TW201209442A - Polymer film with photonic crystal structure and reflective liquid crystal display module - Google Patents

Polymer film with photonic crystal structure and reflective liquid crystal display module Download PDF

Info

Publication number
TW201209442A
TW201209442A TW99128546A TW99128546A TW201209442A TW 201209442 A TW201209442 A TW 201209442A TW 99128546 A TW99128546 A TW 99128546A TW 99128546 A TW99128546 A TW 99128546A TW 201209442 A TW201209442 A TW 201209442A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
polymer film
polymer
film
crystal structure
Prior art date
Application number
TW99128546A
Other languages
Chinese (zh)
Other versions
TWI410668B (en
Inventor
Jui-Hsiang Liu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW99128546A priority Critical patent/TWI410668B/en
Publication of TW201209442A publication Critical patent/TW201209442A/en
Application granted granted Critical
Publication of TWI410668B publication Critical patent/TWI410668B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Optical Filters (AREA)

Abstract

A polymer film with photonic crystal structure includes a film and an achiral anisotropic liquid. The polymer of the film has a weight percent between 20% and 90% of the polymer film. The achiral anisotropic liquid is filled in the film. Because the invention provides the polymer film with photonic crystal structure and increases the weight percent of the polymer in the polymer film to a certain level, the polymer film can reveal higher chirality due to the larger portion of polymer. Accordingly, as long as the achiral anisotropic liquid, such as nematic liquid crystal (LC), is filled in the film, the polymer film can reveal the property of Bragg reflection. Therefore, the cost can be reduced because the cholesteric LC is not necessary for the invention, and the polymer film can be applied to display modules.

Description

201209442 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種兩分子膜,特別關於一種具有光子 晶體結構之高分子膜及反射式液晶顯示模組。 【先前技術】 隨著平面顯示裝置(Flat Panel Display,FPD)技術的 發展’並因平面顯示裝置具有體型輕薄、低功率消耗及無 輻射等優越特性’已經漸漸地取代傳統陰極射線管 (Cathode Ray Tube, CRT)顯示裝置,並且應用至各式電 子產品。其中’膽固醇液晶(Cholesteric Liquid Crystal) 亦應用於顯示技術’特別是應用於雙穩態的顯示器,如電 子紙。 圖1為膽固醇液晶Π之分子排列的示意圖,其可為 對革性膽固醇液晶,或為添加對掌性化合物之非對掌性液 晶。膽固醇液晶基本上都具有不對稱碳原子(chiral center)。由這類分子所構成的液晶,其分子平行堆積層狀 排列’層和層間互相平行,在每一層中分子有一向列型一 t彼此同向排列著,其長軸和層面平行。在相鄰的兩層之 間’分子的長軸方向規則性地依次旋轉一定角度,層層旋 轉下來形成一個螺旋狀結構。液晶分子的長軸方向再旋轉 一圈360择炫 &设,又回到相同方向並形成一螺距P,這類液 曰曰刀子基於特殊的螺旋構造,可以使得入射光偏轉,而散 射出特殊波長的光,而螺距係決定它最強列的反射光線之 201209442 波長。 圖2及圖3係顯示膽固醇液晶的分子排列示意圖。如 圖2所示,膽固醇液晶11由兩玻璃基板12、13夾置,且 底部設有一黑色吸收層Μ。當無外加電場時,膽固醇液晶 11為平面螺旋型(planar texture),由於其螺旋週期(螺距) 約與光線波長相當,這種週期性結構可使特定波長之光線 發生布拉格(Bragg)反射。其反射光之峰值為λ=ηΡ (n 為平均折射率)。一般,其可被用來反射特定波長範圍之 光線’應用於光學元件及液晶顯示設計。圖3所示為垂直 螺旋型膽固醇液晶配列。 目前’具有布拉格反射特徵之光學膜設計,可由膽固 醇液晶設計’包括純膽固醇液晶膜或摻混有膽固醇液晶之 面分子膜。 其中,於高分子安定型膽固醇液晶中,係利用添加少 I:的單體(濃度在10%以下)’使單體形成高分子散佈於 膽固醇液晶中,使膽固醇液晶達到穩定平面螺旋型使呈現 布拉格反射的效果。然而,由於膽固醇液晶所費不貲,因 而大幅增加產品成本;也因此至今,㈣以廣被實用化。 因此,如何提供-種不需使用膽固醇液晶即能具有光 子晶體結狀高分子獻反射式料·模組,而能大幅 降低產品成本,已成為業界重要課題之一。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種不需 201209442 膽固醇液晶即能具有光子晶體結構之高分子膜及反射式 液晶顯示模組,而能大幅降低產品成本。 為達上述目的,依據本發明之一種具有光子晶體結構 之高分子膜包含一膜材以及一非對掌性異方性液體。膜材 所含聚合體之重量百分比係佔該高分子膜的20%與90%之 間。非對掌性異方性液體充填於該膜材。 為達上述目的’依據本發明之一種具有光子晶體結構 之高分子膜包含一膜材以及一非對掌性液晶單體之聚合 體。膜材所含聚合體之重量百分比係佔高分子膜的20%與 90%之間。非對掌性液晶單體之聚合體充填於膜材。如此, 高分子膜不含液體,較為穩定、方便使用,且可不需封邊。 於此,高分子膜皆為聚合體。 在一實施例中,非對掌性異方性液體為非對掌性液 晶’例如向列型液晶(nematic LC )或層列型液晶(smectic LC)。 在一實施例中,聚合體係由雙官能基單體聚合而成, 雙官能基單體例如為具有液晶相之單體,如BAHB (4,4’-Bis ( 6-acryloyxy-hexyloxy ) biphenyl ),以藉由光聚 合反應而達到穩定液晶的配向效果。單體亦可以單官能基 單體摻混多官能基單體,並可以形成交聯性高分子,避免 溶於溶劑。 在一實施例中,光子晶體結構為膽固醇液晶結構,係 係由膽固醇液晶轉印(imprint)而成,其中,膽固醇液晶 可藉由非對掌性液晶(achiral LC)混合光學活性添加劑 201209442 (chiral dopant)而形成。由於在所製成的高分子膜中皆不 需使用昂貴的膽固醇液晶,故可大幅降低製造成本。 另外’本發明亦揭露一種應用上述高分子膜之反射式 液晶顯示模組。其包含一具有光子晶體結構之高分子膜以 及一驅動電路。高分子膜包含一膜材以及一非對掌性液 晶。膜材所含聚合體之重量百分比係佔該高分子膜的20〇/〇 與90%之間。非對掌性異方性液體充填於該膜材。驅動電 路係驅動該非對掌性液晶。 鲁 在一實施例中’非對掌性液晶為向列型液晶或層列型 - 液晶。 . 在一實施例中,聚合體係由雙官能基單體聚合而成, 雙官能基單體例如為具有液晶相之單體,如BAHB (4,4’-Bis ( 6-acryloyxy-hexyloxy ) biphenyl ),以藉由光聚 合反應而達到穩定液晶的配向效果。 在一實施例中,光子晶體結構為膽固醇液晶結構,係 由膽固酵液晶轉印(imprint)而成,其中,膽固醇液晶可 藉由非對掌性液晶(achiral LC )混合光學活性添加劑 (chiral dopant)而形成。由於在所製成的高分子膜中皆不 需使用昂貴的膽固醇液晶,故可大幅降低製造成本。 在一實施例中,高分子膜具有複數晝素,各該畫素具 有複數子畫素’該等子晝素之螺距(pitch )或折射率不同。 由於高分子膜之光線反射需符合Bragg方程式:λ=ηΡ (η 為平均折射率。故本發明藉由設置不同螺距、或不同折射 率、或不同螺距及折射率之子畫素,可達到顯示之目的[’s] 7 201209442 例如作為靜態晝面或動態晝面之顯示。 在一實施例中,高分子膜可設置於一太陽能電池元 件。由於反射光波長可加以控制,因此本發明可應用於太 陽能電池之表面彩色設計,使太陽能電池所需之波長光通 過高分子膜,利用其他可見光波長之反射,可設計太陽能 電池外觀彩色圖紋;使太陽能電池可免除傳統黑色之古板 外觀。 在一實施例中,高分子膜係設置於一背光模組以作為 光增強膜。 在一實施例中,高分子膜可與一透光元件連結,透光 元件可例如為玻璃、高分子膜(例如離型紙或塑膠膜)。 藉由不同介質與高分子膜連結,可讓高分子膜應用於不同 場合,例如藉由設置於玻璃可讓高分子膜應用於顯示器, 藉由設置於另一高分子膜可讓高分子膜以黏著方式直接 貼附於需顯示的位置,或是藉由設置於離型紙可讓高分子 膜以產品的方式販賣給組裝廠。 為達上述目的,本發明亦揭露一種多層結構之光學 膜,其係包含複數上述之高分子膜,該等高分子膜係各別 由左旋及右旋性液晶所複製,藉此可增強高分子膜之反射 光亮度。由於使用右旋性或左旋性膽固醇液晶作轉印,理 論上僅能反射一半(50%)入射光,因此若將左旋及右旋 膽固醇液晶所複製之高分子膜相重疊,即可製得全光反射 (100%)之光學膜。 承上所述,本發明提供一種具有光子晶體結構之高分 201209442 子膜,且將其所含聚合體之重量百分比提升至一定程度, 因而增加高分子膜之聚合體之對掌性的轉印率。因此,本 發明只需在膜材中充填非對掌性異方性液體或非對掌性 液晶單體之聚合體,例如非對掌性液晶,如向列型液晶, 而不需使用膽固醇液晶,並且可降低液晶充填的量,即能 使高分子膜具有布拉格反射之光子晶體特性,因而能大幅 降低成本,且本發明之高分子膜可應用作為顯示模組或背 光模組。 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之一 種具有光子晶體結構之高分子膜及反射式液晶顯示模組, 其中相同的元件將以相同的參照符號加以說明。 圖4為本發明較佳實施例之一種具有光子晶體結構之 高分子臈2包含一膜材21以及一非對掌性異方性液體 (achiral anisotropic liquid)22。膜材所含聚合體(p〇lymer) 之重量百分比係佔高分子膜2的20%與90%之間》在本實 施例中,聚合體可由雙官能基單體聚合而成,雙官能基單 體例如為具有液晶相之單體,如BAHB ( 4,4,-Bis (6-acryloyxy-hexyloxy ) biphenyl ),液晶相之單體能夠藉 由光聚合反應而達到穩定液晶的配向效果。在本實施例 中,隨著單體的濃度不同,聚合後所產生的聚合體的重量 百分比亦有所不同,可佔高分子膜2的20%與90%之間。 非對掌性異方性液體22充填於膜材21。非對掌性^^ 9 201209442 方性液體例如為非對掌性液晶,如向列型液晶(nematic LC)或層列型液晶(smectic LC)。另外,在其他實施例中, 可再將非對掌性異方性液體22聚合,而使其成為非對掌 性液晶單體之聚合體,如此,高分子膜2不含液體,較為 穩定、方便使用,且可不需封邊。並且此態檬之高分子膜 皆為聚合體。 在本實施例中,光子晶體結構為膽固醇液晶結構,係 由膽固醇液晶轉印(imprint)而成,其中,膽固醇液晶可 藉由非對掌性液晶(achiral LC )混合光學活性添加劑 (chiral dopant)而形成。由於在所製成的高分子膜中皆不 需使用昂貴的膽固醇液晶,故可大幅降低製造成本。 由於習知技術之高分子安定型膽固醇液晶(pSCT) 中’係利用添加少量的單體(濃度在1〇〇/〇以下)聚合為聚 合體,以致其對掌性的轉印率不足,所以需要膽固醇液晶 來支持額外的對掌性才能展現出充足的光子晶體結^ 布拉格反射特性ϋ本發明藉由多次的驗證,發 高單體及聚合體之重量百分比到—定比例,便能使高 膜展現出充足的光子諸結構及布拉格反射特性= 發明不需使用昂責的膽固醇液晶,而可使用 性液體(如非對掌性液晶),且所使用 八 . %曰曰置也可大 減9、,因而降低產品成本並提升產品競爭力。 田 以下舉例§兌明本實施例之面分子膜之製造、 5所示,製造方法可包含步驟s〇1至步騍法如圖 非對掌性液 步驟S01 : —混合步驟,至少混合 201209442 (achiral liquid crystal )、一光學活性添加劑(chiral dopant)、一單體(monomer )及一光起始劑(photo initiator) 而製成一液晶單體混合物(liquid-crystal-monomer mixture) ’使液晶單體混合物充填於一透光容器。在此步 驟中’可先混合非對掌性液晶、單體及光起始劑,再添加 光學活性添加劑於混合物中,然後再將液晶單體混合物充 填於一透光容器;另外,亦可在透光容器中混合成液晶單 _ 體混合物。透光容器之内側表面經平行配向處理而達到配 ' 向效果,使液晶單體混合物呈現平面螺旋型(planar texture)。在此步驟中,亦可混合對掌性液晶、單體及光起 始劑’此時即可不需添加光學活性添加劑於混合物中。對 掌性液晶如所有的膽固醇液晶。 於本實施例中,非對掌性液晶係指不具對掌性 (chirality )之液晶’例如向列型液晶或層列型液晶。光 學活性添加劑可誘導非對掌性液晶產生螺旋排列,並而賦 •予其對掌性’光學活性添加劑例如為氯基聯苯 (cyanobiphenyl )。單體可為單官能基或雙官能基單體, 於此係以雙官能基單體為例,其可為具有液晶相之單體, 以藉由光聚合反應而達到穩定液晶的配向效果,單體例如 疋 BAHB ( 4,4 -Bis ( 6-acryloyxy-hexyloxy) biphenyl)。單 體亦可以單官能基單體摻混多官能基單體,並可以形成交 聯性高分子’避免溶於溶劑。光起始劑的作用在於使單體 於照光時產生光聚合反應。 在本實施例中,非對掌性液晶之重量百分比介於lO^/j 11 201209442 與80%之間,單體之重量百分比介於20%與90%之間。於 此,非對掌性液晶、光學活性添加劑、單體及光起始劑之 混合比例為53.3%、13.3%、33.3%及0.1%。於室溫下混合 均勻後,液晶單體混合物呈現膽固醇液晶相。於此需注意 者,本實施例藉由提高單體之重量百分比(習知在10%以 下)可增加高分子膜之聚合體之對掌性的轉印率,這有助 於提升高分子膜展現充足的光子晶體結構及布拉格反射 特性。 步驟S02 : —照光步驟,對液晶單體混合物照光。於 此係藉由紫外光(例如254nm)進行照光,經光照後,單 體產生光聚合反應而形成聚合體,並且將液晶之對掌性轉 印至聚合體上。此照光步驟,可為雷射掃描、或光罩曝光。 步驟S03 : —液晶去除步驟,去除非對掌性液晶而形 成一高分子膜。於此步驟中,藉由一有機溶劑去除液晶, 有機溶劑例如是丙酮或氯仿。將液晶由高分子膜中完全去 除,並使其乾燥。由於雙官能基具有耐性,故單體在架橋 (crosslink)後就不溶解,故可避免有機溶劑除去聚合體。 藉由步驟S03可形成膜材21。 步驟S04 : —充填步驟,充填一非對掌性異方性液體 22於膜材21。非對掌性異方性液體係指不具對掌性但具 異方性之液體,例如向列型液晶或層列型液晶。藉由具光 子晶體結構之高分子膜能夠將對掌性提供給非對掌性異 方性液體,而使高分子膜具有布拉格反射之特性,其反射 光線之波長係由布拉格方程式決定。於此,光子晶體結構 12 201209442 係以膽m㈣晶結構為例。料,在充填雜掌性異方性 液體之後,高分子獏之製造方法可更包含使非對掌性異方 性液體更進-步被聚合。如此高分子膜不含液體,較為穩 定、方便使用,且聚合後町不需封邊。 圖6顯不高分子膜A及B (充填不同液體)對不同波 長之反射率的示意圖。因所具有之折射率不同,而顯現出 不同波長之反射特性;所有光反射現象都符合下列 方程式:λ=ηΡ(η為平均折射率)。於此,高分子膜Α及Β 所充填的液晶之平均折射率分别為157及163。 上述之製造方法僅為舉例,並非用以限制本發明。 另外’本發明不限制高分子膜之聚合體的重量百分比 及材料種類’ SI其係依據產品需求及製造過程而可有所改 變及調整。 請參照圖7所示,其係為本發明較德實施例之高分子 膜所應用之反射歧晶I!示模叙3。反射歧晶顯示模組 3包含一具有光子晶體結構之高分子膜2以及一驅動電路 4间刀子膜2已於上述實施例詳述,故於此不再贅述。 驅動電路4係轉非對掌性液晶轉動Μ制其操作於不同 狀態以讓光線反射或穿逯而達到顯示目的。 在本實施例中,高分子膜2具有複數晝素Ρ,各晝素 U複數子ι素ρ 11,於此,子書素p 11係' 以四個為例, 分別為R、G、B、R構成—晝素卜該等子晝素pu之螺 距(P1tch)或折射率不同 2之光線反射符 合Bra辟方卷彳” 二.λ~ηΡ (η為平均折射率)。故本發明藉再] 13 201209442 設置不同螺距、或不同折射率、或不同螺距及折射率之子 晝素,可達到顯示之目的,例如作為靜態晝面或動態晝面 之顯示。以本實施例來說,由於各晝素具有三原色,故可 顯示多種顏色,而達到彩色顯示之效果。 以不同折射率來說,各別子晝素P11可藉由包含不同 液晶而達到不同的折射率。以不同螺距而言,可藉由對各 別子晝素P11之照光次數或照射光線波長、強度的不同而 改變各別子晝素P11的螺距。 驅動電路4可包含一掃描驅動電路41及一資料驅動 電路42以驅動高分子膜2之一薄膜電晶體基板。掃描驅 動電路41可傳送掃描訊號Ss至薄膜電晶體基板以導通電 晶體,貢料驅動電路42可傳送貨料訊號Sd以驅動電晶 體,並施加電壓以使液晶操作於不同狀態而達到顯示目 的。 需注意的是,本實施例之反射式液晶顯示模組3不僅 減少液晶的使用量且不必需使用膽固醇液晶而降低成 本,此外,高分子膜2本身就具有習知液晶顯示模組中彩 色渡光層及液晶層的功能,因而更輕薄且降低成本,並且 本發明之反射式液晶顯示模組3係為可撓(flexible)。 另外,亦可藉由溫度所導致之異方性遷移至等方性之 折射率變化,而使高分子膜2達到反射色彩變化,並可用 於感溫性圖紋設計;當然也可應用溫控器來主動控制反射 色彩變化。 上述高分子膜2可與一透光元件連結以擴展其應用 201209442 性。透光元件可例如為玻璃、高分子膜(例如離型紙、塑 膠膜)。藉由不同介質與高分子膜連結,可讓高分子膜應 用於不同場合,例如藉由設置於玻璃可讓高分子膜應用於 顯示模組,藉由設置於另一高分子膜可讓高分子膜以黏著 方式直接貼附於需顯示的位置,或是藉由設置於離型紙可 讓高分子膜以產品的方式販賣給組裝廠。如圖8A所示, 高分子膜2係夾設於兩玻璃基板Gl、G2之間,且高分子 膜2之周圍藉由封膠S封住;當然,若高分子膜2所含皆 是聚合體而無液體,則不需封膠S。如圖8B所示,高分子 膜2係與另一高分子膜PF1連結。如圖8C所示,高分子 膜2係與一高分子膜PF2 (或複數高分子膜)連結,並被 其包覆。上述高分子膜與透光元件之連結關係僅為舉例, 並非用以限制本發明。 圖9至圖11分別顯示本發明較佳實施例之不同態樣 之高分子膜。 如圖9所示,一透明導電膜TC可貼合於高分子膜2 (或2a)之一側,於此係以兩透明導電膜TC分別貼合於 高分子膜2之上下兩側為例。當然,若高分子膜2僅於上 側用於顯示,則位於下側之導電膜可為非透光。藉由透明 導電膜可控制充填於高分子膜内之異方性液體分子配 列、及折射率,而能改變反射光顏色。 如圖10所示,複數高分子膜2疊設而成為一多層結 構之高分子膜,且該等高分子膜2可分別利用左旋液晶及 右旋液晶製成,藉此可增強高分子膜之反射光亮度。由吟 L. 15 201209442 使用右旋〖生或左旋性膽固醇液晶作轉印s理論上僅能反射 一 =(50%)入射光,因此若將左旋及右旋膽固醇液晶所 複製之高分切相重疊,即可製得全光反射(10G%)之光 學膜。 如圖11所不,高分子膜2可設置於一太陽能電池元 牛 由於反射光波長可加以控制,因此本發明可應用於 太陽能電池之表面彩色設計,使太陽能電池元件SC所需 Φ 之波長光通過高分子膜2,利用其他可見綠長之反射, 可設計太陽能電池外觀彩色W紋;使太陽能電池可免除傳 統黑色之古板外觀。201209442 VI. Description of the Invention: [Technical Field] The present invention relates to a two-molecular film, and more particularly to a polymer film having a photonic crystal structure and a reflective liquid crystal display module. [Prior Art] With the development of Flat Panel Display (FPD) technology, and because the flat display device has the advantages of slimness, low power consumption and no radiation, it has gradually replaced the traditional cathode ray tube (Cathode Ray). Tube, CRT) display device, and applied to a variety of electronic products. Among them, 'Cholesteric Liquid Crystal is also applied to display technology', especially to bistable displays such as electronic paper. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the molecular arrangement of cholesteric liquid crystal ruthenium, which may be a leather cholesteric liquid crystal or a non-pivoting liquid crystal to which a palmitic compound is added. Cholesterol liquid crystals basically have an asymmetric chiral center. The liquid crystal composed of such molecules has a molecular parallel packing layer and a layer parallel to each other. In each layer, the molecules have a nematic type, and t are aligned in the same direction, and the major axis and the layer are parallel. The long axis direction of the molecules between the adjacent two layers is regularly rotated by a certain angle, and the layers are rotated to form a spiral structure. The long-axis direction of the liquid crystal molecules is rotated by a circle of 360 and then returned to the same direction and form a pitch P. This type of liquid helium knife is based on a special spiral structure, which can deflect the incident light and scatter the special The wavelength of light, and the pitch determines the 201209442 wavelength of the reflected light of its strongest column. 2 and 3 are schematic views showing the molecular arrangement of cholesteric liquid crystals. As shown in Fig. 2, the cholesteric liquid crystal 11 is sandwiched by two glass substrates 12, 13, and a black absorbing layer 设有 is provided at the bottom. When there is no applied electric field, the cholesteric liquid crystal 11 is a planar texture, and since its helical period (pitch) is approximately equal to the wavelength of light, this periodic structure can cause Bragg reflection of light of a specific wavelength. The peak of the reflected light is λ = η Ρ (n is the average refractive index). Typically, it can be used to reflect light in a particular wavelength range' applied to optical components and liquid crystal display designs. Figure 3 shows a vertical spiral type cholesteric liquid crystal column. At present, the optical film design with Bragg reflection characteristics can be designed from a cholesterol liquid crystal, including a pure cholesterol liquid crystal film or a molecular film blended with a cholesteric liquid crystal. Among them, in the polymer-stabilized cholesteric liquid crystal, a monomer having a small addition of I: (concentration is 10% or less) is used to disperse a monomer-forming polymer in a cholesteric liquid crystal, so that the cholesteric liquid crystal reaches a stable planar spiral type. The effect of Bragg reflection. However, since the cholesterol liquid crystal is expensive, the product cost is greatly increased; therefore, (4) has been widely used. Therefore, it has become one of the important topics in the industry to provide a photonic crystal-like polymer-reflecting material module without using a cholesteric liquid crystal, which can greatly reduce the product cost. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a polymer film and a reflection type liquid crystal display module which can have a photonic crystal structure without requiring 201209442 cholesteric liquid crystal, and can greatly reduce the product cost. To achieve the above object, a polymer film having a photonic crystal structure according to the present invention comprises a film material and a non-pivot anisotropic liquid. The weight percentage of the polymer contained in the film is between 20% and 90% of the polymer film. A non-pivoting anisotropic liquid is filled in the membrane. To achieve the above object, a polymer film having a photonic crystal structure according to the present invention comprises a film and a polymer of a non-pivoting liquid crystal monomer. The weight percentage of the polymer contained in the film is between 20% and 90% of the polymer film. The polymer of the non-pivoting liquid crystal monomer is filled in the film. Thus, the polymer film does not contain liquid, is relatively stable and convenient to use, and does not require edge sealing. Here, the polymer film is a polymer. In one embodiment, the non-pivoting anisotropic liquid is a non-pseudo-liquid crystal such as a nematic LC or a smectic LC. In one embodiment, the polymerization system is polymerized from a difunctional monomer such as a monomer having a liquid crystal phase such as BAHB (4,4'-Bis (6-acryloyxy-hexyloxy) biphenyl) The effect of stabilizing the alignment of the liquid crystal is achieved by photopolymerization. The monomer may also be a monofunctional monomer to which a polyfunctional monomer is blended, and a crosslinkable polymer may be formed to avoid dissolution in a solvent. In one embodiment, the photonic crystal structure is a cholesteric liquid crystal structure, and the system is imprinted by cholesteric liquid crystal, wherein the cholesteric liquid crystal can be mixed with an optically active additive 201209442 (chiral) Formed by dopants. Since expensive cholesteric liquid crystals are not required to be used in the produced polymer film, the manufacturing cost can be greatly reduced. Further, the present invention also discloses a reflective liquid crystal display module using the above polymer film. It comprises a polymer film having a photonic crystal structure and a driving circuit. The polymer film comprises a film and a non-pivoted liquid crystal. The weight percentage of the polymer contained in the film is between 20 Å and 〇 and 90% of the polymer film. A non-pivoting anisotropic liquid is filled in the membrane. The drive circuit drives the non-pivoting liquid crystal. In one embodiment, the non-pivoting liquid crystal is a nematic liquid crystal or a smectic liquid crystal. In one embodiment, the polymerization system is polymerized from a difunctional monomer such as a monomer having a liquid crystal phase such as BAHB (4,4'-Bis (6-acryloyxy-hexyloxy) biphenyl ), the alignment effect of stabilizing the liquid crystal is achieved by photopolymerization. In one embodiment, the photonic crystal structure is a cholesteric liquid crystal structure, which is formed by imprinting of cholesterol liquid crystal, wherein the cholesteric liquid crystal can be mixed with an optically active additive by chiral LC (achiral LC) (chiral Formed by dopants. Since expensive cholesteric liquid crystals are not required to be used in the produced polymer film, the manufacturing cost can be greatly reduced. In one embodiment, the polymer film has a plurality of halogens, each of the pixels having a plurality of sub-pixels having a different pitch or refractive index. Since the light reflection of the polymer film is in accordance with the Bragg equation: λ = η Ρ (η is the average refractive index. Therefore, the present invention can achieve display by setting different pitches, or different refractive indices, or sub-pixels of different pitches and refractive indices. [A] 7 201209442 For example, as a display of a static facet or a dynamic facet. In an embodiment, the polymer film can be disposed on a solar cell element. Since the wavelength of the reflected light can be controlled, the present invention can be applied to The color design of the surface of the solar cell enables the wavelength light of the solar cell to pass through the polymer film, and the reflection of other visible wavelengths can be used to design the color pattern of the solar cell; the solar cell can be exempted from the traditional black appearance. In an embodiment, the polymer film is disposed in a backlight module as a light enhancement film. In an embodiment, the polymer film may be coupled to a light transmissive element, such as a glass or a polymer film (eg, Type paper or plastic film). By connecting different media to the polymer film, the polymer film can be applied to different occasions, for example by The glass is applied to the display to allow the polymer film to be applied to the display, and the polymer film can be directly attached to the position to be displayed by being attached to the polymer film, or the polymer can be disposed on the release paper. The film is sold as a product to an assembly factory. To achieve the above object, the present invention also discloses an optical film having a multilayer structure comprising a plurality of the above-mentioned polymer films, each of which has a left-handed and right-handed nature. The liquid crystal is reproduced, thereby enhancing the brightness of the reflected light of the polymer film. Since the right-handed or left-handed cholesterol liquid crystal is used for the transfer, theoretically only half (50%) of the incident light can be reflected, so if left and right-handed The high-reflection (100%) optical film can be obtained by overlapping the polymer films replicated by the cholesteric liquid crystal. As described above, the present invention provides a high-resolution 201209442 sub-film having a photonic crystal structure, and The weight percentage of the polymer-containing body is increased to a certain extent, thereby increasing the transfer rate of the polymer of the polymer film. Therefore, the present invention only needs to fill the film with a non-pivoting anisotropic liquid. Or a polymer of a non-pivoting liquid crystal monomer, such as a non-pivoting liquid crystal, such as a nematic liquid crystal, without using a cholesteric liquid crystal, and reducing the amount of liquid crystal filling, that is, the polymer film has a Bragg reflection. The photonic crystal characteristics can greatly reduce the cost, and the polymer film of the present invention can be applied as a display module or a backlight module. [Embodiment] Hereinafter, a preferred embodiment of the present invention will be described with reference to the related drawings. The polymer element of the photonic crystal structure and the reflective liquid crystal display module, wherein the same elements will be denoted by the same reference symbols. Fig. 4 shows a polymer 臈2 having a photonic crystal structure according to a preferred embodiment of the present invention. The film 21 and an achiral anisotropic liquid 22. The weight percentage of the polymer (p〇lymer) contained in the film is between 20% and 90% of the polymer film 2 In this embodiment, the polymer may be polymerized from a difunctional monomer such as a monomer having a liquid crystal phase such as BAHB (4,4,-Bis (6-acryloyxy-hexyloxy) bipheny l), the monomer of the liquid crystal phase can achieve the effect of stabilizing the alignment of the liquid crystal by photopolymerization. In the present embodiment, the weight percentage of the polymer produced after the polymerization differs depending on the concentration of the monomer, and may be between 20% and 90% of the polymer film 2. The non-palpharic anisotropic liquid 22 is filled in the membrane 21. Non-palphasity ^^ 9 201209442 The square liquid is, for example, a non-palphatic liquid crystal such as a nematic LC or a smectic LC. In addition, in other embodiments, the non-pivoting anisotropic liquid 22 can be further polymerized to form a polymer of a non-pivoting liquid crystal monomer. Thus, the polymer film 2 does not contain a liquid and is relatively stable. Easy to use and no need to seal. And the polymer film of this state is a polymer. In this embodiment, the photonic crystal structure is a cholesteric liquid crystal structure, which is imprinted by cholesteric liquid crystal, wherein the cholesteric liquid crystal can be mixed with a chiral dopant by an achiral LC. And formed. Since expensive cholesteric liquid crystals are not required to be used in the produced polymer film, the manufacturing cost can be greatly reduced. Since the polymer-type cholesteric liquid crystal (pSCT) of the prior art is polymerized into a polymer by adding a small amount of a monomer (concentration of 1 〇〇 / 〇 or less), the transfer rate to the palm is insufficient, so The need for cholesteric liquid crystals to support additional palmarity in order to exhibit sufficient photonic crystal structure. Bragg reflection characteristics. The present invention enables multiple times to increase the weight percentage of monomer and polymer to a predetermined ratio. The high film exhibits sufficient photonic structure and Bragg reflection characteristics = the invention does not require the use of cholesteric liquid crystal, but the usable liquid (such as non-palm liquid crystal), and the use of 8% can also be large Decrease by 9, thereby reducing product costs and increasing product competitiveness. The following examples illustrate the manufacture of the molecular film of the present embodiment, as shown in FIG. 5, and the manufacturing method may include the steps s〇1 to 骒 骒 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 如图 — — — — — — — 2012 2012 2012 2012 2012 2012 2012 2012 2012 Achiral liquid crystal ), a chiral dopant, a monomer, and a photo initiator to form a liquid crystal-monomer mixture The body mixture is filled in a light-transmissive container. In this step, 'a non-pivoting liquid crystal, a monomer and a photoinitiator may be mixed first, and then an optically active additive is added to the mixture, and then the liquid crystal monomer mixture is filled in a light-transmissive container; The light-transmitting container is mixed into a liquid crystal monomer mixture. The inner surface of the light-transmissive container is subjected to a parallel alignment treatment to achieve a matching effect, so that the liquid crystal monomer mixture exhibits a planar texture. In this step, it is also possible to mix the palm liquid crystal, the monomer and the photoinitiator. Thus, it is not necessary to add an optically active additive to the mixture. For palm liquid crystals such as all cholesterol liquid crystals. In the present embodiment, the non-pivoting liquid crystal refers to a liquid crystal which does not have a chirality, such as a nematic liquid crystal or a smectic liquid crystal. The optically active additive induces a helical alignment of the non-pivoted liquid crystal and imparts a palmitic optical active additive such as cyanobiphenyl. The monomer may be a monofunctional or difunctional monomer, and the bifunctional monomer is exemplified herein, which may be a monomer having a liquid crystal phase to achieve a stable liquid crystal alignment effect by photopolymerization. The monomer is, for example, BAHB (4,4-Bis (6-acryloyxy-hexyloxy) biphenyl). The monomer may also be a monofunctional monomer to which a polyfunctional monomer is blended, and a crosslinkable polymer may be formed to avoid dissolution in a solvent. The photoinitiator acts to cause photopolymerization of the monomer upon exposure to light. In this embodiment, the weight percentage of the non-pivoting liquid crystal is between 10%/j 11 201209442 and 80%, and the weight percentage of the monomer is between 20% and 90%. Thus, the mixing ratio of the non-pivoted liquid crystal, the optically active additive, the monomer, and the photoinitiator was 53.3%, 13.3%, 33.3%, and 0.1%. After mixing uniformly at room temperature, the liquid crystal monomer mixture exhibited a cholesteric liquid crystal phase. It should be noted that in this embodiment, by increasing the weight percentage of the monomer (known to be less than 10%), the transfer rate of the polymer of the polymer film can be increased, which helps to enhance the polymer film. Shows sufficient photonic crystal structure and Bragg reflection characteristics. Step S02: In the illuminating step, the liquid crystal monomer mixture is illuminated. Here, the light is irradiated by ultraviolet light (for example, 254 nm), and after the light is irradiated, the monomer is photopolymerized to form a polymer, and the liquid crystal is transferred to the polymer. This illumination step can be for laser scanning or reticle exposure. Step S03: - a liquid crystal removing step of removing a non-pivoting liquid crystal to form a polymer film. In this step, the liquid crystal is removed by an organic solvent such as acetone or chloroform. The liquid crystal is completely removed from the polymer film and allowed to dry. Since the difunctional group is resistant, the monomer does not dissolve after the crosslinking, so that the organic solvent can be prevented from removing the polymer. The film 21 can be formed by the step S03. Step S04: - a filling step of filling a non-pivoted anisotropic liquid 22 to the membrane 21. A non-pivoting anisotropic liquid system refers to a liquid that does not have a palmarity but is anisotropic, such as a nematic liquid crystal or a smectic liquid crystal. The polymer film having a photonic crystal structure can provide the palmarity to the non-pivoting anisotropic liquid, and the polymer film has the characteristics of Bragg reflection, and the wavelength of the reflected light is determined by the Bragg equation. Here, the photonic crystal structure 12 201209442 is exemplified by a bile (tetra) crystal structure. After the filling of the heterozygous anisotropic liquid, the method for producing the polymer enthalpy may further comprise polymerizing the non-pivoting anisotropic liquid further. Such a polymer film does not contain a liquid, is relatively stable and convenient to use, and does not require edge sealing after polymerization. Figure 6 shows a schematic representation of the reflectance of polymer films A and B (filled with different liquids) for different wavelengths. Due to the different refractive indices, the reflection characteristics of different wavelengths are exhibited; all the light reflection phenomena conform to the following equation: λ = η Ρ (η is the average refractive index). Here, the average refractive indices of the liquid crystals filled with the polymer film Β and Β are 157 and 163, respectively. The above manufacturing method is merely an example and is not intended to limit the present invention. Further, the present invention does not limit the weight percentage of the polymer of the polymer film and the type of material 'SI' which may be changed and adjusted depending on the product requirements and the manufacturing process. Referring to Fig. 7, it is a reflection crystallization I used in the polymer film of the comparative embodiment of the present invention. The reflective disparate display module 3 includes a polymer film 2 having a photonic crystal structure and a driver circuit 4. The knife film 2 is described in detail in the above embodiments, and thus will not be described herein. The driving circuit 4 rotates the non-pivoting liquid crystal to operate in different states to reflect or penetrate the light for display purposes. In the present embodiment, the polymer film 2 has a plurality of bismuth quinones, and each auxin U complex number ρ 11, 11, wherein the sub-study p 11 series 'takes four as an example, respectively R, G, B , R constitutes - 昼素卜 The pitch of the 昼 pu pu pu (P1tch) or the refractive index of the difference of 2 is in accordance with the Bra 彳 彳 二 二 λ η η η η η η η Further] 13 201209442 Set different pitches, or different refractive index, or different pitch and refractive index of the sub-tendin, can achieve the purpose of display, for example, as a static or dynamic facet display. In this embodiment, due to each The alizarin has three primary colors, so it can display a variety of colors to achieve the effect of color display. In terms of different refractive indices, each sub-small P11 can achieve different refractive indices by including different liquid crystals. The pitch of the individual sub-small P11 can be changed by the number of illuminations of the individual sub-small pixels P11 or the wavelength and intensity of the illumination light. The driving circuit 4 can include a scan driving circuit 41 and a data driving circuit 42 for driving. Thin film transistor base of polymer film 2 The scan driving circuit 41 can transmit the scan signal Ss to the thin film transistor substrate to conduct the crystal, and the tributary drive circuit 42 can transmit the material signal Sd to drive the transistor, and apply a voltage to operate the liquid crystal in different states for display purposes. It should be noted that the reflective liquid crystal display module 3 of the present embodiment not only reduces the amount of liquid crystal used, but also does not need to use cholesteric liquid crystal to reduce the cost. In addition, the polymer film 2 itself has the color in the conventional liquid crystal display module. The function of the light-passing layer and the liquid crystal layer is thus lighter and lower, and the cost is reduced, and the reflective liquid crystal display module 3 of the present invention is flexible. In addition, the anisotropy caused by temperature can be transferred to The isotropic refractive index changes, so that the polymer film 2 reaches the reflection color change, and can be used for the temperature sensitive pattern design; of course, the temperature controller can also be used to actively control the reflection color change. The above polymer film 2 can be A light-transmitting element is joined to expand its application 201209442. The light-transmitting element can be, for example, a glass or a polymer film (for example, a release paper or a plastic film). The medium is connected to the polymer film, and the polymer film can be applied to different occasions. For example, the polymer film can be applied to the display module by being disposed on the glass, and the polymer film can be adhered by being disposed on another polymer film. The method is directly attached to the position to be displayed, or the polymer film can be sold to the assembly factory as a product by being disposed on the release paper. As shown in FIG. 8A, the polymer film 2 is sandwiched between the two glass substrates G1. Between G2 and G2, and the periphery of the polymer film 2 is sealed by the sealant S; of course, if the polymer film 2 contains all of the polymer and no liquid, the sealant S is not required. As shown in Fig. 8B, The polymer film 2 is connected to the other polymer film PF1. As shown in Fig. 8C, the polymer film 2 is bonded to and coated with a polymer film PF2 (or a plurality of polymer films). The connection relationship between the above polymer film and the light-transmitting element is merely an example and is not intended to limit the present invention. 9 to 11 respectively show different aspects of the polymer film of the preferred embodiment of the present invention. As shown in FIG. 9, a transparent conductive film TC can be attached to one side of the polymer film 2 (or 2a), and the two transparent conductive films TC are respectively attached to the upper and lower sides of the polymer film 2 as an example. . Of course, if the polymer film 2 is used for display only on the upper side, the conductive film located on the lower side may be non-transparent. The transparent conductive film can control the arrangement of the anisotropic liquid molecules and the refractive index filled in the polymer film, and can change the color of the reflected light. As shown in FIG. 10, the plurality of polymer films 2 are stacked to form a polymer film having a multilayer structure, and the polymer films 2 can be made of a left-handed liquid crystal and a right-handed liquid crystal, respectively, thereby reinforcing the polymer film. The brightness of the reflected light. Since L. 15 201209442 uses right-handed or left-handed cholesteric liquid crystal as the transfer s, it can theoretically reflect only one = (50%) incident light, so if the left-handed and right-handed cholesteric liquid crystals are replicated, the high-resolution cut-off phase By overlapping, an all-optical reflection (10 G%) optical film can be obtained. As shown in FIG. 11, the polymer film 2 can be disposed on a solar cell, and the wavelength of the reflected light can be controlled. Therefore, the present invention can be applied to the surface color design of the solar cell, so that the wavelength of the Φ light required by the solar cell element SC is required. Through the polymer film 2, the other visible green long reflection can be used to design the color W pattern of the solar cell appearance; the solar cell can be exempted from the traditional black appearance.

綜上所述,由於習知技術之高分子安定型膽固醇液晶 (PSCT)巾’係利用添加少量的單體〇農度在㈣以下) 聚合為聚合體’以致其對掌性的轉印率不足,所以需要膽 固醇液晶來支持額外的對掌性才能展現出充足的光子晶 體結構及布拉格反射特性。然而,本發明藉由多次的驗 證,發現提高單體及聚合體之重量百分比到一定比例,便 旎使咼分子膜展現出充足的光子晶體結構及布拉格反射 特性。使得本發明之高分子膜不需使用昂貴的膽固醇液 晶,而可使用非對掌性異方性液體(如非對掌性液晶)或 非對掌性液晶單體之聚合體,且所使用的液晶量也可大幅 下降,®而降低產品成本並提升產品競爭力。 以上所述僅為舉例性, 本發明之㈣與料,祕祕者。任何未· 應包含於後附之申請專利範=狀等讀改或變更’ 16 201209442 【圖式簡單說明】 圖1為膽固醇液晶之分子排列的示意圖; 圖2為膽固醇液晶為平面螺旋型排列的示意圖; 圖3為膽固醇液晶為垂直螺旋型排列的示意圖; 圖4為本發明較佳實施例之一種具有光子晶體結構之 高分子膜的示意圖及放大示意圖; 圖5為本發明較佳實施例之一種具有光子晶體結構之 高分子膜之製造方法的流程圖; 圖6為高分子膜對不同波長之反射率的示意圖; 圖7為本發明較佳實施例之一種反射式液晶顯示模組 的不意圖, 圖8A至圖8C為本發明較佳實施例之高分子膜與透光 元件連結的示意圖; 圖9為透明導電膜貼合於高分子膜之兩侧的示意圖; 圖10為複數高分子膜疊設的示意圖;以及 圖11為高分子膜設置於太陽能電池元件的示意圖。 【主要元件符號說明】 11 :膽固醇液晶 12、13 :玻璃基板 14 :黑色吸收層 2:高分子膜 21 :膜材 22 :非對掌性異方性液體 F ς 17 201209442 4 :驅動電路 41 :掃描驅動電路 42 :資料驅動電路 PF1、PF2 :高分子膜 5 :封膠 SC :太陽能電池元件 Sg :掃描訊號 Sd ·貧料訊號 S01〜S04 :具有光子晶體結構之高分子膜之製造方法步驟 TC :透明導電膜In summary, the polymer stabilized cholesteric liquid crystal (PSCT) towel of the prior art is polymerized into a polymer by adding a small amount of monomer to the degree of susceptibility (below), so that the transfer rate to the palm is insufficient. Therefore, cholesteric liquid crystals are needed to support additional palmarity in order to exhibit sufficient photonic crystal structure and Bragg reflection characteristics. However, the present invention has been found to improve the weight percentage of the monomer and the polymer to a certain ratio by a plurality of tests, so that the ruthenium molecular film exhibits sufficient photonic crystal structure and Bragg reflection characteristics. The polymer film of the present invention does not require the use of an expensive cholesteric liquid crystal, but a polymer of a non-pivot anisotropic liquid (such as a non-pivotic liquid crystal) or a non-pivoting liquid crystal monomer can be used, and the used The amount of liquid crystal can also be drastically reduced, reducing product costs and increasing product competitiveness. The above description is only exemplary, and the (four) materials and secrets of the present invention. Anything that should be included in the attached patent application form = change or change ' 16 201209442 [Simplified illustration of the drawing] Figure 1 is a schematic diagram of the molecular arrangement of cholesteric liquid crystal; Figure 2 is a condensed liquid crystal of liquid crystal 3 is a schematic view showing a cholesteric liquid crystal in a vertical spiral arrangement; FIG. 4 is a schematic view and an enlarged schematic view showing a polymer film having a photonic crystal structure according to a preferred embodiment of the present invention; A flow chart of a method for manufacturing a polymer film having a photonic crystal structure; FIG. 6 is a schematic view showing a reflectance of a polymer film at different wavelengths; FIG. 7 is a view of a reflective liquid crystal display module according to a preferred embodiment of the present invention; 8A to 8C are schematic views showing the connection of a polymer film and a light-transmitting element according to a preferred embodiment of the present invention; FIG. 9 is a schematic view showing a transparent conductive film attached to both sides of a polymer film; A schematic diagram of a film stack; and FIG. 11 is a schematic view of a polymer film disposed on a solar cell element. [Description of main component symbols] 11 : Cholesteric liquid crystal 12, 13 : Glass substrate 14 : Black absorption layer 2 : Polymer film 21 : Film 22 : Non-pivoting anisotropic liquid F ς 17 201209442 4 : Drive circuit 41 : Scanning drive circuit 42: data driving circuit PF1, PF2: polymer film 5: sealing gel SC: solar cell element Sg: scanning signal Sd · poor material signal S01 to S04: manufacturing method of polymer film having photonic crystal structure Step TC : Transparent conductive film

Claims (1)

201209442 七、申請專利範圍: .1、一種具有光子晶體結構之高分子膜,包含: 一膜材,其聚合體之重量百分比係佔該高分子膜的20% 與90%之間;以及 一非對掌性異方性液體,充填於該膜材。 2、 一種具有光子晶體結構之高分子膜,包含: 一膜材,其聚合體之重量百分比係佔該高分子膜的 20%與90%之間;以及 參 一非對掌性液晶單體之聚合體,充填於該膜材。 3、 如申請專利範圍第1項所述之高分子膜,其中該非對 掌性異方性液體為非對掌性液晶。 4、 如申請專利範圍第3項所述之高分子膜,其中該非對 掌性液晶為向列型液晶或層列型液晶。 5、 如申請專利範圍第1項或第2項所述之高分子膜,其 中該膜材之聚合體係由雙官能基單體聚合而成。 ¥ 6、如申請專利範圍第1項或第2項所述之高分子膜,其 中該光子晶體結構為膽固醇液晶結構。 7、 如申請專利範圍第1項或第2項所述之高分子膜係與 一透光元件連結。 8、 如申請專利範圍第7項所述之高分子膜,其中該透光 元件為玻璃或高分子膜。 9、 一種反射式液晶顯示模組,包含: 一具有光子晶體結構之高分子膜,包含: 一膜材,其聚合體之重量百分比係佔該高分子膜的 Γ v 19 201209442 20%與90%之間; 一非對掌性液晶,充填於該膜材;以及 一驅動電路,係驅動該非對掌性液晶。 10、 如申請專利範圍第9項所述之反射式液晶顯示模組, 其中該非對掌性液晶為向列型液晶或層列型液晶。 11、 如申請專利範圍第9項所述之反射式液晶顯示模組, 其中該聚合體係由雙官能基單體聚合而成。 12、 如申請專利範圍第9項所述之反射式液晶顯示模組, 其中該光子晶體結構為膽固醇液晶結構。 13、 如申請專利範圍第12項所述之反射式液晶顯示模組, 其中該高分子膜具有複數晝素,各該晝素具有複數子 晝素,該等子晝素之螺距或折射率不同。 14、 如申請專利範圍第1項或第2項所述之高分子膜,其 係設置於一太陽能電池元件。 15、 如申請專利範圍第1項或第2項所述之高分子膜,其 係設置於一背光模組。 16、 如申請專利範圍第1項或第2項所述之高分子膜,其 中一透明導電膜貼合於該高分子膜之一側。 17、 如申請專利範圍第1項或第2項所述之高分子膜,其 係由一溫控器所控制。 18、 一種多層結構之光學膜,其係包含複數如申請專利範 圍第1項所述之高分子膜,該等高分子膜係各別由左 旋及右旋性液晶所複製。 19、 一種多層結構之光學膜,其係包含複數如申請專利範 20 201209442 圍第2項所述之高分子膜,該等高分子膜係各別由左 旋及右旋性液晶所複製。201209442 VII. Patent application scope: 1. A polymer film having a photonic crystal structure, comprising: a film material, the weight percentage of the polymer is between 20% and 90% of the polymer film; The palmitic anisotropic liquid is filled in the membrane. 2. A polymer film having a photonic crystal structure, comprising: a film material, wherein a weight percentage of the polymer is between 20% and 90% of the polymer film; and a non-pivoting liquid crystal monomer The polymer is filled in the film. 3. The polymer film according to claim 1, wherein the non-pivoting anisotropic liquid is a non-pivotic liquid crystal. 4. The polymer film according to claim 3, wherein the non-pivoting liquid crystal is a nematic liquid crystal or a smectic liquid crystal. 5. The polymer film according to claim 1 or 2, wherein the polymerization system of the film is formed by polymerizing a bifunctional monomer. The polymer film according to claim 1 or 2, wherein the photonic crystal structure is a cholesteric liquid crystal structure. 7. The polymer film according to item 1 or 2 of the patent application is linked to a light transmitting member. 8. The polymer film according to claim 7, wherein the light transmissive element is a glass or a polymer film. 9. A reflective liquid crystal display module comprising: a polymer film having a photonic crystal structure, comprising: a film material, the weight percentage of the polymer body constituting the polymer film Γ v 19 201209442 20% and 90% A non-pivoted liquid crystal is filled in the film; and a driving circuit drives the non-pivoting liquid crystal. 10. The reflective liquid crystal display module of claim 9, wherein the non-pivoting liquid crystal is a nematic liquid crystal or a smectic liquid crystal. 11. The reflective liquid crystal display module of claim 9, wherein the polymerization system is formed by polymerizing a bifunctional monomer. 12. The reflective liquid crystal display module of claim 9, wherein the photonic crystal structure is a cholesteric liquid crystal structure. 13. The reflective liquid crystal display module of claim 12, wherein the polymer film has a plurality of halogens, each of the halogens having a plurality of sub-halogens having different pitches or refractive indices. . 14. The polymer film according to claim 1 or 2, which is provided in a solar cell element. 15. The polymer film according to claim 1 or 2, which is disposed in a backlight module. 16. The polymer film according to claim 1 or 2, wherein a transparent conductive film is attached to one side of the polymer film. 17. The polymer film of claim 1 or 2, which is controlled by a temperature controller. 18. A multilayer film optical film comprising a plurality of polymer films as described in claim 1 of the patent application, wherein the polymer films are each reproduced by a left-handed and right-handed liquid crystal. 19. A multilayer film optical film comprising a plurality of polymer films as described in the second paragraph of claim 20 201209442, wherein the polymer films are each reproduced by a left-handed and right-handed liquid crystal. 21twenty one
TW99128546A 2010-08-25 2010-08-25 Polymer film with photonic crystal structure and reflective liquid crystal display module TWI410668B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128546A TWI410668B (en) 2010-08-25 2010-08-25 Polymer film with photonic crystal structure and reflective liquid crystal display module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128546A TWI410668B (en) 2010-08-25 2010-08-25 Polymer film with photonic crystal structure and reflective liquid crystal display module

Publications (2)

Publication Number Publication Date
TW201209442A true TW201209442A (en) 2012-03-01
TWI410668B TWI410668B (en) 2013-10-01

Family

ID=46763610

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128546A TWI410668B (en) 2010-08-25 2010-08-25 Polymer film with photonic crystal structure and reflective liquid crystal display module

Country Status (1)

Country Link
TW (1) TWI410668B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938284A (en) * 2016-05-04 2016-09-14 合肥工业大学 White fluorescence cholesteric liquid crystal device based on chiral ions, and preparation technology thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058147A3 (en) * 1999-06-04 2002-04-24 Eastman Kodak Company Multi-layer dual-polarity light modulating sheet
US6589445B2 (en) * 2000-06-27 2003-07-08 Fuji Photo Film Co., Ltd. Light-reaction type optically active compound, light-reaction type chiral agent, liquid crystal composition, liquid crystal color filter, optical film, recording medium, and method of changing twist structure of liquid crystal
TWI375084B (en) * 2007-11-09 2012-10-21 Chimei Innolux Corp Backlight module and liquid crystal display device employing same
TWI382544B (en) * 2008-09-16 2013-01-11 Nexpower Technology Corp Optical solar module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938284A (en) * 2016-05-04 2016-09-14 合肥工业大学 White fluorescence cholesteric liquid crystal device based on chiral ions, and preparation technology thereof

Also Published As

Publication number Publication date
TWI410668B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
US7351506B2 (en) Polymerization-encapsulated cholesteric liquid crystal for bistable reflective displays
TWI250327B (en) Reflecting board, liquid crystal device and electronic device
US7929106B2 (en) Liquid crystal display comprising a void region and method of manufacturing same
CN104995218A (en) Polymerizable composition
JPH0580302A (en) Liquid crystal electrooptical device
JP2001172634A (en) Liquid crystal composition and liquid crystal photomodulation element using the same composition
TWI410476B (en) Polymer film without cholesteric liquid crystal, polymer film and reflective display module
TWI480635B (en) Cholesteric liquid crystal display and method for fabricating thereof
US20020003600A1 (en) Liquid crystal composition and liquid crystal light modulating device
TWI412551B (en) Manufacturing method of polymer film with photonic crystal structure
TWI410668B (en) Polymer film with photonic crystal structure and reflective liquid crystal display module
US20230258982A1 (en) Light Modulating Device
CN102532567B (en) Method for manufacturing polymeric membrane with photonic crystal structure
CN114170922A (en) Display panel and method for manufacturing the same
JP2005215631A (en) Optical device, its manufacturing method, substrate for liquid crystal orientation, and liquid crystal display device
CN102565898B (en) Polymeric membrane containing no cholesteric liquid crystal, polymeric membrane and reflecting type display module
TWI412579B (en) Manufacturing method of polymer film with photonic crystal structure
KR102118362B1 (en) Precursor composition for liquid crystal layer
JP2000089216A (en) Liquid crystal display device
KR101854005B1 (en) Liquid Crystal Composition
JP7508752B2 (en) Optical Modulation Devices
JP4378893B2 (en) Liquid crystal display element
CN116009316A (en) Brightness enhancement film, preparation method thereof, display substrate and display device
JPH06308472A (en) Liquid crystal display element
JPH11344698A (en) Liquid crystal electro-optic device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees