TW201210115A - Negative electrode material addictive of lithium-ion battery and its use in lithium-ion battery and negative electrode material - Google Patents

Negative electrode material addictive of lithium-ion battery and its use in lithium-ion battery and negative electrode material Download PDF

Info

Publication number
TW201210115A
TW201210115A TW099128001A TW99128001A TW201210115A TW 201210115 A TW201210115 A TW 201210115A TW 099128001 A TW099128001 A TW 099128001A TW 99128001 A TW99128001 A TW 99128001A TW 201210115 A TW201210115 A TW 201210115A
Authority
TW
Taiwan
Prior art keywords
electrode material
negative electrode
ion battery
lithium
additive
Prior art date
Application number
TW099128001A
Other languages
Chinese (zh)
Inventor
tong-jin Li
xiu-ling Cai
Yi-Da Li
Original Assignee
Power Source Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Source Energy Co Ltd filed Critical Power Source Energy Co Ltd
Priority to TW099128001A priority Critical patent/TW201210115A/en
Publication of TW201210115A publication Critical patent/TW201210115A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention concerns a negative electrode material addictive of lithium-ion battery and its use in lithium-ion battery and negative electrode material. The source of the addictive derives from the metabolite of lactic acid bacteria, yeast, photosynthetic bacteria, or Gram-negative bacteria through metabolism. The metabolite produced from metabolism contains the compound of phosphate ion or acetic acid ion on the tail or side chain. The negative electrode material added to the lithium-ion battery effectively slows down heating from high temperature as a result of self-discharge and overcharges of lithium-ion battery at storage, while retaining electric conductivity and good lithium-ion battery life.

Description

201210115 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種_子電池,_是指〜種_生物化學分子配 方的鋰離子電池負極材料添加劑、和利用其之鋰離子電池及負極材料。 【先前技術】 按’電池主要可分為-次電池(Primary B attery)與二次電池(s函_ Batteiy),其中一次電池係將化學能轉換成電能,且無法透過充電電能再轉 換成化學能,所以一旦電池内部之化學物質消失殆盡,即無法繼續供電, 例如水銀電池、碳鋅電池、鹼性電池等;二次電池則可透過充電方式繼續 重複’例如鎳鎘電池、鎳氫電池與鋰離子電池等。 且,近年來二次電池乃廣泛應用於多種可攜式電子產品,如行動電話、 個人數位助理(PDA)、筆記型電腦、數位相機、數位攝影機等,其中又以 鋰離子電池最常受到使用,即將電極片捲繞或堆疊後,與隔離紙及電解液 組合’再放入不銹鋼殼或鋁製的硬殼或鋁軟包裝膜中(如我國專利公告號 第481935號之「製造新鋰離子軟包裝電池之方法」)。鋰離子電池輕薄短小, 且具有單位面積較其它二次充電電池高的能量密度特性,惟,習知在軟包 裝鋰離子電池中以石墨或碳材料做為負極,由於其中易含有天然成分的雜 質,使得完成充電後的碳材料負極中之鋰離子會和雜質形成複合物,造成 鋰離子電池整體的阻抗増加及内部自放電情況產生,而降低了電池的儲存 壽命。此外,鋰離子電池正極中以鋰鈷氧化合物為主要的導電物質,由於 其高能量密度特性,在過充電時,則可能造成電池發熱高溫甚至爆炸情況 的出現。 3 201210115 【發明内容】 黎於以上的問題’本發明的主要目的在於提供一種_子電池負極材 料添加劑和利用其之經離子電池及負極材料,採用特殊的生物化學材料作 為添加劑,添加於裡離子電池之負極材料中,將同時改善鐘離子電池儲藏 時自放電及過充電尚溫發熱的情形,以解決先前技術所遭遇的各種缺失與 危險。 為達以上之目的’本發_露-驗離子電池負極材料添加劑,包含 有由乳酸細菌、酵母菌、光合細菌和格蘭氏陰性菌至少其中之一經由代謝 途徑所產生的代謝產物’且這些代謝產物的特性為尾端或支鍵上具有概 根離子或醋酸根離子的化合物,包括有丙酮酸(Pyruvate)、乙醛 (Acetaldehyde)、乙醇(Ethanol)、磷酸甘油酸(ph〇sph〇giycerate)、二氧 化碳(C〇2)、二磷酸腺嘌呤酸核苷酸(ATp)、雙磷酸腺嘌呤酸核苷酸 (ADP)、乳酸(Lactate)、氧氣(〇2)、檸檬酸(Citrate)、草醯乙酸 (Oxaloacetate )、延胡索酸(Fum誠)、蘋果酸()和號贿(如咖伽) 之穩定相雜化合物、不敎嫌祕合其狐異構騎構成的群組 組合之至少其中之一。 再者’本發明也揭露-種經離子電池負極材料,包含碳材料和有效量 之上述添加劑,添加劑的含量為總含量的〇 。 另外’本發明也揭露一種雜子電池,具有正極材料、負極材料及液 趙或固體之電解質’其中正極材料為經姑氧、鐘猛氧或碌酸链鐵,而負極 材料則為碳材料並使用上述本發明所揭露之添加劑。 為使對本發明的目的'特徵及其功能有進-步的了解,兹配合圓式詳 201210115 細說明如下: 【實施方式】 本發明所提供之鋰離子電池負極材料添加劑,乃為多種生物化學分子 之混合物’來源為乳酸細菌、酵母菌、光合細菌及格蘭氏陰性菌其中一種 或數種經由代謝途徑所產生之代謝產物,其代謝途徑包含有氧呼吸作用、 無氧呼吸作用、光合作用及糖解作用等。表一說明上述四種微生物的主要 代謝途徑及其代謝產物。 表一 微生物 代謝途徑 _代謝產物__ 酵母菌(Yeast) 酒精發酵(Alcohol Fermentation ) 丙嗣酸(Pyruvate )、乙路(Acetaldehyde )、 乙醇(Ethanol )、填酸甘油酸 (Phosphoglycerate)、二氧化碳(C02)、 三磷酸腺嘌呤酸核苷酸* (ATP*) 乳酸細菌(Lactic acid bacteria) 乳酸發酵(Lactate Fermentation) 丙酮酸(Pyruvate )、填酸甘油酸 (Phosphoglycerate)、乳酸(Lactate)、三 磷酸腺嘌呤酸核苷酸(ATP) 光合細菌 (Phototrophic bacteria) 光合作用 (Photosynthesis ) 氧氣(02 )、三磷酸腺嘌呤酸核苷酸 (ATP )、丙酮酸(Pyruvate ) 格蘭氏陰性菌 (Gram positive bacteria) 有氧呼吸(Aerobic respiration) 璃酸甘油酸(Phosphoglycerate )、丙嗣酸 (Pyruvate )、三碟酸腺嘌呤酸核苷酸 (ATP )、檸檬酸(Citrate )、草醢乙酸 (0xaloacetate)、延胡索酸(Fumarate) 註.由於代謝過程中,代謝產物ATp和Aj^p會同時存在,因此以Ατρ*表 示兩者的混合》 上述代謝作用後的主產物有乙醛、乙醇、乳酸、二氧化碳和氧氣等, 而本發明之鋰離子電池負極材料添加劑,則是採用如同表一所列示之其中 之種或數種代謝產物’這些代謝產物包含有丙酮酸(Pymvate)、乙搭 (Acetaldehyde)、乙醇、峨酸甘油酸(ph〇Sph〇giyCerate)、二氧 201210115 化碳(c〇2)、三磷酸腺嘌呤酸核苷酸(ATP)、雙磷酸腺嘌呤酸核苷酸 (ADP)、乳酸(Lactate)、氧氣(〇2)、檸檬酸(citrate)、草醯乙酸 (Oxaloacetate )、延胡索酸(Fumarate )、以及呼吸作用的中間產物蘋果酸 (Malate)和琥珀酸(Succinate)等有機酸類,其中除了它們的穩定相狀態 化合物’還有這些酸類的順反異構物,和形成穩定相前的不穩定相狀態化 合物等。而且’這些代謝產物的特性為尾端或支键上具有磷酸根離子(P04-) 或醋酸根離子(COO-)的化合物。 也就是說’此鋰離子電池負極材料添加劑為大量含有磷酸根離子或醋 酸根離子的化合物的混合,當添加到鋰離子電池之負極材料中,將藉由醋 酸根離子中電子在兩個C-O共價鍵間震動,及磷酸根離子中電子在兩個p_〇 共價鍵間震動’在鋰離子電池充電時可和鋰離子形成暫時的鍵結,如第1 圖所示’而又由於磷酸根離子和醋酸根離子與鋰離子形成的鍵結力會大於 鋰離子單獨漂浮在負極内與石墨形成的凡德瓦力,故可形容為:鋰離子被 「抓住」了,其作用在於鋰離子將較不容易由負極中流失,在鋰離子電池 充飽電狀態下儲存時,有效地減緩自放電的情況,電壓隨時間下降的趨勢 減緩,如第2圓所示。 另外,在經電池過充電時,大量的經離子進入負極當中,此時依靠石 墨層間凡德瓦力已不足以將鋰離子束缚住而使鋰離子脫出,還原析出鋰, 鋰金屬具有極大活性進而造成熱奔、燃燒甚至爆炸;然而,添加本發明之 添加劑之鋰離子電池負極材料可在過充電的過程中,增加對鋰離子的束縛 力,減少裡析出現象,如此一來延長了熱奔發生的時間。 而且’本發明對於此種鋰離子電池負極材料添加劑經過數個實驗驗 201210115 «a·,可發現不會影響鋰離子電池原有的電性表現,包含電壓平台、電容量、 充放電曲線、中點電壓等,並且維持良好的電池循環壽命,請參見第3 6 .圖所示。 接著,本發明分別以水系電極製程與油系電極製程來說明此種添加劑 添加於鋰離子電池之負極材料中的實際應用例子。 水系電極製程.首先’將〇添加劑和的導電碳材與Μ·%% 之活性物質(包含石墨、中間相碳球(MCMB) '硬碳軟碳等),以水 鲁系黏者劑SBR (本乙烯-丁二稀橡膠;styrene Butadiene Robber)混合製漿, 塗佈於銅上110度烘乾,完成經離子電池貞極材料之製作。 油系電極製程:將添加劑先與氧化紳二氧切Μ均雜拌後洪乾,再 將此混合難末以2%_14%和卜5%料電碳材與85 93%之滩婦以油 系黏著劑聚偏二紅烯樹脂(PVDF)混合製毅,塗佈於銅落上洪乾,完成 鋰離子電池負極材料之製作。 上述經離子電池負極材料所添加之添加劑,.可調整比例大約在總含量 _的〇.〇1-14% ;如此’依據本發明,進一步將_子電池負極材料應用於鋰 離子電池之製作中,正極材料使用贿氧、贿氧或鱗酸經鐵,再與液體 或固體之電解質作組合封裝,則藉由添加劑的作用,將可同時改善_子 電池儲藏時自放電及過充電高溫發熱的情形,而且,不會影響_子電池 原有的電性魏’並且轉良好的電域環壽命。 雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在 不脫離本發明之精神和範圍内,所為之更動與潤飾,均屬本發明之專利保 護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 201210115 【圖式簡單說明】 第1圖為本發明瓣子電池貞極㈣添加劑添加於娜子電池貞極材料中 之反應機制示意圓。 第2圖為本發_離子電池負極材料添加劑加人麟子電池後自放電(麼 降)情形減緩之示意圆,其中曲線a與曲線b分別代表使用添加劑及未使 用添加劑之情形。 第3圖與4縣本發明伽添加劑及未使躲加劑之經離子電池負極材 料之過充電曲線比較,其中曲線e、e代表使用添加劑之情形曲線d、f 代表未使轉加劑之情形’而溫度職轉折上升之點稱為熱奔現象。 第5圖為本發明使㈣加劑之裡離子電池之電性表現,其中實線與虛線分 別代表0.5C和1C單週充放電曲線。 第6圖為本發明使用添加劑之鋰離子電池之電性表現,在此為充放電循 環測試結果。 【主要元件符號說明】201210115 VI. Description of the Invention: [Technical Field] The present invention relates to a lithium ion battery anode material additive, and a lithium ion battery using the same Anode material. [Prior Art] According to the 'battery can be divided into primary battery (Primary Battery) and secondary battery (s letter _ Batteiy), where the primary battery converts chemical energy into electrical energy, and can not be converted into chemistry through charging electrical energy. Yes, so once the chemical inside the battery disappears, it can not continue to supply power, such as mercury battery, carbon zinc battery, alkaline battery, etc.; secondary battery can continue to repeat through charging method, such as nickel-cadmium battery, nickel-hydrogen battery With lithium ion batteries and so on. Moreover, in recent years, secondary batteries have been widely used in a variety of portable electronic products, such as mobile phones, personal digital assistants (PDAs), notebook computers, digital cameras, digital cameras, etc., among which lithium-ion batteries are most commonly used. , after winding or stacking the electrode sheets, combined with the release paper and electrolyte solution, and then placed in a stainless steel shell or aluminum hard shell or aluminum flexible packaging film (such as China Patent Publication No. 481935 "manufacturing new lithium ion flexible packaging Battery method"). Lithium-ion batteries are light and thin, and have a higher energy density per unit area than other secondary rechargeable batteries. However, it is known that graphite or carbon materials are used as negative electrodes in flexible packaging lithium ion batteries, and since they are easily contained in natural components, The lithium ions in the negative electrode of the carbon material after the completion of charging form a complex with the impurities, resulting in an increase in the impedance of the lithium ion battery as a whole and an internal self-discharge, thereby reducing the storage life of the battery. In addition, the lithium cobalt oxide compound is the main conductive material in the positive electrode of the lithium ion battery. Due to its high energy density characteristics, during overcharging, the battery may be heated, high temperature or even explosive. 3 201210115 [Summary of the Invention] The problem of the above is 'the main purpose of the present invention is to provide a _ sub-cell negative electrode material additive and an ion-exchanger and a negative electrode material using the same, using a special biochemical material as an additive, added to the ionic ion In the negative electrode material of the battery, the self-discharge and over-charge of the plasma battery during storage are simultaneously improved, so as to solve various defects and dangers encountered in the prior art. For the purpose of the above, the present invention includes a metabolite produced by a metabolic pathway of at least one of lactic acid bacteria, yeast, photosynthetic bacteria and gram-negative bacteria, and these The metabolite is characterized by a compound having a root ion or an acetate ion at the tail or branch, including pyruvate, Acetaldehyde, Ethanol, and phosphoglycerate (ph〇sph〇giycerate). ), carbon dioxide (C〇2), adenosine diphosphate nucleotide (ATp), adenosine diphosphate nucleotide (ADP), lactic acid (Lactate), oxygen (〇2), citric acid (Citrate), At least one of the group consisting of Oxaloacetate, Fumaric acid, Fam, and malic acid (such as Gaga), a combination of stable compounds, and a group of foxes One. Further, the present invention also discloses an ion battery negative electrode material comprising a carbon material and an effective amount of the above additive, the content of the additive being a total content of 〇. In addition, the present invention also discloses a hetero-cell battery having a positive electrode material, a negative electrode material, and a liquid electrolyte or a solid electrolyte, wherein the positive electrode material is a guar oxygen, a bellows oxygen or a sulphuric acid chain iron, and the negative electrode material is a carbon material. The additives disclosed in the above invention are used. In order to make a step-by-step understanding of the purpose and function of the present invention, the detailed description of the round-shaped detailed 201210115 is as follows: [Embodiment] The lithium ion battery anode material additive provided by the present invention is a plurality of biochemical molecules. The mixture's source is one or several metabolites produced by metabolic pathways of lactic acid bacteria, yeast, photosynthetic bacteria and gram-negative bacteria. The metabolic pathways include aerobic respiration, anaerobic respiration, photosynthesis and sugar. Solution and so on. Table 1 illustrates the main metabolic pathways and their metabolites of the above four microorganisms. Table 1 Microbial metabolic pathways_metabolites__ Yeast Alcohol Fermentation Pyruvate, Acetaldehyde, Ethanol, Phosphoglycerate, Carbon Dioxide ), adenosine triphosphate nucleotides (ATP*) Lactic acid bacteria Lactic Fermentation Pyruvate, Phosphoglycerate, Lactic, Triphosphate Citrate nucleotides (ATP) Phototrophic bacteria Photosynthesis Oxygen (02), adenosine triphosphate (ATP), Pyruvate, Gram positive bacteria Aerobic respiration Phosphoglycerate, Pyruvate, ATP, Citrate, 0xaloacetate, fumaric acid (Fumarate) Note: Due to the simultaneous metabolites ATp and Aj^p in the metabolic process, Ατρ* is used to indicate the mixture of the two. The main products after the interaction are acetaldehyde, ethanol, lactic acid, carbon dioxide and oxygen, etc., and the lithium ion battery anode material additive of the present invention adopts one or several kinds of metabolites as shown in Table 1. Metabolites include pyruvate (Acymvate), Acetaldehyde, ethanol, citric acid (ph〇Sph〇giyCerate), dioxo 201210115 carbon (c〇2), adenosine triphosphate nucleotides ( ATP), adenosine diphosphate nucleotide (ADP), lactic acid (Lactate), oxygen (〇2), citrate, Oxaloacetate, Fumarate, and respiratory intermediates Organic acids such as malate and succinate, in addition to their stable phase state compounds 'and cis-trans isomers of these acids, and unstable phase state compounds before forming a stable phase, and the like. Moreover, these metabolites are characterized by a compound having a phosphate ion (P04-) or an acetate ion (COO-) at the tail or branch. That is to say, 'this lithium ion battery anode material additive is a mixture of a large amount of compounds containing phosphate ions or acetate ions. When added to the anode material of the lithium ion battery, the electrons in the acetate ions are shared by the two COs. Vibration between valence bonds, and electrons in phosphate ions vibrate between two p_〇 covalent bonds'. When lithium-ion batteries are charged, they form a temporary bond with lithium ions, as shown in Figure 1 and due to phosphoric acid. The bonding force between the root ion and the acetate ion and the lithium ion is greater than the van der Waals force formed by the lithium ion floating in the negative electrode and the graphite, so it can be described as: lithium ion is "caught", and its function is lithium. The ions will be less likely to be lost from the negative electrode. When the lithium ion battery is fully charged, the self-discharge is effectively slowed down, and the voltage decreases with time, as shown by the second circle. In addition, when the battery is overcharged, a large amount of ions enter the negative electrode. At this time, the van der Waals force between the graphite layers is insufficient to bind the lithium ions to cause the lithium ions to escape, and the lithium is reduced and precipitated. The lithium metal has great activity. Further causing heat, burning or even explosion; however, the lithium ion battery anode material added with the additive of the invention can increase the binding force to lithium ions during the overcharging process, and reduce the appearance of the analysis, thus prolonging the heat The time of the occurrence. Moreover, the invention has been subjected to several experiments 201210115 «a· for such lithium ion battery anode material additives, and it can be found that it does not affect the original electrical performance of the lithium ion battery, including voltage platform, capacitance, charge and discharge curve, medium Point voltage, etc., and maintain good battery cycle life, see Figure 3 6 . Next, the present invention describes a practical application example in which such an additive is added to a negative electrode material of a lithium ion battery by a water-based electrode process and an oil-based electrode process, respectively. Water-based electrode process. First of all, 'the additive and the conductive carbon material and Μ·%% of the active substance (including graphite, mesocarbons (MCMB) 'hard carbon soft carbon, etc.), with the water-based adhesive SBR ( The ethylene-butadiene rubber; styrene Butadiene Robber) is mixed and pulped and coated on copper to dry at 110 degrees to complete the production of the electrode material of the ion battery. Oil-based electrode process: the additive is first mixed with cerium oxide dioxane, and then dried, and then mixed with 2% _14% and 5% material electric carbon material and 85 93% of the beach woman oil-based The polymer polydiene resin (PVDF) is mixed and made into a coating, which is coated on copper and dried to complete the production of the negative electrode material of the lithium ion battery. The above-mentioned additives added to the negative electrode material of the ion battery can be adjusted in a ratio of about -141 to 14% of the total content _; thus, according to the present invention, the negative electrode material of the _ sub-battery is further applied to the production of a lithium ion battery. The positive electrode material is encapsulated by brittle oxygen, brittle oxygen or scaly acid, and then combined with a liquid or solid electrolyte. By the action of the additive, the self-discharge and overcharge high-temperature heating during storage of the sub-battery can be simultaneously improved. In other cases, it does not affect the original electrical conductivity of the sub-cell and the good electrical ring life. Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. Modifications and retouchings are within the scope of the invention and are covered by the patent protection of the present invention. Please refer to the attached patent application for the scope of protection defined by the present invention. 201210115 [Simple description of the diagram] Fig. 1 is a schematic diagram showing the reaction mechanism of the additive (4) additive of the petal battery of the present invention added to the material of the nano-battery. Fig. 2 is a schematic diagram of the slowing down of the self-discharge (reduction) of the negative electrode material additive of the ion-ion battery, wherein the curves a and c represent the use of the additive and the absence of the additive, respectively. Figure 3 compares the overcharge curves of the gamma additive of the present invention with the negative electrode material of the ion battery of the fourth county, wherein the curves e and e represent the case of using the additive, and the curves d and f represent the case where the additive is not added. 'The point at which the temperature job turns up is called the hot run phenomenon. Fig. 5 is a graph showing the electrical performance of the ion battery of (4) additive in the present invention, wherein the solid line and the broken line respectively represent 0.5C and 1C single-cycle charge-discharge curves. Figure 6 is a graph showing the electrical performance of a lithium ion battery using an additive according to the present invention, which is a charge and discharge cycle test result. [Main component symbol description]

Claims (1)

201210115 七、申請專利範圍: 1. 一種鋰離子電池負極材料添加劑,其特徵為: 該添加劑包含有由乳酸細菌、酵母菌、光合細菌和格蘭氏陰性菌至少其 中之-所產生的代謝產物’且該代謝產物係、為尾端或支鍵上具有麵 根離子或醋酸根離子的化合物。 2. 如申請專利範圍第1項所述之鋰離子電池負極材料添加劑,其中該代謝 產物係包含由丙酮酸(pymvate)、乙媒(Acetaldehyde)、乙醇(趾如〇1)、 ^ 磷酸甘油酸(PhosPh〇glycerate)、二氧化碳(c〇2)、三磷酸腺嘌呤酸核 苷酸(ATP)、雙磷酸腺嘌呤酸核苷酸(ADP)、乳酸(Lactate)、氧氣(〇2)、 檸檬酸(Citrate)、草醯乙酸(〇xai〇acetate)、延胡索酸(Fumarate)、蘋 果酸(Malate)和琥珀酸(Succinate)之穩定相狀態化合物、不穩定相 狀態化合物及其順反異構物所構成的群組組合之至少其中之一。 3· —種链離子電池負極材料,包含碳材料和有效量之添加劑,其特徵為: 該添加劑包含有由乳酸細菌、酵母菌、光合細菌和格蘭氏陰性菌至少其 φ 十之一所產生的代謝產物,且該代謝產物係為尾端或支鏈上具有磷酸 根離子或醋酸根離子的化合物。 4.如申請專利範園第3項所述之經離子電池負極材料,其中該代謝產物係 包含由丙酮酸(Pyruvate)、乙搭(Acetaldehyde)、乙醇(Ethanol)、碟 酸甘油酸(Phosphoglycerate)、二氧化碳(C〇2)、三磷酸腺嘌呤酸核苷 酸(ATP)、雙磷酸腺嘌呤酸核苷酸(ADP )、乳酸(Lactate)、氧氣(〇2)、 檸檬酸(Citrate)、草醯乙酸(Oxaloacetate)、延胡索酸(Fumarate)、蘋 果酸(Malate)和琥珀酸(Succinate)之穩定相狀態化合物、不穩定相 201210115 狀態化合物及其順反異構物所構成的群組組合之至少其中之… 5. 如申請專利範園第3項所述之_子電池負極材料,其中該添加劑的含 量為總含量的0.01-14%。 6. -種娜子電池,具有-正極材料、—負極材料及—液體或_之電解 質,而該負極材料係包含有碳材料和有效量之添加劑,其特徵為: 該添加劑包含有由乳酸細菌、酵母菌、光合細菌和格蘭氏陰性菌至少其 中之-所產生的代謝產物,且該代謝產物係為尾端或支鍵上具有_ 根離子或醋酸根離子的化合物。 7. 如申請糊細帛6項_之峰?·,其帽代謝產㈣包含由丙 酮酸(Pymvate)、乙醛(Acetaldehyde)、乙醇(Ethan〇1)、磷酸甘油酸 (Ph〇Sph〇glycerate)、二氧化碳(c〇2)、三磷酸腺嘌呤酸核苷酸(Ατρ)、 雙峨酸㈣呤_魏(ADP)、級(Laetate)、氧氣(〇2)、擦檬酸 (Citrate)、草醯乙酸(0xai〇acetate)、延胡索酸(F_rate)、蘋果睃 (Malate)和琥珀酸(Sucdnate)之穩定相狀態化合物、不穩定相狀態 化合物及其順反異構物所構成的群組組合之至少其中之一。 8. 如申凊專利範圍第6項所狀經離子電池,其中該添加劑的含量為該負 極材料總含量的0.01-14%。 9. 如申晴專利範圍第6項所述之鋰離子電池,其中該正極材料係鋰鈷氧、 41猛氧或磷酸鋰鐵。201210115 VII. Patent application scope: 1. A lithium ion battery anode material additive, characterized in that: the additive contains metabolites produced by at least one of lactic acid bacteria, yeast bacteria, photosynthetic bacteria and gram-negative bacteria. And the metabolite is a compound having a surface ion or an acetate ion on the tail or the branch. 2. The lithium ion battery negative electrode material additive according to claim 1, wherein the metabolite comprises pymvate, Acetaldehyde, ethanol (toe 〇1), ^phosphoglycerate (PhosPh〇glycerate), carbon dioxide (c〇2), adenosine triphosphate nucleotide (ATP), adenosine diphosphate nucleotide (ADP), lactic acid (Lactate), oxygen (〇2), citric acid (Citrate), grasshopper acetic acid (〇xai〇acetate), fumarate, malate and succinate, stable phase state compounds, unstable phase state compounds and their cis-trans isomers At least one of the group combinations. 3·- a chain ion battery anode material comprising a carbon material and an effective amount of an additive, characterized in that: the additive comprises at least one of φ of lactic acid bacteria, yeast, photosynthetic bacteria and gram-negative bacteria a metabolite, and the metabolite is a compound having a phosphate ion or an acetate ion at the tail or branch. 4. The ion battery negative electrode material according to claim 3, wherein the metabolite comprises Pyruvate, Acetaldehyde, Ethanol, Phosphoglycerate. , carbon dioxide (C〇2), adenosine triphosphate nucleotide (ATP), adenosine diphosphate nucleotide (ADP), lactic acid (Lactate), oxygen (〇2), citric acid (Citrate), grass At least one of a group combination of a stable phase state compound of Oxaloacetate, Fumarate, Malate, and Succinate, and a stable phase of the 201210115 state compound and its cis-trans isomer. 5. The sub-cell negative electrode material described in claim 3, wherein the additive is contained in an amount of 0.01 to 14% of the total content. 6. A seed cell having a positive electrode material, a negative electrode material and a liquid or electrolyte, and the negative electrode material comprises a carbon material and an effective amount of an additive, characterized in that the additive comprises a lactic acid bacteria a metabolite produced by at least one of yeast, photosynthetic bacteria, and gram-negative bacteria, and the metabolite is a compound having a _ root ion or an acetate ion at the tail or branch. 7. If you apply for a paste, 6 peaks? · Its cap metabolite production (4) contains pyruvate, acetaldehyde (Acetaldehyde), ethanol (Ethan〇1), phosphoglycerate (Ph〇Sph〇glycerate), carbon dioxide (c〇2), adenosine triphosphate Acid nucleotides (Ατρ), biguanide (tetra) 呤_wei (ADP), grade (Laetate), oxygen (〇2), citric acid (Citrate), oxalic acid (0xai〇acetate), fumaric acid (F_rate) At least one of a combination of a stable phase state compound of Malate and Sucdnate, a compound of an unstable phase state, and a cis-trans isomer thereof. 8. The ionized battery of claim 6, wherein the additive is present in an amount of from 0.01 to 14% by total of the negative electrode material. 9. The lithium ion battery of claim 6, wherein the positive electrode material is lithium cobalt oxide, 41 argon oxygen or lithium iron phosphate.
TW099128001A 2010-08-20 2010-08-20 Negative electrode material addictive of lithium-ion battery and its use in lithium-ion battery and negative electrode material TW201210115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099128001A TW201210115A (en) 2010-08-20 2010-08-20 Negative electrode material addictive of lithium-ion battery and its use in lithium-ion battery and negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099128001A TW201210115A (en) 2010-08-20 2010-08-20 Negative electrode material addictive of lithium-ion battery and its use in lithium-ion battery and negative electrode material

Publications (1)

Publication Number Publication Date
TW201210115A true TW201210115A (en) 2012-03-01

Family

ID=46763870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128001A TW201210115A (en) 2010-08-20 2010-08-20 Negative electrode material addictive of lithium-ion battery and its use in lithium-ion battery and negative electrode material

Country Status (1)

Country Link
TW (1) TW201210115A (en)

Similar Documents

Publication Publication Date Title
WO2020177623A1 (en) Negative pole piece, secondary battery and apparatus thereof
CN103441236B (en) Cathode plate of lithium ion battery, lithium ion battery and preparation method thereof
WO2020177624A1 (en) Negative electrode plate, secondary battery and device having same
CN106299314B (en) A kind of lithium ion battery negative material and preparation method thereof, lithium ion battery
CN109950459A (en) A kind of lithium ion battery separator of richness lithium
CN105308776B (en) Cathode active material, its preparation method and include its lithium secondary battery
CN110224182B (en) Method for pre-lithiation of lithium ion battery
CN104347880A (en) Lithium ion battery capable of quick charging
CN105742695B (en) A kind of lithium ion battery and preparation method thereof
WO2022057189A1 (en) Solid-state battery, battery module, battery pack, and related device thereof
CN102610790A (en) Lithium ion secondary battery and anode plate of lithium ion secondary battery
CN107681214A (en) A kind of lithium-ion electric core mends lithium method
WO2023044934A1 (en) Secondary battery, battery module, battery pack, and power-consuming apparatus
CN101924243A (en) Lithium ion battery
CN101662046A (en) Lithium ion battery
CN102427123A (en) Lithium ion secondary battery and anode sheet thereof
CN102299365B (en) Lithium ion battery preventing overdischarge and battery pack thereof
CN113193173A (en) Positive plate and battery
CN116154100A (en) Lithium supplementing positive electrode, preparation method thereof and lithium ion secondary battery
CN102055020A (en) Method for solving problem of air expansion of power lithium battery with cathode made of lithium titanate
CN102332604A (en) High-power lithium ion battery
CN103000385A (en) Super hybrid capacitance battery and preparation method thereof
CN113594464A (en) Electrochemical device and electronic device
CN102403506A (en) Lithium ion battery negative electrode material additive, lithium ion battery and negative electrode material thereof
KR101497824B1 (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery