TW201207937A - Plasma processing device and plasma processing method - Google Patents

Plasma processing device and plasma processing method Download PDF

Info

Publication number
TW201207937A
TW201207937A TW100110998A TW100110998A TW201207937A TW 201207937 A TW201207937 A TW 201207937A TW 100110998 A TW100110998 A TW 100110998A TW 100110998 A TW100110998 A TW 100110998A TW 201207937 A TW201207937 A TW 201207937A
Authority
TW
Taiwan
Prior art keywords
plasma
electromagnetic wave
processing apparatus
microwave
processed
Prior art date
Application number
TW100110998A
Other languages
Chinese (zh)
Inventor
Shigenori Ozaki
Nobuhiko Yamamoto
Yutaka Fujino
Atsushi Ueda
Junichi Kitagawa
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW201207937A publication Critical patent/TW201207937A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge

Abstract

A plurality of substrates (G) are sequentially conveyed one at a time into the processing vessel (101) of the disclosed plasma processing device (100) by means of a holding/conveying device (103). Then, while the substrates (G) are moved by a second conveyance unit (103B) at a set speed in the direction of conveyance within the processing vessel (101) of the plasma processing device (100), electromagnetic waves such as microwaves and high-frequency waves are introduced within the processing vessel (101) from electromagnetic wave transmitting regions of transmitting plate 128A, transmitting plates 128B1 and 128B2, and transmitting plates 128C1 and 128C2, causing the generation of plasma of processing gas introduced from a gas introduction unit (115), and performing plasma processing.

Description

201207937 六、發明說明: 【發明所屬之技術領域】 本發明是有關往處理容器引導預定頻率的 產生電漿來電漿處理被處理體之電漿處理裝置 '方法。 【先前技術】 對被處理體例如進行氧化處理或氮化處 Chemical Vapor Deposition)處理、餓刻處理 理之電漿處理裝置,有利用具有複數個縫隙的 微波至處理容器內而使電漿生成的縫隙天線方 理裝置爲人所知。又,其他方式的電漿處理裝 線圏狀的天線來導入高頻至處理容器內而使電 應親合型電漿(Inductively Coupled Plasma; 的電漿處理裝置爲人所知。如此的電漿處理裝 容器內使高密度的電漿生成。 可是,以液晶顯示器爲代表的FPD (平板 的玻璃基板,近年來有1邊超過3m者,予以處 理裝置的處理容器的大小是形成小建築物程度 在大型的處理容器內對大面積的玻璃基板進行 處理,需要在電漿處理裝置的處理容器內使電 布均一化。 在上述縫隙天線方式的電漿處理裝置中, 容器內的電漿的密度控制是藉由縫隙的形狀或 電磁波,使 及電漿處理 理、CVD ( 等的電漿處 天線來導入 式的電漿處 置,有利用 漿生成的感 ICP )方式 置可在處理 顯示器)用 理的電漿處 "爲了如此 均一的電漿 漿密度的分 產生於處理 配置、處理 -5- 201207937 容器或微波導入窗的形狀設計等來進行。例如,爲了按照 處理內容來改變電漿密度的分布,需要更換成縫隙的形狀 或配置不同的天線。並且,在上述ICP方式的電漿處理裝 置中,也是爲了改變電漿密度的分布,而需要變換成線圈 的形狀或配置不同的天線。但,此天線的更換是費時又費 力的大規模作業。 並且,在處理容器內所生成的電漿密度的分布,亦可 藉由例如改變微波的功率、處理壓力、氣體流量等的製程 參數來微調。但,該等的製程參數是無法與製程條件分割 ,因此可使製程參數變化的範圍的電漿密度分布的變化幅 度(界限)小,其效果有限。 而且,天線、處理容器等的製作公差、組裝誤差、同 一款式的裝置間的機差等的諸因素,在處理容器內電漿的 對稱性瓦解,電漿密度的分布偏心時,並無簡易的方法來 予以補正的手段,因此會有需要天線的更換等大規模的裝 置改變的問題。 可是,有爲了同時處理複數的大型基板,而設置複數 的微波導入窗,且使對應於各微波導入窗,在各個的下方 設置試料台之電漿處理裝置被提案(例如專利文獻1)。 更有從複數的微波導入窗來分別導入微波而形成電漿,藉 此對一片的大型基板進行均一的電漿處理之電漿處理裝置 被提案(例如專利文獻2 )。並且,在具有複數的天線及 複數的微波導入窗的裝置中,可按各天線供給不同電力的 微波之電漿處理裝置也被提案(例如專利文獻3)。 -6- 201207937 並且,爲了有效率地進行複數的處理工程,而在處理 容器內設置藉由隔壁所分割的複數個處理室,在其下方可 旋轉地配備用以載置複數的基板的載置台之處理裝置也被 提案(例如專利文獻4 )。 而且,在縫隙天線方式的電漿處理裝置中’使用構成 可藉由鐵心調諧器來使微波的相位變化之複數的天線模組 ,作爲對處理容器內導入微波的機構之電漿處理裝置也被 提案(例如專利文獻5 )。 〔先行技術文獻〕 〔專利文獻〕 專利文獻1:日本國特開平8-25 5 7 8 5號公報 專利文獻2:日本國特開平1 0-92797號公報 專利文獻3:日本國特開2004-1 28385號公報 專利文獻4:日本國特開平6-204147號公報 專利文獻5:日本國特開201 0-1 70974號公報 【發明內容】 爲了調整處理容器內的電漿密度的分布,可想在處理 容器內使複數的電漿獨立產生爲有效。但,若各電漿的產 生部位及被處理體的配置爲固定,則會因鄰接的電漿彼此 間的距離或電漿的擴散程度,而在電漿密度產生高低的分 布,反而會有難以謀求被處理體的面內之處理的均一化的 課題。 本發明的目的是在處理容器內使複數的電漿產生之方 201207937 式的電漿處理裝置中,容易控制電漿密度的分布,而在被 處理體的面內實現所望的處理。 本發明的第1觀點的電漿處理裝置,係具備: 處理容器,其係形成處理被處理體的處理空間; 支撐裝置,其係支撐上述被處理體; 電磁波產生裝置,其係產生電磁波,該電磁波係用以 使電漿生成於上述處理容器內;及 複數的電磁波導入單元,其係將在上述電磁波產生裝 置產生的電磁波導入至上述處理容器內。 而且,上述電磁波導入單元具有面對上述處理空間的 電磁波導入窗,在上述處理容器內,被上述支撐裝置所支 撐的被處理體與上述電磁波導入窗係彼此相對移動於相反 方向,以被處理體至少通過一個上述電磁波導入窗的電磁 波透過區域的對向位置之方式構成。 又,本發明的電漿處理裝置,亦可在上述相對移動之 間,以一個的被處理體對於2個以上的上述電磁波導入窗 的電磁波透過區域至少部分地依序通過對向的位置之方式 構成。 又,本發明的電漿處理裝置,亦可在上述相對移動之 間,以一個的被處理體同時對於2個以上的上述電磁波導 入窗的電磁波透過區域至少部分地通過對向的位置之方式 構成。 又,本發明的電漿處理裝置中,上述2個以上的電磁 波導入窗係以藉由從各電磁波導入窗所導入的電磁波來生 -8 - 201207937 成的電漿之電漿密度的時間性累計値及/或電漿照射時間 的累計値在一個被處理體的面內形成相同之方式配置。 又,本發明的電漿處理裝置,亦可更具備輔助性的電 磁波導入單元,其係具有電磁波導入窗,該電磁波導入窗 係對於上述相對移動的被處理體的軌道,設於偏離對向的 位置之位置。 '又,本發明的電漿處理裝置,亦可具備複數的電磁波 導入單元,其係上述電磁波導入窗的面積相異。 又,本發明的電漿處理裝置,上述電磁波產生裝置亦 可對應於上述電磁波導入單元來個別地設置。 又,本發明的電漿處理裝置,供給至上述複數的電磁 波導入單元的電磁波的功率可個別地設定。 又,本發明的電漿處理裝置,亦可更具備驅動部,其 係使被上述支撐裝置所支撐的被處理體與上述電磁波導入 窗的其中任一方或雙方朝彼此相反方向相對移動。 本發明的電漿處理方法是利用電漿處理裝置,該電漿 處理裝置係具備: 處理容器,其係形成處理被處理體的處理空間; 支撐裝置,其係支撐上述被處理體,且搬送於一定方 向; 電磁波產生裝置,其係產生電磁波,該電磁波係用以 使電漿生成於上述處理容器內;及 複數的電磁波導入單元,其係將在上述電磁波產生裝 置產生的電磁波導入至上述處理容器內。 -9 - 201207937 在此電漿處理裝置中,上述電磁波導入單元具有面對 上述處理空間的電磁波導入窗,在上述處理容器內,以被 上述支撐裝置所支撐的被處理體與上述電磁波導入窗彼此 相對移動於相反方向的方式構成。 而且,本發明的電漿處理方法係經由複數的上述電磁 波導入窗來將電磁波導入至上述處理容器內而使電漿生成 ,且在上述處理容器之中以被處理體至少通過一個上述電 磁波導入窗的電磁波透過區域的對向位置之方式,一邊使 被處理體對於上述電磁波導入窗相對移動,一邊以無論在 被處理體上的那個位置,電漿密度的時間性累計値及/或 電漿照射時間的累計値皆形成相同的方式進行電漿處理◊ 若根據本發明,則在處理容器內,被支撐裝置所支撐 的被處理體與上述電磁波導入窗會構成彼此相對移動於相 反方向,至少通過一個上述電磁波導入窗的對向位置,因 此可使被處理體的面內之處理的均一性提升。並且,即使 更換天線,或變更製程條件,還是可獨立控制處理容器內 的電漿分布。因此,可在處理容器內以所望的分布來安定 地維持電漿》而且,即使對應於被處理體的大型化令處理 容器大型化時,照樣可藉由使複數的電磁波導入單元的配 置或電磁波導入窗的面積及所供給的電磁波的功率等變化 來簡單地調節在處理容器內所生成的電漿分布。 【實施方式】 以下,參照圖面來詳細說明有關本發明之一實施形態 -10- 201207937 。圖1是槪念性地顯示本實施形態的電漿處理裝置100的構 成例。圖2是電漿處理裝置100的微波供給部的槪略構成圖 。圖3A’ 3B,3C是表示使用於圖1的電漿處理裝置100的 平面天線的平面圖。圖4是表示圖1的電漿處理裝置100的 控制系統的槪要圖面。本實施形態的電漿處理裝置100是 例如以FPD (平板顯示器)用的玻璃基板(以下簡稱爲「 基板」)G作爲處理對象者。另外,FPD例如有液晶顯示 器(LCD)、電激發光(Electro Luminescence; EL)顯示 器、電漿顯示器面板(PDP)等》 電漿處理裝置100的主要構成是具備: 處理容器101,其係構成氣密; 支撐搬送裝置103,其係於處理容器101內支撐作爲被 處理體的基板G,且搬送於一定方向; 氣體導入部115,其係導入氣體至處理容器101內; 排氣裝置124,其係用以將處理容器101內予以減壓排 氣; 複數的微波導入單元127,其係設於處理容器101的上 部,將用以使產生電漿的微波導入至處理容器101內; 導波管137,其係一端被連接至微波導入單元127; 微波產生裝置139,其係被連接至此導波管137的另一 端,使微波產生;及 控制部150,其係作爲控制該等電漿處理裝置1〇〇的各 構成部的控制手段。 另外,藉由微波導入單元127、導波管137、及微波產 -11 - 201207937 生裝置139來構成使處理氣體的電漿產生於處理容器101內 的電漿產生手段。 處理容器101是具有由鋁等的材質所構成的底壁101a 、側壁101b及頂壁101c。在處理容器101的側壁l〇lb設有 氣體導入部115。此氣體導入部115是例如具有複數的氣孔 ,被連接至氣體供給裝置118。並且,在處理容器101的側 壁101b中,用以在電漿處理裝置100與鄰接的處理室(例 如可交替切換真空與大氣壓之未圖示的裝載鎖定室)之間 進行基板G的搬出入的搬出入口 119、及開閉此搬出入口 1 19的閘閥120會分別設於彼此對向的側壁101b。並且,處 理容器101具備排氣裝置124,此排氣裝置124具備例如 APC閥、及作爲高速真空泵的渦輪分子泵。 支撐搬送裝置103是例如具備滾輪方式、傳動帶方式 、空氣浮上方式、磁氣浮上方式等未圖示的搬送機構,構 成可將基板G搬送於圖1中的箭號所示的一方向。具體而言 ,支撐搬送裝置103是從搬送方向的上游側往下游側具備 第1搬送部103A、第2搬送部103B、第3搬送部103C,構成 可在各搬送部之間交接基板G。並且,支撐搬送裝置103是 具備用以驅動上述搬送機構的驅動部l〇3a。 其次,一邊參照圖2〜圖4 一邊說明有關在處理容器 101內導入微波的機構。電漿處理裝置1〇〇是形成使複數的 微波產生裝置139產生的微波分別經由微波導入單元127來 供給至處理容器101內的構成。在微波產生裝置13 9與微波 導入單元127之間分別藉由導波管137來連接。 -12- 201207937 首先,說明有關作爲電磁波導入單元的微波導入單元 127。微波導入單元127主要的構成是具備透過板128、平 面天線板131。另外,微波導入單元127亦可爲不具備平面 天線板1 3 1的喇叭型式。 作爲使微波透過的電磁波導入窗的透過板128是在形 成於頂壁101c的支撐部113a上配備。在透過板128中,面 向支撐部1 13a之間的處理容器1內的部分會形成作爲電磁 波透過區域的微波透過區域。透過板128是由介電質例如 石英或Al2〇3、A1N等的陶瓷所構成。此透過板128與支撐 部1 13a之間是經由密封構件129來氣密地密封。因此,各 透過板128是分別堵住頂壁101c的開口,保持處理容器1〇1 內的氣密性。 平面天線板131是在透過板128的上方,設成與支撐搬 送裝置103對向。平面天線板131是呈圓板狀。另外,平面 天線板131的形狀並非限於圓板狀,例如亦可爲四角板狀 。平面天線板131是例如由表面被鍍金或銀的銅板或鋁板 所構成。平面天線板131是具有放射微波的複數個縫隙狀 的微波放射孔132。微波放射孔132是貫通平面天線板131 而形成者。 各個的微波放射孔1 3 2是例如圖3 A所不’呈細長的長 方形狀(縫隙狀)。另外,微波放射孔1 3 2的形狀亦可爲 圓形狀、圓弧狀等其他的形狀。而且,微波放射孔132的 配置形態並無特別加以限定,例如圖3B那樣,彎曲的細長 的複數個微波放射孔132全體配置成圓形,或圖3C那樣細 -13- 201207937 長的微波放射孔132亦可配置成從平面天線板131的中心放 射狀地延伸。 在平面天線板1 3 1之上連接導波管1 3 7的下端。在導波 管1 3 7的另一端側經由匹配電路1 3 8來連接用以產生微波的 微波產生裝置139。作爲電磁波產生裝置的微波產生裝置 139是使預定頻率的微波產生。微波的頻率是例如2.45GHz 爲理想,其他亦可使用800MHz〜1GHz (較理想是800MHz 〜915MHz) 、8.35GHz ' 1.98GHz等。 導波管1 3 7是具有:從平面天線板1 3 1朝上方延伸的剖 面圓形狀的圓形導波管137a、及經由模式變換器140來連 接至此圓形導波管1 3 7a的上端部之延伸於水平方向的矩形 導波管137b。模式變換器140是具有將以TE模式來傳播於 矩形導波管137b內的微波變換成TM模式的機能。藉由如 此的構造,微波是經由圓形導波管137a來往平面天線板 131傳播》 藉由以上那樣的構成,在微波產生裝置13 9所產生的 微波可經由導波管137來往微波導入單元127的平面天線板 131傳播,且經由透過板128來導入至處理容器101內。另 外,在本實施形態的電漿處理裝置1〇〇中,作爲導入微波 至處理容器1內的機構,並非限於圖2所示的構成。例如, 亦可適於利用在專利文獻5所揭示的微波導入機構》 電漿處理裝置1〇〇的各構成部是形成被連接至控制部 150來控制的構成。控制部150是電腦,例如圖4所示,具 備:具有CPU的控制器151、及被連接至此控制器151的使 ⑧ -14- 201207937 用者介面152及記憶部153。控制器151是在電漿處理裝置 1〇〇中統括控制例如基板搬送速度、氣體流量、壓力、微 波輸出等製程條件相關的各構成部(例如驅動部103a、氣 體供給裝置118、排氣裝置124、微波產生裝置139等)之 控制手段。 使用者介面152具有:工程管理者爲了管理電漿處理 裝置100而進行指令的輸入操作等的鍵盤、及使電漿處理 裝置100的運轉狀況可視化顯示的顯示器等。並且,在記 憶部153中保存有記錄控制程式(軟體)或處理條件資料 等的處方,該控制程式(軟體)是用以在製程控制器151 的控制下實現被執行於電漿處理裝置100的各種處理者。 然後,因應所需,以來自使用者介面152的指示等, 從記憶部1 5 3叫出任意的處方,使執行於製程控制器1 5 1, 在製程控制器151的控制下,於電漿處理裝置1〇〇的處理容 器101內進行所望的處理。並且,上述控制程式及處理條 件資料等的處方可利用被儲存於電腦可讀取的記錄媒體 1 5 4的狀態者,或從其他的裝置例如經由專線來使隨時傳 送上線利用。電腦可讀取的記錄媒體154例如可舉CD-ROM 、硬碟、軟碟、SSD、快閃記憶體、DVD、藍光光碟等》 其次,說明有關利用本實施形態的電漿處理裝置100 的電漿處理的程序之一例。在此是舉使用含氮的氣體作爲 處理氣體,將基板G的表面予以電漿氮化處理時爲例。首 先,例如從使用者介面152輸入指令,而使能夠在電漿處 理裝置100進行電漿氮化處理。控制器151會接受此指令, -15- 201207937 讀出被保存於記億部153或記錄媒體154的處方。然後,從 控制器1 5 1往電漿處理裝置1 〇〇的各終端裝置例如驅動部 l〇3a、氣體供給裝置118、排氣裝置124、微波產生裝置 1 3 9等送出控制信號,而使能夠在根據處方的條件下實行 電漿氮化處理。 然後,打開閘閥120從搬出入口 119將在支撐搬送裝置 103的第1搬送部103 A所支撐的基板G予以交接至第2搬送 部103 B,搬入至處理容器101內。其次,關閉閘閥120,將 處理容器101內予以減壓排氣,從氣體供給裝置1 18以預定 的流量來將不活性氣體及含氮氣體分別經由氣體導入部 115導入至處理容器101內》而且,調整排氣量及氣體供給 量來將處理容器101內調節成預定的壓力。其次,開啓( 輸入)各微波產生裝置139的功率,而使微波產生。然後 ,預定的頻率例如2.45GHz的微波會從各微波產生裝置139 分別經由匹配電路138來引導至導波管137,依序通過矩形 導波管137b及圓形導波管137a,供給至平面天線板131。 微波是在矩形導波管137b內以TE模式傳播,此TE模式的 微波是在模式變換器140被變換成TM模式,在圓形導波管 137a內朝微波導入單元127的平面天線板131傳播而去。微 波是從被貫通形成於平面天線板131的孔之微波放射孔132 經由透過板128來放射至處理容器101內的基板G的上方空 間。如此一來,微波會分別從各微波導入單元127來導入 至處理容器101內。然後,一邊藉由第2搬送部103B以預定 的速度來使基板G移動於一方向(圖1中的箭號的方向), ⑧ -16- 201207937 一邊在處理容器ιοί內對基板G進行電漿氮化處理。 在本實施形態是例如配置5處的微波導入單元1 27,利 用經由各微波導入單元127來導入處理容器101的微波在處 理容器101內形成電磁場,例如被導入處理容器101內的不 活性氣體及含氮氣體會被電漿化。利用此微波所被激發的 電漿是藉由微波從平面天線板1 3 1的微波放射孔1 32放射, 例如形成l〇I()/cm3〜1013/cm3的高密度,且在基板G附近爲 大致2 e V以下的低電子溫度之電漿。如此形成的高密度電 漿是往底層膜的離子等所造成的電漿損傷少。然後、藉由 電漿中的活性種例如自由基或離子的作用來氮化基板G的 矽表面,而形成矽氮化膜SiN的薄膜。另外,可取代含氮 氣體而使用含氧氣體,藉此進行矽的氧化處理,且亦可藉 由使用成膜原料氣體來進行電漿CVD法的成膜。 一旦基板G完成通過電漿中,則在第2搬送部103B中, 使基板G停止,由控制器151送出使電漿處理終了的控制信 號,關閉各微波產生裝置139的功率。其次,停止來自氣 體供給裝置118的處理氣體的供給,將處理容器內抽真空 。然後,使支撐搬送裝置103驅動,將基板G從第2搬送部 103B交接至第3搬送部103C,藉此從處理容器1〇1內搬出基 板G。如此一來,完成對1片基板G的電漿處理。 在本實施形態中,微波導入單元127是設置複數個。 圖5是由處理容器101的內部所見的頂壁l〇lc的底面圖,合 計描繪有5個的透過板128A, 128B1, 128B2, 128C1, 128C2的微波透過區域,作爲透過板128。亦即,在本實施 -17- 201207937 形態的電漿處理裝置100中合計設有5個的微波導入單元 127。在以下的說明是依據透過板128的微波透過區域的位 置來說明、微波導入單元127的配置。另外,作爲電磁波 導入窗的透過板128並非限於圓形,亦可例如爲矩形等其 他的形狀。 其次,一邊參照圖6,一邊說明電漿處理裝置100的電 漿處理的原理》透過板128 A是具有與基板G的面積大致同 程度的大面積,爲由寬廣的微波透過區域來導入微波至處 理容器1內的主要電漿生成部。透過板128B1,128B2及透 過板128(:1,128€2是面積比透過板128八小,爲從相對性 小的微波透過區域來導入微波至處理容器1內的輔助性電 漿生成部。透過板128A是在圖6中配置於以箭號所示的基 板G的搬送方向的最上游側,透過板128B1,128B2是配置 於比透過板128A還要靠搬送方向的下游側,更在其下游側 配置透過板128C1,128C2。連結透過板128B1,128B2的 中心間的直線距離Μ ,是形成比和基板G的搬送方向正交的 方向的基板G的寬度DG稍微大。連結透過板128C1,128C2 的中心間的直線距離M2是比距離更大,透過板128C1, 128C2是配置於基板G的寬度Dg的外側。 在電漿處理裝置100是利用藉由驅動部103 a所驅動的 支撐搬送裝置103來依序搬送複數的基板G,一片一片地搬 入電漿處理裝置100的處理容器101內。然後,在電漿處理 裝置100的處理容器101內,一邊藉由第2搬送部103B來使 基板G以一定速度移動於搬送方向,一邊從透過板128A、 201207937 透過板128B1,128B2、透過板128C1,128C2的各微波透 過區域來導入微波至處理容器101內,使從氣體導入部115 導入之處理氣體的電漿生成,而進行電漿處理。若考慮電 漿的擴散,則可藉由在透過板128 A的正下方所生成的電漿 來處理基板G的大致全面,但若也從透過板128B1,128B2 、透過板128C1,128C2的微波透過區域來導入微波而使電 漿產生於複數處,則可實現大面積的基板G之處理的均一 化。 而且,透過板 128A, 128B1 , 128B2, 128C1 , 128C2 的其中至少一個是在基板G移動的期間,配置成至少其一 部分對於基板G上下互相重疊。亦即,基板G是對於透過 板 128A, 128B1, 128B2, 128C1, 128C2相對移動,構成 通過透過板 128A,128B1 > 128B2 - 128C1 > 128C2 之中的 至少一個的對向位置。另外,在本實施形態中,基板G是 對於透過板128A, 128B1, 128B2, 128C1, 128C2相對移 動,構成通過透過板128A,128B1,128B2的對向位置。 在此,所謂「對向位置」是意指使透過板128A,128B1, 128B2的微波透過區域的面積朝向支撐搬送裝置1〇3 (基板 G),原封不動垂直投影時,該投影區域與基板G是至少 部分地重疊。藉由如此的配置,透過板128A,128B1, 128B 2是錯開時間依序一部分或全體與基板G上下重疊而去 。相對的,基板G是不通過透過板128C1,128C2的對向位 置。亦即,透過板128C1,128C2對於基板G的移動軌跡是 設於偏離對向的位置之位置。 -19- 201207937 如上述般,藉由配置複數的透過板128A,128B1, 128B2,128C1,128C2,可使基板G在移動預定的距離後 的基板G上方的電漿密度的時間性累計値在複數的基板G 間及基板G的面內形成大致均等。亦即,藉由從透過板 128A,128B1,128B2,128C1,128C2 的微波透過區域所 放射的微波來產生作用於基板G的合計電漿密度是無論在 基板G表面的哪個部位皆於時間平均上成爲大致相等的結 果。另外,在處理容器101內,因爲在透過板128的微波透 過區域的正下方所生成的電漿會擴散而去,所以到達基板 G表面的電漿是具有比透過板128的微波透過區域的面積更 大的面積(水平剖面積)。此電漿擴散區域的面積也會依 照從透過板1 2 8到基板G表面的距離(間隙Lc )而有所不同 。可考慮如此的電漿擴散來決定透過板128的配置。並且 ,可理解使透過板128移動,而取代藉由支撐搬送裝置103 來使基板G移動,也是同樣可行。亦即,只要使微波導入 單元127與基板G相對移動即可,哪一方移動皆可,或亦可 使雙方移動。 圖7A及圖7B是直線性地顯示基板G對於複數的透過板 201A,201B,201C,201D (在此是設爲均等的面積)相 對移動的軌跡。圖7A、圖7B中,Li是表示透過板201A〜 20 1 D的鄰接者彼此間的間隔(中心間的距離),Μ是表示 最外側的2個透過板201 Α及201 D的中心間的距離,DG是表 示基板G的寬度(亦即與相對移動方向正交的方向的長度 )。並且,圖7A中的箭號是基板G對複數的透過板201A〜 -20- 201207937 201D的移動方向’圖7B中的箭號是複數的透過板201A〜 201D對基板G的移動方向。如此,基板g與透過板201A〜 20 1D是只要相對移動即可,所以可爲基板〇移動,或者具 備透過板201A〜201D的處理容器1〇1移動, 在圖7A及圖7B所示的例子中,爲了避免在基板G的端 部的電漿密度的時間性累計値相較於其他的部位(例如基 板G的中央附近)降低,較理想是最外側的2個透過板 201A ’ 201D的微波透過區域的中心間的距離μ與基板G的 寬度DG相同或較廣。亦即,較理想M2DG的關係成立。在 圖7A及圖7B中’中心間距離Μ是比寬度DG稍微大。並且, 在圖7A及圖7B所示的例子中,藉由取透過板201A〜201D 的相對移動方向的間隔,可使基板G依序通過透過板20 1A 〜20 1 D的微波透過區域的對向位置。相反的,藉由縮小透 過板201 A〜201 D的相對移動方向的間隔,亦可使透過板 201A〜201D的其中2個以上的透過板的微波透過區域與基 板G在相對移動中同時互相重疊。 並且,與依序相鄰配置於相對移動方向的透過板20 1 A 〜20 ID的微波透過區域的相對移動方向正交的方向的間隔 L!是設定成在鄰接的透過板間電漿密度的時間性累計値不 會過大,且不會產生下降爲理想。亦即,若間隔L,過小或 過大,則即使考慮了電漿的擴散,也會有電漿密度產生大 的山部及小的谷部,在基板G的面內之處理的均一性降低 的情況。例如,在圖7A中,P1是只通過透過板201 A的微 波透過區域的正下方,P3是只通過透過板201D的微波透過 -21 - 201207937 區域的正下方,相對的,P2是通過透過板201B及透過板 20 1C的雙方的微波透過區域的正下方,因此P2是電漿照射 時間要比PI、P3更多。當透過板201A〜201D的下方的電 漿密度均一時,在P2例如氮化處理是氮摻雜量或氮化膜厚 要比PI、P3更大。因此,以無論在基板G上的PI,P2、P3 的哪個點,電漿密度的時間性累計値皆形成相同的方式調 節透過板201A〜201D的大小或間隔川、從透過板201A〜 20 1D到基板G表面的最短距離(間隙U )、及各微波導入 單元127的微波功率等。而且,以無論基扳G上的哪個位置 ,電漿照射時間的累計値皆形成相同的方式配置電漿源( 透過板),藉此可進行更均一的處理。 圖8是表示與圖6不同的一列式的電漿處理裝置100 A的 構成例。此電漿處理裝置100 A是在基板G的寬度方向配置 等面積的透過板203A,203 B > 203 C > 203 D - 203E。透過 板203A〜203E是在與圖8中的箭號所示的基板G的搬送方 向正交的方向些微地互相重疊配置,構成在透過板2 03 A〜 2 03 E間不會產生電漿密度的谷部。並且,連結最外側的透 過板203 A及203 E的微波透過區域的中心間之直線的距離Μ 是形成比基板G的寬度DG些微大。另外,在圖8所示的例 子是有透過板203A〜203E的全部微波透過區域同時與基板 G互相重疊的情況。 在電漿處理裝置100A是藉由未圖示的搬送裝置來依序 搬送複數的基板G,使一片一片地通過電漿處理裝置1〇〇 A 的處理容器101A內。然後,在電漿處理裝置1〇 〇A的處理 ⑧ -22- 201207937 容器101A內’一邊使基板G以—定速度來移動於搬送方向 (圖8中箭號所示)’一邊從透過板2〇3A〜203E來導入微 波至處理容器101A內,使從氣體導入部115導入之處理氣 體的電漿生成,而進行電漿處理。此情況,也是以無論在 基板G上的哪個位置’電漿密度的時間性累計値及/或電漿 照射時間的累計値皆形成相同的方式配置電漿源(透過板 ),藉此可進行均一的處理。 圖9是表示另外別的一列式(innne )的電漿處理裝置 100B的構成例。此電漿處理裝置ιοοΒ是在基板G的寬度方 向配置有透過板205,207A,207B。並且,在處理容器 101B之與基板G的搬送方向平行之互相對向的側壁設有透 過板209A,209B。透過板2〇5是具有與基板G的面積大致 同程度的大面積之主要的電漿生成部。透過板207A,207B 是面積比透過板20 5小的輔助性電漿生成部。而且,透過 板209A,209B是由通過之間的基板G的側方來導入微波於 水平方向而使電漿生成的輔助性電漿生成部。 透過板205在圖9中是配置於箭號所示的搬送方向的最 上游側,透過板207A,207B是配置於比透過板205還要稍 微靠搬送方向的下游側。連結透過板207 A,207B的中心間 的直線距離Μ是形成比基板G的寬度DG還要稍微大。設於 處理容器101B的側壁的2個透過板2 09A,209B是以面臨基 板G的搬送路徑的方式配置於側方。 電漿處理裝置100B是藉由未圖示的搬送裝置來依序搬 送複數的基板G,一片一片地搬入電漿處理裝置100B的處 -23- 201207937 理容器101B內。然後,在電漿處理裝置100B的處理容器 101B內,一邊使基板G以一定速度來移動於搬送方向(圖9 中箭號所示),一邊從透過板205、透過板207A,207B、 透過板209A,209B的微波透過區域來導入微波至處理容器 101B內,使從氣體導入部115導入之處理氣體的電漿生成 ,而進行電漿處理。 若考慮電漿的擴散,則可藉由在透過板205的微波透 過區域的正下方所生成的電漿來處理基板G的大致全面, 但若也從輔助性的透過板207A,207B、透過板209A, 209B的微波透過區域來導入微波而使電漿產生於複數處, 則可藉由使電漿產生於複數處來實現大面積的基板G之處 理的均一化。此情況,也是以無論基板G上的哪個位置, 電漿密度的時間性累計値及/或電漿照射時間的累計値皆 形成相同的方式配置電漿源(透過板),藉此可進行均一 的處理。 其次,說明有關本發明的基礎的模擬實驗。圖10〜圖 14是表示模擬以預定的間隔來配置4個透過板201A,201B ,201C,201D (直徑109mm )的微波透過區域時的電漿密 度的時間性累計値的重疊之結果。從各透過板201 A〜 201 D到基板G的表面之最短距離(間隙LG )是89mm。基板 G的寬度DG是3 00mm。圖10〜圖Μ的縱軸是表示以通過時 間來除以電子密度(電漿密度)的時間性累計値的平均値 ,橫軸是表示對基板G的移動方向垂直的方向的距離。並 且,在圖10〜圖14的橫軸是重疊顯示基板G的大小(寬度 ⑧ -24- 201207937 首先,圖 10 是 Li = 90mm ( M = 270mm) ’ M<DG的情況 。如圖10所示,在與相對移動方向正交的方向(基板0的 寬度方向)之基板G的中央部分與端部的電漿密度的合算 値之比較下,在中央部分較高,在端部下降’全體形成山 形。另—方面,圖 11是1^1 = 12〇111111(1^ = 36〇111111) ,M>Dg 的 情況。如圖1 1所示,在與相對移動方向正交的方向之基板' G的中央部分與端部的電漿密度的合算値是大致均等。與 圖1〇的情況同樣,配置於兩端的透過板201A,201D的下 方的區域的電漿密度是在外側下降。但,因爲是在離開基 板G的寬度DG的部分產生下降,所以在基板G的面內是大 致保持均一的電漿密度。 圖 12 〜圖 14 是表示 Li = 120mm ( M = 360mm) ,M>D〇 的 設定中,使從透過板201A〜201D(亦即各對應的微波導 入單元27)導入的微波功率變化的情況。圖12是表示將從 配置於外側的透過板20 1A,20 1D導入的微波功率設爲 1 000W,將從配置於內側的2個透過板201B,201C導入的 微波功率設爲600W的情況。電漿密度的合算値是在與相 對移動方向正交的方向(寬度方向)之基板G的中央部分 下降’端部會形成較高。圖1 3是表示將從配置於外側的透 過板201A,201D導入的微波功率設爲i〇〇〇w,將從配置於 內側的2個透過板201B,201C導入的微波功率設爲1300W 的情況。電漿密度的合算値是在與相對移動方向正交的方 向之基板G的中央部分變高,在端部變低。 -25- 201207937 圖14是表示1^ = 9〇1111«(\1 = 27〇111111),14<0(3的設定, 使從透過板20 1A〜20 ID導入的微波功率變化的情況》在 圖Η是使從配置於外側的透過板201A,201D導入的微波 功率各形成較大的1 000 W,使曾配置於內側的2個透過板 201 B,20 1C導入的微波功率各形成較小的700W。但,由 於M <DG,因此與相對移動方向正交的方向之基板G的端部 的電漿密度的合算値的下降未被改善。 由上述模擬結果亦可確認,爲了使到達基板G的面內 之電漿的密度均一化,實現處理的均一化,最好是M2Dg 的關係成立》 其次,說明有關確認本發明的效果的實驗資料。首先 ,說明有關使用於實驗的電漿處理裝置的構成。 [實驗1] 如圖15所示,使用一在頂壁101c直線地配設具有寬度 (直徑)90mm的圓形微波透過區域的透過板128X,128 Y ,128Z之電漿處理裝置。在各透過板128X,128Y,128Z 的位置分別設有微波導入單元。以下,將透過板128X記載 爲「第1電漿源128X」,將透過板128Y記載爲「第2電漿 源128Y」,將透過板128Z記載爲「第3電漿源128Z」。本 實驗是以第1電漿源128X的中心爲基準(零)’分別將至 第2電漿源128 Y的中心的距離、及至第3電漿源128Z的中心 的距離設定成175mm。並且’本實驗的目的是評價處理的 均一性,因此假想3〇〇mm寬度的一片基板G作爲被處理體 -26- 201207937 來進行評價。 以下記的條件來使電漿生成,在從頂板101 c算起 49mm下方的位置測定電漿密度。 <電漿生成條件>201207937 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a plasma processing apparatus for producing a plasma-injected slurry to be processed to a predetermined frequency. [Prior Art] A plasma processing apparatus that treats a material to be processed, for example, a chemical treatment or a nitriding treatment, and a treatment process, uses a microwave having a plurality of slits into the processing container to generate plasma. The slot antenna processing device is known. Further, another type of plasma processing wire-shaped antenna is used to introduce a high frequency into a processing container, and a plasma processing device of Inductively Coupled Plasma is known. Such a plasma is known. In the processing container, high-density plasma is generated. However, the FPD (the glass substrate of the flat panel) has a size of more than 3 m in recent years, and the size of the processing container to be processed is a small building. In the processing of a large-area glass substrate in a large processing container, it is necessary to homogenize the electric cloth in the processing container of the plasma processing apparatus. In the above-described plasma processing apparatus of the slot antenna type, the density of the plasma in the container The control is based on the shape of the slit or the electromagnetic wave, and the plasma treatment, CVD (the plasma of the plasma is introduced into the plasma treatment, and the ICP generated by the slurry) can be used to process the display. The plasma station"in order to achieve such uniform plasma density is generated in the processing configuration, processing -5 - 201207937 container or microwave import window shape design, etc. For example, in order to change the distribution of the plasma density according to the processing content, it is necessary to replace the shape of the slit or to configure a different antenna. Moreover, in the plasma processing apparatus of the ICP method described above, also to change the distribution of the plasma density, However, it is necessary to convert into a shape of a coil or a different antenna. However, the replacement of the antenna is a time-consuming and laborious large-scale operation. Moreover, the distribution of the plasma density generated in the processing container can also be changed by, for example, changing the microwave. The process parameters such as power, processing pressure, gas flow rate, etc. are fine-tuned. However, these process parameters cannot be separated from the process conditions, so the variation range (limit) of the plasma density distribution in the range in which the process parameters vary can be made small. The effect is limited. Moreover, factors such as manufacturing tolerances of the antenna, the processing container, assembly errors, and the difference between the devices of the same type, when the symmetry of the plasma in the processing container collapses, and the distribution of the plasma density is eccentric, There is no easy way to correct it, so there will be a large-scale device change that requires antenna replacement. However, in order to simultaneously process a plurality of large-sized substrates, a plurality of microwave introduction windows are provided, and a plasma processing apparatus in which a sample stage is provided below each microwave introduction window is proposed (for example, Patent Document 1) Further, a plasma processing apparatus in which a microwave is introduced from a plurality of microwave introduction windows to form a plasma, and a large-sized substrate is uniformly plasma-treated is proposed (for example, Patent Document 2). In the apparatus for a plurality of antennas and a plurality of microwave-introducing windows, a microwave plasma processing apparatus that supplies microwaves of different electric power for each antenna is also proposed (for example, Patent Document 3). -6- 201207937 Also, in order to efficiently perform plural In the processing, a processing device in which a plurality of processing chambers divided by the partition walls are provided in the processing container, and a mounting table for arranging a plurality of substrates to be mounted thereon is also proposed (for example, Patent Document 4). Further, in the plasma processing apparatus of the slot antenna type, the use of a plurality of antenna modules constituting a phase change of the microwave by the core tuner is also used as a plasma processing apparatus for introducing a microwave into the processing container. Proposal (for example, Patent Document 5). [Prior Art Document] [Patent Document] Patent Document 1: Japanese Patent Laid-Open No. Hei 8-25 5 7 8 5 Patent Document 2: Japanese Patent Laid-Open No. Hei No. 0-92797 Patent Document 3: Japanese Special Open 2004- Japanese Patent Application Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. It is effective to independently generate a plurality of plasmas in the processing vessel. However, if the position where the plasma is generated and the arrangement of the object to be processed are fixed, the plasma density may be high or low due to the distance between adjacent plasmas or the degree of plasma diffusion. A problem of uniformity in the processing of the surface of the object to be processed is sought. SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma processing apparatus of the type 201207937 in a plasma processing apparatus of the type of processing, which is capable of controlling the distribution of the plasma density and realizing the desired treatment in the plane of the object to be processed. A plasma processing apparatus according to a first aspect of the present invention includes: a processing container that forms a processing space for processing a target object; a support device that supports the object to be processed; and an electromagnetic wave generating device that generates electromagnetic waves. The electromagnetic wave is used to generate plasma in the processing container, and a plurality of electromagnetic wave introducing units that introduce electromagnetic waves generated by the electromagnetic wave generating device into the processing container. Further, the electromagnetic wave introduction unit has an electromagnetic wave introduction window facing the processing space, and in the processing container, the object to be processed supported by the support device and the electromagnetic wave introduction window are moved in opposite directions to each other to be processed It is configured by at least one of the opposing positions of the electromagnetic wave transmission region of the electromagnetic wave introduction window. Further, in the plasma processing apparatus of the present invention, the electromagnetic wave transmitting region of the two or more electromagnetic wave introducing windows may be at least partially sequentially passed through the opposing position between the relative movements. Composition. Further, the plasma processing apparatus of the present invention may be configured such that at least one of the objects to be processed simultaneously passes through the opposing position of the electromagnetic wave transmitting region of the two or more electromagnetic wave introducing windows between the relative movements. . Further, in the plasma processing apparatus of the present invention, the two or more electromagnetic wave introduction windows generate a temporal accumulation of the plasma density of the plasma generated by the electromagnetic waves introduced from the electromagnetic wave introduction windows -8 - 201207937 The cumulative enthalpy of enthalpy and/or plasma irradiation time is configured in the same manner in the plane of one object to be processed. Further, the plasma processing apparatus of the present invention may further include an auxiliary electromagnetic wave introducing unit having an electromagnetic wave introducing window that is provided on the off-orientation of the orbit of the relatively moving object to be processed. The location of the location. Further, the plasma processing apparatus of the present invention may further include a plurality of electromagnetic wave introducing units having different areas of the electromagnetic wave introducing windows. Further, in the plasma processing apparatus of the present invention, the electromagnetic wave generating device may be provided separately in accordance with the electromagnetic wave introducing unit. Further, in the plasma processing apparatus of the present invention, the power of the electromagnetic waves supplied to the plurality of electromagnetic wave introducing units can be individually set. Further, the plasma processing apparatus of the present invention may further include a driving unit that relatively moves one or both of the object to be processed supported by the supporting device and the electromagnetic wave introducing window in opposite directions to each other. The plasma processing method of the present invention is a plasma processing apparatus comprising: a processing container that forms a processing space for processing the object to be processed; and a supporting device that supports the object to be processed and transported to a certain direction; an electromagnetic wave generating device that generates electromagnetic waves for generating plasma in the processing container; and a plurality of electromagnetic wave introducing units that introduce electromagnetic waves generated by the electromagnetic wave generating device into the processing container Inside. -9 - 201207937 In the plasma processing apparatus, the electromagnetic wave introduction unit has an electromagnetic wave introduction window facing the processing space, and the object to be processed supported by the support device and the electromagnetic wave introduction window are in the processing container. It is constructed in such a way as to move in the opposite direction. Further, in the plasma processing method of the present invention, electromagnetic waves are introduced into the processing container through a plurality of electromagnetic wave introduction windows, and plasma is generated, and at least one of the electromagnetic wave introduction windows is passed through the processing container. When the electromagnetic wave passes through the opposing position of the region, the object to be processed is relatively moved to the electromagnetic wave introduction window, and the plasma density is accumulated / and/or plasma irradiation at the position on the object to be processed. According to the present invention, in the processing container, the object to be processed supported by the supporting device and the electromagnetic wave introducing window are configured to move relative to each other in opposite directions, at least The above-mentioned electromagnetic wave is introduced into the opposite position of the window, so that the uniformity of the processing in the plane of the object to be processed can be improved. Also, even if the antenna is replaced or the process conditions are changed, the plasma distribution in the processing container can be independently controlled. Therefore, it is possible to stably maintain the plasma in a desired distribution in the processing container. Further, even if the processing container is enlarged in size in accordance with the enlargement of the object to be processed, the arrangement of the plurality of electromagnetic waves can be introduced into the unit or the electromagnetic wave. The plasma distribution generated in the processing container is simply adjusted by changing the area of the introduction window and the power of the supplied electromagnetic waves. [Embodiment] Hereinafter, an embodiment of the present invention -10- 201207937 will be described in detail with reference to the drawings. Fig. 1 is a view showing a configuration example of the plasma processing apparatus 100 of the present embodiment. Fig. 2 is a schematic block diagram of a microwave supply unit of the plasma processing apparatus 100. 3A' 3B, 3C are plan views showing a planar antenna used in the plasma processing apparatus 100 of Fig. 1. Fig. 4 is a schematic view showing a control system of the plasma processing apparatus 100 of Fig. 1. In the plasma processing apparatus 100 of the present embodiment, for example, a glass substrate (hereinafter simply referred to as "substrate") G for FPD (flat panel display) is used as a processing target. Further, the FPD is, for example, a liquid crystal display (LCD), an electroluminescence (EL) display, a plasma display panel (PDP), or the like. The main structure of the plasma processing apparatus 100 is: a processing container 101 which is a gas The support conveyance device 103 supports the substrate G as the object to be processed in the processing container 101 and is transported in a predetermined direction; the gas introduction unit 115 introduces the gas into the processing container 101; and the exhaust device 124 The utility model is used for decompressing and decompressing the inside of the processing container 101; a plurality of microwave introducing units 127 are disposed on the upper portion of the processing container 101, and introducing microwaves for generating plasma into the processing container 101; 137, one end of which is connected to the microwave introduction unit 127; a microwave generating device 139 connected to the other end of the waveguide 137 for microwave generation; and a control unit 150 for controlling the plasma processing apparatus The control means of each component of 1 inch. Further, the microwave introduction unit 127, the waveguide 137, and the microwave generator 139 - 201207937 device 139 constitute a plasma generating means for generating plasma of the processing gas in the processing container 101. The processing container 101 is a bottom wall 101a, a side wall 101b, and a top wall 101c which are made of a material such as aluminum. A gas introduction portion 115 is provided in the side wall 100b of the processing container 101. The gas introduction portion 115 has, for example, a plurality of pores, and is connected to the gas supply device 118. Further, in the side wall 101b of the processing container 101, the substrate G is carried out between the plasma processing apparatus 100 and an adjacent processing chamber (for example, a load lock chamber (not shown) in which vacuum and atmospheric pressure are alternately switched). The carry-out port 119 and the gate valve 120 that opens and closes the carry-in port 1 19 are provided on the side walls 101b opposed to each other. Further, the processing container 101 is provided with an exhaust device 124 including, for example, an APC valve and a turbo molecular pump as a high-speed vacuum pump. The support conveyance device 103 is, for example, a conveyance mechanism (not shown) such as a roller type, a belt type, an air floating type, or a magnetic floating type, and is configured to convey the substrate G in a direction indicated by an arrow in Fig. 1 . Specifically, the support conveyance device 103 is provided with the first conveyance unit 103A, the second conveyance unit 103B, and the third conveyance unit 103C from the upstream side to the downstream side in the conveyance direction, and is configured to allow the transfer of the substrate G between the conveyance units. Further, the support transporting device 103 is provided with a drive unit 103a for driving the transport mechanism. Next, a mechanism for introducing microwaves into the processing container 101 will be described with reference to Figs. 2 to 4 . The plasma processing apparatus 1 is configured such that microwaves generated by the plurality of microwave generating apparatuses 139 are supplied to the processing container 101 via the microwave introducing unit 127, respectively. The microwave generating device 139 and the microwave introducing unit 127 are connected by a waveguide 137, respectively. -12-201207937 First, a microwave introducing unit 127 as an electromagnetic wave introducing unit will be described. The microwave introduction unit 127 is mainly configured to include a transmission plate 128 and a planar antenna plate 131. Further, the microwave introducing unit 127 may be a horn type that does not have the planar antenna plate 131. The transmission plate 128, which is an electromagnetic wave introduction window for transmitting microwaves, is provided on the support portion 113a formed on the top wall 101c. In the transmission plate 128, a portion of the processing container 1 between the support portions 1 13a forms a microwave transmission region as an electromagnetic wave transmission region. The transmission plate 128 is made of a dielectric such as quartz, Al2〇3, A1N or the like. The gap between the transmission plate 128 and the support portion 13a is hermetically sealed via the sealing member 129. Therefore, each of the transmission plates 128 is an opening that blocks the top wall 101c, and maintains the airtightness in the processing container 1〇1. The planar antenna plate 131 is disposed above the transmission plate 128 so as to face the support conveyance device 103. The planar antenna plate 131 has a disk shape. Further, the shape of the planar antenna plate 131 is not limited to a disk shape, and may be, for example, a square plate shape. The planar antenna plate 131 is made of, for example, a copper plate or an aluminum plate whose surface is plated with gold or silver. The planar antenna plate 131 is a plurality of slit-shaped microwave radiation holes 132 that radiate microwaves. The microwave radiation hole 132 is formed by penetrating the planar antenna plate 131. Each of the microwave radiation holes 133 is, for example, an elongated rectangular shape (slit shape) as shown in Fig. 3A. Further, the shape of the microwave radiation holes 133 may be other shapes such as a circular shape or an arc shape. Further, the arrangement of the microwave radiation holes 132 is not particularly limited. For example, as shown in FIG. 3B, the entire plurality of curved elongated microwave radiation holes 132 are arranged in a circular shape, or as shown in FIG. 3C, the fine microwave radiation holes 13-201207937 long. 132 may also be arranged to extend radially from the center of the planar antenna plate 131. The lower end of the waveguide 137 is connected above the planar antenna plate 131. A microwave generating device 139 for generating microwaves is connected to the other end side of the waveguide 137 via a matching circuit 138. The microwave generating device 139 as an electromagnetic wave generating device generates microwaves of a predetermined frequency. The frequency of the microwave is, for example, 2. 45GHz is ideal, others can also use 800MHz ~ 1GHz (more ideally 800MHz ~ 915MHz), 8. 35GHz ' 1. 98GHz and so on. The waveguide 137 has a circular waveguide 137a having a circular cross section extending upward from the planar antenna plate 131, and an upper end connected to the circular waveguide 137a via a mode converter 140. The rectangular waveguide 137b extends in the horizontal direction. The mode converter 140 has a function of converting microwaves propagating in the rectangular waveguide 137b in the TE mode into the TM mode. With such a configuration, the microwave propagates through the circular waveguide 137a to the planar antenna plate 131. With the above configuration, the microwave generated by the microwave generating device 139 can be transmitted to the microwave introducing unit 127 via the waveguide 137. The planar antenna plate 131 propagates and is introduced into the processing container 101 via the transmission plate 128. Further, in the plasma processing apparatus 1 of the present embodiment, the mechanism for introducing the microwave into the processing container 1 is not limited to the configuration shown in Fig. 2 . For example, it is also possible to adopt a configuration in which each component of the microwave introduction mechanism 》 plasma processing apparatus 1 disclosed in Patent Document 5 is formed to be connected to the control unit 150. The control unit 150 is a computer, for example, as shown in Fig. 4, and includes a controller 151 having a CPU, and a user interface 152 and a memory unit 153 connected to the controller 151. The controller 151 is a component (for example, the drive unit 103a, the gas supply device 118, and the exhaust device 124) that comprehensively controls process conditions such as substrate transfer speed, gas flow rate, pressure, and microwave output in the plasma processing apparatus 1A. Control means of the microwave generating device 139, etc.). The user interface 152 includes a keyboard for inputting an instruction or the like for the management of the plasma processing apparatus 100, and a display for visually displaying the operation state of the plasma processing apparatus 100. Further, the storage unit 153 stores a prescription for recording a control program (software) or processing condition data, etc., and the control program (software) is used to implement the plasma processing apparatus 100 under the control of the process controller 151. Various processors. Then, in response to an instruction from the user interface 152, an arbitrary prescription is called from the memory unit 153 to be executed by the process controller 155, under the control of the process controller 151, in the plasma. The processing in the processing container 101 of the processing apparatus 1 is performed. Further, the prescriptions of the control program, the processing condition data, and the like can be used by the user who is stored in the state of the computer-readable recording medium 154 or from another device, for example, via a dedicated line. The computer-readable recording medium 154 can be, for example, a CD-ROM, a hard disk, a floppy disk, an SSD, a flash memory, a DVD, a Blu-ray disk, or the like. Next, the electric power of the plasma processing apparatus 100 according to the present embodiment will be described. An example of a procedure for slurry processing. Here, a case where a nitrogen-containing gas is used as a processing gas and the surface of the substrate G is subjected to plasma nitriding treatment is exemplified. First, for example, a command is input from the user interface 152 to enable plasma nitriding treatment in the plasma processing apparatus 100. The controller 151 accepts this command, and -15-201207937 reads out the prescription stored in the box 153 or the recording medium 154. Then, a control signal is sent from the controller 151 to each terminal device of the plasma processing apparatus 1 例如, for example, the drive unit 103a, the gas supply device 118, the exhaust device 124, the microwave generating device 139, and the like. The plasma nitriding treatment can be carried out under the conditions of the prescription. Then, the gate valve 120 is opened, and the substrate G supported by the first conveyance unit 103A of the support conveyance device 103 is transferred to the second conveyance unit 103B from the carry-out port 119, and is carried into the processing container 101. Then, the gate valve 120 is closed, and the inside of the processing container 101 is evacuated, and the inert gas and the nitrogen-containing gas are introduced into the processing container 101 through the gas introduction unit 115 from the gas supply device 1 18 at a predetermined flow rate. The amount of exhaust gas and the amount of gas supplied are adjusted to adjust the inside of the processing container 101 to a predetermined pressure. Next, the power of each microwave generating device 139 is turned on (input) to generate microwaves. Then, the predetermined frequency is, for example, 2. The 45 GHz microwaves are guided from the respective microwave generating devices 139 to the waveguide 137 via the matching circuit 138, and sequentially supplied to the planar antenna plate 131 through the rectangular waveguide 137b and the circular waveguide 137a. The microwave is propagated in the TE mode in the rectangular waveguide 137b, and the TE mode microwave is converted into the TM mode in the mode converter 140, and propagates in the circular waveguide 137a toward the planar antenna plate 131 of the microwave introduction unit 127. And go. The microwave wave is radiated from the microwave radiation hole 132 penetrating through the hole formed in the planar antenna plate 131 to the upper space of the substrate G in the processing container 101 via the transmission plate 128. In this manner, microwaves are introduced into the processing container 101 from the respective microwave introduction units 127. Then, while the substrate G is moved in one direction (the direction of the arrow in FIG. 1) at a predetermined speed by the second conveying unit 103B, the substrate G is plasma-treated in the processing container ιοί at 8 -16 - 201207937 Nitriding treatment. In the present embodiment, for example, the microwave introduction unit 127 is disposed at five places, and an electromagnetic field is formed in the processing container 101 by microwaves introduced into the processing container 101 via the respective microwave introduction units 127, for example, the inert gas introduced into the processing container 101 and The nitrogen-containing gas will be plasmad. The plasma excited by the microwave is radiated from the microwave radiation hole 1 32 of the planar antenna plate 13 by microwave, for example, to form a high density of 10 〇 I () / cm 3 〜 1013 / cm 3 , and near the substrate G A plasma with a low electron temperature of approximately 2 e V or less. The high-density plasma thus formed is less damaged by plasma caused by ions or the like of the underlying film. Then, the surface of the crucible of the substrate G is nitrided by the action of an active species such as a radical or ions in the plasma to form a thin film of the tantalum nitride film SiN. Further, an oxygen-containing gas may be used instead of the nitrogen-containing gas to carry out oxidation treatment of the ruthenium, and film formation by a plasma CVD method may be carried out by using a film-forming material gas. When the substrate G has passed through the plasma, the substrate G is stopped in the second transfer unit 103B, and the control signal for ending the plasma processing is sent from the controller 151, and the power of each microwave generating device 139 is turned off. Next, the supply of the processing gas from the gas supply device 118 is stopped, and the inside of the processing container is evacuated. Then, the support conveyance device 103 is driven, and the substrate G is transferred from the second conveyance unit 103B to the third conveyance unit 103C, whereby the substrate G is carried out from the processing container 1〇1. In this way, the plasma treatment of one substrate G is completed. In the present embodiment, a plurality of microwave introduction units 127 are provided. Fig. 5 is a bottom plan view of the top wall 100c seen from the inside of the processing container 101, and a microwave transmitting region of five transmissive plates 128A, 128B1, 128B2, 128C1, and 128C2 is collectively depicted as a transmissive plate 128. In other words, in the plasma processing apparatus 100 of the embodiment -17-201207937, five microwave introduction units 127 are provided in total. The following description is based on the position of the microwave transmission region of the transmission plate 128, and the arrangement of the microwave introduction unit 127. Further, the transmission plate 128 as the electromagnetic wave introduction window is not limited to a circular shape, and may be other shapes such as a rectangular shape. Next, the principle of the plasma treatment of the plasma processing apparatus 100 will be described with reference to Fig. 6. The transmission plate 128A has a large area which is substantially the same as the area of the substrate G, and the microwave is introduced into the wide microwave transmission area. The main plasma generating portion in the container 1 is processed. The transmissive plates 128B1 and 128B2 and the transmissive plate 128 (1,128 €2 are smaller than the transmissive plate 128, and are microwave-transmissive regions for introducing microwaves into the auxiliary plasma generating portion in the processing container 1. The transmission plate 128A is disposed on the most upstream side in the conveyance direction of the substrate G indicated by an arrow in FIG. 6, and the transmission plates 128B1 and 128B2 are disposed on the downstream side in the conveyance direction of the transmission plate 128A, and The transmission plates 128C1 and 128C2 are disposed on the downstream side, and the linear distance Μ between the centers of the transmission plates 128B1 and 128B2 is slightly larger than the width DG of the substrate G in the direction orthogonal to the conveyance direction of the substrate G. The transmission plate 128C1 is connected. The linear distance M2 between the centers of 128C2 is larger than the distance, and the transmission plates 128C1 and 128C2 are disposed outside the width Dg of the substrate G. The plasma processing apparatus 100 uses the support conveyance device driven by the driving unit 103a. In the processing container 101 of the plasma processing apparatus 100, the substrate G is transferred to the processing container 101 of the plasma processing apparatus 100 one by one. Then, the processing unit 101 of the plasma processing apparatus 100 is used to make the base by the second conveying unit 103B. G is moved to the conveyance direction at a constant speed, and microwaves are introduced into the processing container 101 from the respective microwave transmission regions of the transmission plates 128A and 201207937 through the plates 128B1 and 128B2 and the transmission plates 128C1 and 128C2, and the processing is introduced from the gas introduction unit 115. The plasma of the gas is generated and subjected to plasma treatment. If the diffusion of the plasma is considered, the substantially uniformity of the substrate G can be treated by the plasma generated directly under the transparent plate 128 A, but if it is also from the transparent plate 128B1, 128B2, the microwaves are transmitted through the microwave transmission regions of the plates 128C1 and 128C2, and the plasma is generated in a plurality of places, so that the processing of the processing of the large-area substrate G can be realized. Moreover, the transmission plates 128A, 128B1, 128B2, 128C1 At least one of the 128C2 is disposed such that at least a portion of the substrate G overlaps the substrate G during the movement of the substrate G. That is, the substrate G is relatively moved with respect to the transmission plates 128A, 128B1, 128B2, 128C1, and 128C2, and is configured to pass through The opposite position of at least one of the plates 128A, 128B1 > 128B2 - 128C1 > 128C2. Further, in the present embodiment, the substrate G The transmissive plates 128A, 128B1, 128B2, 128C1, and 128C2 are relatively moved to constitute the opposite positions of the transmissive plates 128A, 128B1, and 128B2. Here, the "opposing position" means the microwaves of the transmissive plates 128A, 128B1, and 128B2. When the area of the transmission region faces the support conveyance device 1〇3 (substrate G), the projection region and the substrate G at least partially overlap when the vertical projection is not performed. With such an arrangement, the transmissive plates 128A, 128B1, and 128B 2 are sequentially overlapped with the substrate G in a part or all of the staggered time. In contrast, the substrate G does not pass through the opposing positions of the transmission plates 128C1, 128C2. That is, the movement trajectories of the transmission plates 128C1, 128C2 with respect to the substrate G are located at positions deviating from the opposite direction. -19- 201207937 As described above, by arranging a plurality of transmissive plates 128A, 128B1, 128B2, 128C1, 128C2, the temporal accumulation of the plasma density of the substrate G above the substrate G after moving a predetermined distance can be made in the plural The in-plane formation between the substrates G and the substrate G is substantially uniform. That is, the total plasma density acting on the substrate G by the microwaves radiated from the microwave transmission regions of the transmission plates 128A, 128B1, 128B2, 128C1, and 128C2 is a time average over which portion of the surface of the substrate G is averaged. Become roughly equal results. Further, in the processing container 101, since the plasma generated directly under the microwave transmitting region of the transmitting plate 128 is diffused, the plasma reaching the surface of the substrate G has an area larger than the microwave transmitting region of the transmitting plate 128. Larger area (horizontal sectional area). The area of this plasma diffusion region also differs depending on the distance (gap Lc) from the surface of the plate 1 28 to the surface of the substrate G. Such a plasma diffusion can be considered to determine the configuration of the transmission plate 128. Further, it is understood that it is equally feasible to move the transmissive plate 128 instead of moving the substrate G by the support transport device 103. In other words, as long as the microwave introducing unit 127 and the substrate G are relatively moved, either one can move or both can be moved. Figs. 7A and 7B are linearly showing the trajectories of the relative movement of the substrate G with respect to the plurality of transmissive plates 201A, 201B, 201C, and 201D (here, equal areas). In FIGS. 7A and 7B, Li is the interval (the distance between the centers) between the adjacent members of the transmission plates 201A to 20 1 D, and Μ is the distance between the centers of the two outermost transmission plates 201 and 201 D. The distance DG is the width of the substrate G (that is, the length in the direction orthogonal to the relative movement direction). Further, the arrow in Fig. 7A is the moving direction of the substrate G to the plurality of transmissive plates 201A to -20-201207937 201D. The arrow in Fig. 7B is the moving direction of the plurality of transmissive plates 201A to 201D to the substrate G. In this manner, since the substrate g and the transmission plates 201A to 20 1D are relatively movable, they can be moved by the substrate , or the processing container 1〇1 including the transmission plates 201A to 201D can be moved, and the examples shown in FIGS. 7A and 7B are used. In order to prevent the temporal accumulation of the plasma density at the end of the substrate G from being lower than that of other portions (for example, near the center of the substrate G), it is preferable that the microwaves of the outermost two transmission plates 201A' to 201D are microwaves. The distance μ between the centers of the transmission regions is the same as or wider than the width DG of the substrate G. That is, the relationship with the ideal M2DG is established. In Fig. 7A and Fig. 7B, the distance 中心 between the centers is slightly larger than the width DG. Further, in the example shown in Figs. 7A and 7B, the substrate G can be sequentially passed through the pair of microwave transmission regions of the transmission plates 20 1A to 20 1 D by taking the intervals of the relative movement directions of the transmission plates 201A to 201D. To the location. On the contrary, by narrowing the interval of the relative movement directions of the transmission plates 201 A to 201 D, the microwave transmission regions of the two or more transmission plates of the transmission plates 201A to 201D can be overlapped with each other while moving relative to the substrate G. . Further, the interval L! in the direction orthogonal to the relative movement direction of the microwave transmission regions of the transmission plates 20 1 A to 20 ID which are disposed adjacent to each other in the relative movement direction is set to be the plasma density between the adjacent transmission plates. The accumulation of time is not too large, and it does not cause a decline. In other words, if the interval L is too small or too large, even if the diffusion of the plasma is considered, there is a large mountain portion and a small valley portion in which the plasma density is generated, and the uniformity of the treatment in the plane of the substrate G is lowered. Happening. For example, in Fig. 7A, P1 is directly under the microwave transmission region of the transmission plate 201A, and P3 is directly transmitted through the microwave of the transmission plate 201D directly below the -21,079,079 region, and P2 is the transmission plate. Since both of the 201B and the transmitting plate 20 1C are directly under the microwave transmitting region, P2 has more plasma irradiation time than PI and P3. When the density of the plasma below the transmission plates 201A to 201D is uniform, the amount of nitrogen doping or the thickness of the nitride film in P2, for example, nitriding treatment is larger than that of PI and P3. Therefore, regardless of the point of PI, P2, and P3 on the substrate G, the temporal accumulation of the plasma density is adjusted in the same manner to adjust the size or spacing of the transmission plates 201A to 201D, and from the transmission plates 201A to 20 1D. The shortest distance to the surface of the substrate G (gap U), the microwave power of each microwave introduction unit 127, and the like. Further, the plasma source (transmission plate) is disposed in the same manner regardless of the position on the base G, and the cumulative 値 of the plasma irradiation time, whereby a more uniform process can be performed. Fig. 8 is a view showing an example of the configuration of a plasma processing apparatus 100A of an in-line type different from that of Fig. 6. The plasma processing apparatus 100A is a transmission plate 203A, 203B > 203 C > 203 D - 203E having an equal area in the width direction of the substrate G. The transmission plates 203A to 203E are disposed so as to overlap each other slightly in the direction orthogonal to the conveyance direction of the substrate G indicated by the arrow in Fig. 8, and the plasma density is not generated between the transmission plates 2 03 A to 2 03 E. Valley. Further, the distance Μ between the straight lines connecting the centers of the microwave transmitting regions of the outermost transmissive plates 203 A and 203 E is formed to be slightly larger than the width DG of the substrate G. Further, the example shown in Fig. 8 is a case where all of the microwave transmission regions of the transmission plates 203A to 203E are simultaneously overlapped with the substrate G. In the plasma processing apparatus 100A, a plurality of substrates G are sequentially conveyed by a conveying device (not shown), and are passed through the processing container 101A of the plasma processing apparatus 1A in one piece. Then, in the processing of the plasma processing apparatus 1A, 8-22-201207937 in the container 101A, the substrate G is moved at a constant speed in the transport direction (indicated by an arrow in Fig. 8) from the transmissive plate 2 The crucibles 3A to 203E introduce microwaves into the processing chamber 101A, and generate plasma of the processing gas introduced from the gas introduction portion 115 to perform plasma treatment. In this case, the plasma source (transmission plate) is configured in the same manner regardless of the position on the substrate G, the time accumulation of the plasma density, and/or the cumulative time of the plasma irradiation time. Uniform processing. Fig. 9 is a view showing an example of the configuration of another plasma processing apparatus 100B of an inn. In the plasma processing apparatus ιοο, the transmission plates 205, 207A, and 207B are disposed in the width direction of the substrate G. Further, the side walls facing each other in parallel with the conveyance direction of the substrate G of the processing container 101B are provided with the transmission plates 209A, 209B. The transmission plate 2〇5 is a main plasma generating unit having a large area substantially the same as the area of the substrate G. The transmission plates 207A, 207B are auxiliary plasma generating portions having a smaller area than the transmission plate 205. Further, the transmission plates 209A and 209B are auxiliary plasma generating units for introducing plasma in the horizontal direction by passing the side of the substrate G therebetween. In Fig. 9, the transmission plate 205 is disposed on the most upstream side in the conveyance direction indicated by the arrow, and the transmission plates 207A and 207B are disposed on the downstream side of the transmission plate 205 slightly in the conveyance direction. The linear distance 中心 between the centers of the connecting transmission plates 207 A, 207B is formed to be slightly larger than the width DG of the substrate G. The two transmission plates 209A, 209B provided on the side wall of the processing container 101B are disposed on the side so as to face the transport path of the substrate G. In the plasma processing apparatus 100B, a plurality of substrates G are sequentially conveyed by a conveying device (not shown), and are carried into the chemical processing device 100B one by one into the plasma processing apparatus 100B. Then, in the processing container 101B of the plasma processing apparatus 100B, the substrate G is moved at a constant speed in the transport direction (indicated by an arrow in FIG. 9), from the transmissive plate 205, the transmissive plates 207A, 207B, and the transmissive plate. In the microwave transmission region of 209A and 209B, microwaves are introduced into the processing chamber 101B, and plasma of the processing gas introduced from the gas introduction portion 115 is generated to perform plasma treatment. Considering the diffusion of the plasma, the substantially uniformity of the substrate G can be treated by the plasma generated directly under the microwave transmission region of the transmission plate 205, but also from the auxiliary transmission plates 207A, 207B, and the transmission plate. In the microwave transmitting region of 209A and 209B, microwaves are introduced to generate plasma in a plurality of places, and uniformity of processing of the large-area substrate G can be realized by generating plasma in a plurality of places. In this case, the plasma source (transmission plate) is disposed in the same manner regardless of the position on the substrate G, the cumulative time of the plasma density, and/or the cumulative time of the plasma irradiation time. Processing. Next, a simulation experiment relating to the basis of the present invention will be explained. Figs. 10 to 14 show the results of superimposing the temporal accumulation of the plasma density when the microwave transmission regions of the four transmission plates 201A, 201B, 201C, and 201D (diameter: 109 mm) are arranged at predetermined intervals. The shortest distance (gap LG) from the respective transmission plates 201 A to 201 D to the surface of the substrate G was 89 mm. The width DG of the substrate G is 300 mm. The vertical axis of Fig. 10 to Fig. 是 represents the average 値 of the time-accumulated enthalpy divided by the electron density (plasma density) by the passage time, and the horizontal axis represents the distance in the direction perpendicular to the moving direction of the substrate G. Further, on the horizontal axis of Figs. 10 to 14, the size of the substrate G is superimposed (width 8 - 24 - 201207937 first, Fig. 10 is Li = 90 mm ( M = 270 mm) ' M <The case of DG. As shown in FIG. 10, in the direction of the direction orthogonal to the relative movement direction (the width direction of the substrate 0), the sum of the plasma density of the central portion and the end portion of the substrate G is higher in the central portion, at the end. The decline of the whole part forms a mountain shape. On the other hand, Fig. 11 is the case of 1^1 = 12〇111111 (1^ = 36〇111111), M>Dg. As shown in Fig. 11, the sum of the plasma densities of the central portion and the end portion of the substrate 'G in the direction orthogonal to the relative movement direction is substantially equal. Similarly to the case of Fig. 1A, the plasma density of the region below the transmission plates 201A, 201D disposed at both ends is lowered outward. However, since the portion which is away from the width DG of the substrate G is lowered, a uniform plasma density is maintained in the plane of the substrate G. Fig. 12 to Fig. 14 show the case where the microwave power introduced from the transmission plates 201A to 201D (i.e., the corresponding microwave introduction unit 27) is changed during the setting of Li = 120 mm (M = 360 mm) and M > D. Fig. 12 shows a case where the microwave power introduced from the transmissive plates 20 1A and 20 1D disposed outside is set to 1 000 W, and the microwave power introduced from the two transmissive plates 201B and 201C disposed inside is set to 600 W. The total 电 of the plasma density is higher at the end portion of the lower portion of the substrate G in the direction (width direction) orthogonal to the relative moving direction. FIG. 13 shows a case where the microwave power introduced from the transmissive plates 201A and 201D disposed on the outside is i〇〇〇w, and the microwave power introduced from the two transmissive plates 201B and 201C disposed inside is 1300 W. . The total amount of the plasma density is increased in the central portion of the substrate G in the direction orthogonal to the relative movement direction, and becomes lower at the end portion. -25- 201207937 Figure 14 shows 1^ = 9〇1111«(\1 = 27〇111111), 14 <0 (When the setting of 3 is such that the microwave power introduced from the transmissive plates 20 1A to 20 ID is changed), the microwave power introduced from the transmissive plates 201A and 201D disposed outside is formed to be large. 000 W, the microwave power introduced by the two transmissive plates 201 B and 20 1C disposed on the inner side each formed a small 700 W. However, due to M <DG, therefore, the decrease in the total plasma density of the end portion of the substrate G in the direction orthogonal to the moving direction is not improved. From the above simulation results, it is also confirmed that in order to uniformize the density of the plasma reaching the surface of the substrate G, it is preferable to achieve the uniformity of the treatment, and it is preferable that the relationship of M2Dg is established. Next, the experimental data for confirming the effects of the present invention will be described. . First, the configuration of the plasma processing apparatus used in the experiment will be described. [Experiment 1] As shown in Fig. 15, a plasma processing apparatus for transmitting the transmission plates 128X, 128Y, 128Z having a circular microwave transmission region having a width (diameter) of 90 mm was linearly arranged on the top wall 101c. A microwave introduction unit is provided at each of the transmission plates 128X, 128Y, and 128Z. Hereinafter, the transmission plate 128X is referred to as "the first plasma source 128X", the transmission plate 128Y is referred to as the "second plasma source 128Y", and the transmission plate 128Z is referred to as the "third plasma source 128Z". In the present experiment, the distance to the center of the second plasma source 128 Y and the distance to the center of the third plasma source 128Z were set to 175 mm based on the center of the first plasma source 128X (zero)'. Further, the purpose of this experiment was to evaluate the uniformity of the treatment. Therefore, a single substrate G having a width of 3 mm was assumed as the object to be treated -26-201207937. The plasma was generated under the conditions described below, and the plasma density was measured at a position below 49 mm from the top plate 101 c. <plasma generation condition>

Ar氣體流量;1000mL/min ( seem) 氣體流量;200mL/min(sccm) 處理壓力;20Pa 處理溫度;室溫(25°C ) 各電漿源的微波功率;Ar gas flow rate; 1000 mL/min (see) gas flow rate; 200 mL/min (sccm) treatment pressure; 20 Pa treatment temperature; room temperature (25 ° C) microwave power of each plasma source;

第1電漿源128X...260W 第2電漿源128Y…260W 第3電漿源128Z...260W 圖16是重疊顯示使第1電漿源128X、第2電漿源128Y 、第3電漿源128Z的各個微波導入單元單獨運轉時的電獎 密度及使全部同時運轉時的電漿密度的圖表。圖16的縱軸 是表示電漿密度、橫軸是表示離成爲基準的第1電漿源 128X的中心的距離。另外、在圖16是以點線來表示基板G 的寬度(圖17〜圖19也是同樣)。 由圖16可知,在第1電漿源1MX、第2電漿源128Y、 或第3電漿源K8Z的各微波導入單元的單獨運轉下,電漿 密度是以各透過板的中心附近作爲頂點而呈山形。但,在 使第1電漿源128X、第2電漿源128Y'第3電漿源128Z的微 波導入單元同時運轉時,可確認在基板G的寬度方向的全 -27- 201207937 域’大致形成一定(約lxl〇11/cm3)的電漿密度。並且’ 在圖16中,成爲「合成(計算)」的圖是計算上合計第1 電漿源128X、第2電漿源128Y、第3電漿源128Z的單獨運 轉的電漿密度者,與「合成(實測)」的結果幾乎一致。 [實驗2] 圖1 7是表示與實驗例1同樣的條件’僅使第1電漿源 128Χ的微波導入單元的微波功率變化成l〇〇W,260W,或 5 00 W時的結果。圖表中的A,B,C的符號是分別意思第1 電漿源128Χ的微波導入單元的微波功率爲l〇〇W,260W, 5〇〇W。另外,有關第1電漿源128Χ的微波導入單元的微波 功率爲260W時(Β )是實驗例1的再揭示。 如圖17所示,藉由增減3個的其中的中央所配置的第1 電漿源128Χ的微波導入單元的微波功率,可確認電漿密度 在基板G的寬度方向形成上凸(C: 500W)或下凸(Α; 1 00W )變化。藉此,可確認在配設複數個的微波導入單 元時,藉由使各微波導入單元的微波功率變化,可控制所 被合成的電漿密度的強弱分布。 [實驗3] 對基板G的矽層’以下記的條件來進行電漿氮化處理 ’測定矽氮化膜的膜厚。另外,從頂板1 0 1 c到基板G的距 離(間隙)是設爲85mm。 -28- 201207937 <電漿氮化處理條件>1st plasma source 128X...260W 2nd plasma source 128Y...260W 3rd plasma source 128Z...260W Fig. 16 is a superimposed display of the first plasma source 128X, the second plasma source 128Y, and the third A graph of the electric prize density when each of the microwave introduction units of the plasma source 128Z is operated alone and the plasma density at the time of all simultaneous operation. The vertical axis of Fig. 16 indicates the plasma density, and the horizontal axis indicates the distance from the center of the first plasma source 128X which serves as a reference. In addition, in FIG. 16, the width of the substrate G is shown by a dotted line (the same applies to FIGS. 17 to 19). As can be seen from Fig. 16, in the individual operation of each of the microwave introduction units of the first plasma source 1MX, the second plasma source 128Y, or the third plasma source K8Z, the plasma density is the vertex of the vicinity of the center of each of the transmission plates. It is in the shape of a mountain. However, when the microwave introduction unit of the first plasma source 128X and the second plasma source 128Y' the third plasma source 128Z are simultaneously operated, it is confirmed that the entire -27-201207937 domain in the width direction of the substrate G is formed substantially. A certain plasma density (about lxl 〇 11 / cm 3 ). Further, in Fig. 16, the graph of "synthesis (calculation)" is calculated by totaling the plasma density of the individual operation of the first plasma source 128X, the second plasma source 128Y, and the third plasma source 128Z. The results of "synthesis (measured)" are almost identical. [Experiment 2] Fig. 17 shows the same conditions as in Experimental Example 1. The results of changing only the microwave power of the microwave introduction unit of the first plasma source 128A to 10 W, 260 W, or 500 W. The symbols A, B, and C in the graph indicate that the microwave power of the microwave introduction unit of the first plasma source 128 为 is 1 〇〇 W, 260 W, and 5 〇〇 W. Further, the microwave power of the microwave introduction unit of the first plasma source 128A was 260 W (Β), which is a re-disclosure of Experimental Example 1. As shown in FIG. 17, by increasing or decreasing the microwave power of the microwave introduction unit of the first plasma source 128A disposed at the center of the three, it is confirmed that the plasma density is convex in the width direction of the substrate G (C: 500W) or lower convex (Α; 1 00W) change. Thereby, it can be confirmed that when a plurality of microwave introducing units are disposed, the intensity distribution of the plasma density to be synthesized can be controlled by changing the microwave power of each microwave introducing unit. [Experiment 3] The plasma nitridation treatment was performed on the underlying conditions of the ruthenium layer ' of the substrate G'. The film thickness of the ruthenium nitride film was measured. Further, the distance (gap) from the top plate 10 1 c to the substrate G was set to 85 mm. -28- 201207937 <plasma nitriding treatment conditions>

Ar氣體流量;1000mL/min(sccm) N2 氣體流量;200mL/min(sccm)Ar gas flow rate; 1000 mL/min (sccm) N2 gas flow rate; 200 mL/min (sccm)

處理壓力;20Pa 處理溫度;5 0 0 °C 微波功率;僅使第1電漿源128X的微波導入單元的微 波功率變化成l〇〇W,260W,或500W。 各電漿源的功率構成如以下所述般。 A ; 128Y,128X,128Z = 260W,100W > 260W B ; 128Y,128X,128Z = 260W,260W,260W C ; 128Y,128X,128Z = 260W > 500W,260W 處理時間;90秒 將結果顯示於圖18。圖18的縱軸是表示矽氮化膜的光 學膜厚(折射率2.0),橫軸是表示離成爲基準的第1電漿 源128X的中心的距離。並且,圖18的圖表中的A,B,C的 意思是與圖17同樣。由圖18將3個微波導入單元的微波功 率設定成相同時(B),在基板G的寬度方向,均等地形成 矽氮化膜。並且,藉由增減3個的其中的中央所配置的第1 電漿源128X的微波導入單元的微波功率,可確認矽氮化膜 的面內膜厚在基板G的寬度方向變化成上凸(C; 50 0W) 或下凸(A;100W)。由圖18可確認,與圖17大致同樣的 傾向。亦即,可確認圖1 7的電漿密度的計測結果與圖1 8的 矽氮化膜的膜厚的計測結果是對應著。 並且,面內均一性的指標之Range/2AVE[亦即(氮化 -29- 201207937 膜厚的最大値-氮化膜厚的最小値)/氮化膜厚的平均値χ2] 是圖1 8的Α爲4 · 2 %,Β爲1 . 3 %,C爲1 · 9 %。由以上的結果可 確認,在配設複數個的微波導入單元時,藉由使各微波導 入單元的微波功率變化,可在基板G的面內控制矽氮化膜 的膜厚。 [實驗4] 除了使第1電漿源128X、第2電漿源128Y、及第3電漿 源1 28Z的微波導入單元的微波功率一樣變化以外,其餘則 與實驗3同樣,對基板G的矽層進行電漿氮化處理。 <電漿氮化處理條件> 各電漿源的功率構成如以下所示般。 D ; 128Y,1 28X > 128Z=100W,100W,100W E ; 128Y,1 28X - 1 2 8Z = 260W,260W,260W F ; 128Y,1 28X > 128Z = 400W,400W,400W 其他的條件則與實驗3同樣。 將結果顯示於圖19。圖19的縱軸是表示矽氮化膜的光 學膜厚(折射率2.0),橫軸是表示離成爲基準的第1電漿 源128X的中心的距離。並且,圖19的圖表中的D,E,F是 意思上述電漿氮化條件。由圖1 9可確認,將3個微波導入 單元的微波功率設定成相同時’依功率的大小,基板G的 矽氮化膜的面內膜厚的分布是大致平行移動。並且,矽氮 化膜的基板G的面內均一性的指標之Range/2AVE[亦即( 201207937 氮化膜厚的最大値-氮化膜厚的最小値)/氮化膜厚的平均 値χ2]是圖19的D爲1.06%,E爲1.26%’ F爲0.85%’皆爲優 良的値。 由以上的實驗結果可確認’藉由以預定的間隔來配置 複數的透過板(微波導入單元)’容易控制電漿密度’可 使電漿密度均一化。 又,爲了避免在基板G的端部的電漿密度的時間性累 計値相較於其他的部位(例如基板G的中央附近)降低’ 在與基板G的相對移動方向正交的方向以等間隔來配置複 數(例如3個以上)同大小的電漿源(透過板的微波透過 區域),使最外側的2個透過板的微波透過區域的中心間 的距離Μ與基板G的寬度Do相同或更廣(M2DG)爲有效 。藉由該構成,可確認能夠至少在基板G的寬度方向進行 均質的處理(例如電漿氮化處理)。該等的實驗結果是模 擬電漿密度的時間性累計値的重疊的結果(圖1 〇〜圖1 4 ) 皆符合。 如以上所述,本實施形態的電漿處理裝置1 〇〇是以基 板G至少通過一個微波導入單元127的透過板128的微波透 過區域的對向位置之方式設成可相對移動,因此可使複數 片的基板G間、及1片的基板G面內的處理的均一性提升。 並且,即使更換平面天線板131,或變更製程條件,還是 可獨立控制處理容器101內的電漿分布。因此,可在處理 容器101內以所望的分布來安定地維持電漿。而且,即使 對應於基板G的大型化而令處理容器101大型化時,照樣可 -31 - 201207937 藉由改變微波導入單元127的數量或配置來簡單地調節在 處理容器101內所生成的電漿分布。 以上敘述本發明的實施形態,但本發明並非限於上述 實施形態,亦可爲各種的變形。例如,本發明的電漿處理 裝置是除了電漿氮化處理裝置以外,還可適用於例如電漿 氧化處理裝置或電漿CVD處理裝置、電漿蝕刻處理裝置、 電漿灰化處理裝置等。而且,本發明的電漿處理裝置100 並非限於以平板顯示器用基板作爲被處理體的基板時,亦 可適用於例如以半導體基板或太陽電池面板的基板作爲被 處理體的電漿處理裝置。 並且,在上述實施形態是由複數的微波產生裝置來個 別地往複數的微波導入單元供給微波的構成,但亦可構成 從單一的微波產生裝置,利用分岐的導波管來往2個以上 的微波導入單元供給微波。而且,在上述實施形態是利用 微波電漿處理裝置,但亦可適用於使用高頻作爲電磁波的 電漿處理裝置。並且,亦可例如使用ICP電漿方式、ECR 電漿方式、表面波電漿方式、磁控管電漿方式等的其他方 式作爲電漿的生成方式之電漿處理裝置。又,非限於真空 處理,亦可利用大氣壓電漿。在利用大氣壓電漿時,不需 要圖1的閘閥120。此情況,可將基板G連續性地搬送至處 理容器101內,一邊以預定的速度來使移動於處理容器101 內,一邊進行電漿處理,且可連續性地搬出。因此,在處 理容器101內同一時間存在的基板G並非限於1個,亦可爲 複數的基板G同時被電漿處理。而且,在利用大氣壓電漿 ⑧ -32- 201207937 時,爲了防止外氣混入至處理容器101內,亦可取代閘閥 ,而使用氣簾。 本國際申請案是根據2010年3月31日申請的日本國特 許出願2 0 1 0-8 1 9 8 6號來主張優先權者,將申請案的全內容 援用於此。 【圖式簡單說明】 圖1是表示本發明之一實施形態的電漿處理裝置的構 成例的槪略剖面圖。 圖2是微波供給部的槪略構成圖。 圖3A是平面天線之一例的平面圖。 圖3 B是平面天線的別的例的平面圖。 圖3 C是平面天線的另外別的例的平面圖。 圖4是表示控制部的構成例的圖面。 圖5是表示圖1的電漿處理裝置的微波導入單元的配設 例的頂壁的底面圖。 圖6是說明圖1的電漿處理裝置的電漿處理的原理的圖 面。 圖7 A是說明本發明的別的實施形態的電漿處理裝置的 電漿處理的原理的圖面。 圖7B是說明本發明的另外別的實施形態的電漿處理裝 置的電漿處理的原理的圖面。 圖8是說明電漿處理裝置的變形例的圖面。 圖9是說明電漿處理裝置的別的變形例的圖面。 -33- 201207937 圖ι〇是表示微波導入單元的配置與電子密度的關係的 模擬結果的圖表。 圖11是表示微波導入單元的配置與電子密度的關係的 模擬結果的圖表。 圖12是表示微波導入單元的配置與電子密度的關係的 模擬結果的圖表。 圖13是表示微波導入單元的配置與電子密度的關係的 模擬結果的圖表。 圖14是表示微波導入單元的配置與電子密度的關係的 模擬結果的圖表。 圖15是說明使用於實驗的電漿處理裝置的透過板(微 波導入單元)的配置的圖面。 圖16是表示實驗1的電漿密度的測定結果的圖表。 圖1 7是表示實驗2的電漿密度的測定結果的圖表。 圖18是表示實驗3的矽氮化膜的膜厚的測定結果的圖 表。 圖19是表示實驗4的矽氮化膜的膜厚的測定結果的圖 表。 【主要元件符號說明】 100 :電漿處理裝置 101 :處理容器 103 :支撐搬送裝置 l〇3a :驅動部 ⑧ -34- 201207937 1 1 8 :氣體供給裝置 1 19 :搬出入口 1 2 0 :閘閥 124 :排氣裝置 127 :微波導入單元 1 37 :導波管 139 :微波產生裝置 1 5 0 :控制部 G :基板 -35-Treatment pressure; 20Pa treatment temperature; 500 °C microwave power; only the microwave power of the microwave introduction unit of the first plasma source 128X is changed to l〇〇W, 260W, or 500W. The power configuration of each plasma source is as follows. A; 128Y, 128X, 128Z = 260W, 100W > 260W B; 128Y, 128X, 128Z = 260W, 260W, 260W C; 128Y, 128X, 128Z = 260W > 500W, 260W processing time; 90 seconds will display the result in Figure 18. The vertical axis of Fig. 18 indicates the optical film thickness (refractive index 2.0) of the tantalum nitride film, and the horizontal axis indicates the distance from the center of the first plasma source 128X which serves as a reference. Further, A, B, and C in the graph of Fig. 18 are the same as those of Fig. 17. When the microwave powers of the three microwave introducing units are set to be the same as in Fig. 18 (B), a tantalum nitride film is uniformly formed in the width direction of the substrate G. Further, by increasing or decreasing the microwave power of the microwave introduction unit of the first plasma source 128X disposed at the center of the three of them, it is confirmed that the in-plane thickness of the tantalum nitride film is changed to be convex in the width direction of the substrate G. (C; 50 0W) or convex (A; 100W). It can be confirmed from Fig. 18 that the tendency is substantially the same as that of Fig. 17. That is, it can be confirmed that the measurement result of the plasma density of Fig. 17 corresponds to the measurement result of the film thickness of the ruthenium nitride film of Fig. 18. Moreover, the Range/2AVE of the in-plane uniformity index (that is, the minimum 値 of nitriding -29-201207937 film thickness - the minimum 氮化 of the nitride film thickness) / the average 値χ2 of the nitride film thickness is shown in Fig. 18. The Α is 4 · 2 %, the Β is 1.3%, and the C is 1.9 %. From the above results, it was confirmed that when a plurality of microwave introducing units are disposed, the film thickness of the tantalum nitride film can be controlled in the plane of the substrate G by changing the microwave power of each microwave introducing unit. [Experiment 4] Except for the microwave power of the microwave introduction unit of the first plasma source 128X, the second plasma source 128Y, and the third plasma source 128Z, the rest of the experiment was performed on the substrate G in the same manner as in Experiment 3. The tantalum layer is subjected to plasma nitriding treatment. <plasma nitriding treatment conditions> The power configuration of each plasma source is as follows. D ; 128Y, 1 28X > 128Z=100W, 100W, 100W E ; 128Y, 1 28X - 1 2 8Z = 260W, 260W, 260W F ; 128Y, 1 28X > 128Z = 400W, 400W, 400W Other conditions Same as Experiment 3. The results are shown in Fig. 19. The vertical axis of Fig. 19 indicates the optical film thickness (refractive index 2.0) of the tantalum nitride film, and the horizontal axis indicates the distance from the center of the first plasma source 128X which serves as a reference. Further, D, E, and F in the graph of Fig. 19 mean the above-described plasma nitriding conditions. As can be seen from Fig. 19, when the microwave powers of the three microwave introducing units are set to be the same, the distribution of the in-plane film thickness of the tantalum nitride film of the substrate G is substantially parallel depending on the power. Further, Range/2AVE, which is an index of the in-plane uniformity of the substrate G of the tantalum nitride film (that is, (201207937 The maximum thickness of the nitride film thickness - the minimum thickness of the nitride film thickness) / the average thickness of the nitride film thickness 値χ 2 ] is that D in Figure 19 is 1.06%, and E is 1.26% 'F is 0.85%'. From the above experimental results, it was confirmed that the plasma density can be made uniform by arranging a plurality of transparent plates (microwave introduction units) at a predetermined interval to easily control the plasma density. Further, in order to prevent the temporal accumulation of the plasma density at the end portion of the substrate G from being lower than that of other portions (for example, near the center of the substrate G), the timing is orthogonal at a direction orthogonal to the relative movement direction of the substrate G. A plurality of (for example, three or more) plasma sources of the same size (the microwave transmission region of the transmission plate) are disposed such that the distance 中心 between the centers of the microwave transmission regions of the outermost two transmission plates is the same as the width Do of the substrate G or More extensive (M2DG) is effective. According to this configuration, it is confirmed that the processing can be performed at least in the width direction of the substrate G (for example, plasma nitriding treatment). The results of these experiments are consistent with the temporal overlap of the simulated plasma density (Fig. 1 图 ~ Fig. 14). As described above, the plasma processing apparatus 1 of the present embodiment is configured such that the substrate G is relatively movable by at least the opposing position of the microwave transmission region of the transmission plate 128 of the microwave introduction unit 127. The uniformity of the processing between the substrates G of the plurality of sheets and the surface of the substrate G of one sheet is improved. Further, even if the planar antenna plate 131 is replaced or the process conditions are changed, the plasma distribution in the processing container 101 can be independently controlled. Therefore, the plasma can be stably maintained in the processing container 101 with a desired distribution. Further, even when the processing container 101 is enlarged in accordance with the enlargement of the substrate G, it is possible to simply adjust the plasma generated in the processing container 101 by changing the number or arrangement of the microwave introducing unit 127 by -31 - 201207937. distributed. The embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications are possible. For example, the plasma processing apparatus of the present invention can be applied to, for example, a plasma oxidation treatment apparatus or a plasma CVD treatment apparatus, a plasma etching treatment apparatus, a plasma ashing treatment apparatus, and the like in addition to the plasma nitriding treatment apparatus. Further, the plasma processing apparatus 100 of the present invention is not limited to a substrate for a flat panel display as a substrate to be processed, and can be applied to, for example, a plasma processing apparatus in which a substrate of a semiconductor substrate or a solar cell panel is used as a target. Further, in the above-described embodiment, the microwave introducing means for individually reciprocating the plurality of microwave generating means supplies microwaves. However, it is also possible to configure two or more microwaves from the single microwave generating means by using the branched waveguide. The introduction unit supplies microwaves. Further, in the above embodiment, the microwave plasma processing apparatus is used, but it is also applicable to a plasma processing apparatus using high frequency as electromagnetic waves. Further, other methods such as an ICP plasma method, an ECR plasma method, a surface wave plasma method, and a magnetron plasma method may be used as the plasma processing apparatus for the plasma generation method. Further, it is not limited to vacuum processing, and atmospheric piezoelectric slurry can also be used. The gate valve 120 of Figure 1 is not required when utilizing atmospheric piezoelectric slurry. In this case, the substrate G can be continuously conveyed into the processing container 101, and the plasma processing can be performed while moving in the processing container 101 at a predetermined speed, and can be continuously carried out. Therefore, the substrate G existing at the same time in the processing container 101 is not limited to one, and a plurality of substrates G may be simultaneously plasma-treated. Further, in the case of using the atmospheric piezoelectric slurry 8 - 32 - 201207937, in order to prevent the outside air from being mixed into the processing container 101, an air curtain may be used instead of the gate valve. This international application is based on the Japanese Privilege's offer of 2 0 1 0-8 1 9 8 6, which was filed on March 31, 2010. The entire contents of the application are hereby incorporated. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a configuration example of a plasma processing apparatus according to an embodiment of the present invention. Fig. 2 is a schematic block diagram of a microwave supply unit. Fig. 3A is a plan view showing an example of a planar antenna. Fig. 3B is a plan view showing another example of the planar antenna. Fig. 3C is a plan view showing still another example of the planar antenna. 4 is a view showing an example of the configuration of a control unit. Fig. 5 is a bottom plan view showing a top wall of an arrangement example of a microwave introducing unit of the plasma processing apparatus of Fig. 1; Fig. 6 is a view for explaining the principle of plasma treatment of the plasma processing apparatus of Fig. 1. Fig. 7A is a view for explaining the principle of plasma treatment of the plasma processing apparatus according to another embodiment of the present invention. Fig. 7B is a view for explaining the principle of plasma treatment of a plasma processing apparatus according to still another embodiment of the present invention. Fig. 8 is a view showing a modification of the plasma processing apparatus. Fig. 9 is a view showing another modification of the plasma processing apparatus. -33- 201207937 Figure 〇 is a graph showing the simulation results of the relationship between the arrangement of the microwave introduction unit and the electron density. Fig. 11 is a graph showing simulation results of the relationship between the arrangement of the microwave introduction unit and the electron density. Fig. 12 is a graph showing simulation results of the relationship between the arrangement of the microwave introduction unit and the electron density. Fig. 13 is a graph showing the results of simulations showing the relationship between the arrangement of the microwave introduction unit and the electron density. Fig. 14 is a graph showing simulation results of the relationship between the arrangement of the microwave introduction unit and the electron density. Fig. 15 is a view for explaining the arrangement of a transmission plate (microwave introduction unit) used in the plasma processing apparatus of the experiment. Fig. 16 is a graph showing the measurement results of the plasma density of Experiment 1. Fig. 17 is a graph showing the measurement results of the plasma density of Experiment 2. Fig. 18 is a graph showing the measurement results of the film thickness of the tantalum nitride film of Experiment 3. Fig. 19 is a graph showing the measurement results of the film thickness of the tantalum nitride film of Experiment 4. [Description of main component symbols] 100 : Plasma processing apparatus 101 : Processing container 103 : Support conveying apparatus 10 3 : Drive part 8 - 34 - 201207937 1 1 8 : Gas supply apparatus 1 19 : Carry-out inlet 1 2 0 : Gate valve 124 : Exhaust device 127 : Microwave introduction unit 1 37 : Wave guide tube 139 : Microwave generating device 1 5 0 : Control unit G : Substrate - 35-

Claims (1)

201207937 七、申請專利範圍: 1· 一種電漿處理裝置,係具備: 處理容器,其係形成處理被處理體的處理空間; 支撐裝置,其係支撐上述被處理體; 電磁波產生裝置,其係產生電磁波,該電磁波係用以 使電漿生成於上述處理容器內;及 複數的電磁波導入單元,其係將在上述電磁波產生裝 置產生的電磁波導入至上述處理容器內, 上述電磁波導入單元係具有面對上述處理空間的電磁 波導入窗, 在上述處理容器內,被上述支撐裝置所支撐的被處理 體與上述電磁波導入窗係彼此相對移動於相反方向,以被 處理體至少通過一個上述電磁波導入窗的電磁波透過區域 的對向位置之方式構成。 2. 如申請專利範圍第1項之電漿處理裝置,其中,在 上述相對移動之間,以一個的被處理體對於2個以上的上 述電磁波導入窗的電磁波透過區域至少部分地依序通過對 向的位置之方式構成。 3. 如申請專利範圍第1項之電漿處理裝置,其中,在 上述相對移動之間,以一個的被處理體同時對於2個以上 的上述電磁波導入窗的電磁波透過區域至少部分地通過對 向的位置之方式構成。 4. 如申請專利範圍第2或3項之電漿處理裝置,其中, 上述2個以上的電磁波導入窗係以藉由從各電磁波導入窗 -36- 201207937 所導入的電磁波來生成的電漿之電漿密度的時間性累計値 及/或電漿照射時間的累計値在一個被處理體的面內形成 相同之方式配置。 5. 如申請專利範圍第1項之電漿處理裝置,其中,更 具備輔助性的電磁波導入單元,其係具有電磁波導入窗, 該電磁波導入窗係對於上述相對移動的被處理體的軌道, 設於偏離對向的位置之位置。 6. 如申請專利範圍第1項之電漿處理裝置,其中,具 備複數的電磁波導入單元,其係上述電磁波導入窗的面積 相異。 7. 如申請專利範圍第1項之電漿處理裝置,其中,上 述電磁波產生裝置係對應於上述電磁波導入單元來個別地 設置。 8. 如申請專利範圍第1項之電漿處理裝置,其中,供 給至上述複數的電磁波導入單元的電磁波的功率可個別地 設定。 9. 如申請專利範圍第1項之電漿處理裝置,其中,更 具備驅動部,其係使被上述支撐裝置所支撐的被處理體與 上述電磁波導入窗的其中任一方或雙方朝彼此相反方向相 對移動。 10. —種電漿處理方法,係使用電漿處理裝置,經由 複數的上述電磁波導入窗來將電磁波導入至上述處理容器 內而使電漿生成,且在上述處理容器之中以被處理體至少 通過一個上述電磁波導入窗的電磁波透過區域的對向位置 -37- 201207937 之方式,一邊使被處理體對於上述電磁波導入窗相對移動 ,一邊以無論在被處理體上的那個位置,電漿密度的時間 性累計値及/或電漿照射時間的累計値皆形成相同的方式 進行電漿處理, 該電漿處理裝置係具備: 處理容器,其係形成處理被處理體的處理空間; 支撐裝置,其係支撐上述被處理體,且搬送於一定方 向; 電磁波產生裝置,其係產生電磁波,該電磁波係用以 使電漿生成於上述處理容器內;及 複數的電磁波導入單元,其係將在上述電磁波產生裝 置產生的電磁波導入至上述處理容器內, 又,上述電磁波導入單元具有面對上述處理空間的電 磁波導入窗, 在上述處理容器內,被上述支撐裝置所支撐的被處理 體與上述電磁波導入_係以彼此相對移動於相反方向的方 式構成。 -38201207937 VII. Patent application scope: 1. A plasma processing apparatus comprising: a processing container that forms a processing space for processing a processed object; a supporting device that supports the processed object; and an electromagnetic wave generating device that generates An electromagnetic wave for generating a plasma in the processing container; and a plurality of electromagnetic wave introducing means for introducing electromagnetic waves generated by the electromagnetic wave generating device into the processing container, wherein the electromagnetic wave introducing unit has a surface In the electromagnetic wave introduction window of the processing space, the object to be processed supported by the support device and the electromagnetic wave introduction window are relatively moved in opposite directions, and the electromagnetic wave of the object to be processed passes through at least one of the electromagnetic wave introduction windows. It is constructed by the way of the opposite position of the area. 2. The plasma processing apparatus according to claim 1, wherein the one of the objects to be processed passes at least partially through the electromagnetic wave transmission region of the two or more electromagnetic wave introduction windows between the relative movements. The way to the position. 3. The plasma processing apparatus according to claim 1, wherein at least one of the objects to be processed simultaneously passes through the electromagnetic wave transmission region of the two or more electromagnetic wave introduction windows at least partially in the opposite direction. The way the location is constructed. 4. The plasma processing apparatus according to the second or third aspect of the invention, wherein the two or more electromagnetic wave introduction windows are plasma generated by electromagnetic waves introduced from the respective electromagnetic wave introduction windows -36-201207937 The temporal accumulation of the plasma density and/or the accumulation of the plasma irradiation time are configured in the same manner in the plane of one object to be processed. 5. The plasma processing apparatus according to claim 1, wherein the auxiliary electromagnetic wave introducing unit further includes an electromagnetic wave introducing window for setting a track of the relatively moving object to be processed. At a position that deviates from the opposite position. 6. The plasma processing apparatus according to claim 1, wherein the plurality of electromagnetic wave introducing units have different areas of the electromagnetic wave introducing windows. 7. The plasma processing apparatus according to claim 1, wherein the electromagnetic wave generating device is individually provided corresponding to the electromagnetic wave introducing unit. 8. The plasma processing apparatus according to claim 1, wherein the power of the electromagnetic waves supplied to the plurality of electromagnetic wave introducing units can be individually set. 9. The plasma processing apparatus according to claim 1, further comprising a driving unit that causes one or both of the object to be processed supported by the supporting device and the electromagnetic wave introducing window to face each other in opposite directions Relative movement. 10. A plasma processing method in which a plasma processing apparatus is used to introduce electromagnetic waves into the processing container through a plurality of electromagnetic wave introduction windows to generate plasma, and at least a processed object in the processing container By the relative position of the object to be irradiated to the electromagnetic wave introduction window, the plasma density of the object to be processed is the same as that of the object to be processed, by the relative position of the electromagnetic wave introduction window of the electromagnetic wave introduction window, 37-201207937. The plasma aging treatment and/or the aging time of the plasma irradiation time are all performed in the same manner, and the plasma processing apparatus is provided with: a processing container which forms a processing space for processing the object to be processed; and a supporting device Supporting the object to be processed and transporting it in a certain direction; an electromagnetic wave generating device for generating electromagnetic waves for generating plasma in the processing container; and a plurality of electromagnetic wave introducing units for the electromagnetic wave Electromagnetic waves generated by the generating device are introduced into the processing container, and the electric The magnetic wave introducing unit has an electromagnetic wave introducing window facing the processing space, and in the processing container, the object to be processed supported by the supporting device and the electromagnetic wave are guided to move in opposite directions with each other. -38
TW100110998A 2010-03-31 2011-03-30 Plasma processing device and plasma processing method TW201207937A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081986 2010-03-31

Publications (1)

Publication Number Publication Date
TW201207937A true TW201207937A (en) 2012-02-16

Family

ID=44762425

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110998A TW201207937A (en) 2010-03-31 2011-03-30 Plasma processing device and plasma processing method

Country Status (2)

Country Link
TW (1) TW201207937A (en)
WO (1) WO2011125470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576946B (en) * 2013-10-07 2017-04-01 大日本網屏製造股份有限公司 Plasma cvd apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953057B2 (en) * 2012-02-06 2016-07-13 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus
US10153133B2 (en) * 2015-03-23 2018-12-11 Applied Materials, Inc. Plasma reactor having digital control over rotation frequency of a microwave field with direct up-conversion
DE102020113578A1 (en) * 2020-05-19 2021-11-25 Muegge Gmbh Microwave treatment facility

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134926A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Plasma producing source and plasma processor using the same
JP2003142460A (en) * 2001-11-05 2003-05-16 Shibaura Mechatronics Corp Plasma treatment apparatus
JP2007258093A (en) * 2006-03-24 2007-10-04 National Univ Corp Shizuoka Univ Microwave plasma generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576946B (en) * 2013-10-07 2017-04-01 大日本網屏製造股份有限公司 Plasma cvd apparatus

Also Published As

Publication number Publication date
WO2011125470A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
KR101393890B1 (en) Plasma processing apparatus and microwave introduction device
KR100960424B1 (en) Microwave plasma processing device
KR102009923B1 (en) Processing method of silicon nitride film and forming method of silicon nitride film
EP2276328B1 (en) Microwave plasma processing device
WO2011125471A1 (en) Plasma processing device and plasma processing method
JP2006310794A (en) Plasma processing apparatus and method therefor
JP2003303810A (en) Equipment for plasma process
KR102015698B1 (en) Plasma film-forming apparatus and substrate pedestal
US7478609B2 (en) Plasma process apparatus and its processor
US20100240225A1 (en) Microwave plasma processing apparatus, microwave plasma processing method, and microwave-transmissive plate
TW201207937A (en) Plasma processing device and plasma processing method
JPWO2005064660A1 (en) Microwave plasma processing method, microwave plasma processing apparatus and plasma head thereof
WO2011042949A1 (en) Surface wave plasma cvd device and film-forming method
TWI529774B (en) Plasma Nitriding Process and Plasma Processing Device
JP2000260747A (en) Planar antenna, plasma treating apparatus and method using the same
WO2009096515A1 (en) Microwave plasma processing device
KR101411171B1 (en) Plasma processing apparatus
JP2006253312A (en) Plasma processing apparatus
KR102047160B1 (en) Plasma film-forming method and plasma film-forming apparatus
KR102004037B1 (en) Microwave plasma processing apparatus and microwave plasma processing method
JP2007154226A (en) Plasma enhanced cvd device
KR20230069553A (en) Surface wave plasma excitation device based on multi-port SSPA source
JP2001326216A (en) Plasma processing device
JP3814782B2 (en) Plasma processing apparatus, plasma processing method using the same, semiconductor device manufacturing apparatus, and semiconductor device manufacturing method
JP2015050376A (en) Substrate processing apparatus and substrate processing method