TW201209408A - Fully integrated micro biosensor - Google Patents

Fully integrated micro biosensor Download PDF

Info

Publication number
TW201209408A
TW201209408A TW99128508A TW99128508A TW201209408A TW 201209408 A TW201209408 A TW 201209408A TW 99128508 A TW99128508 A TW 99128508A TW 99128508 A TW99128508 A TW 99128508A TW 201209408 A TW201209408 A TW 201209408A
Authority
TW
Taiwan
Prior art keywords
sensing
micro
biosensor
glucose
self
Prior art date
Application number
TW99128508A
Other languages
Chinese (zh)
Other versions
TWI434040B (en
Inventor
Ching-Liang Dai
Cheng-Bei Hung
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW99128508A priority Critical patent/TWI434040B/en
Publication of TW201209408A publication Critical patent/TW201209408A/en
Application granted granted Critical
Publication of TWI434040B publication Critical patent/TWI434040B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

There is provided a fully integrated micro biosensor. The invention uses the standard complementary metal oxide semiconductor biomedicine micro electro mechanical systems (CMOS Bio-MEMS) process to manufacture a biosensor embedded with a sensing circuit. The biosensor includes a fork shaped inter-digital electrode structure and an oscillation circuit. A self-assembling single-layer thin film technique is employed to modify the macromolecular compounds on the metal surface to form a self-assembled single-layer thin film. Then, a sensor device with a high unity for a specific substance is arranged on the self-assembled single-layer thin film. When detecting that the thin film absorbs the specific substance, the dielectric coefficient of the aforementioned electrode structure is changed and thus results a capacitance variation. The sensing circuit converts the capacitance variation into a frequency for output, so as to measure the concentration of the specific substance. In addition, the sensing circuit includes an oscillation circuit capable of adjusting the output frequency. The biosensor is integrated onto a portable carrier. The sensor device can be a glucose oxsidase (GOD), or one of the enzyme, antibody, antigen and antibiotics attached with lipopolysaccharide (LPS).

Description

201209408 六、發明說明: 【發明所屬之技術領域】 本發明係與生物_||錢,更詳而言之,係—種包含制電路之微 型整合式生物感測器,特別是葡萄糖微感測器。 【先前技術】 生物感測器的定義為『使用固定化之生物分子(lmmobilized bi〇m〇lecules)結合換能器’用來偵測生體内或生體外的環境化學物質,而 鲁當物質與生物分子發生特異性交互作用後讀取產生的訊號並回應的一種 裝置』。在目前的臨床檢測中’待測的樣品都是含有多種物質,如果要债 測某特定㈣,必須要藉由高度鱗—性反應,才能檢驗出特定物質的訊 號反應,所以生物感測器就是利用此優點來開發。 生物感測H乃湘生物辨餘絲加以分類。其巾醜部分由兩個元 件所構成,生物感測器信號接收或產生部份,如來自於生物體分子、組織 部份或鍾細胞的分子韻元件。另—為_信_換元件,屬於硬體儀 _器元件。所以生物感測器基本上是由三個不同的單元所組成,分別為:⑴ 生物辨識元件;(2)傳感器;(3)訊號處理器。因此要如何將已經用生化方法 分離、純化或者已合成過的特定生物活性分子(bi〇丨〇gjca| materials),能夠精確的結合在反應快速的物理換能器上,來組合成—套生 物感測器反應系統’這才是研究生物感測器的主要目的。 1962年Clark和Lyon兩人首先開發一酵素電極作為生物感測器[註 U ’利用電流式的感測技術來檢測葡萄糖濃度,其原理是用電化學的方式, 在特定的電極上來測量生成物的生成量或反應物的消耗量。 201209408 [li 1: L. C. Clark, Jr., C. Lyons, Electrode System for Continuous Monitoring in Cardiovascular Surgery,Ann. NY Acad. Sci., v〇I. 148, pp. 133-135, 1962.] 2002年Gao等人,提出整合式生物感測器的陣列[註2],其中包含氧 氣和葡萄糖感測H,用來檢測人體的血液代謝參數。在不到—分鐘内即可 檢測局部的氧氣濃度和㈣糖濃度。在薄騎擇上㈣雜半渗透膜和氧 氣半滲透膜,當葡萄糖經過葡萄糖半渗透膜會立即產生過氧化氫,而再由 氧氣感測n感測過氧化氫得知氧氣的含量,間接量測葡雜的含量。在設201209408 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to biological _|| money, more specifically, a micro-integrated biosensor including a circuit, particularly glucose micro-sensing Device. [Prior Art] Biosensors are defined as "using immobilized biomolecules (lmmobilized bi〇m〇lecules) in combination with transducers to detect environmental chemicals in the body or in vitro, and Ludang substances. A device that reads a generated signal and responds after a specific interaction with a biomolecule. In the current clinical tests, the samples to be tested contain a variety of substances. If a certain factor (4) is to be measured, it is necessary to detect the signal reaction of a specific substance by a highly scale-sex reaction, so the biosensor is Use this advantage to develop. The biosensing H is the classification of the biological differentiation silk. The ugly part of the towel consists of two components, the biosensor signal receiving or generating a part, such as a molecular element from a biological molecule, a tissue part, or a clock cell. Another—for the _ letter _ replacement component, belongs to the hardware _ device component. Therefore, the biosensor is basically composed of three different units: (1) biometric components; (2) sensors; and (3) signal processors. Therefore, how to combine specific bioactive molecules (bi〇丨〇gjca| materials) that have been separated, purified or synthesized by biochemical methods can be accurately combined with fast-reacting physical transducers to form a set of organisms. Sensor Response System' This is the main purpose of studying biosensors. In 1962, Clark and Lyon first developed an enzyme electrode as a biosensor. [Note U's use of current-based sensing technology to detect glucose concentration, the principle is to electrochemically measure the product on a specific electrode. The amount of production or the amount of reactant consumed. 201209408 [li 1: LC Clark, Jr., C. Lyons, Electrode System for Continuous Monitoring in Cardiovascular Surgery, Ann. NY Acad. Sci., v〇I. 148, pp. 133-135, 1962.] 2002 Gao Et al., proposed an array of integrated biosensors [Note 2] containing oxygen and glucose sensing H for detecting blood metabolism parameters of the human body. Local oxygen concentration and (iv) sugar concentration can be detected in less than - minutes. In the thin ride, (four) hetero-half permeable membrane and oxygen semi-permeable membrane, when glucose passes through the glucose semi-permeable membrane, hydrogen peroxide is generated immediately, and then oxygen is sensed by n-sensing hydrogen peroxide to know the oxygen content, indirect amount Measure the amount of impurities. In design

計上的考慮參數有薄膜材料、薄膜厚度、固態電解質層、電極面積。此感 測器的讀取訊號是用電流當作感測機制。 [註 2 : C· Gao, Jin-WooChoi,M. Dutta,S. Chilukuru, J. H Nevin τ v τ M. G. Bissell, C. H. Ahn, MA fully integrated biosensor arrav for m . ee’ of metabolic parameters in human blood,11 Microtechnol〇gies in Biology 2nd Annual International IEEE-EMB Special T〇pic Conference, pp"223-226 2004年0〇e等人’提出一腑ET型式的酵素生物感測器[註3]。利用 金電極做為通道的_(Gate)t作感測表面,再_自組性單層薄膜的技 術來做金電極的表面修飾,透過脇讀來觀_素是奸與金電極連 結。其量測樣品_全血與錄兩種練量測,當_樣品為全血時,其 靈敏度為61.4 V/Onol/L),喊測樣品為血料,其靈敏度為m 2 V/(mol/L)。The considerations for the consideration are film material, film thickness, solid electrolyte layer, and electrode area. The sensor's read signal uses current as the sensing mechanism. [Note 2: C. Gao, Jin-WooChoi, M. Dutta, S. Chilukuru, J. H Nevin τ v τ MG Bissell, CH Ahn, MA fully integrated biosensor arrav for m . ee' of metabolic parameters in human blood, 11 Microtechnol〇gies in Biology 2nd Annual International IEEE-EMB Special T〇pic Conference, pp"223-226 2004 0〇e et al.' proposed an ET type enzyme biosensor [Note 3]. Using the gold electrode as the channel's _(Gate)t as the sensing surface, and then using the self-assembled single-layer film technology to make the surface modification of the gold electrode, it is connected with the gold electrode through the threat reading. The measurement sample _ whole blood and recorded two kinds of measurement, when the _ sample is whole blood, the sensitivity is 61.4 V / Onol / L), the sample is called blood, the sensitivity is m 2 V / (mol /L).

[l±3: K. 0〇e, Y. Hamaraoto, T. Kadokawa, T. Iuchi, Y Hirann U[l±3: K. 0〇e, Y. Hamaraoto, T. Kadokawa, T. Iuchi, Y Hirann U

BioMEMSanOanoi^ 2005年Zhang等人,先在金表面修掷一三維網絡養,再將金奈米 子修飾到膠體上[註4]。用cystamine與葡萄糖氧化酵素做結合後,做為 感測元件,再將感測元件與金奈綠子做二次的表面修飾,完成整個葡 201209408 糖感測器的修飾流程。然後用循環伏安法(cv)和電化學阻抗譜(EIS)來做電 子轉移的分析和電極表面阻抗的分析。感測器的濃度檢測極限為23mM,且 具有良好的重複性,並且能保持穩定超過60天。 [β主 4^S· Zhang,· N. Wang, Y. Niu,C. Sun, “Immobilization of glucose oxidase go nanoparticles modified Au electrode for the construction of biosensor," Sensors and Actuators B: Chemical, vol. 109, Issue 2, pp. 367-374, 2005.] 2007年Macaya等人’用導電高分子PED〇T:pss做為電晶體的通道,而 用鉑金做為閘極電極,發展一簡單的葡萄糖感測器[註5 ],其擁有微莫耳的 靈敏度。在閘極施予〇. 6 V時,極限葡萄糖的濃度可以達到3〇 mM,該感測 器的人體唾液的金糖量測範圍内有良好的反應,且靈敏度和感測的濃度範 圍,也可以透過改變閘極電壓來做偵測。此感測器的讀取訊號是用電流當 作感測機制。 S5:[D.J.Ma5aya,M.Nikolou,S.Takamatsu,J.T.Mabeck,R.H.Owens,G. G. Malliaras, Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors," Sensors and Actuators B: Chemical, vol. 123,Issue 1,pp. 374-378,2007.] 2007年Li荨人[註6],在金奈米粒子上將ii-mercapt〇undecanoic acid (11-MUA)利用自組性單層薄膜技術做表面修飾,之後利用活性劑EDC/NHS 將11-MUA的末端官能基羧基做活化,再將葡萄糖氧化酵素做成一 G〇D/AuNPs 感測膜,製作一增強型熱穩定性生物感測器。 [.£6 . D. Li, Q. He, Y. Cui, L. Duan, J. Li, Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability," Biochemical and Biophysical Research Communications, vol. 355, Issue 2, pp. 488-493, 2007.] 2008年Liu等人[註7],在電晶體的閘極通道上塗佈一導電高分子 (PED0T-PSS)作為固定葡萄糖氧化酵素(GOD)的有機薄膜,而葡萄糖氧化酵 素利用簡單的旋轉塗層技術來固定在薄膜上,然後施予一驅動電壓來量測 電晶體的汲極電流。在靈敏度方面每1 mM的葡萄糖濃度為1. 65 ,而濃 201209408 度在1.1 mM到16. 5 mM其線性度最佳,而其反應時間為ι〇到2〇秒之間。 此感測器的讀取訊號是用電流當作感測機制。 [註 7 : J. Liu, M. Agarwal,K. Varahramyan, “Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer,” Sensors and Actuators B: Chemical, vol. 135, Issue 1, pp. 195-199, 2008.] 2009年Gopalan等人[註8],使用新的有機與無機混合式的奈米複合 材料裝載葡萄糖氧化酵素,其生物感測器的感測膜BioMEMSanOanoi^ In 2005, Zhang et al. first cultivated a three-dimensional network on the gold surface and then modified the Jinnai to the colloid [Note 4]. After the combination of cystamine and glucose oxidase, as a sensing element, the sensing element and the Chennai green seed were twice surface-modified to complete the modification process of the entire 201209408 sugar sensor. Cyclic voltammetry (cv) and electrochemical impedance spectroscopy (EIS) were then used for electron transfer analysis and electrode surface impedance analysis. The sensor has a concentration detection limit of 23 mM, and has good repeatability and is stable for more than 60 days. [β主4^S·张,·N. Wang, Y. Niu, C. Sun, “Immobilization of glucose oxidase go nanoparticles modified Au electrode for the construction of biosensor," Sensors and Actuators B: Chemical, vol. 109 , Issue 2, pp. 367-374, 2005.] In 2007, Macaya et al. used conductive polymer PED〇T:pss as a channel for transistors, and platinum as a gate electrode to develop a simple sense of glucose. The detector [Note 5] has the sensitivity of micro-mole. When the gate is applied 〇. 6 V, the limit glucose concentration can reach 3 mM, and the sensor's human saliva is within the measurement range of gold sugar. There is a good response, and the sensitivity and sensing concentration range can also be detected by changing the gate voltage. The read signal of this sensor is current using the sensing mechanism. S5: [DJMa5aya, M .Nikolou, S. Takamatsu, JTMabeck, RHOwens, GG Malliaras, Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors, " Sensors and Actuators B: Chemical, vol. 123, Issue 1, pp. 374-378, 2007.] 20 In 2007, Li荨 [Note 6], ii-mercapt〇undecanoic acid (11-MUA) was surface-modified on the gold nanoparticles using self-assembled monolayer film technology, and then using the active agent EDC/NHS 11- The terminal functional carboxyl group of MUA is activated, and glucose oxidase is made into a G〇D/AuNPs sensing membrane to produce an enhanced thermal stability biosensor. [.£6 . D. Li, Q. He , Y. Cui, L. Duan, J. Li, Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability, " Biochemical and Biophysical Research Communications, vol. 355, Issue 2, pp. 488-493, 2007.] 2008 Liu et al. [7] applied a conductive polymer (PED0T-PSS) as an organic film to immobilize glucose oxidase (GOD) on the gate channel of the transistor, while glucose oxidase utilizes a simple spin coating technique. It is fixed on the film, and then a driving voltage is applied to measure the gate current of the transistor. In terms of sensitivity, the concentration of glucose per 1 mM is 1.65, while the concentration of 201209408 is optimal from 1.1 mM to 16.5 mM, and the reaction time is between ι and 2 〇. The read signal of this sensor uses current as the sensing mechanism. [Note 7: J. Liu, M. Agarwal, K. Varahramyan, "Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer," Sensors and Actuators B: Chemical, vol. 135, Issue 1, pp. 195 -199, 2008.] In 2009, Gopalan et al. [Note 8] used a new organic and inorganic hybrid nanocomposite to load glucose oxidase, the biosensor's sensing membrane.

Nafion-silica/MWCNT-g-PANI的大小約為250 nm-1卵,其量測方式是利 用電化學的反應來量測其電流的變化,在葡萄糖濃度為M0祕時,可以 展現好的線性響應’其靈敏度為5. 01 raA/mM,低響應時間(約6秒),重現 性為2. 2%,且穩定度時間也長。 [註 8:Α· I. Gopalan,K. P. Lee, D. Ragupathy,S. H. Lee,J. W. Lee, “An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer-silica nanocomposite,M Biomaterials, vol. 30, Issue 30, pp 5999-6005, 2009.] ’ 以上文獻討論目前葡萄糖感測器的發展,其中大部分都分為電流式與 電壓式量測。利用電化學的量測方式來測定葡萄糖濃度,探討薄膜與葡萄 糖氧化酵素之間在電子傳遞、薄膜表面阻抗、線性與斜率來評估電壓與濃 度之間的關係;而探討電流與濃度之間的關係,是利用在電晶體的閘極塗 上不同的薄膜來做固定化酵素,並施以一閘極電壓後來量測通道電流,如 FET式感測器。 在薄膜的選擇方面,因為目前高分子的種類繁雜,且不同的高分子其 吸附的金屬基材也不同,以下將介紹金與硫醇分子之間吸附的相關文獻。 1992年Dubois等人’研究金與硫之間形成薄膜的特性[註9]。文中指 出金表面化學活性低’不容易與空氣中的氣體分子反應,在進行自組性單 201209408 層薄膜時,因為硫為頭基容易與金做化學吸附,且操作環境也容易控制, 所以可以讓硫上的竣鏈結構與金連接。 [註 9:L. H. Dubois, R. G. Nuzzo “ςνη+h。。· cv +The size of Nafion-silica/MWCNT-g-PANI is about 250 nm-1 egg, which is measured by electrochemical reaction to measure the change of current. When the glucose concentration is M0, it can show good linearity. The response has a sensitivity of 5. 01 raA/mM, a low response time (about 6 seconds), a reproducibility of 2.2%, and a long stabilization time. [Note 8: Α· I. Gopalan, KP Lee, D. Ragupathy, SH Lee, JW Lee, “An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer-silica nanocomposite, M Biomaterials, vol. 30, Issue 30, pp 5999-6005, 2009.] ' The above literature discusses the current development of glucose sensors, most of which are divided into current and voltage measurements. The electrochemical measurement method is used to determine the glucose concentration and explore the film. The relationship between voltage and concentration is evaluated by electron transfer, film surface impedance, linearity and slope with glucose oxidase. The relationship between current and concentration is discussed by applying different films to the gate of the transistor. To do immobilized enzymes, and apply a gate voltage to measure the channel current, such as FET-type sensors. In the choice of film, because of the variety of polymers, and the adsorption of metal based on different polymers The materials are also different. The following literature will introduce the adsorption between gold and thiol molecules. 1992 Dubois et al. The characteristics of the film formed with sulfur [Note 9]. The paper indicates that the gold surface has low chemical activity, which is not easy to react with gas molecules in the air. When the self-assembled single layer 201209408 film is used, it is easy to form gold with sulfur as the head group. Chemical adsorption, and the operating environment is also easy to control, so the 竣 chain structure on sulfur can be connected to gold. [Note 9: LH Dubois, RG Nuzzo "ςνη+h. . · cv +

Organic Surfaces,’,Annu Rev Phvs rh 1S,j"uc ^re> and Properties of Model • Pnys. Chem, vol. 43, pp. 437-463, 1992.] 1998年Takao等人,探討進行自組性單層薄膜的時間對硫醇分子修飾 在金表面的影響[註10]。文中指出硫醇分子修飾在金上,利用高解析度光 電子能譜儀對硫的2p軌顧行細掃描,結果發現如果自祕單層薄膜的修 都時間;Μ豆在金上會有未鍵結的硫醇分子,所以進行自組性單層薄膜的Organic Surfaces, ', Annu Rev Phvs rh 1S, j"uc ^re> and Properties of Model • Pnys. Chem, vol. 43, pp. 437-463, 1992.] Takao et al., 1998, explored self-assembly The effect of the time of the monolayer on the surface of the thiol molecule on the gold surface [Note 10]. In this paper, it is pointed out that the thiol molecule is modified on gold, and the high-resolution photoelectron spectroscopy is used to scan the sulfur 2p trace. The results show that if the self-secret single-layer film is repaired, the kidney bean will have no key on the gold. a thiol molecule, so a self-assembled monolayer film

時間要超過24小時以上,才能避免此情形發生。It takes more than 24 hours to avoid this situation.

Wolfgang, ^ighVesolutio^ay phot^ Satoshl1 Ν· Naoki- S. Hiroyuki, K. octadecanethiol self-awpmhi ri 7 P,帥 eCtr〇n SPeCtr〇scopy measurements of 8^Γ2M6 19ΓΓ La^Uir> V〇L 14> - 在以上文獻巾,因為長碳鏈的硫醇分子與金屬表面的韻方式,是硫 元素上的成Μ子和金制子的外層錄域形成—穩定的配位所結合而 成’故硫醇分子_财式與金原子的制情形有緊侧係。且由文獻中 可以發現當麟碳鏈越長的獅分子,形成單分子膜所受到_響因素較 低’且修飾時間超過24小時以上,才能形成緻密的單分子膜。 【發明内容】 血糖感測器,是最早被開發並商品化的生物測器。但是目前有鑑於— 般市售血糖量義利職化學或是試_縫化來侧,而電化學技術另 需耦合-外部喊測電路裝置’在感測電路與生物測器未整合的情況下, 具有買測裝置體積大、操作不便、不利攜帶、不易與隨減物結合等問題。 本案利用標準生物醫學微機電製程(CM〇s Bi〇_MEMS)技術來整合一感測 電路製做-微型化的㈣糖生物朗II n點在於將m统(感測單元 201209408 ==整嶋化實觀平方公细權上,除了 ♦ 的優點外’其成本也能透過大量生產的方式來降低,並可整 〇 ° w載體(例:手機、手錶、帽子等可長時間攜帶的物品上,出門 在外可简身«),料湖讀_推,可轉得知細絲,預防緊急 狀況發生》 ^Wolfgang, ^ighVesolutio^ay phot^ Satoshl1 Ν· Naoki- S. Hiroyuki, K. octadecanethiol self-awpmhi ri 7 P, handsome eCtr〇n SPeCtr〇scopy measurements of 8^Γ2M6 19ΓΓ La^Uir> V〇L 14> In the above document, because the long-chain thiol molecule and the rhythm of the metal surface are combined with the formation of the outer layer of the sulphur element and the gold-based sub-domain, the stable thiol There are tight sides in the system of numerator-financial and gold atoms. It can be found from the literature that a lion molecule with a longer carbon chain has a lower _ ringing factor and a modification time of more than 24 hours to form a dense monomolecular film. SUMMARY OF THE INVENTION A blood glucose sensor is the earliest developed and commercialized biosensor. However, in view of the fact that the blood glucose is commercially available or the test is sewed, and the electrochemical technology needs to be coupled - the external circuit is not integrated in the sense circuit and the biosensor. It has the problems of large volume, inconvenient operation, unfavorable carrying, and difficulty in combining with the reduced objects. This case uses the standard biomedical micro-electromechanical process (CM〇s Bi〇_MEMS) technology to integrate a sensing circuit to make - miniaturized (four) sugar bio-lang II n points in the m system (sensing unit 201209408 == integer In addition to the advantages of ♦, the cost can also be reduced by means of mass production, and the whole vector can be reduced. (Example: mobile phones, watches, hats, etc. can be carried on long-term items. , go out and get out of the body «), the lake read _ push, you can transfer the filament to prevent emergencies" ^

和_彳曙標準生物_機獅(⑽s國製程,製作 出感測早讀感啦路整合為—體_躲微感卿。感測單元是在指又 狀電極結構的電極間設置-感測端,於該感測端上修飾自組性單層薄膜, 再將對葡膽具有高度單—性的感測元件修缺該薄膜上,因為葡萄糖氧 化酵素與賴糖具有高度的專-性,且賴糖氧化酵素吸_葡萄糖時會 改變指叉狀電極結構之電極間的介電健而造成f容變化。設計一紐電 路將電容變化轉換為頻率輸出,藉此來量測不同濃度的葡萄糖。葡萄糖微 感測器的面積為1.561x1.82 mm2,由於在生物反應訊號屬於小訊號變化, 所以感測區面積設計為43麵2,利用大面積的感測區,提升訊號變And _ 彳曙 standard biology _ machine lion ((10) s national process, making a sense of early reading, the road is integrated into the body _ hiding micro sense. The sensing unit is set between the electrodes of the electrode structure - sensing End, the self-assembled monolayer film is modified on the sensing end, and the sensing element having a high degree of mono-sex is applied to the film, because the glucose oxidase and the lysine have a high degree of specificity. Moreover, lysine oxidase absorbs _glucose, which changes the dielectric strength between the electrodes of the interdigitated electrode structure and causes f-capacitance change. Designing a circuit to convert the capacitance change into a frequency output, thereby measuring different concentrations of glucose. The area of the glucose micro-sensor is 1.561x1.82 mm2. Because the bio-signal signal is a small signal change, the area of the sensing area is designed to be 43-face 2, and the large-area sensing area is used to enhance the signal change.

化,使電路有較大的輸出訊號。根據實驗結果可得知,當葡萄糖濃度由,_ 上升至10 mM時’由頻譜分析儀所量測到的輸出頻率會由1〇4〇2MHz上 升至23.715 MHz,感測器的靈敏度約為,3 MHz/mM,此葡萄糖生物感測 器展現良好的感測性能。 【實施方式】 為便於說明本案於上述發明内容一攔中所表示的中心思想,茲以具體 實施例表達。實施例中各種不同物件係按適於說明之比例、尺寸、變形量 或位移量而描繪,而非按實際元件的比例予以繪製,合先敘明。且以下的 201209408 說明中,類似的元件是以相同的編號來表示。 如第一圖,本案葡萄糖生物感測器主要包括:一感測單元1〇' 一與該 感測單元10耦合的感測電路30、以及與該感測電路30耦合的訊號輸出單 元40 ;該感測單元1〇、感測電路30以及訊號輸出單元4〇係架構於一微 型矽基材50上,因此感測器為微晶片型式。 製做該感測單元10的方法,包括從第二圖至第七圖的步驟: 本案的感測單元10為電容式的電極架構,由於考量到生物的反應訊號 籲較小’所以在結構上設計由指叉狀電極組成較大的電容值結構,增加感測 面積並減低電極間距。在設計上,利用0 35 CM〇s Bi〇 MEMs製程中 的第至第四金屬層1Ί,12,13,14為感測電極,而在兩電極中間於第一金屬 層11的表面依序佈置-鉻層15及-金層16作為感測區。而為了讓感測的 面積增加,選擇製程的設計準則中,容許金最小寬度5㈣當做兩電極之間 距。 利用(2.1)式指又狀電容可表示為:The circuit has a large output signal. According to the experimental results, when the glucose concentration is increased from _ to 10 mM, the output frequency measured by the spectrum analyzer will increase from 1〇4〇2MHz to 23.715MHz, and the sensitivity of the sensor is about. At 3 MHz/mM, this glucose biosensor exhibits good sensing performance. [Embodiment] For the convenience of the description, the central idea expressed in the above description of the invention is expressed by a specific embodiment. Various items in the embodiments are depicted in terms of ratios, dimensions, amounts of deformation, or displacements that are suitable for illustration, and are not drawn to the proportions of actual elements, as set forth in the foregoing. In the following 201209408 description, similar components are denoted by the same reference numerals. As shown in the first figure, the glucose biosensor of the present invention mainly comprises: a sensing unit 1', a sensing circuit 30 coupled to the sensing unit 10, and a signal output unit 40 coupled to the sensing circuit 30; The sensing unit 1 , the sensing circuit 30 , and the signal output unit 4 are mounted on a miniature substrate 50 , and thus the sensor is in a microchip type. The method for manufacturing the sensing unit 10 includes the steps from the second figure to the seventh figure: The sensing unit 10 of the present case is a capacitive electrode structure, and since the reaction signal to the living body is considered to be small, the structure is The design consists of a large capacitance value structure composed of the finger-shaped electrodes, which increases the sensing area and reduces the electrode spacing. In the design, the first to fourth metal layers 1Ί, 12, 13, 14 in the 0 35 CM〇s Bi〇MEMs process are the sensing electrodes, and the surfaces of the first metal layer 11 are sequentially arranged between the two electrodes. - Chromium layer 15 and - gold layer 16 serve as sensing regions. In order to increase the area of the sensing, in the design criteria of the selection process, the minimum allowable width of gold (4) is used as the distance between the two electrodes. By using (2.1), the capacitor is expressed as:

- χ) d~~ 2n^〇er *....................(2.1) 其中C為電容值,η為指又狀電極組數1為真空介電常數,其值』 8.84χΐ〇12,(為介電層介電係數’為電極厚度,/_為電極長度,χ和 為不同方向的兩平行電極間距。 利用(2.1)式設計感測結構的尺寸,指又狀電極的長度為a⑻㈣,, 度為5 Mm,兩電極的間距為14㈣,電極組數為6〇組,其規格列表w 所不。由於金屬層11〜14的材質是銘,金對_黏附性差所以先在^ 201209408 屬層的上方鍍上與金隸雜佳的鉻(c「),紐在絡層1S上再鍵—金層 16 ’而金層的厚度為3000 A ’來做為生物感測器的感測端。 201209408 為了模擬結構的f容值’本文_ AnSQftQ3D Εχί「_「6軟體來模擬 單組指又狀f極的電容減值’其模擬結果單組電極約為Q細817 ρρ,而 在設計上指叉狀電極組數η * 6〇、组,所以將單組電極乘上η後約為 3.04902 ’即為感測結構電容值。且為了預防反應訊號過低,設計]卟的 電谷與感測結構並聯’所以電容起始值為4 Q49Q2 pF。- χ) d~~ 2n^〇er *....................(2.1) where C is the capacitance value and η is the number of the electrode group 1 The vacuum dielectric constant, the value of which is 8.84χΐ〇12, (the dielectric layer dielectric constant 'is the electrode thickness, /_ is the electrode length, and the χ is the distance between the two parallel electrodes in different directions. Using the design of (2.1) The size of the measuring structure refers to the length of the re-shaped electrode is a (8) (four), the degree is 5 Mm, the spacing between the two electrodes is 14 (four), the number of electrodes is 6 〇, and the specification list is not. Because of the material of the metal layers 11 to 14 Yes, the gold is _ poor adhesion, so first on the ^ 201209408 genus layer is plated with gold chrome (c "), the new layer on the 1S layer - gold layer 16 ' and the thickness of the gold layer is 3000 A ' is used as the sensing end of the biosensor. 201209408 In order to simulate the f-value of the structure 'this article _ AnSQftQ3D Εχ 「 _ "6 software to simulate the capacitance loss of a single set of fingers f-pole" simulation results The single set of electrodes is about Q fine 817 ρρ, and is designed to refer to the number of forked electrode groups η * 6 〇, group, so multiplying a single set of electrodes by η is about 3.04902 ' is the sensed structure capacitance value. Preventing response signals is too low, the design] porphyrin electrical sensing structure in parallel with the valley 'start value of the capacitance 4 Q49Q2 pF.

感測單元10由0.35 CMOS Bio-MEMS製程製作,其中金屬層用The sensing unit 10 is fabricated by a 0.35 CMOS Bio-MEMS process in which a metal layer is used.

到銘、鉻、金’基材層為多晶♦’而在各個層別之_氧切來做隔離。 如果需要將金屬層做連接形成導通就需要加人—層由鎢材料所製作的導通 層。本文所使用_又狀電極結構乃是由金屬独與氧化層來組成,利用 寬2 的氧化層來包覆銘,達到電極與電極之間、絕緣,這樣電極與電極之 間形成-上下電極板做為電容式指叉狀結構。感測單元1〇的剖面圖如第三 圖所示’在感測單具有-光阻層17層,而在電極與電極之間的_ 區。因為需要進行金(gold)的表面修飾’所以已經移除保護層,但是在剖面 圖中的電路與電極健保留保護層,如第四圖所示。移除光阻層二财法 201209408 疋將的片/X泡在丙酮中約15分鐘,讓晶片表面的光阻層π溶解在丙綱溶 液之後利面洗·,即故後之剖面即如第四 圖所示。The inscription, chrome, and gold substrate layers are polycrystalline ♦ and are oxidized at each layer for isolation. If it is necessary to connect the metal layers to form a conduction, it is necessary to add a layer of a conductive layer made of a tungsten material. The _-shaped electrode structure used in this paper is composed of a metal alone and an oxide layer, which is covered with a wide 2 oxide layer to achieve insulation between the electrode and the electrode, so that an electrode is formed between the electrode and the upper and lower electrode plates. As a capacitive finger-like structure. The cross-sectional view of the sensing unit 1'' is as shown in the third figure' in the sense sheet having the layer of the photoresist layer 17, and the region between the electrode and the electrode. Since the surface modification of gold is required, the protective layer has been removed, but the circuit and the electrode in the cross-sectional view retain the protective layer as shown in the fourth figure. Remove the photoresist layer, the second method 201209408 疋 的 / / X bubble in acetone for about 15 minutes, so that the photoresist layer π on the surface of the wafer is dissolved in the propyl solution after the face wash, that is, the profile is as follows The four figures are shown.

第五1六、七圖,利用自組性單層薄膜技術⑽asse_ed monolayeri SAM)將高分刊琉基十_燒酸⑴佩邮議如减_,休_ 21修飾在金層16表面上’再使㈣定化酵素技術讓㈣ua尾端的幾基 (_C〇〇H)吸附感測元㈣萄糖氧化酵素(9丨嶋e〇XSidase,GOD)22。因為 葡萄糖氧猶素錢雜具有高度的專—性,#受測檢體(人_血液或尿 液)接觸上述_單元科,«糖氧化酵素會自動吸·财的葡萄糖 23吸附發生時會改變指又狀電極間的介電係數而造成電容變化。 自組性單層薄膜是-種藉著化學韻和能自我組織的魏化長鍵有機 分子自發性的吸附在合適_體表面上形成—高度有秩序的薄膜,因可使 基材表面_功能化之目的’ 6柄生物感崎領域相繼使用的表面改質 技術。此齡議鱗··㈠科?層厚度隨個Μ ;㈡單分子層與基 材的鍵結為化學_ ;㈢單分子層侧緻紐具有方向性;㈣基材表面 依不同材倾邱需求,可馨猶的湖,其尾_有㈣要的官能基 加以功能化。表2列出了不同化合物能吸附在不同基材上。 201209408 表2不同化合物能吸附在基材的表面 化合物 基材 — 有機矽烷化合物 二氧化一铭、二氧化珍、玻璃 烷基硫醇 金銀鋼的表面 雙烷基硫化物 金 — 醇類及胺類 銘 酸類 銀、鋼、銘 自組性單層薄膜可以分為三個部分,如第八圖所示:第一部分61為能 與金層16表面做化學反應吸附的頭基(headgroup),主要是利用某此分子 ^與基材間產生化學鍵而穩固的吸附在金層16表面,如有機硫醇吸附在金表 面形成一 Au-S極性共彳貝鍵。第二部分62為長碳鏈,在鏈與鏈之間存在著 -微弱的凡得瓦力’能量約域仟卡,而這微弱的作用力能夠穩定組裝薄 骐中分子的排列,但是必須先要分子吸附到基材表面上,因分子鍵間的作 用力才會形紐齊且緊密制的分子結構。第三個部分63為分子末端的官 此基’當分子自組性在基材表面上形成賴後,此部分即是歧表面的性 • f。所以當我們置換掉分子的末端官能基,就能改變原本基材表面的特性。 而如果_化學反應’再讓其轉變成其它有活性的官能基,可以再吸附第 二層甚至第三層的分子。 S] 固定生物酵素時除了要力求保持其活性之外,也要盡可能使生物辨識 分子靠近換能器表面,明物分子的穩紐,促使訊絲現更明顯。 如第九圖,第—層64為使用自組性單層薄賴金做表面料,使用高分子 ^_與金結合;第二層65_定化酵素的方法,彳_糖氧化酵素 ” 1[MUA峨舰咖編合„概測薄膜;第 一層66為葡萄糖的分子,因為葡萄糖與葡萄糖氧化酵素進行化學反應,兩 12 201209408 者結合後會造成感測電極之間的介電係數發生變化,而介電係數會改變電 容大小,所以接下來設計的感測電路中,感測結構的電容值發生改變,就 會造成輸出頻率的變化。 關於該感測電路的設計和製作,乃利用CM〇S振盡電路為主架構如 第十圖所示。CMOS振盥電路由三個反向器(|nverte「] ' 2、3)、電阻和電 容所組成’在反相器與反相器之間加人電_電容可以觀控制頻率的輸 出。在2輸出的〇與ln她r 3輸出所連接的巧之間形成—微分 _電路’所以〇與R的交點w其波形受到暫態現象呈現典型的微分波形, 第十-圖即為C尺,微分電路的充放電波形。當w的電壓大於電壓源偏 或是比接地點貞電壓更大時,^㈣齡被輸福的M〇s給牵制住。而 在此時的週期電流將流料,但在其他時間通料的電流是非常微小的漏 電々《而虽值通過\/rw且輸入的電壓到達第三個反向器後會開始改變, K也將增強_動作並改變方向’也就是說提供—積極的回饋。這將進一 _ 步的增強電路的穩定性與可預測性。 在A點波形對^來說是因為M〇s順向電壓(匕)與^相加的電壓所切 振盛週期Γ為[與&之和,如第十二圖所示。而及c的微分電路電 阻尽的端電壓K可用式(2.2)表示:The fifth, sixth, and seventh figures, using the self-assembled single-layer film technology (10) asse_ed monolayeri SAM) to mark the high-grade 琉 十 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 21 modified on the surface of the gold layer 16 ' The (4) chemistry enzyme technology allows (4) ua tail end of several groups (_C〇〇H) adsorption sensing element (4) glucose oxidase (9丨嶋e〇XSidase, GOD)22. Because glucose oxysuccinic acid has a high degree of specificity, #test sample (human _ blood or urine) is exposed to the above-mentioned _ unit family, «glucooxidase will automatically absorb the glucose 23 adsorption will change when it occurs Refers to the dielectric coefficient between the electrodes and causes a change in capacitance. The self-assembled monolayer film is a kind of highly ordered film formed by the chemical adsorption and self-organized Weihua long bond organic molecules spontaneously adsorbed on the surface of the appropriate body, because the surface of the substrate can be made to function. The purpose of the transformation of the 6-handed bio-sensing field has been used in the surface modification technology. The age of the scales · (a) section? The thickness of the layer varies with Μ; (2) the bond between the monolayer and the substrate is chemical _; (3) the unidirectional side of the monolayer has directionality; (4) the surface of the substrate depends on the needs of different materials, and the lake can be _ There are (iv) functional groups to be functionalized. Table 2 lists the different compounds that can be adsorbed on different substrates. 201209408 Table 2 Surface compound substrates that can be adsorbed on the substrate by different compounds - Organic decane compounds, Dioxide, Dioxide, Glass alkyl mercaptan, Gold-silver steel, Surface dialkyl sulfide gold - Alcohols and amines The acid silver, steel, and self-assembled monolayer film can be divided into three parts, as shown in the eighth figure: the first part 61 is a head group capable of chemically reacting with the surface of the gold layer 16, mainly utilizing A certain chemical bond between the molecule and the substrate is firmly adsorbed on the surface of the gold layer 16, and an organic thiol adsorbs on the gold surface to form an Au-S polar co-mussel bond. The second part 62 is a long carbon chain, and there is a weak varnish force between the chain and the chain. The weak force can stabilize the arrangement of the molecules in the thin raft, but must first When the molecules are adsorbed onto the surface of the substrate, the molecular structure between the molecular bonds will be shaped by the interaction between the molecular bonds. The third portion 63 is the official end of the molecule. When the molecular self-assembly forms a lag on the surface of the substrate, this portion is the property of the surface. So when we replace the terminal functional groups of the molecule, we can change the properties of the original substrate surface. If the _chemical reaction is converted to other reactive functional groups, the molecules of the second or even third layer can be adsorbed. S] In addition to trying to maintain its activity, the biological enzymes should be kept as close as possible to the surface of the transducer, and the stability of the molecules of the molecules will make the signal more obvious. As shown in the ninth figure, the first layer 64 is a surface material using a self-assembled single-layer thin Lai gold, using a polymer ^_ combined with gold; the second layer 65_the method of derivatizing the enzyme, 彳_saccharide oxidase" 1 [MUA 峨 咖 咖 „ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The dielectric constant changes the size of the capacitor. Therefore, in the sensing circuit designed next, the capacitance of the sensing structure changes, which causes the output frequency to change. Regarding the design and fabrication of the sensing circuit, the CM〇S isolating circuit is used as the main structure as shown in the tenth figure. The CMOS oscillator circuit consists of three inverters (|nverte"] '2, 3), resistors and capacitors'. Adding a voltage between the inverter and the inverter _ capacitor can control the output of the frequency. The output 〇 is connected to the ln her r 3 output connected to form a differential_circuit' so the intersection of 〇 and R, its waveform is transiently represented by a typical differential waveform, and the tenth-graph is the C-scale. The charging and discharging waveform of the differential circuit. When the voltage of w is greater than the voltage source bias or greater than the grounding point 贞 voltage, ^(four) age is pinned by the M〇s of the blessing. At this time, the periodic current will flow. However, the current flowing at other times is a very small leakage 々 "and although the value passes \/rw and the input voltage reaches the third inverter, it will start to change, K will also enhance _ action and change direction" That is to say - provide positive feedback. This will further improve the stability and predictability of the circuit. The waveform at point A is for the voltage of M〇s forward voltage (匕) and ^ The period of the shearing period is [and the sum of & as shown in Figure 12. And the differential circuit of the differential circuit of c Available K represents the formula (2.2):

Vr = VRe~T'IRC ^ · * * · ................ ?—) 計算丁1則用式(2.4): VTH-(VDD+VTH)e-T^c................................................................... = -RC ln(--λ V〇o^VTH} .......................................................................Vr = VRe~T'IRC ^ · * * · ................ ?-) Calculate D1 and use equation (2.4): VTH-(VDD+VTH)eT^ c................................................. .................. = -RC ln(--λ V〇o^VTH} .................. .................................................. ...

[S] 13 201209408 同理計算丁2用式(2.5): T2 = -RC 1η([S] 13 201209408 For the same calculation, use 2 (2.5): T2 = -RC 1η(

VV

DD V. ΤΗ 2Vdd~ V. ................... .......................... ΤΗ 因為門檻電壓\ΖΤΗ約為^ \/DD (誤差並不大可視為α5‘),所以振盡週期Τ 表示為式(2.6): (2.6) Γ = Γ1+Γ2 =-/?C(ln-ii-+lnl^l 1 + 0.5 2 — 0,5 在CMOS RC振盡電路%端的輸出波形,如第十三圖所示,可以看DD V. ΤΗ 2Vdd~ V. ................................................. ... ΤΗ Because the threshold voltage \ΖΤΗ is about ^ \/DD (the error is not as large as α5'), the oscillation period Τ is expressed as (2.6): (2.6) Γ = Γ1+Γ2 =-/? C(ln-ii-+lnl^l 1 + 0.5 2 — 0,5 The output waveform at the % end of the CMOS RC oscillator circuit, as shown in Figure 13, can be seen

出輸出波形為-枝。而蘭可_沖籠盪電路推導出公式(2 7),如 以下所示: 2R'C( 0.405R7 V+^Γ + 0.693) (2.7) 將式(2.7)表示為另一種形式,即為式(2 8): / --1—~_ 2C(0.405/?e9 ............................................................(2·8)此處The output waveform is - branch. The Lanco_crushing circuit deduces the formula (2 7), as shown below: 2R'C( 0.405R7 V+^Γ + 0.693) (2.7) Express the equation (2.7) as another form, ie (2 8): / --1—~_ 2C(0.405/?e9 ................................ ............................(2·8)here

d =_ίΛ_ 由於錄電路的電阻與電容會改變輸出頻率,而當第九圖㈣中的尺7 與/¾以下在三種狀況下,其頻率可以表示為式(2.9)-式(2 11): 0.559d =_ίΛ_ Since the resistance and capacitance of the recording circuit change the output frequency, when the ruler 7 and /3⁄4 in the ninth figure (4) are under three conditions, the frequency can be expressed as equation (2.9)-form (2 11): 0.559

如果 7?/=7?_?=及,/ = .......................................... /O QN 0.455 如果及2> ’ /s ......................................... η 0.722 如果]?2<<仏'RC ..................................................................(2.11) 最後,所設計的❹m路如奸四_示,在縣的RC減電路加 入兩個反向器’第四與第五個反向器為緩衝電路的設計,利用MC)S的開關 [S3 14 201209408 變化來改變延遲時間而調整頻率輸出的大小。在電壓源連接一接地電 容,其目的是為防止交流訊號擾動而能提供一穩定的電壓源,第十五圖為 振盪電路㈣配置®。電容為—參考電雜,Cs_域啦容的指又 狀結構,使用cre々c_r並聯是為了提高訊號的分辨率和較好的訊雜比。 利用電路模擬軟H HSPICE模擬RC振盈電路的頻率輸出和電容對頻 率間的關係。表3為RC振盪電路的模擬規格列表參數,輸入的電壓源設 定為3.3 V,第十六圊為模擬的振盪電路輸出波形。在㈣模擬環境下, 鲁將電容值從3 PF到50 pF代入HSPICE巾來模擬頻率輸出變化並且觀察 頻率變化的線性度,如第十七圖所示。當電容從3 pF上升到5〇 ^時,頻 率從 103_11 MHz 下降到 8.13 MHz。 表3振盪電路規格If 7?/=7?_?= and /= .................................... ... /O QN 0.455 If and 2> ' /s ................................. ........ η 0.722 If]?2<<仏'RC .............................. .................................... (2.11) Finally, the designed ❹m road is like a trait Show that the county's RC subtraction circuit adds two inverters 'fourth and fifth inverters for the snubber circuit design, using MC) S switch [S3 14 201209408 change to change the delay time and adjust the frequency output size. A grounded capacitor is connected to the voltage source to provide a stable voltage source to prevent AC signal disturbance. The fifteenth figure is the oscillation circuit (4) configuration®. Capacitance is - reference electrical hybrid, Cs_ domain is the meaning of the finger-like structure, using cre々c_r parallel is to improve the signal resolution and better signal-to-noise ratio. The circuit simulation soft H HSPICE simulates the frequency output of the RC oscillator circuit and the relationship between capacitance and frequency. Table 3 shows the analog specification list parameters of the RC oscillator circuit. The input voltage source is set to 3.3 V, and the sixteenth 圊 is the analog oscillator circuit output waveform. In the (4) simulation environment, Lu substitutes the capacitance value from 3 PF to 50 pF into the HSPICE towel to simulate the frequency output change and observe the linearity of the frequency change, as shown in Figure 17. When the capacitor rises from 3 pF to 5 〇 ^, the frequency drops from 103_11 MHz to 8.13 MHz. Table 3 oscillator circuit specifications

所需要的i騎紐,轉公聽液(V)均為2〇m卜 15 201209408 其中Μ為體積莫耳濃度,"為溶質莫耳數,^為每公升溶液,w為溶質克重, Μ州為溶質分子量。表4為調配葡萄糖濃度由j阳|^到1〇(71)^全部所需的葡萄 糖克重。 表4濃度1〜1〇 mM所需的葡萄糖克數The required i-ride, the commutating liquid (V) are 2〇mbu 15 201209408 where Μ is the volume of the molar concentration, " is the solute molar number, ^ is the solution per liter, w is the solute weight, Quzhou is the solute molecular weight. Table 4 shows the weight of glucose required for the concentration of glucose from j yang |^ to 1 〇(71)^. Table 4 Glucose grams required for concentration 1~1〇 mM

首先進行第一部份,量測未修飾葡萄糖氧化酵素的晶片,量測晶片完 成自組性料薄卿表面修倾,彳彳彻靖著在金表面上⑽丨頻率。在 晶片未進行自組性單層薄膜時,此時金表面並無附著任何化學分子,所以 指叉狀電極之間的介電層可當作空氣,而空氣的介電係數⑽為彳,而晶片 所量測到的頻率為71.4 MHz ;再將㈣UA修飾到金層表面後,因為指又狀 電極之間有高分子11_MUA存在’此時介電係數以升,根據(2狀,當介 電雜以升,其電容值c會上升,而由(2取,因為鮮峨容c為反比 關係’所以電容C上升,頻率繪下降。晶片修飾完所量測到的輸出⑸ 201209408 頻率為69.94 MHz,比未修飾的71.4MHz下降了 1.46 MHz,表示指叉狀電 極之間的介電質已經改變,11-MUA成功與金表面結合。 將調配好濃度為1 mM的葡萄糖滴覆在感測晶片上的指又狀結構區, 然後重覆按下頻譜分析儀的調變控制紅來掃描晶片的最高頻率,最高輸出 頻率為10.167 MHz。因為11-MUA的官能基為羧基,分子式c〇〇H,而 葡萄糖易溶於水且在水巾容易產生氫鍵,所,萄糖與縣會以凡得瓦力 來結合’所以在完成葡萄糖濃度1 mM的量測後,將晶片浸泡在乙醇並輕 ®攪拌數分鐘後,並用低溫加熱,其溫度約在4CTC,將乙醇蒸發去除後,進 行濃度為2 mM的葡萄糖量測。 葡萄糖濃度為2 mM的量測步驟與濃度為,mM都相同,其量測到的 輸出頻率為10.238 MHz’與濃度為1 mM的輸出鮮峨,其頻率增加了 0.071 MHz ’因為純水的介電係數約80,當加入其他物質會讓介電係數心 下降’當葡萄糖濃度越高時因為凡得瓦力使所吸附到的葡萄糖會增加,使 得介電係數心下降越多,當介電係數^越低,則電容c越低,輸出頻率广 _就會越高,所以濃度為2 mM的葡萄糖其輸出頻率比濃度為,_高。 後續將晶片進行不同葡萄糖濃度的量測,其量測的濃度依序為3 _、 4 mM、5 mM、6 mM、7 mM、8 mM、9 mM ' 1Q _,其輸出頻率依序 為 10.386 MHz、10.527 MHz ' 1〇·622ΜΗζ、10.778 MHz、10.935 MHz、 11.131 MHz、11.366 MHz、11.570 MHz。將濃度與輸出頻率的對應關係 繪製成如第十八圖所示,當葡萄糖濃度從! mM上升至1〇mM時,其輸出 頻率從10.238 MHz上升至11.570 MHz,其曲線呈線性上升,而輪出頻率 的總變化量為1403 MHz,感測晶片的靈敏度約為〇 14 。 [S3 17 201209408 二下::第二部份’量;聰㈣葡萄糖氧化酵素的晶片,量測修飾 二Λ糠氧谢的感測,幽率為咖 後,再修糊___.咖z=^4==ua 上升則雷衮Γμι Γ上升*"電係數心 、 升,而由(2.8)式可以看出,當電容〇上升則頻率尸下降, ,伽嶋_飾 將調配好濃度為彳__雜滴覆在❹㈤壯的指叉狀結構區, 然後與前述重覆-樣的量測步驟,其感測晶片所量測到的輸出頻率為 10.402 MHz。因為葡萄糖氧化酵素與㈣UA是利用共價鍵結合,所以量 測完畢後_乙醇將賴糖去除並不會㈣雜氧化酵素給清洗掉。清洗 完畢後-樣朗靴缝溫加熱,晶β乾職進行濃度為2 _到1〇 _ 的葡萄糖量測。 後續葡萄糖濃度從 2mM、3mM、4mM、5_、6mM、7mM、8mM、 9 mM和10 _,其輸出頻率依序為13 〇7〇 _、14 316 MHz、则〇9 MHz、17.270 MHz、18_638 MHz、19.834 MHz、20.955 MHz、22.312 MHz、 23.715 MHz。 將濃度1 mM到1Q _與其對應的輸出鮮整理成第十九圖所示,當 葡萄糖濃度從1 mM上升至10 mM時’其輸出頻率從1〇 4〇2 MHz上升至 23.715 MHz,其曲線呈線性上升’輸出頻率的總變化量為彳3 3彳3 mhz, 而感測晶片的靈敏度約為1.313 MHz/mM。 I S1 18 201209408First, the first part is carried out, and the unmodified glucose oxidase wafer is measured, and the wafer is measured to complete the self-organized material thin surface, and the surface is tilted on the gold surface (10). When the wafer is not subjected to a self-assembled monolayer film, no chemical molecules are attached to the gold surface at this time, so the dielectric layer between the interdigitated electrodes can be regarded as air, and the dielectric constant (10) of the air is 彳. The measured frequency of the wafer is 71.4 MHz; after the (4) UA is modified to the surface of the gold layer, because there is a polymer 11_MUA between the fingers and the electrode, the dielectric constant is increased by liter, according to (2, when dielectric In the case of liters, the capacitance value c will rise, and (2, because the fresh content c is inversely proportional', so the capacitance C rises and the frequency draws down. The wafer is finished with the measured output (5) 201209408 The frequency is 69.94 MHz , which is 1.46 MHz lower than the unmodified 71.4MHz, indicating that the dielectric between the fork electrodes has changed, and 11-MUA successfully combines with the gold surface. The glucose concentration of 1 mM is dispensed onto the sensing wafer. The upper finger-like structure area, and then repeatedly press the spectrum analyzer's modulation control red to scan the highest frequency of the wafer, the highest output frequency is 10.167 MHz. Because the functional group of 11-MUA is carboxyl group, the molecular formula c〇〇H While glucose is readily soluble in water and in water The towel is prone to hydrogen bonding. The sugar and the county will combine with the van der Waals force. So after the glucose concentration of 1 mM is measured, the wafer is immersed in ethanol and lightly stirred for a few minutes, and then heated at a low temperature. The temperature is about 4 CTC, and the ethanol is removed by evaporation, and the glucose concentration of 2 mM is measured. The measurement step of glucose concentration of 2 mM is the same as the concentration of mM, and the measured output frequency is 10.238 MHz. With an output of 1 mM, the frequency of the fresh sputum increased by 0.071 MHz. 'Because the dielectric constant of pure water is about 80, when the other substances are added, the dielectric coefficient is lowered. 'When the concentration of glucose is higher, it is because of the Waldorf force. The absorbed glucose will increase, so that the dielectric constant is decreased. When the dielectric constant is lower, the lower the capacitance c, the higher the output frequency, and the higher the output, the lower the concentration of 2 mM glucose. The frequency ratio is _high. The wafer is subsequently measured for different glucose concentrations, and the measured concentrations are 3 _, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM ' 1Q _ The output frequency is 10.386 MHz, 10.527 MHz '1〇·622ΜΗζ, 10.778 MHz, 10.935 MHz, 11.131 MHz, 11.366 MHz, 11.570 MHz. The correspondence between concentration and output frequency is plotted as shown in Figure 18, when the glucose concentration increases from ! mM to 1〇 At mM, its output frequency rises from 10.238 MHz to 11.570 MHz, and its curve rises linearly, while the total variation of the round-out frequency is 1403 MHz, and the sensitivity of the sensed wafer is about 〇14. [S3 17 201209408 2nd:: The second part of the amount; Cong (four) glucose oxidase wafer, measuring the modification of the sensory of dioxetane, the rate is after the coffee, and then repair the paste ___. ^4==ua rises, thunder μι Γ rises *" electric coefficient heart, liter, and by (2.8), it can be seen that when the capacitance 〇 rises, the frequency corpse falls, and the gamma _ decoration will be adjusted to a good concentration. The 彳__stack is overlaid on the 指(五) strong interdigitated structure area, and then with the aforementioned repeated-like measurement step, the measured output frequency of the sensing wafer is 10.402 MHz. Because glucose oxidase and (iv) UA are bound by covalent bonds, after the measurement is completed, _ethanol removes lysine and does not (4) wash the oxidase. After the cleaning is completed, the sample is heated by the seam temperature, and the crystal β is used for the glucose measurement with a concentration of 2 _ to 1 〇 _. Subsequent glucose concentrations from 2 mM, 3 mM, 4 mM, 5 _, 6 mM, 7 mM, 8 mM, 9 mM, and 10 _, with an output frequency of 13 〇7〇_, 14 316 MHz, then 〇9 MHz, 17.270 MHz, 18_638 MHz 19.834 MHz, 20.955 MHz, 22.312 MHz, 23.715 MHz. The concentration of 1 mM to 1Q _ and its corresponding output are freshly arranged as shown in Figure 19. When the glucose concentration increases from 1 mM to 10 mM, the output frequency increases from 1〇4〇2 MHz to 23.715 MHz. The linear change in 'the total change in output frequency is 彳3 3彳3 mhz, while the sensitivity of the sensed wafer is about 1.313 MHz/mM. I S1 18 201209408

當感測晶片中的指又狀電極中間的感測區分別為修飾u-mua與 11_MUA/葡萄糖氧化酵素後’將葡萄糖溶液滴覆上後,由於11-MUA會使 介電層的純水含量變少’所以介電係數會比純水還低,而#兩電極間又修 飾上葡萄糖氧化酵素後,介電係數又更下降,所以感測晶片有修飾葡萄糖 乳化酵素會tb沒有修飾葡雜氧化酵素,其所量測刺輸丨鮮較高,此 絲可將第十八圖與第十九圖做比較後,由第二十圖來證實。因為葡萄糖 氧化酵素與㈣糖有高度的結合專—性,所以當感測晶片有修飾上葡萄糖 氧化酵素後’葡萄糖氧化酵素緊密的與葡萄糖結合,使得指又狀電極間的 介電係數&改變較明顯’所以晶片的輸出頻率訊號也較為明顯。 在感測晶片只有修飾11-MUA時,其葡萄糖濃度從]_到1〇 _, 所量測到的輸出鮮變化量為彳.MHz,而有修飾㈣以與葡萄糖氧 轉素的感測晶片,其輸出頻率的變化量為13313mHz,可以看出有_ 葡萄糖氧化酵素的感測晶片,其訊號_度較大。 ^ ★而感測晶片本身的感測面積設計較大,所以從第二十圖可看出,在 萄糖濃度越高時’其頻率的輸出變化差距會越大;由於感測面積都有葡 檐氧化酵素,在量聰低濃度的顏糖時,只有部分感測面積上的葡萄 贱酵素會㈣蚊應,_絲她_ 魏小,此時额 ^辨識度齡比較低。所以在量魏度為彳__,林是否有 «糖氧化酵素,其感測晶片的輪出頻率都較低’且修飾葡萄糖氧化 京則後的輸出頻率,差異也較不明顯。 将喊濃度從1_㈣_進行十次輪出鮮量測,其量測 表5所示。再细標準差的公式計算响糖濃度從彳_到10 201209408 的輸出頻率標準差,其各濃度的平均值與標準差計算結果如表6所示。 表5葡萄糖濃度到的輸出頻率When the sensing area in the middle of the finger-shaped electrode in the sensing wafer is modified after u-mua and 11_MUA/glucose oxidase, the glucose solution is dripped, and the pure water content of the dielectric layer is caused by 11-MUA. Less, so the dielectric coefficient will be lower than pure water, and after the modification of the glucose oxidase between the two electrodes, the dielectric coefficient is further reduced, so the sensing wafer has modified glucose emulsified enzyme, tb does not modify the ruthenium oxidation. The enzyme, which is measured by the thorns, is higher. This silk can be compared with the 18th and 19th, and confirmed by the twentieth. Because glucose oxidase has a high degree of specificity for binding to (4) sugar, when the sensor wafer is modified with glucose oxidase, the glucose oxidase is tightly bound to glucose, causing the dielectric coefficient & change between the fingers. More obvious 'so the output frequency signal of the chip is also more obvious. When the sensing wafer has only modified 11-MUA, its glucose concentration is from _ to 1 〇 _, the measured output fresh change is 彳.MHz, and the modified (d) is used with the glucosinol sensing wafer. The change in the output frequency is 13313 mHz. It can be seen that the sensing wafer with _ glucose oxidase has a large signal_degree. ^ ★ The sensing area of the sensing chip itself is designed to be large, so it can be seen from the twentieth picture that the higher the glucose concentration is, the larger the difference in output frequency will be; the sensing area has Portuguese檐 檐 酵 , , , , , , , , , , , , , , , , , , , , , , , , , , Therefore, in the case of the amount of Wei is 彳__, whether Lin has a "sugar oxidase, the frequency of the detection of the wafer is low" and the output frequency after modification of glucose oxidation is less obvious. The concentration of the shouting is measured from 1_(four)_ for ten rounds of freshness measurement, and the measurement is shown in Table 5. The formula of the fine standard deviation is used to calculate the standard deviation of the output frequency of the sugar concentration from 彳_ to 10 201209408, and the average value and standard deviation of each concentration are shown in Table 6. Table 5 The output frequency of glucose concentration to

次數 濃度 1 2 3 ----- 4 5 6 7 8 9 10 ImM 10.582 10.426 10.434 10.214 10.371 10.355 10.394 10.465 ΪΟ 4S7 10,504 13 091 2mM 13.06 13.044 13.099 13.139 13.021 [13.052 13.013 13.091 ΐΓ〇52 一 3 mM 14.024 14.51 14.15 14.346 14.189 14.612 14.44 14385 14.252 14 362 4 mM 16.377 16.554 16.149 16.776 16.4 16.023 15.71 15.616 16.518 1A zi'yo 5 mM Π.654 17.09 一 17.788 17.387 17.725 17.85 17.826 17.772 17.764 Π 6mM 18.274 18.133 18.25 18.367 18.202 18.814 18.556 18.399 18.375 18 484 7 mM 19.949 20.542 20.077 19.774 19.818 19.647 19.671 ]9.647 19.631 19 61】 8mM 21.13 21.235 _ 21.555 ------ 21.334 21.154 21.242 20.941 20.909 20.901 21.031 9mM 10 mM 22.056 23.178 2].817_ 23.415 _ 22.065 ------ 23.244 22.064 23.312 22.141 2Ϊΐ'ΐΤ~ 22.937 23.285 22.988 23.269 22.971 23.156 22.088 23.066 22.131 23.007 ’其結果如第二~f—•圖所示。 ’其標準誤差較大;濃度為5 將表6所計算出來的標準差標示於曲線中 玎以觀察到在葡萄糖濃度為4 mM與9 mM時 mlVI mM與8 _時’其標準誤差略為較低丨在其他漠度則標準誤差均 不相同,祕本案發展的酵素感·,主要是量測«糖與㈣糖酵素之 IS1 20 201209408 反應,而兩者之崎概碰_。叫細咖,相對固定 在金層表面_雜氧化酵素與_糖反應之機率也相對的提高許多。而 在量測儀器上的誤差也需封慮’所以這也是造成第二十—圖:其二二 度在多次量測後’所得到的結果其呈現出來的標準誤差不盡_的原因。/辰 第二十二圖為“在感_萄糖濃度㈣間變化,其量測方法為利用 三用電表來觀察滴覆葡萄糖_的電壓變化,賴前細定電壓值,等電 壓穩定後將葡萄糖滴覆上感片,同時按下計時器,並觀察電壓值的變Number of times 1 2 3 ----- 4 5 6 7 8 9 10 ImM 10.582 10.426 10.434 10.214 10.371 10.355 10.394 10.465 ΪΟ 4S7 10,504 13 091 2mM 13.06 13.044 13.099 13.139 13.021 [13.052 13.013 13.091 ΐΓ〇52 a 3 mM 14.024 14.51 14.15 14.346 14.189 14.612 14.44 14385 14.252 14 362 4 mM 16.377 16.554 16.149 16.776 16.4 16.023 15.71 15.616 16.518 1A zi'yo 5 mM Π.654 17.09 a 17.788 17.387 17.725 17.85 17.826 17.772 17.764 Π 6mM 18.274 18.133 18.25 18.367 18.202 18.814 18.556 18.399 18.375 18 484 7 mM 19.949 20.542 20.077 19.774 19.818 19.647 19.671 ]9.647 19.631 19 61] 8 mM 21.13 21.235 _ 21.555 ------ 21.334 21.154 21.242 20.941 20.909 20.901 21.031 9mM 10 mM 22.056 23.178 2].817_ 23.415 _ 22.065 ----- - 23.244 22.064 23.312 22.141 2Ϊΐ'ΐΤ~ 22.937 23.285 22.988 23.269 22.971 23.156 22.088 23.066 22.131 23.007 'The results are shown in the second ~f-• figure. 'The standard error is large; the concentration is 5. The standard deviation calculated in Table 6 is indicated in the curve. It is observed that the standard error is slightly lower at mlVI mM and 8 _ at glucose concentrations of 4 mM and 9 mM. In other indifferent conditions, the standard error is not the same. The enzyme feeling of the development of the secret case is mainly measured by the reaction of the sugar and (four) glycolysin IS1 20 201209408, and the two of them are touched. It is called fine coffee, and it is relatively fixed. On the surface of the gold layer, the probability of reaction between oxidized enzyme and _ sugar is also relatively high. The error on the measuring instrument also needs to be sealed' so that this is also the reason why the standard error caused by the result of the twentieth-figure: after the second-degree measurement is repeated. / Twenty-second picture is "change in the sense of glucose concentration (four), the measurement method is to use the three-meter to observe the voltage change of the drip glucose _, before the voltage value is determined, after the voltage is stable Drip the glucose onto the sensor, press the timer at the same time, and observe the change of the voltage value.

化,當霞趨於穩定後,即可量測到晶片感測葡萄糖的時間。由圖中的時 間變化可峨察出感測晶丨的制㈣糖的時間在3分鐘即可完成,作由 於葡萄糖觸m轉麵反應是靠碰撞機率,所以在時·測上,造成不 同濃度其所需的量測時間也不同。 本案利用CMOS標準製程製作出葡萄糖生物感測器,以自組性單層薄 膜技術做表面修飾。由於高分子AMUA的硫鋪測“上的金具有化學 鍵結的自發性吸附特性,能夠將11-MUA與晶片做結合,透過u_MUA將 葡萄糖氧化料(GO_定在絲φ上做為細元件。再㈣糖氧化 酵素與葡萄糖兩者之間,因為有特異性吸附的特性,發展出一生物感測器。 將振盪電路整合於感測晶片中,做為一訊號轉換的感測電路,並利用振盪 電路的電容與頻率的輸出轉換’感測不同濃度的葡萄糖。當驅動電壓為3.3 V時’已經完成表面修飾的晶片,其工作頻率為65.79 MHz ;當量測到葡 萄糖濃度為1 ηιΜ時,其輸出頻率為10.402 MHz ;當濃度提升到10 mM, 其輸出頻率為23.715 MHz,其頻率改變了 13.313 MHz,平均每改變了 1 ⑺^輸出頻率約變化1 33 MHz,之後可以將感測器上的感測面積做調整, 21 201209408 W姨率的影 來增如訊號的 除了將感测區與電路盡量避免太接近,減少寄生電容造成 響亦了利用陣列式感測面積,讓感測元件可以穩定吸附, 放大。 目前具有無線傳輸功能的感測晶片已經廣大應用在生活中利用 CMOS製程與電路整合後,未來可加入射頻元件使感測晶片具有無線傳輸 的功能’只要感測器能夠將電路的輸出訊號轉為射頻訊號,即可利用外部 的射頻系統,達到無線傳輸的功能。 由於利用CMOS製程製作的生物感測晶片,具有體積小、結構簡單, 以及除了用來感測葡萄糖之外,還能夠多方面應用在感測不同生物分子的 優勢如利用11_MUA來吸附抗生素p0_yxin B來做為感測元件, Ρί>_ΧΙη B再去吸附脂多醣體(L—CCha_ ’即可做為脂多醣體 生物感測器。所以在晶片設計上,除了感測葡萄糖之外,如果將感測元件 、為不同轉素或是抗體抗原,則可以糊—樣的劇晶片,做其他生 物分子喊測,所以在未來_途上具有廣大的可塑性。 雖”林案疋以-個最佳實酬做說明,但精於此技藝者能在不脫離本 Ά神Ά可下做各種不同形式的改變。以上所舉實施例僅用以說明本案 而已非用以限制本案之範圍。舉凡不違本案精神所從事的種種修改或變 化,俱屬本案申請專利範圍。 【圖式簡單說明】 第一圖本案感測晶片設計圖。 第-圓本賴測單元之指又狀雜的剖面示意圖。 第三圖為_單元尚未絲光阻的剖面示意圖。 [S] 22 201209408 第四圖為感測單it去除光阻的剖面示意圖。 第五圖將11顧修_感測單元之金層表面之勤示意圖。 第六圖將Μ糖氧化酵素與㈣以絲結合的剖㈣意圖。 第七圖葡雜與關糖氡化酵素結合之剖面示意圖。 第八圖自組性單層薄膜錢測單元的金層表娜成。 ^圖為利猶(Self assembled m_lay er, SAM)將 土十燒酉文(ii_mercaptoundeca她_,糾_mua)修飾在After the radiance is stabilized, the time at which the wafer senses glucose can be measured. From the time change in the figure, it can be observed that the time of sensing the crystal (4) sugar can be completed in 3 minutes. Because the reaction of glucose touch m is based on the collision probability, it causes different concentrations in time and measurement. The measurement time required is also different. In this case, a glucose biosensor was fabricated using a CMOS standard process, and the surface modification was performed by a self-assembled single-layer film technique. Due to the sulfur deposition of the polymer AMUA, "the gold has a spontaneous adsorption characteristic of chemical bonding, and the 11-MUA can be combined with the wafer, and the glucose oxidizing material (GO_ is set as a fine element on the wire φ) through the u_MUA. (4) Between the sugar oxidase and glucose, a biosensor is developed because of the specific adsorption characteristics. The oscillating circuit is integrated into the sensing chip as a signal conversion sensing circuit and utilized. The capacitance-to-frequency output conversion of the oscillating circuit senses different concentrations of glucose. When the driving voltage is 3.3 V, the surface-modified wafer has an operating frequency of 65.79 MHz; when the equivalent glucose concentration is 1 ηιΜ, The output frequency is 10.402 MHz; when the concentration is raised to 10 mM, its output frequency is 23.715 MHz, its frequency changes by 13.313 MHz, and the average output changes by 1 (7)^. The output frequency changes by about 1 33 MHz, which can then be applied to the sensor. The sensing area is adjusted. 21 201209408 The effect of W姨 rate is increased. For example, the sensing area and the circuit should be avoided too close, and the parasitic capacitance is reduced. Measuring area, so that the sensing component can be stably adsorbed and amplified. At present, the sensing chip with wireless transmission function has been widely used in life, and the CMOS process and circuit are integrated in the life. In the future, the RF component can be added to make the sensing chip have wireless transmission function. 'As long as the sensor can convert the output signal of the circuit into an RF signal, the external RF system can be used to achieve the wireless transmission function. The bio-sensing chip fabricated by the CMOS process has a small size, a simple structure, and In addition to sensing glucose, it can also be applied in many ways to sense the advantages of different biomolecules such as 11_MUA to adsorb antibiotic p0_yxin B as a sensing element, Ρί>_ΧΙη B to adsorb lipopolysaccharide (L-CCha_ 'It can be used as a lipopolysaccharide biosensor. So in the design of the wafer, in addition to sensing glucose, if the sensing element is a different transgenic or antibody antigen, it can be a paste-like wafer. Doing other biomolecule calls, so there is a lot of plasticity in the future _ on the way. To explain, but those skilled in the art can make various forms of changes without departing from the spirit of the present. The above embodiments are only used to illustrate the case and are not intended to limit the scope of the case. All kinds of modifications or changes are subject to the patent application scope of this case. [Simple description of the diagram] The first picture shows the design of the wafer in the case. The cross-section diagram of the finger-like measurement unit is the same. Schematic diagram of the cross-section of the photo-resistance of the unit. [S] 22 201209408 The fourth figure is a schematic diagram of the cross-section of the sensing unit to remove the photoresist. The fifth figure is a schematic diagram of the surface of the gold layer of the sensing unit. The sixth figure shows the intention of combining the sugar oxidase with (4) silk. The seventh figure is a schematic cross-sectional view of the combination of glucosinolates and glycosylated enzymes. The eighth figure shows the gold layer of the self-assembled single-layer film money measuring unit. ^The picture shows that Self assembled m_layer (SAM) will modify the earthen simmered essay (ii_mercaptoundeca her_, _mua)

金層表面的示意圖。 第十圖為RC振盪電路示意圖 第十一圖為\Λ點波形圖。 如第十二圖為B點波形圖。 第十二圖為乂⑽波形圖。Schematic diagram of the surface of the gold layer. The tenth figure is a schematic diagram of the RC oscillation circuit. The eleventh figure is the waveform of the \Λ point. For example, the twelfth figure is the waveform of point B. The twelfth picture shows the 乂(10) waveform diagram.

第十四圖為本紐«路示意圖。 第十五圖為本案振i電路内部配置圖 第十六圖為本_擬缝電袖顿出波形。 =七圖為本案指叉狀電極結構電容值從3 ^到御f的頻率變化曲線 葡萄糖濃度與振盪電路輸出頻率 11_MUA的料料度與域電路輸出頻率的對應關係圖 第十九圖修飾11-MUA/葡萄___ 的對應關係圖。 比較圖 第二十圖有無修飾葡萄糖氧化酵素的輸出頻率 第二十-圖葡萄糖感測器的輪出頻率圖。 第二十二圖㈣糖濃度與量__係圖。 23 201209408 【主要元件符號說明】 10- 感測單元 11- 第一金屬層 12- 第二金屬層 13- 第三金屬層 14- 第四金屬層 15- 絡層 16- 金層 17- 光阻層 21- 高分子11-巯基十一烷酸 22- 葡萄糖氧化酵素 23- 葡萄糖 30-感測電路 50-微型碎基材 • 60-自組性單層薄膜 61- 第一部份 62- 第二部份 63- 第三部份 64- 第·一層 65- 第二層 66-第三層The fourteenth picture is a schematic diagram of the road. The fifteenth figure is the internal configuration diagram of the vibration i circuit of the case. The sixteenth figure is the waveform of the sewed electric sleeve. = Seven diagrams This figure refers to the relationship between the capacitance value of the fork electrode structure from 3 ^ to the f frequency curve and the corresponding relationship between the glucose concentration and the output frequency of the oscillation circuit 11_MUA and the output frequency of the domain circuit. Figure 19 Modification 11- Correspondence diagram of MUA/Grape ___. Comparison Figure Figure 20 shows the output frequency of modified glucose oxidase. Figure 20 - Figure of the fluorescence frequency of the glucose sensor. Twenty-second figure (4) Sugar concentration and quantity __ diagram. 23 201209408 [Description of main component symbols] 10- Sensing unit 11 - First metal layer 12 - Second metal layer 13 - Third metal layer 14 - Fourth metal layer 15 - Layer 16 - Gold layer 17 - Photoresist layer 21- Polymer 11-decyl undecanoic acid 22 - Glucose oxidase 23 - Glucose 30 - Sensing circuit 50 - Micro-crushed substrate • 60-Self-assembled single-layer film 61 - Part 1 62 - Part 2 Part 63 - Part III 64 - First Level 65 - Second Layer 66 - Third Layer

Claims (1)

201209408 七、申請專利範圍: 1·種微型整合式生物感測器,主要包括: -感測單元’ _於—微财基材上;該_單元為電容錢極架構, 具有複數個電極,於兩電極中間為—感郝,該感測區以—金層來做為生 物感測器的感測端; 一高分子化合物被修飾於該金層的表面,從而形成一自組性單層薄膜; -對於特定物質具有高度單—性的感測元件被修練該自組性單層薄 φ 膜的表面,從而形成一感測薄膜;該感測薄膜吸附特定物質時,上述電極 間的介電係數發生改變,從而造成電容變化; 一感測電路,架構於該微型矽基材且與該感測單元耦合;該感測電路將 上述的電容變化轉換為頻率輸出,藉此量測該特定物質的濃度。 2. 如申請專利範圍第1項所述之微型整合式生物感測器,其中,該感測單 元之電容式電極架構係由指叉狀電極所組成。 3. 如申請專利範圍第1項所述之微型整合式生物感測器,其中,今自組性 φ 單層薄膜係利用自組性單層薄膜技術將該高分子化合物修錦於該金層 表面。 4·如申請專利範圍第1項所述之微型整合式生物感測器,龙中L v '、τ 上述尚分 子化合物係頭基(headgroup)為烷基硫醇者。 5.如申請專利範圍第4項所述之微型整合式生物感測器,其中,上述高分 子化合物係尾端官能基為羧基(-c〇〇H)者。 6·如申請專利範圍第4項所述之微型整合式生物感測器,其中,上述高分 子化合物係尾端為具有生物活性之官能基者。 25 201209408 7. 如申請專利範圍第1項所述之微型整合式生物感測器,其中,該感測電 路為可調整頻率輸出大小的振盪電路。 8. 如申請專利範圍第1項所述之微型整合式生物感測器,其中,該感測器 係整合於一可攜式載體上。 9. 如申請專利範圍第1項所述之微型整合式生物感測器,其中,上述感測 元件為葡萄糖氧化酵素(glucose oxsidase, GOD)。 10. 如申請專利範圍第1項所述之微型整合式生物感測器,其中,上述感測 Φ 元件為酵素、抗體、抗原及抗生素吸附脂多醣體之擇一。201209408 VII. Patent application scope: 1. A miniature integrated biosensor, which mainly includes: - sensing unit ' _ on - micro-finance substrate; the _ unit is a capacitor money-pole structure, with a plurality of electrodes, The middle of the two electrodes is - Hao, the sensing area uses a gold layer as the sensing end of the biosensor; a polymer compound is modified on the surface of the gold layer to form a self-assembled monolayer film - a sensing element having a highly monolithic property for a specific substance is subjected to the surface of the self-assembled monolayer thin φ film to form a sensing film; the dielectric between the electrodes when the sensing film adsorbs a specific substance a coefficient is changed to cause a change in capacitance; a sensing circuit is coupled to the micro-germanium substrate and coupled to the sensing unit; the sensing circuit converts the capacitance change to a frequency output, thereby measuring the specific substance concentration. 2. The micro-integrated biosensor of claim 1, wherein the capacitive electrode structure of the sensing unit is composed of a finger-shaped electrode. 3. The micro-integrated biosensor according to claim 1, wherein the self-assembled φ single-layer film utilizes self-assembled monolayer film technology to repair the polymer compound in the gold layer. surface. 4. The micro-integrated biosensor as described in claim 1 of the patent application, Lv ', τ in the middle of the above-mentioned compound, the head group is an alkyl mercaptan. 5. The micro-integrated biosensor of claim 4, wherein the high molecular compound is a carboxyl group (-c〇〇H). 6. The micro-integrated biosensor of claim 4, wherein the high molecular compound has a biologically active functional group at the tail end. The micro-integrated biosensor of claim 1, wherein the sensing circuit is an oscillating circuit of an adjustable frequency output size. 8. The micro-integrated biosensor of claim 1, wherein the sensor is integrated on a portable carrier. 9. The micro-integrated biosensor of claim 1, wherein the sensing element is glucose oxsidase (GOD). 10. The micro-integrated biosensor of claim 1, wherein the sensing Φ element is an alternative to an enzyme, an antibody, an antigen, and an antibiotic adsorbing a lipopolysaccharide. m 26m 26
TW99128508A 2010-08-25 2010-08-25 A fully integrated micro biosensor TWI434040B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128508A TWI434040B (en) 2010-08-25 2010-08-25 A fully integrated micro biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128508A TWI434040B (en) 2010-08-25 2010-08-25 A fully integrated micro biosensor

Publications (2)

Publication Number Publication Date
TW201209408A true TW201209408A (en) 2012-03-01
TWI434040B TWI434040B (en) 2014-04-11

Family

ID=46763590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128508A TWI434040B (en) 2010-08-25 2010-08-25 A fully integrated micro biosensor

Country Status (1)

Country Link
TW (1) TWI434040B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610710A (en) * 2022-10-19 2023-03-15 Chordata Ltd Implantable device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610710A (en) * 2022-10-19 2023-03-15 Chordata Ltd Implantable device
GB2610710B (en) * 2022-10-19 2023-12-13 Chordata Ltd Implantable device
EP4356831A1 (en) * 2022-10-19 2024-04-24 Chordata Limited Implantable device
WO2024084181A1 (en) * 2022-10-19 2024-04-25 Chordata Limited Implantable device

Also Published As

Publication number Publication date
TWI434040B (en) 2014-04-11

Similar Documents

Publication Publication Date Title
Eivazzadeh-Keihan et al. Applications of carbon-based conductive nanomaterials in biosensors
Hui et al. Synthesis and electrochemical sensing application of poly (3, 4-ethylenedioxythiophene)-based materials: A review
US8778269B2 (en) Nanoelectronic electrochemical test device
Zhang et al. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase
Kalambate et al. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs
Singh et al. Super Nernstian pH response and enzyme-free detection of glucose using sol-gel derived RuOx on PET flexible-based extended-gate field-effect transistor
Kaya et al. Nanomaterials-based nanosensors for the simultaneous electrochemical determination of biologically important compounds: ascorbic acid, uric acid, and dopamine
Wang et al. Electrochemical sensors for clinic analysis
Siqueira Jr et al. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer
White et al. Operating and sensing mechanism of electrolyte-gated transistors with floating gates: Building a platform for amplified biodetection
Gao et al. Polydopamine/graphene/MnO2 composite-based electrochemical sensor for in situ determination of free tryptophan in plants
Kumar et al. Nanomaterial‐modified conducting paper: fabrication, properties, and emerging biomedical applications
Revathi Enzymatic and nonenzymatic electrochemical biosensors
Dong et al. Advances in electrochemical biosensors based on nanomaterials for protein biomarker detection in saliva
Kang et al. All-inkjet-printed flexible nanobio-devices with efficient electrochemical coupling using amphiphilic biomaterials
CN101315345B (en) Production method for Modified electrode for detecting grape-sugar concentration in non-enzyme condition
Ait Yazza et al. Simple approach for building high transconductance paper-based organic electrochemical transistor (OECT) for chemical sensing
WO2009017911A1 (en) Nanoelectronic electrochemical test device
Rajapaksha et al. Nanoparticles in electrochemical bioanalytical analysis
Liu et al. Electrochemical biosensors based on saliva electrolytes for rapid detection and diagnosis
Domínguez-Renedo et al. Electrochemical devices for cholesterol detection
Munje et al. Interfacial tuning for detection of cortisol in sweat using ZnO thin films on flexible substrates
Zhang et al. Incorporating hydrophobic moieties into self-assembled monolayers to enable electrochemical aptamer-based sensors deployed directly in a complex matrix
TW201209408A (en) Fully integrated micro biosensor
Yang et al. A potentiometric uric acid biosensor integrated with temperature correction readout circuit on flexible PCB

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees