201207703 觸控件3 . 雷射光源11 收光部20 感測面211 開口 301、302 對應光軸1〇3 準直鏡50 雷射光學觸控模組la 發光部10 廣角用光學元件12、22 位置感測器21 外殼體30 光束 101、102、104、1〇5 分光鏡40 (二)本代表圖之元件符號簡單說明: 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 六、 發明說明: 【發明所屬之技術領域】 本發明係有關一種光學觸控模組,尤指一種利用一具 雷射光源之發光部及一具位置感測器之收光部,且該發光 部與收光部的光路之間係以平行光路方式或共光路方式組 成一模組。 【先前技術】 目前正流行之觸控式顯示幕,係藉由觸控件如手指或 ,控筆直接觸摸在顯示幕之表面上以控制顯示器之各項功 能如點選作業、切換晝面或放大/縮小晝面等,用以取代一 般顯示器常見之按鍵式控制方式;而目前之觸控式顯示幕 已包含多種不同的觸控系統,如電阻式(Resistive)、電容 式(Capacitive )、表面聲波式(SAW,Surface Ac〇ustic yave )、紅外光式(ir,Infrared )、光學式(❹邱⑽丨如啦哗) 等,各有各的優缺點,其中,光學式觸控系統的優點為應 用,大尺寸顯示幕,具有成本的優勢,介於表面聲波式與 電容式之間,螢幕具良好的透明度(可達1〇〇%)及具有良好 2/15 201207703 的觸控解析度;其缺點為不適合小尺寸面板(15吋以下)的 應用’較易受週邊環境光的影響及須採用額外照明光源及 反光條或吸光條。 光學式觸控系統方面已包含US 2009/0200453、US 7,538,759、US 7,692,625、US 7,629,967 等多件先前技術, 一般而言’該等光學式觸控系統先前技術係在顯示幕之表 面之側緣邊上,如一矩形顯示幕表面之四側框邊上或四角 處,設置至少一組光源裝置如以LED作光源,用以照射在 整個螢幕之外表面上,即在整個顯示幕之表面上形成一光 鲁 線或線性光線照射&,可稱為光幕,並於該顯示幕表面之 四周緣(框邊)上設置相互垂直之反光條或吸光條,又於 該顯示幕表面之側緣邊上以感測方向交鍇的方式設置至少 二組位置感測器(camera);則當一觸控件,如手指或觸控 筆,觸摸在該顯示幕表面上時,該觸控件即可對該照射在 整個顯示幕表面之光線造成光的散射或遮斷,此時透過該 反光條之反射作用或吸光條之吸收作用,即可藉由該至少 二組位置感測器以感測得知該觸控件至少二方向之相對位 置,再藉由一處理電路之運算功能以得知該觸控件觸摸在 顯示幕表面上的實際位置座標,以達成目前已知一光學觸 馨 控系統之使用功能。 然,習知一般光學式觸控系統在設計上大都採用發光 二極體(LED ’ light-emitting diode)作為光源,而 LED 光 並非高同調性(highly coherent light)光源,故無法有效提 高觸控的靈敏度;又習知之LED光源裝置與所使用之位置 感測器(camera)係分開之個體,且分別設置於顯示幕表 面之四周緣(框邊)某一位置處,且整體架構上又必須配 合反光條或吸光條使用,以致具有結構複雜、成本增加等 缺點’尤其該LED光源裝置所提供之照射光一般為可見 光’容易受到使用環境下之可見光與顯示幕所產生之可見 3/15 201207703 光的干擾或影響,以致光學式觸控系統中位置感測器之感 測靈敏度降低,即訊雜比(SNR)降低而相對影響訊號的 判讀,以致降低光學式觸控系統之使用效率。 由上可知,在光學式觸控系統之技術領域中,發展設 計一種不須採用反光條或吸光條且結構簡化、成本節省之 光學式觸控系統,確實有其需要性。 【發明内容】 本發明主要目的係在於提供一種雷射光學觸控模組, φ 其係利用一具雷射光源如紅外線(IR)雷射之發光部與一 具位置感測器之收光部組合在一起,以使該雷射光源與位 置感測器設於顯示幕表面之一侧之同一位置處使用,其中 s亥發光部係藉由一雷射光源發出雷射光束並經一廣角^光 學元件如打線鏡片(line generator optics)之折射而使折射 後之光視角(light fan)能大於90度,以在顯示幕表面上 形成廣角之線性光束,該收光部係藉由位置感測器接收並 感應该線性光束受到觸控件之阻擋,而反射之雷射光以感測 得知該觸控件之相對位置,使藉由雷射光束之高同調性 (highly coherentlight)以增進觸控的靈敏度,並避免先前 響技術須採用反光條或吸光條的麻煩,達成結構簡化且觸控 靈敏度高之使用功效。 & 本發明再一目的係在於提供一種雷射光學觸控模組, 其中該發光部之光路與收光部之光路之間係以水平且平行 光路方式並排組合在一起,使藉由雷射光束之高同調性以 增進觸控的靈敏度,並達成結構簡化且容易安裝之使用功 效。 本發明另-目的係在於提供一種雷射光學觸控模組, 其中該發光部之光路與收光部之光路之間係以共光路 組合在一起,使發光部之雷射光源與收光部之位置感測器 4/15 201207703 能共用一廣角用光學元件如打線鏡片(linegenerat〇r optics),即雷射光源所發出之雷射光束及位置感測器所接 收並感應之反射光束都經過相同之廣角用光學元件,再 該廣角用光學元件之後方設-分光鏡 雷射光源所發出之雷射光束穿過該分光鏡而向外射出,並 使反射雷射光束經由該分光鏡反射而進入該位置感測器所 接收感應,藉以卽省該位置感測器原本所須之廣角用光學 元件如廣角成像鏡片(可視角>90度),並避免該廣角用光 學元件的光學像差,即週邊外場的光學畸變(〇ptical 鲁 distortion );又該位置感測器之感測面上進一步可設置一微 透鏡(Mirco Lens),如同一般商業用的CMOS sensor,以 增加收光能力與效率。 本發明另一目的係在於提供一種雷射光學觸控模組, 其中當該發光部之光路與收光部之光路之間係以共光路方 式組合在一起時,該雷射光源進一步可使甩小直徑雷射光 束’以提升該廣角用光學元件如打線鏡片的散光效率,又 在該位置感測器之感測面前端,即該位置感測器與分光鏡 之間’進一步可設一光擴束鏡(beam expander optics),以 將小直徑的雷射光束擴成較大直徑的雷射光束再入射至位 置感測器之感測面,藉以有效利用該位置感測器上的成像 單元(即像素,pixels),進而提升觸控的解析度》 本發明另一目的係在於提供一種雷射光學觸控模組, 其中當該發光部之光路與收光部之光路之間係以共光路方 式組合在一起時,其進一步可於該廣角用光學元件如打線 鏡片(line generator optics)之後方依序設"-四分之一波板 (quarter wave-plate)及1 一偏極分光鏡(polarization beam splitter)’使雷射光源所發出之雷射光束可利用雷射所具備 的兩種線性偏極光之特性,即P線偏極光(P-p〇larizati〇n) 及S線偏極光(S-polarization)兩正交的線偏極光,在經^ 5/15 201207703 過該一偏極分光鏡時,使其中一線偏極光(通常為p線偏 極光)完全通過而與其正交的另一線偏極光(通常為S線 偏極光)則完全反射;再經該一四分之一波板,將通過之 線偏極轉換為一圓偏極光(稱左旋或右旋圓偏光,left hand circular polarization /right hand circular polarization ),其中 若是轉換為左旋(或右旋)圓偏極光出射,則經由觸控件 之阻擋而反射後將變為右旋(或左旋)圓偏光,而反射光 ,先經過該一四分之一波板以轉換為一與原出射線偏光正 交的線偏光,再入射至該一偏極分光鏡並完全反射至該位 φ 置感測器上’藉此’可提升光的使用效率,即該雷射光能 量的使用效率達成最大化效果。 【實施方式】 為使本發明更加明確詳實,將本發明之結構及其技術 特徵配合下列圖示詳述如後: 參考圖1、1A所示,其分別係本發明雷射光學觸控模 組第一實施例(收發平行光路)設置於顯示幕表面之一侧 以,供光反射式定位輸入功能之使用狀態示意圖及位置感 測器之像素之感應訊號輸出示意圖。本發明之雷射光學觸 齡=模組1係設置於顯示幕2表面之一側,用以提供光學式 定位輸入功能,供可在該顯示幕2上形成一光學式觸控系 ,,一般而言,顯示幕2表面之周邊上須設置至少二雷射 光學觸控模組1 ,如在顯示幕2侧緣邊之相鄰二角處各設 一雷射光學觸控模組丨,其中各雷射光學觸控模組丨所具 有之位置感測器(camera)之感測方向係在該顯示幕2表 面上形成交錯方式。圖1中僅表示其中之一雷射光學觸控 模組1之使用狀態。 该雷射光學觸控模組1係由一發光部10及一收光部 2〇組成一模組,又該發光部10及收光部20可容設在一外 6/15 201207703 殼體30内部以形成一組合體,而該外殼體30之形狀不限 制,其上設有對應於該發光部10及收光部20之光路的開 口如一發光部開口 301及一收光部開口 302如圖1、2所 示。該發光部10主要係藉由一雷射光源11以發出雷射光 束並經一廣角用光學元件12如打線鏡片(line generator optics)之折射,使折射後之雷射光視角(light fan)能大 於90度如圖1所示,以在顯示幕2表面上形成廣角之線性 光束101 ;當觸控件3觸摸顯示幕2表面上時,會阻擋該 線性光束101並形成反射雷射光束1〇2 ;該收光部20則藉 蠊 由一位置感測器21以接收並感應該反射雷射光束1〇2,以 在位置感測器21之感測面上感測得知該觸控件3在一對應 光軸103上之相對位置;如圖ία所示,該觸控件3位置 所產生之反射雷射光束102即可在位置感測器21之像素 (active pixel)軸上產生反應而形成一訊號輸出,而藉由 至少一組位置感測器21以感測得知該觸控件3至少二方向 之相對位置,即可藉由處理電路之運算功能以得知該觸控 件3觸摸在顯示幕2表面上的實際位置座標;由於該位置 感測器21或廣角用光學元件12如打線鏡片(Hnegenerat〇r % 〇ptlcs)之本體結構及處理電路之運算功能係利用目前之電 子技術或習知技術可達成者,且非本發明之技術特徵,故 於此不再贅述。 芩哼圃2、3所示,其分別係本發明雷射光學觸控模彳 ,一實施例(收發平行光路)之立體示意圖及平面(上祸 不意圖。而圖2、3所示實施例(收發平行光路)只 說明但非用以限制本發明雷射光學觸控模組丨^ 4 雷上光,控模組1係利用一具雷射光源11 ^ 之收先。卩20組合成一模組,以使該雷射 剛器21能設於龜+直。主二々 田町尤,原11與位置! J态21 ^又於顯不幕2表面之一側之同侧 7/15 201207703 發光部10係藉由一雷射光源11,包含一雷射二極體(laser diode) 111及一第一級光學件(1st optics) 112,發出雷射 光束並經一廣角用光學元件12如打線鏡片(line generator optics)之折射,使折射後之光視角(light fan)能大於90 度如圖3所示,以在顯示幕2表面上形成廣角之線性光束 101如圖1、3所示;該收光部20係藉由一位置感測器21 及一聚光用光學元件22接收並感應該線性光束101受到觸 控件3之阻擋而反射之雷射光束102如圖1所示,以感測 得知該觸控件3之相對位置;因此,本發明雷射光學觸控 模組1得藉由雷射光束之高同調性(highly coherent light) 以增進觸控的靈敏度’並可避免先前技術須採用反光條或 吸光條的麻煩,故具有結構簡化、容易安裝且觸控靈敏度 高之使用功效。201207703 Touching element 3. Laser light source 11 Light-receiving part 20 Sensing surface 211 Opening 301, 302 Corresponding optical axis 1〇3 Collimating mirror 50 Laser optical touch module la Light-emitting part 10 Wide-angle optical element 12, 22 Position Sensor 21 Outer casing 30 Beams 101, 102, 104, 1〇5 Beam splitter 40 (2) The symbol of the symbol of the representative figure is briefly described: 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: (None) Description of the Invention: [Technical Field] The present invention relates to an optical touch module, and more particularly to a light-emitting portion using a laser light source and a light-receiving portion with a position sensor. A light module is formed between the light-emitting portion and the light path of the light-receiving portion by a parallel light path method or a common light path method. [Prior Art] Currently, the popular touch display screen is directly touched on the surface of the display screen by touch means such as a finger or a control pen to control various functions of the display, such as clicking, switching, or zooming in. / to reduce the surface, etc., to replace the common button-type control methods of the general display; the current touch-screen display has a variety of different touch systems, such as Resistive, Capacitive, surface acoustic waves (SAW, Surface Ac〇ustic yave), infrared (ir, Infrared), optical (❹邱(10)丨如丨), etc., each have its own advantages and disadvantages, of which the advantages of the optical touch system are Application, large-size display screen, cost advantage, between surface acoustic wave and capacitive type, the screen has good transparency (up to 1%) and good touch resolution of 2/15 201207703; The disadvantage is that applications that are not suitable for small-sized panels (under 15 inches) are more susceptible to ambient light and require additional illumination sources and reflective strips or light-absorbing strips. The optical touch system includes a number of prior art technologies such as US 2009/0200453, US 7,538,759, US 7,692,625, US 7,629,967, etc. Generally, the prior art of the optical touch system is on the side of the surface of the display screen. On the four sides of the rectangular display screen surface or at the four corners, at least one set of light source devices, such as an LED as a light source, is used to illuminate the entire surface of the screen, that is, to form a surface on the entire display screen. Light ray or linear ray illumination & can be called a light curtain, and a vertical reflective strip or light absorbing strip is arranged on the peripheral edge (frame side) of the surface of the display screen, and the side edge of the display screen surface At least two sets of position sensors are disposed in a manner of sensing directions; when a touch component, such as a finger or a stylus, is touched on the surface of the display, the touch component can Light illuminating the surface of the entire display screen causes scattering or occlusion of light. At this time, the reflection of the reflective strip or the absorption of the light absorbing strip can be sensed by the at least two sets of position sensors. touch At least two members relative position of the direction, and then by an arithmetic processing circuit functions to that of the touch member touches the display position coordinates on the actual surface of the screen, in order to achieve a known current control system for an optical touch-Xin function. However, the conventional optical touch system is mostly designed to use a light-emitting diode (LED) as a light source, and the LED light is not a high coherent light source, so the touch cannot be effectively improved. Sensitivity; the conventional LED light source device is separate from the position sensor used, and is respectively disposed at a certain position (frame side) of the surface of the display screen, and the overall structure must be Used in combination with reflective strips or light-absorbing strips, which have the disadvantages of complicated structure and increased cost. In particular, the illumination light provided by the LED light source device is generally visible light. It is easily visible by visible light and display screens in the use environment. 3/15 201207703 The interference or influence of the light causes the sensing sensitivity of the position sensor in the optical touch system to be reduced, that is, the signal-to-noise ratio (SNR) is lowered to relatively affect the interpretation of the signal, so that the use efficiency of the optical touch system is reduced. It can be seen from the above that in the technical field of optical touch systems, it is indeed necessary to develop an optical touch system that does not require a reflective strip or a light absorbing strip and has a simplified structure and a cost saving. SUMMARY OF THE INVENTION The main object of the present invention is to provide a laser optical touch module, which utilizes a laser light source such as an infrared (IR) laser light emitting portion and a position sensor to receive light. Combining so that the laser light source and the position sensor are disposed at the same position on one side of the display screen surface, wherein the s-light emitting portion emits a laser beam through a laser light source and passes through a wide angle ^ The optical element, such as the line generator optics, refracts the refracted light viewer to be greater than 90 degrees to form a wide-angle linear beam on the surface of the display, the light-receiving portion being sensed by position The receiver receives and senses that the linear beam is blocked by the touch component, and the reflected laser light senses the relative position of the touch component, so that the sensitivity of the touch is enhanced by the high coherent light of the laser beam. And avoid the trouble of using the reflective strip or the light absorbing strip in the previous sounding technology, achieving the use of a simplified structure and high touch sensitivity. A further object of the present invention is to provide a laser optical touch module, wherein the optical path of the light-emitting portion and the light path of the light-receiving portion are combined side by side in a horizontal and parallel light path manner, so that the laser is combined The high homology of the beam enhances the sensitivity of the touch and achieves a simplified structure and ease of installation. Another object of the present invention is to provide a laser optical touch module, wherein the optical path of the light-emitting portion and the light path of the light-receiving portion are combined by a common light path, so that the laser light source and the light-receiving portion of the light-emitting portion are combined. The position sensor 4/15 201207703 can share a wide-angle optical component such as linegenerat 〇r optics, that is, the laser beam emitted by the laser source and the reflected beam received and induced by the position sensor pass through The same wide-angle optical element, and then the wide-angle optical element is disposed after the laser beam emitted by the beam-spreading laser source passes through the beam splitter and is emitted outwardly, and the reflected laser beam is reflected by the beam splitter. Entering the sensing received by the position sensor, thereby omitting the wide-angle optical element originally required for the position sensor, such as a wide-angle imaging lens (viewing angle: 90 degrees), and avoiding the optical aberration of the wide-angle optical element , that is, the optical distortion of the peripheral field (〇ptical ru Distortion); and the sensing surface of the position sensor can further be provided with a micro lens (Mirco Lens), like the general commercial CMOS sen Sor to increase the ability and efficiency of light collection. Another object of the present invention is to provide a laser optical touch module, wherein the laser light source further enables 雷 when the optical path of the light emitting portion and the light path of the light receiving portion are combined together in a common light path manner. The small-diameter laser beam 'to enhance the astigmatism efficiency of the wide-angle optical component such as the wire lens, and further to set a light between the position sensor and the beam splitter at the front end of the sensing surface of the position sensor Beam expander optics to expand a small diameter laser beam into a larger diameter laser beam and then incident on the sensing surface of the position sensor, thereby effectively utilizing the imaging unit on the position sensor (Pixels, pixels), thereby improving the resolution of the touch. Another object of the present invention is to provide a laser optical touch module in which a light path between the light path of the light emitting portion and the light path of the light receiving portion is common. When the optical paths are combined, they can be further arranged after the wide-angle optical component such as line generator optics, and - a quarter wave-plate and a partial polarization beam splitting (polarization beam splitter)' enables the laser beam emitted by the laser source to utilize the characteristics of two linear polarized lights of the laser, namely P-line polarized light (Pp〇larizati〇n) and S-line polarized light (S -polarization) The two orthogonal linear apolar lights, when passing through a polarizing beam splitter at 5/15 201207703, cause one of the linear polarized lights (usually p-line polarized light) to pass completely and another line orthogonal thereto The aurora (usually S-line polarized light) is completely reflected; after the quarter-wave plate, the line is converted to a circular apolar wave (called left-hand or right-handed circular polarization). Hand circular polarization ), wherein if it is converted into a left-handed (or right-handed) circular auroral light, it will become a right-handed (or left-handed) circularly polarized light after being reflected by the touch block, and the reflected light passes through the first four The partial wave plate is converted into a linearly polarized light orthogonal to the original ray polarized light, and then incident on the polarizing beam splitter and completely reflected to the position φ. The sensor is used to enhance the use of light. Efficiency, that is, the laser The efficiency of use of light energy is maximized. [Embodiment] In order to make the present invention more clear and detailed, the structure and technical features of the present invention are described in detail below with reference to the following figures: Referring to Figures 1 and 1A, respectively, the laser optical touch module of the present invention is used. The first embodiment (transceiving parallel light path) is disposed on one side of the display screen surface, and is used to provide a schematic diagram of the state of use of the light reflective positioning input function and the sensing signal output of the pixel of the position sensor. The laser optical contact age of the present invention=module 1 is disposed on one side of the surface of the display screen 2 to provide an optical positioning input function for forming an optical touch system on the display screen 2, generally For example, at least two laser optical touch modules 1 are disposed on the periphery of the surface of the display screen 2, such as a laser optical touch module 相邻 at each of the adjacent corners of the side edge of the display screen 2, wherein The sensing directions of the position sensors of each of the laser optical touch modules are formed in a staggered manner on the surface of the display screen 2. Only the use state of one of the laser optical touch modules 1 is shown in FIG. The laser optical touch module 1 is composed of a light emitting portion 10 and a light receiving portion 2, and the light emitting portion 10 and the light receiving portion 20 can be accommodated in an outer casing 6/15 201207703. The inside is formed to form an assembly, and the shape of the outer casing 30 is not limited. An opening corresponding to the light path of the light-emitting portion 10 and the light-receiving portion 20 is provided, such as a light-emitting portion opening 301 and a light-receiving portion opening 302. 1, 2 is shown. The illuminating portion 10 is mainly made by a laser light source 11 to emit a laser beam and refracted by a wide-angle optical element 12 such as a line generator optics, so that the refracted laser light wattage can be greater than 90 degrees as shown in FIG. 1 to form a wide-angle linear beam 101 on the surface of the display screen 2; when the touch member 3 touches the surface of the display screen 2, the linear beam 101 is blocked and a reflected laser beam 1〇2 is formed; The light receiving portion 20 receives and senses the reflected laser beam 1〇2 by a position sensor 21 to sense that the touch device 3 is on the sensing surface of the position sensor 21. Corresponding to the relative position on the optical axis 103; as shown in FIG. ία, the reflected laser beam 102 generated by the position of the touch device 3 can react on the active pixel axis of the position sensor 21 to form a signal. Outputting, and at least one set of position sensors 21 to sense the relative position of the touch object 3 in at least two directions, the operation function of the processing circuit can be used to know that the touch element 3 is touched on the display screen 2 Actual position coordinates on the surface; due to the position sensor 2 1 or the wide-angle optical element 12 such as a wire lens (Hnegenerat 〇 r % 〇 ptlcs) body structure and the processing function of the processing circuit can be achieved by using current electronic technology or conventional technology, and is not a technical feature of the present invention, This will not be repeated here. As shown in FIGS. 2 and 3, which are respectively a perspective view and a plane of a laser optical touch module of the present invention, an embodiment (transceiving a parallel optical path), which is not intended. The embodiments shown in FIGS. (Transceiver parallel optical path) only illustrates, but not limited to, limiting the laser optical touch module of the present invention, and the control module 1 utilizes a laser light source 11^ to form a combination. Group, so that the laser can 21 can be set in the turtle + straight. The main two 々田町, the original 11 and the position! J state 21 ^ and the side of one side of the surface of the 2 surface is not the same 7/15 201207703 The portion 10 is provided with a laser diode 11 and a laser diode 111 and a first-order optical member 112 to emit a laser beam and pass through a wide-angle optical component 12 such as a wire. The refraction of the line generator optics is such that the refracted light fan can be greater than 90 degrees as shown in FIG. 3 to form a wide-angle linear beam 101 on the surface of the display screen 2 as shown in FIGS. The light receiving portion 20 receives and senses the linear light beam 101 by a position sensor 21 and a light collecting optical element 22. The laser beam 102 reflected by the control 3 and reflected is as shown in FIG. 1 to sense the relative position of the touch component 3; therefore, the laser optical touch module 1 of the present invention has a high laser beam. Highly coherent light to improve the sensitivity of the touch' and avoid the trouble of using the reflective strip or the light absorbing strip in the prior art, so it has the advantages of simplified structure, easy installation and high touch sensitivity.
再參考圖2、3所示,本第一實施例之雷射光學觸控模 組1係由一發光部10及一收光部20組成一模組,又^發 光部10及收光部20可容設在一外殼體3〇内部以组合^一 模組之使用樣態;該外殼體30上設有對應於該發1 及收光部20之光路的開口,包含一發光部開口 3 "一 光部開口 302如圖1、2所示,其中該發光部ι〇 收光部20之光路之間,即雷射光源u與位 光路之間,亦即該發光部開〇 301與收光部^ $ 21之 係以平行光路方式並排組合在一起,以本 =2之間, 2、3所示而言,該發光部10之光路與收光 $例如圖 間係以水平(相對於顯示幕2表面)且平° 0之光路之 並排組合在一起但不限制,如以垂直(相方式橫向 面)且平行光路方式上下垂直並排組合在一^,不幕2表 參考圖4所示’其係本發明f射光 / 施例(收發共光路)之一平面示意圖。本控,組第二實 射光學觸控模組la係由一發光部1〇及一二了實施例之雷 收先部20組成一 201207703 模組,又該發光部10及收光部20可容設在一外殼體3〇内 部以組合成一模組之使用樣態;在本第二實施例中,該 光部10之光路與收光部20之光路之間,即雷射光源^ 位置感測器21之光路之間,係以共光路方式組人在一起: 因此本第二實施例之外殼體30上所設之對應於^發光, 10及收光部20之光路開口,如第一實施例之發光部開口 301及收光部開口 302,係在外殼體30上形成共用同一開 口 301 ( 302)供雷射光源11與位置感測器21之光路通過; 又藉由本第一實施例之共光路方式,使該發光部丨〇之雷射 龜 光源11與該收光部20之位置感測器21能共用同一廣角用 光學元件12 (22)如打線鏡片(Hne generat〇r 〇pucs),即 雷射光源11所發出之雷射光束1 〇 1及位置感測器21所接 收並感應之反射雷射光束102都經過一相同之廣角用光學 元件12 (22) ’即該打線鏡片(iinegenerat〇r〇ptics)之反 向光路可產生如一廣角成像鏡片(可視角>9〇度)之聚光 作用。該廣角用光學元件12 (22)之後方設一具分光作用 之分光鏡(beam splitter) 40以使雷射光源11所發出之雷 射光束101穿過該分光鏡40而向外射出至廣角用光學元件 12 (22),並使反射雷射光束1〇2經由該廣角用光學元件 • 12 ( 22 )射入至該分光鏡40時可反射而進入並被該位置感 測器21接收感應;而本第二實施例藉由共光路方式之結 構’可節省該位置感測器21原本所須之廣角用光學元件 22’即該打線鏡片(linegeneratoroptics)之反向光路可產 生如一廣角成像鏡片(可視角>90度)之作用,並可避免 該廣角用光學元件22的光學像差,即週邊外場的光學畸變 (optical distortion)。又在該雷射光源11與分光鏡(beam splitter) 40之間進一步可設一準直鏡(c〇mmator) 50,以 使雷射光源11所發出之雷射光束104在經過該準直鏡 (collimator) 50後能形成平行光束1〇5,以有利於再藉由 該廣角用光學元件12 (22)如打線鏡片(line generator 9/15 201207703 〇ptlcs)以在顯示幕表面上形成廣角之線性光束。 再參考圖4、5所示,該位置感測器21之感測面211 上進一步可設置一微透鏡(Mirco Lens)60,該微透鏡(Mirco Lens) 60之作用如同一般商業用的互補型金屬氧化物半導 體感測器(CMOS),可使觸控件3觸控在對應光轴103上 位置$ 1〜①N中之位置①4所產生之雷射光束1〇2能進一 步聚光在感測面211上各像素(pixei) 之中的對應 像素#4上,藉以增加收光能力與效率。 參考圖6所示’其係本發明雷射光學觸控模組第三實 ^ 施巧(收發共光路)之一平面示意圖。本第三實施例之雷 射光學觸控模組lb之架構與圖5所示第二實施例之雷射光 學觸控模組la大體相同,主要不同點在於:該雷射光源進 一步使用可發出小直徑雷射光1 〇4a之雷射光源11 a,以提 升該廣角用光學元件12 (22)如打線鏡片的散光效率;此 時在該位置感測器21之感測面211前端,即該位置感測器 21與分光鏡40之間,進一步設一光擴束鏡(beamexpander optics) 70,用以將小直徑的反射雷射光束1〇2a擴成較大 直径的雷射光束再入射至位置感測器21之感測面211 ,藉 • 以有效利用該位置感測器21上的成像單元(即像素, pixels),進而提升觸控的解析度。 、 參考圖7所示,其係本發明雷射光學觸控模組第四實 施例(收發共光路)之一平面示意圖。本第四實施例之雷 射光學觸控模組1C之架構與圖6所示第三實施例之雷射光 學觸控模組lb大體相同,主要不同點在於:於該廣角用光 學元件12 ( 22)如打線鏡片(line generator optics)之後方 依序設一四分之一波板(quarter wave-plate) 80及一偏極 分光鏡(polarization beam splitter) 90,用以取代第三實施 例之雷射光干觸控模組1 b中之分光鏡(beam splitter ) 40 ; 使用時,該雷射光源11所發出之雷射光束1〇4a可 10/15 ' 201207703 射所具備的兩種線性偏極光之特性,即P線偏極光 (P-polarization)及 S 線偏極光(s-polarization)兩正交的 線偏極光,在經過該一偏極分光鏡9〇時,使其中一線偏極 光(通常為P線偏極光)完全通過而與其正交的另一線偏 極光(通常為S線偏極光)則完全反射;再經該一四分之 一波板80 ’將通過之線偏極轉換為一圓偏極光(稱左旋或 右旋圓偏光 ’ left hand circular polarization /right hand dixulai* p〇larizati〇n )’其中若是轉換為左旋(或右旋)圓 偏極光出射’則經由觸控件之阻擋而反射後將變為右旋(或 φ 左旋)圓偏光,而反射光先經過該一四分之一波板以轉換 ,一與原出射線偏光正交的線偏光,再入射至該一偏極分 光鏡並完全反射至該位置感測器21上,藉此,可提升光的 使用效率,即該雷射光能量的使用效率達成最大化效果。 0 以上所示僅為本發明之優選實施例,對本發明而言僅 是說明性的,而非限制性的。在本專業技術領域具通常知 識人員理解’在本發明權利要求所限定的精神和範圍内可 對其進行許多改變,修改,甚至等效的變更,但都將落入 本發明的保護範圍内。 φ 【圖式簡單說明】 圖1係本發明雷射光學觸控模組第一實施例(收發平行光 路)設置於顯示幕表面之一侧以提供光反射式定位輸入功 能之使用狀態示意圖。 圖1A係圖丨實施例中本發明之位置感測器之像素之感應 訊號輸出示意圖。 圖2係本發明雷射光學觸控模組第一實施例(收發平行光 路)之立體示意圖。 圖3係圖2實施例(收發平行光路)之一平面(上視)示 意圖。 圖4係本發明雷射光學觸控模組第二實施例(收發共光路) p η 11/15 201207703 之一平面示意圖。 圖5係本發明之位置感測器之感測面上設一微透鏡(Mirco Lens)之功能狀態示意圖。 圖6係本發明雷射光學觸控模組第三實施例(收發共光路) 之一平面示意圖。 圖7係本發明雷射光學觸控模組第四實施例(收發共光路) 之一平面示意圖。 【主要元件符號說明】Referring to FIG. 2 and FIG. 3, the laser optical touch module 1 of the first embodiment comprises a light emitting unit 10 and a light receiving unit 20, and a light emitting unit 10 and a light receiving unit 20. It can be accommodated in an outer casing 3 以 to combine the use mode of the module; the outer casing 30 is provided with an opening corresponding to the light path of the hair 1 and the light-receiving portion 20, and includes a light-emitting portion opening 3 " The light-emitting portion opening 302 is as shown in FIG. 1 and FIG. 2, wherein the light-emitting portion ι is between the light path of the light-receiving portion 20, that is, between the laser light source u and the light path, that is, the light-emitting portion is opened and closed. The light parts ^ $ 21 are combined side by side in a parallel light path manner, and the light path of the light-emitting portion 10 and the light-receiving amount are horizontal (as opposed to the figure). The surface of the display screen 2) and the light path of the flat 0 are combined side by side but are not limited, for example, in a vertical (phase-wise lateral plane) and a parallel optical path, vertically and vertically arranged side by side in a ^, the absence of the table 2 is shown in FIG. 'It is a schematic plan view of one of the f-lights/examples (transmission and common light path) of the present invention. The control unit, the second real optical touch module la is composed of a light emitting unit 1 and a second receiving portion 20 of the embodiment to form a 201207703 module, and the light emitting portion 10 and the light receiving portion 20 are In the second embodiment, between the optical path of the optical portion 10 and the optical path of the light-receiving portion 20, that is, the position of the laser light source is sensed. The optical path of the detector 21 is grouped together by a common optical path: therefore, the optical path opening corresponding to the illumination, 10 and the light-receiving portion 20 is provided on the outer casing 30 of the second embodiment, such as the first The light-emitting portion opening 301 and the light-receiving portion opening 302 of the embodiment are formed on the outer casing 30 to form the same opening 301 (302) for the optical path of the laser light source 11 and the position sensor 21; and by the first embodiment In the common light path mode, the laser source 11 of the light-emitting portion and the position sensor 21 of the light-receiving portion 20 can share the same wide-angle optical element 12 (22) such as a wire lens (Hne generat〇r 〇pucs) ), that is, the laser beam 1 〇1 emitted by the laser light source 11 and the opposite end of the position sensor 21 The laser beam 102 is passed through a same wide-angle optical element 12 (22)', that is, the reverse optical path of the wire lens (iinegenerat 〇r〇ptics) can produce a wide-angle imaging lens (viewable angle > 9 degrees) Concentrating effect. The wide-angle optical element 12 (22) is followed by a beam splitter 40 for causing the laser beam 101 emitted by the laser source 11 to pass through the beam splitter 40 to be emitted to the wide angle. The optical element 12 (22), and the reflected laser beam 1 〇 2 is reflected by the wide-angle optical element 12 ( 22 ) into the beam splitter 40 to enter and be received by the position sensor 21; The second embodiment, by the structure of the common optical path method, can save the wide-angle optical lens 22', which is the required wide-angle optical element of the position sensor 21, that is, the reverse optical path of the line-generator optics can produce a wide-angle imaging lens ( The angle of view can be 90 degrees), and the optical aberration of the wide-angle optical element 22, that is, the optical distortion of the peripheral external field can be avoided. Further, a collimating mirror 50 may be disposed between the laser light source 11 and the beam splitter 40 such that the laser beam 104 emitted by the laser source 11 passes through the collimating mirror. A collimator 50 can form a parallel beam 1〇5 to facilitate the formation of a wide angle on the surface of the display screen by the wide-angle optical element 12 (22) such as a line lens (line generator 9/15 201207703 〇ptlcs). Linear beam. Referring to FIG. 4 and FIG. 5, a sensing lens 211 of the position sensor 21 may further be provided with a micro lens (Mirco Lens) 60, which functions as a complementary type for general commercial use. The metal oxide semiconductor sensor (CMOS) enables the touch beam 3 to be further condensed on the sensing surface by the laser beam 1 〇 2 generated at the position 14 in the position $1 to 1N corresponding to the optical axis 103. On the corresponding pixel #4 among the pixels (pixei) on 211, the light-receiving ability and efficiency are increased. Referring to FIG. 6 , it is a schematic plan view of a third embodiment of the laser optical touch module of the present invention. The structure of the laser optical touch module lb of the third embodiment is substantially the same as that of the laser optical touch module la of the second embodiment shown in FIG. 5, and the main difference is that the laser light source can be further used. a laser light source 11 a of small diameter laser light 1 〇 4a to enhance the astigmatism efficiency of the wide-angle optical element 12 (22) such as a wire lens; at this time, the front end of the sensing surface 211 of the position sensor 21, that is, Between the position sensor 21 and the beam splitter 40, a beam expander optics 70 is further provided for expanding the small-diameter reflected laser beam 1〇2a into a larger-diameter laser beam and then incident thereon. The sensing surface 211 of the position sensor 21 is used to effectively utilize the imaging unit (ie, pixels) on the position sensor 21 to improve the resolution of the touch. Referring to FIG. 7, it is a schematic plan view of a fourth embodiment of the laser optical touch module of the present invention (transceiver common light path). The structure of the laser optical touch module 1C of the fourth embodiment is substantially the same as that of the laser optical touch module 1b of the third embodiment shown in FIG. 6. The main difference is that the wide-angle optical element 12 ( 22) A quarter wave-plate 80 and a polarization beam splitter 90 are sequentially disposed after the line generator optics to replace the third embodiment. The beam splitter 40 in the laser light dry touch module 1 b; in use, the laser beam 11 〇 4a emitted by the laser source 11 can be 10/15 '201207703 The characteristics of the aurora, that is, P-polarization and S-polarization, are two orthogonal linear apolar lights. When passing through a polarizing beam splitter 9 ,, one of the lines is polarized ( The other line of polarized light (usually S-line polarized light), which is normally crossed by P-line polarized light, is completely reflected; then the one-quarter wave plate 80' converts the line through the pole to a circular auroral light (called left-handed or right-handed circularly polarized light) left hand circular Polarization /right hand dixulai* p〇larizati〇n ) 'If it is converted to left-handed (or right-handed) circularly polarized aurora', it will become right-handed (or φ left-handed) circularly polarized after being reflected by the touch of the touch. The reflected light first passes through the one-quarter wave plate to be converted, and a linearly polarized light orthogonal to the original ray polarized light is incident on the polarizing beam splitter and totally reflected to the position sensor 21, Therefore, the use efficiency of the light can be improved, that is, the use efficiency of the laser light energy is maximized. The above is only the preferred embodiment of the present invention, and is merely illustrative and not limiting. It will be apparent to those skilled in the art that many changes, modifications, and equivalents may be made without departing from the spirit and scope of the invention. [Fig. 1] Fig. 1 is a schematic view showing a state in which a first embodiment of a laser optical touch module of the present invention (transmission and parallel light path) is disposed on one side of a display screen surface to provide a light reflection type positioning input function. Fig. 1A is a schematic diagram showing the sensing signal output of the pixel of the position sensor of the present invention in the embodiment. 2 is a perspective view of a first embodiment of a laser optical touch module of the present invention (transmission and parallel optical path). Figure 3 is a plan (top view) illustration of the embodiment of Figure 2 (transceiving parallel optical paths). 4 is a schematic plan view showing a second embodiment of the laser optical touch module of the present invention (transceiver common light path) p η 11/15 201207703. FIG. 5 is a schematic diagram showing the functional state of a microlens (Mirco Lens) on the sensing surface of the position sensor of the present invention. 6 is a schematic plan view showing a third embodiment of the laser optical touch module of the present invention (transceiver common light path). FIG. 7 is a schematic plan view showing a fourth embodiment of the laser optical touch module of the present invention (transceiver common light path). [Main component symbol description]
雷射光學觸控模組1、la、lb、lc 顯示幕2 觸控件3 雷射光源11、11a 第一級光學件112 收光部20 感測面211 外殼體30 發光部10 雷射二極體111 廣角用光學元件12、22 位置感測器21 廣角用光學元件22 開口 3(H、302 光束 1(U、102、102a、104、104a、105 對應光軸103 準直鏡50 光擴束鏡70 分光鏡40 微透鏡60 四分之一波板80 偏極分光鏡90 12/15Laser optical touch module 1, la, lb, lc display screen 2 touch device 3 laser light source 11, 11a first stage optical member 112 light receiving portion 20 sensing surface 211 outer casing 30 light emitting portion 10 laser diode Body 111 wide-angle optical element 12, 22 position sensor 21 wide-angle optical element 22 opening 3 (H, 302 beam 1 (U, 102, 102a, 104, 104a, 105 corresponding to optical axis 103 collimating mirror 50 optical beam expansion) Mirror 70 beam splitter 40 microlens 60 quarter wave plate 80 polarized beam splitter 90 12/15