TW201210028A - Light scattering inorganic substrates by soot deposition - Google Patents

Light scattering inorganic substrates by soot deposition Download PDF

Info

Publication number
TW201210028A
TW201210028A TW100117128A TW100117128A TW201210028A TW 201210028 A TW201210028 A TW 201210028A TW 100117128 A TW100117128 A TW 100117128A TW 100117128 A TW100117128 A TW 100117128A TW 201210028 A TW201210028 A TW 201210028A
Authority
TW
Taiwan
Prior art keywords
substrate
dust particles
inorganic substrate
glass
dust
Prior art date
Application number
TW100117128A
Other languages
Chinese (zh)
Inventor
Daniel Warren Hawtof
Glenn Eric Kohnke
Jia Liu
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201210028A publication Critical patent/TW201210028A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Light scattering inorganic substrates comprising soot particles and methods for making light scattering inorganic substrates comprising sintered soot particles useful for, for example, photovoltaic cells are described herein. The method comprises providing an inorganic substrate comprising at least one surface, applying soot particles pyrogenically to the at least one surface of the inorganic substrate to form a coated substrate, and heating the soot particles to form the light scattering inorganic substrate. The invention creates a scattering glass surface that is suitable for subsequent deposition of a TCO and thin film silicon photovoltaic device structure. The scattering properties may be controlled by the combination of substrate glass and soot composition, deposition conditions, and sintering conditions.

Description

201210028 六、發明說明: 【發明所屬之技術領域】 [0001] 本發坍實施例係關於光散射無機基板以及製造光散射無 機基板之方法,以及特別是關於包含粉塵顆粒之光散射無 機基板以及包含粉塵顆粒之光散射無機基板之製造方法 以使用作為光伏打電池。 [先前技術3 [0002] 對薄膜石夕光伏打太陽能電池而言,光線必須有效地麵合到 矽層,接著收集在層内,以提供光線吸收足夠的路徑長度 [0003]較長波長的矽吸收長度通常是數十到數百微米,因此大於 矽厚度的路徑長度是特別有利的。典型的雙電池合併了 非晶型和微晶矽,其基板通常包括沉積在其上面的透明電 極,非晶型頂部電池,微晶矽底部電池,和向後接觸或反向 電極。光線通常從沉積基板的邊入射,使得基板變成是電 池設計中的覆板。 [0004]非晶型矽主要是吸收700奈米(nm)以下頻譜的可見部分, 而微晶石夕吸收類似於整塊結晶石夕,吸收逐漱減少延伸到 〜1 200 nm。這兩種型態的材料都受惠於紋理的表面。根 據紋理的尺寸大小,紋理在S i /基板介面處執行光線擷取 和/或減少Fresnel損耗。 [0005] 100117128 透明電極(也稱為透明導電氧化物(TCO)) —般是掺雜氟之 Sn02或摻雜蝴或紹之Zn〇的薄旗,厚度大約1微米,紋理化 以傲射光線到非晶型S i和微晶S i。散射的主要測量方式 稱為混濁度",定義為進入到樣本的光束散射> 2. 5度的光 表單編號A0]01 第4頁/共21頁 1003408617-0 201210028 線和透射通過樣本的總光線的比例。散射分佈函數並不 能以這個單一參數得到,和窄角度散射比起來大的角产 散射對於矽中加強的路徑長度比較有利。不同型蘇散射 函數另外的作用指出,改善的大型角度散射對於電池效能 有明顯的影響。 [0006] TCO表面可以各種技術紋理化。以Sn02而言,紋理是以用 來沉積薄膜的化學氣相沉積(CVD)處理參數來控制。紋理201210028 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a light-scattering inorganic substrate and a method of manufacturing the light-scattering inorganic substrate, and particularly to a light-scattering inorganic substrate containing dust particles and A method of manufacturing a light-scattering inorganic substrate of dust particles is used as a photovoltaic cell. [Prior Art 3 [0002] For thin-film photovoltaic solar cells, light must be effectively grounded to the ruthenium layer and then collected in the layer to provide sufficient path length for light absorption [0003] longer wavelength 矽The absorption length is usually from tens to hundreds of micrometers, so a path length greater than the thickness of the crucible is particularly advantageous. A typical dual cell incorporates amorphous and microcrystalline germanium, the substrate of which typically includes a transparent electrode deposited thereon, an amorphous top cell, a microcrystalline bottom cell, and a back contact or counter electrode. Light is typically incident from the sides of the deposition substrate such that the substrate becomes a superstrate in the battery design. [0004] Amorphous germanium is mainly absorbed in the visible portion of the spectrum below 700 nm (nm), while microcrystalline lithotripsy is similar to monolithic crystal litter, and the absorption decreases gradually to ~1 200 nm. Both types of materials benefit from the textured surface. Depending on the size of the texture, the texture performs light extraction and/or reduces Fresnel loss at the S i /substrate interface. [0005] 100117128 transparent electrode (also known as transparent conductive oxide (TCO)) is generally a fluorine-doped Sn02 or doped or Zn 〇 〇 thin flag, thickness of about 1 micron, textured to proud light To amorphous S i and microcrystalline S i . The main measure of scattering is called turbidity ", defined as beam scatter into the sample> 2. 5 degree light form number A0] 01 Page 4 / Total 21 page 1003408617-0 201210028 Line and transmission through the sample The proportion of total light. The scatter distribution function is not available with this single parameter, and angular scatter, which is larger than the narrow angle scatter, is advantageous for the enhanced path length in the sputum. The additional role of different types of Su scattering functions indicates that improved large angle scattering has a significant impact on battery performance. [0006] TCO surfaces can be textured by various techniques. In the case of Sn02, the texture is controlled by chemical vapor deposition (CVD) processing parameters used to deposit the film. Texture

Sn02薄膜的例子譬如Asahi Glass Company公司生產的Examples of Sn02 films such as those produced by Asahi Glass Company

Asahi-U薄膜。以ZnO而言,紋理是以CVD沉積薄膜的沉積 參數來控制,或在沉積噴濺薄膜之後,使用電漿處理或渔 蝕刻來產生所需的型態。 [0007] 紋理化TC0技術的缺點可包括以下一種或以上:丨)紋理粗 糙度會降低沉積石夕的品質,造成電短路,使整個太陽能電 池的效能降低;2)紋理最佳化受限於沉積或蝕刻處理過 程可用的紋理,以及和較厚TC0層有關減少的透射;3)在 ZnO的例子,電漿處理或溼蝕刻產生紋理會增加成本。 [0008] 另一種收集光線的方式需要薄膜矽太陽能電池基板的紋 理化是在TC0和/或矽沉積下方,而不是紋理化沉積薄膜。 在有些傳統的薄膜矽太陽能電池,不是使用TC〇,而是利用 穿孔接觸和基板接觸的Si底部。在有些傳統的薄膜矽太 陽能電池,紋理是由沉積在平面玻璃基板粘著劑基質中的 Si〇2顆粒所構成。這種紋理型態通常是執行凝膠型態的 處理過程,讓顆粒懸浮在液體中,透過液體抽拉基板,接著 燒結°形狀中保持著球型珠粒,以燒結的膠固定住。 100117128 表單編號A0101 第5頁/共21頁 1003408617-0 201210028 [0009] [0010] [0011] 還有很多額外的方法可在了(:()沉積之前產生紋 王1匕表面 這些方法包括噴砂,聚笨乙烯微球粒沉積, ,匕學麵刻。 這些關於紋理化表面的方式可能根據所產生 衣面纟文理阽 型態而有所限制。 的 光線收集對於Si厚度小於約1〇〇微米的整魂鈇曰s 電池也很有用。這種厚度並不足以有效吸收單回。太陽吨 的所有太陽輻射(向後反射接觸)^因此可發展雙回 何形狀結構的蓋板玻璃,以加強光線收集◊例如尺寸幾 玻璃和矽之間放置乙基乙酸乙烯(EVA)材 」蓋板 . °這種蓋拓 璃的範例是Saint-Gobain Glass公司的Albari 坡 系列。一般是使用滚動處理來形成這種大尺寸結構。°° 紋理化玻璃覆板方式的缺點可包括以下一種或以上工) 需要凝勝和相關的處理,以提供玻璃微球粒到基板的黏結 ;2)在玻璃基板的兩邊產生紋理化表面的處理過程;3) 和氧化矽微球粒和凝膠材料相關的額外成本;和4)矽薄膜 中薄模黏著性和裂隙產生的問題。 [0012]冑好有—種可製造光散射無機基板的方法,可擴充處理過 程到較大型的基板,而且可調整表面以產生所需要的光線 散射。 [0013] 100117128 【發明内容】 如這裡所說明的,製造光散射無機基板的方法可解決傳統 方法上述的一種或以上缺點,也可提供下列一種或以上的 優點,可以平滑地改變TC0塗覆的破璃微結構,$太會產生 電的問題’可最佳化玻璃紋理而不需去管吸收的損失,不 像在紋理K0的例子,較多的紋理f要會導致較高吸收的 表單編號A0101 第6頁/共21頁 1003408617-0 201210028 較厚TC0區域,處理過程不需要和凝勝處理過程一樣可被 燒結的黏著劑,而且可以燒結處理控制紋理特徵的大小。 [0014] 一項實施例是製造光散射無機基板的方法。此方法包括 k供包含至少一個表面的無機基板,施加高熱的粉塵顆粒 到無機基板的至少一個表面,以形成塗覆的基板,並加熱 塗覆的基板,以形成光線散射無機基板。 [0015] 另一個實施例是光散射物品,包括的玻璃基板包含玻璃粉 塵紋理區域的圖案,以及無紋理區域圖案的表面。 [0016] 譬如薄膜光伏打裝置的光伏打裝置,譬如>ε夕雙光伏打裝置 ,可包含光散射物品。 [ΟΟΠ]本發明其他特性及優點揭示於下列說明,以及部份可由說 明清楚暸解,或藉由實施下列說明以及申請專利範圍以及 附圖而明瞭。 [0018] 人們瞭解先前一般說明及下列詳細說明只作為範例性及 說明性,以及預期提供概要或架構以瞭解申請專利範圍界 〇 定出本發明原珲及特性。 [0019] 所包含附圖將更進一步提供瞭解本發明以及在此加入以 及構成說明書之一部份。附圖顯示出本發明不同的實施 例及隨同詳細說明以解釋本發明之原理及操作。 【實施方式】 [0020] 現在對本發明優先實施例詳細加以說明,其範例顯示於附 圖中。儘可能地,在全部附圖中相同的參考數字表示相同 的或類似元件。 100117128 表單編號A0101 第7頁/共21頁 1003408617-0 201210028 [0021] 如這裡使用的,巧*使用"基板"一詞來描述基板或覆板,根 據光伏打電池的設計而定。例如,假使組裝到光伏打電池 時是在光伏打電池光線入射的那邊,基板就是覆板。覆板 可提供光伏打材料的保護,使其避免撞擊和環境退化,— 方面允許太陽頻譜適當波長的透射。更進一步,可安排多 個光伏打電池成一個光伏打模組。 [0022] 如這裡使用的,"毗鄰的"一詞可定義成非常靠近。毗鄰的 結構可以或可以不是互相實體接觸的。毗鄰的結構可以 在其中間還有其他層和/或結構。 [0023] —項實施例是製造光散射無機基板的方法。此方法包括 提供包含至少一個表面的無機基板,施加高熱的粉塵顆粒 到無機基板的至少一個表面,以形成塗覆的基板,並加熱 塗覆的基板,以形成光線散射無機基板。 ί〇〇2Α]另一個實施例是光散射物品,包括的玻璃基板包含玻璃粉 塵紋理區域的圖案,以及無紋理區域圖案的表面。譬如薄 膜光伏打裝置的光伏打裝置,譬如矽雙光伏打裝置可包 含光散射物品。 [〇〇25]高熱產生的方法可以是化學氣相沉積方法,譬如外部的氣 相沉積,火焰水解,電漿或電漿輔助沉積或火焰喷濺水解 。例如,可使用燃燒器進行高熱的處理過程,如同藉由外 部氣相沉積(0VD)以沉積粉塵,以製造光纖一樣。氧化矽 和塗料的氧化矽顆粒可以在火燄中高熱產生沉積為粉塵 顆粒。例如,粉塵沉積處理可使用一回或多回的氧化矽或 塗料的氧化矽粉塵層。可藉著反應劑輸送系統來沉積氧 100117128 表單編號A0101 第8頁/共21頁 1003408617-0 201210028 化石夕或其他氧化物粉塵,提供0VD燃燒器氧化石夕和/或其他 含蒸氣的氧化物。氧切粉塵顆粒可以從外部氣相沉積 處理過程而形成,這裡的氧切玻璃經由人甲基環狀四石夕 氧烷(0MCTS)的水解,沉積在無機基板上。 剛項實關,施加粉塵顆㈣處理包括制線性燃燒 I點來雜脑,系列的雜職B,系㈣點來源燃燒 器’線性燃燒料列,或點來賴燒轉列,以沉積粉塵粒 ; 子I1顯示的是包括線性燃燒器的沉積系統。基板可以 '〇 纟任何上述雜燒器下方平移,或者說任何上述的燃燒器 彳以平移跨越基板表面,以沉積難U的燃燒器或燃 A器陣列可以靠著放在U —個放在另_個前面。可 利用這些燃燒器的設計,沉積不同成分或不同大小的顆粒 [0027] 塗覆的基板包括沉積在無機基板上的粉塵顆粒,在一項 實施例中,加熱塗覆的基板包括燒結沉積的粉塵顆粒。在 這個實施例,低軟化溫度的粉塵顆粒可以沉積在高軟化溫 度的基板。在有些看得見個別粉塵顆粒的情況,可以部分 燒結粉塵顆粒,或者完全燒結,使得顆粒流動以形成均質 的層。在燒結處理期間,顆粒也可以附加到基板。 [0028] 在一項實施例中,加熱塗覆的基板包括軟化無機基板。在 這個實施例中,兩軟化溫度的粉塵顆粒可以沉積在低軟化 溫度的基板。可以軟化基板,使得有沉積粉塵顆粒的表面 變形,而且顆粒不會軟化。軟化的表面可部份吞沒顆粒的 一部分或全部。在加熱處理期間,顆粒也可以附加到基板 1003408617-0 100117128 表單编號A0101 第9頁/共21頁 201210028 [0029] 在一項實施例中,加熱塗覆的基板包括軟化無機基板和燒 結粉塵顆粒。在這個實施例中,粉塵顆粒和基板的軟化溫 度是相同的。在有些看得見個別粉塵顆粒的情況,可部分 燒結粉塵顆粒,或者完全燒結,使得顆粒流動以形成均質 的層。可以軟化基板,使得有沉積粉塵顆粒的表面變形, 而且顆粒也會軟化。軟化的表面可部份吞沒軟化顆粒的 一部分或全部。基板的一部分,譬如表面,可以和顆粒一 起流動,以形成光散射無機基板。在加熱處理期間,顆粒 也可以附加到基板。 [0030] 根據基板或粉塵顆粒或兩者的軟化溫度,可調整加熱或燒 結的溫度。根據粉塵顆粒或基板的材料,以及燒結溫度的 組合,可燒結粉塵顆粒,基板或兩者。依據某些實施例,燒 結溫度的範圍從約5 0 0 °C到約1 6 0 01:。 [0〇31]在一項實施例中,無機基板包含的材料選自玻璃陶瓷玻 璃陶瓷,藍寶石,碳化矽,半導體,以及這些的組合。 [0032] 在一項實施例中,施加粉塵顆粒包括圖案化粉塵顆粒。 [0033] 在一項實施例中,此方法包括在施加後進一步圖案化粉塵 顆粒。 _]錢結之前,藉著圖案化粉塵控制基板上粉塵顆粒的紋理 位置區域。這可以大的尺度來執行,例如沿著基板邊緣留 下一塊無紋理玻璃的特定區域。也可以較小的尺度來執 '亍’ 乂控制的方式產生整個基板的紋理和無紋理玻璃區域 。可以在粉塵沉積期間,藉由遮罩基板來控制粉塵的沉積 。可採取將鮮附加到基板的形式,待會再移除,或者將 100117128 表單編號A0101 第10頁/共21頁 1003408617-0 201210028 遮罩放在基板上或放在燃燒器和基板之間。或者,粉塵可 以在沉積之後,在圖案中移除。顆粒的實質移除可以是部 分或完全的。顆粒的部份移除,或局部移位而沒有移除, 可提供看得見的圖案,但不會產生完全無紋理的區域。沉 積粉塵的移除可藉著譬如蝕刻的化學方式來完成,或譬如 磨敍的機械方式來完成,或藉著化學和機械方式來完成, 譬如研磨後接著蝕刻。 [0035] Ο 圖6A-6C是說明具有圖案化粉塵的光散射物品範例。說明 的例子是包括圖案化粉塵光散射物品的某些實施範例。 Q [0036] 圖案可以是規則的圖案或交織的圖案,如圖6A所示,這裡 包括粉塵的紋理區域22和無紋理區域24交織。圖案可以 是不規則的圖案或交織的圖案,如圖6C所示,這裡包括粉 塵的紋理區域22和無紋理區域24交織。在另一個實施例 中,如圖6B所示,圖案是無紋理區域24的特定區域和沿著 基板邊緣或周圍包含粉塵的紋理區域22。在某些實施例 中,圖6A-6C所示的紋理區域22和無紋理區域24可以切換 ,使得包含粉塵的紋理區域22和無紋理區域24可以互相轉 換。包含粉塵的紋理區域和無紋理區域可以是任何形狀 或大小。 圖7顯示的是依據本發明,或依據本發明的方法製造,使用 光散射基板或物品26的範例光伏打裝置特寫2〇〇。一項實 施例是依據這裡說明方法製造的光伏打裝置,包括光散射 無機基板。依據一項實施例,光伏打裝置進一步包括鄰近 基板的導電材料28,以及鄰近導電材料的主動式光伏打介 質30。 100117128 表單编號A0101 第11頁/共21頁 1003408617-0 201210028 [〇〇37] 依據一項實施例,主動式光伏打介質是和導電材料實體接 觸的。依據一項實施例,導電材料是透明的導電薄膜,例 如透明導電氧化物(TC0)。透明導電薄膜可包括紋理表面 〇 [0038] 在一項實施例中,光伏打裝置進一步包括和主動式光伏打 介質30實體接觸的反向電極32,位在主動式光伏打介質的 相對表面,作為導電材料。 [0039] 在一項實施例中,產生的光散射無機基板包括紋理表面, 適合用在接下來的TC0沉積和薄膜矽光伏打裝置結構。 [0040] 這種處理可用在更廣範圍的粉塵顆粒和基板的應用。每 種材料系統和所需表面結構的型態需要最佳化燒結條件 〇 _]依據一項實施例,此方法包括沉積氧化矽為主的粉塵到玻 璃基板,接著以夠高的溫度,夠長的時間燒結,至少部分燒 結粉塵,而不會扭曲底下的基板。根據沉積的條件,可以 利用燃燒器的熱,同時沉積和燒結破螭因而不需要分開 的燒結處理過程。 [_圖1顯示的是這種處理可行的大尺寸版本,使用線性燃燒 器16來產生粉塵顆粒14,以沉積的粉麈顆粒12覆蓋住寬大 的基板10,基板在燃燒器下方,以某種速度往方向2〇移動 。瓦斯線18可包括含先質的玻璃(液體或蒸汽傳送),用來 燃燒的氧氣和玻璃氧化物反應,用來點燃火焰的甲烷或氫 氣,以及用來作為燃燒器火焰最佳化的惰性氣體譬如氮 或氬。 100117128 表單编號A0101 第12頁/共21頁 1003408617-0 201210028 [〇_這種處理可在氧化々中使用各式各樣的摻雜物來控制燒 結溫度,包括硼,鍺,磷和氟。玻璃基板可以是譬如鹼金屬 石灰的低溫玻璃,譬如鋁矽酸鹽的高溫玻璃,以及中溫玻 璃,譬如發展作為薄膜碲化鎘(CdTe)或銅銦二碼化錄 (CIGS)PV電池,或甚至是石英或熔融氧化矽。燒結溫度 的範圍很廣,從約50(rc到約16〇(pc,根據粉塵成分和基 板玻璃而定。可能需要燒結粉塵和基板玻璃的CTE匹配, 根據粉塵的厚度而定。 0 [0044]體積和表面散射一起可提供最佳化散射和表面紋理兩者 自由度。例如,在體積散射的實施例中,氣泡可以被收集 在燒結的顆粒,軟化的基板,介面處,或這些的組合因而 產生體積散射效果。 [0045] 這種處理可藉由改變粉塵成分,因而是所需的燒結溫度, 應用在不同的玻璃基板。 [0046] 可藉著控制沉積和/或燒結參數改變燒結微結構的大小, r , 產生各種範圍的散射特性。這些包括駐留時間的粉塵顆 V./ 粒聚集,和火焰中材料的質量。這些可藉著燃燒器瓦斯的 流速,質量流速,化學計量和燃燒器到基板的距離,加以控 制。可一系列執行多個燃燒器,以不同的條件沉積多個顆 粒大小的分佈。不需要額外的化學處理。我們希望這種 處理可放大到大型尺寸。例如,高達丨.5m2或更大的無機 基板可以被塗上粉塵顆粒。 [0047]範例: 上述的方法使用B-塗料Si〇2以高熱處理沉積,所用的燃燒 1003408617-0 100117128 表單編號A0101 第13頁/共21頁 201210028 器和以外部氣相沉積(〇VD)沉積粉塵以製造光纖的爐一樣 。所需的燒結溫度是玻璃内B摻雜物濃度的敏感函數。使 用bci3作為b2〇3的先質氣體。調查兩種b2〇3的濃度。根 據微探針測量,樣本的最大LOg濃度是10. 5重量百分比 (wU)和22 wt%。為了燒結樣本,使用下列的爐火時程: 1. 以10°C/小時的速率斜線上升到目標溫度。 2. 固定爐火在目標溫度1小時。 3. 以l〇°C /小時的速率斜線下降爐火溫度(由於爐火不會 這麼快冷卻,因此實際上較慢降低溫度)。 以10. 5 wt%的樣本而言,石英基板在950°C以上的溫度, 可達到接近完全的燒結。以22 wt%的樣本而言,石英基板 和Eag 1 eXGTM基板,在875°C以上的溫度,可達到接近完全 的燒結。 [0048] 由於整個樣本上成分的變化,很難得到足夠大小的均勻區 域,以適當地特徵化。然而,散射測量是在石英上以22 wt% B2〇3粉塵製造的樣本上完成。圖2顯示在4〇〇nm, 600nm,800nm,和1 OOOnm的餘弦校正雙向透射函數 (ccBTDF)的掃瞄線。這顯示散射約30度角度的增加。 [0049] 石英上以22 wt% B2〇3粉塵,在885°C燒結的樣本利用sem 評量。分析指出燒結行為的範圍和整個樣本上變化的 B2〇3濃度相關。圖3A和4A顯示樣本不同區域的橫戴面圖 。圖3B和4B顯不樣本不同£域的頂視圖。圖和3B區域 有較高的Β2〇3濃度,因而是比圖4Α和4Β的區域更稍密更平 滑的結構。圖5 Α和5Β顯示變化的固化水準區域的頂視圖 。在圖5B最少燒結的例子中,結構是高孔隙性的,可能不 100117128 表單編號A0101 第14頁/共21頁 1003408617-0 201210028 適合用在需要沉積薄膜的應用上。需要充分瞭解這種技 術可用的散射範圍,才可以進一步最佳化燒結條件和粉塵 成份。 [0050] 如上所述,有很多可用的變數可最佳化這種處理過程。開 始的基板決定最大的燒結溫度,因而是可以用的粉塵成份 。從SEM影像顯示,這種處理主要是藉著表面紋理提供散 射,雖然空隙也在較沒有完全固化的玻璃内扮演某種角色 。粉塵厚度,粉塵顆粒大小,基板成份,燒結條件都可能在 決定產生的紋理扮演某種角色。玻璃紋理可能和沉積在 基板的TC0紋理相互作用。在那種情況必須一起最佳化 基板紋理和TCO紋理。 [0051] 熟知此技術者瞭解本發明能夠作許多變化及改變而並不 會脫離本發明之精神及範圍《預期本發明含蓋本發明各 種變化及改變,其屬於下列申請專利範圍以及同等物範圍 内。 【圖式簡單說明】 [0052] 本發明詳細說明單獨地或隨同參考附圖閱讀將能夠最佳 地瞭解。 [0053] 圖1顯示出範例性粉塵顆粒沉積裝置。 [0054] 圖2顯示出依據一些實施例製造出範例性光散射無機基板 在400nm,60 0nm,80 0nm,和l〇〇〇nm下的餘弦校正雙向透 射函數(ccBTDF)。 [0055] 圖3A及3B為依據一些實施例製造出範例性光散射無機基 板之掃瞄電子顯微(SEM)影像。 100117128 表單編號A0101 第15頁/共21頁 1003408617-0 201210028 [0056] 圖4A及4B為依據一些實施例製造出範例性光散射無機基 板之掃瞄電子顯微(SEM)影像。 [0057] 圖5A及5B為依據一些實施例製造出範例性光散射無機基 板之掃瞄電子顯微(SEM)影像。 [0058] 圖6A-6C顯示出具有圖案化粉塵之範例性光散射物品。 [0059] 圖7顯示出依據本發明使用光散射基板或物品範例性光伏 打裝置之特性。 【主要元件符號說明】 [0060] 基板10;沉積的粉塵顆粒12;粉塵顆粒14;線性燃燒器 16;瓦斯線18;方向20;紋理區域22;無紋理區域24; 光散射基板26;導電材料28;光伏打介質3〇;反向電極 32;光伏打裝置200。 1003408617-0 100117128 表單編號A0101 第16頁/共21頁Asahi-U film. In the case of ZnO, the texture is controlled by the deposition parameters of the CVD deposited film, or after deposition of the sputtered film, using plasma treatment or fishing etching to produce the desired pattern. [0007] The disadvantages of the textured TC0 technology may include one or more of the following: 纹理) texture roughness may degrade the quality of the deposited stone, causing an electrical short circuit, reducing the performance of the entire solar cell; 2) texture optimization is limited by Textures available for deposition or etching processes, as well as reduced transmission associated with thicker TC0 layers; 3) In the case of ZnO, plasma processing or wet etching produces textures that add cost. [0008] Another way of collecting light requires that the filming of the solar cell substrate is under TC0 and/or germanium deposition rather than textured deposition of the film. In some conventional thin-film tantalum solar cells, instead of using TC〇, the bottom of the Si is contacted by a perforated contact and a substrate. In some conventional thin film solar cells, the texture is composed of Si 2 particles deposited in a planar glass substrate adhesive matrix. This texture pattern is usually a process of performing a gel pattern in which the particles are suspended in a liquid, the substrate is pulled through the liquid, and then the spherical beads are held in the shape of the sintered shape to be fixed by the sintered glue. 100117128 Form No. A0101 Page 5 of 21 1003408617-0 201210028 [0009] [0011] There are a number of additional methods that can be used to create a grain surface before deposition (:(). These methods include sand blasting, Polystyrene microspheres are deposited, and the surface is textured. These ways of texturing the surface may be limited according to the resulting enamel texture. The light collection is less than about 1 〇〇 micron for Si thickness. The whole soul s battery is also very useful. This thickness is not enough to effectively absorb a single return. All solar radiation (back reflection contact) of the solar ton ^ can therefore develop a cover glass of double-shaped structure to enhance light collection. For example, an ethylene vinyl acetate (EVA) material is placed between the glass and the crucible. An example of such a cover glass is the Albari slope series of Saint-Gobain Glass. Generally, rolling treatment is used to form this. Large size structure. °° The disadvantages of the textured glass sheathing method may include one or more of the following: a need for cohesion and related treatment to provide adhesion of the glass microspheres to the substrate; 2) in the glass The process of creating a textured surface on both sides of the substrate; 3) the additional cost associated with yttria microspheres and gel materials; and 4) the problems associated with thin mold adhesion and cracks in the tantalum film. [0012] There is a method of fabricating a light-scattering inorganic substrate that expands the processing to a larger substrate and adjusts the surface to produce the desired light scattering. [0013] 100117128 SUMMARY OF THE INVENTION As described herein, a method of fabricating a light-scattering inorganic substrate can solve one or more of the above disadvantages of the conventional method, and can also provide one or more of the following advantages, which can smoothly change the TC0 coating. Glass micro-structure, $ too will generate electricity problem 'can optimize the glass texture without the loss of tube absorption, unlike in the case of texture K0, more texture f will lead to higher absorption of the form number A0101 Page 6 of 21 1003408617-0 201210028 In the thicker TC0 area, the process does not require an adhesive that can be sintered as well as the process of sintering, and can be sintered to control the size of the texture features. [0014] One embodiment is a method of making a light scattering inorganic substrate. The method includes k for an inorganic substrate comprising at least one surface, applying high heat dust particles to at least one surface of the inorganic substrate to form a coated substrate, and heating the coated substrate to form a light scattering inorganic substrate. [0015] Another embodiment is a light scattering article comprising a glass substrate comprising a pattern of glass dust texture regions and a surface of the texture free region pattern. [0016] For example, a photovoltaic device of a thin film photovoltaic device, such as a > ε 双 double photovoltaic device, may comprise a light scattering article. The other features and advantages of the invention will be apparent from the description and appended claims. [0018] It is to be understood that the following general descriptions [0019] The accompanying drawings are further provided to provide an understanding of the invention, as well as a The drawings illustrate various embodiments of the invention, and are in the [Embodiment] [0020] Preferred embodiments of the present invention will now be described in detail, examples of which are shown in the accompanying drawings. Wherever possible, the same reference numerals reference 100117128 Form No. A0101 Page 7 of 21 1003408617-0 201210028 [0021] As used herein, the term "substrate" is used to describe a substrate or a superstrate, depending on the design of the photovoltaic cell. For example, if the photovoltaic cell is assembled on the side where the photovoltaic cell light is incident, the substrate is a superstrate. The cladding provides protection from photovoltaic materials to avoid impact and environmental degradation, allowing for the transmission of the appropriate wavelength of the solar spectrum. Further, a plurality of photovoltaic cells can be arranged to form a photovoltaic module. [0022] As used herein, the term "adjacent" can be defined to be very close. Adjacent structures may or may not be in physical contact with each other. Adjacent structures may have other layers and/or structures in between. [0023] An embodiment is a method of fabricating a light scattering inorganic substrate. The method includes providing an inorganic substrate comprising at least one surface, applying high heat dust particles to at least one surface of the inorganic substrate to form a coated substrate, and heating the coated substrate to form a light scattering inorganic substrate. Another embodiment is a light-scattering article comprising a glass substrate comprising a pattern of glass dust texture regions and a surface of the texture-free region pattern. For example, a photovoltaic device for a thin film photovoltaic device, such as a dual photovoltaic device, can contain light scattering articles. [〇〇25] The method of high heat generation may be a chemical vapor deposition method such as external gas phase deposition, flame hydrolysis, plasma or plasma assisted deposition or flame spray hydrolysis. For example, a burner can be used for a high heat process, as is the case with external vapor deposition (0 VD) to deposit dust to make an optical fiber. The cerium oxide particles of the cerium oxide and the coating can be deposited as dust particles in the high heat of the flame. For example, the dust deposition treatment may use one or more layers of cerium oxide or a cerium oxide dust layer of the coating. Oxygen can be deposited by a reagent delivery system. 100117128 Form No. A0101 Page 8 of 21 1003408617-0 201210028 Fossil or other oxide dust, providing 0VD burner oxide oxide and/or other vapor-containing oxides. The oxygen-cut dust particles can be formed from an external vapor deposition process where the oxygen-cut glass is deposited on an inorganic substrate by hydrolysis of human methyl cyclic tetras-oxane (0MCTS). Just the real thing, the application of dust particles (four) treatment includes the production of linear combustion I point to the miscellaneous brain, the series of miscellaneous B, the (four) point source burner 'linear burning material column, or point to burn the column to deposit dust particles ; Sub I1 shows a deposition system including a linear burner. The substrate can be translated under any of the above-mentioned misfirers, or any of the above burners can be translated across the surface of the substrate to deposit a hard U burner or an array of burners that can be placed against the U _ a front. The composition of these burners can be utilized to deposit particles of different compositions or different sizes. [0027] The coated substrate comprises dust particles deposited on an inorganic substrate. In one embodiment, the heat coated substrate comprises sintered deposited dust. Particles. In this embodiment, low softening temperature dust particles can be deposited on a substrate of high softening temperature. In the case where some individual dust particles are visible, the dust particles may be partially sintered or completely sintered so that the particles flow to form a homogeneous layer. Particles may also be attached to the substrate during the sintering process. [0028] In an embodiment, heating the coated substrate comprises softening the inorganic substrate. In this embodiment, two softening temperature dust particles may be deposited on the substrate at a low softening temperature. The substrate can be softened so that the surface on which the dust particles are deposited is deformed and the particles are not softened. The softened surface may partially engulf a portion or all of the particles. During the heat treatment, the particles may also be attached to the substrate 1003408617-0 100117128 Form No. A0101 Page 9 / Total 21 pages 201210028 [0029] In one embodiment, the heat coated substrate comprises a softened inorganic substrate and sintered dust particles . In this embodiment, the softening temperature of the dust particles and the substrate are the same. In the case where some individual dust particles are visible, the dust particles may be partially sintered or completely sintered so that the particles flow to form a homogeneous layer. The substrate can be softened so that the surface on which the dust particles are deposited is deformed, and the particles are also softened. The softened surface may partially engulf a portion or all of the softened particles. A portion of the substrate, such as a surface, may flow with the particles to form a light scattering inorganic substrate. Particles may also be attached to the substrate during the heat treatment. [0030] The temperature of heating or sintering can be adjusted depending on the softening temperature of the substrate or dust particles or both. The dust particles, the substrate or both may be sintered depending on the material of the dust particles or the substrate, and the combination of the sintering temperatures. According to some embodiments, the sintering temperature ranges from about 50,000 °C to about 1600. [031] In one embodiment, the inorganic substrate comprises a material selected from the group consisting of glass ceramics, sapphire, tantalum carbide, semiconductors, and combinations of these. [0032] In one embodiment, applying dust particles comprises patterning dust particles. [0033] In one embodiment, the method includes further patterning the dust particles after application. _] Before the money knot, control the texture location area of the dust particles on the substrate by patterning dust. This can be done on a large scale, such as leaving a specific area of a piece of untextured glass along the edge of the substrate. The texture of the entire substrate and the untextured glass area can also be produced in a smaller scale by performing a '亍' control. Dust deposition can be controlled by masking the substrate during dust deposition. It can be added to the substrate, and will be removed later, or the 100117128 Form No. A0101 Page 10 / 21 page 1003408617-0 201210028 Mask is placed on the substrate or placed between the burner and the substrate. Alternatively, the dust can be removed from the pattern after deposition. Substantial removal of the particles can be partial or complete. Partial removal of the particles, or partial displacement without removal, provides a visible pattern but does not result in a completely texture-free area. The removal of deposited dust can be accomplished by chemical means such as etching, or by mechanical means such as grinding, or by chemical and mechanical means, such as grinding followed by etching. 6A-6C are examples illustrating light scattering articles with patterned dust. An illustrative example is some embodiments that include patterned dust light scattering articles. Q [0036] The pattern may be a regular pattern or an interlaced pattern, as shown in Fig. 6A, where the textured region 22 including the dust and the untextured region 24 are interlaced. The pattern may be an irregular pattern or an interlaced pattern, as shown in Fig. 6C, where the textured region 22 including the dust and the untextured region 24 are interlaced. In another embodiment, as shown in Figure 6B, the pattern is a particular area of the untextured area 24 and a textured area 22 containing dust along or around the edge of the substrate. In some embodiments, the textured region 22 and the untextured region 24 illustrated in Figures 6A-6C can be switched such that the dust-containing textured region 22 and the untextured region 24 can be converted to each other. Textured areas and untextured areas containing dust can be of any shape or size. Figure 7 shows a close-up view of an exemplary photovoltaic device using a light scattering substrate or article 26 in accordance with the present invention or in accordance with the method of the present invention. One embodiment is a photovoltaic device fabricated in accordance with the methods described herein, including a light scattering inorganic substrate. In accordance with an embodiment, the photovoltaic device further includes a conductive material 28 adjacent the substrate, and an active photovoltaic dielectric 30 adjacent the conductive material. 100117128 Form No. A0101 Page 11 of 21 1003408617-0 201210028 [〇〇37] According to one embodiment, the active photovoltaic dielectric is in physical contact with the electrically conductive material. According to one embodiment, the electrically conductive material is a transparent electrically conductive film such as a transparent conductive oxide (TC0). The transparent conductive film can include a textured surface 〇 [0038] In one embodiment, the photovoltaic device further includes a counter electrode 32 in physical contact with the active photovoltaic cell 30, on the opposite surface of the active photovoltaic cell, as Conductive material. [0039] In one embodiment, the resulting light scattering inorganic substrate comprises a textured surface suitable for use in subsequent TC0 deposition and thin film photovoltaic device structures. [0040] This treatment can be used in a wider range of dust particles and substrates. The type of each material system and the desired surface structure requires optimization of the sintering conditions. _ According to one embodiment, the method includes depositing cerium oxide-based dust onto the glass substrate, followed by a sufficiently high temperature, long enough The time is sintered, at least partially sintering the dust without twisting the underlying substrate. Depending on the conditions of the deposition, the heat of the burner can be utilized while depositing and sintering the crucible so that no separate sintering process is required. [1] shows a large-size version of this process that is feasible, using a linear burner 16 to produce dust particles 14, with the deposited whitefly particles 12 covering the wide substrate 10, the substrate below the burner, with some sort of The speed moves in the direction 2〇. The gas line 18 may comprise glass containing precursor (liquid or vapor transport), oxygen for combustion and reaction with glass oxide, methane or hydrogen for igniting the flame, and inert gas for use as a burner flame. For example, nitrogen or argon. 100117128 Form No. A0101 Page 12 of 21 1003408617-0 201210028 [〇_This treatment can use a variety of dopants in yttrium oxide to control the sintering temperature, including boron, antimony, phosphorus and fluorine. The glass substrate may be a low temperature glass such as an alkali metal lime, a high temperature glass such as an aluminosilicate, and a medium temperature glass, such as a thin film cadmium telluride (CdTe) or a copper indium two code recording (CIGS) PV battery, or Even quartz or molten yttrium oxide. The sintering temperature ranges from about 50 (rc to about 16 〇 (pc, depending on the dust composition and the substrate glass. It may be necessary to match the CTE of the sintered dust to the substrate glass, depending on the thickness of the dust. 0 [0044] Volume and surface scatter together provide both degrees of freedom in optimizing scattering and surface texture. For example, in volume scattering embodiments, bubbles can be collected at sintered particles, softened substrates, interfaces, or a combination of these. A volumetric scattering effect is produced. [0045] This treatment can be applied to different glass substrates by changing the dust composition and thus the desired sintering temperature. [0046] The sintered microstructure can be altered by controlling deposition and/or sintering parameters. The size, r , produces a wide range of scattering characteristics. These include residence time dust particles V. / grain aggregation, and the quality of the material in the flame. These can be achieved by burner gas flow rate, mass flow rate, stoichiometry and burners. The distance to the substrate is controlled. A plurality of burners can be executed in a series to deposit multiple particle size distributions under different conditions. No additional We hope that this treatment can be scaled up to a large size. For example, an inorganic substrate of up to 55 m2 or more can be coated with dust particles. [0047] Example: The above method uses B-coating Si〇2 for high heat Process deposition, used for combustion 1003408617-0 100117128 Form No. A0101 Page 13 of 21 201210028 The same as the furnace for the deposition of dust by external vapor deposition (〇VD) to make the fiber. The required sintering temperature is within the glass B 5重量百分比(wU)和22。 The maximum LOg concentration of the sample is 10. 5 weight percent (wU) and 22, and the concentration of the two b2 〇 3 is investigated. Wt%. To sinter the sample, use the following furnace schedule: 1. Raise the line to the target temperature at a rate of 10 ° C / h. 2. Fix the fire at the target temperature for 1 hour. 3. At l ° ° C / The hourly rate ramps down the furnace temperature (since the furnace does not cool so quickly, so the temperature is actually slowed down). With a sample of 10. 5 wt%, the quartz substrate can reach temperatures above 950 °C. Nearly complete sintering. For 22 wt% of the sample, the quartz substrate and the Eag 1 eXGTM substrate can achieve near-complete sintering at temperatures above 875 ° C. [0048] It is difficult to obtain a uniform region of sufficient size due to changes in composition over the entire sample. To properly characterize. However, the scattering measurement is done on a sample made of 22 wt% B2〇3 dust on quartz. Figure 2 shows cosine-corrected bidirectional transmission at 4〇〇nm, 600nm, 800nm, and 1 OOOnm. The scan line of the function (ccBTDF). This shows an increase in the angle of the scattering by about 30 degrees. [0049] Samples sintered at 885 ° C with 22 wt% B 2 〇 3 dust on quartz were evaluated using sem. Analysis indicates that the range of sintering behavior correlates with the varying B2〇3 concentration across the sample. Figures 3A and 4A show cross-sectional views of different regions of the sample. Figures 3B and 4B show top views of different samples of the different fields. The graph and the 3B region have a higher concentration of Β2〇3 and are thus a slightly denser and smoother structure than the regions of Figs. 4Α and 4Β. Figure 5 Α and 5Β show top views of varying solidification levels. In the example of the minimum sintering of Figure 5B, the structure is highly porous, and may not be 100117128 Form No. A0101 Page 14 of 21 1003408617-0 201210028 Suitable for applications where thin film deposition is required. The range of scattering available for this technology needs to be fully understood to further optimize sintering conditions and dust composition. [0050] As mentioned above, there are many variables available that can optimize this process. The starting substrate determines the maximum sintering temperature and is therefore a usable dust component. From SEM images, this treatment primarily provides scattering by surface texture, although voids also play a role in less fully cured glass. Dust thickness, dust particle size, substrate composition, and sintering conditions all play a role in determining the texture produced. The glass texture may interact with the TC0 texture deposited on the substrate. In that case, the substrate texture and TCO texture must be optimized together. [0051] It is to be understood that those skilled in the art are able to make various changes and modifications without departing from the spirit and scope of the invention. Inside. BRIEF DESCRIPTION OF THE DRAWINGS [0052] The detailed description of the present invention will be best understood, [0053] FIG. 1 shows an exemplary dust particle deposition apparatus. 2 shows a cosine-corrected bidirectional transmission function (ccBTDF) of an exemplary light-scattering inorganic substrate at 400 nm, 60 0 nm, 80 0 nm, and 10 nm, in accordance with some embodiments. 3A and 3B are scanning electron microscopy (SEM) images of an exemplary light scattering inorganic substrate fabricated in accordance with some embodiments. 100117128 Form No. A0101 Page 15 of 21 1003408617-0 201210028 [0056] FIGS. 4A and 4B are scanning electron microscopy (SEM) images of an exemplary light scattering inorganic substrate fabricated in accordance with some embodiments. 5A and 5B are scanning electron microscopy (SEM) images of an exemplary light scattering inorganic substrate fabricated in accordance with some embodiments. [0058] FIGS. 6A-6C show exemplary light scattering articles with patterned dust. [0059] Figure 7 illustrates the characteristics of an exemplary photovoltaic device using a light scattering substrate or article in accordance with the present invention. [Main component symbol description] [0060] substrate 10; deposited dust particles 12; dust particles 14; linear burner 16; gas line 18; direction 20; textured region 22; untextured region 24; light scattering substrate 26; 28; photovoltaic cell 3 〇; counter electrode 32; photovoltaic device 200. 1003408617-0 100117128 Form Number A0101 Page 16 of 21

Claims (1)

201210028 七、申請專利範圍: 1 . 一種製造光散射無機基板的方法,此方法包括: 提供包含至少一個表面的無機基板; 施加高熱的粉塵顆粒到無機基板的至少一個表面以形成塗 覆的基板;以及 加熱塗覆的基板以形成光散射無機基板。 2 .依據申請專利範圍第1項之方法,其中加熱塗覆的基板發生 於當粉塵顆粒施加至無機基板之時。201210028 VII. Patent application scope: 1. A method for manufacturing a light-scattering inorganic substrate, the method comprising: providing an inorganic substrate comprising at least one surface; applying high-heat dust particles to at least one surface of the inorganic substrate to form a coated substrate; And heating the coated substrate to form a light scattering inorganic substrate. 2. The method of claim 1, wherein the heat-coated substrate occurs when dust particles are applied to the inorganic substrate. 3 .依據申請專利範圍第1項之方法,其中加熱塗覆的基板發生 於粉塵顆粒施加至無機基板之後。 4.依據申請專利範圍第1項之方法,其中加熱包含將無機基板 軟化。 5 .依據申請專利範圍第1項之方法,其中加熱包含將無機基板 軟化以及將粉塵顆粒軟化。 6 .依據申請專利範圍第1項之方法,其中加熱包含將粉塵顆粒 燒結。 7 .依據申請專利範圍第6項之方法,其中將粉塵顆粒燒結發生 於當粉塵顆粒施加至無機基板之時。 8 .依據申請專利範圍第6項之方法,其中將粉塵顆粒燒結發生 於粉塵顆粒施加至無機基板之後。 9 .依據申請專利範圍第1項之方法,其中無機基板包含一種材 料由玻璃,陶瓷,玻璃陶瓷,藍寶石,碳化矽,半導體,以及 其組合選取出。 10 .依據申請專利範圍第1項之方法,其中粉塵顆粒包含一種材 料由玻璃,陶瓷,玻璃陶瓷,藍寶石,碳化矽,半導體,金屬 100117128 表單編號A0101 第17頁/共21頁 1003408617-0 201210028 氧化物以及其組合選取出。 11 . 12 . 13 , 14 . 15 . 16 · 17 · 18 . 19 . 20 . 100117128 依據申請專利範圍第1項之方法,其中粉塵顆粒包含-種材 料由石夕石,換_之石夕石,摻雜鍺之石夕石,摻雜麟之石夕石以 及摻雜氟之矽石,以及其組合選取出。 依據申請專利範圍第6項之方法,其中施加粉塵顆粒包含沉 積粉塵顆粒係使祕性燃燒器,點來源燃燒器系列的線性 燃燒器m點來源燃燒器,線性燃燒器陣列或點來源 燃燒器陣列進行沉積。 依據申明專利範圍第以之方法,其中施加粉塵顆粒包含將 粉塵顆粒圖案化。 依據申請專利範圍第1項之方法,其中在施加之後更進-步 包含將粉塵顆粒圖案化。 一種光伏打裝置,其包含依據申請專利範圍第丨項製造出之 光散射無機基板。 依據申請專利範圍第15項之裝置,其中更進一步包含 導電性材料相鄰於基板;以及 主動光伏打介質相鄰於導電性材料。 依據申請專利範圍第16項之裝置,其中導電性材料為透明 的導電性薄膜。 依據申請專利範圍第17項之裝置,其中透明的導電性薄膜 包含紋理化之表面。 依據申請專利範圍第16項之裝置,其中主動光伏打介質實 際接觸透明的導電性薄膜。 依據申請專利範圍第16項之裝置其中更進一步包含反向 電極實際接觸主動光伏打介質以及位於主動光伏打介質之 相對表面上作為導電性材料。 表單編號A0101 1003408617-0 第18頁/共21頁 201210028 21 . —種光散射物品,其包含具有一表面之玻璃基板,該表面包 含玻璃粉塵之紋理化區域的圖案以及非紋理化區域的圖案 C 〇 100117128 表單編號A0101 第19頁/共21頁 1003408617-03. The method of claim 1, wherein the heat-coated substrate occurs after the dust particles are applied to the inorganic substrate. 4. The method of claim 1, wherein the heating comprises softening the inorganic substrate. 5. The method of claim 1, wherein the heating comprises softening the inorganic substrate and softening the dust particles. 6. The method of claim 1, wherein the heating comprises sintering the dust particles. 7. The method of claim 6, wherein the sintering of the dust particles occurs when the dust particles are applied to the inorganic substrate. 8. The method of claim 6, wherein the sintering of the dust particles occurs after the dust particles are applied to the inorganic substrate. 9. The method of claim 1, wherein the inorganic substrate comprises a material selected from the group consisting of glass, ceramic, glass ceramic, sapphire, tantalum carbide, semiconductor, and combinations thereof. 10. The method according to claim 1, wherein the dust particles comprise a material consisting of glass, ceramic, glass ceramic, sapphire, tantalum carbide, semiconductor, metal 100117128 Form No. A0101 Page 17 of 21 1003408617-0 201210028 Oxidation The objects and their combinations are selected. 11 . 12 . 13 , 14 . 15 . 16 · 17 · 18 . 19 . 20 . 100117128 According to the method of claim 1, wherein the dust particles comprise - the material is replaced by Shi Xishi, and the stone stone is changed. The doped stone stone, the doped stone stone and the fluorine-doped vermiculite, and the combination thereof are selected. The method of claim 6, wherein the applying dust particles comprises depositing dust particles to make a secret burner, a point source burner series linear burner m point source burner, a linear burner array or a point source burner array Perform deposition. According to the method of claim 1, wherein the application of the dust particles comprises patterning the dust particles. The method of claim 1, wherein the step of applying further comprises patterning the dust particles. A photovoltaic device comprising a light-scattering inorganic substrate manufactured according to the scope of the patent application. The device of claim 15 further comprising: the electrically conductive material adjacent to the substrate; and the active photovoltaic dielectric adjacent to the electrically conductive material. A device according to claim 16 wherein the electrically conductive material is a transparent electrically conductive film. A device according to claim 17, wherein the transparent conductive film comprises a textured surface. According to the apparatus of claim 16, wherein the active photovoltaic medium is in contact with the transparent conductive film. The device according to claim 16 further comprising the reverse electrode actually contacting the active photovoltaic dielectric and the opposite surface of the active photovoltaic dielectric as the electrically conductive material. Form No. A0101 1003408617-0 Page 18 of 21 201210028 21 . A light scattering article comprising a glass substrate having a surface comprising a pattern of textured areas of glass dust and a pattern C of untextured areas 〇100117128 Form No. A0101 Page 19 of 21 1003408617-0
TW100117128A 2010-05-28 2011-05-23 Light scattering inorganic substrates by soot deposition TW201210028A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34939210P 2010-05-28 2010-05-28

Publications (1)

Publication Number Publication Date
TW201210028A true TW201210028A (en) 2012-03-01

Family

ID=46763828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117128A TW201210028A (en) 2010-05-28 2011-05-23 Light scattering inorganic substrates by soot deposition

Country Status (1)

Country Link
TW (1) TW201210028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669996B (en) * 2014-12-30 2019-08-21 荷蘭商Asm Ip控股公司 Method for integrated circuit fabrication
US11264255B2 (en) 2015-03-11 2022-03-01 Asm Ip Holding B.V. Pre-clean chamber and process with substrate tray for changing substrate temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669996B (en) * 2014-12-30 2019-08-21 荷蘭商Asm Ip控股公司 Method for integrated circuit fabrication
US11264255B2 (en) 2015-03-11 2022-03-01 Asm Ip Holding B.V. Pre-clean chamber and process with substrate tray for changing substrate temperature

Similar Documents

Publication Publication Date Title
JP5012793B2 (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JP2011515866A (en) Substrate for photovoltaic power generation
EP1343176A1 (en) Conductive film, production method therefor, substrate provided with it and photoelectric conversion device
WO2011001735A1 (en) Thin-film solar battery and method for producing the same
US20110126890A1 (en) Textured superstrates for photovoltaics
Gwamuri et al. Limitations of ultra-thin transparent conducting oxides for integration into plasmonic-enhanced thin-film solar photovoltaic devices
US20110209752A1 (en) Microstructured glass substrates
CN101582461B (en) Novel multilayer transparent conductive film structure and preparation method thereof
KR20130098986A (en) Substrate comprising a transparent conductive oxide film and its manufacturing process
CN101257055A (en) Silicon thin-film photocell with light trapping structure
EP2108196A1 (en) Semitransparent crystalline silicon thin film solar cell
TW201210028A (en) Light scattering inorganic substrates by soot deposition
JP2005347490A (en) Substrate with transparent conductive oxide film, its manufacturing method and photoelectric transfer element
KR101602922B1 (en) Transparent colored solar cell
EP1613562B1 (en) Glass texturing
US20110290316A1 (en) Light scattering inorganic substrates by soot deposition
CN101621087A (en) Film layer, manufacturing method thereof and photovoltaic device with film layer
TWI525847B (en) Light scattering inorganic substrates using monolayers
JP2013197556A (en) Solar battery and method for manufacturing the same
Zhao et al. Effect of sputtering pressure on the structure and properties of SiO2 films prepared by magnetron sputtering
Li et al. Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer
JP2011222589A (en) Photovoltaic device and manufacturing method thereof
CN103872148B (en) Surface coating structure and manufacturing method thereof
JP2005330172A (en) Glass sheet, its production method, low reflective transparent glass sheet, low reflective transparent electroconductive substrate, its production method, and photoelectric transfer element using low reflective transparent electroconductive substrate
JP5489664B2 (en) Thin film solar cell and manufacturing method thereof