TW201212131A - Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods - Google Patents

Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods Download PDF

Info

Publication number
TW201212131A
TW201212131A TW100121505A TW100121505A TW201212131A TW 201212131 A TW201212131 A TW 201212131A TW 100121505 A TW100121505 A TW 100121505A TW 100121505 A TW100121505 A TW 100121505A TW 201212131 A TW201212131 A TW 201212131A
Authority
TW
Taiwan
Prior art keywords
semiconductor structure
bonding
semiconductor
bonding surface
dielectric material
Prior art date
Application number
TW100121505A
Other languages
Chinese (zh)
Other versions
TWI464810B (en
Inventor
Mariam Sadaka
Ionut Radu
Original Assignee
Soitec Silicon On Insulator
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/837,326 external-priority patent/US8481406B2/en
Priority claimed from FR1055965A external-priority patent/FR2963159B1/en
Application filed by Soitec Silicon On Insulator filed Critical Soitec Silicon On Insulator
Publication of TW201212131A publication Critical patent/TW201212131A/en
Application granted granted Critical
Publication of TWI464810B publication Critical patent/TWI464810B/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

Methods of forming bonded semiconductor structures include temporarily, directly bonding together semiconductor structures, thinning at least one of the semiconductor structures, and subsequently permanently bonding the thinned semiconductor structure to another semiconductor structure. The temporary, direct bond may be established without the use of an adhesive. Bonded semiconductor structures are fabricated in accordance with such methods.

Description

201212131 、 六、發明說明: 【發明所屬之技術領域】 本發明之實施例一般係關於形成經接合之半導體結構之 方法,及使用該等方法形成之所得結構。 . 【先前技術】 兩個或兩個以上半導體結構之三維(3D)整合可對微電子 應用產生許多效益。舉例而言,微電子組件之3〇整合可使 電氣性能及功率消耗得以改善,同時減少器件佔據面積。 〇 參見例如 Ρ· Garr〇U 等人「The Handbook of 3D Integrati〇n」,201212131, VI. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention generally relate to a method of forming a bonded semiconductor structure, and a resultant structure formed using the methods. [Prior Art] Three-dimensional (3D) integration of two or more semiconductor structures can yield many benefits for microelectronic applications. For example, the integration of microelectronic components can improve electrical performance and power consumption while reducing device footprint. 〇 See, for example, Ρ· Garr〇U et al. “The Handbook of 3D Integrati〇n”,

Wiley-VCH (2008)。 可藉由將-半導體晶粒連接至—或多個其他半導體晶粒 (亦即晶粒至晶粒(D2D))、將一半導體晶粒連接至一或多 個半導體晶圓(亦即晶粒至晶圓(D2W))、以及將一半導體 晶圓連接至-或多個其他半導體晶圓(亦即晶圓至晶圓 (W2W)),或其組合來進行半導體結構之3]〇整合。 晶圓可相對較薄且難以用加工 因此’所謂「載體j晶粒或晶 ’該等實際晶粒或晶圓中包括Wiley-VCH (2008). Connecting a semiconductor die to one or more semiconductor wafers (ie, die by attaching - semiconductor die to - or a plurality of other semiconductor die (ie, die to die (D2D)) To wafer (D2W), and to connect a semiconductor wafer to - or a plurality of other semiconductor wafers (ie, wafer to wafer (W2W)), or a combination thereof, to perform a semiconductor structure. Wafers can be relatively thin and difficult to process, so the so-called "carrier j grains or crystals" are included in the actual die or wafer.

通常’個別半導體晶粒或 晶粒或晶圓之設備來處置。 圓可連接至實際晶粒或晶圓 運打之半導體H件的主純件及被動組件。載體晶粒或晶 圓通常不包括待形成之半導體器件的任何主動組件或被動 組件。該等載體晶粒及晶圓在本文中稱作「載體基板」。 ,體基板增加晶粒或晶圓之總厚度且有助於藉由用於加工 曰曰粒或與其連接之晶圓中之主動及/或被動組件的加工設 備處置晶粒或晶圓,該等晶粒或晶圓將包括欲在上面製造 156587.doc 201212131 半導體器件的主動組件及被動組件。包括欲在上面製造半 導體器件之主動組件及/或被動組件的該等晶粒或晶圓, 或在製造製程完成時最終將包括欲在上面製造半導體器件 之主動組件及/或被動組件的該等晶粒或晶圓在本文中稱 為「器件基板」。 通常使用黏著劑將載體基板連接至器件基板上。亦可使 用類似接合方法將一個包括一或多個半導體器件之主動組 件及/或被動組件的晶粒或晶圓固定於另一個亦包括一或 多個半導體器件之主動組件及/或被動組件的晶粒或晶圓 上。 通常用於將一個晶粒或晶圓(例如載體基板)接合至另一 個晶粒或晶圓(例如器件基板)上之黏著劑可在用於在晶粒 或晶圓中製造-或多個半導體器件之主動組件及/或被動 組件的後續加工步驟中存在問題。 【發明内容】 本發明之實施例可提供用於形成半導體結構的方法及結 構’且更蚊言之,用於形成經接合之半導體結構的方法 及結構。提供本發明内容以便以簡化形式引人概念選擇, 該選擇在本發明之實施例的實施方式中進-步描述。本發 明内容不欲識別所主張之㈣物的關鍵特徵或基本特徵: 亦不欲用於限制所主張之標的物的範疇。 在本發明之—些實施例中,形成經接合之半導體 方法包括藉由提供第-半導體結構之接合表面與第 一'體結構之接合表面之間的直接原子鍵或分子鍵使第 156587.doc 201212131 一半導體結構暫時接合至第二半導體結構。可選擇第一半 導體結構,使得在第一半導體結構之第一側上具有主動表 面(active surface)且在第一半導體結構之第二、對置側上 具有背表面(back SUrface),且第一半導體結構包含形成於 ' 基板上方之至少一個器件結構。可藉由自第一半導體結構 、之背表面移除基板之材料而使第一半導體結構之基板變 薄。在使第一半導體結構之基板變薄之後可使第一半導體 ,结構之背表面永久接合至第三半導體結構之表面且同時第 一半導體結構仍然暫時接合至第二半導體結構。隨後可將 第二半導體結構與第一半導體結構分離。 在本發明之其他實施例中,形成半導體結構之方法包括 無需在第-半導體結構之接合表面與第二半導體結構之接 合表面之間使用黏著劑而使第一半導體結構暫時接合至第 二半導體結構。可選擇第一半導體結構,使得在第一半導 體結構之第一側上具有主動表面且在第一半導體結構之第 〇 ='對置侧上具有背表面’且第—半導體結構包含形成於 基板上方之至少一個器件結構。可使第一半導體結構之背 表面永久接合至第二半導體結構之表面,同時第一半導體 、、。構仍然暫¥接合至第二半導體結構。隨後可將第二半導 體結構與第一半導體結構分離。 本發明之實施例亦包含包㈣—半㈣結構及暫時接合 =第+導體結構之第二半導體結構(其間無黏著劑)的半 體、、Ό構<第-半導體結構在第—半導體結構之第一側上 具有主動表面且在第一Ψ ^ jaiL > 弟+導體結構之第二、對置側上具有 156587.doc 201212131 背表面。第一半導體結構包含基板及形成於該基板上方之 至少一個器件結構。第一半導體結構與第二半導體結構之 間的接合能為約1,000 mJ/m2或l,〇〇〇 mJ/m2以下。第三半 導體結構永久接合至第一半導體結構之背表面,且第一半 導體結構與第三半導體結構之間的接合能為至少約^⑼ mJ/m2 ° 【實施方式】 參考以下本發明之實施例的詳細描述及隨附圖式可更充 分瞭解本發明之實施例。 本文提供之圖解並不意謂任何特定材料、器件、系統或 方法的實際視圖’而僅為用於描述本發明實施例之理想化 表述。 不應認為本文所用之任何標題將如以下申請專利範圍及 其=定相等物所界定般關本發明之實施例的料。任何 特疋私題中所述之概念一般適用於整個說明書通篇之其他 部分中。 ' 本文引用許多參考文獻’其全部揭示内容係出於所有目 的以此全文引用的方式併入本文中。另外,不考慮本文中 如何表徵,不承認任何所引用之參考文獻"於本文所主 張之本發明標的物的先前技術。 用,術語「半導體結構」意謂且包括用於形成 圓d ㈣H㈣結構包括’例如晶粒及晶 圓⑽如载體基板及器件基板),以及包括兩 相互二%敕人《 , A兩個以上 ―,准整合之晶粒及/或晶圓的總成或複合結構。半導 156587.doc 201212131 構亦包括完整製造之半導體器件,以及在製造半導體 器件過程令形成之中間結構。 如本文所用,術語「經加工之半導體結構」意謂且包括 • &含:或多㈤至少部分成形t器件結構的任何半導體結 構。經加工之半導體結構為半導體結構之子冑,且所有經 ' 加工之半導體結構均為半導體結構。 如本文所用,術語「經接合之半導體結構」意謂且包括 包含個以上連接在—起之半導體結構的任何結 構' 經接合之半導體結構為半導體結構之子集,且所有經 接合之半導體結構均為半導體結構。此外,包括一或多個 經加工之半導體結構的經接合之半導體結構亦為經加工之 半導體結構。 如本文所用’術語「器件結構」意謂且包括經加工之半 導體結構之任何部分’該經加工之半導體結構包括或界定 欲形成於半導體結構上或半導體結構中之半導體器件的至 〇少、-部分主動組件或被動組件。舉例而言,器件結構包括 積體電路(諸如電晶體、轉換器、電容器、電阻器、導電 線路、導電通孔及導電接觸墊)之主動組件及被動組件。 如本文所用,術語「穿晶圓互連件」或「頂」意謂且 包括延伸穿過第一半導體結構之至少一部分的任何;電通 2,其用於在第—半導體結構與第二半導體結構之間跨越 第一半導體結構與第二半導體社 構之間之界面提供結構性 互連及或電互連。在此項技術中穿晶 他術語,諸如「貫穿料孔」、「貫穿基板通孔」、「== 156587.doc 201212131 ®通孔」,或該等術語之縮寫,諸如「τ TWi通常在一般與半導體結構之大體上仲的主要Γ」。 直的方向上(亦即在與「2」 ::面垂 導體結構。 < 万门上)延伸穿過半 「如::所用’當關於經加工之半導體結構使用 主動表面」意謂且包括經加工之半導體 之: 要表面,該經加工之半導體結構已經加工或待 加工之半導體結構最 在,·工 稱之暴露的主要表面中及/或暴露的主要 表面上形成一或多個器件結構。 =文所用’當關於經加工之半導體結構使 「背表面」意謂且包括經加工之半導體結構的暴露二 表面,絲面在經加工之半導體結構上半導體結構之主動 表面的對置側上。 僻<王動 如本文所用,術語「m_v半導體材料」意謂且包括主要 包含來自週期表第IIIA族之—或多種元素(BA卜GaIn 及T1)及來自週期表族之一或多種元素(N、p、&、Typically, individual semiconductor dies or dies or wafer devices are disposed of. The circle can be connected to the main pure and passive components of the actual die or wafer semiconductor H piece. The carrier grains or wafers typically do not include any active or passive components of the semiconductor device to be formed. The carrier dies and wafers are referred to herein as "carrier substrates." The bulk substrate increases the total thickness of the die or wafer and facilitates handling of the die or wafer by processing equipment for processing the active or/or passive components in the wafer or wafer to which it is attached, The die or wafer will include active and passive components for the fabrication of the 156587.doc 201212131 semiconductor device. Including the dies or wafers on which the active and/or passive components of the semiconductor device are to be fabricated, or which will ultimately include the active and/or passive components of the semiconductor device on which the semiconductor device is to be fabricated, upon completion of the fabrication process The die or wafer is referred to herein as a "device substrate." The carrier substrate is typically attached to the device substrate using an adhesive. A die or method for bonding an active component and/or a passive component including one or more semiconductor devices to another active component and/or passive component of one or more semiconductor devices may also be used using a similar bonding method. On the die or wafer. Adhesives commonly used to bond one die or wafer (eg, a carrier substrate) to another die or wafer (eg, a device substrate) can be fabricated in a die or wafer - or multiple semiconductors There are problems in the subsequent processing steps of the active and/or passive components of the device. SUMMARY OF THE INVENTION Embodiments of the present invention can provide methods and structures for forming semiconductor structures and, more particularly, methods and structures for forming bonded semiconductor structures. The present invention is provided to introduce a conceptual selection in a simplified form, which is further described in the embodiments of the embodiments of the invention. The present invention is not intended to identify key features or essential features of the claimed subject matter. In some embodiments of the invention, the method of forming a bonded semiconductor includes providing a direct atomic or molecular bond between a bonding surface of the first semiconductor structure and a bonding surface of the first 'body structure to make 156587.doc 201212131 A semiconductor structure is temporarily bonded to a second semiconductor structure. The first semiconductor structure can be selected such that it has an active surface on a first side of the first semiconductor structure and a back SUrface on a second, opposite side of the first semiconductor structure, and first The semiconductor structure includes at least one device structure formed over the 'substrate. The substrate of the first semiconductor structure can be thinned by removing the material of the substrate from the back surface of the first semiconductor structure. The first semiconductor, the back surface of the structure can be permanently bonded to the surface of the third semiconductor structure while the substrate of the first semiconductor structure is thinned while the first semiconductor structure is still temporarily bonded to the second semiconductor structure. The second semiconductor structure can then be separated from the first semiconductor structure. In other embodiments of the invention, a method of forming a semiconductor structure includes temporarily bonding a first semiconductor structure to a second semiconductor structure without using an adhesive between a bonding surface of the first semiconductor structure and a bonding surface of the second semiconductor structure . The first semiconductor structure can be selected such that it has an active surface on a first side of the first semiconductor structure and a back surface on the 〇=' opposite side of the first semiconductor structure and the first semiconductor structure comprises a substrate At least one device structure. The back surface of the first semiconductor structure can be permanently bonded to the surface of the second semiconductor structure while the first semiconductor. The structure is still temporarily bonded to the second semiconductor structure. The second semiconductor structure can then be separated from the first semiconductor structure. Embodiments of the present invention also include a package of a (four)-semi-four structure and a second semiconductor structure having a temporary bonding = a +-conductor structure (with no adhesive therebetween), and a structure of the first semiconductor structure. The first side has an active surface and has a 156587.doc 201212131 back surface on the second, opposite side of the first j^ jaiL > The first semiconductor structure includes a substrate and at least one device structure formed over the substrate. The bonding energy between the first semiconductor structure and the second semiconductor structure is about 1,000 mJ/m2 or 1, 〇〇〇mJ/m2 or less. The third semiconductor structure is permanently bonded to the back surface of the first semiconductor structure, and the bonding energy between the first semiconductor structure and the third semiconductor structure is at least about (9) mJ/m2 °. [Embodiment] Referring to the following embodiments of the present invention The detailed description of the embodiments of the invention can be more fully understood from the accompanying drawings. The illustrations provided herein are not intended to be an actual view of any particular material, device, system, or method, and are merely intended to describe an ideal representation of an embodiment of the invention. Any headings used herein are not to be construed as being limited to the embodiments of the invention as defined by the following claims. The concepts described in any special issue are generally applicable throughout the rest of the specification. The entire disclosure of the entire disclosure is hereby incorporated by reference in its entirety in its entirety in its entirety. In addition, the prior art of the subject matter of the present invention, which is hereby incorporated by reference, is hereby incorporated by reference. The term "semiconductor structure" means and includes a structure for forming a circle d (tetra) H (four), including, for example, a die and a wafer (10) such as a carrier substrate and a device substrate, and includes two mutually different ones, two or more A. ―, quasi-integrated die and/or wafer assembly or composite structure. The semi-conductor 156587.doc 201212131 also includes a fully fabricated semiconductor device and an intermediate structure formed during the fabrication of the semiconductor device. As used herein, the term "processed semiconductor structure" means and includes <> contains: or more (five) any semiconductor structure that at least partially shapes the t device structure. The processed semiconductor structure is a sub-structure of the semiconductor structure, and all of the processed semiconductor structures are semiconductor structures. As used herein, the term "bonded semiconductor structure" means and includes any structure comprising more than one semiconductor structure connected thereto. The bonded semiconductor structure is a subset of the semiconductor structure, and all bonded semiconductor structures are Semiconductor structure. In addition, bonded semiconductor structures including one or more processed semiconductor structures are also processed semiconductor structures. As used herein, the term "device structure" means and includes any portion of a processed semiconductor structure. The processed semiconductor structure includes or defines a semiconductor device to be formed on or in a semiconductor structure. Partial active or passive components. For example, the device structure includes active components and passive components of integrated circuits such as transistors, converters, capacitors, resistors, conductive traces, conductive vias, and conductive contact pads. As used herein, the term "through-wafer interconnect" or "top" means and includes any extending through at least a portion of the first semiconductor structure; electrical flux 2 for use in the first semiconductor structure and the second semiconductor structure Structural interconnections or electrical interconnections are provided across the interface between the first semiconductor structure and the second semiconductor organization. In this technology, the terms are used to interpenetrate, such as "through the hole", "through the substrate through hole", "== 156587.doc 201212131 ® through hole", or abbreviations of such terms, such as "τ TWi is usually in general The main main flaw with the semiconductor structure." In the straight direction (that is, in conjunction with the "2" :: face-down conductor structure. < million gates) extending through the half "such as: used" when using the active surface with respect to the processed semiconductor structure" means and includes Processed semiconductor: To a surface, the semiconductor structure that has been processed or to be processed by the processed semiconductor structure forms one or more device structures in the major surface of the exposed surface and/or the exposed major surface. As used herein, with respect to a processed semiconductor structure, the "back surface" means and includes the exposed surface of the processed semiconductor structure, the surface of the filament being on the opposite side of the active surface of the semiconductor structure on the processed semiconductor structure. The term "m_v semiconductor material" as used herein means and includes mainly one or more elements (BA Bu GaIn and T1) from Group IIIA of the periodic table and one or more elements from the periodic table family ( N, p, &,

Sb及Bi)的任何材料。 如本文所用,在關於材料或結構使用時,術語「熱膨脹 係數」意謂在室溫下該材㈣結構之平均線性熱膨 數。 ’、 本發明之實施例包含用於形成半導體結構的方法及結 構’且更特定言之’包括經接合之半導體結構的半導體: 構,及形成該等經接合之半導體結構的方法。本發明之方 法及結構之實施例可用於各種目的,諸如用於3〇整合製程 156587.doc 201212131 及用於形成3D整合式結構。 下文參考圖1A-1E描述本發明之例示實施例。圖ia說明 經加工之半導體結構100。經加工之半導體結構1〇〇可包括 許多器件結構HM。器件結構1G4形成於基板1()6中及/或形 . 成於基板106上方。基板1〇6可包含一或多種材料。該等材 '才4可包含例如半導體材料,諸如矽⑻、鍺(Ge)、m_v半 導體材料等。此外,基板1〇6可包含半導體材料之單晶或 半導體材料之蟲晶層。在其他實施例中,基板ι〇6可包含 一或多種介電材料,諸如氧化物(例如二氧化矽(si〇2)或氧 化鋁(Al2〇3))、氮化物(例如氮化矽(Si3N4)或氮化硼⑺N)) 等。 如圖1A中所示,器件結構1〇4包括複數個Twi 1〇5。各 TWI 105可包含一般為柱狀(例如圓柱狀)之結構,其包含 諸如一或多種金屬或金屬合金之導電材料。各Twi丨〇5亦 可包含多層或多區域結構,其包括例如過渡區、障壁區、 Q 導電區等,該等區各自可包含不同材料。經加工之半導體 結構100包括主動表面108及背表面11〇。經加工之半導體 結構100之背表面110可包含基板1〇6之大體上平坦、暴露 之主要表面。經加工之半導體結構100之主動表面108可包 含介電材料109,諸如氧化物(例如二氧化矽(si〇2)或氧化 鋁(Al2〇3))、氮化物(例如氮化矽(Si3N4)或氮化硼(BN)) 等。 圖1B說明經接合之半導體結構12〇,其可藉由將圖丨八之 經加工之半導體結構100暫時接合至另一半導體結構122而 156587.doc 201212131 形成。半導體結構122可包含例如載體基板。舉例而言, 半導體結構122可包含半導體材料,諸如矽(si)、鍺(Ge)、 πι-ν半導體材料等。半導體結構122視情況可包含半導體 材料之單晶或半導體材料之磊晶層。在其他實施例中,半 導體結構122可包含一或多種介電材料,諸如氧化物(例如 一氧化矽(Si〇2)或氧化鋁(Al2〇3))、氮化物(例如氮化矽 (Si3N4)、氮化领(BN)或氮化鋁(A1N))等。半導體結構I。 了包含經選擇之材料以使所展現之熱膨脹係數至少實質上 等於由圖1A之半導體結構1〇〇所展現之熱膨脹係數(例如在 由半導體結構100所展現之熱膨脹係數的約百分之二十 (20%)之内)。 繼續參考圖1B,可藉由在經加工之半導體結構1〇〇之接 &表面與半導體結構丨22之接合表面之間沿其間的接合界 面126¼供直接原子鍵或分子鍵而使經加工之半導體結構 1〇〇暫時直接接合至半導體結構122。換言之,在經加工之 半導體結構loo(圖1A)與半導體結構122之間無需使用黏著 劑或任何其他中間接合材料可使經加工之半導體結構⑽ 暫時直接接合至半導體結構122。經加工之半導體結構_ 與半導體結構122之間之原子鍵或分子鍵㈣_視經加 工之半導體結構100及半導體結構122各自之材料組成而 定。因此,根據一些實施例’在例如氧化矽及氧化鍺中之 至少-者與矽、鍺、氧化矽及氧化鍺中之至少—者之間可 提供直接原子鍵或分子鍵。 半導體結構100之主 藉助於貫例且在無限制之情況下 156587.doc -10- 201212131 動表面108可包含氧化物材料(例如二氧化矽(Si02)),且半 導體結構122可至少實質上包含相同氧化物材料(例如二氧 化矽(Si02))。在該等實施例中,可使用氧化矽-氧化矽表 面直接接合製程使半導體結構100之主動表面108接合至半 導體結構122之接合表面124。 接合強度可定義為經接合之半導體結構經受外部負載所 致界面分層的能力。接合強度可藉由比接合(表面)能來表 徵。接合能亦可定義為經接合之半導體結構之兩個接合表 面的平均比表面能(指定符號γ)且等於分離兩個經接合之表 面所需能量,亦即,其中Y=l/2nEb,其中η為單位面積上 形成之接合數(接合密度)且Eb為各接合之能量。 量測接合強度之常用方法在恆定楔入條件下使用雙懸臂 樑測試幾何學。將厚度為h之楔形物插在厚度為t之兩個晶 圓之間的接合界面處以使裂縫長度為L之區域解除接合。 隨後使用以下簡單公式計算表面能:Any material of Sb and Bi). As used herein, the term "thermal expansion coefficient" when used in reference to a material or structure means the average linear thermal expansion of the material (four) structure at room temperature. Embodiments of the invention include methods and structures for forming semiconductor structures and, more particularly, semiconductor structures including bonded semiconductor structures, and methods of forming such bonded semiconductor structures. Embodiments of the methods and structures of the present invention can be used for various purposes, such as for the 3〇 integration process 156587.doc 201212131 and for forming a 3D integrated structure. Exemplary embodiments of the present invention are described below with reference to Figures 1A-1E. Figure ia illustrates a processed semiconductor structure 100. The processed semiconductor structure 1 〇〇 can include a plurality of device structures HM. The device structure 1G4 is formed in the substrate 1 (6) and/or formed over the substrate 106. Substrate 1 6 may comprise one or more materials. The material 4 may comprise, for example, a semiconductor material such as germanium (8), germanium (Ge), m_v semiconductor material or the like. Further, the substrate 1〇6 may comprise a single crystal of a semiconductor material or a layer of a semiconductor material of a semiconductor material. In other embodiments, the substrate 〇6 may comprise one or more dielectric materials such as an oxide (eg, cerium (Si 2 ) or aluminum oxide (Al 2 〇 3)), a nitride (eg, tantalum nitride ( Si3N4) or boron nitride (7) N)) and the like. As shown in FIG. 1A, the device structure 1 〇 4 includes a plurality of Twi 1 〇 5. Each TWI 105 can comprise a generally cylindrical (e.g., cylindrical) structure comprising a conductive material such as one or more metals or metal alloys. Each Twi丨〇5 may also comprise a multi-layer or multi-region structure comprising, for example, a transition zone, a barrier zone, a Q-conducting zone, etc., each of which may comprise a different material. The processed semiconductor structure 100 includes an active surface 108 and a back surface 11A. The back surface 110 of the processed semiconductor structure 100 can comprise a substantially planar, exposed major surface of the substrate 1〇6. The active surface 108 of the processed semiconductor structure 100 may comprise a dielectric material 109 such as an oxide (eg, cerium (Si 2 ) or aluminum oxide (Al 2 〇 3)), a nitride (eg, tantalum nitride (Si 3 N 4 )). Or boron nitride (BN)). 1B illustrates a bonded semiconductor structure 12 that can be formed by temporarily bonding the processed semiconductor structure 100 of FIG. 8 to another semiconductor structure 122, 156587.doc 201212131. Semiconductor structure 122 can comprise, for example, a carrier substrate. For example, semiconductor structure 122 can comprise a semiconductor material such as germanium (si), germanium (Ge), πι-ν semiconductor materials, and the like. The semiconductor structure 122 may optionally comprise an epitaxial layer of a single crystal or semiconductor material of a semiconductor material. In other embodiments, the semiconductor structure 122 may comprise one or more dielectric materials such as an oxide (eg, yttrium oxide (Si 〇 2) or aluminum oxide (Al 2 〇 3)), a nitride (eg, tantalum nitride (Si 3 N 4 ) ), nitrided collar (BN) or aluminum nitride (A1N), and the like. Semiconductor structure I. The selected material is included such that the exhibited coefficient of thermal expansion is at least substantially equal to the coefficient of thermal expansion exhibited by the semiconductor structure 1 of FIG. 1A (eg, about twenty percent of the coefficient of thermal expansion exhibited by the semiconductor structure 100) Within (20%)). Continuing to refer to FIG. 1B, the processed semiconductor layer can be processed by direct bonding of atomic bonds or molecular bonds between the bonding surface of the semiconductor structure and the bonding surface of the semiconductor structure 丨22. The semiconductor structure 1 is temporarily bonded directly to the semiconductor structure 122. In other words, the processed semiconductor structure (10) can be temporarily bonded directly to the semiconductor structure 122 without the use of an adhesive or any other intermediate bonding material between the processed semiconductor structure loo (Fig. 1A) and the semiconductor structure 122. The atomic or molecular bond between the processed semiconductor structure and the semiconductor structure (IV) depends on the material composition of each of the semiconductor structure 100 and the semiconductor structure 122 to be processed. Thus, direct atomic or molecular bonds may be provided between at least one of, for example, cerium oxide and cerium oxide and at least one of cerium, lanthanum, cerium oxide and cerium oxide, according to some embodiments. The semiconductor structure 100 is exemplified by a conventional example and without limitation 156587.doc -10- 201212131 The moving surface 108 may comprise an oxide material (eg, cerium oxide (SiO 2 )), and the semiconductor structure 122 may at least substantially comprise The same oxide material (for example, cerium oxide (SiO 2 )). In such embodiments, the active surface 108 of the semiconductor structure 100 can be bonded to the bonding surface 124 of the semiconductor structure 122 using a yttria-yttria surface direct bonding process. Bond strength can be defined as the ability of a bonded semiconductor structure to undergo delamination of the interface caused by an external load. Bond strength can be characterized by specific bonding (surface) energy. Bonding energy can also be defined as the average specific surface energy of the two joined surfaces of the bonded semiconductor structure (designated symbol y) and equal to the energy required to separate the two joined surfaces, ie, where Y = 1 / 2 nEb, where η is the number of joints (joining density) formed per unit area and Eb is the energy of each joint. A common method of measuring joint strength is to test geometry using a double cantilever beam under constant wedge conditions. A wedge of thickness h is inserted at the joint interface between the two crystal circles of thickness t to disengage the region of the crack length L. The surface energy is then calculated using the following simple formula:

3h2Et3 V =- 32I4 關於此常用方法之其他資訊可見於以下出版物: Maszara等人,J. Appl. Phys·, 64,4943 (1988)及Tong等人, Semiconductor Wafer Bonding: Science and technology,第 27 頁,Wiley,New York (1999)。 半導體結構100之主動表面108與半導體結構122之接合 表面124之間所建立之直接暫時接合可產生介於約10 156587.doc • 11· 201212131 mJ/m2與約1,000 mj/m2之間的半導體結構1〇〇之主動表面 108與半導體結構122之接合表面124之間的接合能。更特 定言之,半導體結構100之主動表面1〇8與半導體結構 之接合表面124之間所建立之直接暫時接合可產生介於約 300 mJ/m2與約700 mj/m2之間的半導體結構1〇〇之主動表面 108與半導體結構122之接合表面124之間的接合能。 在一些實施例中,可藉由形成各具有相對光滑表面的經 加工之半導體結構100之主動表面1〇8與半導體結構Η:之 接合表面124,且隨後使主動表面1〇8與接合表面124鄰接 在起且在退火製私期間保持主動表面1〇8與接合表面124 之間的接觸來建立半導體結構100之主動表面1〇8與半導體 結構122之接合表面124之間之直接暫時接合。 舉例而言,可形成均方根表面粗糙度(Rrms)各為約2奈 米(2.0 nm)或2奈米以下、約i奈米〇 〇 奈来以下、 或甚至約四分之一奈米(0·25 nm)或四分之一奈米以下的半 導體結構1〇〇之主動表面108及半導體結構122之接合表面 124。在一些實施例中,可形成均方根表面粗糙度(Rrms) 各介於約四分之一奈米(0_25 nm)與約2奈米(2 〇 nm)之間、 或甚至介於約二分之一奈米(0·5 nm)與約i奈米(1 〇 nm)2 間的半導體結構100之主動表面1〇8及半導體結構122之接 合表面124。 退火製私可包含在燃燒爐中在約攝氏一百度與 約攝氏四百度(4〇〇。〇之間之溫度下加熱半導體結構1〇〇及 半導體結構122並持續約2分鐘(2 min)與約1 5小時(15 hr)之 156587.doc •12· 201212131 間的時間。 如上所述’使用機械拋光製程及化學餘刻製程中之至少 一者,可形成各相對光滑的半導體結構100之主動表面 及半導體結構122之接合表面124。舉例而言,可使用化學 機械拋光(CMP)製程使半導體結構1〇〇之主動表面ι〇8及半 導體結構122之接合表面124中之每一者平坦化及/或降低 其表面粗糙度。 半導體結構1〇〇之主動表面108及半導體結構122之接合 表面124中之至少一者可先經活化以增加半導體結構ι〇〇之 主動表面108與半導體結構122之接合表面ι24之間的接合 能’隨後沿其間之接合界面126建立直接暫時接合。換言 之’可先選擇性地改變半導體結構100之主動表面1〇8及半 導體結構122之接合表面124中之至少一者的表面化學,隨 後再在其間建立暫時直接接合。可改變表面化學,以將半 導體結構1〇〇之主動表面108與半導體結構122之接合表面 124之間之界面處的接合能選擇性地調整至本文所提及之 範圍内。作為非限制性實例,可使用電漿活化製程來活化 半導體結構1〇〇之主動表面108及半導體結構122之接合表 面124中之至少一者。可根據以下條件在電漿腔室中進行 電衆活化處理: -氧氣、氮氣、氬氣或氦氣之氣體流動在〇與1〇〇 sccm 之間(例如50與75 sccm之間); 功率在25與2500瓦特之間(例如150與1000瓦特之間); 壓力在20與200毫托(mTorr)之間(例如50與100毫托之 156587.doc •13· 201212131 間);及 暴露時間在5衫與5分鐘之間(例如〗〇秒與6〇秒之間)。 在一些實施例中,經加工之半導體結構〗〇〇及半導體結 構122中僅一者可經受如上所述之表面活化製程,且另一 者可能不經受表面活化製程,從而選擇性調適經加工之半 導體結構1〇〇與半導體結構122之間的接合能及/或減小在 其間無意中形成永久接合的可能性。 此外,在退火製程之前,可使經加工之半導體結構丨〇〇 之主動表面108及半導體結構122之接合表面124中之至少 一者經受一或多個清潔製程。舉例而言,主動表面1〇8及 接合表面124可經清潔以移除有機污染物及/或離子污染 物。在主動表面108及接合表面124包含並非氧化物但易受 氧化之材料的實施例中,主動表面1〇8及接合表面124可經 受氧化物剝離製程。 作為非限制性實例,可將經加工之半導體結構丨〇〇及半 導體結構122浸泡於去離子(DI)水中,隨後可在約攝氏5〇 度(50 C )與約攝氏80度(80°C )之間之溫度下將其浸洗於 1:1:5氫氧化銨(NH4〇H)、過氧化氫(H2〇2)及水(h2〇)之溶液 中並持續約1分鐘(1 min)與約1 5分鐘(1 5 min)之間。此第一 清潔製程可導致在所處理之表面上形成薄二氧化石夕層。隨 後可將經加工之半導體結構100及半導體結構m送回至去 離子(DI)水浴中,隨後可在約攝氏20度(2〇=c)與約攝氏3〇 度(30 C )之間之溫度下將其浸入1:5〇的氫氟酸(hf)及水 (H2〇)之溶液中並持續約1〇秒(1〇 sec)與約5分鐘(5 min)之 156587.doc -14· 201212131 間。此清潔製程可移除第一清潔製程所形成之任何二氧化 石夕層’以及一些離子污染物。隨後可將經加工之半導體結 構100及半導體結構122送回至去離子(DI)水浴中,隨後可 在約攝氏50度(5(TC )與約攝氏80度(8CTC )之間之溫度下將 • 其浸入1:1:6的鹽酸(HC1)、過氧化氫(h2〇2)及水(h20)之溶 - 液中並持續約1分鐘(i min)與約15分鐘(15 min)之間。此清 潔製程可移除任何殘餘離子污染物(例如金屬離子)。 在一些實施例中,經加工之半導體結構1 〇〇及半導體結3h2Et3 V =- 32I4 Additional information on this common method can be found in the following publications: Maszara et al., J. Appl. Phys., 64, 4943 (1988) and Tong et al., Semiconductor Wafer Bonding: Science and technology, 27th Page, Wiley, New York (1999). The direct temporary bonding established between the active surface 108 of the semiconductor structure 100 and the bonding surface 124 of the semiconductor structure 122 can result in a relationship between about 10 156587.doc • 11·201212131 mJ/m 2 and about 1,000 mj/m 2 . The bonding energy between the active surface 108 of the semiconductor structure and the bonding surface 124 of the semiconductor structure 122. More specifically, the direct temporary bonding between the active surface 1 8 of the semiconductor structure 100 and the bonding surface 124 of the semiconductor structure can result in a semiconductor structure 1 between about 300 mJ/m 2 and about 700 mj/m 2 . The bonding energy between the active surface 108 of the crucible and the bonding surface 124 of the semiconductor structure 122. In some embodiments, the active surface 1 8 of the processed semiconductor structure 100 having a relatively smooth surface and the bonding surface 124 of the semiconductor structure can be formed, and then the active surface 1 8 and the bonding surface 124 can be formed. The direct temporary engagement between the active surface 1 8 of the semiconductor structure 100 and the bonding surface 124 of the semiconductor structure 122 is established adjacent to and maintaining contact between the active surface 1 8 and the bonding surface 124 during annealing. For example, the root mean square surface roughness (Rrms) can be formed to be about 2 nanometers (2.0 nm) or less, about 1 nanometer or less, or even about a quarter of nanometers. The active surface 108 of the semiconductor structure (0. 25 nm) or less than a quarter nanometer and the bonding surface 124 of the semiconductor structure 122. In some embodiments, the root mean square surface roughness (Rrms) may be formed between about one quarter nanometer (0-25 nm) and about 2 nanometers (2 〇 nm), or even about two The active surface 1 〇 8 of the semiconductor structure 100 and the bonding surface 124 of the semiconductor structure 122 between one nanometer (0.5 pm) and about 1 nanometer (1 〇 nm). The annealing system may be included in the furnace to heat the semiconductor structure 1 and the semiconductor structure 122 at a temperature between about 1 celsius and about 4 mils (about 4 Torr) for about 2 minutes (2 min). Approximately 15 hours (15 hr) of the time between 156587.doc •12·201212131. As described above, using at least one of the mechanical polishing process and the chemical remnant process, the active of each relatively smooth semiconductor structure 100 can be formed. The surface and the bonding surface 124 of the semiconductor structure 122. For example, a chemical mechanical polishing (CMP) process can be used to planarize each of the active surface 10 of the semiconductor structure 1 and the bonding surface 124 of the semiconductor structure 122. And/or reducing the surface roughness. At least one of the active surface 108 of the semiconductor structure and the bonding surface 124 of the semiconductor structure 122 may be activated to increase the active surface 108 and the semiconductor structure 122 of the semiconductor structure The bonding between the bonding surfaces ι 24 can then establish a direct temporary bonding along the bonding interface 126 therebetween. In other words, the main body of the semiconductor structure 100 can be selectively changed first. The surface chemistry of at least one of surface 1 〇 8 and bonding surface 124 of semiconductor structure 122 is followed by a temporary direct bond therebetween. Surface chemistry can be altered to bond semiconductor structure 1 active surface 108 to semiconductor structure 122 The bonding at the interface between the bonding surfaces 124 can be selectively adjusted to the extents mentioned herein. As a non-limiting example, a plasma activation process can be used to activate the active surface 108 and semiconductor of the semiconductor structure 1 At least one of the bonding surfaces 124 of the structure 122. The electricity activation process can be performed in the plasma chamber according to the following conditions: - gas of oxygen, nitrogen, argon or helium flows between 〇 and 1 〇〇 sccm (eg between 50 and 75 sccm); power between 25 and 2500 watts (eg between 150 and 1000 watts); pressure between 20 and 200 milliTorr (mTorr) (eg 50 and 100 mTorr 156,587. Doc •13·201212131); and the exposure time is between 5 and 5 minutes (eg between 〇 and 6 〇). In some embodiments, the processed semiconductor structure and semiconductor junction Only one of 122 may be subjected to a surface activation process as described above, and the other may not be subjected to a surface activation process to selectively adapt the bonding energy between the processed semiconductor structure 1 and the semiconductor structure 122 and/or The likelihood of inadvertently forming a permanent bond therebetween is reduced. Further, at least one of the active surface 108 of the processed semiconductor structure and the bonding surface 124 of the semiconductor structure 122 may be subjected to one or both prior to the annealing process. A plurality of cleaning processes. For example, the active surface 1 8 and the bonding surface 124 can be cleaned to remove organic contaminants and/or ionic contaminants. In embodiments where the active surface 108 and the bonding surface 124 comprise a material that is not an oxide but is susceptible to oxidation, the active surface 1 8 and the bonding surface 124 may be subjected to an oxide stripping process. As a non-limiting example, the processed semiconductor structure germanium and semiconductor structure 122 can be immersed in deionized (DI) water, which can then be at about 5 degrees Celsius (50 C) and about 80 degrees Celsius (80 ° C). At a temperature between them, it is immersed in a solution of 1:1:5 ammonium hydroxide (NH4〇H), hydrogen peroxide (H2〇2) and water (h2〇) for about 1 minute (1 min) ) with about 15 minutes (1 5 min). This first cleaning process can result in the formation of a thin layer of dioxide on the treated surface. The processed semiconductor structure 100 and semiconductor structure m can then be returned to a deionized (DI) water bath, which can then be between about 20 degrees Celsius (2 〇 = c) and about 3 degrees Celsius (30 C) Immerse it in a 1:5 氢 solution of hydrofluoric acid (hf) and water (H2 〇) at a temperature for about 1 〇 sec (1 〇 sec) and about 5 minutes (5 min) of 156587.doc -14 · 201212131. This cleaning process removes any of the dioxide layer formed by the first cleaning process and some ionic contaminants. The processed semiconductor structure 100 and semiconductor structure 122 can then be returned to a deionized (DI) water bath, which can then be at a temperature between about 50 degrees Celsius (5 (TC) and about 80 degrees Celsius (8 CTC). • It is immersed in a 1:1:6 solution of hydrochloric acid (HC1), hydrogen peroxide (h2〇2) and water (h20) for about 1 minute (i min) and about 15 minutes (15 min). This cleaning process removes any residual ionic contaminants (eg, metal ions). In some embodiments, the processed semiconductor structure 1 and semiconductor junctions

II 構122中僅一者可經受如上所述之清潔製程,且另一者可 能不經受清潔製程,從而減小在其間無意中形成永久接合 的可能性。 在其他實施例中,使用如下文參考圖3及圖4所述之方法 可在經加工之半導體結構1〇〇之主動表面108與半導體結構 122之接合表面124之間建立直接暫時接合。在參考圖3及 圖4所述之方法中,可在經加工之半導體結構1〇〇之主動表 ❹ 面1 08與半導體結構122之接合表面124之間形成經接合之 界面區域,且該經接合之界面區域經選擇小於經加工之半 導體結構1〇〇之主動表面108與半導體結構122之接合表面 . 124之間沿其間之接合界面〗26的總區域。經接合之界面區 域定義為經加工之半導體結構1〇〇與半導體結構122之間的 區域,其上方存在直接原子鍵及/或分子鍵。 舉例而言,可選擇性形成經加工之半導體結構1〇〇之主 動表面108與半導體結構122之接合表面124之間的經接合 之界面區域以使其小於經加工之半導體結構〗〇〇之主動表 156587.doc 201212131 面108與半導體結構!22之接合表面124之間沿其間之接合 界面126的總區域的約百分之八十、小於總區域的約 百为之五十(50%)、或甚至小於總區域的約百分之二十 (20%) 〇 為減小經加工之半導體結構1〇〇與半導體結構m之間的 經接合之界面區域’可在經加工之半導體結構1〇〇之主動 表面108及半導體結構122之接合表面124中之至少一者中 或至少一者上方形成複數個凹部。舉例而言,圖3說明半 導體結構122上形成之複數個凹部丨3〇。可藉由圖案化半導 體結構122或半導體結構122上提供之材料而形成凹部 130。舉例而言,可在半導體結構122上方形成介電材料 128(例如,諸如二氧化矽(Si〇2)之氧化物材料層),且可使 用遮罩及蝕刻製程使介電材料128圖案化以在介電材料128 中形成凹部130。可使用此項技術中已知之光微影製程在 介電材料128上方形成經圖案化之遮罩層。經圖案化之遮 罩層可包括孔,該等孔所穿過之位置為想要在下層介電材 料128中形成凹部130的位置。隨後,可使用濕式化學蝕刻 製程或乾式反應性離子蝕刻製程使暴露穿過上覆圖案化遮 罩層中之孔之介電材料128經受蝕刻劑。 視情況亦可在經加工之半導體結構1〇〇之主動表面1〇8中 或其上形成凹部(諸如半導體結構122上之凹部13〇)。 參看圖4,在半導體結構122之接合表面124及經加工之 半導體結構100之主動表面108之一者或兩者中或其上形成 凹部130之後,可在經加工之半導體結構1〇〇之主動表面 156587.doc • 16 - 201212131 108與半導體結構122之接合表面丨24之間建立直接暫時接 合,如先前關於圖3所述。如圖4中所示,經加工之半導體 結構100與半導體結構122之間之經接合之界面區域為如下 區域,在其上方介電材料128鄰接經加工之半導體結構1〇〇 之主動表面108(該區域未由凹部230伯據)。Only one of the II structures 122 can be subjected to the cleaning process as described above, and the other may not be subjected to the cleaning process, thereby reducing the likelihood of inadvertently forming a permanent joint therebetween. In other embodiments, a direct temporary bond can be established between the active surface 108 of the processed semiconductor structure 1 and the bonding surface 124 of the semiconductor structure 122 using the method described below with reference to Figures 3 and 4. In the method described with reference to Figures 3 and 4, a bonded interface region can be formed between the active surface 10 08 of the processed semiconductor structure 1 and the bonding surface 124 of the semiconductor structure 122, and the The bonded interface region is selected to be less than the total area of the bonding interface 26 between the active surface 108 of the processed semiconductor structure 1 and the bonding surface 124 of the semiconductor structure 122. The bonded interface region is defined as the region between the processed semiconductor structure 1 and the semiconductor structure 122, with direct atomic bonds and/or molecular bonds present thereon. For example, the bonded interface region between the active surface 108 of the processed semiconductor structure 1 and the bonding surface 124 of the semiconductor structure 122 can be selectively formed to be less than the active semiconductor structure. Table 156587.doc 201212131 Face 108 and semiconductor structure! The joint surface 124 of the joint surface 124 is between about eighty percent of the total area of the joint interface 126, less than about fifty percent (50%) of the total area, or even less than about two percent of the total area. Ten (20%) 减小 is to reduce the bonded interface region between the processed semiconductor structure 1 and the semiconductor structure m, which can be bonded to the active surface 108 and the semiconductor structure 122 of the processed semiconductor structure 1 A plurality of recesses are formed over or at least one of at least one of the surfaces 124. For example, Figure 3 illustrates a plurality of recesses 〇3〇 formed on the semiconductor structure 122. The recess 130 can be formed by patterning the semiconductor structure 122 or the material provided on the semiconductor structure 122. For example, a dielectric material 128 (eg, an oxide material layer such as cerium oxide (Si 2 )) may be formed over the semiconductor structure 122 and the dielectric material 128 may be patterned using a masking and etching process to A recess 130 is formed in the dielectric material 128. A patterned mask layer can be formed over the dielectric material 128 using a photolithography process known in the art. The patterned mask layer can include apertures that pass through locations where it is desired to form recesses 130 in the underlying dielectric material 128. Subsequently, the dielectric material 128 exposed through the holes in the overlying patterned mask layer can be subjected to an etchant using a wet chemical etch process or a dry reactive ion etch process. Optionally, a recess (such as a recess 13 on the semiconductor structure 122) may be formed in or on the active surface 1 8 of the processed semiconductor structure. Referring to FIG. 4, after the recess 130 is formed in or on one or both of the bonding surface 124 of the semiconductor structure 122 and the active surface 108 of the processed semiconductor structure 100, the processed semiconductor structure can be actively activated. Surface 156587.doc • 16 - 201212131 108 establishes a direct temporary engagement with the bonding surface 丨 24 of the semiconductor structure 122 as previously described with respect to FIG. As shown in FIG. 4, the bonded interface region between the processed semiconductor structure 100 and the semiconductor structure 122 is a region over which the dielectric material 128 abuts the active surface 108 of the processed semiconductor structure 1 ( This area is not covered by the recess 230).

如圖4中所不’在-些實施例中,經加工之半導體結構 1〇〇之主動表面108可包括暴露之導電器件特徵1〇4.(例如接 合塾、跡線等)。該等導電器件特徵1G4,可包含例如金屬材 料(亦即金屬或金屬合金)。在該等實施例中,複數個凹部 130可形成圖案,該圖案經選擇以包含導電器件特徵财之 圖案的鏡像。因此,在經加工之半導體結構1〇〇與半導體 結構122之間建立暫時接合時可使凹部⑽與導電器件特徵 104對準4經加卫之半導體結構⑽與半導體結構⑵之 間建立之接合可包含在經加工之半導體結構1〇〇之主動表 面108處圍繞導電器件特徵财的半導體結構m之介電材 料128與經加工之半導體έ士搂彳 导體、構100之介電材料109之間的直 接原子鍵或分子鍵。 在該等實施例中,在接合釗栽 σ I %期間,導電器件特徵104, 之材料可能不會以任何顯签古斗、也企播 7顯者方式與半導體結構122接觸, 因而可防止導電器件特徵1〇4,备 号傲104軋化及/或出現其他形式之特 性降解,而這些現象在其情 度况下在使纟至加工之半導體社 構100與半導體結構122接合時可能發生。 ^ 在其他實施例中,使用如下 卜又參考圖5至圖7所述之方法 可在經加工之半導體結構1〇〇 之主動表面108與半導體結構 156587.doc -17- 201212131 122之接合表面124之間建立直接暫時接合。 在參考圖5至圖7所述之方法中,如參考圖3及圖4所述之 方法中,可在經加工之半導體結構1〇〇之主動表面1〇8與半 導體結構122之接合表面124之間形成經接合之界面區域, 該經接合之界面區域經選擇小於經加卫之半導體結構ι〇〇 之主動表面1〇8與半導體結構122之接合表面Η*之間沿其 間之接合界面126的總區域。此外,如關於圖3及圖4所 述,可在經加工之半導體結構1〇〇之主動表面1〇8及半導體 結構122之接合表面124中之至少一者中或至少一者上方形 成複數個凹部130以減小經加工之半導體結構1〇〇與半導體 、-=構122之間的經接合之界面區域。舉例而言圖$說明半 導體結構122上形成之凹部13〇。如先前關於圖3所述可形 成凹部130。視情況亦可在經加工之半導體結構1〇〇之主動 表面108中或其上形成凹部(諸如半導體結構122上之凹部 130) 〇 如圖5中所示,可在半導體結構122之接合表面124上之 凹部130之外的區域上,在介電材料128上方提供另一介電 材料129。可在形成凹部13〇之前在介電材料128上方提供 介電材料129。換言之,可在半導體結構122之接合表面 124上,在介電材料128上方提供(例如沈積)介電材料^今, 且可穿過介電材料129及至少一部分介電材料128形成複數 個凹部130。在其他實施例中,可在形成凹部13〇之後在介 電材料128上方提供介電材料129。在該等實施例中,可僅 在凹。卩130之外之介電材料us之表面上方而非在凹部“ο 156587.doc -18- 201212131 之内之介電材料128之表面上方提供介電材料129。 在一些實施例中,可選擇包含高溫介電材料之介電材料 128,且可選擇包含低溫介電材料之介電材料129。如本文 所用,術語「低溫介電材料」意謂且包括在加熱至低於攝 &四百度(彻。〇之已知溫度時將經歷降解、分解及放氣中 ' 之至少一者的任何介電材料。如本文所用,術語「高溫介 電材料」意、謂且包括在加熱至攝氏四百度(4〇〇(>c )時不會經 〇 歷任何降解、分解及放氣的任何介電材料。 作為非限制性實例,高溫介電材料128可包含氧化物(例 如二氧化矽(Si〇2)或氧化鋁(A12〇3))或氮化物(例 如氮化矽 (Si3N4)、氮化硼(BN)或氮化鋁(A1N))。 作為非限制性實例,低溫介電材料129可包含正矽酸四 乙醋(TEOS)或聚合物材料。 如圖6中所示,亦可在經加工之半導體結構1〇〇,之主動 表面108之一或多個區域上方提供低溫介電材料129。舉例 ◎ 而口,如先刖所提及,在一些實施例中,經加工之半導體 結構1〇〇之主動表面108可包括暴露之導電器件特徵1〇4,(例 如接CT墊、跡線等)。在該等實施例中,可使用遮罩及蝕 刻製程使低溫介電材料129圖案化以在介電材料129及128 中形成凹邻1 04。可使用此項技術中已知之光微影製程在 介電材料129上方形成經圖案化之遮罩層。經圖案化之遮 罩層可包括孔,該等孔所穿過之位置為想要在下層介電材 料129及128中形成凹部1〇4,的位置。隨後,可使用濕式化 學餘刻製程或乾式反應性離子钱刻製程使暴露穿過上覆圖 156587.doc • 19_ 201212131 案化遮罩層中之孔之介電材料129及128經受蚀刻劑。如圖 6中所示,介電材料129及128不以任何顯著方式覆蓋所暴 露之導電器件特徵104'。 參看圖7’在半導體結構100之主動表面log及半導體妹 構122之接合表面124中之至少一者上方提供低溫介電材料 129之後’且在半導體結構122之接合表面124及經加工之 半導體結構100之主動表面108之一者或兩者中或其上形成 凹部130之後’可在經加工之半導體結構ι〇〇之主動表面 108與半導體結構122之接合表面124之間建立直接暫時接 合’如先前關於圖3所述。如圖7中所示,經加工之半導體 結構100與半導體結構122之間之經接合之界面區域為如下 區域’在其上方介電材料128鄰接經加工之半導體結構1〇〇 之主動表面108(亦即’該區域未由凹部13〇佔據)。 如先關於圖3及圖4所述,複數個凹部丨3〇可形成圖 案,該圖案經選擇以包含導電器件特徵1〇4,之圖案的鏡 像。因此,在經加工之半導體結構1〇〇與半導體結構122之 間建立暫時接合時可使凹部130與導電器件特徵1〇4,對準。 在經加工之半導體結構100與半導體結構122之間建立之接 合可包含在半導體結構122之低溫介電材料129與經加工之 半導體結構1〇〇之低溫介電材料109之間的直接原子鍵或分 子鍵。在該等實施例中,在接合製程期間,導電器件特徵 之材料可能不會以任何顯著方式與半導體結構122接 觸,因而可防止導電器件特徵104,氧化及/或出現其他形式 之特性降解,而這些現象在其他情況下在使經加工之半導 156587.doc •20- 201212131 體結構100與半導體結構122接合時可能發生。 在使半導體結構122暫時接合至經加工之半導體結構1〇〇 時’可將半導體結構122及經加工之半導體結構1 〇〇加熱至 少至已知溫度,在該溫度下低溫介電材料129將經歷降 解、分解及放氣中之至少一者。因此,在接合製程期間低 • 溫介電材料129將降解、分解及/或放氣,其可導致在半導 體結構122與經加工之半導體結構100之間形成比不存在該 降解、分解及/或放氣時將另外產生的接合相對較弱之接 ◎ 合。該較弱之暫時接合可有助於後續分離半導體結構122 與經加工之半導體結構100,如下文進一步詳細描述。 往回參看圖1C,在半導體結構122暫時接合至經加工之 半導體結構100之後,可使經加工之半導體結構1〇〇之基板 106變薄以形成另一半導體結構140。可藉由例如自基板 106之背表面110移除基板1〇6之材料而使基板1〇6變薄。可 使用機械拋光製程及化學蝕刻製程中之至少一者自基板 ❹ 106之背表面11 〇中移除材料。舉例而言,可使用化學機械 拋光(CMP)製程自背表面11〇移除基板ι〇6之材料。 如圖1C中所示,經加工之半導體結構ι〇〇可包括部分地 延伸穿過基板1 06之TWI 105,且可使基板1〇6在TWI 1 05暴 露穿過經加工之半導體結構1〇〇之基板1〇6之背表面11〇之 處變薄。 圖1D說明另一半導體結構16〇,其可藉由在圖1C之半導 體結構140與另一經加工之半導體結構17〇之間形成永久接 合而製造。在半導體結構14〇與半導體結構17〇之間沿其間 156587.doc -21- 201212131 之接合界面所建立之永久接合可產生至少約l,2〇〇 mJ/m2的 半導體結構140與半導體結構170之間的接合能。更特定言 之,在半導體結構140與半導體結構170之間所建立之永久 接合可產生介於約1,600 mJ/m2與約3,000 mJ/m2之間的半 導體結構140與半導體結構170之間的接合能。 經加工之半導體結構170可大體上類似於圖丨八之經加工 之半導體結構100,且可包括在基板176中及/或其上方形 成之許多器件結構1 74,不過經加工之半導體結構17〇之類 型及/或設計可能不同於經加工之半導體結構1〇0之類型及/ 或設計。基板176可包含半導體材料,諸如任何先前關於 圖1A之基板106所述者。經加工之半導體結構170亦可包含 金屬結構175,其可經結構辆接及/或電耦接至半導體結構 140之TWI 105。金屬結構175可包含導電墊、跡線、線路 等一或多者。此外’金屬結構175可包含多層或多區域結 構,其包括例如過渡區、障壁區、導電區等,該等區各自 可包含不同材料。 在一些實施例中’ TWI 105與金屬結構175可包含相同材 料(例如金屬或金屬合金,諸如銅基合金),且在Twi 1 〇 5 與金屬結構175之間可建立金屬-金屬接合。舉例而言,可 使用金屬-金屬熱壓接合製程來形成TWI 1 〇5與金屬結構 1 75之間的接合。在該等方法中,可在半導體結構14〇與經 加工之半導體結構1 70之間施加壓力,同時加熱半導體結 構14 〇及經加工之半導體結構17 〇。壓力及熱之組合導致在 TWI 1 05與金屬結構1 75之間形成金屬_金屬接合。舉例而 356587.doc -22· 201212131 言,可在半導體結構140與經加工之半導體結構ι7〇之間施 加約0.14 MPa與約1.43 MPa之間的壓力,同時將半導體結 構140及經加工之半導體結構17〇加熱至約2〇(rc與約4〇(rc 之間的溫度。為避免接合製程期間發生氧化,可在諸如氮 氣與以體積計介於約百分之四(4%)與約百分之十(1〇%)之 間之氫氣之混合物的還原氛圍中進行接合製程。 在一些實施例中,TWI 105與金屬結構175可包含相同材 料(例如金屬或金屬合金’諸如銅基合金),且在Twi 1 〇5 與金屬結構175之間可建立金屬-金屬接合。舉例而言,可 使用金屬-金屬非熱壓接合製程來形成TWI 105與金屬結構 175之間的接合。在該等方法中,在半導體結構ι4〇與經加 工之半導體結構17 0之間不施加外壓力。此外,可在室溫 及大氣壓下進行非熱壓接合。 另外,可藉由使介電材料178接合至半導體結構1〇〇之基 板106而使半導體結構14〇永久接合至經加工之半導體結構 170。介電材料178可包含(例如)氧化物(例如二氧化石夕 (Si02)或氧化鋁(a12〇3))、氮化物(例如氮化矽(si3N4)、氮 化硼(BN)或氮化鋁(A1N))等。 圖1C之半導體結構140與經加工之半導體結構17〇永久接 合之後’可自圖1D之半導體結構160中移除暫時接合至半 導體結構100之半導體結構122,以形成圖1E中所示之半導 體結構1 80。可藉由例如在半導體結構122與半導體結構 160之其餘部分之間提供機械力而自半導體結構16〇中移除 半導體結構122(圖1D)。 156587.doc •23- 201212131 舉例而言,可在半導體結構122與半導體結構16〇之其餘 部分之間施加旋轉扭矩。為在半導體結構i 22與半導體結 構160之其餘部分之間施加該旋轉扭矩,可將第一夾盤器 件連接至半導體結構122且可將第二夾盤器件連接至半導 體結構160之其餘部分,且可藉由在第一夾盤器件與第二 夹盤器件之間施加旋轉扭矩而在半導體結構122與半導體 結構160之其餘部分之間施加扭矩。在此項技術中已知該 等夾盤器件及設備。 作為其他非限制性實施例,可在半導體結構122與半導 體結構160之其餘部分之間插入葉片,可在半導體結構122 與半導體結構16G之其餘部分之間引導高壓流體喷射,或 可對半導體結構160施加彎曲力以分離半導體結構122與半 導體結構16 0之其餘部分。 在文關於1A至1E戶斤述之本發明實施例+, 在經加工之半導體結構1GG與另-經加工之半導體結構17〇 接合之前即存在於經加工之半導體結構1〇〇中。在本發明 之其他實施例中,在至少一個經加工之半導體結構接合至 至少一個其他經加工之半導體結構之後可穿過至少一個經 加工之半導體結構形成TWI。下文參考圖2A至圖2E描述該 等方法之實例。 圖2A說明經加工之半導體結構2〇〇,其包括許多号件结 構綱。器件結構204形成於基板2〇6中及/或其上方。基板 可包含例如—或多種半導體材料,諸如碎⑼、錯 ㈣、III-V半導體材料等。此外’基板206可包含半導體 156587.doc -24 - 201212131 材料之單晶或半導體材料之蟲晶層。在其他實施例中,基 板206可包含一或多種介電材料’諸如氧化物(例如二氧化 石夕(Si〇2)或氧化铭(Al2〇3))、氮化物(例如氣化石夕(§“ν4)、 氮化硼(BN)或氮化鋁(A1N))等。 如圖2A中所示’在製造過程中此時器件結構204不包括 TWI(諸如圖1A之TWI 105)。經加工之半導體結構2〇〇包括 主動表面208及背表面210。經加工之半導體結構2〇〇之背 表面210可包含基板206之大體上平坦、暴露之主要表面。 經加工之半導體結構200之主動表面208可包含一或多種介 電材料209,諸如氧化物(例如二氧化矽(Si〇2)或氧化銘 (ΑΙζ〇3))、氮化物(例如氮化矽(shN4)、氮化硼(BN)或氮化 鋁(A1N))等。 圖2B §兒明經接合之半導體結構220,其可藉由將圖2a之 經加工之半導體結構200暫時接合至另一半導體結構222而 形成。半導體結構222可包含例如載體基板。舉例而言, 半導體結構222可包含半導體材料,諸如矽(Si)、鍺(Ge)、 III-V半導體材料等。半導體結構222視情況可包含半導體 材料之單晶或半導體材料之磊晶層。在其他實施例中,半 導體結構222可包含一或多種介電材料,諸如氧化物(例如 二氧化石夕(SiOJ或氧化鋁(Αΐβ3))、氮化物(例如氮化石夕 (Si3N4)、氮化獨(bn)或氮化鋁(A1N))等。半導體結構222 可包含經選擇之材料以使所展現之熱膨脹係數至少實質上 等於由圖2A之半導體結構200所展現之熱膨脹係數(例如在 由半導體結構1〇〇所展現之熱膨脹係數的約百分之二 156587.doc -25· 201212131 (20%)之内)。 繼續參考圖2B,可使用本文先前關於使圖1 a之經加工 之半導體結構1〇〇暫時直接接合至圖1B之半導體結構122所 述之任何方法使經加工之半導體結構200暫時直接接合至 半導體結構222。舉例而言,可使用本文關於圖1B及圖3至 圖7所述之任何方法使經加工之半導體結構2〇〇接合至半導 體結構222。 在本發明之其他實施例中,退火製程可包含在燃燒爐中 在約攝氏一百度(100°C )與約攝氏八百度(8〇〇。〇)之間之溫 度下、或在約攝氏一百度(l〇〇°C )與約攝氏四百度(4〇〇°c ) 之間之溫度下加熱半導體結構200及半導體結構222並持續 約2分鐘(2 min)與約15小時(15 h)之間的時間。 如圖2C中所示,在半導體結構222暫時接合至經加工之 半導體結構200之後,可使經加工之半導體結構2〇〇之基板 206變薄以形成另一半導體結構24〇。可藉由例如自基板 206之背表面210移除基板206之材料而使基板2〇6變薄。可 使用機械拋光製程及化學蝕刻製程中之至少一者自基板 206之背表面210中移除材料。舉例而言,可使用化學機械 拋光(CMP)製程自背表面210移除基板206之材料。 圖2D說明另一半導體結構260,其可藉由在圖2C之半導 體結構240與另一經加工之半導體結構27〇之間形成永久接 合而形成。在半導體結構24〇與半導體結構27〇之間沿其間 之接合界面所建立之永久接合可產生至少約1,200 mJ/m2的 半導體結構240與半導體結構270之間的接合能。更特定言 156587.doc -26· 201212131 之,在半導體結構240與半導體結構270之間所建立之永久 接合可產生介於約1,600 mJ/m2與約3,000 mJ/m2之間的半 導體結構240與半導體結構270之間的接合能。 經加工之半導體結構270可大體上類似於圖2A之經加工 之半導體結構200,且可包括在基板276中及/或其上方形 成之許多器件結構274。基板276可包含半導體材料,諸如 任何先前關於圖2A之基板206所述者。經加工之半導體結 構270亦可包含金屬結構275。金屬結構275可包含導電 墊、跡線、線路等一或多者。此外,金屬結構275可包含 多層或多區域結構,其包括例如過渡區、障壁區、導電區 等,該等區各自可包含不同材料。 可藉由使介電材料278(圖2E)接合至半導體結構200之基 板206而使半導體結構240永久接合至經加工之半導體結構 270。介電材料278可包含例如氧化物(例如二氧化矽(Si02) 或氧化鋁(A1203))或氮化物(例如氮化矽(Si3N4)、氮化硼 (BN)、氮化鋁(A1N))等一或多者。 圖2C之半導體結構240與經加工之半導體結構270永久接 合之後,可形成穿過半導體結構200且達至金屬結構275的 TWI 205。舉例而言,可藉由蝕刻或雷射切除而形成穿過 半導體結構200達至金屬結構275之通孔。隨後可使用一或 多種電鍍製程(例如無電極電鍍製程及/或電解電鍍製程)在 通孔内及金屬結構275上及上方提供一或多種導電材料, 從而形成待與金屬結構275結構互連及電互連之TWI 205。 圖2C之半導體結構240與經加工之半導體結構270永久接 156587.doc -27- 201212131 合之後,可自圖2D之半導體結構260中移除暫時接合至半 導體結構200之半導體結構222以形成圖2E中所示之半導體 結構280。可使用例如先前關於圖1E所述之方法自半導體 結構260中移除半導體結構222。 本發明之實施例可用於任何類型半導體結構之3D整合 中,包括晶粒至晶粒(D2D)整合、晶粒至晶圓(D2W)、晶 圓至晶圓(W2W)整合或該等整合製程之組合。 舉例而言,在晶粒至晶圓(D2W)整合製程中,可將經加 工之半導體晶圓暫時直接接合至載體基板晶圓上,如本文 先前關於後續處置及加工經加工之半導體晶圓所描述。隨 後可將經加工之半導體晶圓與載體基板晶圓分離且黏著 (mount)於膠帶上。隨後可將經加工之半導體晶圓切塊以 形成黏著於膠帶上之個別晶粒,接著可在正確操作下對該 等晶粒進行測試。隨後可挑選良裸晶粒(KGD)並使用如本 文先前所述之永久接合方法將其永久接合至另一經加工之 半導體晶圓上。 在晶粒至晶圓(D2W)整合製程之另一實例中,可將良裸 晶粒(KGD)暫時直接接合至載體基板晶圓上,如本文先前 關於後續處置及加工(例如變薄及/或形成TWI)良裸晶粒同 時將其黏著於載體基板晶圓上所描述。隨後可將經加工之 良裸晶粒永久接合至另一經加工之半導體晶圓上,同時載 體基板晶圓仍然接合至位於該另一經加工之半導體晶圓之 對置側上的良裸晶粒上。可將良裸晶粒(及與其永久接合 之另一經加工之半導體晶圓)與載體基板晶圓分離。 156587.doc •28· 201212131 下文描述本發明之非限制性實施例之其他實例。 實施例1 :-種形成經接合之半導體結構的方法,其包 含:藉由提供第-半導體結構之接合表面與第二半導體結 肖之接合表面之㈣直接原子鍵或分子鍵使第—半導體結 構暫時接合至第二半導體結構;選擇第一半導體結構,使 #在第一半導體結構之第-侧上具有主動表面且在第一半 導體結構之第二、對置侧上具有背表面,且第一半導體結 ❹構包含形成於基板上方之至少一個器件結構;藉由自第一 半導體結構之背表面移除基板之材料而使第一半導體結構 之基板變薄;在使第-半導體結構之基板變薄之後可使第 一半導體結構之背表面永久接合至第三半導體結構之表面 且同時第-半導體結構仍然暫時接合至第二半導體結構; 及將第二半導體結構與第一半導體結構分離。 實施例2 :實施例1之方法,甘、Α 貝万法其進一步包含選擇第一半導 體結構以使其包括至少一個穿晶圓互連件,且其中使第一 〇 I導體結構之基板變薄包含使至少—個穿晶圓互連件之至 少一部分穿過第-半導體結構之背表面暴露,且其中使第 一半導體結構之背表面永久接合至第三何體結構之表面 . t含使至少-個穿晶圓互連件與第三半導體結構之至少一 ,個導電結構進行電互連。 實施例3:實施例i之方法,其進一步包含在第一半導體 背表面永久接合至第三半導體結構之表面之後形成 2過第-半導體結構之至少一個穿晶圓互連件且使該至少 一個穿晶圓互連件與第三半導體結構之至少—個導電結構 156587.doc •29- 201212131 進行電互連。 實施例4 :實施例i至3中任— 導體結構暫時接合至第-半導 / ,/、中使第一半 乐—牛導體結構包含盔需在筮坐道 體結構與第二半導體結構之間使用^ 3 *、’、需在第一 +導 α μ + 吏用黏者劑而使第一半導體 ,,〇構暫時接合至第二半導體結構。 實施例5:實施例1至4中任-項之方法,其中提供第一 π體結構之接合表面與第二半導體結構之接合表二 2直接料鍵或好料含提供氧切、氮切及氧化錯 至7者與石夕、鍺、氧化石夕、氮化石夕及氧化錯中之至 少一者之間的直接原子鍵或分子鍵。 •實施例6 :實施例1至5中任-項之方法,其中使第一本 構暫時接合至第二半導體結構包含:形成表面粗縫 各為約2奈米(2㈣或2奈米以下的第-半導體結構之接 合表面及第二半導體結構之接合表面;使第-半導體.構 之接合表面鄰接第二半導體結構之接合表面;及使 導體結構之接合表面與第:半導體結構之接合表面保持在 約攝氏二百度(200t:)與約攝氏四百度(4〇〇〇之間之溫度 下持續約2分鐘(2 min)與約i 5小時(j 5 h)之間的時間。恤又 實施例7 1施例6之方法,其進一步包含在第一半導體 結構之接合表面與第二半導體結構之接合表面之間保持約 0.14 MPa與約1.43 MPa之間的壓力,同時保持第一半導體 結構之接合表面與第二半導體結構之接合表面處於約攝^ 二百度(20(TC )與約攝氏四百度(40〇t )之間之溫度下持續 約2分鐘(2 min)與約15小時(15 h)之間的時間。 I56587.doc -30· 201212131 實施例8 :實施例6或實施例7之方法,其進一步包含在 使第一半導體結構之接合表面鄰接第二半導體結構之接合 表面之前活化第一半導體結構之接合表面及第二半導體結 構之接合表面中之至少一者。 實施例9 :實施例1至5中任一項之方法,其中使第一半 導體結構暫時接合至第二半導體結構包含:在第一半導體 結構之接合表面與第二半導體結構之接合表面之間形成經 接合之界面區域,該經接合之界面區域為第一半導體結構 〇 之接合表面與第二半導體結構之接合表面之間沿其間之接 合界面的總區域的約百分之八十(8〇%)或百分之八十以 下。 實施例10 :實施例9之方法,其進一步包含在第一半導 體結構之接合表面及第二半導體結構之接合表面中之至少 一者中形成複數個凹部。 實施例11 :實施例10之方法,其中在第一半導體結構之 Q 接合表面及第二半導體結構之接合表面中之至少一者中形 成複數個凹部包含:在第一半導體結構之接合表面及第二 半導體結構之接合表面中之一者上形成呈圖案之複數個凹 部;及選擇圖案使纟包含第一+導體結構之接合表面及第As in Figure 4, the active surface 108 of the processed semiconductor structure may include exposed conductive features 1 (e.g., bonding turns, traces, etc.). The electrically conductive device features 1G4 may comprise, for example, a metallic material (i.e., a metal or metal alloy). In such embodiments, the plurality of recesses 130 can be patterned to select a mirror image of the pattern of conductive features. Thus, the recess (10) can be aligned with the conductive feature 104 when the temporary bonding between the processed semiconductor structure 1 and the semiconductor structure 122 is established. The bonding between the cured semiconductor structure (10) and the semiconductor structure (2) can be established. Between the dielectric material 128 of the semiconductor structure m surrounding the conductive device feature at the active surface 108 of the processed semiconductor structure 1 and the processed semiconductor gentleman conductor, the dielectric material 109 of the structure 100 Direct atomic or molecular bond. In these embodiments, the material of the conductive device feature 104 may not be in contact with the semiconductor structure 122 in any manner, such as during the bonding process, thereby preventing conduction. Device features 1 〇 4, 备 104 104 rolled and/or other forms of characteristic degradation, which may occur when the semiconductor structure 100 is bonded to the semiconductor structure 122. In other embodiments, the bonding surface 124 of the active semiconductor structure 1 and the semiconductor structure 156587.doc -17-201212131 122 may be used in the processed semiconductor structure 1 using the method described below with reference to FIGS. 5-7. A direct temporary engagement is established between them. In the method described with reference to FIGS. 5 through 7, as in the method described with reference to FIGS. 3 and 4, the bonding surface 124 of the active surface 1 8 and the semiconductor structure 122 of the processed semiconductor structure 1 can be A bonded interface region is formed therebetween, the bonded interface region being selected to be less than the bonding interface 126 between the active surface 1 8 of the cured semiconductor structure ι and the bonding surface Η* of the semiconductor structure 122 The total area. In addition, as described with respect to FIGS. 3 and 4, a plurality of at least one or at least one of the active surface 1 8 of the processed semiconductor structure 1 and the bonding surface 124 of the semiconductor structure 122 may be formed. The recess 130 reduces the bonded interface region between the processed semiconductor structure 1 and the semiconductor, -= structure 122. For example, Figure $ illustrates a recess 13 形成 formed in the semiconductor structure 122. The recess 130 can be formed as previously described with respect to Figure 3. A recess (such as a recess 130 on the semiconductor structure 122) may also be formed in or on the active surface 108 of the processed semiconductor structure, as appropriate, as shown in FIG. 5, at the bonding surface 124 of the semiconductor structure 122. Another dielectric material 129 is provided over the dielectric material 128 over a region other than the upper recess 130. Dielectric material 129 may be provided over dielectric material 128 prior to forming recess 13〇. In other words, a dielectric material can be provided (eg, deposited) over the dielectric material 128 on the bonding surface 124 of the semiconductor structure 122, and a plurality of recesses 130 can be formed through the dielectric material 129 and at least a portion of the dielectric material 128. . In other embodiments, the dielectric material 129 can be provided over the dielectric material 128 after the recess 13 is formed. In these embodiments, it may be only concave. A dielectric material 129 is provided over the surface of the dielectric material us other than 卩130, rather than over the surface of the dielectric material 128 within the recess "ο 156587.doc -18 - 201212131. In some embodiments, optionally a dielectric material 128 of a high temperature dielectric material, and optionally a dielectric material 129 comprising a low temperature dielectric material. As used herein, the term "low temperature dielectric material" means and includes heating to below & Any of the dielectric materials that will undergo at least one of degradation, decomposition, and deflation at the known temperature. As used herein, the term "high temperature dielectric material" means, and is included, heated to four degrees Celsius. (4 〇〇 (> c ) does not pass through any dielectric material that degrades, decomposes, and deflates. As a non-limiting example, the high temperature dielectric material 128 may comprise an oxide (eg, cerium oxide (Si) 〇 2) or alumina (A12〇3)) or nitride (such as tantalum nitride (Si3N4), boron nitride (BN) or aluminum nitride (A1N)). As a non-limiting example, low temperature dielectric material 129 It may contain TEOS or polymer materials. As shown in FIG. 6, a low temperature dielectric material 129 may also be provided over one or more regions of the active semiconductor structure 1 of the processed semiconductor structure. For example, the port is as mentioned in the prior art, in some implementations. In an example, the active surface 108 of the processed semiconductor structure can include exposed conductive features 1〇4 (eg, CT pads, traces, etc.). In such embodiments, masking and etching can be used. The process patterning the low temperature dielectric material 129 to form a recessed neighbor 104 in the dielectric materials 129 and 128. The patterned mask layer can be formed over the dielectric material 129 using a photolithography process known in the art. The patterned mask layer can include apertures that pass through locations where it is desired to form recesses 1 〇 4 in the underlying dielectric materials 129 and 128. Subsequently, wet chemical remnants can be used. The process or dry reactive ion engraving process exposes the dielectric materials 129 and 128 exposed through the vias in the overlying mask 156587.doc • 19_201212131 to the etchant. As shown in FIG. Materials 129 and 128 do not cover the exposed leads in any significant way Electrical device feature 104'. Referring to Figure 7 'after providing low temperature dielectric material 129 over at least one of active surface log of semiconductor structure 100 and bonding surface 124 of semiconductor structure 122' and at bonding surface 124 of semiconductor structure 122 And after forming the recess 130 in one or both of the active surface 108 of the processed semiconductor structure 100 or between the active surface 108 of the processed semiconductor structure and the bonding surface 124 of the semiconductor structure 122 Establish a direct temporary engagement as previously described with respect to Figure 3. As shown in FIG. 7, the bonded interface region between the processed semiconductor structure 100 and the semiconductor structure 122 is a region over which the dielectric material 128 abuts the active surface 108 of the processed semiconductor structure 1 ( That is, 'this area is not occupied by the recess 13〇). As previously described with respect to Figures 3 and 4, a plurality of recesses 丨3〇 can be patterned to select a mirror image of the pattern of conductive features 1〇4. Thus, the recess 130 can be aligned with the conductive features 1 〇 4 when a temporary bond is established between the processed semiconductor structure 1 〇〇 and the semiconductor structure 122. The bond established between the processed semiconductor structure 100 and the semiconductor structure 122 may comprise a direct atomic bond between the low temperature dielectric material 129 of the semiconductor structure 122 and the low temperature dielectric material 109 of the processed semiconductor structure 1 or Molecular bond. In such embodiments, the material of the features of the conductive features may not contact the semiconductor structure 122 in any significant manner during the bonding process, thereby preventing the conductive device features 104 from oxidizing and/or exhibiting other forms of characteristic degradation. These phenomena may otherwise occur when the machined semiconductor structure 150 is bonded to the processed semiconductor ide 156587.doc • 20-201212131. When the semiconductor structure 122 is temporarily bonded to the processed semiconductor structure 1 'the semiconductor structure 122 and the processed semiconductor structure 1 ' can be heated to at least a known temperature at which the low temperature dielectric material 129 will experience At least one of degradation, decomposition, and deflation. Thus, the low temperature dielectric material 129 will degrade, decompose, and/or deflate during the bonding process, which may result in a formation between the semiconductor structure 122 and the processed semiconductor structure 100 that is less than the degradation, decomposition, and/or When deflation occurs, the resulting joint is relatively weak. This weaker temporary bonding can facilitate subsequent separation of the semiconductor structure 122 from the processed semiconductor structure 100, as described in further detail below. Referring back to FIG. 1C, after the semiconductor structure 122 is temporarily bonded to the processed semiconductor structure 100, the substrate 106 of the processed semiconductor structure 1 can be thinned to form another semiconductor structure 140. The substrate 1〇6 can be thinned by, for example, removing the material of the substrate 1〇6 from the back surface 110 of the substrate 106. Material may be removed from the back surface 11 of the substrate ❹ 106 using at least one of a mechanical polishing process and a chemical etching process. For example, the material of the substrate ι 6 can be removed from the back surface 11 using a chemical mechanical polishing (CMP) process. As shown in FIG. 1C, the processed semiconductor structure ι can include a TWI 105 that extends partially through the substrate 106, and can expose the substrate 1〇6 through the processed semiconductor structure at TWI 105. The back surface 11〇 of the substrate 1〇6 is thinned. Figure 1D illustrates another semiconductor structure 16A that can be fabricated by forming a permanent bond between the semiconductor structure 140 of Figure 1C and another processed semiconductor structure 17A. The permanent bond established between the semiconductor structure 14A and the semiconductor structure 17A along the bonding interface therebetween 156587.doc -21 - 201212131 can produce at least about 1,2 〇〇 mJ/m 2 of the semiconductor structure 140 and the semiconductor structure 170 The bonding energy between the two. More specifically, the permanent bond established between semiconductor structure 140 and semiconductor structure 170 can result in bonding between semiconductor structure 140 and semiconductor structure 170 between about 1,600 mJ/m2 and about 3,000 mJ/m2. . The processed semiconductor structure 170 can be substantially similar to the processed semiconductor structure 100 of FIG. 8 and can include a plurality of device structures 1 74 formed in and/or over the substrate 176, although the processed semiconductor structure 17〇 The type and/or design may differ from the type and/or design of the processed semiconductor structure 101. Substrate 176 can comprise a semiconductor material such as any of those previously described with respect to substrate 106 of Figure 1A. The fabricated semiconductor structure 170 can also include a metal structure 175 that can be structurally coupled and/or electrically coupled to the TWI 105 of the semiconductor structure 140. Metal structure 175 can include one or more of conductive pads, traces, lines, and the like. Further, the metal structure 175 can comprise a multi-layer or multi-region structure including, for example, a transition zone, a barrier zone, a conductive zone, and the like, each of which can comprise a different material. In some embodiments 'TWI 105 and metal structure 175 may comprise the same material (e.g., a metal or metal alloy, such as a copper-based alloy), and a metal-to-metal bond may be established between Twi 1 〇 5 and metal structure 175. For example, a metal-to-metal thermocompression bonding process can be used to form the bond between TWI 1 〇 5 and metal structure 1 75. In such methods, pressure can be applied between the semiconductor structure 14 and the processed semiconductor structure 170 while heating the semiconductor structure 14 and the processed semiconductor structure 17 〇. The combination of pressure and heat results in the formation of a metal-metal bond between the TWI 105 and the metal structure 1 75. For example, 356587.doc -22 201212131, a pressure between about 0.14 MPa and about 1.43 MPa can be applied between the semiconductor structure 140 and the processed semiconductor structure ι7 , while the semiconductor structure 140 and the processed semiconductor structure are 17〇 is heated to about 2 〇 (rc and about 4 〇 (temperature between rc. To avoid oxidation during the bonding process, it can be between about 4% (4%) and about 100% by volume, such as nitrogen) The bonding process is performed in a reducing atmosphere of a mixture of hydrogen gas between ten (1%). In some embodiments, the TWI 105 and the metal structure 175 may comprise the same material (eg, a metal or metal alloy such as a copper-based alloy). And a metal-to-metal bond can be established between Twi 1 〇 5 and metal structure 175. For example, a metal-metal non-thermal bonding process can be used to form the bond between TWI 105 and metal structure 175. In the method, no external pressure is applied between the semiconductor structure ι4 〇 and the processed semiconductor structure 170. Further, non-thermobonding can be performed at room temperature and atmospheric pressure. Alternatively, the dielectric material 178 can be bonded to half The substrate structure 106 of the conductor structure is used to permanently bond the semiconductor structure 14 to the processed semiconductor structure 170. The dielectric material 178 may comprise, for example, an oxide (eg, SiO 2 or alumina (a12 二). 3)), nitride (such as tantalum nitride (si3N4), boron nitride (BN) or aluminum nitride (A1N)), etc. After the semiconductor structure 140 of FIG. 1C is permanently bonded to the processed semiconductor structure 17 The semiconductor structure 122 temporarily bonded to the semiconductor structure 100 is removed from the semiconductor structure 160 of FIG. 1D to form the semiconductor structure 180 shown in FIG. 1E. For example, by the semiconductor structure 122 and the rest of the semiconductor structure 160 A mechanical force is applied to remove the semiconductor structure 122 from the semiconductor structure 16 (Fig. 1D). 156587.doc • 23- 201212131 For example, a rotational torque can be applied between the semiconductor structure 122 and the rest of the semiconductor structure 16〇 To apply the rotational torque between the semiconductor structure i 22 and the remainder of the semiconductor structure 160, the first chuck device can be connected to the semiconductor structure 122 and the second chuck device can be connected to the half The remainder of the body structure 160, and torque can be applied between the semiconductor structure 122 and the remainder of the semiconductor structure 160 by applying a rotational torque between the first chuck device and the second chuck device. In the art Such chuck devices and devices are known. As other non-limiting embodiments, blades may be interposed between semiconductor structure 122 and the remainder of semiconductor structure 160, and may be guided between semiconductor structure 122 and the remainder of semiconductor structure 16G. The high pressure fluid is ejected, or a bending force can be applied to the semiconductor structure 160 to separate the semiconductor structure 122 from the remainder of the semiconductor structure 160. Embodiments of the invention described herein with respect to 1A to 1E are present in the processed semiconductor structure 1 before the processed semiconductor structure 1GG is bonded to the other-processed semiconductor structure 17A. In other embodiments of the invention, the TWI may be formed through at least one of the processed semiconductor structures after the at least one processed semiconductor structure is bonded to the at least one other processed semiconductor structure. Examples of such methods are described below with reference to Figures 2A through 2E. Figure 2A illustrates a processed semiconductor structure 2A comprising a plurality of horn structures. Device structure 204 is formed in and/or over substrate 2〇6. The substrate may comprise, for example, - or a plurality of semiconductor materials such as a ground (9), a wrong (tetra), a III-V semiconductor material, and the like. Further, the substrate 206 may comprise a layer of single crystal or semiconductor material of a semiconductor 156587.doc -24 - 201212131 material. In other embodiments, the substrate 206 may comprise one or more dielectric materials such as oxides (eg, SiO 2 or Al 2 〇 3), nitrides (eg, gasification fossils (§) "ν4), boron nitride (BN) or aluminum nitride (A1N), etc. As shown in Figure 2A, device structure 204 does not include TWI (such as TWI 105 of Figure 1A) during fabrication. The semiconductor structure 2 includes an active surface 208 and a back surface 210. The back surface 210 of the processed semiconductor structure 2 can comprise a substantially planar, exposed major surface of the substrate 206. The active surface of the processed semiconductor structure 200 208 may comprise one or more dielectric materials 209 such as an oxide (eg, cerium oxide (Si〇2) or oxidized (ΑΙζ〇3)), a nitride (eg, tantalum nitride (shN4), boron nitride (BN) Or aluminum nitride (A1N), etc. Figure 2B shows a bonded semiconductor structure 220 that can be formed by temporarily bonding the processed semiconductor structure 200 of Figure 2a to another semiconductor structure 222. 222 can comprise, for example, a carrier substrate. For example, semiconductor structure 222 Semiconductor materials may be included, such as germanium (Si), germanium (Ge), III-V semiconductor materials, etc. The semiconductor structure 222 may optionally comprise a single crystal or epitaxial layer of a semiconductor material of the semiconductor material. In other embodiments, the semiconductor Structure 222 can comprise one or more dielectric materials such as oxides (eg, SiO2 or SiO 2 or Zn 2 ), nitrides (eg, Zn (N3N4), Nib (bn), or nitrided. Aluminum (A1N)), etc. The semiconductor structure 222 can comprise a selected material such that the exhibited coefficient of thermal expansion is at least substantially equal to the coefficient of thermal expansion exhibited by the semiconductor structure 200 of FIG. 2A (eg, as exhibited by the semiconductor structure 1) The thermal expansion coefficient is about 156587.doc -25·201212131 (20%). With continued reference to FIG. 2B, the prior art may be used to temporarily bond the processed semiconductor structure 1 of FIG. 1a. Any of the methods described for semiconductor structure 122 of FIG. 1B temporarily bond the processed semiconductor structure 200 directly to semiconductor structure 222. For example, as described herein with respect to FIG. 1B and FIGS. 3-7 Any method of bonding the processed semiconductor structure 2 to the semiconductor structure 222. In other embodiments of the invention, the annealing process can be included in the furnace at about one hundred degrees Celsius (100 ° C) and about eight degrees Celsius Heating the semiconductor structure 200 and the semiconductor structure at a temperature between (8 〇〇. 〇) or at a temperature between about 10,000 Celsius (10 ° C) and about 40 ° C (4 ° ° C) 222 and lasts between about 2 minutes (2 minutes) and about 15 hours (15 hours). As shown in FIG. 2C, after the semiconductor structure 222 is temporarily bonded to the processed semiconductor structure 200, the substrate 206 of the processed semiconductor structure 2 can be thinned to form another semiconductor structure 24A. The substrate 2〇6 can be thinned by, for example, removing the material of the substrate 206 from the back surface 210 of the substrate 206. Material may be removed from the back surface 210 of the substrate 206 using at least one of a mechanical polishing process and a chemical etching process. For example, the material of substrate 206 can be removed from back surface 210 using a chemical mechanical polishing (CMP) process. Figure 2D illustrates another semiconductor structure 260 that may be formed by forming a permanent bond between the semiconductor structure 240 of Figure 2C and another processed semiconductor structure 27A. The permanent bond established between the semiconductor structure 24A and the semiconductor structure 27A along the bonding interface therebetween can produce a bonding energy between the semiconductor structure 240 and the semiconductor structure 270 of at least about 1,200 mJ/m2. More specifically, 156587. doc -26 201212131, permanent bonding between semiconductor structure 240 and semiconductor structure 270 can result in a semiconductor structure 240 between about 1,600 mJ/m2 and about 3,000 mJ/m2. Bonding energy with the semiconductor structure 270. The processed semiconductor structure 270 can be substantially similar to the processed semiconductor structure 200 of Figure 2A and can include a plurality of device structures 274 that are squared in and/or on the substrate 276. Substrate 276 can comprise a semiconductor material, such as any of those previously described with respect to substrate 206 of Figure 2A. The processed semiconductor structure 270 can also include a metal structure 275. Metal structure 275 can include one or more of conductive pads, traces, traces, and the like. In addition, metal structure 275 can comprise a multi-layer or multi-region structure including, for example, a transition zone, a barrier zone, a conductive zone, and the like, each of which can comprise a different material. The semiconductor structure 240 can be permanently bonded to the processed semiconductor structure 270 by bonding a dielectric material 278 (Fig. 2E) to the substrate 206 of the semiconductor structure 200. The dielectric material 278 can comprise, for example, an oxide (eg, cerium oxide (SiO 2 ) or aluminum oxide (A1203)) or a nitride (eg, tantalum nitride (Si 3 N 4 ), boron nitride (BN), aluminum nitride (A1N)). Wait for one or more. After the semiconductor structure 240 of FIG. 2C is permanently bonded to the processed semiconductor structure 270, a TWI 205 can be formed through the semiconductor structure 200 and up to the metal structure 275. For example, vias through the semiconductor structure 200 to the metal structures 275 can be formed by etching or laser ablation. One or more electrically conductive materials may then be provided in and through the vias and metal structures 275 using one or more electroplating processes (eg, an electroless plating process and/or an electroplating process) to form a structure to be interconnected with the metal structures 275 Electrically interconnected TWI 205. After the semiconductor structure 240 of FIG. 2C is permanently coupled to the processed semiconductor structure 270, 156587.doc -27-201212131, the semiconductor structure 222 temporarily bonded to the semiconductor structure 200 can be removed from the semiconductor structure 260 of FIG. 2D to form FIG. 2E. The semiconductor structure 280 is shown. The semiconductor structure 222 can be removed from the semiconductor structure 260 using, for example, the method previously described with respect to FIG. 1E. Embodiments of the present invention can be used in 3D integration of any type of semiconductor structure, including die-to-die (D2D) integration, die-to-wafer (D2W), wafer-to-wafer (W2W) integration, or such integration processes The combination. For example, in a die-to-wafer (D2W) integration process, a processed semiconductor wafer can be temporarily bonded directly to a carrier substrate wafer, as previously described herein for subsequent processing and processing of processed semiconductor wafers. description. The processed semiconductor wafer can then be separated from the carrier substrate wafer and mounted on the tape. The processed semiconductor wafer can then be diced to form individual dies that are adhered to the tape, which can then be tested under proper operation. The good die (KGD) can then be selected and permanently bonded to another processed semiconductor wafer using a permanent bonding process as previously described herein. In another example of a die-to-wafer (D2W) integration process, a good bare die (KGD) can be temporarily bonded directly to a carrier substrate wafer, as previously described herein for subsequent handling and processing (eg, thinning and/or Or forming a TWI) good bare die while bonding it to the carrier substrate wafer as described. The processed good die can then be permanently bonded to another processed semiconductor wafer while the carrier substrate wafer is still bonded to the good die on the opposite side of the other processed semiconductor wafer. . The good die (and another processed semiconductor wafer that is permanently bonded to it) can be separated from the carrier substrate wafer. 156587.doc • 28· 201212131 Other examples of non-limiting embodiments of the invention are described below. Embodiment 1 : A method of forming a bonded semiconductor structure, comprising: forming a first semiconductor structure by providing (iv) direct atomic bonds or molecular bonds of a bonding surface of the first semiconductor structure and a bonding surface of the second semiconductor junction Temporarily bonding to the second semiconductor structure; selecting the first semiconductor structure such that # has an active surface on a first side of the first semiconductor structure and a back surface on a second, opposite side of the first semiconductor structure, and first The semiconductor junction structure includes at least one device structure formed over the substrate; the substrate of the first semiconductor structure is thinned by removing the material of the substrate from the back surface of the first semiconductor structure; and the substrate of the first semiconductor structure is changed After thinning, the back surface of the first semiconductor structure can be permanently bonded to the surface of the third semiconductor structure while the first semiconductor structure is still temporarily bonded to the second semiconductor structure; and the second semiconductor structure is separated from the first semiconductor structure. Embodiment 2: The method of Embodiment 1, the method further comprising: selecting the first semiconductor structure to include at least one through-wafer interconnect, and wherein the substrate of the first 〇I conductor structure is thinned The method includes exposing at least a portion of at least one through-wafer interconnect through a back surface of the first semiconductor structure, and wherein the back surface of the first semiconductor structure is permanently bonded to a surface of the third body structure. - a through-wafer interconnect and at least one of the third semiconductor structures, the conductive structures being electrically interconnected. Embodiment 3: The method of embodiment i, further comprising forming at least one through-wafer interconnect of the first-semiconductor structure after the first semiconductor back surface is permanently bonded to the surface of the third semiconductor structure and causing the at least one The through-wafer interconnect is electrically interconnected with at least one of the conductive structures 156587.doc • 29- 201212131 of the third semiconductor structure. Embodiment 4: Embodiments i to 3 - the conductor structure is temporarily bonded to the first-half conduction /, /, so that the first semi-learn-conductor structure includes a helmet to be in the crucible body structure and the second semiconductor structure The first semiconductor is used to temporarily bond the first semiconductor to the second semiconductor structure by using the adhesive agent at the first + lead α μ + 吏. The method of any one of embodiments 1 to 4, wherein the bonding surface of the first π-body structure is bonded to the second semiconductor structure, and the direct bond or the good material is provided to provide oxygen cutting and nitrogen cutting. A direct atomic bond or molecular bond between at least one of the oxidative error to 7 and at least one of Shi Xi, Yan, Oxide, Nitride and Oxidation. The method of any of embodiments 1 to 5, wherein temporarily bonding the first constitutive structure to the second semiconductor structure comprises: forming surface rough joints each of about 2 nanometers (2 (four) or less) a bonding surface of the first semiconductor structure and a bonding surface of the second semiconductor structure; a bonding surface of the first semiconductor structure abutting the bonding surface of the second semiconductor structure; and maintaining the bonding surface of the conductor structure and the bonding surface of the semiconductor structure The time between about 2 degrees Celsius (200t:) and about 4 degrees Celsius (4 之 for about 2 minutes (2 minutes) and about 5 hours (j 5 hours). The method of embodiment 6, further comprising maintaining a pressure between the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure between about 0.14 MPa and about 1.43 MPa while maintaining the first semiconductor structure The bonding surface of the bonding surface and the second semiconductor structure is at a temperature between about two hundred degrees (20 (TC) and about four degrees Celsius (40 〇t) for about 2 minutes (2 minutes) and about 15 hours (15 h) The time between. I56587 The method of embodiment 6 or embodiment 7, further comprising activating the bonding surface of the first semiconductor structure prior to abutting the bonding surface of the first semiconductor structure adjacent the bonding surface of the second semiconductor structure and At least one of the bonding surfaces of the second semiconductor structure. The method of any one of embodiments 1 to 5, wherein temporarily bonding the first semiconductor structure to the second semiconductor structure comprises: Forming a bonded interface region between the bonding surface and the bonding surface of the second semiconductor structure, the bonded interface region being a bonding interface between the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure Approximately 80% (8%) or less than 80% of the total area. Embodiment 10: The method of Embodiment 9, further comprising bonding at a bonding surface of the first semiconductor structure and the second semiconductor structure A plurality of recesses are formed in at least one of the surfaces. Embodiment 11: The method of Embodiment 10, wherein the Q junction table of the first semiconductor structure Forming the plurality of recesses in at least one of the bonding surfaces of the second semiconductor structure includes: forming a plurality of recesses in a pattern on one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure; Selecting a pattern such that the crucible includes a bonding surface of the first + conductor structure and

一半導體結構之接合表面中之另一去卜夕萁 X H 今叫T ~力有上之另一金屬特徵圖 案的鏡像。 實施例12 :實施例10或實施例丨丨之方法,其中在第一半 導體結構之接合表面及第二半導體結構之接合表面中之至 少一者中形成複數個凹部包含:將第一介電材料沈積於位 156587.doc •31 201212131 於第一半導體結構之接合表面及第二半導體結構之接合表 面中之至少一者上之第二介電材料上方;選擇包 s 電材料之第一介電材料,該低溫介電材料在加熱至低於約 攝氏四百度(4GG C )之已知溫度時將經歷降解、分解及放氣 中之至少一者;及形成穿過至少一部分第一介電材料的複 數個凹部。 實施例η ··實施例12之方法,其進一步包含將低溫介電 材料加熱至高於已知溫度之溫度以使低溫介電材料與另一 材料之間的接合減弱。 實施例14 :實施例!至5中任一項之方法,其中使第一半 導體結構暫時接合至第二半導體結構包含:形成表面粗輪 度介於約四分之一奈米⑽5㈣與約2奈米(2.0 nm)之間的 苐一半導體結構之接合表面及第二半導體結構之接合表面 中之至少一者。 實施例15 :實施例14之方法,其中形成表面粗縫度介於 約四分之-奈米(0.25 nm)與約2奈米(2 〇 nm)之間的第 導體結構之接合表面及第二半導體結構之接合表面中之至 少一者包含开)成表面粗糖度各介於约二分之一奈 $ =與約!奈米(1 .〇紐)之間的第一半導體結構之^表面 及第一半導體結構之接合表面。 實施例16:-種形成半導體結構的方法,其包含: 在第-半導體結構之接合表面與第二半導體結構之接合表 面之間使用黏著劑而使第-半導體結構暫時接合至第二丰 導體結構;選擇第—半導體結構,使得在第-半導體結構 156587.doc •32- 201212131 之第一側上具有主動表面且在第一半導體結構之第二對 置側上具有背表面,且第—半導體結構包含形成於基板上 方之至少一個器件結構;使第一半導體結構之背表面永久 接合至第三半導體結構之表面,同時第一半導體結構仍然 暫時接合至第二半導體結構;及將第二半導體結構與第一 半導體結構分離。Another of the joint surfaces of a semiconductor structure, X H, is now a mirror image of another metal feature pattern. The method of embodiment 10 or embodiment, wherein forming the plurality of recesses in at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure comprises: placing the first dielectric material Deposited in place 156587.doc • 31 201212131 over the second dielectric material on at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure; selecting the first dielectric material of the package s electrical material The low temperature dielectric material will undergo at least one of degradation, decomposition, and gassing when heated to a temperature below about four degrees Celsius (4 GG C ); and formed through at least a portion of the first dielectric material. A plurality of recesses. Embodiment η The method of Embodiment 12, further comprising heating the low temperature dielectric material to a temperature above a known temperature to attenuate the bond between the low temperature dielectric material and the other material. The method of any one of the preceding claims, wherein the temporarily bonding the first semiconductor structure to the second semiconductor structure comprises: forming a surface coarse rotation of about one quarter nanometer (10) 5 (four) and about 2 nanometers At least one of a bonding surface of the semiconductor structure and a bonding surface of the second semiconductor structure between meters (2.0 nm). Embodiment 15: The method of Embodiment 14, wherein a joint surface of the first conductor structure having a surface roughness of between about four quarters (0.25 nm) and about 2 nm (2 〇 nm) is formed At least one of the bonding surfaces of the two semiconductor structures comprises: a surface of the first semiconductor structure between the surface roughness and the thickness of each of the first semiconductor structures between about one-half of a nanometer and a nanometer (1. And a bonding surface of the first semiconductor structure. Embodiment 16: A method of forming a semiconductor structure, comprising: temporarily bonding a first semiconductor structure to a second bulk conductor structure using an adhesive between a bonding surface of the first semiconductor structure and a bonding surface of the second semiconductor structure Selecting a first semiconductor structure such that it has an active surface on a first side of the first semiconductor structure 156587.doc • 32-201212131 and a back surface on a second opposite side of the first semiconductor structure, and the first semiconductor structure Forming at least one device structure formed over the substrate; permanently bonding the back surface of the first semiconductor structure to the surface of the third semiconductor structure while the first semiconductor structure is still temporarily bonded to the second semiconductor structure; and the second semiconductor structure is The first semiconductor structure is separated.

Ο 實施例17 :實施例16之方法,其中使第一半導體結構暫 時接σ至第-半導體結構包含:形成表面粗縫度各為約2 奈米(2 nm)或2奈米以下的第一半導體結構之接合表面及 第二半導體結構之接合表面;使第一半導體結構之接合表 面鄰接第二半導體結構之接合表面;及使第一半導體2構 之接合表面與第二半導體結構之接合表面保持在約攝氏二 百度(200°C)與約攝氏四百度(400。〇之間之溫度下持續約2 分鐘(2 min)與約十五(15)小時之間的時間。 實施例18 :實施例16或實施例17之方法,其進一步包含 活化第一半導體結構之接合表面及第二半導體結構之接合 表面中之至少一者。 實施例19:實施例16至18中任一項之方法,其中使第一 半導體結構暫時接合至弟二半導體結構包含:在第一半導 體結構之接合表面與第二半導體結構之接合表面之間形成 經接合之界面區域’該經接合之界面區域為第一半導體妗 構之接合表面與第二半導體結構之接合表面中之至少一者 的總表面區域的約百分之八十(80%)或百分之八十以下 包含在第一半導 實施例20 :實施例19之方法,其進—步 156587.doc -33- 201212131 體結構之接合表面及第二半導體結構之接合表面中之至少 一者中形成複數個凹部。 實施例21 :實施例20之方法,其中在第一半導體結構之 接合表面及第二半導體結構之接合表面中之至少一者中形 成複數個凹部包含:在第一半導體結構之接合表面及第二 半導體結構之接合表面中之一者上形成呈圖案之複數個凹 部;及選擇圖案使其包含第一半導體結構之接合表面及第 一半導體結構之接合表面中之另一者上之另一金屬特徵圖 案的鏡像。 實施例,2 2 .實施例2 0或實施例21之方法,其中在第一半 導體結構之接合表面及第二半導體結構之接合表面中之至 )者中形成複數個凹部包含.將第一介電材料沈積於位 於第一半導體結構之接合表面及第二半導體結構之接合表 面中之至少一者上之第二介電材料上方;選擇包含低溫介 電材料之第一介電材料,該低溫介電材料在加熱至低於約 攝氏四百度(400。(:)之已知溫度時將經歷降解、分解及放氣 中之至少一者,·及形成穿過至少一部分第一介電材料的複 數個凹部。 實施例23 :實施例22之方法,其進一步包含將低溫介電 材料加熱至高於已知溫度之溫度以使低溫介電材料與另一 材料之間的接合減弱。 實施例24 :實施例16之方法,其中使第一半導體結構暫 時接合至第二半導體結構包含:形成表面粗糙度介於約四 分之一奈米(0.25 nm)與約2奈米(2.0 nm)之間的第一半導體 156587.doc -34- 201212131 結構之接合表面及第二半導體結構之接合表面中之至少一 者。 實施例25: -種半導體結構,其包含:第一半導體結 構,在第-半導體結構之第一侧上具有主動表面且在第一 +導體結構之第二、對置側上具有背表面,該第—半導體 、-。構包3基板及形成於該基板上方之至少一個器件結構; 第二半導體結構’其在與第一半導體結構之間無黏著劑之 If;兄下暫時接合至第—半導體結構,在第—半導體結構與 第一半導體結構之間的接合能為約1〇〇〇 mj/m2* 1〇〇〇 mJ/m以下,第二半導體結構,其永久接合至第一半導體 結構之背表面,在第-半導體結構與第三半導體結構之間 的接合能為至少約1,2〇〇 mJ/m2 » 實施例26:實施例25之半導體結構,其進一步包含在第 一半導體結構之接合表面與第二半導體結構之接合表面之 間的直接原子鍵或分子鍵。 〇 實施例27:實施例26之半導體結構,其中第一半導體結 構之接合表面包含氧化矽、氮化矽及氧化鍺中之至少一 者且第一半導體結構之接合表面包含石夕、錯、氧化矽、 氮化石夕及氧化錯中之至少一者。 貫施例28 ·實施例25至27中任一項之半導體結構,其進 步I 3至;>、一個穿晶圓互連件,該至少一個穿晶圓互連 件自第一半導體結構之至少一個器件結構延伸穿過第一半 導體結構之基板至第三半導體結構之至少一個導電結構。 實施例29 :實施例25之半導體結構,其中第一半導體結 156587.doc -35- 201212131 面之表面粗缝度 構之接合表面及第二半導體結構之接合表 各為約2奈米(2 nm)或2奈米以下。 實施例30:實施例25之半導體結構,其中第一半導體結 構之接合表面及第二半導體結構之接合表面中之至少一= 之表面粗縫度介於約四分之_奈_义叫與約^米⑽ nm)之間。 實施例31:實施例30之半導體結構,其中第一半導體社 構之接合表面及第二半導體結構之接合表面之表面粗糙: 各介㈣二分之一奈米⑽㈣與約i奈米(Η—之間。 實施例32 :實施例25之半導體結構,其在第一半導體結 構之接合表面及第二半導體結構之接合表面中之至少一^ 中另外包含複數個凹部。 實施例33 :實施例32之半導體結構,其中複數個凹部之 凹部係呈圖案狀安置於第一半導體結構之接合表面及第二 半導體結構之接合表面中之一者上,且其中該圖案包含在 第一半導體結構之接合表面及第二半導體結構之接合表面 中之另—者上之另一金屬特徵圖案的鏡像。 實施例34··實施例32或實施例33之半導體結構,其中複 數個凹部之凹部至少部分地延伸穿過位於第一半導體結構 之接合表面及第二半導體結構之接合表面中《至少一者上 之電材料’該第一介電材料包含低溫介電材料。 貫施例35··實施例34之半導體結構’其進一步包含位於 ::介電材料下層之第二介電材料,該第一介電材料位於 一半導體結構之接合表面及第二半導體結構之接合表面 156587.doc •36- 201212131 中之至少一者上,該第二介電材料包含高溫介電材料。 上文描述之本發明實施例並不限制本發明之範疇,因為 此等實施例僅為本發明之實施例的實例,該範疇係由隨附 申請專利範圍及其法定相等物之範疇所界定。任何相等實 施例皆欲在本發明範疇内。實際上,除本文中所示及所述 之修改外,本發明的各種修改(諸如所述要素的替代適用 組合)對於熟習此項技術者將自描述顯而易見。該等修改 〇 亦意欲處於隨附申請專利範圍之範疇内。本文使用之標題 僅為了清楚及便利,且不限制以下申請專利範圍之範疇。 【圖式簡單說明】 圖1A-1E為半導體結構之簡化示意性截面圖且說明形成 接合半導體結構之本發明的例示實施例; 圖2A-2E為半導體結構之簡化示意性截面圖且說明形成 接合半導體結構之本發明的其他例示實施例; 圖3及圖4為半導體結構之簡化示意性截面圖且說明可用 ◎ 於將個半導體結構(例如晶粒或晶圓)暫時接合至另一半 導體結構(例如另一晶粒或晶圓)之方法的實例;及 圖5至圖7為半導體結構之簡化示意性截面圖且說明可用 於將一個半導體結構暫時接合至另一半導體結構之方法的 另一實例。 【主要元件符號說明】 100 經加工之半導體結構/半導體結構 100' 經加工之半導體結構 104 器件結構 156587.doc -37· 201212131 104, 105 106 108 109 110 120 122 124 126 128 129 130 140 160 170 174 175 176 178 180 156587.doc 導電器件特徵/凹部 穿晶圓互連件(TWI) 基板 主動表面’經加工之半導體結構1〇〇之主動表面/ 半導體結構100之主動表面 介電材料/經加工之半導體結構1〇〇之介電材料/ 經加工之半導體結構1〇〇之低溫介電材料 背表面/經加工之半導體結構100之背表面/基板 1 06之背表面 經接合之半導體結構 半導體結構 半導體結構122之接合表面 接合界面 介電材料/高溫介電材料 介電材料/低溫介電材料 凹部 半導體結構 半導體結構 半導體結構/經加工之半導體結構 器件結構 金屬結構 基板 介電材料 半導體結構 -38· 201212131 200 經加工之半導體結構/半導體結構 204 器件結構 205 穿晶圓互連件(TWI) 206 基板 208 主動表面/經加工之半導體結構200之主動表面 209 介電材料 210 背表面/經加工之半導體結構200之背表面/基板 206之背表面 220 經接合之半導體結構 222 半導體結構 240 半導體結構 260 半導體結構 270 經加工之半導體結構/半導體結構 274 器件結構 275 金屬結構 276 基板 278 介電材料 280 半導體結構 156587.doc 39·The method of embodiment 16, wherein the temporarily connecting the first semiconductor structure to the first semiconductor structure comprises: forming a first surface having a roughness of about 2 nm (2 nm) or less. a bonding surface of the semiconductor structure and a bonding surface of the second semiconductor structure; causing the bonding surface of the first semiconductor structure to abut the bonding surface of the second semiconductor structure; and maintaining the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure The time between about 2 minutes (2 minutes) and about fifteen (15) hours at about two degrees Celsius (200 ° C) and about four degrees Celsius (400 ° C.) Example 18: Implementation The method of any one of embodiments 16 to 18, wherein the method of any one of embodiments 16 to 18, wherein the method of any one of embodiments 16 to 18, Wherein temporarily bonding the first semiconductor structure to the second semiconductor structure comprises: forming a bonded interface region between the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure The bonded interface region comprises about eighty percent (80%) or less than eighty percent of the total surface area of at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure In the first semi-conductive embodiment 20: the method of embodiment 19, a plurality of recesses are formed in at least one of the bonding surface of the bulk structure and the bonding surface of the second semiconductor structure. The method of embodiment 20, wherein forming the plurality of recesses in at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure comprises: bonding surfaces on the first semiconductor structure and second Forming a plurality of recesses in one of the bonding surfaces of the semiconductor structure; and selecting the pattern to include another metal feature on the other of the bonding surface of the first semiconductor structure and the bonding surface of the first semiconductor structure The embodiment of the method of claim 2, wherein the bonding method of the first semiconductor structure and the bonding of the second semiconductor structure Forming a plurality of recesses in the surface includes: depositing a first dielectric material over the second dielectric material on at least one of a bonding surface of the first semiconductor structure and a bonding surface of the second semiconductor structure Selecting a first dielectric material comprising a low temperature dielectric material that will undergo at least degradation, decomposition, and venting upon heating to a temperature below about four hundred degrees Celsius (400: (:)) And forming a plurality of recesses through at least a portion of the first dielectric material. Embodiment 23: The method of embodiment 22, further comprising heating the low temperature dielectric material to a temperature above a known temperature to cause a low temperature The method of embodiment 16 wherein the temporarily bonding the first semiconductor structure to the second semiconductor structure comprises: forming a surface roughness of between about one-quarter of a nanometer. At least one of a bonding surface of the first semiconductor 156587.doc-34-201212131 structure and a bonding surface of the second semiconductor structure between (0.25 nm) and about 2 nm (2.0 nm). Embodiment 25: A semiconductor structure comprising: a first semiconductor structure having an active surface on a first side of the first semiconductor structure and a back surface on a second, opposite side of the first + conductor structure, The first - semiconductor, -. Forming a substrate 3 and at least one device structure formed over the substrate; the second semiconductor structure 'having no adhesion between the first semiconductor structure and the first semiconductor structure; and temporarily bonding to the first semiconductor structure, at the first semiconductor The bonding energy between the structure and the first semiconductor structure is about 1 〇〇〇mj/m2*1〇〇〇mJ/m or less, and the second semiconductor structure is permanently bonded to the back surface of the first semiconductor structure, at the first The bonding energy between the semiconductor structure and the third semiconductor structure is at least about 1,2 〇〇mJ/m2. The embodiment 26: The semiconductor structure of embodiment 25, further comprising a bonding surface of the first semiconductor structure and the second semiconductor Direct atomic or molecular bonds between the bonded surfaces of the structure. The semiconductor structure of embodiment 26, wherein the bonding surface of the first semiconductor structure comprises at least one of yttrium oxide, lanthanum nitride and lanthanum oxide and the bonding surface of the first semiconductor structure comprises shi, wrong, oxidized At least one of 矽, nitrite and oxidization. The semiconductor structure of any one of embodiments 25 to 27, which advances I 3 to; >, a through-wafer interconnect, the at least one through-wafer interconnect from the first semiconductor structure At least one device structure extends through the substrate of the first semiconductor structure to at least one of the conductive structures of the third semiconductor structure. Embodiment 29: The semiconductor structure of Embodiment 25, wherein the surface of the first semiconductor junction 156587.doc-35-201212131 has a surface roughness and a junction surface of the second semiconductor structure of about 2 nm (2 nm) ) or below 2 nm. Embodiment 30: The semiconductor structure of Embodiment 25, wherein at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure has a surface roughness of about four quarters. Between m (10) nm). Embodiment 31: The semiconductor structure of Embodiment 30, wherein the bonding surface of the first semiconductor structure and the surface of the bonding surface of the second semiconductor structure are rough: each (four) one-half nanometer (10) (four) and about i nanometer (Η- Embodiment 32: The semiconductor structure of Embodiment 25 further comprising a plurality of recesses in at least one of a bonding surface of the first semiconductor structure and a bonding surface of the second semiconductor structure. Embodiment 33: Embodiment 32 a semiconductor structure, wherein the recesses of the plurality of recesses are disposed in a pattern on one of a bonding surface of the first semiconductor structure and a bonding surface of the second semiconductor structure, and wherein the pattern is included on a bonding surface of the first semiconductor structure And a mirror image of another metal feature pattern of the second semiconductor structure. The semiconductor structure of embodiment 32 or embodiment 33, wherein the recesses of the plurality of recesses extend at least partially Passing over at least one of the electrical materials of the first semiconductor structure and the bonding surface of the second semiconductor structure A low temperature dielectric material is provided. The semiconductor structure of Embodiment 35 is further comprising: a second dielectric material located under: a dielectric material, the first dielectric material being located on a bonding surface of a semiconductor structure and The second dielectric material comprises a high temperature dielectric material on at least one of the bonding surface 156587.doc • 36-201212131 of the second semiconductor structure. The embodiments of the invention described above do not limit the scope of the invention because The embodiments are merely examples of embodiments of the invention, which are defined by the scope of the appended claims and their legal equivalents. Any equivalent embodiments are intended to be within the scope of the invention. Various modifications of the present invention, such as alternative combinations of the elements, are apparent to those skilled in the art in the light of the scope of the accompanying claims. The title used in this article is only for clarity and convenience, and does not limit the scope of the following patent application. [Simplified Schematic] Figure 1A-1E is a semi-conductor BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2A-2E are simplified schematic cross-sectional views of a semiconductor structure and illustrate other exemplary embodiments of the present invention for forming a bonded semiconductor structure; 3 and FIG. 4 are simplified schematic cross-sectional views of a semiconductor structure and illustrate a method for temporarily bonding a semiconductor structure (eg, a die or wafer) to another semiconductor structure (eg, another die or wafer). Examples; and Figures 5 through 7 are simplified schematic cross-sectional views of a semiconductor structure and illustrate another example of a method that can be used to temporarily bond one semiconductor structure to another semiconductor structure. [Major component symbol description] 100 Processed semiconductor Structure/Semiconductor Structure 100' Processed Semiconductor Structure 104 Device Structure 156587.doc -37· 201212131 104, 105 106 108 109 110 120 122 124 126 128 129 130 140 160 170 174 175 176 178 180 156587.doc Conductive Device Features / Recessed through wafer interconnect (TWI) substrate active surface 'processed semiconductor structure 1 主动 active surface / Active Surface Dielectric Material of Conductor Structure 100 / Processed Semiconductor Structure 1 介 Dielectric Material / Processed Semiconductor Structure 1 低温 Low Temperature Dielectric Material Back Surface / Processed Semiconductor Structure 100 Back Surface / Substrate The back surface of the hexagram is bonded to the semiconductor structure semiconductor structure semiconductor structure 122 the bonding surface bonding interface dielectric material / high temperature dielectric material dielectric material / low temperature dielectric material recess semiconductor structure semiconductor structure semiconductor structure / processed semiconductor structure device Structural Metal Structure Substrate Dielectric Material Semiconductor Structure - 38· 201212131 200 Processed Semiconductor Structure / Semiconductor Structure 204 Device Structure 205 Through Wafer Interconnect (TWI) 206 Substrate 208 Active Surface / Processed Semiconductor Structure 200 Active Surface 209 Dielectric Material 210 Back Surface / Back Surface of Processed Semiconductor Structure 200 / Back Surface 220 of Substrate 206 Bonded Semiconductor Structure 222 Semiconductor Structure 240 Semiconductor Structure 260 Semiconductor Structure 270 Processed Semiconductor Structure / Semiconductor Structure 274 Device Structure 275 metal structure 276 substrate 278 Dielectric material 280 Semiconductor structure 156587.doc 39·

Claims (1)

201212131 · 七、申请專利範圍: 1· -種形1經接合之半導體結構的方法,其包含: 藉由提供第—半導體結構之接合表面與第二半導體結 _表面之間的直接原子鍵或分子鍵使該第一半導 體結構暫時接合至該第二半導體結構; - _該第-半導體結構,使得在㈣_半導體結構之 第一側上具有主動纟面且在該第一I導體結構之第二、 對置側上具有背表面,且該第—半導體結構包含形成於 〇 基板上方之至少一個器件結構; 藉由自該第-半導體結構之該背表面移除該基板之材 料而使該第一半導體結構之該基板變薄; 在使該第一半導體結構之該基板變薄之後使該第一半 導體結構之該背纟面永久接合至第三+導體結構之表 面,且同時該第一半導體結構仍然暫時接合至該第二半 導體結構;及 ◎ 將該第二半導體結構與該第一半導體結構分離。 2.如請求項丨之方法,其進一步包含選擇該第一半導體結 構以使其包括至少一個穿晶圓互連件,且其中使該第一 半導體結構之該基板變薄包含使該至少一個穿晶圓互連 件之至少一部分穿過該第一半導體結構之該背表面暴 露,且其令使該第一半導體結構之該背表面永久接合至 該第二半導體結構之表面包含使該至少一個穿晶圓互連 件與該第三半導體結構之至少一個導電結構電互連。 3.如請求項1之方法’其進一步包含在該第一半導體結構 156587.doc 201212131 之該背表面永久接合至該第三半導體結構之該表面之後 形成穿過該第一半導體結構之至少一個穿晶圓互連件且 使該至少一個穿晶圓互連件與該第三半導體結構之至少 一個導電結構電互連。 4.如請求項〗之方法,其中使該第一半導體結構暫時接合 至該弟—半導體結構包含: 形成表面粗糙度各為約2奈米(2 nmht2奈米以下的該 第-半導體結構之該接合表面及該第二半導體結構之該 接合表面; 使4第一半導體結構之該接合表面鄰接該第二半導體 結構之該接合表面;及 使該第-半導體結構之該接合表面與該第二半導體結 構之該接合表面保持在約攝氏二百度(2〇〇£&gt;c )與約攝氏四 百度(40G C )之間之溫度下持續約2分鐘(2 _)與約】$小 時(1 5 hr)之間的時間。 5.如請求項4之方法,其進—步包含在該第—半導體結構 之“接σ表面與4第二半導體結構之該接合表面之間保 持約0.14 MPa與約M3他之間的壓力,同時保持該第 -半導體結構之該接合表面與該第二半導體結構之該接 合表面處於約攝氏二百度(2〇〇°C )與約攝氏四百度 (4〇()°C )之間之溫度下持續約2分鐘(2 min)與約i 5小時 hr)之間的時間;及 在使該第-半導體結構之該接合表 之前活化該第一 體結構之該接合表面 面鄰接該第二半導 半導體結構之該接 156587.doc 201212131 &amp;表面及該第二半導體結構之該接合表面中之至 者。 6. 如吻求項丨之方法,其中使該第一半導體結構暫時接合 k第一半導體結構包含在該第一半導體結構之該接合 表面與該第二半導體結構之該接合表面之間形成經接合 之界面區域,該經接合之界面區域為該第一半導體結構 之該接合表面與該第二半導體結構之該接合表面之間沿 其間之接合界面的總區域的約百分之八十(8〇%)或百分 之八十以下。 7. 如凊求項6之方法’其進一步包含在該第一半導體結構 之該接合表面及該第二半導體結構之該接合表面中之至 少一者中形成複數個凹部。 8. 如凊求項7之方法’其中在該第一半導體結構之該接合 表面及該第二半導體結構之該接合表面中之至少一者中 形成複數個凹部包含: ◎ 在忒弟半導體結構之該接合表面及該第二半導體結 構之該接合表面中之一者上形成呈圖案之該複數個凹 部;及 選擇該圖案使其包含該第一半導體結構之該接合表面 及該第二半導體結構之該接合表面中之另一者上之另一 金屬特徵圖案的鏡像。 9. 如請求項7之方法’其中在該第一半導體結構之該接合 表面及該第二半導體結構之該接合表面中之至少一者中 形成複數個凹部包含: 156587.doc 201212131 將第介電材料沈積於位於該第一半導體結構之該接 σ表面及g第二半導體結構之該接合表面中之至少一者 上的第二介電材料上方; 選擇包含低溫介電材料之該第一介電材料,該低溫介 電材料在加熱至低於約攝氏四百度(4〇〇艺)之已知溫度時 將經歷降解、分解及放氣中之至少一者;及 形成穿過至少一部分該第一介電材料的該複數個凹 部。 ίο 11. 12. 如吻求項9之方法,其進一步包含將該低溫介電材料加 &lt;、、、咼於該已知/jn度之溫度,以使該低溫介電材料與另 一材料之間的接合減弱。 一種半導體結構,其包含: 第半導體結構,在該第一半導體結構之第一側上具 有主動表面且在該第一半導體結構之第二、對置側上具 有背表面’該第—半導體結構包含基板及形成於該基板 上方之至少一個器件結構; 第二半導體結構,其在與該第一半導體結構之間無黏 著劑之情況下暫時接合至該第一半導體結構,在該第一 半導體結構與該第二半導體結構之間的接合能為約丨,⑽〇 mj/m2或 i,〇〇〇 mJ/m2以下; 第三半導體結才冓,其纟久接合至該第一半導體結構之 该背表面,在該第一半導體結構與該第三半導體結構之 間的接合能為至少約1,2〇〇 mj/m2。 如請求項11之半導體結構,其進一步包含在該第一半導 156587.doc -4 _ 201212131 面之間 體結構之接合表®與該第:半導體結構之接合表 的直接原子鍵或分子鍵;且 其中該第一半導體結構之該接合表面包含氧化矽、氮 化石夕及氧化錯中之至少-者,且該第二半導體結構之該 接合表面包含H氧切、氮切及氧化錯中之至 少一者。 13. Ο 14. 如請求項Η之半導體結構,其進—步包含至少—個穿晶 圓互連件,該至少—個穿晶圓互連件自該第—半導體社 構之該至少-個器件結構延伸穿過該第—半導體結構之 該基板至該第三半諸結構之至少—個導電結構。 如請求項U之半導艘結構’其在該第-半導趙結構之接 合表面及該第二半導體結構之接合表面中之至少一者中 另外包含複數個凹部。 15. Ο 如請求項14之半導體結構,其中該複數個凹部之該等凹 部係呈圖案狀安置於該第一半導體結構之該接合表面及 該第二半導體結構之該接合表面中之一者上,且其中該 圖案包含在該第-半導體結構之該接合表面及該第二半 導體結構之該接合表面中之另一者上之另一金屬特徵圖 案的鏡像。 16. 17. 如請求項14之半導體結構,其中該複數個凹部之該等凹 部至少部分地延伸穿過位於該第一半導體結構之該接合 表面及該第二半導體結構之該接合表面中之至少一者上 之第-介電材料’該第-介電材料包含低溫介電材料。 如請求項16之半導體結構,其進一步包含位於該第一介 156587.doc -5 - 201212131 一介電材料位於該第 二半導體結構之該接 介電材料包含高溫介 電材料下層之第二介電材料,該第 一半導體結構之該接合表面及該第 合表面中之該至少一者上,該第二 電材料。 156587.doc201212131 · VII. Patent Application Range: 1 - A method for forming a bonded semiconductor structure, comprising: providing a direct atomic bond or molecule between a bonding surface of a first semiconductor structure and a surface of a second semiconductor junction a bond temporarily bonding the first semiconductor structure to the second semiconductor structure; - the first semiconductor structure such that there is an active facet on a first side of the (four)-semiconductor structure and a second facet in the first I-conductor structure Having a back surface on the opposite side, and the first semiconductor structure includes at least one device structure formed over the germanium substrate; the first being removed by removing the material of the substrate from the back surface of the first semiconductor structure The substrate of the semiconductor structure is thinned; the back surface of the first semiconductor structure is permanently bonded to the surface of the third + conductor structure after the substrate of the first semiconductor structure is thinned, and at the same time the first semiconductor structure Still temporarily bonding to the second semiconductor structure; and ◎ separating the second semiconductor structure from the first semiconductor structure. 2. The method of claim 1, further comprising selecting the first semiconductor structure to include at least one through-wafer interconnect, and wherein thinning the substrate of the first semiconductor structure comprises causing the at least one to be worn At least a portion of the wafer interconnect is exposed through the back surface of the first semiconductor structure, and such that permanently bonding the back surface of the first semiconductor structure to a surface of the second semiconductor structure comprises causing the at least one to be worn The wafer interconnect is electrically interconnected with at least one electrically conductive structure of the third semiconductor structure. 3. The method of claim 1 further comprising forming at least one of the first semiconductor structure after the back surface of the first semiconductor structure 156587.doc 201212131 is permanently bonded to the surface of the third semiconductor structure A wafer interconnect and electrically interconnecting the at least one through-wafer interconnect with at least one conductive structure of the third semiconductor structure. 4. The method of claim 1, wherein temporarily bonding the first semiconductor structure to the semiconductor-semiconductor structure comprises: forming the first semiconductor structure having a surface roughness of about 2 nm (2 nm ht 2 nm or less) Bonding surface and the bonding surface of the second semiconductor structure; bonding the bonding surface of the first semiconductor structure to the bonding surface of the second semiconductor structure; and bonding the bonding surface of the first semiconductor structure to the second semiconductor The joint surface of the structure is maintained at a temperature between about two degrees Celsius (2 & > &gt; c ) and about four degrees Celsius (40 G C ) for about 2 minutes (2 _) and about 】 $ hour (1 5 5. The time between hr) 5. The method of claim 4, wherein the step further comprises maintaining about 0.14 MPa and about between the "sigma surface" of the first semiconductor structure and the bonding surface of the fourth semiconductor structure. M3 the pressure between them while maintaining the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure at about two degrees Celsius (2 〇〇 ° C) and about four degrees Celsius (4 〇 () Temperature between °C) Lowering the time between about 2 minutes (2 minutes) and about i5 hours hr); and activating the bonding surface of the first body structure adjacent to the second half prior to the bonding table of the first semiconductor structure Leading the semiconductor structure to the 156587.doc 201212131 &amp; surface and the bonding surface of the second semiconductor structure. 6. The method of claim </ RTI> wherein the first semiconductor structure is temporarily bonded k first The semiconductor structure includes a bonded interface region formed between the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure, the bonded interface region being the bonding surface of the first semiconductor structure and the The joint surface of the second semiconductor structure is between about eighty percent (8%) or less than eighty percent of the total area of the joint interface therebetween. 7. The method of claim 6 further Forming a plurality of recesses in at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure. 8. The method of claim 7 Forming a plurality of recesses in at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure comprises: ◎ the bonding surface of the second semiconductor structure and the bonding surface of the second semiconductor structure Forming the plurality of recesses in a pattern; and selecting the pattern to include the other surface of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure 9. The method of claim 7, wherein the plurality of recesses are formed in at least one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure: 156587.doc 201212131 depositing a dielectric material over a second dielectric material on at least one of the junction surface of the first semiconductor structure and the bonding surface of the second semiconductor structure; selecting a material comprising a low temperature dielectric material The first dielectric material, the low temperature dielectric material will be heated to a temperature below about four degrees Celsius (4 liters) Li degradation, decomposition and the discharge gas is at least one; and the plurality of concave portions through at least a portion of the first dielectric material. Ίο 11. 12. The method of claim 9, further comprising adding the low temperature dielectric material to the temperature of the known/jn degree such that the low temperature dielectric material and the other material The joint between the weakened. A semiconductor structure comprising: a semiconductor structure having an active surface on a first side of the first semiconductor structure and a back surface on a second, opposite side of the first semiconductor structure 'the first semiconductor structure comprises a substrate and at least one device structure formed over the substrate; a second semiconductor structure temporarily bonded to the first semiconductor structure without an adhesive between the first semiconductor structure, and the first semiconductor structure The bonding energy between the second semiconductor structures is about 丨, (10) 〇mj/m2 or i, 〇〇〇mJ/m2 or less; the third semiconductor junction is bonded to the back of the first semiconductor structure The surface, the bonding energy between the first semiconductor structure and the third semiconductor structure is at least about 1,2 〇〇mj/m2. The semiconductor structure of claim 11, further comprising a direct atomic or molecular bond between the bonding table of the bulk structure and the bonding table of the semiconductor structure between the first semiconductor 156587.doc -4 _ 201212131; And wherein the bonding surface of the first semiconductor structure comprises at least one of cerium oxide, cerium oxide and oxidization, and the bonding surface of the second semiconductor structure comprises at least one of H-oxygen, nitrogen-cut and oxidization One. 13. Ο 14. The semiconductor structure of claim ,, further comprising at least one through-wafer interconnect, the at least one through-wafer interconnect from the at least one of the first semiconductor organizations The device structure extends through the substrate of the first semiconductor structure to at least one of the conductive structures of the third half of the structure. The semi-guide structure of claim U is further comprised of a plurality of recesses in at least one of a mating surface of the first semi-conductive structure and a bonding surface of the second semiconductor structure. 15. The semiconductor structure of claim 14, wherein the plurality of recesses are disposed in a pattern on one of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure And wherein the pattern comprises a mirror image of another metal feature pattern on the other of the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure. 17. The semiconductor structure of claim 14, wherein the recesses of the plurality of recesses extend at least partially through at least the bonding surface of the first semiconductor structure and the bonding surface of the second semiconductor structure The first-dielectric material of the first dielectric material comprises a low temperature dielectric material. The semiconductor structure of claim 16, further comprising a second dielectric located in the first dielectric layer 156587.doc -5 - 201212131, a dielectric material of the second semiconductor structure, the dielectric material comprising a lower layer of high temperature dielectric material a second electrical material on the bonding surface of the first semiconductor structure and the at least one of the first surface. 156587.doc
TW100121505A 2010-07-15 2011-06-20 Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods TWI464810B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/837,326 US8481406B2 (en) 2010-07-15 2010-07-15 Methods of forming bonded semiconductor structures
FR1055965A FR2963159B1 (en) 2010-07-21 2010-07-21 METHODS OF FORMING BOUND SEMICONDUCTOR STRUCTURES, AND SEMICONDUCTOR STRUCTURES FORMED THEREFROM

Publications (2)

Publication Number Publication Date
TW201212131A true TW201212131A (en) 2012-03-16
TWI464810B TWI464810B (en) 2014-12-11

Family

ID=45515417

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121505A TWI464810B (en) 2010-07-15 2011-06-20 Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods

Country Status (4)

Country Link
KR (1) KR101238732B1 (en)
CN (1) CN102339768B (en)
SG (1) SG177816A1 (en)
TW (1) TWI464810B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488287B (en) * 2012-08-17 2015-06-11 Alpha & Omega Semiconductor Three-dimensional gate driver integrated circuit and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395235B1 (en) 2013-10-31 2014-05-16 (주)실리콘화일 A image sensor using back illumination photodiode and method of manufacturing the same
US9355205B2 (en) * 2013-12-20 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus of a three dimensional integrated circuit
EP3216050B1 (en) * 2014-11-05 2021-09-08 Corning Incorporated Bottom-up electrolytic via plating method
TWI603393B (en) * 2015-05-26 2017-10-21 台虹科技股份有限公司 Manufacturing method of semiconductor device
CN106783645A (en) * 2016-11-29 2017-05-31 东莞市广信知识产权服务有限公司 A kind of method of diamond and GaN wafer Direct Bondings
CN107275416A (en) * 2017-05-09 2017-10-20 浙江大学 A kind of photo-detector and preparation method thereof
US10917966B2 (en) 2018-01-29 2021-02-09 Corning Incorporated Articles including metallized vias
US10727219B2 (en) * 2018-02-15 2020-07-28 Invensas Bonding Technologies, Inc. Techniques for processing devices
US11296053B2 (en) 2019-06-26 2022-04-05 Invensas Bonding Technologies, Inc. Direct bonded stack structures for increased reliability and improved yield in microelectronics
GB2595447A (en) * 2020-05-18 2021-12-01 Oaklands Plastics Ltd Hoarding panel & method of manufacture

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902987B1 (en) * 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
FR2816445B1 (en) * 2000-11-06 2003-07-25 Commissariat Energie Atomique METHOD FOR MANUFACTURING A STACKED STRUCTURE COMPRISING A THIN LAYER ADHERING TO A TARGET SUBSTRATE
FR2894990B1 (en) * 2005-12-21 2008-02-22 Soitec Silicon On Insulator PROCESS FOR PRODUCING SUBSTRATES, IN PARTICULAR FOR OPTICS, ELECTRONICS OR OPTOELECTRONICS AND SUBSTRATE OBTAINED BY SAID PROCESS
FR2837981B1 (en) * 2002-03-28 2005-01-07 Commissariat Energie Atomique PROCESS FOR HANDLING SEMICONDUCTOR LAYERS FOR THEIR SLOWDOWN
WO2004061961A1 (en) * 2002-12-31 2004-07-22 Massachusetts Institute Of Technology Multi-layer integrated semiconductor structure having an electrical shielding portion
KR100618837B1 (en) 2004-06-22 2006-09-01 삼성전자주식회사 Method for forming thin wafer stack for wafer level package
CN100517623C (en) * 2006-12-05 2009-07-22 中芯国际集成电路制造(上海)有限公司 Wafer press welding and bonding method and structure thereof
FR2910177B1 (en) * 2006-12-18 2009-04-03 Soitec Silicon On Insulator LAYER VERY FINE ENTERREE
JP5512102B2 (en) * 2007-08-24 2014-06-04 本田技研工業株式会社 Semiconductor device
FR2931014B1 (en) 2008-05-06 2010-09-03 Soitec Silicon On Insulator METHOD OF ASSEMBLING PLATES BY MOLECULAR ADHESION
KR101548173B1 (en) * 2008-09-18 2015-08-31 삼성전자주식회사 Wafer temporary bonding method using Si direct bondingSDB and semiconductor device and fabricating method thereof using the same bonding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488287B (en) * 2012-08-17 2015-06-11 Alpha & Omega Semiconductor Three-dimensional gate driver integrated circuit and preparation method thereof

Also Published As

Publication number Publication date
CN102339768A (en) 2012-02-01
CN102339768B (en) 2015-06-10
KR101238732B1 (en) 2013-03-04
SG177816A1 (en) 2012-02-28
KR20120007960A (en) 2012-01-25
TWI464810B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US8481406B2 (en) Methods of forming bonded semiconductor structures
TW201212131A (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US11908739B2 (en) Flat metal features for microelectronics applications
US20230132632A1 (en) Diffusion barriers and method of forming same
US20210151353A1 (en) 3D Integrated Circuit and Methods of Forming the Same
CA2515375C (en) Room temperature metal direct bonding
JP2024501559A (en) Structures with conductive features and methods of forming the same
CN105489512B (en) Interim semiconductor structure bonding method and related bonding semiconductor structure
TW202004976A (en) DBI to Si bonding for simplified handle wafer
Chidambaram et al. Dielectric materials characterization for hybrid bonding
TW201740470A (en) System and method for immersion bonding
Enquist et al. Advanced direct bond technology
Panigrahi et al. Metal-alloy Cu surface passivation leads to high quality fine-pitch bump-less Cu-Cu bonding for 3D IC and heterogeneous integration applications