TW201209905A - 3-D micro/nano structure and manufacturing method thereof - Google Patents

3-D micro/nano structure and manufacturing method thereof Download PDF

Info

Publication number
TW201209905A
TW201209905A TW99128143A TW99128143A TW201209905A TW 201209905 A TW201209905 A TW 201209905A TW 99128143 A TW99128143 A TW 99128143A TW 99128143 A TW99128143 A TW 99128143A TW 201209905 A TW201209905 A TW 201209905A
Authority
TW
Taiwan
Prior art keywords
material layer
etching
substrate
layer
dimensional shape
Prior art date
Application number
TW99128143A
Other languages
Chinese (zh)
Other versions
TWI413177B (en
Inventor
Yung-Chun Lee
Cheng-Yu Chiu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW99128143A priority Critical patent/TWI413177B/en
Publication of TW201209905A publication Critical patent/TW201209905A/en
Application granted granted Critical
Publication of TWI413177B publication Critical patent/TWI413177B/en

Links

Landscapes

  • Micromachines (AREA)
  • Laminated Bodies (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A manufacturing method of 3-D micro/nano structure, applied to a substrate on which a second etching material layer and a first etching material layer are disposed, includes a transfer step in which a transfer material layer is transferred to the first etching material layer by a mold; a first etching step in which the first and second etching material layers are etched through the transfer material layer as the mask; and a second etching step in which the first and second etching material layers are etched further with a first etching rate and a second etching rate respectively, and a ratio of the first etching rate to the second etching rate is smaller than 30 so that the etched second etching material layer remains when the first etching material is totally etched.

Description

201209905 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種微奈米結構及其製造方法,特別關 於一種三維形狀微奈米結構及其製造方法。 【先前技術】 微奈米結構在許多方面的應用上,均有相當優異的表 面,因此有關微奈米結構之製作的研究也備受重視。目 前,在微奈米結構的製作上,常見的技術有化學合成方 式、物理氣相沉積法、化學氣相沉積法、雷射剝離法(Laser Ablation)、以及分子束蟲晶法(Molecular Beam Epitaxy) 等,再配合微影製程(Photolithography ),利用光罩來形 成圖案化之微奈米結構。 然而,使用光學微影製程時,會提高光罩製作的成本 及困難程度。此外,如何在不使用微影製程的情況下製造 出具有三維形狀之微奈米結構,以降低成本並擴展微奈米 結構之應用性,為業界重要課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種三維形狀 微奈米結構及其製造方法5能夠不需使用微影製程即可製 造出三維形狀之微奈米結構,進而降低成本,並增加其應 用性。 為達上述目的,依據本發明之一種三維形狀微奈米結 201209905 構之製造方法係應用於一基板,一第二姓刻材料層位於基 板與一第—餘刻材料層之間。製造方法包含-轉印·步驟t 藉由:模仁將—轉印材料層轉印至基板之第—触刻材料 層;一第一蝕刻步驟,係以基板上之轉印材料層作為遮 罩,對第一蝕刻材料層及第二蝕刻材料層進行蝕刻;以及 二第二軸步驟1第—侧材料層及第二_材料層進 打触刻,且使第一钱刻材料層具有一第一餘刻率,第二餘 刻材料層具有一第二姓刻率,第一蚀刻率與該第二飯刻率 之比值小於30,而使第一姓刻材料層完全餘刻完,而留下 已蚀刻之該第二_㈣層。 槿述目的,依據本發明之一種三維形狀微奈米結 構製以方法係應用於一基板,基板設有至少 望-㈣从—餘刻材料層’第二餘刻材料層位於基板與 第 材料層之間。製造方法包含一轉印步驟,藉由一 模仁將-轉印材料層轉印至基板之第一钱刻材料層; 曰一第 J步驟係以基板上之轉印材料層作為遮罩,對第一 ==第二银刻材料層進行钮刻;以及一第二餃刻 , 餘刻材料層及第二触刻材料層進行钕刻,且 蝕刻材料層具有一第一蝕刻率,第二蝕刻材料層具 3〇 一蝕刻率,第一蝕刻率與第二蝕刻率之比值小於 3 0而使第—餘刻材料層及第二钱刻材料層僅钱刻部分。 曰在一實施例中,第一蝕刻材料層與第二蝕刻材料層之 晶格排列、或材料不同。藉由相同材質但不同晶格排列、 或不同材料之蝕刻材料層,可讓第一蝕刻材料層及第二姓 201209905 刻材料層之姓刻率比值小於30之特性,進而產生出三維 形狀微奈米結構。 在貫施例中’第-1虫刻材料層與第二茲刻材料層之 厚度不同。藉由厚度不同之姓刻材料層,並控制其厚度, 可改變並控制微奈米結構之三維形狀有不同的變化。 在一實施例中,第二㈣步驟可包含一乾式银刻或一 、屋式钱刻。於渥式钱刻中,例如第—钱刻材料層為聚甲基 丙烯酸曱酉旨(Poly ( methyl methacrylate ),pMMA ),第二 姓刻材料層為紫外光(UV)膠,並藉由丙雜刻、或者第 -蝕刻材料層為二氧化矽(叫第二蝕刻材料層為氮化 矽(Si3N4)’並藉由氫敦酸(HF)或β〇Ε (祕㈣⑽他 etch) #刻、或者第刻材料層切,其晶格排列方向 為(10 0),第二餘刻材料層為石夕,其晶格排列方向為〇 1 1)’並藉由氫氧化_刻。於乾式則中,例如第一姓 刻材料層為PMMA,第二钱刻材料層為聚亞醯胺 (P〇lyimide),並藉由氧㈣(〇2pia_)_。上述僅 為例’:非用以限制本發明,熟悉該項技術領域者,可 依據所需結構而調配材料層之材料及對應钮刻技術。 ㈠:達5目的’依據本發明之—種三維形狀微奈米結 構包含一基板以及一笸 « 吐 第一材枓層。第一材料層設置於基板 之上,且卜材料層之—頂部具有—弧面。 ^達^述目的’依據本發明之—種三維形狀微奈米結 才匕3」反帛—材料層以及-第二材料層。第一材 料層設置於基板之上。第二材料層位於基板與第一材料層 201209905 之間,且第一材料層與第二材料層之至少一部分係共同形 成一弧面。 在一實施例中,第一材料層與第二材料層之晶格排列 不同,例如相同材質但不同晶格排列、或不同材質且不同 晶格排列。. 承上所述,本發明之三維形狀微奈米結構及其製造方 法,其中,在轉印步驟中,藉由一模仁將一轉印材料層轉 印至基板之第一蝕刻材料層,以使轉印材料層作為要來之 • 第一蝕刻步驟之遮罩,來形成圖案化之第一蝕刻材料層及 /或第二蝕刻材料層,因此,本發明在不需使用微影製程即 可製造出三維形狀之微奈米結構,進而降低成本。此外, ' 藉由在第二蝕刻步驟中,控制第一蝕刻材料層之第一蝕刻 " 率以及第二蝕刻材料層之第二蝕刻率之比值小於30,而能 製造出三維形狀之微奈米結構。其中,三維形狀之微奈米 結構例如第一蝕刻材料層完全蝕刻完,而留下已蝕刻之第 二蝕刻材料層、或者留下僅蝕刻部分之第一蝕刻材料層及 ® 第二蝕刻材料層,進而增加微奈米結構之應用性。而所製 造出的微奈米結構,可例如包含一基板以及一第一材料 層,第一材料層設置於基板之上,且第一材料層之一頂部 具有一弧面、或者,包含一基板、一第一材料層以及一第 二材料層,第一材料層設置於基板之上,第二材料層位於 基板與第一材料層之間,且第一材料層與第二材料層係共 同形成一弧面。 7 201209905 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之一 種三維形狀微奈米結構及其製造方法,其中相同的元件將 以相同的參照符號加以說明。 請參照圖1所示,本發明較佳實施例之一種三維形狀 微奈米結構之製造方法係包含步驟S01至步驟S03。以下 以不同實施例來說明三維形狀微奈米結構之製造方法。 請參照圖2A至圖2E,其係繪示依照本發明之第一實 施例之一種三維形狀微奈米結構之製造方法的示意圖。如 圖2A所示,本實施例之製造方法係應用於一基板10,基 板10設有至少一第一蝕刻材料層11及一第二蝕刻材料層 12,第二蝕刻材料層12位於基板10與第一蝕刻材料層11 之間。於此,第二蝕刻材料層12係貼合於基板10上,且 第一蝕刻材料層11係貼合於第二蝕刻材料層12上,然而 這僅為舉例,並非用以限制本發明,在其他實施例中,第 二蝕刻材料層12與基板10之間可有其他材料層,第一蝕 刻材料層11與第二蝕刻材料層12之間可有其他材料層。 於此不限制基板10、第一触刻材料層11及第二I虫刻 材料層12之材質。基板10可例如包含矽、高分子聚合物 糸列材料、有機材料、塑膠材料、半導體材料、金屬材料、 石英、玻璃材料、陶瓷材料、無機材料、上述材料中任二 者或任二者以上所組成之材料。第一蝕刻材料層11及第 二蝕刻材料層12可例如包含金屬材料、半導體材料、陶 兗材料、有機材料、塑膠材料、兩分子材料、導電材料、 201209905 磁性材料、無機材料、或上述材料中任二者或任二者以上 所組成之材料。 如圖2B所示,首先進行一轉印步驟(S01),其係藉 由一模仁20將一轉印材料層21轉印至基板10之第一蝕 刻材料層11。於此,模仁20之一側具有複數凹部22及複 數凸部23,轉印材料層21設置於具有凹部22及凸部23 之該側上,並可為一連續之膜層、或僅局部設置於凸部23 上、或局部設置於凸部23及凹部22上。轉印材料層21 φ 可例如藉由熱蒸鑛、電子束蒸鑛法、化學氣相沉積或物理 氣相沉積等方式形成於模仁20上。轉印材料層21之材質 可為金屬、氧化物或介電材料,例如可為鉻(Cr)金屬或 介電材料二氧化碎(Si〇2)。 模仁20的材料本身可具有抗沾黏特性,以使轉印材 料層21順利脫離模仁20之凸部23,例如模仁20包含乙 稀-四氟乙烯共聚物(ethylene tetrafluoroethylene,其化學 式:-(C2H4-C2F4)-)。或者,如本實施例之圖2B所示, I 模仁20更設有一抗沾黏層24,其可例如藉由熱蒸鍵 (Evaporation)技術言臾置於模仁20之凹部22及凸部23 上,然後轉印材料層21再設置於抗沾黏層24上,同樣地, 抗沾黏層24可使轉印材料層21順利脫離模仁20之凸部 23並轉印至第一蝕刻材料層11上。抗沾黏層24例如包含 有機材料、無機材料、高分子材料、陶瓷材料、金屬材料、 鐵弗龍材料、類鑽碳材料、碳氟化合物(CxFy)經電漿解 離後之沉積材料、或上述材料中任二者或任二者以上所組 201209905 成之材料。 在轉印過程中,係藉由壓印而將模仁20具有轉印材 料層21之該側與基板10之第一姓刻材料層11相對壓合, 並使模仁20之凸部23上之轉印材料層21的部分壓合在 基板10之第一蝕刻材料層11上並與其互相接觸,而將轉 印材料層21轉印至第一蝕刻材料層11上。其中,若第一 触刻材料層11為液狀,可在轉印後對第一#刻材料層11 進行烘烤,例如以95°c烘烤5分鐘,以將第一蝕刻材料層 11烤乾,待溫度降至室溫後,再將模仁20自第一蝕刻材 料層11上移除,此時由於模仁20之凸部23上覆設有抗 沾黏層24,而使抗沾黏層24介於模仁20與轉印材料層 21之間、或者所採用之模仁20本身具有抗沾黏特徵,因 此模仁20之凸部23上的轉印材料層21之部分可順利脫 離模仁20而轉印至第一银刻材料層11上,而完成轉印步 驟。 如圖2C所示,轉印步驟完成後,轉印材料層21的一 部分轉移至第一蝕刻材料層11之一部分上,並露出第一 蝕刻材料層11之另一部分,使得轉印材料層21可作為接 下來第一蝕刻步驟(S02)之遮罩(mask)。 接著,如圖2C及圖2D所示,進行一第一蝕刻步驟 (S02),其係以基板10上之轉印材料層21作為遮罩,對 第一蝕刻材料層11及第二蝕刻材料層12進行蝕刻。如圖 2D所示,在第一蝕刻步驟之後,未受轉印材料層21覆蓋 之第一蝕刻材料層11及第二蝕刻材料層12之部分係被移 201209905 除;當然,在其他實施例中,未受轉印材料層21覆蓋之 第一蝕刻材料層11及第二蝕刻材料層12之部分,可藉由 第一蝕刻步驟而形成不同的形狀,即第一蝕刻材料層11 及第二姓刻材料層12不完全I虫刻完。 第一蝕刻步驟可例如包含乾式蝕刻或溼式蝕刻方 式,並以位在第一蝕刻材料層11上的轉印材料層21作為 I虫刻遮罩,來移除未由轉印材料層21所覆蓋之第一 i虫刻 材料層11及第二蝕刻材料層12之部分。上述所採用之乾 • 式蝕刻技術可例如為反應性離子蝕刻(RIE)或感應耦合 電漿(ICP)離子蝕刻技術。在一些實施例中,利用反應 性離子蝕刻或感應耦合電漿離子蝕刻等乾式蝕刻方式進 行第一蝕刻材料層11及第二蝕刻材料層(例如聚亞醯胺) 12之蝕刻時,可利用氧氣作為主要的反應氣體,例如採用 氧氣或特定比例之氧氣與氬氣作為蝕刻之反應氣體。 根據實驗發現,以傳統微影技術來圖案化聚亞醯胺 層,是使用光感式光阻材料來作為蝕刻遮罩,由於光阻層 ^ 在顯影過程中會因吸收了部分的顯影液而產生腫脹現 象,因此光阻層的體積會膨脹,因而以此體積膨脹之光阻 層作為蝕刻罩幕來進行下方材料層的圖案蝕刻時,會導致 所形成之材料層圖案結構的尺寸失真。然而,在本發明之 較佳實施例中,由於係以位在第一蝕刻材料層11上的轉 印材料層21來作為蝕刻遮罩,而非以光阻層來作為蝕刻 遮罩,轉印材料層21未經曝光與顯影過程,而不會因顯 影液的影響而導致體積膨脹,因此以轉印材料層21作為 11 201209905 蝕刻罩幕,可確保颠刻後之第一敍刻材料層u 刻材料層12層的圖案結構失 /、第一蝕 精度。 #爛材枓層12之圖案結構的 然後,如® 2D及圖2E所示,進行 =03),其係對第—_材料層n及第二❹料们 =㈣刻,且使第一崎料層u 第:材料層12具有-第二轉,第-.刻二 =刻率之比值小於3(),而使第—仙材料層 :二而留下已㈣之第二㈣材料層12。其 蝕刻率之比值係小於30且大於〗。 之 要步f步驟對形成三維形狀微奈米結構是為-重 '’八係藉由使第-飯刻材料層u之第一韻刻率盥 ^二钱刻材料層12之第二韻刻率不同,刻與 介於1與3〇之範圍而得到三維= 刻二“L 中’第1刻步驟可包含一乾式1 虫 透心, 三維形狀微奈米結構之形狀的控制可 率二i如第-㈣材料層u及第二韻刻材料層12的_ 類不π、厚度不同、_時間不同及㈣液與_氣體種 :員:同:二到。其中_率不同可例如㈣ 材料声刻材科層12之晶格排列不同、或第一韻刻 9 1與第二蝕刻材料層12之材料不同而得到。 田甘舉例而言’於渥式勤刻中’第一钱刻材料層11為聚 甲基丙埽酸甲酉旨㈤y Uethylmethacr細),PMMA)' 12 201209905 第二蝕刻材料層12為紫外光(UV)膠,並藉由丙酮蝕刻、 或者第一蝕刻材料層11為二氧化矽(Si02),第二蝕刻材 料層12為氮化矽(Si3N4),並藉由氫氟酸(HF)或BOE (buffered oxide etch )#刻、或者第一#刻材料層11與第 二钱刻材料層12之晶格排列不同,例如第一触刻材料層 11為矽(1 0 0),第二蝕刻材料層12為矽(1 1 1),並藉 由氫氧化舒餘刻。於乾式I虫刻中,第一 Ί虫刻材料層為 ΡΜΜΑ,第二蝕刻材料層為聚亞醯胺(polyimide),並藉 由氧電漿(〇2 plasma )钱刻。上述僅為舉例,並非用以限 制本發明,熟悉該項技術領域者,可依據所需結構而調配 材料層之材料及對應餘刻技術。 藉由上述第二蝕刻步驟,可將第一蝕刻材料層11完 全移除,並使得轉印材料層21剝離(lift-off)。另外,如 圖2F所示,其係為經過本發明第二實施例之三維形狀微 奈米結構之製造方法所產生之三維形狀微奈米結構的示 意圖,其中,第一蝕刻材料層11並不完全蝕刻完,並留 下一部分之第一蝕刻材料層11。當然,若為此態樣,則第 二蝕刻步驟可選用第一蝕刻材料層11與轉印材料層21之 银刻液、或者是在第二姓刻步驟之後更進行一移除步驟, 以將轉印材料層21移除。 請參照圖3及圖4所示,其係分別顯示不同態樣之三 維形狀微奈米結構3及4。三維形狀微奈米結構3係包含 一基板30以及一第一材料層31。第一材料層31設置於基 板30之上,且第一材料層31之一頂部311具有一弧面。 13 201209905 三維形狀微奈米結構3可藉由上述第一實施例之製造方法 而製成,其中基板30相當於基板10,第一材料層31相當 於已蝕刻之第二蝕刻材料層12。 三維形狀微奈米結構4係包含一基板40、一第一材料 層41以及一第二材料層42。第一材料層41設置於基板 40之上,第二材料層42位於基板40與第一材料層41之 間,且第一材料層41與第二材料層42之至少一部分係共 同形成一弧面。三維形狀微奈米結構4可藉由上述第二實 施例之製造方法而製成,其中基板40相當於基板10,第 鲁 一材料層41相當於已蚀刻之第一蝕刻材料層11,第二材 料層42相當於已蝕刻之第二蝕刻材料層22。第一材料層 41與第二材料層42之材質或晶格排列可不同。三維形狀 微奈米結構3及4可應用於不同場合及目的。 綜上所述,本發明之三維形狀微奈米結構及其製造方 法,其中,在轉印步驟中,藉由一模仁將一轉印材料層轉 印至基板之第一蝕刻材料層,以使轉印材料層作為要來之 第一蝕刻步驟之遮罩,來形成圖案化之第一蝕刻材料層及 * /或第二蝕刻材料層,因此,本發明在不需使用微影製程即 可製造出三維形狀之微奈米結構,進而降低成本。此外, 藉由在第二蝕刻步驟中,控制第一蝕刻材料層之第一蝕刻 率以及第二蝕刻材料層之第二蝕刻率之比值小於30且大 於1,而能製造出三維形狀之微奈米結構。其中,三維形 狀之微奈米結構例如第一蝕刻材料層完全蝕刻完,而留下 已钮刻之第二钮刻材料層、或者留下僅姓刻部分之第一钮 14 201209905 刻材料層及第二钱刻材料層,進而增加微奈米結構之應用 性。而所製造出的微奈米結構,可例如包含一基板以及一 第一材料層,第一材料層設置於基板之上,且第一材料層 之一頂部具有一弧面、或者’包含一基板、一第一材料層 以及一第二材料層,第一材料層設置於基板之上,第二材 料層位於基板與第一材料層之間,且第一材料層與第二材 料層係共同形成一弧面。 '201209905 VI. Description of the Invention: [Technical Field] The present invention relates to a micro-nano structure and a method of manufacturing the same, and, in particular, to a three-dimensional shape micro-nano structure and a method of fabricating the same. [Prior Art] Micro-nanostructures have excellent surface properties in many applications, and research on the fabrication of micro-nanostructures has also received much attention. At present, common techniques in the fabrication of micro-nanostructures include chemical synthesis, physical vapor deposition, chemical vapor deposition, laser ablation, and molecular beam Epitaxy. Etc., in conjunction with Photolithography, the use of a photomask to form a patterned micro-nano structure. However, the use of optical lithography processes increases the cost and difficulty of reticle fabrication. In addition, how to manufacture a micro-nano structure having a three-dimensional shape without using a lithography process to reduce the cost and expand the applicability of the micro-nano structure is one of the important topics in the industry. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a three-dimensional shape micro-nano structure and a method for fabricating the same that can produce a three-dimensional micro-nano structure without using a lithography process, thereby reducing cost. And increase its applicability. To achieve the above object, a three-dimensional shape micro-nano junction 201209905 manufacturing method according to the present invention is applied to a substrate, and a second surname material layer is located between the substrate and a layer of the first-order material. The manufacturing method includes - transferring the step t by: transferring the transfer material layer to the first-touch material layer of the substrate; and a first etching step using the transfer material layer on the substrate as a mask Etching the first etching material layer and the second etching material layer; and the second second axis step 1 the first side material layer and the second material layer are in contact with each other, and the first money etching material layer has a first a first moment rate, the second residual material layer has a second surname rate, the ratio of the first etching rate to the second meal rate is less than 30, and the first surname material layer is completely left over, leaving The second _(four) layer has been etched. For the purpose of the present invention, a three-dimensional shape micro-nano structure manufacturing method according to the present invention is applied to a substrate, and the substrate is provided with at least a - (four) from-remaining material layer 'the second remaining material layer is located on the substrate and the material layer between. The manufacturing method comprises a transfer step of transferring the layer of the transfer material to the first layer of the material of the substrate by a mold; the first step of the step J is to use the layer of the transfer material on the substrate as a mask, a first == second silver engraved material layer is engraved; and a second dumpling, a residual material layer and a second tactile material layer are engraved, and the etching material layer has a first etching rate, the second etching The material layer has an etching rate, and the ratio of the first etching rate to the second etching rate is less than 30, so that the first-order material layer and the second etching material layer are only inscribed. In one embodiment, the first etch material layer and the second etch material layer are arranged in a lattice, or different materials. The etching material layer of the same material but different lattice arrangement or different materials can make the first etching material layer and the second surname 201209905 material layer have a ratio of the surname ratio of less than 30, thereby generating a three-dimensional shape. Rice structure. In the embodiment, the thickness of the -1st-etched material layer and the second-etched material layer are different. The three-dimensional shape of the micro-nano structure can be changed and controlled by different layers of different thicknesses and the thickness of the material can be controlled and controlled. In an embodiment, the second (four) step may comprise a dry silver engraving or a house currency engraving. In the enamel money engraving, for example, the first layer of material is a poly(methyl methacrylate) (pMMA), and the second layer of engraved material is an ultraviolet (UV) glue, and The etched or etched material layer is cerium oxide (the second etching material layer is tantalum nitride (Si3N4)' and is hydrogenated (HF) or β 〇Ε (secret (4) (10) he etches) Or the first material layer is cut, the lattice arrangement direction is (10 0), and the second remaining material layer is Shi Xi, and the lattice arrangement direction is 〇1 1)' and is etched by hydrogen peroxide. In the dry type, for example, the first surname material layer is PMMA, and the second engraved material layer is P〇lyimide, and by oxygen (tetra) (〇2pia_)_. The above is only an example': it is not intended to limit the present invention, and those skilled in the art can adjust the material of the material layer and the corresponding button engraving technique according to the required structure. (1): Up to 5 objects 'The three-dimensional shape micro-nano structure according to the present invention comprises a substrate and a layer of «th. The first material layer is disposed on the substrate, and the top layer of the material layer has a curved surface. The object of the present invention is a three-dimensional shape micro-nano junction 3" ruthenium-material layer and - a second material layer. The first material layer is disposed on the substrate. The second material layer is located between the substrate and the first material layer 201209905, and at least a portion of the first material layer and the second material layer together form a curved surface. In one embodiment, the first material layer and the second material layer have different lattice arrangements, such as the same material but different lattice arrangements, or different materials and different lattice arrangements. According to the above, the three-dimensional shape micro-nano structure of the present invention and the method of manufacturing the same, wherein, in the transferring step, a transfer material layer is transferred to a first etching material layer of the substrate by a mold core, The patterned first etching material layer and/or the second etching material layer are formed by using the transfer material layer as a mask of the first etching step. Therefore, the present invention does not require the use of a lithography process. The micro-nano structure of the three-dimensional shape can be manufactured, thereby reducing the cost. In addition, by controlling the ratio of the first etching rate of the first etching material layer and the second etching rate of the second etching material layer to less than 30 in the second etching step, the three-dimensional shape of the micron can be manufactured. Rice structure. Wherein the three-dimensional shape of the micro-nano structure, for example, the first etch material layer is completely etched, leaving the etched second etch material layer, or leaving only the etched portion of the first etch material layer and the second etch material layer , thereby increasing the applicability of the micro-nano structure. The micro-nano structure can be formed, for example, comprising a substrate and a first material layer. The first material layer is disposed on the substrate, and one of the first material layers has a curved surface or a substrate. a first material layer and a second material layer, the first material layer is disposed on the substrate, the second material layer is located between the substrate and the first material layer, and the first material layer and the second material layer are formed together A curved surface. [Embodiment] Hereinafter, a three-dimensional shape micro-nano structure and a method of manufacturing the same according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals. Referring to FIG. 1, a method for manufacturing a three-dimensional shape micro-nano structure according to a preferred embodiment of the present invention includes steps S01 to S03. Hereinafter, a method of manufacturing a three-dimensional shape micro-nano structure will be described in various embodiments. Referring to Figures 2A through 2E, there are shown schematic views of a method of fabricating a three-dimensional shaped micro-nanostructure in accordance with a first embodiment of the present invention. As shown in FIG. 2A, the manufacturing method of the present embodiment is applied to a substrate 10. The substrate 10 is provided with at least a first etching material layer 11 and a second etching material layer 12, and the second etching material layer 12 is located on the substrate 10 and Between the first etch material layers 11. The second etching material layer 12 is adhered to the substrate 10, and the first etching material layer 11 is attached to the second etching material layer 12. However, this is merely an example and is not intended to limit the present invention. In other embodiments, there may be other material layers between the second etch material layer 12 and the substrate 10, and other material layers may be present between the first etch material layer 11 and the second etch material layer 12. The material of the substrate 10, the first etched material layer 11, and the second etched material layer 12 is not limited thereto. The substrate 10 may, for example, comprise niobium, a polymer matrix, an organic material, a plastic material, a semiconductor material, a metal material, a quartz, a glass material, a ceramic material, an inorganic material, or both of the above materials. The material of the composition. The first etching material layer 11 and the second etching material layer 12 may include, for example, a metal material, a semiconductor material, a ceramic material, an organic material, a plastic material, a two-molecular material, a conductive material, a 201209905 magnetic material, an inorganic material, or the like. Any two or more of the materials. As shown in Fig. 2B, a transfer step (S01) is first performed by transferring a transfer material layer 21 to the first etch material layer 11 of the substrate 10 by a mold core 20. Here, one side of the mold core 20 has a plurality of concave portions 22 and a plurality of convex portions 23, and the transfer material layer 21 is disposed on the side having the concave portion 22 and the convex portion 23, and may be a continuous film layer or only partially It is provided on the convex portion 23 or partially on the convex portion 23 and the concave portion 22. The transfer material layer 21 φ can be formed on the mold core 20 by, for example, thermal distillation, electron beam evaporation, chemical vapor deposition, or physical vapor deposition. The material of the transfer material layer 21 may be a metal, an oxide or a dielectric material, and may be, for example, a chromium (Cr) metal or a dielectric material (Si〇2). The material of the mold core 20 itself may have anti-stick properties so that the transfer material layer 21 can be smoothly separated from the convex portion 23 of the mold core 20. For example, the mold core 20 contains ethylene tetrafluoroethylene (chemical formula: -(C2H4-C2F4)-). Alternatively, as shown in FIG. 2B of the present embodiment, the I mold core 20 is further provided with an anti-adhesion layer 24, which can be placed in the concave portion 22 and the convex portion of the mold core 20, for example, by an evaporation technique. 23, then the transfer material layer 21 is again disposed on the anti-adhesion layer 24. Similarly, the anti-adhesion layer 24 allows the transfer material layer 21 to be smoothly separated from the convex portion 23 of the mold core 20 and transferred to the first etching. On the material layer 11. The anti-adhesion layer 24 includes, for example, an organic material, an inorganic material, a polymer material, a ceramic material, a metal material, a Teflon material, a diamond-like carbon material, a deposition material of a fluorocarbon (CxFy) after plasma dissociation, or the above Materials of any of the two or more materials of the group 201209905. In the transfer process, the side of the mold core 20 having the transfer material layer 21 is pressed against the first surname material layer 11 of the substrate 10 by embossing, and the convex portion 23 of the mold core 20 is placed thereon. A portion of the transfer material layer 21 is pressed against the first etching material layer 11 of the substrate 10 and brought into contact with each other, and the transfer material layer 21 is transferred onto the first etching material layer 11. Wherein, if the first etchant layer 11 is in a liquid state, the first etched material layer 11 may be baked after transfer, for example, baking at 95 ° C for 5 minutes to bake the first etched material layer 11 After the temperature is lowered to room temperature, the mold core 20 is removed from the first etching material layer 11, and at this time, since the convex portion 23 of the mold core 20 is covered with the anti-adhesion layer 24, the anti-sticking layer is applied. The adhesive layer 24 is interposed between the mold core 20 and the transfer material layer 21, or the mold core 20 itself has an anti-sticking property, so that the portion of the transfer material layer 21 on the convex portion 23 of the mold core 20 can be smoothly performed. The transfer to the first silver engraving material layer 11 is carried out from the mold core 20, and the transfer step is completed. As shown in FIG. 2C, after the transfer step is completed, a portion of the transfer material layer 21 is transferred to a portion of the first etch material layer 11 and another portion of the first etch material layer 11 is exposed, so that the transfer material layer 21 can be As a mask of the next first etching step (S02). Next, as shown in FIG. 2C and FIG. 2D, a first etching step (S02) is performed in which the transfer material layer 21 on the substrate 10 is used as a mask, and the first etching material layer 11 and the second etching material layer are applied. 12 is etched. As shown in FIG. 2D, after the first etching step, portions of the first etch material layer 11 and the second etch material layer 12 that are not covered by the transfer material layer 21 are removed by 201209905; of course, in other embodiments The portions of the first etch material layer 11 and the second etch material layer 12 that are not covered by the transfer material layer 21 may be formed into different shapes by the first etching step, that is, the first etch material layer 11 and the second surname The layer of engraved material 12 is not completely finished. The first etching step may include, for example, a dry etching or a wet etching method, and the transfer material layer 21 positioned on the first etching material layer 11 is used as an I-cut mask to remove the layer 12 not removed by the transfer material. A portion of the first i-etching material layer 11 and the second etching material layer 12 are covered. The dry etching technique employed above may be, for example, reactive ion etching (RIE) or inductively coupled plasma (ICP) ion etching. In some embodiments, when etching the first etch material layer 11 and the second etch material layer (eg, polyimide) by dry etching such as reactive ion etching or inductively coupled plasma ion etching, oxygen can be utilized. As the main reaction gas, for example, oxygen or a specific ratio of oxygen and argon are used as the etching reaction gas. According to experiments, it is found that the conventional lithography technology is used to pattern the polyimide layer by using a light-sensitive photoresist as an etch mask, because the photoresist layer absorbs part of the developer during development. The swelling phenomenon occurs, so that the volume of the photoresist layer is expanded. Therefore, when the volume-expanded photoresist layer is used as an etching mask to perform pattern etching of the underlying material layer, the size of the formed material layer pattern structure is distorted. However, in the preferred embodiment of the present invention, since the transfer material layer 21 positioned on the first etch material layer 11 is used as an etch mask instead of the photoresist layer as an etch mask, transfer The material layer 21 is not exposed and developed, and does not cause volume expansion due to the influence of the developer. Therefore, the transfer material layer 21 is used as an 11 201209905 etching mask to ensure the first layer of material after the engraving. The pattern structure of the 12 layers of the engraved material layer is lost/first etching precision. ################################################################################ Material layer u: material layer 12 has a second rotation, the first - second ratio = ratio of the ratio is less than 3 (), and the first layer of material: two leaves the fourth (four) material layer 12 . The ratio of the etch rate is less than 30 and greater than 〗. The step of step f is to form a three-dimensional shape of the micro-nano structure is a --heavy 'eight-series by making the first rhyme of the first-grain material layer u 盥 ^ two money engraved material layer 12 of the second rhyme The rate is different, engraved with the range of 1 and 3〇 to get 3D = engraved 2 "L" The first step can contain a dry 1 insect heart, the shape of the three-dimensional shape of the micro-nano structure control rate i For example, the -(4) material layer u and the second rhyme material layer 12 have _ not π, different thickness, _time difference, and (4) liquid and _ gas species: member: same: two to. wherein _ rate is different, for example, (4) material The lattice arrangement of the acoustic engraving layer 12 is different, or the first rhyme 9 1 is different from the material of the second etching material layer 12. Tian Gan, for example, is in the first inscription The layer 11 is polymethylpropionate (5) y Uethylmethacr fine, PMMA)' 12 201209905 The second etching material layer 12 is an ultraviolet (UV) glue, and is etched by acetone, or the first etching material layer 11 is Cerium oxide (SiO 2 ), the second etching material layer 12 is tantalum nitride (Si 3 N 4 ), and is engraved by hydrofluoric acid (HF) or BOE (buffered oxide etch )# The first #刻材料层11 and the second engraved material layer 12 have different lattice arrangements, for example, the first etchant layer 11 is 矽 (1 0 0), and the second etch material layer 12 is 矽 (1 1 1 And by hydrating, in the dry type I insect, the first layer of the worm material is ruthenium, the second layer of etch material is polyimide, and by oxygen plasma (〇 2 plasma ) money. The above is only an example, and is not intended to limit the present invention. Those skilled in the art can adjust the material of the material layer and the corresponding residual technology according to the required structure. The first etching material layer 11 can be completely removed, and the transfer material layer 21 can be lifted-off. In addition, as shown in FIG. 2F, it is a three-dimensional shape micro-nano through the second embodiment of the present invention. A schematic diagram of a three-dimensional shape micro-nano structure produced by the manufacturing method of the structure, wherein the first etching material layer 11 is not completely etched, and a portion of the first etching material layer 11 is left. Of course, if this is the case, Then, the second etching step may select the first etching material layer 11 and the transfer material The silver engraving of the layer 21 or a removal step is performed after the second surname step to remove the transfer material layer 21. Referring to Figures 3 and 4, the different aspects are respectively displayed. The three-dimensional shape micro-nano structure 3 and 4. The three-dimensional shape micro-nano structure 3 includes a substrate 30 and a first material layer 31. The first material layer 31 is disposed on the substrate 30, and the first material layer 31 A top portion 311 has a curved surface. 13 201209905 The three-dimensional shape micro-nano structure 3 can be produced by the manufacturing method of the first embodiment described above, wherein the substrate 30 corresponds to the substrate 10, and the first material layer 31 corresponds to the etched The second etch material layer 12. The three-dimensional shape micro-nanostructure 4 comprises a substrate 40, a first material layer 41 and a second material layer 42. The first material layer 41 is disposed on the substrate 40, the second material layer 42 is located between the substrate 40 and the first material layer 41, and at least a portion of the first material layer 41 and the second material layer 42 form a curved surface. . The three-dimensional shape micro-nano structure 4 can be fabricated by the manufacturing method of the second embodiment described above, wherein the substrate 40 corresponds to the substrate 10, and the first material layer 41 corresponds to the etched first etching material layer 11, second Material layer 42 corresponds to the second etched material layer 22 that has been etched. The material or lattice arrangement of the first material layer 41 and the second material layer 42 may be different. Three-dimensional shape Micro-nanostructures 3 and 4 can be applied to different occasions and purposes. In summary, the three-dimensional shape micro-nano structure of the present invention and a method of manufacturing the same, wherein, in the transferring step, a transfer material layer is transferred to a first etching material layer of the substrate by a mold to The transfer material layer is used as a mask for the first etching step to form a patterned first etching material layer and/or a second etching material layer. Therefore, the present invention can be used without using a lithography process. A three-dimensional shape of the nano-nano structure is produced, thereby reducing costs. In addition, by controlling the ratio of the first etching rate of the first etching material layer and the second etching rate of the second etching material layer to less than 30 and greater than 1 in the second etching step, the three-dimensional shape of the micro-neck can be manufactured. Rice structure. Wherein the three-dimensional shape of the micro-nano structure, for example, the first etched material layer is completely etched, leaving a layer of the second button engraved material that has been engraved, or leaving the first button 14 of the last engraved portion; 201209905 engraved material layer and The second money engraves the material layer, which in turn increases the applicability of the micro-nano structure. The micro-nano structure can be fabricated, for example, comprising a substrate and a first material layer, the first material layer is disposed on the substrate, and one of the first material layers has a curved surface or a substrate a first material layer and a second material layer, the first material layer is disposed on the substrate, the second material layer is located between the substrate and the first material layer, and the first material layer and the second material layer are formed together A curved surface. '

以上所述僅為舉例性,而非為限制性者。任何未脫離 之精神與料,而對其進行之等效修 應包含於後附之申請專利範圍中。 丈 【圖式簡單說明】 圖1為本發明較佳實施例之一 之製造方法的步驟流裎圖; 〜、’隹形狀微奈米結構 圖2Α至圖2Ε為本發明第一實 奈米結構之製造方法的示竟圖; 之一種二維形狀微 圖2F為本發明第二實施例之三 製造方法所產生之三_狀微奈“ 2錄奈米結構之 圖3及《μ分㈣本發明不同態=^圖;以及 結構的示意圖。 叉之二維形狀微奈米 【主要元件符號說明】 10、30、40 :基板 11 :第一蝕刻材料層 201209905 12 :第二蝕刻材料層 20 :模仁 21 :轉印材料層 22 :凹部 23 :凸部 24 :抗沾黏層 3、4 :三維形狀微奈米結構 31、41 :第一材料層 311 :頂部 · 42 :第二材料層 S01〜S03 :三維形狀微奈米結構之製造方法的步驟The above is intended to be illustrative only and not limiting. Any unresolved spirit and material, and equivalent modifications thereto, are included in the scope of the appended patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing the steps of a manufacturing method according to a preferred embodiment of the present invention; 〜, '隹-shaped micro-nano structure FIG. 2A to FIG. 2Ε are the first solid nanostructure of the present invention. A two-dimensional shape micrograph 2F is a three-dimensional micro-negative produced by the third manufacturing method of the second embodiment of the present invention, "Fig. 3 of the recorded nano structure" and "μ minute (four) Inventive different state = ^ diagram; and schematic diagram of the structure. Two-dimensional shape of the fork micro-nano [main component symbol description] 10, 30, 40: substrate 11: first etching material layer 201209905 12: second etching material layer 20: Mould 21: transfer material layer 22: recess 23: convex portion 24: anti-adhesion layer 3, 4: three-dimensional shape micro-nano structure 31, 41: first material layer 311: top · 42: second material layer S01 ~S03: steps of the manufacturing method of the three-dimensional shape micro-nano structure

1616

Claims (1)

201209905 七、申請專利範圍: — 1、一種三維形狀微奈米結構之製造方法係應用於一基 板,該基板設有至少一第一蝕刻材料層及一第二蝕刻 材料層,該第二蝕刻材料層位於該基板與該第一蝕刻 材料層之間,包含: 一轉印步驟,藉由一模仁將一轉印材料層轉印至該基 板之該第一蝕刻材料層; 一第一餘刻步驟,係以該基板上之該轉印材料層作為 Φ 遮罩,對該第一蝕刻材料層及該第二蝕刻材料層進 行钱刻;以及 一第二蝕刻步驟,對該第一蝕刻材料層及該第二蝕刻 " 材料層進行蝕刻,且使該第一蝕刻材料層具有一第 - 一 Ί虫刻率,該第二钱刻材料層具有一第二儀刻率, 該第一姓刻率與該第二钱刻率之比值小於3 0,而使 該第一蝕刻材料層完全蝕刻完,而留下已蝕刻之該 第二蝕刻材料層。 * 2、一種三維形狀微奈米結構之製造方法係應用於一基 板,該基板設有至少一第一蝕刻材料層及一第二蝕刻 材料層,該第二蝕刻材料層位於該基板與該第一蝕刻 材料層之間,包含: 一轉印步驟,藉由一模仁將一轉印材料層轉印至該基 板之該第一蝕刻材料層; 一第一姓刻步驟,係以該基板上之該轉印材料層作為 遮罩,對該第一蝕刻材料層及該第二蝕刻材料層進 17 201209905 行韻刻;以及 一第二蝕刻步驟, 材料層進行鈕女丨 刻材料層及該第二颠刻 十盾進仃韻刻,且使該 -韻刻率,該第二韻刻材科層::咖具有-第 兮第^率之比值小於3〇,而使 这第一蝕刻材料層及誃 1史 分。 μ第一蝕刻材料層僅蝕刻部 ;、如申請專利範圍第〗項 、 米結構之製造方法,复中二所述之三維形狀微奈 4 6 餘刻材料層之晶格排列不二—餘刻材料層與該第二 如申π專利範圍第〗項 米結構之製造方法,其令斤迷之三維形狀微奈 餘刻材料層之材料不同。μ ㈣材料層與該第二 '如申請專利範㈣丨 米結構之製造方法,其中今笛/过之二維形狀微奈 韻刻材料層之厚度不同第—_材料層與該第二 如申請專利範圍第1項或第2項所述之… 米結構之製造方法,发 ' -維形狀微奈 飿刻或-漫絲刻。第一韻刻步驟包含一乾式 種二維形狀微奈米結構,包含: 一基板;以及 —第-材料層,設置於該基板 一頂部具有一弧面。 亥第一材料層之 種二維形狀微奈米結構,包含: 18 201209905 一基板; 一第一材料層,設置於該基板之上;以及 一第二材料層,位於該基板與該第一材料層之間,且 該第一材料層與該第二材料層之至少一部分係共同 形成一弧面。 9、 如申請專利範圍第8項所述之三維形狀微奈米結構, 其中該第一材料層與該第二材料層之晶格排列不同。 10、 如申請專利範圍第8項所述之三維形狀微奈米結構, • 其中該第一材料層與該第二材料層之材料不同。 11、 如申請專利範圍第8項所述之三維形狀微奈米結構, 其中該第一材料層與該第二材料層之厚度不同。 19201209905 VII. Patent Application Range: 1. A method for manufacturing a three-dimensional shape micro-nano structure is applied to a substrate provided with at least a first etching material layer and a second etching material layer, the second etching material a layer between the substrate and the first etch material layer, comprising: a transfer step of transferring a transfer material layer to the first etch material layer of the substrate by a mold; a first moment The step of performing the transfer material layer on the substrate as a Φ mask, etching the first etch material layer and the second etch material layer, and performing a second etching step on the first etch material layer And the second etching " material layer is etched, and the first etching material layer has a first mites engraving rate, the second etched material layer has a second tempering rate, the first surname The ratio of the rate to the second rate is less than 30, and the first etch material layer is completely etched away leaving the etched second etch material layer. 2, a manufacturing method of a three-dimensional shape micro-nano structure is applied to a substrate, the substrate is provided with at least a first etching material layer and a second etching material layer, the second etching material layer is located on the substrate and the first An etching material layer includes: a transfer step of transferring a transfer material layer to the first etching material layer of the substrate by a mold; a first surname step, on the substrate The layer of the transfer material serves as a mask, and the first etching material layer and the second etching material layer are engraved with a 2012 2012905; and a second etching step, the material layer is performed on the button layer and the first layer The second engraved ten shield into the rhyme engraving, and the rhyme engraving rate, the second rhyme engraving layer:: the coffee has a - the third ratio of the second ratio is less than 3 〇, and the first etching material layer And 誃 1 history. μ The first etching material layer is only an etched portion; as in the patent application scope item, the manufacturing method of the rice structure, the three-dimensional shape of the four-dimensional shape described in the second middle of the fourth layer of the material layer is arranged in a lattice--remaining The material layer and the manufacturing method of the second structure of the second aspect of the invention are different from the material of the three-dimensional shape micro-remaining material layer. ( (4) material layer and the second method of manufacturing a quaternary structure as in the patent application (four), wherein the thickness of the two-dimensional shape of the micro-negative material layer is different - the material layer and the second application The patent range is described in item 1 or item 2. The method of manufacturing the meter structure is to make a '-dimensional shape micro-neck engraving or-diffuse engraving. The first rhyme step comprises a dry two-dimensional shape micro-nano structure comprising: a substrate; and a first-material layer disposed on the top of the substrate having a curved surface. a two-dimensional shape micro-nano structure of the first material layer, comprising: 18 201209905 a substrate; a first material layer disposed on the substrate; and a second material layer on the substrate and the first material Between the layers, and the first material layer and at least a portion of the second material layer together form a curved surface. 9. The three-dimensional shape micro-nano structure according to claim 8, wherein the first material layer and the second material layer have different lattice arrangements. 10. The three-dimensional shape micro-nano structure as claimed in claim 8 wherein: the material of the first material layer is different from the material of the second material layer. 11. The three-dimensional shape micro-nano structure of claim 8, wherein the first material layer and the second material layer have different thicknesses. 19
TW99128143A 2010-08-23 2010-08-23 Manufacturing method 3-d micro/nano structure TWI413177B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128143A TWI413177B (en) 2010-08-23 2010-08-23 Manufacturing method 3-d micro/nano structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128143A TWI413177B (en) 2010-08-23 2010-08-23 Manufacturing method 3-d micro/nano structure

Publications (2)

Publication Number Publication Date
TW201209905A true TW201209905A (en) 2012-03-01
TWI413177B TWI413177B (en) 2013-10-21

Family

ID=46763804

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128143A TWI413177B (en) 2010-08-23 2010-08-23 Manufacturing method 3-d micro/nano structure

Country Status (1)

Country Link
TW (1) TWI413177B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200420492A (en) * 2003-04-11 2004-10-16 Univ Nat Sun Yat Sen III-N nanostructure and fabrication method
TWI257964B (en) * 2004-12-06 2006-07-11 Hong Hocheng Apparatus and method for fabricating nano/micro structure
CN1718535A (en) * 2005-07-27 2006-01-11 中山大学 Method of directly growing tridimensional nano net structure
JP2008165849A (en) * 2006-12-27 2008-07-17 Fujitsu Ltd Nano-structure forming method and magnetic disk manufacturing method
CN101550531B (en) * 2008-04-03 2013-04-24 清华大学 Method for preparing silicon nano structures

Also Published As

Publication number Publication date
TWI413177B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
TWI338615B (en) Self-aligned process for fabricating imprint templates containing variously etched features
US8623770B1 (en) Method for sidewall spacer line doubling using atomic layer deposition of a titanium oxide
US7758794B2 (en) Method of making an article comprising nanoscale patterns with reduced edge roughness
US8801946B2 (en) Method for making grating
KR101691157B1 (en) Method of manufacturing stamp for nanoimprint
TWI505336B (en) Method for making metal grating
JP5078058B2 (en) Mold and mold manufacturing method
US9261777B2 (en) Method for making three-dimensional nano-structure array
JP5852123B2 (en) High contrast alignment mark by multi-stage imprint
JP2009515350A (en) Method for forming a support on which a shaped body such as a lithography mask is mounted
TW201024075A (en) Double sidewall angle nano-imprint template
EP3619160A1 (en) Methods for micro and nano fabrication by selective template removal
JP2010014857A (en) Method for manufacturing microlens mold, microlens mold, and microlens
JP6089451B2 (en) Nanoimprint mold and manufacturing method thereof
JP4997811B2 (en) Mold and mold manufacturing method
TW201209905A (en) 3-D micro/nano structure and manufacturing method thereof
TW200907562A (en) Template having a silicon nitride, silicon carbide or silicon oxynitride film
Mekaru et al. Fabrication of glass-like carbon molds to imprint on glass materials by MEMS processing technologies
JP2009194170A (en) Micro pattern forming method
CN117480411A (en) Optical ultrastructure having meta-atoms composed of high refractive index material
TWI498963B (en) 3-d micro/nano structure
JP2021532407A (en) A method for manufacturing a structure having at least one curved pattern
JP2007316270A (en) Manufacturing method of optical component, retardation element and polarizer
Kang et al. Rational Design and Fabrication Method for Bioinspired Directional Droplet Sliding Surfaces
JP5810577B2 (en) Method for producing original plate for molding low reflection structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees