2 (en) * | 2009-07-09 | 2013-04-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Near non-adaptive virtual metrology and chamber control |
US9002492B2 (en) * | 2010-02-16 | 2015-04-07 | Applied Materials, Inc. | Methods and apparatuses for utilizing adaptive predictive algorithms and determining when to use the adaptive predictive algorithms for virtual metrology |
-
2011
- 2011-07-26 TW TW100126401A patent/TWI427722B/en active
- 2011-07-29 US US13/193,607 patent/US8688256B2/en active Active
- 2011-08-01 CN CN2011102289510A patent/CN102375413B/en active Active
- 2011-08-01 KR KR1020110076666A patent/KR101335896B1/en active IP Right Grant
- 2011-08-01 JP JP2011168707A patent/JP5292602B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI476549B (en) * | 2013-07-15 | 2015-03-11 | China Steel Corp | Method and apparatus for identifying a process model |
TWI721408B (en) * | 2019-04-25 | 2021-03-11 | 鴻齡科技股份有限公司 | Device and method for managing production processs, and storage medium |
US12111923B2 (en) | 2019-10-08 | 2024-10-08 | Nanotronics Imaging, Inc. | Dynamic monitoring and securing of factory processes, equipment and automated systems |
US12111922B2 (en) | 2020-02-28 | 2024-10-08 | Nanotronics Imaging, Inc. | Method, systems and apparatus for intelligently emulating factory control systems and simulating response data |
Also Published As
Publication number | Publication date |
---|---|
CN102375413B (en) | 2013-06-05 |
US8688256B2 (en) | 2014-04-01 |
JP5292602B2 (en) | 2013-09-18 |
CN102375413A (en) | 2012-03-14 |
JP2012033170A (en) | 2012-02-16 |
TWI427722B (en) | 2014-02-21 |
KR101335896B1 (en) | 2014-02-26 |
US20120029662A1 (en) | 2012-02-02 |
KR20120012766A (en) | 2012-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201212140A (en) | Advanced Process Control system and method utilizing Virtual Metrology with Reliance Index and computer program product thereof | |
JP7510436B2 (en) | Model-Based Scheduling for Substrate Processing Systems | |
US9240360B2 (en) | Run-to-run control utilizing virtual metrology in semiconductor manufacturing | |
TW563218B (en) | Adaptive sampling method for improved control in semiconductor manufacturing | |
JP6285494B2 (en) | Measurement sample extraction method with sampling rate determination mechanism and computer program product thereof | |
TWI338916B (en) | Dual-phase virtual metrology method | |
CN108281346A (en) | Method of the feature extraction to control technique end point is carried out from the time series of spectrum | |
TWI315054B (en) | Method for evaluating reliance level of a virtual metrology system in product manufacturing | |
TWI463334B (en) | Baseline predictive maintenance method for target device and computer program product thereof | |
US9829415B2 (en) | Metrology sampling method and computer program product thereof | |
TW200416504A (en) | Dynamic adaptive sampling rate for model prediction | |
US20160056064A1 (en) | Anomaly detection system and method of manufacturing semiconductor device | |
CN102201324B (en) | Method and system for manufacturing semiconductor | |
TWI641934B (en) | Virtual metrology system and method | |
Kao et al. | Run-to-run control utilizing virtual metrology with reliance index | |
Kurz et al. | A sampling decision system for virtual metrology in semiconductor manufacturing | |
TW202245091A (en) | Systems and methods for process chamber health monitoring and diagnostics using virtual model | |
Tin et al. | A realizable overlay virtual metrology system in semiconductor manufacturing: Proposal, challenges and future perspective | |
Lenz et al. | Virtual metrology in semiconductor manufacturing by means of predictive machine learning models | |
Cheng et al. | Applying the automatic virtual metrology system to obtain tube-to-tube control in a PECVD tool | |
US20200091013A1 (en) | Thickness measurement system and method | |
TWI670673B (en) | Ic manufacturing recipe similarity evaluation methods and systems | |
Tilouche et al. | Classification algorithms for virtual metrology | |
TW594842B (en) | System and method for equipment productivity tracking and evaluation | |
US7340318B1 (en) | Method and apparatus for assessing controller performance |