TW201209172A - System and method for evaluating the slag revoming rate of a furnace - Google Patents

System and method for evaluating the slag revoming rate of a furnace Download PDF

Info

Publication number
TW201209172A
TW201209172A TW99128299A TW99128299A TW201209172A TW 201209172 A TW201209172 A TW 201209172A TW 99128299 A TW99128299 A TW 99128299A TW 99128299 A TW99128299 A TW 99128299A TW 201209172 A TW201209172 A TW 201209172A
Authority
TW
Taiwan
Prior art keywords
water
slag
blast furnace
flow rate
temperature
Prior art date
Application number
TW99128299A
Other languages
Chinese (zh)
Other versions
TWI415946B (en
Inventor
Jia-Shyan Shiau
Chung-Ken Ho
Hsu-Tang Kuo
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW99128299A priority Critical patent/TWI415946B/en
Publication of TW201209172A publication Critical patent/TW201209172A/en
Application granted granted Critical
Publication of TWI415946B publication Critical patent/TWI415946B/en

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

A system and a method for evaluating the slag-removing rate of a furnace are disclosed. The furnace uses a water quenching equipment to convert the slag of the furnace into water quench slag, and the water quenching equipment uses water stored in a cooling water sink to cool the slag. The evaluating system includes a water temperature meter, a water flow rate meter, and a calculation module for calculating the slag-removing rate. A slag-removing rate equation is stored in the calculation module. In the evaluation method, at first, the water temperature meter is used to measure the temperature of the water flowing to the water quenching equipment from the cooling water sink. Thereafter, the water flow rate meter is used to measure the flow rate of the water flowing to the water quenching equipment from the cooling water sink. Then, the calculation module is used to calculate the slag-removing rate of the furnace in accordance with the measured flow rate and temperature, and the slag-removing rate equation.

Description

201209172 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種高爐排渣流量估測系統與估測方 法0 【先前技術】 在目前的高爐煉鐵技術中,爐渣排放量是一項重要的 指標。高爐的排渣流量是用來推算高爐内的渣量,配合鐵 水液位,可進一步得知爐床液位,這對高爐的穩定操作有 很大的幫助。 目前,高爐的排渣流量大多利用水淬設備所排放的水 淬爐石率來估測,而水淬設備的水淬爐石排放率是由出粒 化池後爐石經脫水滾筒之油壓變化推估而得的。但由於進 入粒化池的爐石會先於池内停留相混後再流出,使得推算 的爐石量不等於即時進入的重量,導致無法即時獲得精確 的爐石量數據。 【發明内容】 因此,本發明之一方面是在提供一種焦高爐排渣流量 估測系統與估測方法,以即時獲得精確的爐渣排放量。 根據本發明之一實施例,此高爐排渣流量估測系統係 用以估測高爐之排渣流量,其中此高爐係利用水淬設備來 將高爐之爐渣轉換成水淬爐石,而此水淬設備則利用冷卻 水儲存槽中的水來冷卻爐潰。此高爐排潰流量估測系統包 含水溫量測器、水流量量測器以及渣流量計算模組。水f 4 201209172 :冷卻水儲存槽流入水淬設備之水的水 :存^水溫㈣°水流量量測器係用以量測從冷卻水 储存槽^水料備之水的水流量,以制水流量資料。 計算模組係用以根據測得之水溫資料、水流量資料 以及下列方程式來計算出排渣流量之值: 桃 ~Τ^~Ψ^{ΤΧ -25) + 1.14^(Γ,^)201209172 VI. Description of the invention: [Technical field of invention] The present invention relates to a blast furnace slag flow estimation system and estimation method. [Prior Art] In the current blast furnace ironmaking technology, slag discharge is a Important indicators. The slag discharge flow rate of the blast furnace is used to estimate the amount of slag in the blast furnace. The molten iron level can be used to further know the liquid level of the hearth, which is of great help to the stable operation of the blast furnace. At present, most of the slag discharge flow rate of the blast furnace is estimated by the water quenching furnace stone discharge rate of the water quenching equipment, and the water quenching furnace stone discharge rate of the water quenching equipment is the oil pressure of the calculus through the dewatering drum after the granulation tank The change is estimated. However, since the calculus entering the granulating tank will be mixed before the tank is mixed and then discharged, the calculated calcining amount is not equal to the instantaneous entering weight, so that accurate grit data cannot be obtained immediately. SUMMARY OF THE INVENTION Accordingly, it is an aspect of the present invention to provide a coke oven slag flow estimation system and an estimation method for instantaneously obtaining accurate slag discharge. According to an embodiment of the present invention, the blast furnace slag flow estimating system is configured to estimate a slag discharge flow rate of the blast furnace, wherein the blast furnace uses a water quenching device to convert the slag of the blast furnace into a water quenching furnace stone, and the water The quenching equipment uses the water in the cooling water storage tank to cool the furnace. The blast furnace discharge flow estimation system includes a water temperature measuring device, a water flow measuring device, and a slag flow calculating module. Water f 4 201209172 : Water in the cooling water storage tank flowing into the water quenching equipment: storage water temperature (4) ° water flow measuring device is used to measure the water flow from the cooling water storage tank Water flow data. The calculation module is used to calculate the value of the slag discharge flow based on the measured water temperature data, water flow data and the following equation: peach ~Τ^~Ψ^{ΤΧ -25) + 1.14^(Γ,^)

其中Ms為排渣流量;Μι為上述測得之水流量(公斤 小Tl為從水淬設備流人冷卻水儲存槽之水的溫度; 21述測得之水溫;ql為熱損;Ss為該㈣之比熱(仔 1么斤C);TS為該爐渣之溫度(攝氏沱);Ww為水淬爐石 含水率(%) ; Sw為水的比熱。 根據本發明之另一實施例,前述之高爐排逢流量估測 方法係^估測高爐之㈣流量,其中高爐係利用水淬設 備來將间爐之爐渣轉換成爐石,而水淬設備則利用冷卻水 儲存槽中的水來冷卻爐渣。在此高爐排渣流量估測方法 中,首先量測從冷卻水儲存槽流入水淬設備之水的水溫, 以得到水溫資料。接著,量測從冷卻水儲存槽流入水淬設 傷之水的水流量’以得到水流量資料。然後,根據水溫資 料、水流量資料以及下列方程式來計算出排渣流量之值:Where Ms is the slag discharge flow; Μι is the above measured water flow rate (kg small Tl is the temperature of the water flowing from the water quenching device to the cooling water storage tank; 21 measured water temperature; ql is the heat loss; Ss is The heat of the (four) is a heat of the slag (Celsius 沱); Ww is the water content of the water quenching furnace (%); Sw is the specific heat of water. According to another embodiment of the present invention, The foregoing blast furnace flow estimation method estimates the flow rate of the blast furnace (four), wherein the blast furnace uses water quenching equipment to convert the slag of the furnace into blast furnace, and the water quenching equipment uses the water in the cooling water storage tank. Cooling slag. In the blast furnace slag flow estimation method, the water temperature of the water flowing from the cooling water storage tank to the water quenching equipment is first measured to obtain the water temperature data. Then, the measurement is performed from the cooling water storage tank to the water quenching. Set the water flow rate of the injured water to obtain the water flow data. Then, calculate the value of the slag discharge flow based on the water temperature data, the water flow data, and the following equation:

Ms=__1·14Μ,(Γ, -T2) + Ql_ ^s(Ts ^^\)^V/[VS}v(T] —25)+ 1.14^(Γ, — Γ2) 其中Ms為排 >查流量;Μ1為上述測得之水流量(公斤 】時)’ Τ〗為攸水泮設備流入冷卻水儲存槽之水的溫产· Τ2為上述測得之水溫;ql為熱損;Ss為該爐渣之比熱(仟 卡/公斤。c);凡為該爐渣之溫度(攝氏。c); Ww為水淬爐石 201209172 含水率(%); sw為水的比熱 【實施方式】 f參照第1圖,其係繪示根據本發明—實施例之模擬 擬、十算系、統100與熱給量計算流程。本實施例之高模 計Ϊ系統100係藉由爐渣冷卻水的量差值, 計算模型。此爐石流量計算模型可即時計 异出盧=流讀量,供高爐操作人員監控爐床液位。 備德=熱Γ計算线刚係用賴擬爐㈣入水淬設 熱交換機制,其中模擬熱焓量計算系統議包含水 =110、冷凝器120 *冷卻水儲存槽no。水淬設備 =係用以將高爐爐渣轉變成水淬爐石。 備可為一 大保型1NBA系統。冷卻水儲存槽130係用以儲存 1 : 供應水淬設備110所需的冷卻用水。冷凝器 以2用以冷凝水泮設備UG工作時所散發的蒸發水氣, 以方便計算這些蒸發水氣的熱焓量。 在水淬設備110、冷凝器120與冷卻水儲存槽23〇所 構成的封閉系統中,根據根據質量守衡原理可以得到下列 式子: M4+Ms=M5+( 1 + ψ w) Ms > Μ4 =Μ5+Ψ wMs ⑴ 其中Μ»為冷卻水儲存槽i3〇的補充水量(公斤/小時); 為爐渣流量(公斤/小時);Ms為冷卻水儲存槽13〇 蒸 發率(公斤/小時);识㈨為水淬爐石含水率(%),在本實施例 中,由高爐現場測得之含水率為6.64%。 在水淬設備110的封閉系統中,根據質量守衡原理可 201209172 以得到下列式子: M1+Ms+M2, =Μ2+Μ3+(1 + Ψ w) Ms M3- Ψ w Ms (2) 其中’ Mi為水淬用水流量(公斤/小時);m2為水淬過程水 蒸發率(公斤/小時);M2’為冷凝過程之冷凝率(公斤/小 時);M3為水淬設備110流入冷卻水儲存槽130的水流量(公 斤/小時)。Ms=__1·14Μ,(Γ, -T2) + Ql_ ^s(Ts ^^\)^V/[VS}v(T] —25)+ 1.14^(Γ, — Γ2) where Ms is row> Check the flow rate; Μ1 is the above measured water flow rate (kg)] Τ 攸 is the temperature production of the water flowing into the cooling water storage tank of the 攸水泮设备· Τ2 is the water temperature measured above; ql is the heat loss; Ss The specific heat of the slag (仟卡/公斤.c); the temperature of the slag (Celsius.c); Ww is the water quenching furnace 201209172 Moisture content (%); sw is the specific heat of water [Embodiment] f Reference FIG. 1 is a flow chart showing a simulation calculation, a ten-calculation system, a system 100, and a heat supply amount according to the present invention. The high modulus system 100 of the present embodiment calculates the model by the difference in the amount of slag cooling water. This gratestone flow calculation model can instantly calculate the flow reading amount for the blast furnace operator to monitor the grate level.备德=热Γ算线线为为拟炉(四)Inlet water quenching The heat exchanger system, in which the simulated heat quantity calculation system includes water = 110, condenser 120 * cooling water storage tank no. Water quenching equipment = used to convert blast furnace slag into water quenching furnace stone. It can be a large guaranteed 1NBA system. The cooling water storage tank 130 is for storing 1 : cooling water required for supplying the water quenching apparatus 110. The condenser is used to condense the evaporated water vapor emitted by the water 泮 equipment UG to facilitate calculation of the heat enthalpy of the evaporated water vapor. In the closed system composed of the water quenching apparatus 110, the condenser 120 and the cooling water storage tank 23, according to the principle of mass balance, the following formula can be obtained: M4+Ms=M5+(1 + ψ w) Ms > Μ4 =Μ5+Ψ wMs (1) where Μ» is the amount of replenished water in the cooling water storage tank i3〇 (kg/hr); is the slag flow rate (kg/hr); Ms is the cooling water storage tank 13〇 evaporation rate (kg/hr); The knowledge (9) is the water content (%) of the water quenching furnace. In the present embodiment, the water content measured by the blast furnace field is 6.64%. In the closed system of the water quenching apparatus 110, according to the principle of mass balance, 201209172 can be obtained to obtain the following formula: M1+Ms+M2, =Μ2+Μ3+(1 + Ψ w) Ms M3- Ψ w Ms (2) where ' Mi is the water quenching water flow rate (kg/hr); m2 is the water evaporation rate (kg/hr) in the water quenching process; M2' is the condensation rate of the condensation process (kg/hr); M3 is the water quenching equipment 110 flowing into the cooling water storage The water flow rate (kg/hr) of the tank 130.

在冷卻水儲存槽130的封閉系統中,根據根據質量守 衡原理可以得到下列式子: ^4+ M3 =Mi+M5 (3) 將方程式(1)代入方程式(3),以及將方程式(4)代入方程 式(2)中,可得到下列式子: M1=M3+WwMs (4) M2:M2, (5) 接著’在模擬熱焓量計算系統100中,根據能量平衡 原理可得到下列式子:In the closed system of the cooling water storage tank 130, the following equation can be obtained according to the mass balance principle: ^4+ M3 = Mi + M5 (3) Substituting equation (1) into equation (3), and equation (4) Substituting into equation (2), the following equation can be obtained: M1=M3+WwMs (4) M2: M2, (5) Then, in the simulated heat quantity calculation system 100, the following equation can be obtained according to the energy balance principle. :

S 其中SS where S

MsSs*(Ts-25)+ M4Sw*(T0-25) = M$Ss*(Tr25)+ M5*[539+ ⑽-25mMs*Sw*(Ti25)+QL (6) 為爐'查之比熱(仟卡/公斤。C) ; Sw為水的比熱;Ts ^攝氏c);Ts為潰溫(攝氏。c); Tl為水淬設備21〇 二的3水f存槽230的水的溫度(攝氏°C) ; QL為整體系 為539、‘卡二為補充水的溫度;室溫為2rc 的蒸發熱 發熱Ϊ:39推二方的程中的參數M5的值。由於水的蒸 卻到5.39。(:,則〜f為1,因此若欲將1〇0公斤的水冷 e 1公斤的水。根據此推算,可得辦, 7 201209172 下列方程式: M5*539 = M3*1*(Ti-T2) ^ M5 = M3*(Tl-T2)/539 (7) 其中h為冷卻水儲存槽130流入水淬設備11〇的水的溫度 (攝氏jC)。在以上的計算中未列入評估的熱能,將會被列 入熱損Ql中,因此熱損ql大致等於水淬設備11〇的熱損MsSs*(Ts-25)+ M4Sw*(T0-25) = M$Ss*(Tr25)+ M5*[539+ (10)-25mMs*Sw*(Ti25)+QL (6) for the furnace 'check the specific heat ( Leica / kg. C); Sw is the specific heat of water; Ts ^ Celsius c); Ts is the temperature of collapse (Celsius. c); Tl is the temperature of the water of the 3 water and storage tank 230 of the water quenching equipment 21 (2) Celsius °C); QL is the whole system is 539, 'Car two is the temperature of the supplementary water; room temperature is 2rc of the evaporative heat Ϊ: 39 is the value of the parameter M5 in the process of pushing the two sides. Due to the evaporation of water to 5.39. (:, then ~f is 1, so if you want to water 1〇0 kg of water, 1 kg of water. According to this calculation, you can get it, 7 201209172 The following equation: M5*539 = M3*1*(Ti-T2 ^ M5 = M3*(Tl-T2)/539 (7) where h is the temperature (celsius jC) of the water flowing into the water quenching equipment 11 from the cooling water storage tank 130. The evaluated thermal energy is not included in the above calculation. , will be included in the heat loss Ql, so the heat loss ql is roughly equal to the heat loss of the water quenching equipment 11〇

Qi、冷凝器120的熱損Q2以及冷卻水儲存槽13〇的熱'損 Q3的總和,其中冷凝器12〇的熱損匕為負值。 、 然後,對上述方程式進行整理來求得爐渣流量計算模 型。由方程式(4)可得知:Qi, the heat loss Q2 of the condenser 120 and the heat loss Q3 of the cooling water storage tank 13〇, wherein the heat loss 冷凝器 of the condenser 12〇 is a negative value. Then, the above equations are sorted to obtain a slag flow calculation model. It can be known from equation (4):

Μ3 = Μ] - Ψ WMS (ο) 將方程式(7)和(8)代入(6)可得:Μ3 = Μ] - Ψ WMS (ο) Substituting equations (7) and (8) into (6) gives:

Ms[Ss*(Ts-T1)^wsw*(Ti.25)]=Ms[Ss*(Ts-T1)^wsw*(Ti.25)]=

(Mj-Ψ wMs)*614*(TrT2)/539+ QL 整理上式可得:(Mj-Ψ wMs)*614*(TrT2)/539+ QL Finishing the above formula:

Ms=- l.HMjT; -r2) + 0,___Ms=- l.HMjT; -r2) + 0,___

Ss(Ts-Τχ)-ψ^{Τλ -25) + U4^(7^) (9) 在本實施例中’方程式⑼之Ss (Ts _Ti)的值即代表爐 ,於水淬前後之熱烚量變化。為求出此值,進行以下的估 算。首先’在高爐出潰後,以紙桿(内含熱電偶)方式分別 量測鐵潰流道之出渣與鐵水溫度4本實關巾,測得的 平均鐵水溫度約為1498.6。0平均渣溫為1487.6。^接著, 根據習知文獻(面炉製銑法的理論,由A D GGtlib教授所 著’館充翻譯)所揭露的高爐錄焓量與溫度之關係,如第 2圖所㈣’以前述之起為條件,得職祕水泮前後 之熱焓量變化為450仟卡/公斤。 另外,熱損ql之值等於KL*Minv其中Kl為熱損參 201209172 數。在太杳^ 量累 貫施例中將以長時間之理論渣總量(由每噸鐵水渣 二得)與上述方程式(9)所計算得之渣總量進行對 到熱^求传熱損參數。如第3圖所示,理論渣總量不會受 方i =參數值的影響而改變,因此將不同的熱損參數代入 @ 1物(9)’並根據量測到的几和丁,來計算出多個渣總量 、、异值。這些計算值會形成一直線並與理論渣總量的直 線、又而父又點所對應的熱損參數值即為所求之熱損參 數值。 由士述說明可知,當參數KL、Ww、sw以及SsOWO 的值決定後,根據方程式(9),可由水淬設備210流入冷卻 水儲存槽230的水的溫度τ!、冷卻水儲存槽13〇流入水淬 設備no的水的溫度h以及從冷卻水儲存槽23〇流入水淬 β又備210的水流量厘丨來得到渣流量ms。又,水淬設備210 流入冷卻水儲存槽230的水的溫度Τι為定值,因此,當溫 度T!為已知時(事先進行量測),只要知道τ2和Μι的值即 可算出渣流量Ms。 請同時參照第4圖和第5圖,第4圖係繪示根據本發 明之一實施例之高爐排渣流量估測方法4〇〇,第5圖係繪 示高爐排渣流量估測方法400所對應之高爐排渣流量估測 系統500的功能方塊示意圖。高爐排渣流量估測系統5〇〇 包含水溫量測器510、水流量量測器52〇以及渣流量計算 模組530,其中水溫量測器510係用以量測冷卻水儲存槽 550流入水淬設備540的水的溫度(即前述之τ2);水流量 量測器520係用以量測從冷卻水儲存槽55〇流入水淬設備 540的水流量;渣流量計算模組53〇儲存有前述之方程式 (9),以根據量測到的水溫和水流量來計算出高爐56〇之[逢3 201209172 流量。在本實施例中,渣流量計算模組53〇包含有資料接 收模組和計算模組,資料接收模組係用以接收測得之水流 量資料和水溫資料,而計算模組則根據内存之計算模塑來 計算出尚爐560之渣流量值。本實施例之渣流量計算模組 530可設計在高爐之程控電腦中,以方便自動化地控制高 爐的操作。 在高爐排渣流量估測方法400中,首先進行步驟410, 以量測水淬設備540流入冷卻水儲存槽550的水的溫度。 接著,進行步驟420,以量測從冷卻水儲存槽55〇流入水 淬設備540的水流量。然後,進行步驟430,以根據步驟 410和420所測得之水溫、水流量以及排渣流量方程式(9) 來計算出渣流量。 值得注意的是’在本發明之其他實施例中,可加入熱 損參數KL的修正步驟,以增加方程式(9)所計算之渣流量 的精確度。例如,設定程控電腦每半年更新一次熱損參數 KL ’如此,在進行步驟430前,程控電腦會先檢查現行熱 才貝參數KL的使用時間是否超過了預設的使用期限(即半 年)。若檢查結果為是’則先進行熱損參數kl的修正步驟, 再進行步驟430。若檢查結果為否,則繼續進行步驟430。 另外’值得注意的是’上述之實施例可利用電腦程式 產品來實現’其可包含儲存有多個指令之機器可讀取媒 體’這些指令可程式化(programming)電腦來進行上述實施 例中的步驟。機器可讀取媒體可為,但不限定於軟碟、光 碟、唯讀光碟、磁光碟、唯讀記憶體、隨機存取記憶體、 可抹除可程式唯讀記憶體(EPROM)、電子可抹除可程式唯 讀記憶體(EEPROM)、光卡(optical card)或磁卡、快閃記㉟ 201209172 體、或任何適於儲存電子指令的機器可讀取媒體。再者, 本發明之實施例也可做為電腦程式產品來下載,其可藉由 使用通訊連接(例如網路連線之類的連接)之資料訊號來從 遠端電腦轉移至請求電腦。 雖然本發明已以數個實施例揭露如上,然其並非用以 限定本發明,在本發明所屬技術領域中任何具有通常知識 者,在不脫離本發明之精神和範圍内,當可作各種之更動 與潤飾,因此本發明之保護範圍當視後附之申請專利範圍 所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,上文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 第1圖係繪示根據本發明一實施例之模擬熱焓量計算 系統與熱焓量計算流程。 第2圖係繪示高爐渣熱焓量與溫度之關係。 第3圖係繪示理論漬總量與計算渣總量對熱損參數之 作圖。 第4圖係繪示根據本發明之一實施例之高爐排渣流量 估測方法。 第5圖係繪示高爐排渣流量估測系統的功能方塊示意 圖。 【主要元件符號說明】 201209172 100 :模擬熱焓量計算系統 110 :水淬設備 120 :冷凝器 130 :冷卻水儲存槽 400 :高爐排渣流量估測方法 410 :步驟 420 :步驟 430 :步驟 500 :高爐排渣流量估測系統 510 :水溫量測器 520 :水流量量測器 530 :潰流量計算模組 540 :水淬設備 550 :冷卻水儲存槽 560 :高爐 :水淬用水流量 M2 :水淬過程水蒸發率 M2 ’ :冷凝過程之冷凝率 M3 :水流量 M4 :補充水量 M5 :水份蒸發率 Ms :爐渣流量 T 〇 .水溫 T1 ·水溫 T 2 .水溫 T s ·〉查溫 Ql、Ql、Q2、Q3 :熱損 ¥w :水淬爐石含水率Ss(Ts-Τχ)-ψ^{Τλ -25) + U4^(7^) (9) In the present embodiment, the value of Ss (Ts _Ti) of the equation (9) represents the heat of the furnace before and after water quenching. The amount of change. To find this value, make the following estimates. First of all, after the blast furnace collapses, the slag and the molten iron temperature of the iron sluice channel are measured by the paper rod (including the thermocouple), and the average temperature of the molten iron is about 1498.6. The average slag temperature was 1487.6. ^ Next, according to the well-known literature (the theory of the surface furnace milling method, the relationship between the amount of blast furnace recorded and the temperature disclosed by Professor AD GGtlib's 'Tongguan translation', as shown in Figure 2 (4)' As a condition, the amount of heat before and after the job is changed to 450 / / kg. In addition, the value of the heat loss ql is equal to KL*Minv, where Kl is the number of heat loss entries 201209172. In the case of the 杳 杳 量 施 施 施 施 施 施 量 量 量 量 量 量 量 量 量 量 量 量 量 量 量 累 累 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热 传热Loss parameter. As shown in Figure 3, the total amount of theoretical slag is not affected by the influence of the i = parameter value, so different heat loss parameters are substituted into @1(9)' and the measured and measured Calculate the total amount of slag and the different values. These calculated values form a straight line and the heat loss parameter value corresponding to the straight line of the theoretical slag total, and the parent point is the value of the heat loss parameter sought. As can be seen from the description, after the values of the parameters KL, Ww, sw, and SsOWO are determined, according to the equation (9), the temperature τ of the water that can be flowed into the cooling water storage tank 230 by the water quenching device 210, and the cooling water storage tank 13〇 The temperature h of the water flowing into the water quenching apparatus no and the water flow rate from the cooling water storage tank 23 into the water quenching β and 210 are obtained to obtain the slag flow rate ms. Further, the temperature of the water flowing into the cooling water storage tank 230 by the water quenching apparatus 210 is constant. Therefore, when the temperature T! is known (measured in advance), the slag flow rate can be calculated by knowing the values of τ2 and Μι. Ms. Please refer to FIG. 4 and FIG. 5 at the same time. FIG. 4 is a diagram showing a method for estimating the slag flow rate of the blast furnace according to an embodiment of the present invention. FIG. 5 is a diagram showing a method for estimating the slag flow rate of the blast furnace. A functional block diagram of the corresponding blast furnace slag flow estimation system 500. The blast furnace slag flow estimating system 5 〇〇 includes a water temperature measuring device 510, a water flow measuring device 52〇, and a slag flow calculating module 530, wherein the water temperature measuring device 510 is configured to measure the cooling water storage tank 550. The temperature of the water flowing into the water quenching apparatus 540 (i.e., the aforementioned τ2); the water flow measuring device 520 is for measuring the flow rate of water flowing from the cooling water storage tank 55 into the water quenching apparatus 540; the slag flow calculating module 53〇 The equation (9) described above is stored to calculate the flow rate of the blast furnace 56 根据 according to the measured water temperature and water flow rate. In this embodiment, the slag flow calculation module 53 includes a data receiving module and a computing module, and the data receiving module is configured to receive the measured water flow data and water temperature data, and the computing module is based on the memory. The calculation of the molding is performed to calculate the slag flow value of the furnace 560. The slag flow calculation module 530 of the present embodiment can be designed in a program-controlled computer of a blast furnace to facilitate automatic control of the operation of the blast furnace. In the blast furnace slag flow estimation method 400, step 410 is first performed to measure the temperature of the water that the water quenching apparatus 540 flows into the cooling water storage tank 550. Next, step 420 is performed to measure the flow rate of water flowing from the cooling water storage tank 55 into the water quenching apparatus 540. Then, step 430 is performed to calculate the slag flow rate based on the water temperature, water flow rate, and slag discharge flow equation (9) measured in steps 410 and 420. It is to be noted that in other embodiments of the present invention, a correction step of the heat loss parameter KL may be added to increase the accuracy of the slag flow rate calculated by equation (9). For example, if the program-controlled computer updates the heat loss parameter KL ’ every six months, before proceeding to step 430, the program-controlled computer will first check whether the current thermal parameter KL has exceeded the preset usage period (ie, half a year). If the result of the check is YES, the correction step of the heat loss parameter k1 is performed first, and then step 430 is performed. If the result of the check is no, proceed to step 430. In addition, it is noted that the above embodiments may utilize a computer program product to implement 'which may include machine readable media storing a plurality of instructions'. The instructions may be programmed to perform the computer in the above embodiment. step. The machine readable medium can be, but is not limited to, a floppy disk, a CD, a CD-ROM, a magneto-optical disk, a read-only memory, a random access memory, an erasable programmable read only memory (EPROM), or an electronic Erasable programmable read only memory (EEPROM), optical card or magnetic card, flash memory 35 201209172, or any machine readable medium suitable for storing electronic instructions. Furthermore, embodiments of the present invention can also be downloaded as a computer program product that can be transferred from a remote computer to a requesting computer by using a data signal of a communication connection (e.g., a connection such as a network connection). While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more apparent and understood. The figure shows a simulation heat quantity calculation system and a heat quantity calculation flow according to an embodiment of the present invention. Figure 2 shows the relationship between the enthalpy of blast furnace slag and temperature. Figure 3 is a plot of the total amount of theoretical stains and the calculated total slag versus heat loss parameters. Fig. 4 is a view showing a method for estimating a slag discharge flow rate according to an embodiment of the present invention. Figure 5 is a functional block diagram showing the blast furnace slag flow estimation system. [Description of Main Component Symbols] 201209172 100: Simulated Heat Mass Calculation System 110: Water Quenching Apparatus 120: Condenser 130: Cooling Water Storage Tank 400: Blast Furnace Slag Flow Estimation Method 410: Step 420: Step 430: Step 500: Blast Furnace Slag Flow Estimation System 510: Water Temperature Measurer 520: Water Flow Measurer 530: Collapse Flow Calculation Module 540: Water Quenching Apparatus 550: Cooling Water Storage Tank 560: Blast Furnace: Water Quenching Water Flow M2: Water Evaporation rate of quenching process M2 ' : Condensation rate of condensation process M3 : Water flow rate M4 : Replenishment water volume M5 : Moisture evaporation rate Ms : Slag flow rate T 〇. Water temperature T1 · Water temperature T 2 . Water temperature T s ·〉 Temperature Ql, Ql, Q2, Q3: heat loss ¥w: water quenching furnace water content

1212

Claims (1)

201209172 七、申請專利範圍: 1· 一種高爐排渣流量估測系統,用以估測一高爐之一 排渣流里,其中§亥尚爐係利用一水淬設備來將該高爐之一 爐渣轉換成水淬爐石,而該水淬設備則利用一冷卻水儲存 槽中的水來冷卻該爐渣,該高爐排渣流量估測系統包含: 、一水溫量測器,用以量測從該冷卻水儲存槽流入該水 淬設備之水之一水溫,以得到一水溫資料;201209172 VII. Patent application scope: 1. A blast furnace slag flow estimation system for estimating a slag flow in a blast furnace, wherein § Haishang furnace uses a water quenching device to convert one slag of the blast furnace The water quenching furnace stone is cooled by the water in a cooling water storage tank, and the blast furnace slag flow estimating system comprises: a water temperature measuring device for measuring the The cooling water storage tank flows into the water temperature of one of the water of the water quenching device to obtain a water temperature data; 、一水流夏量測器,用以量測從該冷卻水儲存槽流入該 水淬设備之水之-水流量,以得到一水流量資料;以及 一渣流量計算模組,包含: 貝料接收模組,用以接收該水溫資料和該水流 量資料;以及 、一汁算模組,用以根據該水溫資料、該水流量資 料以及下列方程式來計算出該排渣流量之值: -JilM.cr, ~t2)+ql ss(Ts-Τλ)-Ψίν3ΛΤχ -25) + 1.14^(7,-τ2) 其中Ms為該排渣流量;Μι為該水流量(公斤/ 田斤),Τι為從該水淬設備流入該冷卻水儲存槽之水的 為該7jc溫;〜為熱損;^為該爐潰之比熱(仟 檐^八/) ·’凡為該爐渣之溫度(攝氏。c); 為水淬 爐石含水率(%);sw為水的比熱。 統,高爐排渣流_ [S 13 201209172 如申凊專利I巳圍帛!項所述之高爐排潰流量估剛系 、、:中SsWD係代表該爐潰於水淬前後之—熱给量變 化,該熱焓量變化之值為450(仟卡/公斤)。 4.如申請專利範圍第1項所述之高爐排錢量估测系 ,其中從違水泮设備流入該冷卻水儲存槽之水的溫度 定值。 w 5. 一種高爐排渣流量估測方法,用以估測一高爐之一 排渣流量’其巾該高爐係湘—水淬設備來將該高爐之一 爐渣轉換成爐石,而該水淬設備則利用一冷卻水儲存槽中 的水來冷卻該爐渣,該高爐排渣流量估測方法包含:9 量測從該冷卻水儲存槽流入該水淬設備之水之一水 溫’以得到一水溫資料: 量測從該冷卻水儲存槽流入該水淬設備之水之一水流 量’以得到一水流量資料;以及 根據該水溫資料、該水流量資料以及下列方程式來叶 算出該排渣流量之值: Ms=__1.14Μ,(Γ, -T2) + Ql__ 其中Ms為該排渣流量;M〗為該水流量(公斤/小時)· τ〗為從該水淬設備流入該冷卻水儲存槽之水的溫度;τ為 該水溫;ql為熱損;ss為該爐渣之比熱(仟卡/公斤。c) · ^ 為該爐渣之溫度(攝氏。C) ; Ww為水淬爐石含水率(% ’ss 為水的比熱。 ’ w S] 14 201209172 、6.如申請專利範圍第5項所述之高爐排渣流量估測方 法,其中該水淬爐石含水率為6 64%。 、、7.如申請專利範圍第5項所述之高爐排渣流量估測方 法,其中Ss*(Ts-T〇係代表該爐渣於水淬前後之一熱焓量變 化,該熱焓量變化之值為450(仟卡/公斤)。 '、8.如中請專利範圍第5項所敎高爐㈣流量估測方 • 其中從該水淬設備流入該冷卻水儲存槽之水的溫度為 疋值。 9·如中請專利範圍第5項所述之高爐排渣流量估測方 姐其中賴損(QL)之值係與—熱損參數成正比,該高爐 ^查流量估财法更包含進行參數修正步驟,以根 據一理論渣總量來修正該熱損參數。 10. h申凊專利祀圍第9項所述之高爐排渣流量估 V法,更包含: ,行-期限檢查步驟,用以檢查該熱損參數之一使用 呀間疋否超過一預設使用期限;以及 數用時間超過該預設使用期限時,進行該熱損參 15a water flow summer measuring device for measuring a water flow rate of water flowing from the cooling water storage tank to the water quenching device to obtain a water flow data; and a slag flow calculation module comprising: a receiving module for receiving the water temperature data and the water flow data; and a juice calculation module for calculating the value of the slag discharge flow according to the water temperature data, the water flow data, and the following equation: -JilM.cr, ~t2)+ql ss(Ts-Τλ)-Ψίν3ΛΤχ -25) + 1.14^(7,-τ2) where Ms is the slag flow rate; Μι is the water flow rate (kg/field jin), Τι is the water from the water quenching device flowing into the cooling water storage tank for the 7jc temperature; ~ is the heat loss; ^ is the specific heat of the furnace collapse (仟檐^8/) · 'Where the temperature of the slag (Celsius c); water quenching furnace water content (%); sw is the specific heat of water. System, blast furnace slag flow _ [S 13 201209172 Such as Shen Yi patent I 巳 帛! According to the item, the blast furnace discharge flow rate is estimated, and the middle SsWD system represents the change of the heat supply amount before and after the water quenching, and the value of the heat enthalpy change is 450 (leica/kg). 4. The blast furnace money evaluation estimating system according to claim 1, wherein the temperature of the water flowing into the cooling water storage tank from the water mitigation device is fixed. w 5. A method for estimating the slag discharge flow rate of a blast furnace for estimating a slag discharge flow rate of a blast furnace, the blast furnace slag water quenching device is converted into a blast furnace, and the water quenching The device uses a water in a cooling water storage tank to cool the slag. The blast furnace slag flow estimating method comprises: 9 measuring a water temperature of the water flowing from the cooling water storage tank into the water quenching device to obtain a Water temperature data: measuring a water flow rate of water flowing into the water quenching device from the cooling water storage tank to obtain a water flow data; and calculating the row according to the water temperature data, the water flow data, and the following equation The value of the slag flow rate: Ms=__1.14Μ, (Γ, -T2) + Ql__ where Ms is the slag discharge flow rate; M〗 is the water flow rate (kg/hour) · τ〗 is the flow from the water quenching device to the cooling The temperature of the water in the water storage tank; τ is the water temperature; ql is the heat loss; ss is the specific heat of the slag (仟卡/kg.c) · ^ is the temperature of the slag (Celsius C); Ww is the water quenching Hearth water content (% 'ss is the specific heat of water. ' w S] 14 201209172, 6. If you apply for The method for estimating the slag discharge flow rate of the blast furnace according to the fifth item, wherein the water content of the water quenching furnace is 6 64%. 7. The method for estimating the slag discharge flow rate according to the fifth item of the patent application scope , wherein Ss*(Ts-T〇 represents a change in the amount of heat enthalpy of the slag before and after water quenching, and the value of the change in the amount of heat enthalpy is 450 (leica/kg). ', 8. 5 blast furnace (4) flow estimation method • The temperature of the water flowing into the cooling water storage tank from the water quenching equipment is depreciated. 9. The blast furnace slag flow rate estimation mentioned in item 5 of the patent scope The value of the square sister's damage (QL) is directly proportional to the heat loss parameter. The blast furnace check flow estimation method further includes a parameter correction step to correct the heat loss parameter according to a theoretical total slag. h 凊 凊 凊 凊 凊 第 第 第 第 第 第 第 第 第 第 第 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高 高And when the time exceeds the preset use period, the heat loss is performed 15
TW99128299A 2010-08-24 2010-08-24 System and method for evaluating the slag revoming rate of a furnace TWI415946B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128299A TWI415946B (en) 2010-08-24 2010-08-24 System and method for evaluating the slag revoming rate of a furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128299A TWI415946B (en) 2010-08-24 2010-08-24 System and method for evaluating the slag revoming rate of a furnace

Publications (2)

Publication Number Publication Date
TW201209172A true TW201209172A (en) 2012-03-01
TWI415946B TWI415946B (en) 2013-11-21

Family

ID=46763460

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128299A TWI415946B (en) 2010-08-24 2010-08-24 System and method for evaluating the slag revoming rate of a furnace

Country Status (1)

Country Link
TW (1) TWI415946B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260158A (en) * 1985-05-14 1986-11-18 Sumitomo Metal Mining Co Ltd Method for measuring magnetite concentration in flash smelting furnace slag
CA2038823A1 (en) * 1990-03-30 1991-10-01 Akio Nagamune In-furnace slag level measuring method and apparatus therefor
JPH0849024A (en) * 1994-08-05 1996-02-20 Nkk Corp Measuring of molten slag level of refining furnace and instrument therefor
CN101550460B (en) * 2009-05-08 2010-09-08 清华大学 Method and apparatus of blast furnace slag quench and heat recovery
CN101713536B (en) * 2009-12-03 2011-06-29 太原理工大学 Control method of combustion system of circulating fluidized bed boiler

Also Published As

Publication number Publication date
TWI415946B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
Hermes et al. A study of frost growth and densification on flat surfaces
US9121637B2 (en) Using surface heat flux measurement to monitor and control a freeze drying process
Yuan et al. Bubble behavior of high subcooling flow boiling at different system pressure in vertical narrow channel
Aiello et al. Determination of hydrogen solubility in lead lithium using sole device
Badenhorst et al. Critical analysis of the T-history method: A fundamental approach
RU2008129256A (en) METHOD FOR COOLING CONTROL COOLING CONTROL DEVICE AND COOLING WATER QUANTITY CALCULATION DEVICE
FI120850B (en) Method and arrangement for measuring at least one physical quantity, such as temperature, flow, or pressure, of a cooling fluid flowing in a single cycle of a cooling element of a metallurgical furnace
CN103592199B (en) Liquid phase water content on-line measuring device and detection method in wet steam
Tran et al. Refrigerant-based measurement method of heat pump seasonal performances
Gunasekara et al. Thermal conductivity measurement of erythritol, xylitol, and their blends for phase change material design: A methodological study
US10473371B2 (en) System and method for charging a refrigeration system
US10473372B2 (en) System and method for charging a refrigeration system
CN107729600B (en) Evaporator simulation calculation method
TW201209172A (en) System and method for evaluating the slag revoming rate of a furnace
CN107560258A (en) The performance estimating method and handpiece Water Chilling Units of handpiece Water Chilling Units
CN104034750B (en) Identification method of furnace front molten iron thermal analysis cooling curve
US20150226617A1 (en) Using in-process heat flow and developing transferable protocols for the monitoring, control and characerization of a freeze drying process
CN203587468U (en) Device for detecting content of liquid-phase water in wet steam
Kurita et al. Experimental results on gravity driven fully condensing flows in vertical tubes, their agreement with theory, and their differences with shear driven flows’ boundary-condition sensitivities
Kumar et al. Condensation of R-134a vapor over single horizontal circular integral-fin tubes with trapezoidal fins
CN204043937U (en) A kind of water-cooled server Performance Test System
Colorado et al. Hybrid evaporator model: Analysis under uncertainty by means of Monte Carlo method
Jančar et al. Utilization of casting ladle lining enthalpy for heating gas savings in the course of ladle preheating
JP2011526170A5 (en)
Romański Operating efficiency of a non-membrane ground heat and mass exchanger after 15 years of operation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees