201210695 六、發明說明: [相關連申請案] 本申請案係主張2010年3月25日提出申請之日本國專 利申請案2010-070197號及2010年10月18日提出申請之國 際申請案PCT/JP20 10/068790號之優先權者,藉由引用此 等申請案之說明書,作爲本案揭示之一部分。 【發明所屬之技術領域】 本發明係關於光觸媒塗裝體,更詳細係有關隨著降雨 所產生之自行清淨機能及有害氣體分解機能優異,長期具 有良好耐候性的光觸媒塗裝體。 【先前技術】 近年,氧化鈦等之光觸媒被用於建築物之外裝材等許 多的用途上。利用光觸媒藉由光能量而被激發的活性,以 分解各種有害物質,或使被塗佈有光觸媒的基材表面產生 親水化,可容易以水輕易洗去附著於表面之汙垢。可得到 塗佈有這種光觸媒之光觸媒塗裝體的技術,例如有下述者 〇 形成於光觸媒親水機能優異之複合材上的光觸媒被膜 ,例如有國際公開第98/03 607號說明書(專利文獻1 )所 示,由金屬氧化物所構成之光觸媒粒子;及選自由氧化矽 微粒子、可形成矽氧樹脂皮膜之矽氧樹脂皮膜前驅物、及 可形成氧化矽皮膜之氧化矽皮膜前驅物所成群之至少1種 201210695 所構成的被膜。由塗膜形成初期開始呈現親水性來看,氧 化矽微粒子或可形成氧化矽皮膜之氧化矽皮膜前驅物之硬 化物,作爲光觸媒皮膜的成分是非常優異的。 又,有機基材上形成光觸媒親水性被膜時,如國際公 開第97/00 1 3 4號說明書(專利文獻2 )所示,爲了解決因 光觸媒之光觸媒活性,使有機材料被分解或劣化的問題時 ,因而使用矽氧等具有光觸媒耐蝕性之中間層介於基材與 光觸媒親水性被膜之間的技術。 又,提案防止於基材與光觸媒粒子之間的中間層所具 有對光觸媒之耐蝕性之光觸媒層龜裂的技術。例如特開 2007- 1 68 1 3 5號公報(專利文獻3 )所示,揭示窯業系之基 材1的表面依有機塗膜2、無機塗膜3、含有光觸媒之無機 塗膜4的順序形成塗膜的塗裝體,其中無機塗膜3之破壞延 伸率設定爲0.8〜3.0%的複合材。含有光觸媒之無機塗膜4 中’無機塗佈劑使用調配有光觸媒之可形成矽氧樹脂皮膜 之矽氧樹脂皮膜前驅物,對於含有光觸媒之無機塗膜,可 選擇不會比可形成氧化矽微粒子或氧化矽皮膜之氧化矽皮 膜前驅物更脆的素材。 又’將光觸媒粒子固定於彈性素材之表面的技術,例 如有特開平1 0-202794號公報(專利文獻4 )所示,揭示一 種以矽氧彈性體塗佈的薄片狀物,且該矽氧彈性體表層部 黏固著具有光觸媒能之氧化鈦粉末爲特徵的矽氧彈性體塗 佈薄片狀物。其製法較獨特,在片狀物上塗佈矽氧彈性體 組成物’接著在其表面載持具有光觸媒能之氧化鈦粉末後 -6 - 201210695 ,使矽氧彈性體組成物硬化的方法。 [先前技術文獻] [專利文獻] [專利文獻1]國際公開第98/03 607號說明書 [專利文獻2]國際公開第9 7/0 0134號說明書 [專利文獻3]特開2007- 1 68 1 35號公報 [專利文獻4]特開平10-202794號公報 [專利文獻5]特開2008-272718號公報 【發明內容】 [發明槪要] [解決發明的課題] 本發明人等如今藉由將特定物性的層接觸設置於光觸 媒下方,得到可實現具有良好彈性之光觸媒塗裝體的見解 。此外,也發現此光觸媒塗裝體同時可滿足光觸媒塗裝體 所要求之基本性能。本發明係基於此見解而完成者。 因此,本發明的目的係提供具有要求的基本性能,且 具有優異的耐候性,具有良好彈性之光觸媒塗裝體。 [解決課題的手段] 本發明之光觸媒塗裝體,其係具備:基材;含有光觸 媒所成之光觸媒層;介於前述基材及前述光觸媒層之間, 且被設定爲與前述光觸媒層下方接觸的中間層所成的光觸 201210695 媒塗裝體,其特徵係前述中間層爲含有樹脂成分所成’前 述樹脂成分爲含有矽氧成分與柔軟之非矽氧成分所成’且 前述中間層之25°C下藉由依據JIS K7244-4之固體黏彈性測 定裝置所測定的損失正切超過〇·2 ’未達1.5 ’前述中間層 之藉由依據JIS Κ7244-4之固體黏彈性測定裝置所測定之 損失彈性率之溫度變化曲線中之光譜波峰之至少1個超過_ 80度,且30度以下。 [發明效果] 本發明之光觸媒塗裝體係具有優異的耐候性’且具有 良好的彈性。具體而言,本發明之光觸媒塗裝體’例如即 使在屋外施工,隨著季節變動等、塗膜表面之溫度變化, 而在光觸媒被膜上產生龜裂,也可確保基材與光觸媒層之 密著性,可抑制所產生之龜裂在表面側或基材側傳播或發 展。此外,依據較佳之態樣時,本發明之光觸媒塗裝體係 由塗膜形成初期呈現親水性,結果實質上從塗膜隨後,可 發揮優異之隨著降雨之自行清淨機能,可長期維持其親水 性的優點。 [實施發明之形態] 光觸媒塗裝體 本發明之光觸媒塗裝體基本上係具備:基材;含有光 觸媒所成之光觸媒層:介於前述基材及前述光觸媒層之間 ,且被設定爲與前述光觸媒層下方接觸的中間層;所成的 -8- 201210695 構造。前述中間層爲含有樹脂成分所成,樹脂成分爲含有 矽氧成分與柔軟之非矽氧成分,且中間層之25 °C下藉由依 據JIS K7244-4之固體黏彈性測定裝置所測定的損失正切 超過0.2,未達1.5。本發明之光觸媒塗裝體係具有優異的 耐候性,且具有良好的彈性。具體而言,即使在光觸媒被 膜上產生龜裂,也可確保基材與光觸媒層之密著性,可抑 制所產生之龜裂往基材側傳播或發展,同時對於氣體分解 機能等之光觸媒機能也具有優異的性能。因此,本發明之 塗裝體不限於以下者,例如可以下(1)〜(6 )之構件爲 基材來形成。換言之,(1)橋梁等之施加振動的構造物 ' (2)無釉之陶磁器、混凝土、水泥板、木材、石材等 之多孔質材料,且處於氣溫爲0°C以下之氣氛的構件、(3 )金屬材料、橡膠、可撓性薄膜樹脂等具有可撓性的材料 所構成,其上形成光觸媒層後,被施予彎曲加工的構件、 (4 )即使一天氣溫變化爲20 °C以上之較大的場所所使用 的構件、(5)金屬、樹脂、橡膠、矽氧密封膠、密封塗 層等之線膨脹率1 Ο^Κ·1以上之熱膨脹率較大的材料所構成 之構件、(6 )氣溫之年溫差爲3 0它以上之環境下使用的 構件。此等構件的表面被太陽光等可光激發光觸媒之光源 的光照射。 依據本發明之較佳態樣時,前述光觸媒層其粒子成分 含有光觸媒粒子與無機氧化物粒子,且前述粒子成分係相 對於前述光觸媒層爲70質量%以上,較佳爲90質量%以上 。光觸媒層以此種構成時,由塗膜形成初期容易呈現親水 -9- 201210695 性,實質上,從塗膜隨後可發揮優異之伴隨降雨所得之自 行清淨機能。此態樣時,特別是光觸媒層爲脆性時,可進 一步抑制龜裂之傳播或發展。 一般光觸媒層、特別是以無機成分構成之光觸媒層因 爲脆性,因此隨著季節變動、溫度變化有時會產生龜裂。 但是本發明之光觸媒塗裝體時,此龜裂係因以下所示之2 的理由之相乘效果,使得龜裂之影響不會傳播至表面側及 基材側。但是以下的理由爲假設,但是本發明不限於具有 此等作用效果者。其一係與光.觸媒層下方接觸之中間層之 2 5 °C的損失正切超過0.2,藉此中間層吸收傳播能量者。 又,依據本發明之一態樣,光觸媒層爲70%以上爲光觸媒 粒子、無機氧化物粒子等之粒子狀物質所構成時,光觸媒 層存在著粒子間隙,因該間隙而抑制龜裂之發展。因此等 效果,在光觸媒層所產生之龜裂不易往其表面或剖面方向 傳播或發展,表面不會產生伴隨龜裂之白濁等的外觀不良 ,又中間層、基材不易破損》與光觸媒層下方接觸之中間 層之25°C的損失正切未達1.5時,光觸媒層表面可長期維 持親水性未達20°。此外,調配矽氧成分作爲中間層之樹 脂成分,可抑制因光觸媒造成基材之劣化。 本發明之光觸媒塗裝體中之前述光觸媒層的表面係接 受前述光觸媒的光激發,換算成與水之接觸角,呈現未達 20°之親水性較佳。藉此可發揮優異之伴隨降雨之自行清 淨機能。 本發明之光觸媒塗裝體中之前述光觸媒層中之光觸媒 -10- 201210695 的比例,較佳爲1質量%以上,未達20質量%,更佳爲5質 量%以上1 5質量%以下。本發明之一態樣中,光觸媒層中 之光觸媒之調配比例爲遠少於無機氧化物粒子所構成之上 述範圍內時,可以最小限度使光觸媒粒子與基材之直接接 觸,藉此可抑制基材(特別是有機基材)之侵蝕。同時, 藉此構成,可防止光觸媒對基材(特別是有機基材)之侵 蝕,同時可得到有害氣體分解性、及所要之各種被膜特性 (透明性、膜強度等)優異的光觸媒塗裝體。 本發明中,光觸媒爲粒子時,光觸媒塗裝體中之前述 光觸媒粒子之平均粒徑,較佳爲l〇nm以上,未達lOOOnm ,更佳爲l〇nm以上,未達lOOnm,最佳爲10nm以上60nm 以下。本說明書中,此光觸媒粒子之平均粒徑係藉由掃描 型電子顯微鏡,測定進入2萬倍〜20萬倍之視野中之任意 1 00個粒子的長度,以個數平均値計算得到。粒子的形狀 最佳爲真球,也可爲略圓形或橢圓形,此時,粒子的長度 係以((長徑+短徑)/2 )槪略計算得到。光觸媒粒子之 平均粒徑在上述範圍時,可充分發揮光觸媒層中之通氣量 、氣體分解活性,而顯示充分的光觸媒分解活性,同時也 可平衡發揮耐候性等之各種被膜特性。此外,光觸媒粒子 之平均粒徑在上述範圍時,光觸媒層顯示良好的透明性。 本發明之光觸媒塗裝體中之前述無機氧化物粒子的平 均粒徑,較佳爲5nm以上,未達l〇〇nm,更佳下限値爲 10nm,更佳之上限値爲40nm »本說明書中,此無機氧化 物粒子之平均粒徑係與上述光觸媒粒子之平均粒徑同樣, -11 - 201210695 係藉由掃描型電子顯微鏡,測定進入20萬倍之視野中之任 意1 00個粒子的長度,並以個數平均値計算得到》無機氧 化物粒子之平均粒子徑在上述範圍時,可提高光觸媒層中 之通氣性,提高氣體分解反應性,同時可提高耐磨耗性、 耐龜裂。 本發明之光觸媒塗裝體中之前述光觸媒層的膜厚,較 佳爲3μιη以下。光觸媒層之膜厚爲3μπι以下時,可得到透 明性、膜強度優異的特性,可明顯抑制龜裂不會往表面側 進展而造成外觀不良的效果。依據本發明之較佳態樣時, 光觸媒層之膜厚較佳爲〇.2μιη以上,更佳爲〇·5μηι以上。光 觸媒層之膜厚爲〇·2μπι以上,可發揮良好的親水性。此外 ,到達光觸媒層與基材之界面的紫外線被充分衰減,因此 可得到提高耐候性的效果》 本發明之一態樣係光觸媒塗裝體之前述光觸媒層中存 在著粒子間隙。藉此,可提高藉由光觸媒之有害氣體分解 機能,同時可抑制龜裂往表面側及剖面側進展。 本發明之光觸媒塗裝體中之粒子間隙,較佳爲存在20 體積%以上3 5體積%以下。空隙率在上述範圍時,其有害 氣體與光觸媒粒子以高機率接觸。因此,進一步提高有害 氣體之分解活性。夾雜此程度的間隙,可充分抑制龜裂往 表面側及剖面側進展。 本說明書中,空隙率較佳爲使用大塚電子股份公司製 之反射分光膜厚計:FE-3 000,每1試料測定5點以上,較 佳爲測定1 0點以上,求其平均値所得之數値。其順序如下 -12- 201210695 所示。 順序i.玻璃板之折射率決定 1-1.依以下條件計測玻璃板之波長23〇〜800nm的反射 率〇 測定方法 絕對反射率 透鏡 Refrec . 2 5 X 標準反射板 A1-S-13 濾鏡 挑 細縫 〇.2mm><2mm 取樣時間 1 0 0 0msec 累積次數 9次 增益 正常 1-2.藉由構成介質 =空氣、玻璃板、光之入射角¢=0 ,使由空氣側入射之光以玻璃板反射時之空氣/玻璃板界 面的Fresnel振幅反射係數與n-Cauchy之分散式,計算得到 玻璃板之波長2 3 0〜800nm的反射率。前述n-Cauchy之分散 式中,常數(Cmi、Cm2、Cw )之初期値分別爲Cml = l .5、 Cm2 = 〇、Cm3 = 0,空氣之折射率爲1,空氣之消光係數( extinction coefficient)爲0 (小檜山光信,“光學薄膜之 基礎理論”p20~65,( 2003, optronics公司))。 1 -3 .實測反射率(1 -1 )與計算反射率(1 -2 )進行比 較,求出殘差平方和(sum of squared residuals)成爲最 小時的Cml、Cm2、Cm3。此時,殘差平方和之上限爲0.02 -13- 201210695 1- 4.將以1-3所求得之Cm|、Cm2、Cm3代入n-Cauchy之 分散式中’決定玻璃板之折射率nm ^ 順序2.光觸媒層之空隙率之決定 2- 1.依以下條件計測光觸媒層之波長230〜800 nm的反 射率。 測定方法 絕對反射率 透鏡 Refrec.25X 標準反射板 A1-S-13 濾鏡 無 細縫 0.2mm><2mn 取樣時間 1 0 0 0msec 累積次數 9次 增益 正常 2-2.構成介質=空氣、光觸媒層=單層薄膜、玻璃板, 光之入射角Φ =0°,由空氣側入射之光以單層薄膜反射的 光與、單層薄膜內部透過之光在單層薄膜之上下面(空氣 /單層薄膜界面、單層薄膜/玻璃板界面)進行多重重複反 射的光合計時之空氣/單層薄膜界面的Fresnel振幅反射係 數與Bruggeman之近似式,藉此計算得到光觸媒層之波長 23 0~8 0Onm的反射率(小檜山光信,“光學薄膜之基礎理 論”p20~65 ,( 2003 , optronics公司)、D. E. A spnes , Thin Solid Films,89,249 ( 1 982 ) ) 。C] ( Si02之體積 -14- 201210695 分率)、c2(Ti〇2之體積分率)、c3(空氣之體積分率) 之初期値係分別爲0.70、0.05、0.25。此外’空氣之折射 率爲1,空氣之消光係數爲〇。Si02、Ti02之折射率(、 n2 )、消光係數(h、k2 )係引用E. D. Palik , “Handbook of Optical Constants of Solids”, ( 1 9 9 8,201210695 VI. Description of the invention: [Related application] This application is an application for the application of the International Patent Application No. 2010-070197 filed on March 25, 2010 and PCT/ filed on October 18, 2010. The priority of JP 20 10/068790 is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety. [Technical Field of the Invention] The present invention relates to a photocatalyst-coated body, and more particularly relates to a photocatalyst-coated body which is excellent in self-cleaning function and harmful gas decomposition function due to rainfall, and has good weather resistance for a long period of time. [Prior Art] In recent years, photocatalysts such as titanium oxide have been used for many purposes such as building materials. The photocatalyst is excited by the light energy to decompose various harmful substances or to hydrophilize the surface of the substrate coated with the photocatalyst, and the dirt adhering to the surface can be easily washed away with water. A technique of obtaining a photocatalyst coated body coated with such a photocatalyst, for example, a photocatalyst film formed on a composite material having excellent photocatalyst hydrophilic function, for example, International Publication No. 98/03607 (Patent Document) 1) a photocatalyst particle composed of a metal oxide; and a precursor selected from the group consisting of cerium oxide microparticles, a cerium oxide resin film precursor capable of forming a cerium oxide resin film, and a cerium oxide film precursor capable of forming a cerium oxide film At least one type of capsule consisting of 201210695. In view of the hydrophilicity at the initial stage of the formation of the coating film, the cerium oxide fine particles or the hardened cerium oxide film precursor which can form the cerium oxide film are excellent as a component of the photocatalyst film. Further, when a photocatalyst hydrophilic film is formed on an organic substrate, as described in the specification of International Publication No. 97/00134 (Patent Document 2), in order to solve the problem that the organic material is decomposed or deteriorated due to the photocatalytic activity of the photocatalyst. In this case, a technique in which an intermediate layer having photocatalytic corrosion resistance such as xenon is interposed between the substrate and the photocatalyst hydrophilic film is used. Further, there has been proposed a technique for preventing cracking of a photocatalyst layer having an anticorrosive property against a photocatalyst in an intermediate layer between a substrate and photocatalyst particles. For example, JP-A-2007- 1 68 1 3 5 (Patent Document 3) discloses that the surface of the substrate 1 of the kiln system is formed in the order of the organic coating film 2, the inorganic coating film 3, and the inorganic coating film 4 containing the photocatalyst. A coated body of a coating film in which the elongation at break of the inorganic coating film 3 is set to 0.8 to 3.0%. In the inorganic coating film 4 containing a photocatalyst, the inorganic coating agent uses a photocatalyst to form a cerium oxide resin film precursor which can form a cerium oxide resin film. For an inorganic coating film containing a photocatalyst, it is possible to select no cerium oxide microparticles. Or a more brittle material of the cerium oxide film precursor of the cerium oxide film. Further, a technique of fixing a photocatalyst particle to a surface of an elastic material is disclosed in Japanese Laid-Open Patent Publication No. Hei No. Hei No. 10-202794 (Patent Document 4), and a sheet-like material coated with a silicone elastomer is disclosed. A silicone elastomer coated sheet characterized by photocatalytic titanium oxide powder is adhered to the surface layer portion of the elastomer. The method is relatively unique in that a composition of the cerium oxide elastomer is applied to the sheet, and then the titanium oxide powder having photocatalytic energy is carried on the surface thereof to -6 - 201210695 to cure the cerium oxide elastomer composition. [Prior Art Document] [Patent Document 1] [Patent Document 1] International Publication No. 98/03 607 [Patent Document 2] International Publication No. 9 7/0 0134 [Patent Document 3] Special Opening 2007- 1 68 1 [Patent Document 5] JP-A-2008-272718 (Patent Document 5) JP-A-2008-272718 (Summary of the Invention) [Problem to Solve the Invention] The present inventors have now The layer contact of a specific physical property is disposed under the photocatalyst, and the insight that the photocatalyst coating body having good elasticity can be realized is obtained. In addition, it has been found that the photocatalyst coating body can simultaneously satisfy the basic properties required for the photocatalyst coating body. The present invention has been completed based on this finding. Accordingly, it is an object of the present invention to provide a photocatalyst-coated body which has the required basic properties and which has excellent weather resistance and good elasticity. [Means for Solving the Problem] The photocatalyst coated body of the present invention includes: a substrate; a photocatalyst layer containing a photocatalyst; and a substrate and the photocatalyst layer interposed between the photocatalyst layer and the photocatalyst layer The light contacted by the intermediate layer in contact with the 201210695 dielectric coated body is characterized in that the intermediate layer is made of a resin component, and the resin component is made of a non-oxygen component and a soft non-oxygen component. The loss tangent measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 at 25 ° C exceeds the above-mentioned intermediate layer of 〇 2 'under 1.5 ' by the solid viscoelasticity measuring apparatus according to JIS Κ 7244-4. At least one of the spectral peaks in the measured temperature change curve of the loss elastic modulus exceeds _80 degrees and is 30 degrees or less. [Effect of the Invention] The photocatalyst coating system of the present invention has excellent weather resistance and has good elasticity. Specifically, the photocatalyst-coated body of the present invention can ensure the denseness of the substrate and the photocatalyst layer even if it is applied outdoors, for example, when the temperature of the surface of the coating film changes due to seasonal changes or the like, and cracks occur in the photocatalyst film. The property can suppress the propagation or development of cracks generated on the surface side or the substrate side. Further, according to a preferred aspect, the photocatalyst coating system of the present invention exhibits hydrophilicity at the initial stage of formation of the coating film, and as a result, it can exhibit excellent self-cleaning function with rainfall from the coating film, and can maintain its hydrophilicity for a long period of time. The advantage of sex. [Mode for Carrying Out the Invention] Photocatalyst-coated body The photocatalyst-coated body of the present invention basically includes a substrate, and a photocatalyst layer containing a photocatalyst: interposed between the substrate and the photocatalyst layer, and is set to The intermediate layer contacting under the photocatalyst layer; the formed -8-201210695 structure. The intermediate layer is composed of a resin component, and the resin component is a non-oxygen component containing a cerium oxide component and a soft non-oxygen component, and the intermediate layer is subjected to a loss measured by a solid viscoelasticity measuring apparatus according to JIS K7244-4 at 25 ° C. The tangent is over 0.2 and is less than 1.5. The photocatalyst coating system of the present invention has excellent weather resistance and good elasticity. Specifically, even if cracks are formed in the photocatalyst film, the adhesion between the substrate and the photocatalyst layer can be ensured, and the generated cracks can be prevented from propagating or developing toward the substrate side, and the photocatalytic function for the gas decomposition function or the like can be suppressed. It also has excellent performance. Therefore, the coated body of the present invention is not limited to the following, and for example, the members (1) to (6) can be formed as a substrate. In other words, (1) a structure that imparts vibration to a bridge or the like (2) a porous material such as an unglazed ceramic, concrete, cement board, wood, or stone, and a member having an atmosphere having a temperature of 0 ° C or lower, ( 3) A material made of a flexible material such as a metal material, a rubber or a flexible film resin, which is subjected to a bending process after forming a photocatalyst layer, and (4) a temperature change of 20 ° C or more per day. A member made of a material used in a large place, (5) a metal, a resin, a rubber, a silicone sealant, a seal coat, or the like, which has a linear expansion ratio of 1 Ο^Κ·1 or more, and a member having a large thermal expansion coefficient. (6) The temperature difference is the component used in the environment above 30%. The surface of these members is illuminated by light such as sunlight that illuminates the light source of the photocatalyst. According to a preferred aspect of the present invention, the photocatalyst layer contains photocatalyst particles and inorganic oxide particles, and the particle component is 70% by mass or more, preferably 90% by mass or more, based on the photocatalyst layer. When the photocatalyst layer is configured as described above, it is easy to exhibit hydrophilicity at the initial stage of formation of the coating film, and substantially, the coating film can then exhibit excellent self-cleaning performance due to rainfall. In this aspect, especially when the photocatalyst layer is brittle, the propagation or development of cracks can be further suppressed. In general, a photocatalyst layer, particularly a photocatalyst layer composed of an inorganic component, is brittle, and therefore cracks may occur depending on seasonal changes and temperature changes. However, in the case of the photocatalyst-coated body of the present invention, the crack is caused by the multiplication effect of the two reasons shown below, so that the influence of the crack does not propagate to the surface side and the substrate side. However, the following reasons are assumed, but the present invention is not limited to those having such effects. The loss tangent of 2 5 ° C of the intermediate layer in contact with the underside of the photocatalyst layer exceeds 0.2, whereby the intermediate layer absorbs the energy. Further, according to one aspect of the present invention, when 70% or more of the photocatalyst layer is composed of a particulate substance such as photocatalyst particles or inorganic oxide particles, a particle gap exists in the photocatalyst layer, and the development of cracks is suppressed by the gap. Therefore, the crack generated in the photocatalyst layer is less likely to propagate or develop toward the surface or the cross-section, and the surface does not have an appearance defect such as white turbidity accompanying the crack, and the intermediate layer and the substrate are not easily broken, and under the photocatalyst layer. When the loss of tantalum at 25 ° C of the intermediate layer in contact is less than 1.5, the surface of the photocatalyst layer can maintain hydrophilicity of less than 20 ° for a long period of time. Further, by disposing the oxygen-containing component as a resin component of the intermediate layer, deterioration of the substrate due to the photocatalyst can be suppressed. The surface of the photocatalyst layer in the photocatalyst-coated body of the present invention is excited by light of the photocatalyst, and is converted into a contact angle with water to exhibit hydrophilicity of less than 20°. This provides excellent self-cleaning performance with rainfall. The ratio of the photocatalyst -10- 201210695 in the photocatalyst layer in the photocatalyst coating body of the present invention is preferably 1% by mass or more, less than 20% by mass, and more preferably 5% by mass or more and 15% by mass or less. In one aspect of the invention, when the proportion of the photocatalyst in the photocatalyst layer is much smaller than the above range of the inorganic oxide particles, the photocatalyst particles can be directly contacted with the substrate, thereby suppressing the base. Erosion of materials (especially organic substrates). At the same time, it is possible to prevent the photocatalyst from being attacked on the substrate (especially the organic substrate), and at the same time, it is possible to obtain a photocatalyst-coated body excellent in decomposing harmful gases and various desired film properties (transparency, film strength, etc.). . In the present invention, when the photocatalyst is a particle, the average particle diameter of the photocatalyst particles in the photocatalyst coating body is preferably l〇nm or more, less than 100 nm, more preferably l〇nm or more, less than 100 nm, and most preferably 10 nm or more and 60 nm or less. In the present specification, the average particle diameter of the photocatalyst particles is measured by a scanning electron microscope to determine the length of any of the 100 particles in the field of view of 20,000 to 200,000 times, and is calculated by the number average 値. The shape of the particles is preferably a true sphere, or a slightly circular or elliptical shape. In this case, the length of the particles is calculated by ((long diameter + short diameter)/2). When the average particle diameter of the photocatalyst particles is within the above range, the amount of aeration and gas decomposition activity in the photocatalyst layer can be sufficiently exhibited, and sufficient photocatalytic decomposition activity can be exhibited, and various film properties such as weather resistance can be balanced. Further, when the average particle diameter of the photocatalyst particles is in the above range, the photocatalyst layer exhibits good transparency. The average particle diameter of the inorganic oxide particles in the photocatalyst-coated body of the present invention is preferably 5 nm or more, less than 10 nm, more preferably 10 nm, and even more preferably 40 nm in the present specification. The average particle diameter of the inorganic oxide particles is the same as the average particle diameter of the photocatalyst particles, and -11 - 201210695 is used to measure the length of any 100 particles entering a field of view of 200,000 times by a scanning electron microscope. When the average particle diameter of the inorganic oxide particles is in the above range, the gas permeability in the photocatalyst layer can be improved, the gas decomposition reactivity can be improved, and the abrasion resistance and crack resistance can be improved. The film thickness of the photocatalyst layer in the photocatalyst-coated body of the present invention is preferably 3 μm or less. When the film thickness of the photocatalyst layer is 3 μm or less, the transparency and the film strength are excellent, and the effect that the crack does not progress to the surface side and the appearance is poor can be remarkably suppressed. According to a preferred embodiment of the present invention, the film thickness of the photocatalyst layer is preferably 〇.2 μmη or more, more preferably 〇·5 μηι or more. The film thickness of the photocatalyst layer is 〇·2 μm or more, and it exhibits good hydrophilicity. Further, since the ultraviolet rays reaching the interface between the photocatalyst layer and the substrate are sufficiently attenuated, the effect of improving the weather resistance can be obtained. In one aspect of the invention, there is a particle gap in the photocatalyst layer of the photocatalyst-coated body. Thereby, the decomposition function of the harmful gas by the photocatalyst can be improved, and the progress of the crack on the surface side and the profile side can be suppressed. The particle gap in the photocatalyst-coated body of the present invention is preferably from 20% by volume to 5% by volume. When the void ratio is in the above range, the harmful gas and the photocatalyst particles are in contact with each other at a high probability. Therefore, the decomposition activity of the harmful gas is further enhanced. When the gap is mixed, the progress of the crack to the surface side and the cross section side can be sufficiently suppressed. In the present specification, it is preferable to use a reflection spectroscopic film thickness meter: FE-3 000 manufactured by Otsuka Electronics Co., Ltd., and to measure 5 or more points per sample, preferably 10 points or more, and obtain an average of 値. Counting. The order is as follows -12- 201210695. Sequence i. Refractive index of the glass plate 1-1. Measure the reflectance of the glass plate at a wavelength of 23 〇 to 800 nm according to the following conditions 〇 Determination method Absolute reflectance lens Refresh . 2 5 X Standard reflector A1-S-13 filter Picking the slit 〇.2mm><2mm sampling time 1 0 0 0 sec cumulative times 9 times gain normal 1-2. By the medium = air, glass plate, light incident angle ¢ = 0, the air side is incident When the light is reflected by the glass plate, the Fresnel amplitude reflection coefficient of the air/glass plate interface and the dispersion of n-Cauchy are calculated, and the reflectance of the glass plate at a wavelength of 203 to 800 nm is calculated. In the above-mentioned n-Cauchy dispersion, the initial enthalpies of the constants (Cmi, Cm2, Cw) are Cml = l.5, Cm2 = 〇, Cm3 = 0, the refractive index of air is 1, and the extinction coefficient of air (extinction coefficient) ) is 0 (Otaruyama Shinshin, "The Basic Theory of Optical Films" p20~65, (2003, optronics)). 1 - 3 . The measured reflectance (1 -1 ) is compared with the calculated reflectance (1 - 2 ), and Cml, Cm2, and Cm3 whose sum of squared residuals is the smallest are obtained. At this time, the upper limit of the sum of the squares of the residuals is 0.02 -13 - 201210695 1- 4. Substituting Cm|, Cm2, and Cm3 obtained by 1-3 into the dispersion of n-Cauchy' determines the refractive index of the glass plate nm ^ Sequence 2. Determination of the void ratio of the photocatalyst layer 2- 1. The reflectance of the photocatalyst layer at a wavelength of 230 to 800 nm is measured according to the following conditions. Measurement method Absolute reflectance lensRefrec.25X Standard reflector A1-S-13 Filter without slit 0.2mm><2mn Sampling time 1 0 0 0msec Cumulative number 9 times Gain normal 2-2. Composition medium = air, photocatalyst Layer = single-layer film, glass plate, incident angle of light Φ =0 °, light reflected by the air side from the single layer film and light transmitted inside the single layer film above the single layer film (air / Single-layer film interface, single-layer film/glass plate interface) The Fresnel amplitude reflection coefficient of the air/single-film interface of multiple photoreactions with multiple repetitive reflections is approximated by Bruggeman, thereby calculating the wavelength of the photocatalyst layer 23 0~ Reflectivity of 8 0 Onm (Kojiyama Koshinshin, "Basic Theory of Optical Films" p20~65, (2003, optronics), DE A spnes, Thin Solid Films, 89, 249 (1 982)). The initial enthalpy of C] (volume of Si02 -14 - 201210695 fraction), c2 (volume fraction of Ti〇2), and c3 (volume fraction of air) are 0.70, 0.05, and 0.25, respectively. In addition, the refractive index of air is 1, and the extinction coefficient of air is 〇. The refractive index (, n2 ) of Si02 and Ti02, and the extinction coefficient (h, k2) are quoted by E. D. Palik, “Handbook of Optical Constants of Solids”, (1 9 9 8
Academic Press » San Diego ) o 2-3.改變膜厚d、Si02、Ti02、空氣之體積分率Cr C2 、C3之値,實測反射率(2-1 )與計算反射率(2-2 )進行 比較,求出殘差平方和成爲最小時之C!、C2、C3。殘差平 方和未達0.02,且成爲最小時.之C3作爲空隙率。其他條件 如下述。 膜厚檢索方法 最佳化法 檢索範圍(波長) 400〜800nm 檢索範圍(膜厚) 0~2000nm 膜厚階段 l〇nm 此處所求得之C3作爲本發明之光觸媒層中的空隙率( 體積% )。 本發明之光觸媒塗裝體之前述樹脂成分中之柔軟非矽 氧樹脂的比例,較佳爲超過1%,未達99.5%,更佳爲超過 10% ’未達99.5%,最佳爲超過50%,未達99.5%。柔軟非 砂氧樹脂的比例在上述範圍時,可抑制中間層之因光觸媒 的劣化,提高中間層與光觸媒層之密著性。 本發明之光觸媒塗裝體之前述樹脂成分中之矽氧成分 的比例’以Si02換算,較佳爲0.5%以上,30%以下。樹脂 -15- 201210695 成分中之矽氧成分的比例在此範圍時,可更能抑制中間層 之光觸媒的劣化。 光觸媒層 本發明中,光觸媒層於基材表面若存在光觸媒,較佳 爲光觸媒粒子時,除了完全膜狀以外,亦包含例如部分成 爲膜狀的狀態。此外,亦可在基材表面上以島狀離散狀態 存在。依據本發明之較佳樣態時,此光觸媒層係使用塗佈 液所得者。 依據本發明之較佳形態時,光觸媒塗裝體所具有的光 觸媒層係含有作爲粒子成分之光觸媒粒子與無機氧化物粒 子,且前述粒子成分係相對於前述光觸媒層爲70質量%, 較佳爲75質量%,更佳爲80質量%,更佳爲90質量%以上 〇 本發明中,粒子成分係指伴隨形狀的成分。粒子成分 係以光觸媒粒子及無機氧化物粒子作爲必須成分,也可含 有作爲任意成分之後述其他的粒子。粒子成分的形狀無特 別限定,可爲球狀、棒狀、纖維狀、晶鬚狀、平板狀、不 定形。 本發明中,光觸媒可使用例如有銳鈦礦型氧化鈦、金 紅石型氧化鈦、板鈦礦型氧化鈦等的結晶性氧化鈦、ZnO 、Sn〇2、SrTi03、W03、Bi2〇3、Fe203 之金屬氧化物中之 至少一種。可僅使用一種類或可組合複數種使用。複數種 之較佳組合,例如有結晶性氧化鈦與Sn02、結晶性氧化鈦 -16- 201210695 與W03等。此處所例示之任一金屬氧化物也適合於後述各 構成組合。 光觸媒粒子較佳爲結晶性氧化鈦粒子。結晶性氧化鈦 相較於ZnO時,具有較佳之耐水性。又,與Sn02&較時, 更能以太陽光中含許多之3 80nm~420nm之波長的光,發揮 氣體分解等的光觸媒機能。又相較於SrTi03時,較容易得 到奈米等級的微粒子,因此具有較大的比表面積,容易得 到實用上充分的光觸媒活性。此外,相較於W03、Bi203 、Fe203時,能帶隙較大,因此具有充分的氧化力,同時 光激發後,不易產生傳導電子與電洞之再結合,氣體分解 具有充分的活性化能》結晶性氧化鈦係無害,且化學性安 定,可廉價取得。又,結晶性氧化鈦係能帶隙能較高,因 此光激發時需要紫外線,光激發過程不會吸收可見光,因 此不會因補色成分而產生發色。 光觸媒粒子例如在結晶性氧化鈦粒子中,較佳爲銳鈦 礦型氧化鈦。銳鈦礦型氧化鈦相較於金紅石型氧化鈦,其 氧化力較強,因此可發揮更強的氣體分解等之光觸媒機能 。作爲光觸媒粒子之銳鈦礦型氧化鈦粒子可與上述各構成 適當組合,且不會妨礙其效果,可發揮上述的作用效果。 無機氧化物粒子可使用氧化矽粒子、氧化鋁粒子、氧 化錆粒子、氧化铈粒子等。較佳爲氧化矽粒子。光觸媒層 除光觸媒粒子、無機氧化物粒子(氧化矽粒子)外,在不 影響光觸媒親水機能的量,較佳爲30質量%以下,更佳爲 10質量%以下的範圍內添加無機黏結劑或金屬或金屬化合 -17- 201210695 物、界面活性劑等。 光觸媒層含有可作爲任意成分之其他的粒子,例如有 氟樹脂粒子、乳膠·丙烯酸球等的樹脂粒子、著色顔料粒 子、晶鬚·纖維·塡料等之體質顔料粒子、雲母·滑石·玻璃 球等之創意材粒子等。 依據本發明之較佳態樣時,光觸媒層可含有無機黏結 劑,例如有無定形氧化鈦、無定形氧化矽;鹼矽酸鹽、烷 基矽酸鹽等可形成氧化矽皮膜之前驅物的硬化物;無定形 氧化锆;碳酸锆銨、乙酸锆、甲酸鍩等可形成氧化鉻皮膜 之前驅物的硬化物等。 依據本發明之較佳態樣時,光觸媒層可含有金屬或金 屬化合物,例如有Cu或Cu2〇、CuO等之Cu化合物、Ag或 Ag2〇等之Ag化合物、Pt或Pt化合物、Fe或Fe化合物、Pd 或Pd化合物等。 本發明之光觸媒塗裝體所具有的光觸媒層係使用將上 述成分分散於溶劑後之塗佈液,藉由乾燥或燒成來形成。 依據本發明之較佳態樣時,形成光觸媒層時之塗佈液,從 光觸媒或無機氧化物粒子之分散安定性、塗佈於中間層上 時之潤濕性的觀點,可含有界面活性劑。界面活性劑可自 非離子性界面活性劑、陰離子性界面活性劑、陽離子性界 面活性劑、兩性離子性界面活性劑中適當選擇。較佳爲非 離子性界面活性劑,更佳爲醚型非離子性界面活性劑、酯 型非離子性界面活性劑、聚烷二醇非離子性界面活性劑、 氟系非離子性界面活性劑、聚矽氧系非離子性界面活性劑 -18- 201210695 本發明中使用之光觸媒接受光激發之親水化係1晚未 經光照射可產生之往疏水方向之與水之接觸角的變動’藉 由曰光碳弧燈式耐候性試驗24小時可回復的程度即可。曰 光碳弧燈式耐候性試驗係使用SUGA試驗機股份公司製( 條件:光照射30W/m2、氣氛溫度60°C,120分鐘光照射中 ,水噴霧18分鐘、水溫16±5°C )。其中與水之接觸角係以 JIS R 1 703- 1所記載的方法測定。 中間層 本發明之光觸媒塗佈物所具有的中間層係介於基材及 光觸媒層之間,且設置爲與光觸媒層下方接觸。此中間層 含有樹脂成分,此樹脂成分含有矽氧成分及柔軟非矽氧樹 脂,且在25 °C之損失正切超過0.2未達1.5,較佳爲超過0.2 未達1.0者。 「介於基材及光觸媒層之間,且設置於與光觸媒層下 方接觸」的狀態,只要是接觸光觸媒層下方與中間層上方 即可,其界面可爲實質上直線的狀態,亦可爲一部份交錯 狀態之任一種。 本說明書中,光觸媒塗佈物所具有之中間層的損失正 切係將中間層設置於依據JIS K7244-4 (「塑膠動態機械 特性之試驗方法-第4部:拉伸振動·非共振法」)之固體 黏彈性測定裝置上,以拉伸模式在頻率數1 Hz下測定所得 之値。 -19- 201210695 本發明中,中間層係含有樹脂成分所成。此樹脂成分 係含有矽氧成分與柔軟非矽氧成分。此處,矽氧成分可使 用矽氧樹脂或矽氧片段,而柔軟之非矽氧成分可使用柔軟 之非矽氧樹脂或柔軟之非矽氧片段。又,樹脂成分可僅由 上述兩種成分所構成,或可含有上述兩種成分以外之樹脂 或片段》樹脂成分係使上述兩種成分或上述兩種成分及其 他樹脂或片段進行聚合、混合、交聯而得。 本發明中,中間層中之樹脂成分的量,較佳爲10質量 %以上100質量%以下,更佳爲50質量%以上100質量%以下 ,更佳爲55質量%以上100質量%以下,更佳爲60質量%以 上100質量%以下。 本發明中,柔軟非矽氧成分係指柔軟非矽氧樹脂或柔 軟非矽氧片段,較佳爲一藉由依據JIS K7244-4之固體黏 彈性測定裝置所測定之損失彈性率之溫度變化曲線中之光 譜波峰爲超過-80度且在30度以下的成分。中間層中所含 之柔軟非矽氧成分藉由具有如上述性質時,中間層之藉由 依據JIS K7244-4之固體黏彈性測定裝置所測定之損失彈 性率之溫度變化曲線中,發現光譜波峰之至少一個超過_ 80度且在30度以下。 又,柔軟非矽氧成分之量係相對於矽氧成分中之Si的 量,較佳爲20質量%以上100,000質量%以下,更佳爲100 質量%以上2 0,0 0 0質量%以下’更佳爲2 0 0質量%以上 1 6,000質量%以下。 柔軟非矽氧樹脂可利用例如胺基甲酸酯聚醚、胺基甲 -20- 201210695 酸酯聚酯、胺基甲酸酯聚碳酸酯、聚醚、聚酯、聚丙烯酸 酯、聚甲基丙烯酸酯、聚丙烯酸、聚甲基丙烯酸、聚乙烯 、該等之複合物'使該等經矽氧改質或鹵素改質者。 柔軟非矽氧片段可使用例如胺基甲酸酯聚醚片段、胺 基甲酸酯聚酯片段、胺基甲酸酯聚碳酸酯片段、聚醚片段 、聚酯片段、聚丙烯酸酯片段、聚甲基丙烯酸酯片段、聚 丙烯酸片段、聚甲基丙烯酸片段、聚乙烯片段、使該等經 矽氧改質或鹵素改質的片段。 又,矽氧樹脂較佳爲使用以下述平均組成式(1)表 示的砂氧: R pSi ( OR ) q〇(4-p-q) /2 ... ( 1 ) (式中,R1爲未取代或取代之一價烴基,R2係選自由氫原 子、碳數1〜6之未取代之一價烴基或碳數1〜6之烷氧基取代 之一價烴基,P及q爲滿足〇<p<4,0<q<4,0<(p + q) <4之 數)。 上述式中’ R1之未取代或經取代之一價烴基,較隹爲 碳數1~18者,未經取代之—價烴基例如有甲基、乙基、丙 基、異丙基、丁基、第三丁基、己基、環己基、辛基、癸 基等烷基,乙烯基、烯丙基、5-己烯基、9-癸烯基等烯基 ’苯基等芳基’苄基、苯基乙基等芳烷基等。又,經取代 之一價烴基係未經取代之一價烴基之氫原子之一部分或全 部經取代基取代者’而取代基可使用1)氟、氯等鹵素原 -21 - 201210695 子,2)縮水甘油氧基、環氧基環己基等環氧官能基,3) 甲基丙烯酸基、丙烯酸基等(甲基)丙嫌酸官能基,4) 胺基、胺基乙基胺基、苯基胺基、二丁胺基等胺基官能基 ,5)锍基、四硫醚基等含硫官能基,6)(聚氧伸烷基) 烷基醚基等烷基醚基,7)羧基、磺醯基等陰離子性基,8 )含有四級銨鹽構造之基團等,但作爲反應基以2) 、3) 者爲佳,特別是以具有環氧官能基者爲佳。此經取代之一 價烴基的具體例有三氟丙基、全氟丁基乙基、全氟辛基乙 基、3-氯丙基、2-(氯甲基苯基)乙基、3-縮水甘油氧基 丙基、2-(3,4-環氧基環己基)乙基、3-(甲基)丙烯氧 基丙基、(甲基)丙烯氧基甲基、3-胺基丙基、N-( 2-胺 基乙基)胺基丙基、3-(Ν·苯基胺基)丙基、3-二丁胺基 丙基、3-锍基丙基、聚氧伸乙基氧基丙基、3-羥基羰基丙 基、3-三丁基銨丙基等。此等中以甲基、丙基、己基、苯 基較佳。 R2之碳數1 ~6之未取代或經取代之一價烴基之例有包 含甲基、乙基、丙基、異丙基、丁基、第二丁基、第三丁 基等烷基,異丙烯基等烯基,苯基等芳基之未取代一價烴 基,或甲氧基甲基、乙氧基乙基、乙氧基甲基、甲氧基乙 基等烷氧基烷基等之經烷氧基取代之一價烴基。 依據本發明之一樣態時,爲了對矽氧樹脂賦予柔軟性 ,可含有二官能基矽烷衍生物單體(每分子具有兩個水解 性基X,各矽原子上鍵結兩個氧原子形成二官能基矽氧烷 鍵的單體)。較佳之水解性二官能基矽烷衍生物單體,例 -22- 201210695 如有二苯基二氯矽烷、二苯基二溴矽烷、 矽烷、二苯基二乙氧基矽烷、苯基甲基二 基二溴矽烷、苯基甲基二甲氧基矽烷、苯 矽烷、γ-縮水甘油氧基丙基甲基二甲氧基 油氧基丙基甲基二乙氧基矽烷、γ-(甲基 甲基一甲氧基砂院、(甲基)丙嫌氧基 基矽烷、γ-胺基丙基甲基二甲氧基矽烷、 二乙氧基矽烷、十七氟辛基甲基二甲氧基 基甲基二乙氧基矽烷。 另外,矽氧片段也與與上述相同,較 平均組成式(1)表示之矽氧: R^Si ( OR2) qO(4-p-q) /2 …(1) (式中,R1爲未取代或經取代之一價烴基 原子、碳數1~6之未取代—價烴基或碳數1 之一價烴基’ P及q爲滿足0<p<4,0<q<4, 數)。 上述式中,R1之未取代或經取代之— 數1〜18者’未取代之一價烴基之具體例有 基、異丙基、丁基、第三丁基、己基、環 基等烷基’乙烯基、烯丙基、5 -己烯基、 ’苯基等芳基,苄基、苯基乙基等芳烷基 之一價烴基爲未取代之一價烴基之氫原子 二苯基二甲氧基 氯矽烷、苯基甲 基甲基二乙氧基 矽烷、γ -縮水甘 )丙烯氧基丙基 丙基甲基二乙氧 γ-胺基丙基甲基 矽烷、十七氟辛 佳爲使用以下述 ,R2係選自由氫 〜6之烷氧基取代 0< ( p+q) <4之 價烴基較佳爲碳 甲基、乙基、丙 己基、辛基、癸 9-癸烯基等烯基 等。又,經取代 之一部分或全部 -23- 201210695 經取代基取代者,而取代基可使用η氟、氯等鹵素原子 ,2)縮水甘油氧基、環氧基環己基等環氧官能基,3)甲 基丙烯酸基、丙烯酸基等(甲基)丙烯酸官能基,4)胺 基、胺基乙基胺基、苯基胺基、二丁基胺基等胺基官能基 ,5)毓基、四硫醚基等含硫官能基,6 )(聚氧伸烷基) 烷基醚基等烷基醚基,7)羧基、磺醯基等陰離子性基,8 )含有四級銨鹽構造之基團等,但作爲反應基以2) 、3) 者爲佳,尤其以具有環氧官能基者爲佳。此經取代一價烴 基之具體例有三氟丙基、全氟丁基乙基、全氟辛基乙基、 3-氯丙基、2-(氯甲基苯基)乙基、3-縮水甘油氧基丙基 ' 2·(3,4-環氧基環己基)乙基、3-(甲基)丙烯氧基丙 基、(甲基)丙烯氧基甲基、3-胺基丙基、Ν-( 2-胺基乙 基)胺基丙基、3-(Ν-苯基胺基)丙基、3-二丁胺基丙基 、3-毓基丙基、聚氧伸乙基氧基丙基、3-羥基羰基丙基、 3-三丁基銨丙基等。此等中以甲基、丙基、己基、苯基爲 佳。 R2之碳數1〜6之未取代或經取代之一價烴基之例有包 含甲基、乙基、丙基、異丙基、丁基、第二丁基、第三丁 基等烷基,異丙烯基等烯基,苯基等芳基之未取代一價烴 基,或甲氧基甲基、乙氧基乙基、乙氧基甲基、甲氧基乙 基等烷氧基烷基等經烷氧基取代之一價烴基。 依據本發明之一樣態時,爲了對矽氧片段賦予柔軟性 ’亦可含有—官能基砂院衍生物單體(每分子具有兩個水 解性基X,且各矽原子上鍵結兩個氧原子形成二官能基矽 -24- 201210695 氧烷鍵之單體)。較佳之水解性二官能基矽烷衍生物單體 ,例如有二苯基二氯矽烷、二苯基二溴矽烷、二苯基二甲 氧基矽烷、二苯基二乙氧基矽烷、苯基甲基二氯矽烷、苯 基甲基二溴矽烷、苯基甲基二甲氧基矽烷、苯基甲基二乙 氧基矽烷、γ-縮水甘油氧基丙基甲基二甲氧基矽烷、γ-縮 水甘油氧基丙基甲基二乙氧基矽烷、γ-(甲基)丙烯氧基 丙基甲基二甲氧基矽烷、γ-(甲基)丙烯氧基丙基甲基二 乙氧基矽烷、γ-胺基丙基甲基二甲氧基矽烷、γ-胺基丙基 甲基二乙氧基矽烷、十七氟辛基甲基二甲氧基矽烷、十七 氟辛基甲基二乙氧基矽烷。 本發明中,中間層可含有之上述兩種以外之樹脂,例 如有聚酯、聚丙烯酸酯、聚甲基丙基酸酯、聚丙烯酸、聚 甲基丙烯酸、聚苯乙烯、聚乙烯、環氧樹脂、聚碳酸酯、 聚丙烯醯胺、聚醯胺、多元胺、多元醇、聚胺基甲酸酯、 聚醚、聚硫醚、聚酚、該等之複合物、該等經矽氧改質、 或鹵素改質的樹脂等。 又,本發明中,中間層可含有之上述兩種以外之片段 ’例如有聚酯片段(segment )、聚丙烯酸酯片段、聚甲 基丙基酸酯片段、聚丙烯酸片段、聚甲基丙烯酸片段、聚 苯乙烯片段、聚乙烯片段、聚碳酸酯片段、聚丙烯醯胺片 段、聚醯胺片段、多元胺片段、多元醇片段、聚胺基甲酸 酯片段、聚醚片段、聚硫醚片段、聚酚片段、該等經矽氧 改質或鹵素改質之片段等。 本發明中’中間層除上述樹脂成分外,亦可含有著色 -25- 201210695 料、體質顏料、亮光調整劑、紫外線吸收劑、光安定化劑 、造膜助劑、硬化劑、界面活性劑、黏度調整劑、消泡劑 、pH調整劑等。 著色料可使用無機顏料、有機顏料、染料等。 無機顔料可使用氧化鈦、鋅白、紅色氧化鐵、氧化鉻 、鈷藍、鐵黑等金屬氧化物系,氧化鋁白、黃色氧化鐵等 金屬氫氧化物系、普魯士藍等亞鐵氰化合物系、黃鉛、鉻 酸鋅、鉬紅等鉻酸鉛系、硫化鋅、朱紅、鎘黃、鎘紅等硫 化物、硒化合物、重晶石(Barite )、沉降性硫酸鋇等硫 酸鹽系、碳酸氫鈣、沉降性碳酸鈣等碳酸鹽系、含水砍酸 鹽、灰石、群青等矽酸鹽系、碳黑等碳系、鋁粉、青銅( bronze )粉、鋅粉等金屬粉系、雲母•氧化鈦系等珍珠顔 料系等》 有機顏料可使用萘酚綠B等亞硝基系顔料、萘酚S等 之硝基顔料系、立索爾紅(LitholRed )、金光紅(Lake Red) C、耐曬黃(FAST YELLOW)、萘酚紅等偶氮顏料 系,鹼藍(Alkali blue )紅、羅丹明(Rhodamine )紅、 喹吖陡酮紅(Quinacridone Red)、二嚼嗪紫(Dioxazine violet )、異吲哚啉酮黃等之縮合多環顔料系。 染料可使用分散染料、鹼性染料、直接染料、酸性染 料。 體質顏料可使用例如氧化鈦晶鬚、碳酸鈣晶鬚、鈦酸 鉀晶鬚、硼酸鋁晶鬚、雲母、滑石、硫酸鋇、碳酸鉀、矽 砂、矽藻土、高嶺土、灰石、陶土、碳酸鋇等。 -26- 201210695 亮光調整劑可使用例如無機系之亮光調整劑、有機系 之亮光調整劑等。無機系之亮光調整劑可使用例如乾式氧 化矽、濕式氧化矽、碳酸鈣、雲母、氮化硼、氧化鈦。有 機系之亮光調整劑可使用例丙烯酸樹脂球、胺基甲酸酯樹 脂球、矽氧樹脂粉、氟素樹脂粉等之樹脂球。 紫外線吸收劑可使用二苯甲酮系、苯并三唑系、三嗪 系紫外線吸收劑。 上述二苯甲酮系之紫外線吸收劑,具體而言可適當地 使用2,4-二羥基二苯甲酮、2-羥基-4-甲氧基二苯甲酮、2-羥基-4-甲氧基二苯甲酮-5-磺酸、2 -羥基-4-正辛氧基二苯 甲酮、2_羥基-4-正十二烷氧基二苯甲酮、2-羥基-4-苄氧 基二苯甲酮、雙(5-苯甲醯基-4-羥基-2-甲氧基苯基)甲 烷、2,2·-二羥基-4·甲氧基二苯甲酮、2,2'-二羥基-4,4·-二 甲氧基二苯甲酮、2,2',4,4’-四羥基二苯甲酮、4-十二烷氧 基-2-羥基二苯甲酮、2-羥基-4·甲氧基-2,-羧基二苯甲酮、 2-羥基-4-硬脂氧基二苯甲酮、辛苯酮(〇ctabenz〇ne )、 及2-羥基-4-丙烯氧基二苯甲酮、2_羥基-4 _甲基丙烯氧基 二苯甲酮、2-羥基·5_丙烯氧基二苯甲酮、2-羥基-5-甲基 丙烯氧基二苯甲酮、2_羥基_4_ (丙烯氧基-乙氧基)二苯 甲酮、2-羥基-4-(丙烯氧基-乙氧基)二苯甲酮、2_羥基_ 4-(甲基丙烯氧基-二乙氧基)二苯甲酮、2_羥基_4-(丙 嫌氧基-三乙氧基)二苯甲酮等聚合性二苯甲酮系紫外線 吸收劑或彼等之(共)聚合物等。 上述苯并三哩系紫外線吸收劑,具體而言例如有2_ ( -27- 201210695 2·-羥基- 5'-甲基苯基)苯并三唑、2- (2'-羥基- 5’-第三丁 基苯基)苯并三唑、2- (2·-羥基- 3',5·-二第三丁基苯基) 苯并三唑、2- (2-羥基-5-第三辛基苯基)苯并三唑、2-( 2-羥基-3,5-二第三辛基苯基)苯并三唑、2-[2’-羥基-3,,5,_ 雙(α,α'·二甲基苄基)苯基]苯并三唑、甲基- 3-[3-第三丁 基-5- (2Η-苯并三唑-2-基)-4-羥基苯基]丙酸酯與聚乙二 醇(分子量3 00 )之縮合物,異辛基-3-[3-(2Η-苯并三 2-基)-5-第三丁基-4-羥基苯基]丙酸酯、2- (3-十二烷基· 5 -甲基-2-羥基苯基)苯并三唑、2- (2’-羥基- 3'-第三丁 基-5、甲基苯基)-5-氯苯并三唑、2- (2'-羥基·3\5·-二第 三戊基苯基)苯并三唑、2- (2'-羥基-4'-辛氧基苯基)苯 并三唑、2-[2'-羥基- 3,- ( 3",4",5,,,6"-四氫苯二醯亞胺甲基 )-5’-甲基苯基]苯并三唑、2,2-亞甲基雙[4-(1,1,3,3-四 甲基丁基)-6-(2Η-苯并三唑-2-基)酚]、2-(2Η-苯幷三 唑-2-基)-4,6-雙(1-甲基-1-苯基乙基)酚、及2-(2,-經 基-5’-甲基丙烯氧基乙基苯基)-2Η-苯并三嗖、2- ( 2,-經 基-5’-甲基丙烯氧基乙基-3-第三丁基苯基)-2Η-苯并三口坐 、2- (2·-羥基-5’-甲基丙烯氧基丙基-3-第三丁基苯基)_ 5-氯-2Η-苯并三唑、3-甲基丙烯醯基-2-羥基丙基-3-[3·-( 2"·苯并三唑基)-4-羥基-5-第三丁基]苯基丙酸酯等聚合 性苯并三唑系紫外線吸收劑或該等之(共)聚合物。 三嗪系紫外線吸收劑可適當地使用羥基苯基三嗪化合 物。 進一步含有受阻胺系及/或受阻酚系等光安定劑時, -28- 201210695 藉由與上述紫外線吸收劑之相乘效果,可更提高耐候性, 故較佳》 受阻胺系光安定劑之具體例有雙(2,2,6,6·四甲基-4-哌啶基)丁二酸酯、雙(2,2,6,6-四甲基哌啶基)癸二酸 酯、雙(1,2,2,6,6-五甲基-4-哌啶基)2-(3,5-二第三丁 基-4-羥基苄基)-2-丁基丙二酸酯、1-[2-[3-(3,5-二第三 丁基-4-羥基苯基)丙烯基氧基]乙基]-4-[3-(3,5-二第三 丁基-4-羥基苯基)丙烯基氧基]-2,2,6,6·四甲基哌啶、雙 (1,2,2,6,6-五甲基-4-哌啶基)癸二酸酯與甲基-1,2,2,6,6-五甲基-4-哌啶基-癸二酸酯之混合物、雙(卜辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酸酯、及1,2,2,6,6-五甲 基-4-哌啶基甲基丙烯酸酯、1,2,2,6,6-五甲基-4-哌啶基丙 烯酸酯、2,2,6,6-四甲基-4-哌啶基甲基丙烯酸酯、2,2,6,6-四甲基-4-哌啶基丙烯酸酯、1,2,2,6,6-五甲基-4-亞胺基哌 啶基甲基丙烯酸酯、2,2,6,6-四甲基-4-亞胺基哌啶基甲基 丙烯酸酯、4-氰基-2,2,6,6-四甲基-4-哌啶基甲基丙烯酸酯 、4-氰基-1,2,2,6,6-五甲基-4-哌啶基甲基丙烯酸酯等聚合 性之受阻胺系紫外線吸收劑或該等之(共)聚合物。 另外,受阻酚系光安定劑之具體例可適當地使用雙( 3,5-二第三丁基)-4-羥基甲苯。 依據本發明之較佳樣態時,中間層液爲了改善其形成 性,亦可含有造膜助劑。造膜助劑例如有乙酸異戊酯、乙 酸氧代己酯、乙酸甲基甲氧基丁酯、丙酸乙基乙氧基酯、 乙二醇單丁醚乙酸酯、二乙二醇單乙醚乙酸酯、二乙二醇 -29- 201210695 單丁醚乙酸酯、2,2,4-三甲基-1,3-戊二醇單異丁酸酯、 2,2,4-三甲基-1,3-戊二醇二異丁酸酯、2,2,4-三甲基-1,3-戊二醇單2-乙基己酸酯、2,2,4-三甲基-1,3-戊二醇二2·乙 基己酸酯等之酯系有機溶劑;苄醇、2,2,4-三甲基-1,3-戊 二醇異丁酸酯(TEXANOL )、二乙二醇、異十三烷醇、 1,3 -辛二醇、甘油等醇系有機溶劑;乙二醇單己醚、乙二 醇單2-乙基己醚、二乙二醇單乙醚、二乙二醇二乙醚、二 乙二醇單丁醚、二乙二醇二丁醚、二乙二醇單2-乙基己醚 、丙二醇單苯醚、三丙二醇甲醚等醚系有機溶劑等,可單 獨或組合使用。 依據本發明之較佳樣態時,中間層可視需要倂用矽氧 成分與非矽氧成分中所含之官能基反應的硬化劑^ 前述硬化劑之具體例有具有矽烷醇基及/或水解性矽 烷基之化合物、聚環氧化合物、聚噁唑啉化合物、聚異氰 酸酯等。尤其,使用具有作爲前述矽氧成分與非矽氧成分 中所含之官能基爲羧基或羧酸酯基者時,較佳爲使用具有 環氧基與矽烷醇基及/或水解性矽烷基之化合物、聚環氧 化合物、聚噁唑啉化合物之組合。 前述具有矽烷醇基及/或水解性矽烷基之化合物,可 使用例如甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三 正丁氧基矽烷、乙基三甲氧基矽烷、正丙基三甲氧基矽烷 、異丁基三甲氧基矽烷、環己基三甲氧基矽烷、苯基三甲 氧基矽烷、苯基三乙氧基矽烷、乙烯基三甲氧基矽烷或3-(甲基)丙烯醯氧基丙基三甲氧基矽烷等有機三烷氧基矽 -30- 201210695 烷;二甲基二甲氧基矽烷、二甲基二乙氧基矽 二正丁氧基矽烷、二乙基二甲氧基矽烷、二苯 矽烷、甲基環己基二甲氧基矽烷或甲基苯基二 等二有機二烷氧基矽烷類;甲基三氯矽烷、乙 、苯基三氯矽烷、乙烯基三氯矽烷、3-(甲基 基丙基三氯矽烷、二甲基二氯矽烷、二乙基二 苯基二氯矽烷等各種氯矽烷類,或該等之部分 等,其中較佳爲使用有機三烷氧基矽烷或二有 矽烷。該等矽烷化合物可單獨使用亦可倂用兩 他例如有3·縮水甘油氧基丙基三甲氧基矽烷、 氧基丙基甲基二甲氧矽烷、3-縮水甘油氧基丙 矽烷、3-縮水甘油氧基丙基甲基二乙氧基矽存 環氧基環己基)乙基三甲氧基矽烷、以及該等 物等。 前述聚環氧化合物例如有具有源自乙二醇 新戊二醇、三羥甲基丙烷、季戊四醇、山梨糖 酚A等之脂肪族或脂環式多元醇構造之聚縮水 雙酚A、雙酚S、雙酚F等芳香族系二醇之聚縮 :聚乙二醇、聚丙二醇、聚丁二醇等聚醚多元 甘油醚類;參(2-羥基乙基)異氰尿酸酯之聚 類;己二酸、丁烷四羧酸、苯二甲酸、對苯二 肪族或芳香族多羧酸之聚縮水甘油酯類;環辛 基環己烯等烴系二烯類之雙環氧化物類;雙( 環己基甲基)己二酸酯、3,4-環氧基環己基甲 烷、二甲基 基二甲氧基 甲氧基矽烷 基三氯矽烷 )丙烯醯氧 氯矽烷或二 水解縮合物 機二烷氧基 種以上。其 3-縮水甘油 基三乙氧基 c ' β- ( 3,4-之水解縮合 、己二醇、 醇、氫化雙 甘油醚類; 水甘油醚類 醇之聚縮水 縮水甘油醚 甲酸等之脂 二烯、乙烯 3,4-環氧基 基-3,4-環氧 -31 - 201210695 基環己基羧酸酯等脂環式聚環氧化合物等。 前述噁唑啉化合物可使用例如2,2’-對-伸苯基·雙( 1,3-噁唑啉)、2,2^伸丁基-雙(1,3-噁唑啉)、2,2^伸辛 基-雙(2-噁唑啉)、2-異丙烯基-1,3-噁唑啉、或該等之 聚合物等。 前述聚異氰酸酯可使用例如甲苯二異氰酸酯、二苯基 甲烷-4,4·-二異氰酸酯等芳香族二異氰酸酯類;間-二甲苯 二異氰酸酯、α,α,οΤ,α’-四甲基-間-二甲苯二異氰酸酯等芳 烷基二異氰酸酯類;六亞甲基二異氰酸酯、離胺酸二異氰 酸酯、1,3-雙異氰酸酯甲基環己烷、2-甲基-1,3-二異氰酸 酯環己烷、2-甲基-1,5_二異氰酸酯環己烷、異佛爾酮二異 氰酸酯等。 另外,前述聚異氰酸酯可使用具有異氫酸酯基之各種 預聚物、具有異氰尿酸酯環之預聚物、具有雙縮脲構造之 聚異氰酸酯、含有異氰酸酯基之乙烯系單體。 作爲硬化劑之前述聚異氰酸酯所具有之異氰酸酯基, 視需要可藉由甲醇等以往已知之封閉劑(Block agent)被 封閉化。 本發明之光觸媒塗佈物所具有之中間層可使用將上述 成分分散於溶劑中的塗佈液,藉由乾燥或燒成而形成。 塗佈液亦可含有界面活性劑以改善其塗佈性。界面活 性劑可使用磺酸聚氧伸乙基烷基苯基醚銨鹽、磺酸聚氧伸 乙基烷基苯基醚鈉鹽、脂肪酸鈉皂、脂肪酸鉀皂、二辛基 磺基丁二酸鈉、烷基硫酸鹽、烷基醚硫酸鹽、烷基硫酸鈉 -32- 201210695 鹽、烷基醚硫酸鈉鹽、聚氧伸乙基烷基醚硫酸鹽、聚氧伸 乙基烷基醚硫酸鈉鹽、烷基硫酸鹽TEA鹽、聚氧伸乙基烷 基醚硫酸鹽TEA鹽、2-乙基己基烷基硫酸酯鈉、醯基甲基 牛磺酸鈉、月桂醯基甲基牛磺酸鈉、十二烷基苯磺酸鈉、 磺基丁二酸月桂基2鈉、聚氧伸乙基磺基丁二酸月桂基2鈉 、聚羧酸、油醯基肌胺酸、醯胺醚硫酸酯、月桂醯基水楊 酸鹽、磺基FA酯鈉鹽等陰離性界面活性劑;聚氧伸乙基 月桂基醚、聚氧伸乙基十三烷基醚、聚氧伸乙基餘蠟基醚 、聚氧伸乙基硬脂基醚、聚氧伸乙基油基醚、聚氧伸乙基 烷基醚、聚氧伸乙基烷基酯、聚氧伸乙基烷基酚醚、聚氧 伸乙基壬基苯基醚、聚氧伸乙基辛基苯基醚、聚氧伸乙基 月桂酸酯、聚氧伸乙基硬脂酸酯、聚氧伸乙基烷基苯基醚 、聚氧伸乙基油酸酯、山梨糖醇酐烷酯、聚氧伸乙基山梨 糖醇酐烷酯、聚醚改質之矽氧、聚酯改質之矽氧、山梨糖 醇酐月桂酸酯、山梨糖醇酐硬脂酸酯、山梨糖醇酐棕櫚酸 酯、山梨糖醇酐油酸酯、山梨糖醇酐倍半油酸酯、聚氧伸 乙基山梨糖醇酐月桂酸酯、聚氧伸乙基山梨糖醇酐硬脂酸 酯、聚氧伸乙基山梨糖醇酐棕櫚酸酯、聚氧伸乙基山梨糖 醇酐油酸酯、甘油硬脂酸酯、聚甘油脂肪酸酯、烷基烷醇 醯胺、月桂酸二乙醇醯胺、油酸二乙醇醯胺、氧基伸乙基 十二院基胺、聚氧伸乙基十二烷基胺、聚氧伸乙基烷基胺 、聚氧伸乙基十八烷基胺、聚氧伸乙基烷基丙二胺、聚氧 伸乙基氧伸丙基嵌段聚合物、聚氧伸乙基硬脂酸酯等非離 子性界面活性劑:二甲基烷基甜菜鹼、烷基甘胺酸、醯胺 -33- 201210695 甜菜鹼、咪唑啉等兩性界面活性劑,十八烷基二甲基苄基 氯化銨、烷基二甲基苄基氯化銨、十四烷基甲基苄基氯化 銨、二油基二甲基氯化銨、1-羥基乙基-2-烷基咪唑啉四 級鹽、烷基異喹啉鑰溴鹽、高分子胺、十八烷基三甲基氯 化銨、烷基三甲基氯化銨、十二烷基三甲基氯化銨、十六 烷基三甲基氯化銨、山嵛基三甲基氯化銨、烷基咪唑啉四 級鹽、二烷基二甲基氯化銨、十八烷基胺乙酸鹽、十四烷 基胺乙酸鹽、烷基丙二胺乙酸鹽、二癸基二甲基氯化銨等 陽離子性界面活性劑。 本發明中,調製中間層用之塗佈液亦可適度含有黏度 調整劑、消泡劑、pH調整劑等。 基材 本發明所用的基材只要是可於其上形成光觸媒層的材 料時’不論是無機材料、有機材料,各種材料均可,其形 狀亦無限制》就材料之觀點而言,基材之較佳例有金屬、 陶磁、玻璃、塑膠、橡膠、石材、水泥、混凝土、纖維、 布帛、木材、紙、該等之組合、該等之層合體、該等之表 面上具有至少一層被膜者。就因吸水造成膨脹變形所容許 之觀點而言’更佳爲水泥、混凝土,就因熱造成膨脹變形 之觀點而言,更佳爲金屬、樹脂。 就用途之觀點而言,基材之較佳例有外牆、屋頂、隔 音牆、護欄、橋樑。建材例如有外牆、屋頂。基材之形狀 並無特別限制’並不限於平板狀,亦可使用於彎曲面狀者 -34- 201210695 。對於此等基材之任一種,亦可與上述各構成適當組合。 特別是對於至少其表面以有機材料形成的基材,可適 合使用本發明。此處,其表面以有機材料形成之基材亦包 含基材全部以有機材料所構成者,以無機材料構成之基材 表面被有機材料被覆者(例如化妝板)之任一種。 塗裝體之使用 本發明之塗裝體即使於光觸媒被膜上產生龜裂,亦可 確保基材與光觸媒層之密著性,且顯著抑制產生之龜裂朝 表面側及基材側傳播或發展,同時對於氣體分解功能等之 光觸媒功能也具有優異的性能。因此,本發明之塗裝體並 不限於以下者,特別是適用於例如(1 )橋樑等施加振動 的情況,(2)基材爲無釉之陶磁器、混凝土、水泥板、 木材、石材等多孔質材料,且光觸媒塗裝體暴露於氣溫爲 〇°C以下之氣氛的情形,(3)基材爲金屬材料、橡膠、可 撓性薄膜樹脂等具有可撓性的材料,光觸媒塗裝體係在形 成光觸媒層後,經彎曲加工而形成的情況,(4 )於一天 之氣溫變化大爲2 0 °C以上之場所使用的情形,(5 )基材 爲金屬、樹脂、橡膠、矽氧密封劑、墊圈等線膨脹率1 〇 · 5Κ·1以上之熱膨脹率大之材料的情形,(6 )氣溫之年溫 差大爲3 0°C以上之情形等之至少任一種情形,且光觸媒層 之表面上被照射來自太陽光等可光激發光觸媒光之光源的 光的情形。 上述塗裝體於光觸媒層表面可能偶有下雨之環境下使 -35- 201210695 用,也可發揮隨著降雨之自我清潔功能。再者,藉由使塗 膜形成初期,換算與水之接觸角呈現未達20°,更佳爲未 達10。,更佳爲未達5。之親水性,藉此可發揮實質上塗膜 剛塗佈後優異之伴隨降雨所產生之自我清潔功能’同時可 長時期維持其親水性。 【實施方式】 [實施例] 光觸媒塗佈液之調製 光觸媒塗佈液1 將作爲光觸媒之二氧化鈦水分散體(平均粒徑: 30〜60nm)、作爲無機氧化物之水分散型膠體二氧化矽( 平均粒徑:20〜3 Onm )及水進行混合,得到固體成分濃度 爲5.5質量%、膠體二氧化矽含量在固體成分中爲90質量% 、光觸媒含量在固體成分中爲1〇質量%的組成物。另外, 相對於光觸媒塗佈劑質量份,混合〇·3質量份之非離子 性界面活性劑,使塗佈光觸媒塗佈液時,獲得對基材之潤 濕性,得到光觸媒塗佈液。 光觸媒塗佈液2 將作爲光觸媒之二氧化鈦水分散體(平均粒徑: 3 0〜6 0nm )、作爲無機氧化物之水分散型膠體二氧化矽( 平均粒徑:20〜3 Onm )、四乙氧基矽烷及水進行混合,得 -36- 201210695 到固體成分濃度爲5.5質量%、膠體二氧化矽含量在固體成 分中爲66.2質量%、四乙氧基矽烷含量在固體成分中爲 26.5質量%、光觸媒含量在固體成分中爲7.4質量%的組成 物。另外,相對於光觸媒塗佈劑100質量份,混合0.3質量 份之非離子性界面活性劑,使塗佈光觸媒塗佈液時,獲得 對基材之潤濕性,得到光觸媒塗佈液。 光觸媒塗佈液3 將作爲光觸媒之二氧化鈦水分散體(平均粒徑: 30〜60nm)、作爲無機氧化物之水分散型膠體二氧化矽( 平均粒徑:20〜30nm)、四乙氧基矽烷及水進行混合,得 到固體成分濃度爲5.5質量%、膠體二氧化矽含量在固體成 分中爲31質量%、四乙氧基矽烷含量在固體成分中爲62.1 質量%、光觸媒含量在固體成分中爲6.9質量%的組成物。 另外,相對於光觸媒塗佈劑100質量份,混合0.3質量份之 非離子性界面活性劑,使塗佈光觸媒塗佈液時,獲得對基 材之潤濕性,得到光觸媒塗佈液》 光觸媒塗佈液4 將作爲光觸媒之二氧化鈦水分散體(平均粒徑: 30〜60nm)、作爲無機氧化物之水分散型膠體二氧化矽( 平均粒徑:20〜30nm)及烷氧基低聚物及水進行混合,得 到固體成分濃度爲5.5質量%、膠體二氧化矽含量在固體成 分中爲86.9質量%、烷氧基低聚物含量在固體成分中爲3.5 -37- 201210695 質量%、光觸媒含量在固體成分中爲9.7質量%的組成物。 另外,相對於光觸媒塗佈劑100質量份,混合0.3質量份之 非離子性界面活性劑,使塗佈光觸媒塗佈液時,獲得對基 材之潤濕性,得到光觸媒塗佈液。 光觸媒塗佈液5 將作爲光觸媒之二氧化鈦水分散體(平均粒徑: 3 0〜6 Onm )、作爲無機氧化物之四乙氧基矽烷及水進行混 合,得到固體成分濃度爲5.5質量%、四乙氧基矽烷含量在 固體成分中爲78.3質量%、光觸媒含量在固體成分中爲 2 1.7質量%的組成物。另外,相對於光觸媒塗佈劑100質量 份,混合0.3質量份之非離子性界面活性劑,使塗佈光觸 媒塗佈液時,獲得對基材之潤濕性,得到光觸媒塗佈液》 光觸媒塗佈液6 將作爲光觸媒之二氧化鈦水分散體(平均粒徑: 3 0〜6 0nm )、作爲無機氧化物之烷氧基低聚物及水進行混 合,得到固體成分濃度爲5.5質量%、烷氧基低聚物含量在 固體成分中爲26.5質量%、光觸媒含量在固體成分中爲 73.5質量%的組成物。另外,相對於光觸媒塗佈劑100質量 份,混合0.3質量份之非離子性界面活性劑,使塗佈光觸 媒塗佈液時,獲得對基材之潤濕性,得到光觸媒塗佈液。 中間層塗佈液之調製 -38- 201210695 以下實施例中使用之水系丙烯酸矽氧樹脂分散液之固 體成分濃度爲3 5 %,水系胺基甲酸酯聚醚樹脂分散液之固 體成分濃度爲30%。 又,以下係如下測定塗膜在25 °C之損失正切。換言之 ,將中間層塗佈液以棒塗佈機#20塗佈於Teflon (註冊商 標)薄片上並經乾燥。接著,於所得之塗膜上以棒塗佈機 #2 0重複塗佈中間塗佈液並經乾燥。重複此操作直到.乾燥-膜厚成爲約20μηι爲止。將所得之塗膜裁切成5mmx50mm之 短條狀,並自Teflon (註冊商標)薄片上剝離,設置於固 體黏彈性測定裝置上,以拉伸模式以頻率1 Hz測定。 中間層塗佈液1 於矽氧含有率以Si02換算爲75質量%之水系丙烯酸矽 氧樹脂分散液100質量份中,依序添加202質量份之水系胺 基甲酸酯聚醚樹脂分散液、14質量份之造膜助劑、5.4質 量份之硬化劑、82質量份之水。所得混合液以攪拌機攪拌 30分鐘,獲得固體成分濃度爲25質量%之中間層塗佈液1 。此中間層塗佈液1之聚矽氧烷比率爲30質量%。 又,此處使用之水系胺基甲酸酯聚醚樹脂分散液之藉 由依據JIS K7244-4之固體黏彈性測定裝置測定之損失彈 性率的溫度變化曲線如圖1所示。如圖所示,光譜波峰係-30°C。又,所得之塗膜在25°C之損失正切爲0.28。 中間層塗佈液2 -39- 201210695 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液 1〇〇份中,依序添加875份之水系胺基甲酸酯聚醚樹脂分散 液、45份之造膜助劑、5.4份之硬化劑、187份之水。所得 混合液以攪拌機攪拌30分鐘,藉此獲得固體成分濃度爲 25%之中間層塗佈液2。該中間層塗佈液2之聚矽氧烷比率 爲10%。又,此處使用之水系胺基甲酸酯聚醚樹脂分散液 之藉由依據JIS K7244-4之固體黏彈性測定裝置測定之損 失彈性率的溫度變化曲線之光譜波峰係-30°C。又,自中 間層塗佈液2所得之塗膜在25 °C之損失正切爲0.48。 中間層塗佈液3 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液 1〇〇份中,依序添加1 8 85份之水系胺基甲酸酯聚醚樹脂分 散液、90份之造膜助劑、5.4份之硬化劑、343份之水。所 得混合液以攪拌機搅拌30分鐘,藉此獲得固體成分濃度爲 2 5 %之中間層塗佈液3。該中間層塗佈液3之聚矽氧烷比率 爲5%。此處使用之水系胺基甲酸酯聚醚樹脂分散液之藉 由依據JIS K7244-4之固體黏彈性測定裝置測定之損失彈 性率的溫度變化曲線之光譜波峰之一爲-3〇°C。又,自中 間層塗佈液3所得之塗膜在25 °C之損失正切爲0.52。 中間層塗佈液4 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液 1〇〇份(固體成分濃度35°/。)中’依序添加1 03 00份之水系 -40- 201210695 丙烯酸酯系樹脂乳液、779份之造膜助劑、5.4份之硬化劑 、95 7 8份之水。所得混合液以攪拌機攪拌30分鐘,藉此獲 得固成分濃度爲25%之中間層塗佈液4。該中間層塗佈液4 之聚矽氧烷比率爲0.5%。又,此處使用之水系丙烯酸酯系 樹脂乳液之藉由依據JIS K7244-4之固體黏彈性測定裝置 測定之損失彈性率的溫度變化曲線之光譜波峰之一係2°C 。又,自中間層塗佈液4所得之塗膜在25 °C之損失正切爲 0·60。 中間層塗佈液5 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液( 固體成分濃度35% ) 100份中,依序添加1 1444份之水系丙 烯酸酯系樹脂乳液、779份之造膜助劑、5.4份之硬化劑、 843 3份之水。所得混合液以攪拌機攪拌30分鐘,藉此獲得 固體成分濃度爲25 %之中間層塗佈液5。此中間層塗佈液5 之聚矽氧烷比率爲0.5%。又,此處使用之水系丙烯酸酯系 樹脂乳液之藉由依據JIS K7244-4之固體黏彈性測定裝置 測定之損失彈性率的溫度變化曲線之光譜波峰之一係-3 5 °C。又,自中間層塗佈液5所得之塗膜在2 5 °C之損失正 切爲0.48。 中間層塗佈液6 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液 100份中,依序添加1〇300份之水系丙烯酸酯系樹脂乳液、 -41 - 201210695 779份之造膜助劑、5.4份之硬化劑、9578份之水。所得混 合液以攪拌機攪拌3〇分鐘’藉此獲得固體.成分濃度爲25 % 之中間層塗佈液6。此中間層塗佈液6之聚矽氧烷比率爲 0.5%。又,此處使用之水系丙烯酸酯系樹脂乳液之藉由依 據JIS K7244-4之固體黏彈性測定裝置測定之損失彈性率 的溫度變化曲線之光譜波峰之一係24°C。又’自中間層塗 佈液6所得之塗膜在25 °C之損失正切爲1.00。 中間層塗佈液7 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液 1〇〇份中,依序添加9346份之水系丙烯酸酯系樹脂乳液、 776份之造膜助劑、5.4份之硬化劑、1 0495份之水。所得 混合液以攪拌機攪拌30分鐘,藉此獲得固體成分濃度爲 25%之中間層塗佈液7。此中間層塗佈液7之聚矽氧烷比率 爲0.6%。又,此處使用之水系丙烯酸酯系樹脂乳液之藉由 依據JIS K7244-4之固體黏彈性測定裝置測定之損失彈性 率的溫度變化曲線之光譜波峰之一係24°C。又,自中間層 塗佈液7所得之塗膜在25 °C之損失正切爲0.49。 中間層塗佈液8 於矽氧含有率爲30%之水系丙烯酸矽氧樹脂分散液 1〇〇份中,依序添加159份之水系胺基甲酸酯聚醚樹脂分散 液、14份之造膜助劑、7.7份之硬化劑、100份之水。以攪 拌機搅拌所得混合液30分鐘,藉此獲得固體成分濃度爲 -42- 201210695 2 5 %之中間層塗佈液8。此中間層塗佈液8之聚矽氧烷比率 爲15%。此處使用之水系胺基甲酸酯聚醚樹脂乳液之藉由 依據JIS K7244-4之固體黏彈性測定裝置測定之損失彈性 率的溫度變化曲線之光譜波峰之一係-30 °C。又’自中間 層塗佈液8所得之塗膜在25 °C之損失正切爲〇_48。 中.間層塗佈液9 (比較例) 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液 1〇〇份中,依序添加67份之水系胺基甲酸酯聚醚樹脂分散 液、8.3份之造膜助劑、5.4份之硬化劑、61份之水。所得 混合液以攪拌機攪拌30分鐘,藉此獲得固體成分濃度爲 25 %之中間層塗佈液9。此中間層塗佈液9之聚矽氧烷比率 爲5 0%。又,此處使用之水系胺基甲酸酯聚醚樹脂乳液之 藉由依據JIS K7244-4之固體黏彈性測定裝置測定之損失 彈性率的溫度變化曲線之光譜波峰之一係-3 0 °C。又,自 中間層塗佈液9所得之塗膜在25 °C之損失正切爲0.13。 中間層塗佈液1 〇 (比較例) 於矽氧含有率爲75%之水系丙烯酸矽氧樹脂分散液 1〇〇份中,依序添加34份之水系胺基甲酸酯聚醚樹脂分散 液、6 · 8份之造膜助劑、5.4份之硬化劑、5 6份之水。所得 混合液以攪拌機攪拌30分鐘,藉此獲得固體成分濃度爲 2 5 %之中間層塗佈液1 0。此中間層塗佈液丨〇之聚矽氧烷比 率爲60%。又’自中間層塗佈液1〇所得之塗膜在25°c之損 -43- 201210695 失正切爲0.09。 中間層塗佈液1 1 (比較例) 於矽氧含有率爲30%之水系丙烯酸矽氧樹脂分散液 100份中’依序添加7.2份之造膜助劑、7.9份之硬化劑、 76.5份之水。所得混合液以攪拌機攪拌30分鐘,藉此獲得 固體成分濃度爲25%之中間層塗佈液1 1。此中間層塗佈液 11之聚矽氧烷比率爲30%。又,此處使用之水系胺基甲酸 酯聚醚樹脂乳液之藉由依據JIS K7244-4之固體黏彈性測 定裝置測定之損失彈性率的溫度變化曲線之光譜波峰之一 係60°C。又,自中間層塗佈液1 1所得之塗膜在25°C之損失 正切爲0.10。 光觸媒塗裝體之製造及其評價 將水性丙烯酸樹脂塗料以乾燥膜厚成爲約20μηι之方 式噴霧塗佈於可撓性板上,且以8(TC乾燥30分鐘。接著, 以使乾燥膜厚成爲約200μιη之方式噴霧塗佈水性丙烯酸胺 基甲酸酯樹脂塗料,以8(TC乾燥30分鐘,得到密著試驗用 底塗塗裝基材。 接著,以使乾燥膜厚成爲10 μηι之方式將中間層塗佈 液1〜1 1噴霧塗佈於預先加熱至約50 °C之密著試驗用底塗塗 裝基材上,以90t乾燥2分鐘。接著以乾燥膜厚成爲 0.3〜0.7μιη之方式噴霧塗佈光觸媒塗佈液1〜6,得到光觸媒 塗裝體。中間層塗佈液與光觸媒塗佈液之組合係如後表所 -44- 201210695 示0 密著性能評價 針對如此獲得之光觸媒塗裝體,如下述進行密著性能 評價。首先,將光觸媒塗裝體投入於以Jis B7753所規定 之日光耐候試驗機(SUGA試驗機製造,S-3 00C)中,100 小時後取出。接著,在60°C水中浸漬1 〇小時,接著以 l〇(TC乾燥1小時,接著在殺菌燈(東芝Litech製造)下( 波長254nm),以試驗體表面之照度成爲10W/m2之方式設 置12小時之步驟,合計重複8次,總計試驗時間184小時。 以接觸角計(協和界面科學製造之CA-X1 50型)測定所得 之塗裝體與水之接觸角。接著,以掃描電子顯微鏡(曰立 製造,S 800 ) 1 00倍觀察所得之塗裝體表面,以目視評價 光觸媒層之大約的殘存率。 耐熱冷試驗 如下實施耐熱冷試驗。首先,將光觸媒塗裝體投入於 以JIS B775 3所規定之日光耐候試驗機(SUGA試驗機製造 ,S-3 00C )中,100小時後取出。接著以l〇〇°C加熱1小時 ,接著以-2(TC冷卻1小時之步驟,合計重複1〇次,總計試 驗時間20小時。再將所得之塗裝體投入於以JIS B7753所 規定之日光耐候試驗機(SUGA試驗機製造,S_3〇〇c)中 ’ 100小時後取出’以接觸角計(協和界面科學製造之 CA-X 15 0型)測定與水之接觸角。 -45- 201210695 耐彎曲試驗 如下述實施耐彎曲試驗。首先,將光觸媒塗裝體投入 於以JIS B7753所規定之日光耐候試驗機(SUGA試驗機製 造’ S-300C)中,1〇〇小時後取出。接著將所得之塗裝體 以10 φ彎曲180。後,以目視觀察彎曲部有無龜裂。再以接 觸角計(協和界面科學製造之CA-X1 5 0型)測定彎曲部與 水之接觸角。 耐振動試驗 如下述實施耐振動試驗。首先,將光觸媒塗裝體投入 於以JIS B 775 3所規定之日光耐候試驗機(SUGA試驗機製 造,S-3 00C )中,100小時後取出。將所得之塗裝體固定 於振動試驗機上,以振動數5Hz、振動加速度1G之條件施 加10分鐘之振動。以接觸角計(協和界面科學製造之CA-XI 50型)測定施加振動後之塗裝體與水之接觸角。 以上的結果如下表所示。 -46- 201210695 [表1] 例 光觸媒 塗佈液 中間層 塗佈液 密著性能評價 耐熱冷 耐彎曲性 耐振動性 試驗後 接觸角 塗膜殘 存率 試驗後 接觸角 彎曲部龜 裂之有無 彎曲部 接觸角 試驗後 接觸角 1 1 1 <20* 75» <20· 無 <20* <20* 2 2 <20· 100» <20· 無 <20· <20· 3 3 <20· 100Χ <20· 無 <20· <20* 4 4 . <20· 100% <20· 無 <20· <20· 5 5 <20· 100Χ <20* 無 <20· <20* 6 β <20* 100Χ <20· 無 <20· <20· 7 7 <20· 100% <20· 無 <20· <20· 8 8 <20· 100% <20· 無 <20· <20* 11 2 1. <20· 100% <20· 無 <20· <20· 12 2 2 <2〇· 100Κ <20· 無 <20· <20· 13 2 3 <20· 100Κ <20· 無 <20· <20· 14 2 4 <20· 100K <20· 無 <20· <20· 15 2 5 <20· 100X <20· 無 <20· <20· 16 2 6 <20· 100» <20· 無 <20· <20· 17 2 7 <20' 100X <20· 無 <20· <20· 18 2 8 <20· 100% <20· 無 <20* <20· 21 3 1 <20* 100% <20· .無 <20· <20· 22 3 2 <20· 100% <20· 無 <20. <20· 23 3 3 <20· 100% <20· 無 <20· <20· 24 3 4 <20· 100% <20· 無 <20· <20· 25 3 5 <20· too% <20· 無 <20. <20· 26 3 . Θ <20· 100% .<20· 無 <20· <20· 27 3 7 <20· too% <20· 無 <20· <20· 28 3 8 <20· 100% <20· 無 <20· <20· -47- 201210695 [表2] 例 光觸媒 塗佈液 中間層 塗佈液 密著性能評價 耐熱冷 耐彎曲性 耐振動性 試驗後 接觸角 塗膜殘 存率 試驗後 接觸角 彎曲部龜 裂之有無 彎曲部 接觸角 試驗後 接觸角 31 4 1 <20· \m <20* 無 <20· <20· 32 4 2 <20· m% <20· 無 <20· <20· 33 4 3 <20· ιοοχ <20* 無 <20. <20· 34 4 4 <20· 100X <20· 無 <20* <20· 35 4 S <20· fOOX <20* 無 <20* <20. 3Θ 4 β <20· 100X <20· 無 <20* <20· 37 .4 7 <20· 100» <20· 無 <20· <20· 38 4 8 <Ζ09 100X <20· 無 <20· <20· 41 5 <20· 100X <20· 無 <20· <20_ 42 5 2 <20· 100X <20· 無 <20* <20_ 43 5 3 <20· too% <20· 無 <20· <20· 44 5 4 <20· 100% <20· 無 <20· <20· 45 5 5 <20· 100% <20·· 無 <20· <20· 4Θ 5 6 <20· 100» * <20· 無 <20· <20* 47 5 7 <20* 100%. <20· 無 <20· <20· 48 S θ <20· 100% <20· 無 <20· <20· 61 6 1 <20. 100X <20· 無 <20· <20* 62 β 2 <20β 100% <20* 無 <20· <20· 53 6 3 <20· too% <20. 無 <20· <20_ 54 6 4 <20· 100% <20* 無 <20· <20· 55 6 5 <20· 100H <20· •無 <20· <20. 58 β β <20· 100H <20· 無 <20* <20· 57 8 7 <20* 100S ,<20. 無 <20· <20· 58 β β <20· Ι00Χ <20· .無 <20· <20· 比較例1 1 θ- 60· <10% <20· 有 <20· <20· 比較例2 .1 10 80* <!0% <20· 有 <20· <20* 比較例3 1 11 80* <10% <20* 有 <20· <20· 又’密著評價試驗後之塗膜之電子顯微鏡照片如圖2 所不。圖2中’照片1 ~ 5係分別爲實施例1〜3及比較例1及2 之塗膜之電子顯微鏡照片。 【圖式簡單說明】 [圖1]係表示例1中使用的水系胺基甲酸酯聚醚樹脂分 散之藉由依據JIS K7244-4之固體黏彈性測定裝置所測定 的損失彈性率之溫度變化曲線圖。 -48- 201210695 [圖2]照片 之塗膜的電子! 1〜5係各自例1〜3、7及8之密著評價試驗後 ΐ微鏡觀察照片。 -49-Academic Press » San Diego ) o 2-3. Change the film thickness d, SiO 2 , TiO 2 , air volume fraction Cr C2, C3 値, measured reflectance (2-1) and calculated reflectance (2-2) Compare and find C!, C2, and C3 when the sum of squared residuals becomes minimum. The residual square is less than 0.02 and becomes the minimum when C3 is used as the void ratio. Other conditions are as follows. Film thickness search method optimization method search range (wavelength) 400 to 800 nm search range (film thickness) 0 to 2000 nm film thickness stage l 〇 nm C3 obtained here as void ratio in the photocatalyst layer of the present invention (% by volume ). The proportion of the soft non-oxygenated resin in the resin component of the photocatalyst-coated body of the present invention is preferably more than 1%, less than 99.5%, more preferably more than 10%, less than 99.5%, and most preferably more than 50%. %, less than 99.5%. When the ratio of the soft non-sandwich resin is in the above range, the deterioration of the photocatalyst in the intermediate layer can be suppressed, and the adhesion between the intermediate layer and the photocatalyst layer can be improved. The ratio of the oxygen component in the resin component of the photocatalyst-coated body of the present invention is preferably 0.5% or more and 30% or less in terms of SiO 2 . Resin -15 - 201210695 When the ratio of the oxygen component in the composition is within this range, deterioration of the photocatalyst in the intermediate layer can be more suppressed. Photocatalyst layer In the present invention, when a photocatalyst is present on the surface of the substrate, preferably, the photocatalyst particles include, in addition to a completely film form, a state in which a portion is formed into a film. Further, it may exist in an island-like discrete state on the surface of the substrate. In accordance with a preferred aspect of the invention, the photocatalyst layer is obtained using a coating liquid. According to a preferred embodiment of the present invention, the photocatalyst layer of the photocatalyst-coated body contains photocatalyst particles and inorganic oxide particles as a particle component, and the particle component is 70% by mass based on the photocatalyst layer, preferably 75 mass%, more preferably 80 mass%, more preferably 90 mass% or more. In the present invention, the particle component means a component accompanying the shape. The particle component contains photocatalyst particles and inorganic oxide particles as essential components, and may contain other particles as an optional component. The shape of the particle component is not particularly limited, and may be a spherical shape, a rod shape, a fibrous shape, a whisker shape, a flat shape, or an amorphous shape. In the present invention, for example, crystalline titanium oxide such as anatase titanium oxide, rutile titanium oxide, or brookite-type titanium oxide, ZnO, Sn〇2, SrTiO3, W03, Bi2〇3, and Fe203 can be used as the photocatalyst. At least one of the metal oxides. It is possible to use only one type or a combination of a plurality of types. A preferred combination of a plurality of types includes crystalline titanium oxide and Sn02, crystalline titanium oxides -16-201210695 and W03. Any of the metal oxides exemplified herein is also suitable for each of the constituent combinations described later. The photocatalyst particles are preferably crystalline titanium oxide particles. Crystalline titanium oxide has better water resistance than ZnO. In addition, in the case of Sn02&, it is possible to exhibit a photocatalytic function such as gas decomposition in a large amount of light having a wavelength of 380 nm to 420 nm in sunlight. Further, compared with SrTi03, it is easier to obtain nanometer-sized fine particles, and therefore has a large specific surface area, and it is easy to obtain practically sufficient photocatalytic activity. In addition, compared with W03, Bi203, and Fe203, the band gap is large, so that it has sufficient oxidizing power, and at the same time, after photoexcitation, recombination of conduction electrons and holes is less likely to occur, and gas decomposition has sufficient activation energy. The crystalline titanium oxide is harmless and chemically stable, and can be obtained at low cost. Further, since the crystalline titanium oxide has a high band gap energy, ultraviolet rays are required for photoexcitation, and visible light is not absorbed by the photoexcitation process, so that color development is not caused by the complementary color component. The photocatalyst particles are preferably anatase type titanium oxide, for example, among the crystalline titanium oxide particles. The anatase type titanium oxide has a stronger oxidizing power than the rutile type titanium oxide, and thus exhibits a stronger photocatalytic function such as gas decomposition. The anatase-type titanium oxide particles as the photocatalyst particles can be appropriately combined with the above respective structures, and the above-described effects can be exhibited without impeding the effects. As the inorganic oxide particles, cerium oxide particles, alumina particles, cerium oxide particles, cerium oxide particles or the like can be used. Preferred is cerium oxide particles. In addition to the photocatalyst particles and the inorganic oxide particles (cerium oxide particles), the photocatalyst layer is added to the inorganic binder or the metal in an amount of preferably 30% by mass or less, more preferably 10% by mass or less, without affecting the amount of the photocatalyst hydrophilic function. Or metallization -17- 201210695 substances, surfactants, etc. The photocatalyst layer contains other particles which can be used as an optional component, for example, resin particles such as fluororesin particles, latex and acrylic beads, color pigment particles, body pigment particles such as whiskers, fibers, and enamel, and mica, talc, and glass balls. Such as creative materials particles. According to a preferred aspect of the present invention, the photocatalyst layer may contain an inorganic binder such as amorphous titanium oxide or amorphous cerium oxide; alkali silicate, alkyl silicate or the like which hardens the precursor before formation of the cerium oxide film. Amorphous zirconia; a hardened material such as ammonium zirconium carbonate, zirconium acetate or cesium formate which can form a precursor of a chrome oxide film. According to a preferred aspect of the present invention, the photocatalyst layer may contain a metal or a metal compound such as a Cu compound such as Cu or Cu2, CuO, or the like, an Ag compound such as Ag or Ag2, a Pt or Pt compound, or a Fe compound. , Pd or Pd compounds, etc. The photocatalyst layer of the photocatalyst-coated body of the present invention is formed by drying or baking a coating liquid obtained by dispersing the above components in a solvent. According to a preferred aspect of the present invention, the coating liquid in forming the photocatalyst layer may contain a surfactant from the viewpoint of dispersion stability of the photocatalyst or inorganic oxide particles and wettability when applied to the intermediate layer. . The surfactant can be appropriately selected from the group consisting of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and a zwitterionic surfactant. Preferably, it is a nonionic surfactant, more preferably an ether type nonionic surfactant, an ester type nonionic surfactant, a polyalkylene glycol nonionic surfactant, a fluorine-based nonionic surfactant. Polyfluorinated non-ionic surfactant -18- 201210695 The photocatalyst used in the present invention receives a photo-excited hydrophilization system and can change the contact angle with water in the hydrophobic direction by one night without light irradiation. It can be recovered by the Twilight carbon arc lamp type weathering test in 24 hours. The Twilight carbon arc lamp type weathering test system is made by SUGA Test Machine Co., Ltd. (Condition: light irradiation 30W/m2, atmosphere temperature 60 °C, 120 minutes light irradiation, water spray for 18 minutes, water temperature 16±5 °C ). The contact angle with water was measured by the method described in JIS R 1 703-1. Intermediate Layer The photocatalyst coating of the present invention has an intermediate layer interposed between the substrate and the photocatalyst layer and is placed in contact with the underside of the photocatalyst layer. The intermediate layer contains a resin component containing a ruthenium oxygen component and a soft non-oxygenated resin, and the loss tangent at 25 °C exceeds 0.2 to less than 1.5, preferably more than 0.2 to less than 1.0. The state of "between the substrate and the photocatalyst layer and being placed under the photocatalyst layer" may be a state in which the interface is substantially straight or may be one as long as it is above the contact photocatalyst layer and above the intermediate layer. Any of a number of interlaced states. In the present specification, the loss of the intermediate layer of the photocatalyst coating material is such that the intermediate layer is provided in accordance with JIS K7244-4 ("Testing Method for Dynamic Mechanical Properties of Plastics - Part 4: Tensile Vibration and Non-Resonance Method") On the solid viscoelasticity measuring device, the obtained enthalpy was measured at a frequency of 1 Hz in a tensile mode. -19- 201210695 In the present invention, the intermediate layer contains a resin component. This resin component contains a neon component and a soft non-oxygen component. Here, the oxygen-enhancing component may use a silicone resin or a helium oxygen moiety, and the soft non-oxygen component may use a soft non-oxygen resin or a soft non-oxygen moiety. Further, the resin component may be composed of only the above two components, or may contain a resin or a fragment other than the above two components. The resin component is obtained by polymerizing and mixing the above two components or the above two components and other resins or fragments. Cross-linked. In the present invention, the amount of the resin component in the intermediate layer is preferably 10% by mass or more and 100% by mass or less, more preferably 50% by mass or more and 100% by mass or less, still more preferably 55% by mass or more and 100% by mass or less. It is preferably 60% by mass or more and 100% by mass or less. In the present invention, the soft non-oxygenated component means a soft non-oxygenated resin or a soft non-oxygenated component, preferably a temperature change curve of loss elastic modulus measured by a solid viscoelasticity measuring apparatus according to JIS K7244-4. The spectral peak in the middle is a component exceeding -80 degrees and below 30 degrees. The soft non-oxygen component contained in the intermediate layer is found to have a spectral peak in the temperature profile of the intermediate layer by the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4. At least one of them exceeds _80 degrees and is below 30 degrees. Further, the amount of the soft non-oxygen component is preferably 20% by mass or more and 100% by mass or less, more preferably 100% by mass or more and 2,0,0% by mass or less based on the amount of Si in the cerium oxide component. More preferably, it is 200% by mass or more and 16,000% by mass or less. The soft non-oxygenated resin can utilize, for example, urethane polyether, amine methyl-20-201210695 acid ester polyester, urethane polycarbonate, polyether, polyester, polyacrylate, polymethyl Acrylates, polyacrylic acids, polymethacrylic acid, polyethylene, composites of these such 'make the oxime modified or halogen modified. Soft non-oxygenated fragments can be used, for example, urethane polyether fragments, urethane polyester fragments, urethane polycarbonate fragments, polyether fragments, polyester fragments, polyacrylate fragments, poly a methacrylate fragment, a polyacrylic acid fragment, a polymethacrylic acid fragment, a polyethylene fragment, a fragment which is modified by oxime or halogen. Further, the oxime resin is preferably a sand oxide represented by the following average composition formula (1): R pSi ( OR ) q 〇 (4-pq) /2 ( 1 ) (wherein R 1 is unsubstituted Or substituting a monovalent hydrocarbon group, R2 is selected from a hydrogen atom, an unsubstituted one-valent hydrocarbon group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and P and q are satisfied. <p <4,0 <q <4,0 <(p + q) <4 number). In the above formula, the unsubstituted or substituted one-valent hydrocarbon group of 'R1 is more preferably a carbon number of 1 to 18, and the unsubstituted valence hydrocarbon group is, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group. An alkyl group such as a tributyl group, a hexyl group, a cyclohexyl group, an octyl group or a decyl group; an aryl group such as a vinyl group, an allyl group, a 5-hexenyl group or a 9-nonenyl group; An aralkyl group such as phenylethyl group. Further, a substituted one or a part of a hydrogen atom which is substituted with a monovalent hydrocarbon group is substituted with a substituent, and a substituent may be used. 1) A halogen atom such as fluorine or chlorine may be used, and 2) An epoxy functional group such as a glycidoxy group or an epoxycyclohexyl group; 3) a (meth)acrylic acid functional group such as a methacrylic acid group or an acrylic group; 4) an amine group, an aminoethylamino group, and a phenyl group. An amine functional group such as an amine group or a dibutylamino group; a sulfur-containing functional group such as a fluorenyl group or a tetrathioether group; an alkyl ether group such as 6) (polyoxyalkylene alkyl) alkyl ether group; An anionic group such as a sulfonyl group; 8) a group having a quaternary ammonium salt structure, and the like, and 2) and 3) are preferable as the reactive group, and particularly preferably an epoxy functional group. Specific examples of the substituted one-valent hydrocarbon group are trifluoropropyl, perfluorobutylethyl, perfluorooctylethyl, 3-chloropropyl, 2-(chloromethylphenyl)ethyl, 3-shrinkable Glyceryloxypropyl, 2-(3,4-epoxycyclohexyl)ethyl, 3-(meth)acryloxypropyl, (meth)acryloxymethyl, 3-aminopropyl , N-(2-Aminoethyl)aminopropyl, 3-(indolylphenylamino)propyl, 3-dibutylaminopropyl, 3-mercaptopropyl, polyoxyethylene An oxypropyl group, a 3-hydroxycarbonylpropyl group, a 3-tributyl ammonium propyl group or the like. Among these, a methyl group, a propyl group, a hexyl group or a phenyl group is preferred. Examples of the unsubstituted or substituted one-valent hydrocarbon group having 1 to 6 carbon atoms of R2 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a second butyl group, and a third butyl group. An alkenyl group such as an isopropenyl group; an unsubstituted monovalent hydrocarbon group of an aryl group such as a phenyl group; or an alkoxyalkyl group such as a methoxymethyl group, an ethoxyethyl group, an ethoxymethyl group or a methoxyethyl group; The alkoxy group is substituted with a monovalent hydrocarbon group. According to the same aspect of the present invention, in order to impart flexibility to the oxime resin, a difunctional decane derivative monomer may be contained (having two hydrolyzable groups X per molecule, and two oxygen atoms bonded to each ruthenium atom form two Functional siloxane-bonded monomer). Preferred hydrolyzable difunctional decane derivative monomer, Example-22-201210695, such as diphenyldichlorodecane, diphenyldibromodecane, decane, diphenyldiethoxydecane, phenylmethyl Dibromodecane, phenylmethyldimethoxydecane, benzocane, γ-glycidoxypropylmethyldimethoxyoxypropylmethyldiethoxydecane, γ-(methyl Methylmethoxysilane, (methyl)propanyloxydecane, γ-aminopropylmethyldimethoxydecane, diethoxydecane, heptadecafluorooctylmethyldimethoxy Further, the oxime moiety is also the same as above, and the average composition of the formula (1) is 矽 oxygen: R^Si(OR2) qO(4-pq) /2 ...(1 (wherein R1 is an unsubstituted or substituted one-valent hydrocarbon group atom, an unsubstituted valence hydrocarbon group having a carbon number of 1 to 6 or a carbon number 1 one-valent hydrocarbon group 'P and q is 0 <p <4,0 <q <4, number). In the above formula, the unsubstituted or substituted -1 to 18 of R1 is specifically an alkyl group such as an isopropyl group, a butyl group, a butyl group, a hexyl group or a cycloalkyl group. 'A vinyl group such as a vinyl group, an allyl group, a 5-hexenyl group, an 'aryl group such as a phenyl group, an aryl group such as a benzyl group or a phenylethyl group; the hydrogen atom of the unsubstituted one-valent hydrocarbon group; Methoxychlorodecane, phenylmethylmethyldiethoxydecane, γ-glycidyl) propyleneoxypropylpropylmethyldiethoxy γ-aminopropylmethyl decane, heptafluorooctyl For use as described below, R2 is selected from the group consisting of alkoxy groups of hydrogen ~ 6 < ( p+q) The hydrocarbon group of <4 is preferably an alkenyl group such as a carbon methyl group, an ethyl group, a propyl group, an octyl group or a fluorenyl 9-decenyl group. Further, a part or all of -23-201210695 may be substituted with a substituent, and a substituent such as a halogen atom such as η fluorine or chlorine, or 2) an epoxy functional group such as a glycidoxy group or an epoxycyclohexyl group may be used. a (meth)acrylic acid functional group such as a methacrylic acid group or an acrylic group; 4) an amine functional group such as an amine group, an aminoethylamino group, a phenylamino group or a dibutylamino group; 5) a fluorenyl group, a sulfur-containing functional group such as a tetrasulfide group; an alkyl ether group such as 6) (polyoxyalkylene) alkyl ether group; 7) an anionic group such as a carboxyl group or a sulfonyl group; and 8) a tetra-ammonium salt structure. A group or the like is preferable, and as the reactive group, 2) and 3) are preferred, and those having an epoxy functional group are particularly preferred. Specific examples of the substituted monovalent hydrocarbon group are trifluoropropyl, perfluorobutylethyl, perfluorooctylethyl, 3-chloropropyl, 2-(chloromethylphenyl)ethyl, 3-glycidol. Oxypropyl' 2 (3,4-epoxycyclohexyl)ethyl, 3-(meth)acryloxypropyl, (meth)acryloxymethyl, 3-aminopropyl, Ν-(2-Aminoethyl)aminopropyl, 3-(anthracene-phenylamino)propyl, 3-dibutylaminopropyl, 3-mercaptopropyl, polyoxyethyloxy A propyl group, a 3-hydroxycarbonylpropyl group, a 3-tributyl ammonium propyl group or the like. Among them, a methyl group, a propyl group, a hexyl group or a phenyl group is preferred. Examples of the unsubstituted or substituted one-valent hydrocarbon group having 1 to 6 carbon atoms of R2 include an alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a second butyl group, and a third butyl group. An alkenyl group such as an isopropenyl group; an unsubstituted monovalent hydrocarbon group of an aryl group such as a phenyl group; or an alkoxyalkyl group such as a methoxymethyl group, an ethoxyethyl group, an ethoxymethyl group or a methoxyethyl group; The one-valent hydrocarbon group is substituted with an alkoxy group. According to the same state of the present invention, in order to impart flexibility to the oxygen-containing fragment, it is also possible to contain a functional sand compound derivative monomer (having two hydrolyzable groups X per molecule, and two oxygen atoms bonded to each of the germanium atoms) The atom forms a difunctional 矽-24- 201210695 oxyalkylene bond monomer). Preferred hydrolyzable difunctional decane derivative monomers, for example, diphenyldichlorodecane, diphenyldibromodecane, diphenyldimethoxydecane, diphenyldiethoxydecane, phenylmethyl Dichlorodecane, phenylmethyldibromodecane, phenylmethyldimethoxydecane, phenylmethyldiethoxydecane, γ-glycidoxypropylmethyldimethoxydecane, γ - glycidoxypropylmethyldiethoxydecane, γ-(meth)acryloxypropylmethyldimethoxydecane, γ-(meth)acryloxypropylmethyldiethoxy Baseline, γ-aminopropylmethyldimethoxydecane, γ-aminopropylmethyldiethoxydecane, heptafluorooctylmethyldimethoxydecane, heptadecafluorooctyl Diethoxy decane. In the present invention, the intermediate layer may contain resins other than the above two, such as polyester, polyacrylate, polymethyl propyl ester, polyacrylic acid, polymethacrylic acid, polystyrene, polyethylene, epoxy. Resin, polycarbonate, polypropylene decylamine, polyamine, polyamine, polyol, polyurethane, polyether, polythioether, polyphenol, composites of these, etc. A resin modified with a halogen or a halogen. Further, in the present invention, the intermediate layer may contain a fragment other than the above two, such as a polyester segment, a polyacrylate fragment, a polymethyl acrylate fragment, a polyacrylic acid fragment, and a polymethacrylic acid fragment. , polystyrene fragments, polyethylene fragments, polycarbonate fragments, polyacrylamide fragments, polyamine fragments, polyamine fragments, polyol fragments, polyurethane fragments, polyether fragments, polythioether fragments , polyphenol fragments, such oxime-modified or halogen-modified fragments, and the like. In the present invention, the intermediate layer may contain, in addition to the above resin component, a coloring -25 - 201210695 material, an extender pigment, a light adjusting agent, a UV absorber, a light stabilizer, a film forming aid, a hardener, a surfactant, Viscosity modifier, defoamer, pH adjuster, etc. As the coloring material, an inorganic pigment, an organic pigment, a dye, or the like can be used. As the inorganic pigment, a metal oxide such as titanium oxide, zinc white, red iron oxide, chromium oxide, cobalt blue or iron black, a metal hydroxide such as alumina white or yellow iron oxide, or a ferrocyanide compound such as Prussian blue can be used. Lead, such as lead, zinc sulfide, vermilion, cadmium yellow, cadmium red, sulphate, barite, barite Carbonate such as calcium hydride or sedimentary calcium carbonate, hydrated acid salt, limestone, ultramarine, etc., carbonaceous such as carbon black, aluminum powder, bronze powder, zinc powder, and other metal powders, mica • Pearl pigments such as titanium oxide, etc. For the organic pigment, a nitroso pigment such as naphthol green B, a nitro pigment system such as naphthol S, Lithhol Red, or Lake Red C can be used. Azo pigments such as FAST YELLOW and naphthol red, Alkali blue red, Rhodamine red, Quinacridone red, Dioxazine violet a condensed polycyclic pigment system such as isoindolinone yellow. Disperse dyes, basic dyes, direct dyes, and acid dyes can be used as the dye. As the extender pigment, for example, titanium oxide whiskers, calcium carbonate whiskers, potassium titanate whiskers, aluminum borate whiskers, mica, talc, barium sulfate, potassium carbonate, barium sand, diatomaceous earth, kaolin, limestone, clay, Barium carbonate and the like. -26- 201210695 For example, an inorganic light brightening agent, an organic light brightening agent, or the like can be used as the light adjusting agent. As the inorganic light brightening agent, for example, dry cerium oxide, wet cerium oxide, calcium carbonate, mica, boron nitride, or titanium oxide can be used. As the bright light adjusting agent of the organic system, a resin ball such as an acrylic resin ball, a urethane resin ball, a silicone resin powder, or a fluorine resin powder can be used. As the ultraviolet absorber, a benzophenone type, a benzotriazole type, or a triazine type ultraviolet absorber can be used. The above benzophenone-based ultraviolet absorber, specifically, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methyl can be suitably used. Oxybenzophenone-5-sulfonic acid, 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4- Benzyloxybenzophenone, bis(5-benzylidene-4-hydroxy-2-methoxyphenyl)methane, 2,2·-dihydroxy-4·methoxybenzophenone, 2 , 2'-dihydroxy-4,4.-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxyl Benzene, 2-hydroxy-4.methoxy-2,-carboxybenzophenone, 2-hydroxy-4-stearyloxybenzophenone, octyl benzophenone (〇ctabenz〇ne), and 2 -hydroxy-4-propoxy benzophenone, 2-hydroxy-4-methylpropoxy benzophenone, 2-hydroxy-5-propyleneoxybenzophenone, 2-hydroxy-5-methyl Propylene benzophenone, 2-hydroxy-4-((propyleneoxy-ethoxy)benzophenone, 2-hydroxy-4-(acryloxy-ethoxy)benzophenone, 2_ Hydroxy 4- 4-(methacryloxy-diethoxy)benzophenone, 2_ Group _4- (too propoxy group - triethoxy) benzophenone benzophenone polymerizable ultraviolet absorber or their (co) polymer. The above benzotriazine ultraviolet absorber is specifically, for example, 2_( -27- 201210695 2·-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-5'- Tert-butylphenyl)benzotriazole, 2-(2·-hydroxy-3',5·-di-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-5-third Octylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-t-th-octylphenyl)benzotriazole, 2-[2'-hydroxy-3,,5,_bis ( α,α'·dimethylbenzyl)phenyl]benzotriazole, methyl-3-[3-tert-butyl-5-(2Η-benzotriazol-2-yl)-4-hydroxyl Condensate of phenyl]propionate with polyethylene glycol (molecular weight 300), isooctyl-3-[3-(2Η-benzotris-2-yl)-5-t-butyl-4-hydroxyl Phenyl]propionate, 2-(3-dodecyl-5-methyl-2-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5 , methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy·3\5·-di-p-pentylphenyl)benzotriazole, 2-(2'-hydroxy-4 '-Octyloxyphenyl)benzotriazole, 2-[2'-hydroxy-3,-(3",4",5,,,6"-tetrahydrobenzidine imine methyl)-5 '-A Phenyl]benzotriazole, 2,2-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2Η-benzotriazol-2-yl)phenol , 2-(2Η-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, and 2-(2,-radio-5'-- Methacryloxyethylphenyl)-2Η-benzotriazine, 2-( 2,-trans--5--methacryloxyethyl-3-tert-butylphenyl)-2Η- Benzotrin, 2-(2·-hydroxy-5'-methacryloxypropyl-3-t-butylphenyl)_ 5-chloro-2-indole-benzotriazole, 3-methylpropene Polymeric benzotriazole system such as mercapto-2-hydroxypropyl-3-[3·-( 2"-benzotriazolyl)-4-hydroxy-5-t-butyl]phenylpropionate Ultraviolet absorber or such (co)polymer. As the triazine-based ultraviolet absorber, a hydroxyphenyltriazine compound can be suitably used. Further, when a light stabilizer such as a hindered amine-based or/or hindered phenol-based compound is contained, -28-201210695 can further improve weather resistance by the synergistic effect with the above-mentioned ultraviolet absorbent, and thus it is preferable to be a hindered amine-based light stabilizer. Specific examples are bis(2,2,6,6·tetramethyl-4-piperidyl)succinate, bis(2,2,6,6-tetramethylpiperidyl)sebacate, Bis(1,2,2,6,6-pentamethyl-4-piperidinyl)2-(3,5-di-t-butyl-4-hydroxybenzyl)-2-butylmalonate , 1-[2-[3-(3,5-Di-t-butyl-4-hydroxyphenyl)propenyloxy]ethyl]-4-[3-(3,5-di-t-butyl) 4-hydroxyphenyl)propenyloxy]-2,2,6,6·tetramethylpiperidine, bis(1,2,2,6,6-pentamethyl-4-piperidinyl)indole Mixture of diester with methyl-1,2,2,6,6-pentamethyl-4-piperidinyl-sebacate, bis(octyloxy-2,2,6,6-tetra Methyl-4-piperidinyl) sebacate, and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 1,2,2,6,6-five Methyl-4-piperidinyl acrylate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidinyl Acrylate, 1,2,2,6,6-pentamethyl-4-arylene Aminopiperidinyl methacrylate, 2,2,6,6-tetramethyl-4-iminopiperidinyl methacrylate, 4-cyano-2,2,6,6-tetramethyl Polymeric hindered amine-based ultraviolet absorber such as 4-piperidinyl methacrylate or 4-cyano-1,2,2,6,6-pentamethyl-4-piperidyl methacrylate Or such (co)polymers. Further, as a specific example of the hindered phenol-based light stabilizer, bis(3,5-di-t-butyl)-4-hydroxytoluene can be suitably used. In accordance with a preferred embodiment of the present invention, the intermediate layer fluid may also contain a film forming aid in order to improve its formability. The film-forming aids are, for example, isoamyl acetate, oxoacetate acetate, methyl methoxybutyl acetate, ethyl ethoxy propionate, ethylene glycol monobutyl ether acetate, diethylene glycol single Ethyl acetate, diethylene glycol-29- 201210695 monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, 2,2,4-tri Methyl-1,3-pentanediol diisobutyrate, 2,2,4-trimethyl-1,3-pentanediol mono-2-ethylhexanoate, 2,2,4-trimethyl Ester-based organic solvent such as 1,3-pentanediol di-2-ethylhexanoate; benzyl alcohol, 2,2,4-trimethyl-1,3-pentanediol isobutyrate (TEXANOL) Alcoholic organic solvents such as diethylene glycol, isotridecyl alcohol, 1,3-octanediol, glycerin; ethylene glycol monohexyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol Ethers such as diethyl ether, diethylene glycol diethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, diethylene glycol mono 2-ethylhexyl ether, propylene glycol monophenyl ether, and tripropylene glycol methyl ether Organic solvents and the like can be used singly or in combination. According to a preferred embodiment of the present invention, the intermediate layer may optionally be a hardener which reacts with a functional group contained in the non-oxygen component. The specific example of the hardener has a stanol group and/or hydrolysis. A compound of a mercaptoalkyl group, a polyepoxy compound, a polyoxazoline compound, a polyisocyanate or the like. In particular, when the functional group contained in the above-mentioned oxygen-containing component and non-oxygenated component is a carboxyl group or a carboxylate group, it is preferred to use an epoxy group and a stanol group and/or a hydrolyzable alkyl group. A combination of a compound, a polyepoxide, and a polyoxazoline compound. As the compound having a stanol group and/or a hydrolyzable alkylene group, for example, methyltrimethoxydecane, methyltriethoxydecane, methyltri-n-butoxydecane, ethyltrimethoxydecane, or the like can be used. Propyltrimethoxydecane, isobutyltrimethoxydecane, cyclohexyltrimethoxydecane,phenyltrimethoxydecane,phenyltriethoxydecane,vinyltrimethoxydecane or 3-(methyl) Organic trialkoxyfluorene-30-201210695 alkane such as acryloxypropyltrimethoxydecane; dimethyldimethoxydecane, dimethyldiethoxyphosphonium di-n-butoxydecane, diethyl Dimethoxydecane, diphenyl decane, methylcyclohexyl dimethoxy decane or methylphenyl di-di-di- dialkoxy decane; methyl trichloro decane, ethyl phenyl trichloro decane, ethylene a variety of chlorodecanes such as trichloromethane, 3-(methylpropyltrichlorodecane, dimethyldichlorodecane, diethyldiphenyldichlorodecane, or the like, and preferably, etc. The use of an organic trialkoxy decane or a decane may be used singly or as a hydrazine. For example, he has 3: glycidoxypropyltrimethoxydecane, oxypropylmethyldimethoxydecane, 3-glycidoxypropane, 3-glycidoxypropylmethyldiethoxy An alkoxycyclohexyl)ethyltrimethoxydecane, and the like. The polyepoxy compound is, for example, polycondensed bisphenol A or bisphenol having an aliphatic or alicyclic polyol structure derived from ethylene glycol neopentyl glycol, trimethylolpropane, pentaerythritol, sorbitol A or the like. Polycondensation of aromatic diols such as S and bisphenol F: polyether polyglycerol ethers such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; and poly(ethylene-hydroxy) isocyanurate a polyepethylene glycol of adipic acid, butane tetracarboxylic acid, phthalic acid, a p-phenylene aliphatic or aromatic polycarboxylic acid; a diepoxide of a hydrocarbon-based diene such as cyclooctylcyclohexene Bis(cyclohexylmethyl)adipate, 3,4-epoxycyclohexylmethane, dimethyldimethoxymethoxydecyltrichlorodecane)propene oxirane or dihydrolysis The condensate machine is a dialoxy group or more. 3-glycidyl triethoxy c 'β- (3,4-hydrolyzed condensation, hexanediol, alcohol, hydrogenated diglycidyl ether; polyglycidyl ether formic acid) An alicyclic polyepoxide such as a diene or an ethylene 3,4-epoxy group-3,4-epoxy-31 - 201210695-cyclohexylcarboxylate, etc. The above-mentioned oxazoline compound can be used, for example, 2, 2 '-p-phenylene bis(1,3-oxazoline), 2,2^butylbutyl-bis(1,3-oxazoline), 2,2^exetyl-bis(2- Oxazoline), 2-isopropenyl-1,3-oxazoline, or such polymers, etc. As the polyisocyanate, for example, toluene diisocyanate, diphenylmethane-4,4·-diisocyanate, or the like can be used. Aromatic diisocyanates; aralkyl diisocyanates such as m-xylene diisocyanate, α,α,οΤ,α'-tetramethyl-m-xylylene diisocyanate; hexamethylene diisocyanate, lysine Diisocyanate, 1,3-bisisocyanate methylcyclohexane, 2-methyl-1,3-diisocyanate cyclohexane, 2-methyl-1,5-diisocyanate cyclohexane, isophorone II Isocyanate, etc. In addition, As the polyisocyanate, various prepolymers having an isohydrocarbonate group, a prepolymer having an isocyanurate ring, a polyisocyanate having a biuret structure, and a vinyl monomer having an isocyanate group can be used. The isocyanate group of the polyisocyanate may be blocked by a conventionally known blocking agent such as methanol. The intermediate layer of the photocatalyst coating of the present invention may be used to disperse the above components in a solvent. The coating liquid in the coating liquid is formed by drying or baking. The coating liquid may also contain a surfactant to improve the coating property. The surfactant may be a polysulfonic acid polyethylene phenyl ether ether salt. , sulfonic acid polyoxyethylene ethyl phenyl ether, sodium fatty acid sodium soap, fatty acid potassium soap, sodium dioctyl sulfosuccinate, alkyl sulfate, alkyl ether sulfate, sodium alkyl sulfate - 32- 201210695 Salt, sodium alkyl ether sulfate, polyoxyethylene ethyl ether sulfate, polyoxyethylene ethyl ether sulfate, alkyl sulfate TEA salt, polyoxyethylene ethyl ether Sulfate TEA salt, 2-ethylhexylalkyl Sodium sulphate, sodium decylmethyltaurate, sodium lauryl methyl taurate, sodium dodecyl benzene sulfonate, sodium lauryl sulfosuccinate, polyoxyethyl sulfonate Anionic surfactant such as sodium dilaurate, polycarboxylic acid, oleic acid creatinine, guanamine ether sulfate, lauryl salicylate, sulfo-FA ester sodium salt; polyoxygen Lauryl ether, polyoxyethylene ethyltridecyl ether, polyoxyethylidene ethyl ketone ether, polyoxyethylene ethyl stearyl ether, polyoxyethylene ethyl oleyl ether, polyoxyethyl ether Alkyl ether, polyoxyethylene ethyl ester, polyoxyethylene ethyl phenol ether, polyoxyethyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene Laurate, polyoxyethylidene stearate, polyoxyethylene ethyl phenyl ether, polyoxyethyl oleate, sorbitan alkyl ester, polyoxyethylene sorbitan Alkyl ester, polyether modified oxime, polyester modified oxime, sorbitan laurate, sorbitan stearate, sorbitan palmitate, sorbitan oleic acid Ester, sorbitan sesquioleate Polyoxyethylene ethyl sorbitan laurate, polyoxyethylene sorbitan stearate, polyoxyethylene sorbitan palmitate, polyoxyethylene sorbitan oil Acid esters, glyceryl stearate, polyglycerol fatty acid esters, alkyl alkanolamines, lauric acid diethanolamine, oleic acid diethanolamine, oxy-ethylidene amine, polyoxygen Dodecylamine, polyoxyethylene ethylamine, polyoxyethylidene octadecylamine, polyoxyethylidene propylene diamine, polyoxyethylene ethyl propyl propyl block polymerization Nonionic surfactants such as polyoxyethylidene stearate: dimethylalkylbetaine, alkylglycine, guanamine-33-201210695 amphoteric surfactants such as betaine and imidazoline. Octadecyldimethylbenzylammonium chloride, alkyldimethylbenzylammonium chloride, tetradecylmethylbenzylammonium chloride, dioleyldimethylammonium chloride, 1-hydroxyethyl Alkyl-2-alkyl imidazoline quaternary salt, alkyl isoquinoline bromide, polymeric amine, octadecyltrimethylammonium chloride, alkyltrimethylammonium chloride, dodecyl three Methyl ammonium chloride , cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, alkylimidazolinium quaternary salt, dialkyldimethylammonium chloride, octadecylamine acetate, fourteen A cationic surfactant such as an alkylamine acetate, an alkyl propylene diamine acetate or a dimercaptodimethylammonium chloride. In the present invention, the coating liquid for preparing the intermediate layer may appropriately contain a viscosity adjusting agent, an antifoaming agent, a pH adjusting agent, and the like. Substrate When the substrate used in the present invention is a material on which a photocatalyst layer can be formed, 'whether an inorganic material or an organic material, various materials may be used, and the shape thereof is not limited." From the viewpoint of materials, the substrate is Preferred examples are metal, ceramic, glass, plastic, rubber, stone, cement, concrete, fiber, cloth, wood, paper, combinations of these, laminates thereof, and at least one layer of film on the surface. In view of the fact that the expansion and deformation due to water absorption are allowed, it is more preferably a cement or a concrete, and more preferably a metal or a resin from the viewpoint of expansion deformation due to heat. Preferred examples of the substrate include an exterior wall, a roof, a soundproof wall, a guardrail, and a bridge. Building materials include, for example, exterior walls and roofs. The shape of the substrate is not particularly limited. It is not limited to a flat shape, and may be used for a curved surface - 34 - 201210695. Any of these substrates may be appropriately combined with each of the above structures. Particularly, the present invention can be suitably used for a substrate having at least a surface formed of an organic material. Here, the substrate whose surface is formed of an organic material also includes any one of which the base material is entirely composed of an organic material, and the surface of the base material made of an inorganic material is covered with an organic material (for example, a cosmetic board). Use of the coated body The coated body of the present invention can ensure the adhesion between the substrate and the photocatalyst layer even if cracks are formed on the photocatalyst film, and the occurrence of cracks on the surface side and the substrate side can be remarkably suppressed from being propagated or developed. At the same time, it also has excellent performance for photocatalytic functions such as gas decomposition. Therefore, the coated body of the present invention is not limited to the following, and is particularly suitable for, for example, (1) vibration applied by a bridge or the like, and (2) the substrate is an unglazed ceramic, concrete, cement board, wood, stone, etc. The material is used, and the photocatalyst coating body is exposed to an atmosphere having a temperature of 〇 ° C or less, and (3) the substrate is a flexible material such as a metal material, a rubber or a flexible film resin, and the photocatalyst coating system is (4) When the photocatalyst layer is formed, it is formed by bending, (4) When the temperature changes in a day is greater than 20 °C, (5) The substrate is made of metal, resin, rubber, or epoxy sealant. In the case of a material having a coefficient of thermal expansion of 1 〇·5Κ·1 or more, and (6) at least one of the temperature difference of the temperature of 30 ° C or more, and the surface of the photocatalyst layer A case where light from a light source that can photoexcite photocatalyst light such as sunlight is irradiated. The above-mentioned coated body can be used in the environment where the surface of the photocatalyst layer may occasionally rain, and can also be used as a self-cleaning function with rainfall. Further, by setting the initial stage of the coating film, the contact angle with the water is less than 20°, more preferably less than 10. More preferably, it is less than 5. By virtue of the hydrophilicity, it is possible to exhibit a self-cleaning function which is excellent in precipitation immediately after application of the coating film, and maintains its hydrophilicity for a long period of time. [Embodiment] [Examples] Preparation of Photocatalyst Coating Liquid Photocatalyst Coating Liquid 1 A water-dispersed colloidal cerium oxide as an inorganic oxide (aqueous particle: 30 to 60 nm) as a photocatalyst The average particle size: 20~3 Onm) and water are mixed to obtain a solid concentration of 5. A composition having a colloidal cerium oxide content of 90% by mass in the solid content and a photocatalyst content of 1% by mass in the solid content. Further, 3 parts by mass of the nonionic surfactant is mixed with respect to the mass portion of the photocatalyst coating agent, and when the photocatalyst coating liquid is applied, the wettability to the substrate is obtained to obtain a photocatalyst coating liquid. Photocatalyst coating liquid 2 A titanium dioxide aqueous dispersion (average particle diameter: 30 to 60 nm) as a photocatalyst, a water-dispersible colloidal cerium oxide (average particle diameter: 20 to 3 Onm) as an inorganic oxide, and four B The mixture of oxydecane and water gives a concentration of -36 to 201210695 to a solid concentration of 5. 5 mass%, colloidal ceria content in the solid component is 66. The content of 2% by mass and tetraethoxydecane is in the solid content. 5 mass%, the photocatalyst content is 7. 4% by mass of the composition. In addition, with respect to 100 parts by mass of the photocatalyst coating agent, 0. When the photocatalyst coating liquid is applied in an amount of 3 parts by mass of the nonionic surfactant, the wettability to the substrate is obtained, and a photocatalyst coating liquid is obtained. Photocatalyst coating liquid 3 A titanium dioxide aqueous dispersion (average particle diameter: 30 to 60 nm) as a photocatalyst, a water-dispersible colloidal cerium oxide (average particle diameter: 20 to 30 nm) as an inorganic oxide, and tetraethoxy decane Mix with water to obtain a solid concentration of 5. The content of the colloidal cerium oxide was 31% by mass in the solid component and the content of the tetraethoxy decane in the solid content was 62% by mass. 1% by mass and the photocatalyst content is 6. 9 mass% of the composition. In addition, with respect to 100 parts by mass of the photocatalyst coating agent, 0. 3 parts by mass of the nonionic surfactant, when the photocatalyst coating liquid is applied, the wettability to the substrate is obtained, and the photocatalyst coating liquid is obtained. The photocatalyst coating liquid 4 is a photocatalyst aqueous dispersion of titanium dioxide (average Particle size: 30 to 60 nm), water-dispersed colloidal cerium oxide (average particle diameter: 20 to 30 nm) as an inorganic oxide, and alkoxy oligomer and water are mixed to obtain a solid concentration of 5. 5 mass%, the colloidal ceria content is 86 in the solid component. 9 mass%, alkoxy oligomer content is 3. 5 -37- 201210695% by mass, photocatalyst content is 9. 7 mass% of the composition. In addition, with respect to 100 parts by mass of the photocatalyst coating agent, 0. When the photocatalyst coating liquid is applied in an amount of 3 parts by mass of the nonionic surfactant, the wettability to the substrate is obtained to obtain a photocatalyst coating liquid. The photocatalyst coating liquid 5 was mixed with a titanium dioxide aqueous dispersion (average particle diameter: 30 to 6 Onm) as a photocatalyst, tetraethoxy decane as an inorganic oxide, and water to obtain a solid concentration of 5. The content of 5% by mass and tetraethoxy decane is 78. 3% by mass, the photocatalyst content is 2 in the solid content. 7 mass% of the composition. In addition, with respect to 100 parts by mass of the photocatalyst coating agent, 0. 3 parts by mass of the nonionic surfactant, when the photocatalyst coating liquid is applied, the wettability to the substrate is obtained, and the photocatalyst coating liquid is obtained. The photocatalyst coating liquid 6 is used as a photocatalyst aqueous dispersion of titanium dioxide (average Particle size: 3 0 to 6 0 nm), an alkoxy oligomer as an inorganic oxide and water are mixed to obtain a solid concentration of 5. 5质量%, alkoxy oligomer content in the solid component is 26. 5 mass%, photocatalyst content in the solid component is 73. 5 mass% of the composition. In addition, with respect to 100 parts by mass of the photocatalyst coating agent, 0. When the photocatalyst coating liquid is applied in an amount of 3 parts by mass of the nonionic surfactant, the wettability to the substrate is obtained, and a photocatalyst coating liquid is obtained. Preparation of intermediate layer coating liquid -38 - 201210695 The aqueous component of the acrylic oxime resin dispersion used in the following examples has a solid concentration of 35 %, and the aqueous urethane polyether resin dispersion has a solid concentration of 30 %. Further, the following is a measurement of the loss tangent of the coating film at 25 °C. In other words, the intermediate layer coating liquid was applied to a Teflon (registered trademark) sheet by a bar coater #20 and dried. Next, the intermediate coating liquid was repeatedly applied to the obtained coating film by a bar coater #2 0 and dried. Repeat this operation until. The dry-film thickness was about 20 μm. The obtained coating film was cut into strips of 5 mm x 50 mm, peeled off from a Teflon (registered trademark) sheet, and placed on a solid viscoelasticity measuring apparatus, and measured in a tensile mode at a frequency of 1 Hz. In the intermediate layer coating liquid 1 , 202 parts by mass of the aqueous urethane polyether resin dispersion is sequentially added to 100 parts by mass of the water-based acrylic oxime resin dispersion in which the content of oxime is 75% by mass in terms of SiO 2 . 14 parts by mass of filming aid, 5. 4 parts by weight of hardener, 82 parts by mass of water. The resulting mixture was stirred with a stirrer for 30 minutes to obtain an intermediate layer coating liquid 1 having a solid content concentration of 25% by mass. The ratio of the polyoxymethane of this intermediate layer coating liquid 1 was 30% by mass. Further, the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is shown in Fig. 1 of the aqueous urethane polyether resin dispersion used herein. As shown, the spectral peak is -30 °C. Moreover, the loss tangent of the obtained coating film at 25 ° C is 0. 28. Intermediate layer coating liquid 2 -39- 201210695 875 parts of aqueous urethane polyether resin dispersion are sequentially added to 1 part of water-based acrylic oxime resin dispersion having 75% oxygen content. 45 parts of filming aid, 5. 4 parts hardener, 187 parts water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 2 having a solid concentration of 25% was obtained. The intermediate layer coating liquid 2 had a polyoxane ratio of 10%. Further, the aqueous urethane polyether resin dispersion used herein has a spectral peak of -30 ° C which is a temperature change curve of the loss elastic modulus measured by a solid viscoelasticity measuring apparatus according to JIS K7244-4. Further, the loss tangent of the coating film obtained from the intermediate layer coating liquid 2 at 25 ° C was 0. 48. The intermediate layer coating liquid 3 is added with 1 8 85 parts of the aqueous urethane polyether resin dispersion, 90 parts, in one part of the water-based acrylic oxime resin dispersion having a nitrogen content of 75%. Membrane auxiliaries, 5. 4 parts hardener, 343 parts water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 3 having a solid concentration of 25 % was obtained. The intermediate layer coating liquid 3 had a polyoxyxane ratio of 5%. One of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is -3 〇 ° C, for the water-based urethane polyether resin dispersion used herein. Further, the loss tangent of the coating film obtained from the intermediate layer coating liquid 3 at 25 ° C was 0. 52. The intermediate layer coating liquid 4 is added in the order of 1 part (the solid content concentration of 35°/.) of the water-based acrylic oxime resin dispersion having a 矽oxygen content of 75%, and sequentially adds 1 03 00 parts of the water system-40-201210695 Acrylate resin emulsion, 779 parts of filming aid, 5. 4 parts hardener, 95 7 8 parts water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 4 having a solid concentration of 25% was obtained. The ratio of the polyoxane of the intermediate layer coating liquid 4 is 0. 5%. Further, one of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is 2 °C. Further, the coating film obtained from the intermediate layer coating liquid 4 had a loss tangent of 0·60 at 25 °C. The intermediate layer coating liquid 5 was added with 1 1444 parts of a water-based acrylate-based resin emulsion and 779 parts in 100 parts of a water-based acrylic oxime resin dispersion (solid content: 35%) having a nitrogen oxide content of 75%. Filming aids, 5. 4 parts hardener, 843 3 parts water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 5 having a solid concentration of 25% was obtained. The ratio of the polyoxymethane of the intermediate layer coating liquid 5 is 0. 5%. Further, one of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is 3-5 °C. Further, the coating film obtained from the intermediate layer coating liquid 5 has a loss tangent of 0 at 25 ° C. 48. The intermediate layer coating liquid 6 is added in an amount of 100 parts of water-based acrylate-based resin emulsion and -41 - 201210695 779 parts in 100 parts of a water-based acrylic oxime resin dispersion having a nitrogen content of 75%. Additives, 5. 4 parts of hardener, 9576 parts of water. The resulting mixture was stirred with a stirrer for 3 minutes to thereby obtain a solid. The intermediate layer coating liquid 6 having a component concentration of 25%. The ratio of the polyoxane of the intermediate layer coating liquid 6 is 0. 5%. Further, one of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is 24 °C. Further, the loss tangent of the coating film obtained from the intermediate layer coating liquid 6 at 25 ° C was 1. 00. The intermediate layer coating liquid 7 was added with 9346 parts of a water-based acrylate-based resin emulsion and 776 parts of a film-forming auxiliary agent in one part of a water-based acrylic oxime resin dispersion having a nitrogen content of 75%. . 4 parts of hardener, 10,495 parts of water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 7 having a solid concentration of 25% was obtained. The ratio of the polyoxane of the intermediate layer coating liquid 7 is 0. 6%. Further, one of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is 24 °C. Further, the loss tangent of the coating film obtained from the intermediate layer coating liquid 7 at 25 ° C was 0. 49. The intermediate layer coating liquid 8 was added to 159 parts of the aqueous urethane polyether resin dispersion in an amount of 1 part by weight of a water-based acrylic oxirane resin dispersion having a niobium oxide content of 30%, and 14 parts of the composition. Membrane additives, 7. 7 parts hardener, 100 parts water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 8 having a solid concentration of -42 to 201210695 25% was obtained. The intermediate layer coating liquid 8 had a polyoxane ratio of 15%. One of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is -30 °C. Further, the loss tangent of the coating film obtained from the intermediate layer coating liquid 8 at 25 ° C was 〇 _48. in. Inter-layer coating liquid 9 (Comparative Example) 67 parts of water-based urethane polyether resin dispersion was sequentially added to 1 part of water-based acrylic oxime resin dispersion having a 矽 oxygen content of 75%. 8. 3 parts of filming aid, 5. 4 parts hardener, 61 parts water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 9 having a solid concentration of 25% was obtained. The intermediate layer coating liquid 9 had a polyoxane ratio of 50%. Further, one of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is -3 0 ° C. . Further, the loss tangent of the coating film obtained from the intermediate layer coating liquid 9 at 25 ° C was 0. 13. Intermediate layer coating liquid 1 比较 (Comparative Example) 34 parts of water-based urethane polyether resin dispersion was sequentially added to 1 part of water-based acrylic oxime resin dispersion having a 矽 oxygen content of 75%. , 6 · 8 parts of filming aids, 5. 4 parts of hardener, 56 parts of water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 10 having a solid concentration of 25 % was obtained. The ratio of the polyoxane of this intermediate layer coating liquid was 60%. Further, the coating film obtained from the intermediate layer coating liquid was damaged at 25 ° C -43 - 201210695 and the tangent was 0. 09. The intermediate layer coating liquid 1 1 (Comparative Example) was sequentially added in 100 parts of a water-based acrylic oxime resin dispersion having a helium oxygen content of 30%. 2 parts of filming aid, 7. 9 parts of hardener, 76. 5 parts of water. The resulting mixture was stirred with a stirrer for 30 minutes, whereby an intermediate layer coating liquid 11 having a solid content concentration of 25% was obtained. The interlayer liquid coating liquid 11 had a polyoxane ratio of 30%. Further, one of the spectral peaks of the temperature change curve of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4 is 60 °C. Further, the loss of the coating film obtained from the intermediate layer coating liquid 1 at 25 ° C is 0. 10. Production and Evaluation of Photocatalyst Coating Body The aqueous acrylic resin coating was spray-coated on a flexible sheet so that the dried film thickness was about 20 μm, and dried at 8 (TC for 30 minutes. Next, the dried film thickness was made The aqueous urethane acrylate resin coating was spray-coated at about 200 μm, and dried at 8 (TC for 30 minutes to obtain a primer for the adhesion test. Next, the dry film thickness was 10 μm. The intermediate layer coating liquid 1 to 1 1 was spray-coated on a primer substrate for adhesion test which was previously heated to about 50 ° C, and dried at 90 t for 2 minutes, and then dried to a thickness of 0. 3~0. The photocatalyst coating liquids 1 to 6 were spray-coated in a manner of 7 μm to obtain a photocatalyst coated body. The combination of the intermediate layer coating liquid and the photocatalyst coating liquid is as shown in the following table - 44 - 201210695. 0 Adhesion performance evaluation The photocatalyst coating body thus obtained was evaluated for adhesion performance as follows. First, the photocatalyst-coated body was placed in a solar weathering tester (manufactured by SUGA Tester, S-3 00C) prescribed by Jis B7753, and taken out 100 hours later. Then, it was immersed in water at 60 ° C for 1 hour, and then dried at 1 Torr (TC for 1 hour, followed by a germicidal lamp (manufactured by Toshiba Litech) (wavelength 254 nm), and the illuminance of the surface of the test piece was set to 10 W/m 2 . The 12-hour step was repeated 8 times in total, and the total test time was 184 hours. The contact angle of the obtained coated body with water was measured by a contact angle meter (CA-X1 50 type manufactured by Kyowa Interface Science Co., Ltd.), followed by scanning electron microscopy. (Manufacturing, S 800) The surface of the obtained coated body was observed 100 times to visually evaluate the approximate residual ratio of the photocatalyst layer. The heat-resistant cold test was carried out as follows. First, the photocatalyst-coated body was placed in JIS. The solar weathering tester (manufactured by SUGA Test Machine, S-3 00C) specified in B775 3 was taken out after 100 hours, then heated at 1 ° C for 1 hour, followed by -2 (TC cooling for 1 hour). The total of the test was repeated for 1 hour, and the total test time was 20 hours. The obtained coated body was placed in a solar weathering tester (manufactured by SUGA Test Machine, S_3〇〇c) prescribed in JIS B7753, and taken out after '100 hours'. Contact angle The contact angle with water was measured (CA-X 15 0 type manufactured by Kyowa Interface Science Co., Ltd.) -45- 201210695 Bending resistance test The bending resistance test was carried out as follows. First, the photocatalyst coated body was placed in accordance with JIS B7753. The daylight weathering tester (manufactured by SUGA Tester 'S-300C) was taken out after 1 hour. Then, the obtained coated body was bent at 180° for 180°. Then, the crack was observed by visual observation. The angle meter (CA-X1 5 0 type manufactured by Kyowa Interface Science Co., Ltd.) measures the contact angle between the bent portion and the water. The vibration resistance test is carried out as follows. First, the photocatalyst coated body is placed in accordance with JIS B 775 3 The sunlight weathering tester (manufactured by SUGA Test Machine, S-3 00C) was taken out 100 hours later. The obtained coated body was fixed on a vibration tester and applied for 10 minutes under the conditions of a vibration number of 5 Hz and a vibration acceleration of 1 G. Vibration. The contact angle of the coated body with water after vibration was measured by a contact angle meter (CA-XI 50 type manufactured by Kyowa Interface Science Co., Ltd.) The above results are shown in the following table. -46- 201210695 [Table 1] Photocatalyst Coating liquid Intermediate layer Coating liquid Adhesion performance evaluation Heat-resistant cold Bending resistance Vibration resistance After test Contact angle Residual film residual rate After test Contact angle Bending part cracking Bending part Contact angle After test Contact angle 1 1 1 <20* 75» <20· none <20* <20* 2 2 <20· 100» <20· none <20· <20· 3 3 <20·100Χ <20· none <20· <20* 4 4 . <20· 100% <20· none <20· <20· 5 5 <20·100Χ <20* no <20· <20* 6 β <20* 100Χ <20· none <20· <20· 7 7 <20· 100% <20· none <20· <20· 8 8 <20· 100% <20· none <20· <20* 11 2 1. <20· 100% <20· none <20· <20· 12 2 2 <2〇·100Κ <20· none <20· <20· 13 2 3 <20·100Κ <20· none <20· <20· 14 2 4 <20· 100K <20· none <20· <20· 15 2 5 <20· 100X <20· none <20· <20· 16 2 6 <20· 100» <20· none <20· <20· 17 2 7 <20' 100X <20· none <20· <20· 18 2 8 <20· 100% <20· none <20* <20· 21 3 1 <20* 100% <20· . No <20· <20· 22 3 2 <20· 100% <20· none <20. <20· 23 3 3 <20· 100% <20· none <20· <20· 24 3 4 <20· 100% <20· none <20· <20· 25 3 5 <20· too% <20· none <20. <20· 26 3 . Θ <20·100%. <20· none <20· <20· 27 3 7 <20· too% <20· none <20· <20· 28 3 8 <20· 100% <20· none <20· <20· -47- 201210695 [Table 2] Example Photocatalyst Coating Liquid Intermediate Layer Coating Liquid Adhesion Performance Evaluation Heat Resistance Cold Resistance Bending Resistance Vibration Resistance Test Contact Angle Coating Residual Rate Test Contact Angle Bending Crack Contact angle with or without bending contact angle test 31 4 1 <20· \m <20* no <20· <20· 32 4 2 <20· m% <20· none <20· <20· 33 4 3 <20· ιοοχ <20* no <20. <20· 34 4 4 <20· 100X <20· none <20* <20· 35 4 S <20· fOOX <20* no <20* <20. 3Θ 4 β <20· 100X <20· none <20* <20· 37 .4 7 <20· 100» <20· none <20· <20· 38 4 8 <Ζ09 100X <20· none <20· <20· 41 5 <20· 100X <20· none <20· <20_ 42 5 2 <20· 100X <20· none <20* <20_ 43 5 3 <20· too% <20· none <20· <20· 44 5 4 <20· 100% <20· none <20· <20· 45 5 5 <20· 100% <20·· none <20· <20· 4Θ 5 6 <20· 100» * <20· none <20· <20* 47 5 7 <20* 100%. <20· none <20· <20· 48 S θ <20· 100% <20· none <20· <20· 61 6 1 <20. 100X <20· none <20· <20* 62 β 2 <20β 100% <20* no <20· <20· 53 6 3 <20· too% <20. none <20· <20_ 54 6 4 <20· 100% <20* no <20· <20· 55 6 5 <20· 100H <20· • none <20· <20. 58 β β <20· 100H <20· none <20* <20· 57 8 7 <20* 100S, <20. none <20· <20· 58 β β <20· Ι00Χ <20· . No <20· <20·Comparative Example 1 1 θ- 60· <10% <20· has <20· <20· Comparative Example 2 .1 10 80* <!0% <20· has <20· <20* Comparative Example 3 1 11 80* <10% <20* has <20· <20· The electron micrograph of the coating film after the adhesion evaluation test is shown in Fig. 2 . In Fig. 2, photographs 1 to 5 are electron micrographs of the coating films of Examples 1 to 3 and Comparative Examples 1 and 2, respectively. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] shows the temperature change of the loss elastic modulus measured by the solid viscoelasticity measuring apparatus according to JIS K7244-4, which is the dispersion of the aqueous urethane polyether resin used in Example 1. Graph. -48- 201210695 [Fig. 2] Photograph of the coated film electronics! 1 to 5 are the adhesion evaluation tests of the respective examples 1 to 3, 7 and 8. -49-