TW201207452A - Light guide film - Google Patents

Light guide film Download PDF

Info

Publication number
TW201207452A
TW201207452A TW100119806A TW100119806A TW201207452A TW 201207452 A TW201207452 A TW 201207452A TW 100119806 A TW100119806 A TW 100119806A TW 100119806 A TW100119806 A TW 100119806A TW 201207452 A TW201207452 A TW 201207452A
Authority
TW
Taiwan
Prior art keywords
light
light guide
film
major surface
edge
Prior art date
Application number
TW100119806A
Other languages
Chinese (zh)
Other versions
TWI485448B (en
Inventor
Kong-Hua Wang
Kai-Jing Wang
Fang-Chun Yeh
Ching-An Yang
Yi-Chun Huang
Original Assignee
Ubright Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/073,859 external-priority patent/US8638408B2/en
Application filed by Ubright Optronics Corp filed Critical Ubright Optronics Corp
Publication of TW201207452A publication Critical patent/TW201207452A/en
Application granted granted Critical
Publication of TWI485448B publication Critical patent/TWI485448B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

A flexible light guide film having a light-adjusting structure in the form of a lenticular-like microstructure on the bottom side of the light guide film. The light guide film has a substrate layer supporting a layer light-adjusting structure, which is in the form of an array of longitudinal lenticular lenses laterally arranged in parallel. A prismatic-like microstructure may be provided on the top light emitting side of the light guide film. The light guide film is fabricated by a process involving coating/embossing of a roll of sheet material, in a roll-to-roll continuous process. Advantages includes significantly reducing the thickness of the light guide film, and the roll-to-roll fabrication process provides for more precise replication of the microstructures on the master mold or drum onto the surface of the light guide film, which in turn reduces the failure rate and manufacturing cost.

Description

201207452 六、發明說明: 【發明所屬之技術領域】 本發明和光導有關,明確地說,關於一種使用在平板 顯示器中的光導,且更明確地說,關於一種使用在液晶顯 示面板中的光導。 【先前技術】 相較於電漿顯示面板中的電致發光材料層,在液晶顯 示(Liquid Crystal Display,LCD)面板中,液晶(Liquid Crystal,LC)層本質上不會發光。液晶層或面板功能如同穿 透該液晶層的光的調變器。在一背光LCD面板中,背光模 組充當一平面光源,其係該LCD面板的重要元件,而且對 於增強該LCD面板的亮度來說相當重要。該背光模組包含 一光導向板,用以引導來自一平面陣列光源(舉例來說,一 平面陣列LED)或是一線光源(舉例來說,一冷陰極螢光 (Cold Cathode Fluorescence,CCFL)管或是一列 LED)的光。 具有後者線光源的背光模組在本技術中稱為側光式背光模 組。 目前為止,側光式背光模組中所併入的習知光導向板 係運用完全内反射(Total Internal Reflection,TIR)來將位於 該光導向板之邊緣表面處的一光源所發出的光引導至面向 該液晶面板的發光主平面表面。從該光源發出的光會被引 導以經由該光導向板傳播至該光導向板的反向邊緣表面, 俾使得光能夠從整個平面表面處朝該液晶面板發出。從 如’ 5亥光導向板中和該發光平面表面反向的另一主平面表 4 201207452 ^舉^來說’底表面)的結構有助於將光朝該頂平面表面反 广^例來說’在某魏前技術光導向板中,可能會在該 =表面處提供-反射層’用以將光反射回到該光導向板之 中。在其它先前技術光導向板中,該光導向板中和光離開 表面反向的絲面的構造會有乡個反光或散光表面點狀 物。遇到該些點狀物的絲會朝該光導的發絲面散射及/ 或反射。更明確地說,被形成或被埋置在上述習知光導向 板之底表斜的該等歧射絲散射點狀物能夠改變光束 的傳播方向’时將來自該線絲的光分散在該平面發光 表面中,從而形成用以從一平面處發光的一平面光源。由 於製程特性之故’鮮反光或散光點狀倾成的擴散與反 射表面通常是粗糙(matte)的。據此,該點或線光源需^ 的能量以產生可接受亮度的平面光輸出,因而會浪費電功 率消耗。 ' 在背光模組的領域中已經開發出利用v型切槽(v_cut) 光導向板的另一技術。v型切槽光導向板主要係藉由在一光 導向板上直接微製作多個稜體所製成,而且通常會結合一 逆稜鏡片使用在一背光模組中。如圖〗中所示,該先前技 術背光模組主要包含:一逆稜鏡片3 ; — V型切槽光導向 板2,其具有漸細厚度;一反射膜1,其位於該逆鐘鏡片下 方;以及一擴散膜4,其位於該逆稜鏡片上方。該液晶面板 (未顯示)係放置在該擴散膜4的頂端。一線光源/反射器5 會被定位在該光導向板2的較厚緣處。相較於早期的習知 背光模組,使用V型切槽光導向板的背光模組之輝度 201207452 (brightness)可會被強化增加近30%。所以,利用此改良過的 背光模組能夠在一特殊輸出亮度中節省約三分之一的總功 率消耗’這在節能效能中係明顯的改善。 背光模組中所使用的光導向板通常係藉由射出成形製 成。一般來說,已溶融的聚甲基丙稀酸甲酯(PMma)材料會 被填入一模穴之中,其具有所希的模具結構並保持固持壓 力。而後,該材料便可冷卻並硬化,以符合於該模穴的配 置。然而,當其涉及V型切槽光導向板,由於製造模穴的 難度以及上述射出成形製程特性的關係,會有很高的不良 率。複製由CNC精確加工製成之具有v型切槽結構的母模 通常會有製造偏差及/或產生缺陷。所以v型切槽光導向板 的製造會變得更困難且因而成本更高。 再者,先刖技術光導向板的問題還會因LCD裝置之更 輕重量、更薄輪廓、以及更撓性結料已在近年逐漸成為 ,流的嚴格要求而惡化。由於射出成形之限制,並不容易 藉此方法製成既薄且撓性的光導向板。明確地說,當其涉 及大型LCD面板尺寸時,不良率會更高。 本領域仍需要一種具有既薄且撓性結構的背光板,並 且具有有效的平面光輸出而且容易製造。 【發明内容】 ☆本發明提供-種薄形光導向膜,其具有高良率之比較 谷易製造的結構。於本發明的_觀點中,該光導向膜為可 撓性。更明確魏,本發明提供—種具有細整結構的撓 光導向膜’其形式為在該光導向膜的底側(也就是,背向201207452 SUMMARY OF THE INVENTION [Technical Field] The present invention relates to a light guide, and more particularly to a light guide used in a flat panel display, and more particularly to a light guide used in a liquid crystal display panel. [Prior Art] In the liquid crystal display (LCD) panel, the liquid crystal (Liquid Crystal) layer does not emit light in essence in comparison with the electroluminescent material layer in the plasma display panel. The liquid crystal layer or panel functions as a modulator that penetrates the light of the liquid crystal layer. In a backlit LCD panel, the backlight module acts as a planar light source that is an important component of the LCD panel and is important to enhance the brightness of the LCD panel. The backlight module includes a light guiding plate for guiding a light source from a planar array (for example, a planar array LED) or a line source (for example, a Cold Cathode Fluorescence (CCFL) tube. Or a column of LED light. A backlight module having the latter line source is referred to in the art as an edge-lit backlight module. So far, the conventional light guiding plate incorporated in the edge-lit backlight module uses Total Internal Reflection (TIR) to guide the light emitted by a light source located at the edge surface of the light guiding plate to face. The light-emitting main plane surface of the liquid crystal panel. Light emitted from the light source is guided to propagate to the reverse edge surface of the light guiding plate via the light guiding plate so that light can be emitted from the entire planar surface toward the liquid crystal panel. From the other main plane of the '5-light guide plate and the surface of the light-emitting plane opposite to the surface of the light-emitting plane, the structure of the 'bottom surface' helps to illuminate the surface of the top plane. It is said that in a pre-technical light guiding plate, a reflective layer may be provided at the surface to reflect light back into the light guiding plate. In other prior art light guides, the configuration of the surface of the light guide that is opposite the direction of the light exiting the surface will have a reflective or astigmatic surface spot. The filaments that encounter the dots will scatter and/or reflect toward the hair surface of the light guide. More specifically, the astigmatism scattering dots formed or embedded in the bottom surface of the conventional light guiding plate can change the direction of propagation of the light beam, and the light from the wire is dispersed in the plane. In the surface, a planar light source is formed to emit light from a plane. Due to process characteristics, the diffuse and reflective surfaces of fresh reflective or astigmatic dots are generally matte. Accordingly, the point or line source requires energy to produce a planar light output of acceptable brightness, thereby wasting electrical power consumption. Another technique for utilizing a v-cut light guide plate has been developed in the field of backlight modules. The v-grooved light guide plate is mainly made by directly microfabricating a plurality of prisms on a light guide plate, and is usually used in combination with a reverse diaphragm in a backlight module. As shown in the figure, the prior art backlight module mainly comprises: an inverted diaphragm 3; a V-shaped slotted light guiding plate 2 having a tapered thickness; and a reflective film 1 located below the inverse clock lens And a diffusion film 4 located above the reverse plate. The liquid crystal panel (not shown) is placed on the top end of the diffusion film 4. A line source/reflector 5 will be positioned at the thicker edge of the light guide plate 2. Compared to the earlier conventional backlight modules, the brightness of the backlight module using the V-grooved light guide plate 201207452 (brightness) can be enhanced by nearly 30%. Therefore, the improved backlight module can save about one-third of the total power consumption in a particular output brightness, which is a significant improvement in energy saving performance. The light guide plate used in the backlight module is usually formed by injection molding. In general, the melted polymethyl methacrylate (PMma) material is filled into a cavity which has the desired mold structure and maintains the holding pressure. The material can then be cooled and hardened to conform to the configuration of the cavity. However, when it relates to a V-grooved light guide plate, there is a high defect rate due to the difficulty in manufacturing the cavity and the above-described injection molding process characteristics. Copying a master mold having a v-grooved structure made by CNC precision machining often has manufacturing variations and/or defects. Therefore, the manufacture of the v-grooved light guide plate becomes more difficult and thus more expensive. Moreover, the problem of the prior art light guide plate is also aggravated by the stricter requirements of the flow of the LCD device due to the lighter weight, thinner profile, and more flexible material. Due to the limitations of injection molding, it is not easy to produce a thin and flexible light guide plate by this method. Specifically, when it comes to large LCD panel sizes, the defect rate will be higher. There is still a need in the art for a backlight having a thin and flexible structure with an effective planar light output and ease of fabrication. SUMMARY OF THE INVENTION The present invention provides a thin light guiding film which has a high yield ratio compared to a structure which is easy to manufacture. In the viewpoint of the present invention, the light guiding film is flexible. More specifically, the present invention provides a flexible guiding film having a fine structure in the form of a bottom side of the light guiding film (i.e., facing away)

S 201207452 该液晶面板的一側)有類柱狀透鏡微結構。 於-實施例中,該光導向膜包括一基板層,用 一層光調整結構。於另-實施例中,: 橫向平行排列之多個縱向柱狀透鏡組成的 位於該料㈣之11端發光側(也就 疋,面向该液日日面板的侧)的一類稜鏡微結構。該 能夠在捲對捲連續製程中藉由塗佈場印—捲薄片材料(單 面或雙,,其相依於是否要建構該光導向膜的兩側)來製 作。該溥片材料可能為明亮清激或翻,可能有微粒子塗 佈’及/或在發光表面内建顆粒。根據本發明,該光導的厚 度會大幅縮I此外,該捲對捲製程可將原版模具母模或 滚輪上的微結構更精確地鄕在該光導向韻表面,從而 降低不良率和製造成本。 【實施方式】 本說明書為實行本發明的最佳模式。本文會參考各實 施例和圖式來說明本發明。本朗書的目的在解釋本發明 的-般性顧而不應視為有_意義。熟f本技術的人士 便會明白,可以依職不來翻變更和改善的目的,盆並 不會脫離本發_料和精神。本發明的齡主要取絲 隨附申請專利範圍。 圖2為-背光LCD裝置的結構示賴,其併入根據本 發明一實施例的光導向板。根據本發明一實施例,該背光 LCD 10包括-液晶顯示模、组12;具有一背光模組14之形 式的一平面光源;以及被設置在該液晶模組12和該背光模 201207452 組14之間的數個光學膜。該液晶模組12包括:被夾設在 兩個透明基板之間的多個液晶;以及控制電路系統,用以 定義一二維像素陣列。該背光模組14提供側光類型的平面 光散佈’其中’一線光源16(舉例來說,一列獨立的LED 或是一縱向冷陰極螢光燈管)會被提供在根據本發明的一光 導向膜18的邊緣處。一反射器17會被提供用以指引來自 該線光源16的光經由該光導向膜18的邊緣進入該光導向 膜18之中。該液晶模組12會根據影像資料經由該模組來 s周變入射背光。本發明雖然以液晶模組作為光調變器來說 明;不過,本發明的光導向膜同樣適用於用來調變入射背 光的其它類型調變裝置。 明確地說,本發明關於一種既薄且有撓性之光導向膜 的新穎結構’其具有用以改變光路徑的光調整結構。於一 貫施例中,由撓性透明材料組成的一第一光學層會支撐一 第二光學層,該第二光學層係被形成在該第一光學層的下 側並具有一光調整結構,其中,該等第一和第二光學層具 有相同或不同的折射率。根據圖2中所示之本發明該實施 例,該既薄且有撓性之光導向膜18具有一清澈或透明的撓 性基板層19 ’其會支撑一層清澈或透明的光調整結構2〇, 該光調整結構通常包括一多列橫向排列之柱狀透鏡21陣 列。該光導向膜18會被建構成讓該光調整結構2〇被定義 在背向該液晶模組12的底部主平面表面處,用以散佈及指 引光穿過面向該液晶模組12的平坦、平滑頂端主平面表 面。一反射薄片22可被提供用以幫助捕捉經由該光導向膜 201207452 18下側逃離的任何光並將光重新導向該光導向膜π。S 201207452 One side of the liquid crystal panel has a cylindrical lens microstructure. In an embodiment, the light directing film comprises a substrate layer with a layer of light modulating structure. In another embodiment, a plurality of longitudinal lenticular lenses arranged in a laterally parallel manner are of a type of 稜鏡 microstructure located at the 11-end illuminating side of the material (4) (i.e., the side facing the liquid day panel). This can be done in a roll-to-roll continuous process by coating a field-roll sheet material (single or double, depending on whether or not the sides of the light directing film are to be constructed). The crepe material may be brightly swelled or turned over, possibly with microparticle coating' and/or built into the luminescent surface. According to the present invention, the thickness of the light guide can be greatly reduced. In addition, the roll-to-roll process can more precisely pinch the microstructure on the master mold master or the roller on the light guide surface, thereby reducing the defective rate and manufacturing cost. [Embodiment] This specification is the best mode for carrying out the invention. The invention will be described herein with reference to various embodiments and drawings. The purpose of this book is to explain the generality of the present invention and should not be considered as having a meaning. Those who are familiar with this technology will understand that they can not change the purpose of change and improvement according to their duties, and the basin will not leave the hair and spirit. The main age of the present invention is attached to the scope of the patent application. Fig. 2 is a structural illustration of a backlight LCD device incorporating a light guiding plate according to an embodiment of the present invention. According to an embodiment of the invention, the backlight LCD 10 includes a liquid crystal display module, a group 12, a planar light source in the form of a backlight module 14, and a liquid crystal module 12 and the backlight module 201207452. Several optical films between. The liquid crystal module 12 includes: a plurality of liquid crystals sandwiched between two transparent substrates; and control circuitry for defining a two-dimensional pixel array. The backlight module 14 provides a planar light spread of the side light type, wherein a 'line light source 16 (for example, a column of independent LEDs or a longitudinal cold cathode fluorescent tube) is provided in a light guide according to the present invention. At the edge of the membrane 18. A reflector 17 is provided to direct light from the line source 16 into the light directing film 18 via the edge of the light directing film 18. The liquid crystal module 12 changes the incident backlight through the module according to the image data. The present invention is illustrated with a liquid crystal module as a light modulator; however, the light directing film of the present invention is equally applicable to other types of modulation devices used to modulate incident backlighting. In particular, the present invention relates to a novel structure of a thin and flexible light directing film having a light adjusting structure for changing the light path. In a consistent embodiment, a first optical layer composed of a flexible transparent material supports a second optical layer formed on a lower side of the first optical layer and having a light-adjusting structure. Wherein the first and second optical layers have the same or different refractive indices. According to this embodiment of the invention illustrated in Figure 2, the thin and flexible light directing film 18 has a clear or transparent flexible substrate layer 19' which will support a clear or transparent light-adjusting structure 2 The light adjustment structure generally includes an array of a plurality of columns of laterally aligned lenticular lenses 21. The light guiding film 18 is configured to define the light adjusting structure 2 at a bottom main surface of the liquid crystal module 12 for spreading and directing light through the flat surface facing the liquid crystal module 12. Smooth the top main plane surface. A reflective sheet 22 can be provided to help capture any light that escapes through the underside of the light directing film 201207452 18 and redirect the light to the light directing film π.

在所示的實施例中,有兩個已建構微稜鏡基板26與 28,它們會被排列成使得該等縱向稜鏡結構在該等兩塊基 板之間通常為正交或略小於正交角度。該等微稜鏡基板26 與28會被建構成用以增強光度或亮度,再導向光至更接近 垂直視軸。一擴散板27會被提供在該光導向膜18和該下 方微棱鏡基板28之間。或者,甚且另外,該等微稜鏡基板 26和28中的一或兩者可能會在面向該光導向膜18的個別 底表面處併入擴散結構,以便同時提供光準直和光擴散功 能,其無需獨立的(多個)擴散板,從而會進一步縮減該LCD 10的總厚度。請參考2011年3月28日提申之共同待審美 國專利中請案第13/G73,859號,該案已公開為美國專利申 請案第-號,本文以引用的方式將其完整併入。 經由圖2中所示之光學膜組合進入該液晶模組12的光 在該液晶模組12之平面區域的空間中非常均勻並且 常強的垂直光強度。 *依照本發明’該新穎的光學基板可運用於具有平 :聲:且為剛性或撓性顯示面板的顯示裝置之中,該顯示面 ,反包括-齡像素_。平面光源所指的储供照明 顯示像素組狀f曲影像平__面板(料面板可 Z或挽Γί說,f光會覆蓋該f曲平面巾的賴示像辛 陣列,以便為該f曲影像平面有效提供照明覆蓋像素 像:陣列中一區域的光源。據此,對具有由多個 下面更詳細說服狀結構表面的結構。為料參考起 201207452 見’在轉各個方向時將採用下面的正交xΤz座標系統。 對圖2十所示的實施例來說,χ軸係在跨越該等柱狀透鏡 21的方向中’其亦稱為該雜狀透鏡21的橫向或穿越方 向。y軸正父於X軸,通常在光導向膜18的平面中,在該 f柱狀透鏡21的_或方向t。-減透鏡21的縱向係 從ίί狀透鏡21的其中—端通往另—端。該等柱狀透鏡21In the illustrated embodiment, there are two micro-base substrates 26 and 28 that are constructed that are arranged such that the longitudinal 稜鏡 structures are generally orthogonal or slightly smaller than the orthogonal between the two substrates. angle. The micro-bases 26 and 28 are constructed to enhance the luminosity or brightness and redirect the light closer to the vertical boresight. A diffusion plate 27 is provided between the light guiding film 18 and the lower microprism substrate 28. Alternatively, and additionally, one or both of the micro-deposits 26 and 28 may incorporate a diffusing structure at a respective bottom surface facing the light directing film 18 to provide both light collimation and light diffusing functionality, It does not require a separate diffuser plate(s), which further reduces the overall thickness of the LCD 10. Please refer to copending U.S. Patent Application Serial No. 13/G73,859, filed on March 28, 2011, which is hereby incorporated hereinby . The light entering the liquid crystal module 12 via the optical film shown in Fig. 2 is very uniform and often has a strong vertical light intensity in the space of the planar region of the liquid crystal module 12. *In accordance with the present invention, the novel optical substrate can be used in a display device having a flat: acoustic: and rigid or flexible display panel, the display surface including the - age pixel. The light source of the flat light source indicates that the pixel group is f-image flat __ panel (the material panel can be Z or Γ ί, the f light will cover the symmetry image of the f curved plane towel, so that the f curve The image plane effectively provides illumination to cover the pixel image: a light source in an area of the array. Accordingly, the structure has a structure that is more convinced by a plurality of structures below. For reference, from 201207452, see the following in the various directions. Orthogonal xΤz coordinate system. For the embodiment shown in Fig. 20, the x-axis is in the direction across the lenticular lenses 21, which is also referred to as the lateral or traversing direction of the lenticular lens 21. The y-axis The positive father is on the X-axis, usually in the plane of the light guiding film 18, in the _ or direction t of the f-cylindrical lens 21. The longitudinal direction of the minus lens 21 is from the middle end of the ίί lens 21 to the other end. The lenticular lenses 21

通吊落在x-y平面中。對一矩形的光導向膜18工件來說,X 與y軸係沿著該光導向膜18的正交邊。2細正交於該等χ 與y軸。顯現柱狀透鏡2丨之橫向排列列末端的邊緣落在Χ_ζ 平面中如圖2中所示’該圖亦代表該χ_ζ平面中的斷面圖。 該等柱狀透鏡21的剖面係沿著y軸之各位置在χ_ζ平面中 取得的斷®。另外’水平方向係指x-y平面,而垂直方向則 係指z方向。 在圖中所示的實施例中,該柱狀結構表面包括一淺曲 面透鏡結構(舉例來說,一凸或凹透鏡結構,或是凸凹組 合)。在圖2中所示的實施例中,該柱狀結構表面包含多列 平行的凸形柱狀透鏡21,每一者皆在光導向膜18之兩個反 向邊緣之間連續地延伸在y方向中。於未顯示的另一實施 例中,該等柱狀透鏡可能為凹透·鏡。在此圖所示的實施例 中,相鄰柱狀透鏡21的彎曲表面會隔開(也就是,不相交), 從而在柱狀透鏡21之間定義有縱向平坦底部的多個平行空 ,或溝槽24。於未顯示的其它實施例中,相鄰柱狀透鏡白^ 彎曲表面可能會相交。對該等柱狀透鏡21來說,χ軸係在 跨越該等凹谷24和透鏡21的方向巾,其亦稱為該柱狀結 201207452 構表面的橫向或穿越方向1減表料她透鏡2i和溝 槽24的縱軸或方向。柱狀透鏡21的縱向係指該凸透鏡斷 面會於其巾從她狀透鏡21的射—端通往另—端的方 $圖2中所示的邊緣顯現柱狀透鏡21之橫向排列列末端 落在x_y平面巾’其亦代表該X好面巾的斷面圖。 並參考圖7為用以解釋一光導向膜之一般性結構參數 的x-z平面剖面圖。參考圖7,光導向膜包含:一絲 層51〇 ;以及複數個柱狀透鏡520,其具有被形成在該基板 層510之底表面的多個凸f曲表面似。每一個該等柱狀透 ^ 520的表面524實質上對應於一圓柱522(其剖面中心為 〇」’半料「I·」)的表面斷面,絲面斷面對應於一弧 角θ以及剖面中點「a」*「b」之間的弧邊。在圖7中所示 的斷面圖中’透鏡520對應於圓形522中被弦a_b和弧邊a_b 圍住的部分。如圖7巾所示,柱狀透鏡52Q的相鄰棋形表 面524彼此不接卿成—接續或連續的透絲面(如下面的 進一步討論,在圖6A和6B中所示的實施例中,部分柱狀 透鏡的拱形表面可能彼此相交)。每一個透鏡52㈣表面别 ,底4在基板層51〇的頂端,在相鄰透鏡52()之間會有一 平坦間隔。在圖巾所示的實施例巾,該料連續透鏡別 有相同的遑鏡寬度以。—特殊區域内的間隔間距犯會保持 恆定,但是不同區域中則不相同。 於—較佳的實施例中,柱狀結構的角度Θ係在5度至 9〇度的1已圍中’更佳的係’在1〇度至45度的範圍中。該 柱狀透鏡結構的高度d3(從該基板層510的頂端處量起,或 201207452 者,假使該基板層和該柱狀透鏡結構一體成形的話,則從 相鄰不相交或不重疊的柱狀透鏡之間的凹谷處量起)完全相 荨(或者,於未顯示的其它實施例中可能會不同),較佳的 係’在0.5μιη至ΙΟΟμπι的範圍中,較佳的係,在丨μιη至6〇μπι 的範圍中,更佳的係,在至45gm的範圍中。該等柱 狀透鏡的曲率為相同。相鄰透鏡的中心〇之間的距離(也就 疋,dl+d2)=5pm 至 ΙΟΟΟμιη。 在圖2中所示的實施例中,該等柱狀透鏡21在^_2平 面中各有相同的斷面輪廓。柱狀透鏡21的剖面係沿著乂軸 之各位置在y-Z平面中取得的斷面。另外,水平方向係在 x^y平面,而垂直方向則係沿著2方向。於此實施例中柱 狀透鏡21的曲率和高度分別在所有柱狀透鏡中為相同,而 且該已建構的柱狀表面的兩個不連續柱狀透鏡21之間的距 離間距為相同,此實施例中,每—個透鏡21的表面底部 在基板層19的頂端。圖2雖鋪示附接至該基板層19的 多個隔離立柱狀透鏡21 ;不過,應該瞭解該柱狀透鏡 21層亦可能包含分隔但橫向互連(舉例來說,藉由由相同材 料製成的一薄網;舉例來說,參見圖4)的柱狀透鏡Μ。此 柱狀透鏡21層的整構_被支撐具有財高度之薄基 底層之上的-柱狀透鏡21層,以便保雜著至基 的完整性。 ,此實施例中,柱狀透鏡21的斷面輪廓符合於一圓形 的β卩刀(也就疋’柱狀透鏡21符合於一柱體之一部分的表 面)。採用符合於具有_以外(舉例來說,橢_或是矩形 201207452 =====面)之不_的一表 在圖2中所示的實施例中’該光導向膜18包括兩個獨 勺層其包含撓性基板層19和光調整結構20層。該結 構層20會被黏著至該基板層19而形成整個光導向膜18。 可以月白的係’該光導向膜18亦可由單一整合實體材料層 構成’而_侧立的實體層,其並獨離本發明的範^ 和精神。該光導向膜18可能係-元式或整體式主體,其^ 含承載該等柱狀透鏡21之表面結構的—基底部。 “該柱狀結構提供改善的光導向效果,用以將光引導至 該光導向膜18的頂端光輸出表面,以便提高紐晶模板12 的光度。當從-光源16處發出的光被投射至該基板層Η 之中時’光會遵循圖2中所示的光路徑l從該基板層19進 入該柱狀魏21層’俾便發生第―:欠折射。當光通過該柱 狀透鏡21層時,該等柱狀透鏡21會改變該光路徑。接著, 光會通過該基板層19,朝該基板層19的上表面(其同樣為 光導向膜18的上表面)前進。最後,光會經由光導向膜18 的上表面發出。整體來說,會由該光導向膜18定義一均勻 的平面表面光源。 可以明白在本發明之既薄且撓性的光導向膜18中,藉 由控制該基板層19和該柱狀透鏡21層之間的折射率差異 並控制由該柱狀透鏡21層的光調整結構所造成的折射率和 完全反射便能控制光前進路徑L。相較於上面先前技術段落 中所述之習知的V型切槽光導向板,本發明簡化該光調整 201207452 、’-σ構表面的没計,因為該等枉狀透鏡對於精確處理技術的 要求很低,且因而能夠改善光導向膜18的產量。 光導向膜18的光調整結構的形式可能為規則或不規則 的類柱狀結構。相較於習知光導向板2(圖1)的稜鏡結構, 光導向膜18的光調整結構之改善效果可參考圖3作更佳的 解釋。如圖3中所示,上方倒三角形代表圖丨中所示之光 導向板2的習知稜鏡結構。下方透鏡代表光導向膜18的柱 狀透鏡21的斷面輪廓。虛線段4和Tl代表該等個別斷面 輪廓之下表面的各表面部分的斜率。從圖3中可以看出, 因為稜鏡結構2的斜率TP為恆定,很難設計與製造中斷完 全内反射(TIR,total internal reflection)以及再導向光的水平 面。相反地,對柱狀透鏡21來說,切線的斜率Tl在透鏡 21的凸透鏡表面的各位置處並不同。此中斷TIR的水平面 使得設計與製造變得很容易。藉由考量切線變化對中斷tir 的效應,设計自由度會大幅提高,而且切線變化能夠藉由 改變該等柱狀透鏡的形狀及/或尺寸來調整。舉例來說,曰完 全内反射的中斷水平面可由下面來調整:兩個相鄰透鏡 21之間的距離;及/或(b)透鏡21的曲率半徑,使用類柱狀 結構作為本發明的光調整結構,可達更彈性的設計。 在圖中所示的實施例中,該柱狀透鏡21層和該基板層 19可由相同或不同材料製造。該柱狀透鏡21層和該基板^ 19可利用透光材料來形成,較佳的係,可聚合的樹脂,如 可以紫外光或可見光輻射固化的樹脂,例如,可UV固化的 黏著劑。光導向膜18能夠在捲對捲連續製程中藉由塗佈/ 201207452 壓印一捲薄片材料(單面或雙面,其相依於是否要建構該光 導向膜的兩側)來製作。一般來說,該結構性柱狀表面係藉 由將一可塗佈的組合物(其包括一可聚合且可交聯的樹脂) 塗敷在一母模或原版滾輪上並進行硬化製程而構成。該等 柱狀結構可藉由壓模組裝、滾壓機、模具壓印組裝、或是 其它等效設備被形成在一獨立的基底膜層上。該柱狀透鏡 21層20的基底膜會結合撓性基板層19(藉由直接堆疊或塗 敷黏著Μ (例如’壓敏式黏著劑(阳咖代sensitive Adhesive,PSA))至該等層)而形成該光導向膜18的結構。 顯見的係,可以應用許多技術和製造方法之組合達到組合 該結構式柱狀表面和該基板層的目的,或是其等效目的。 亦可設計成先軸該薄的光導向膜〗8並錢著組合另一明 ,較厚的基板(舉例來說,使壯述的組裝製程),以達到較 厚的一光導向板,其並不會脫離本發明的範疇與精神。 如上所提,大部分習知的v型域光導向板係藉由射 出成$來形成’因此,在背向該液晶模組的下方侧上的棱 鏡結構的折射率會和該基底基板的折射率相同,而且該等 稜鏡應該進—步設計(舉例來說,肖度、寬度、或深度),用 以控制光的折射方向,以便達則導光路徑之方向的效 果:相反地’對本發_既薄且撓性的光導向膜來說,該 光》周正結構2G層係藉由塗佈法被形成在該基板層19上, 俾使得該㈣會有不同的折射率,因而光路徑㈣受到控 =而達到將光的方向導向該光導向膜之朝向該液晶模組η 、务光表面的所#效果。根據本發明—實施例,該等兩層 15 201207452 的折射率差異的絕對數值範圍從0001至〇6。 如於另一實施例中,該基板層丨9和該柱狀透鏡21層可 ,由鑄造、壓印、壓印、輪壓、或是擠壓而一體成形在較 厚的一透明模基板上。用以形成具有多個結構性表面之一 基板的製程的進一步討論可參考美國專利案第7,618,164 號’本文以引用的方式將其併入。 適合該既薄且撓性之光導向膜18的基板層19的撓性 透明材料可由熟習本技術的人士已知的各種類型材料製 成,例如,塑膠,舉例來說,其可能包含,但是並不受限 於·聚酯樹脂,例如,聚乙烯對苯二曱酸酯(pET)和聚萘二 m乙二S旨(PEN);聚丙烯酸樹脂’例如,聚曱基丙稀酸甲 S曰(PMMA);聚亞醯胺樹脂;聚烯烴樹脂,例如,聚乙烯(pE) 和聚丙烯(PP);聚環狀烯烴樹脂;聚碳酸樹脂;聚胺酿樹脂; 聚乙烯樹脂,例如,聚乙烯醇(PVA)或聚氯乙烯(pvc);三 醋酸纖維(TAC);或是它們的混合物。於一實施例中,較佳 的基板為聚曱基丙烯酸曱酯(ΡΜΜΑ^同樣地,該柱狀透鏡 21層可由和基板層19雷同的材料製成,例如,丙烯酸系樹 脂或熟習本技術的人士已知之適合黏著至該基板層19的任 何其它透明材料。 §玄基板層19的厚度為恆定(也就是’該基板層19的反 向表面為平行)’其範圍可能係在ΙΟΟμιη 至800μιη,更佳的 係從125μηι至600μιη。於未顯示的另一實施例中,該基板 層19可能會漸細’舉例來說,厚度會從光輸入邊緣處變薄 至反向邊緣。該光導向犋18的柱狀透鏡21層的厚度(或該 201207452 荨柱狀透鏡21的高度)可能介於〇.5μηι與ΙΟΟμιη之間,較 佳的係,介於Ιμπα與60μιη之間,且更佳的係,介於1μηι 與45μηι之間。 於圖2中所示的實施例中(同樣參考圖7),該等柱狀透 鏡21的垂直高度d3(從該基板層19的頂端處量起的透鏡的 越咼,或者假使該基板層19和該等柱狀透鏡21 —體成形 的話,則從不相交的相鄰柱狀透鏡21之間的凹谷處量起) 完全相等’較佳在〇.5μιη至ΐ〇〇μιη的範圍中,較佳在1μηι 至60μιη的範圍中,更佳在至45μηι的範圍中。該等柱 狀透鏡的曲率為相同。間隔dl(相鄰柱狀透鏡的邊緣之間) 為相同=0μιη至1〇〇〇μηι;所有柱狀透鏡的寬度d2(凸表面側 邊邊緣之間的距離)為相同=〇pm至iOOOpm。相鄰柱狀透鏡 之間的中心間隔(也就是,dl+d2)=3pm至1200μιη。倘若有 一薄的基底膜(網)和層20之中的柱狀透鏡21 —體成形以幫 助保持黏著完整性的話(參見圖4中的基底膜42),該膜的厚 度(或底部厚度)範圍可能介於5至800微米之間。 本發明的概念可延伸包含塗佈著粒子及/或在柱狀表面 内建顆粒之柱狀透鏡的光調整結構。 圖4和圖5為本發明的光導向膜的其它實施例,它們 在一基板兩側結合稜鏡結構和類柱狀結構。 在圖4的實施例中,該光導向膜48的結構會在基板層 49逆侧結合稜鏡結構和柱狀結構。明確地說,該光導向膜 48具有一結構性柱狀表面4〇和一結構性稜鏡表面44。該 等柱狀透鏡41的結構雷同於前面實施例的柱狀透鏡21,不 17 201207452 過’柱狀透鏡41層40包括和該等凸透鏡一體成形的一薄 基底膜42。該等柱狀透鏡41的間隔dl、寬度汜、以及冠 高度d3可祕雜定’或者該光導向财該等參數⑷、 d2、d3)中其中兩個保持恆定而改變其中一個參數,或者該 光導向膜中該等參數中其中一者保持怪定而改變另外兩個 參數。 —在此圖中所示的實施例中,該結構性稜鏡表面44為會 沿著一正交觀看軸增強亮度(也就是,改善光準直性)的光輸 出表面,而該結構性柱狀表面4〇則如同先前實施例係用於 内反射的光導向膜48的光調整表面。如圖4中所示,該稜 鏡表面44包含多列平行的接續或連續的縱向稜體45,它們 係延伸在该基板層49的兩個逆邊緣之間。該等縱向稜體45 列係橫向平行排列(並排),從而定義多個平行尖峰46和凹 谷47。尖峰46的斷面輪廓對稱於垂直線(從y_z平面中看 去)。尖峰頂點角度可能為直角,而且在該等稜鏡表面44平 面中,該等尖峰有恆定或雷同高度及/或該等凹谷有恆定或 雷同深度。在圖4的實施例中所示之相鄰尖峰/凹谷之間的 距離或間距為恆定。在圖中所示的實施例中,該結構性稜 鏡表面44和該結構性柱狀表面4〇在整個光導向膜結構中 大體上相互平行(也就是,不會形成如背光模組中的光導向 板大體上為漸細的一總基板結構)。於另一實施例中,在該 光導向膜的平面中,該高度或該等稜體在縱向及/或橫向方 向中可能會不同。橫向相鄰的稜體可能分開(也就是,相鄰 稜體之間存在間隔)。在圖4中,該等柱狀透鏡41的縱軸(在 201207452 y方向中)正交於該等稜體45的縱軸(在x方向中)。 圖4的雙面光導向膜48可料前實施例在上面所述的 雷同製程來製造。該光導向膜48能夠在捲對捲連續製程中 藉由塗佈/壓印一捲薄片材料的兩側來製作。該柱狀結構表 面40和該稜鏡表面44中任一者或兩者可被形成該基板層 49的獨立層,或是和該基板層49 一體成形。在圖4中所示 的實施例中,該光導向膜48包括三個獨立層,其包含:該 稜鏡表面44、該撓性基板層49、以及該結構性柱狀表面4〇 層。該稜鏡表面層44和該結構性柱狀層40會被黏著至該 基板層49,以便形成整個光導向膜48。可以明白該光導向 膜48可由單一整合實體材料層構成,而非三個獨立的實體 層’其並不脫離本發明的範疇和精神。該光導向膜48可能 係一元式或整體式主體,其包含承載該等棱體45和該等柱 狀透鏡41之表面結構的一基底部。 在圖5的實施例中,如同圖4的實施例,光導向膜58 的結構會在基板層59反向側結合稜鏡結構和柱狀結構。明 確地說,該光導向膜58具有一結構性柱狀表面50和一結 構性棱鏡表面54。於此實施例中,柱狀透鏡51層50包括 和該等凸透鏡51 —體成形的一薄基底膜52。該等柱狀透鏡 的結構雷同於早先實施例;不過,該結構性柱狀層50中兩 個不連續的相鄰柱狀透鏡51的邊緣之間的間隔d2在X方 向的斷面中可能改變或不相同。該等柱狀透鏡的寬度d2為 相同且恆定。該等柱狀透鏡51的高度(從基底膜52的頂端 處量起)完全相等。 201207452 v =棱鏡表面54包含多列平行的接續或連續的縱向稜體 可以棱鏡表面45的結構。圖5的雙面光導向膜% 先則貫施例在上面所述的雷同製程來製造。在圖5中, 透鏡5i的縱轴(在y方向中)正交於該等稜體55的 縱軸(在X方向中)。 於未顯示的其它實施例中,並沒有稜鏡表面(先前實施 例中的44、54),或者除了稜鏡表面之外,該光導向膜的發 光表面可㈣㈣絲子及/或在縣板層或該等棱鏡表面 (若提供的話)上有内建顆粒。 一於未顯示的其它實_中,該狀透鏡之結構的垂 直高度可以不同。進-步言之,不陳狀透鏡的曲率半徑 亦可月b會不同及/或不同的柱狀表面可能符合於具有圓形以 外(舉例來說,橢圓形或是矩形或不規則幾何形狀的其它剖 面)之不同剖面的柱體並且會有不同的尺寸。本發明亦涵蓋 具有用以定義不同凸f絲面輪廓之—均自剖面的縱向柱 狀結構(舉例來說,不同的柱狀透鏡有相同或不同的輪廓)。 實驗結構: 本文中已作貫驗決定該等柱狀透鏡之維度變化對本發 明之光導向膜的光亮度分佈之均勻性的效應。 參考圖6A和6B的進一步實施例,此處所討論的光導 向膜180的對角線尺寸約10.1英忖並且係使用透明材料構 成(例如,丙烯酸系樹脂)。圖6A為光導向膜180之底表面 的平面圖。圖6B為光導向膜180之圓形區6B的透視圖。Hanging in the x-y plane. For a rectangular light directing film 18 workpiece, the X and y axes are along the orthogonal sides of the light directing film 18. 2 is finely orthogonal to the χ and y axes. The edge of the end of the laterally aligned column of the lenticular lens 2 appears in the Χ_ζ plane as shown in Fig. 2'. This figure also represents a sectional view in the χ_ζ plane. The cross-section of the lenticular lenses 21 is a break taken in the χ_ζ plane along each position of the y-axis. In addition, the horizontal direction refers to the x-y plane, and the vertical direction refers to the z direction. In the embodiment shown in the figures, the cylindrical structure surface comprises a shallow curved lens structure (e.g., a convex or concave lens structure, or a combination of convex and concave). In the embodiment shown in Figure 2, the cylindrical structure surface comprises a plurality of columns of parallel convex cylindrical lenses 21, each extending continuously between the two opposite edges of the light directing film 18 at y In the direction. In another embodiment not shown, the lenticular lenses may be concave mirrors. In the embodiment shown in this figure, the curved surfaces of adjacent lenticular lenses 21 are spaced apart (ie, not intersected) such that a plurality of parallel spaces of longitudinally flat bottoms are defined between the lenticular lenses 21, or Trench 24. In other embodiments not shown, adjacent lenticular lens white curved surfaces may intersect. For the lenticular lens 21, the yoke is in a direction across the valleys 24 and the lens 21, which is also referred to as the lateral or crossing direction of the cylindrical surface 201207452. And the longitudinal axis or direction of the groove 24. The longitudinal direction of the lenticular lens means that the convex lens section will fall at the end of the lateral arrangement of the lenticular lens 21 at the edge of the spheroidal lens 21 shown in Fig. 2 from the end of the lens of the lens 21 to the other end. In the x_y flat towel ' it also represents a sectional view of the X good face towel. Referring to Figure 7, there is shown an x-z plan sectional view for explaining the general structural parameters of a light guiding film. Referring to Fig. 7, the light guiding film comprises: a filament layer 51?; and a plurality of lenticular lenses 520 having a plurality of convex curved surfaces formed on the bottom surface of the substrate layer 510. The surface 524 of each of the columnar permeable surfaces 520 substantially corresponds to a surface section of a cylinder 522 (the center of which is 〇"'s half-piece "I·"), and the surface section corresponds to an arc angle θ and The arc between the points "a" and "b" in the section. In the sectional view shown in Fig. 7, the 'lens 520' corresponds to a portion of the circular shape 522 surrounded by the chord a_b and the arc side a_b. As shown in FIG. 7, the adjacent chevron surfaces 524 of the lenticular lens 52Q are not joined to each other as a continuous or continuous screen (as discussed further below, in the embodiment shown in Figures 6A and 6B). The arched surfaces of the partial lenticular lenses may intersect each other). On the surface of each of the lenses 52 (4), the bottom 4 is at the top end of the substrate layer 51, and there is a flat interval between adjacent lenses 52 (). In the embodiment of the towel shown in the figure, the continuous lens of the material has the same frog mirror width. - The spacing between the special areas will remain constant, but will be different in different areas. In a preferred embodiment, the angular extent of the columnar structure is in the range of 1 to 45 degrees in a range of 5 to 9 degrees. The height d3 of the lenticular lens structure (measured from the top end of the substrate layer 510, or 201207452, if the substrate layer and the lenticular lens structure are integrally formed, from adjacent non-intersecting or non-overlapping columns The valleys between the lenses are measured to be completely opposite (or may be different in other embodiments not shown), preferably in the range of 0.5 μm to ΙΟΟμπι, preferably in 丨In the range of μιη to 6〇μπι, a more preferred range is in the range of up to 45 gm. The curvature of the cylindrical lenses is the same. The distance between the center turns of adjacent lenses (i.e., dl + d2) = 5 pm to ΙΟΟΟ μιη. In the embodiment shown in Fig. 2, the lenticular lenses 21 each have the same cross-sectional profile in the ^2 plane. The cross section of the lenticular lens 21 is a section taken in the y-Z plane along each position of the 乂 axis. In addition, the horizontal direction is in the x^y plane, and the vertical direction is in the 2 direction. In this embodiment, the curvature and height of the lenticular lens 21 are the same in all the lenticular lenses, respectively, and the distance between the two discontinuous lenticular lenses 21 of the constructed cylindrical surface is the same. In the example, the bottom surface of each of the lenses 21 is at the top end of the substrate layer 19. 2 illustrates a plurality of isolated lenticular lenses 21 attached to the substrate layer 19; however, it should be understood that the lenticular lens layer 21 may also include separate but lateral interconnects (for example, by the same material) A thin mesh formed; for example, see the cylindrical lens 图 of Figure 4). The structuring of the layer of the lenticular lens 21 is supported by a layer of lenticular lens 21 on the underlying substrate of the financial height to preserve the integrity of the substrate. In this embodiment, the cross-sectional profile of the lenticular lens 21 conforms to a circular β-knife (i.e., the cylindrical lens 21 conforms to the surface of a portion of a cylinder). In the embodiment shown in FIG. 2, a table conforming to a non-external (for example, ellipse or rectangle 201207452 ===== face) is used. The scoop layer comprises a layer of flexible substrate layer 19 and a layer of light adjustment structure 20. The structural layer 20 is adhered to the substrate layer 19 to form the entire light directing film 18. The white-lighted system 'the light-guide film 18 may also be composed of a single integrated solid material layer' and a side-standing physical layer, which is independent of the spirit and spirit of the present invention. The light directing film 18 may be a unitary or monolithic body that includes a base portion that carries the surface structure of the cylindrical lenses 21. "The columnar structure provides an improved light directing effect for directing light to the top light output surface of the light directing film 18 to enhance the luminosity of the button template 12. When light from the source 16 is projected to In the substrate layer ', the light will follow the light path 1 shown in Fig. 2 from the substrate layer 19 into the columnar Wei 21 layer, and the first: under-refraction occurs. When light passes through the lenticular lens 21 In the case of the layers, the lenticular lenses 21 change the optical path. Then, the light passes through the substrate layer 19 toward the upper surface of the substrate layer 19 (which is also the upper surface of the light guiding film 18). Finally, the light It will be emitted through the upper surface of the light directing film 18. In general, a uniform planar surface light source will be defined by the light directing film 18. It will be understood that in the thin and flexible light directing film 18 of the present invention, Controlling the refractive index difference between the substrate layer 19 and the lenticular lens layer 21 and controlling the refractive index and complete reflection caused by the light adjustment structure of the lenticular lens layer 21 can control the light advancement path L. A conventional V-groove as described in the prior art paragraph above The guide plate, the present invention simplifies the light adjustment 201207452, the '-σ configuration surface, because the lens lenses have low requirements for precision processing technology, and thus can improve the yield of the light guiding film 18. Light guiding film 18 The light-adjusting structure may be in the form of a regular or irregular column-like structure. Compared with the 稜鏡 structure of the conventional light guiding plate 2 (Fig. 1), the improvement effect of the light-adjusting structure of the light guiding film 18 can be referred to Fig. 3 A better explanation. As shown in Fig. 3, the upper inverted triangle represents the conventional crucible structure of the light guiding plate 2 shown in Fig. 2. The lower lens represents the sectional profile of the lenticular lens 21 of the light guiding film 18. The dashed segments 4 and T1 represent the slopes of the surface portions of the surface below the individual profile profiles. As can be seen from Figure 3, since the slope TP of the crucible structure 2 is constant, it is difficult to design and manufacture the complete internal reflection. (TIR, total internal reflection) and the horizontal plane of the redirected light. Conversely, for the lenticular lens 21, the slope T1 of the tangent is different at each position of the convex lens surface of the lens 21. This horizontal plane interrupting the TIR makes It is easy to calculate and manufacture. By considering the effect of the tangential change on the interrupted tir, the degree of design freedom is greatly improved, and the tangential change can be adjusted by changing the shape and/or size of the lenticular lens. Said that the interrupted horizontal plane of total internal reflection can be adjusted by: the distance between two adjacent lenses 21; and/or (b) the radius of curvature of the lens 21, using a columnar structure as the light-adjusting structure of the present invention, A more flexible design is achieved. In the embodiment shown in the figures, the lenticular lens layer 21 and the substrate layer 19 may be made of the same or different materials. The lenticular lens layer 21 and the substrate 19 may utilize light transmission. The material is formed, preferably, a polymerizable resin such as a resin curable by ultraviolet light or visible light radiation, for example, a UV curable adhesive. The light directing film 18 can be fabricated by stamping a roll of sheet material (single or double sided depending on whether or not both sides of the light guiding film are to be constructed) by coating / 201207452 in a roll-to-roll continuous process. Generally, the structural columnar surface is formed by applying a coatable composition comprising a polymerizable and crosslinkable resin to a master or original roll and performing a hardening process. . The columnar structures can be formed on a separate base film layer by compression molding, roller press, mold stamping assembly, or other equivalent equipment. The base film of the layer 20 of the lenticular lens 21 is bonded to the flexible substrate layer 19 (by directly stacking or coating an adhesive Μ (for example, 'sensitive adhesive (PSA)) to the layers) The structure of the light guiding film 18 is formed. It is obvious that a combination of many techniques and manufacturing methods can be applied for the purpose of combining the structural columnar surface and the substrate layer, or equivalent purposes thereof. It is also possible to design the thin light guiding film 8 and to combine another thicker substrate (for example, to make an elaborate assembly process) to achieve a thicker light guiding plate. It does not depart from the scope and spirit of the invention. As mentioned above, most of the conventional v-domain light guiding plates are formed by injection into $. Therefore, the refractive index of the prism structure on the lower side facing away from the liquid crystal module and the refraction of the base substrate The rate is the same, and the 稜鏡 should be designed in advance (for example, the degree, width, or depth) to control the direction of the light's refraction so as to achieve the effect of the direction of the light guiding path: instead In the case of a thin and flexible light directing film, the light positively structured 2G layer is formed on the substrate layer 19 by a coating method, so that the (4) has a different refractive index, and thus the light path (4) Controlled = to achieve the direction of the light to the surface of the light guiding film toward the liquid crystal module η, the surface of the light. According to the present invention - the absolute value of the refractive index difference of the two layers 15 201207452 ranges from 0001 to 〇6. In another embodiment, the substrate layer 9 and the lenticular lens layer 21 may be integrally formed on a thick transparent mold substrate by casting, stamping, stamping, wheel pressing, or extrusion. . For a further discussion of a process for forming a substrate having a plurality of structural surfaces, reference is made to U.S. Patent No. 7,618,164, the disclosure of which is incorporated herein by reference. The flexible transparent material suitable for the substrate layer 19 of the thin and flexible light directing film 18 can be made of various types of materials known to those skilled in the art, for example, plastic, for example, which may include, but Not limited to polyester resins, for example, polyethylene terephthalate (pET) and polynaphthalene methylene chloride (PEN); polyacrylic resin 'for example, polymethyl methacrylate (PMMA); polyamidamine resin; polyolefin resin, for example, polyethylene (pE) and polypropylene (PP); polycyclic olefin resin; polycarbonate resin; polyamine styrene resin; polyethylene resin, for example, poly Vinyl alcohol (PVA) or polyvinyl chloride (pvc); triacetate (TAC); or a mixture thereof. In one embodiment, the preferred substrate is yttrium methacrylate (samely, the lenticular lens 21 layer may be made of a material similar to the substrate layer 19, for example, an acrylic resin or a person skilled in the art. Any other transparent material suitable for bonding to the substrate layer 19 is known. § The thickness of the mysterious substrate layer 19 is constant (that is, 'the reverse surface of the substrate layer 19 is parallel'' may range from ΙΟΟμιη to 800μιη, More preferably, from 125 μm to 600 μm. In another embodiment not shown, the substrate layer 19 may be tapered [for example, the thickness will be thinned from the edge of the light input to the opposite edge. The thickness of the layer of the lenticular lens 21 of 18 (or the height of the 201207452 荨 cylindrical lens 21) may be between 〇.5μηι and ΙΟΟμιη, preferably between Ιμπα and 60μηη, and a better system Between 1 μηι and 45 μηι. In the embodiment shown in Fig. 2 (also referring to Fig. 7), the vertical height d3 of the lenticular lenses 21 (the lens of the lens from the top end of the substrate layer 19) More stunned, or if When the substrate layer 19 and the lenticular lens 21 are integrally formed, they are measured from the valleys between the adjacent lenticular lenses 21 which are not exactly intersected, preferably in the range of 〇.5μιη to ΐ〇〇μιη. In the range, it is preferably in the range of 1 μm to 60 μm, more preferably in the range of 45 μm. The curvature of the lenticular lenses is the same. The interval dl (between the edges of adjacent lenticular lenses) is the same = 0 μm to 1〇〇〇μηι; the width d2 of all lenticular lenses (distance between the edges of the convex surface) is the same = 〇pm to iOOOpm. The center spacing between adjacent lenticular lenses (ie, dl+d2) = 3 pm to 1200 μm. If a thin base film (mesh) and the cylindrical lens 21 in the layer 20 are integrally formed to help maintain adhesion integrity (see the base film 42 in Fig. 4), the thickness of the film ( The thickness of the bottom or the bottom may range between 5 and 800 microns. The concept of the invention may extend a light-adjusting structure comprising lenticular lenses coated with particles and/or particles built into the cylindrical surface. Figure 4 and Figure 5 Other embodiments of the light directing film of the present invention are bonded to the sides of a substrate Mirror structure and columnar structure. In the embodiment of Fig. 4, the structure of the light guiding film 48 will bond the 稜鏡 structure and the columnar structure on the reverse side of the substrate layer 49. Specifically, the light guiding film 48 has a a structural columnar surface 4〇 and a structural crucible surface 44. The structure of the lenticular lens 41 is the same as that of the lenticular lens 21 of the previous embodiment, not 17 201207452, and the 'columnar lens 41 layer 40 includes and a thin base film 42 integrally formed by the convex lens. The interval dl, the width 汜, and the crown height d3 of the lenticular lenses 41 may be miscellaneous or two of the parameters (4), d2, and d3) One of the parameters is changed while remaining constant, or one of the parameters in the light directing film remains ambiguous and the other two parameters are changed. - In the embodiment shown in this figure, the structural meandering surface 44 is a light output surface that enhances brightness (i.e., improves light collimation) along an orthogonal viewing axis, and the structural column The surface 4 is like the light-adjusting surface of the light-guide film 48 for internal reflection as in the previous embodiment. As shown in Fig. 4, the prismatic surface 44 includes a plurality of rows of parallel continuous or continuous longitudinal prisms 45 extending between the two opposite edges of the substrate layer 49. The longitudinal prisms 45 are arranged in a laterally parallel arrangement (side by side) to define a plurality of parallel peaks 46 and valleys 47. The profile of the peak 46 is symmetric to the vertical line (as seen in the y_z plane). The peak apex angles may be right angles, and in the plane of the equal surface 44, the peaks have a constant or similar height and/or the valleys have a constant or similar depth. The distance or spacing between adjacent peaks/valleys shown in the embodiment of Figure 4 is constant. In the embodiment shown in the figures, the structural meandering surface 44 and the structural cylindrical surface 4 are substantially parallel to each other throughout the light directing film structure (i.e., not formed in a backlight module). The light guiding plate is substantially a tapered total substrate structure). In another embodiment, the height or the prisms may differ in the longitudinal and/or lateral directions in the plane of the light directing film. The laterally adjacent prisms may be separated (i.e., there is a gap between adjacent prisms). In FIG. 4, the longitudinal axes of the lenticular lenses 41 (in the 201207452 y direction) are orthogonal to the longitudinal axes of the prisms 45 (in the x direction). The double-sided light directing film 48 of Figure 4 can be fabricated in the same manner as described above for the same process as described above. The light directing film 48 can be fabricated by coating/imprinting the sides of a roll of sheet material in a roll-to-roll continuous process. Either or both of the columnar structure surface 40 and the crucible surface 44 may be formed as a separate layer of the substrate layer 49 or integrally formed with the substrate layer 49. In the embodiment illustrated in Figure 4, the light directing film 48 includes three separate layers comprising: the tantalum surface 44, the flexible substrate layer 49, and the structural cylindrical surface 4 layer. The tantalum surface layer 44 and the structural pillar layer 40 are adhered to the substrate layer 49 to form the entire light directing film 48. It will be appreciated that the light directing film 48 may be constructed of a single integrated solid material layer rather than three separate physical layers ' without departing from the scope and spirit of the invention. The light directing film 48 may be a unitary or unitary body comprising a base portion that carries the prisms 45 and the surface structure of the cylindrical lenses 41. In the embodiment of Fig. 5, like the embodiment of Fig. 4, the structure of the light guiding film 58 combines the 稜鏡 structure and the columnar structure on the reverse side of the substrate layer 59. Specifically, the light directing film 58 has a structural cylindrical surface 50 and a structured prism surface 54. In this embodiment, the lenticular lens 51 layer 50 includes a thin base film 52 integrally formed with the convex lenses 51. The structure of the lenticular lenses is the same as in the previous embodiment; however, the interval d2 between the edges of the two discontinuous adjacent lenticular lenses 51 in the structural columnar layer 50 may change in the X-direction section. Or not the same. The width d2 of the lenticular lenses is the same and constant. The heights of the lenticular lenses 51 (measured from the top end of the base film 52) are completely equal. 201207452 v = prism surface 54 comprises a plurality of columns of parallel continuous or continuous longitudinal prisms. The structure of prism surface 45 can be. The double-sided light guiding film of Fig. 5 is manufactured by first applying the same process as described above. In Fig. 5, the longitudinal axis of the lens 5i (in the y direction) is orthogonal to the longitudinal axis of the prism 55 (in the X direction). In other embodiments not shown, there is no tantalum surface (44, 54 in the previous embodiment), or in addition to the tantalum surface, the light-emitting surface of the light directing film may be (d) (d) silk and/or in the county plate. There are built-in particles on the layers or surfaces of the prisms (if provided). The vertical height of the structure of the lens may be different in other solids not shown. In other words, the radius of curvature of the non-dental lens may also differ from month to month and/or different columnar surfaces may conform to have a circle other than (for example, elliptical or rectangular or irregular geometry) Columns of different profiles in other sections) will have different sizes. The present invention also encompasses longitudinal columnar structures having uniform self-profiles for defining different convex f-filament profiles (for example, different cylindrical lenses have the same or different profiles). Experimental Structure: The effects of the dimensional changes of the lenticular lenses on the uniformity of the light intensity distribution of the light directing film of the present invention have been determined herein. Referring to the further embodiment of Figures 6A and 6B, the light directing film 180 discussed herein has a diagonal dimension of about 10.1 inches and is constructed using a transparent material (e.g., acrylic). Figure 6A is a plan view of the bottom surface of the light guiding film 180. FIG. 6B is a perspective view of the circular region 6B of the light guiding film 180.

S 20 201207452 光源150靠近該光導向膜18〇的其中一側。在本實施例中, ^光,向膜⑽的底表面有從區域A至區* N的十四個已 疋義區域’舉例來說’它們的寬度約1Qem。複數個柱狀透 鏡0樣205會被设置在該光導向月莫⑽的底表面刚(非面 向該液晶模組)’俾使㈣等柱狀圖樣205會近乎平行於該 光源150,並且被排列成在區域A至N中每一者裡面會有 !·互定的間dl(也就是,在每—個區域巾,相雜狀透鏡之 間的間隔為相同且恒定,但是不同區域的間隔則不同)。於 此=施例中,該等柱狀透鏡的寬度d2和高度d3為相同且 匣疋,而且至少部分該等柱狀透鏡彼此不會相交(舉例來 說’在靠近區域A的區域中)。於圖6A*6B中所示的實施 例中邛刀δ亥專柱狀透鏡的拱形表面可能相互重疊或交會 (舉例來說,在靠近區域1^的區域中)。 表1顯示光導向膜180的初始設計維度。如表丨中所 示,變數d2、d3、以及R會保持恒定,而不同區域 中的dl則不同。從此光導向膜設計處輸出的光的均勻性並 不理想;舉例來說,依據業界採用的「13點」測試,亮度 分佈均勻性僅約30%。 & 表1 區域 A B C D E F G H I J K L M XT ά1+ά2(μηι) 503 490 469 441 406 324 287 240 208 178 151 125 117 1ΓΚ ϋ2(μιη) 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69 5 AO < ά3(μιη) 3 3 3 3 3 3 3 3 3 3 3 3 3 oy.j R(pm) 200 200 200 200 200 200 200 200 200 200 200 200 200 200 21 201207452S 20 201207452 The light source 150 is adjacent to one side of the light guiding film 18A. In the present embodiment, the light, to the bottom surface of the film (10), has fourteen regions from the region A to the region *N, for example, their width is about 1 Qem. A plurality of cylindrical lenses 0-like 205 are disposed on the bottom surface of the light guiding moon (10) just (not facing the liquid crystal module). The columnar pattern 205 such as (4) is nearly parallel to the light source 150 and arranged. In each of the areas A to N, there will be a mutual dl (that is, in each area, the interval between the phase lenses is the same and constant, but the interval between the different areas is different). In this embodiment, the widths d2 and heights d3 of the lenticular lenses are the same and 匣疋, and at least some of the lenticular lenses do not intersect each other (for example, in the region near the region A). In the embodiment shown in Figs. 6A*6B, the arcuate surfaces of the δ δ 专 lenticular lens may overlap or overlap each other (for example, in a region close to the region 1). Table 1 shows the initial design dimensions of the light directing film 180. As shown in the table, the variables d2, d3, and R will remain constant, while the dl in different regions will be different. The uniformity of light output from this light directing film design is not ideal; for example, according to the industry's "13 point" test, the uniformity of brightness distribution is only about 30%. & Table 1 Area ABCDEFGHIJKLM XT ά1+ά2(μηι) 503 490 469 441 406 324 287 240 208 178 151 125 117 1ΓΚ ϋ2(μιη) 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69 5 AO < ά3( Μιη) 3 3 3 3 3 3 3 3 3 3 3 3 3 oy.j R(pm) 200 200 200 200 200 200 200 200 200 200 200 200 200 200 21 201207452

本實驗已經發現,提高曲率半徑(R)(d2值也會對應於R 提高而提高),並且在全部14個事先定義區域A至N中讓 R值保持恆定,能夠從内反射造成的光擴散中於該光導向膜 中達到較佳的亮度均勻性(舉例來說,75%)。藉由進一步固 定該等柱狀透鏡的(dl+d2)數值以及深度d3,該光導向膜的 設計會進一步最佳化,亮度均勻性會從30%提高至40%。 為達更多自由度的設計,可以調整該等變數的組合。 藉由固定(dl+d2)和R數值,參數d2和d3會進一步做調整, 而且會達到40%至68%的亮度均勻性。為最佳化dl+d2數 值以及d3數值,可以發展出某種關係:藉由使用此最佳化 關係’可以進一步提高亮度均勻性(舉例來說,超過75%)。 藉由使用上述的光導向膜結構,亮度會更均勻地分佈 在LCD顯示區。再者,回頭參考圖2,一反射部件(例如, 反射薄片22)會藉由纏繞或包圍該光導向膜18而被併入該 背光模組14之中。反射薄片22有助於收集從該光導向膜 18處逃離的光並將此光反射回到該光導向膜18之中。藉此 光再循環功能,能夠達到進一步最佳化該背光模組14之亮 度的目的。 ' & 根據本發明,光導向膜(舉例來說,圖2中的18)包括一 結構柱狀光調整表面,當套用至LCD時,其會改善該光導 向膜之平面的光輸出分佈。併入根據本發明之新穎光學基 板的新穎LCD可部署在電子裝置中。 土 根據本發明的光學基板可以使用在要部署於顯示器 例來說,電視、筆記型電腦、螢幕、可攜式裂置⑽如,蜂This experiment has found that increasing the radius of curvature (R) (the value of d2 will also increase corresponding to the increase of R), and keeping the value of R constant in all 14 pre-defined areas A to N, the light diffusion caused by internal reflection A preferred brightness uniformity (for example, 75%) is achieved in the light directing film. By further fixing the (dl + d2) value and the depth d3 of the lenticular lenses, the design of the light directing film is further optimized, and the brightness uniformity is increased from 30% to 40%. For designs with more degrees of freedom, the combination of these variables can be adjusted. By fixing the (dl + d2) and R values, the parameters d2 and d3 are further adjusted and achieve a brightness uniformity of 40% to 68%. To optimize the dl+d2 value and the d3 value, a relationship can be developed: by using this optimization relationship, the brightness uniformity can be further improved (for example, more than 75%). By using the light guiding film structure described above, the brightness is more evenly distributed in the LCD display area. Further, referring back to Fig. 2, a reflective member (e.g., reflective sheet 22) is incorporated into the backlight module 14 by winding or surrounding the light directing film 18. The reflective sheet 22 helps collect light that has escaped from the light directing film 18 and reflects this light back into the light directing film 18. Thereby, the light recycling function can further achieve the purpose of further optimizing the brightness of the backlight module 14. & In accordance with the present invention, a light directing film (e.g., 18 in Fig. 2) includes a structured cylindrical light modulating surface that, when applied to an LCD, improves the light output distribution of the light guiding film plane. A novel LCD incorporating a novel optical substrate in accordance with the present invention can be deployed in an electronic device. The optical substrate according to the present invention can be used for deployment in a display, for example, a television, a notebook computer, a screen, a portable split (10), such as a bee.

S 22 201207452 巢式電話、數位相機、PDA)、以及類似物)中的LCD,以便 讓該等顯示器更亮。 如圖8中所示,一電子裝置110(其可能係下面其中一 f : PDA、行動電話、電視、顯示螢幕、可攜式電腦、冰 箱、...等)包括根據本發明一實施例的新穎背光1^1) 1〇。該 LCD 10包括上述新穎的光導向膜。電子裝置ιι〇可能在一 ^宜的外殼裡面進一步包含:一使用者輸入介面,例如, 按鍵和按鈕(由方塊116概略表示);影像資料控制電子元 件,例如,用於管理流到LCD 10之影像資料的控制器(由 ,塊112概略表示);電子裝置11〇特有的電子元件,其可 能包含處理器、A/D轉換器、記憶裝置、資料儲存裝置、... 等(由方塊118概略表示);以及一電源,例如,電源供應器、 電池、或;I:外部電源插座(由方塊114概略表示),該等植件 皆本技術中所熟知。 、 本文雖舰合LCD|絲制本發明;獨,該光導 向膜仍可翻於其它制。本發日⑽光導形式可能為具有 柱狀結構表面之撓性或·_、薄片、平板、以及類似 物,除此之外,亦可能具有逆稜鏡結構表面。 “Λ技術的人士便會明白,可以對本發明已揭結構 進仃各種修正和_,其並不會麟本發明的範 ^精神。錢前面_,本發明較涵蓋落錢面申請專 ,圍及其敎範_料裡_各種修 【圖式簡單說明】 圖1為—先術背域_結構示意圖。 23 201207452 圖2為-LCD的結構示意圖,其併人根據本發明一實 施例的光導向板。 圖3為比較-棱鏡和一柱狀透鏡之表面輪廊的斷面圖。 圖4為根據本發明另一實施例的光導向膜透視圖。 圖5為根據本發明又一實施例的光導向膜透視圖。 圖6A為根據本發明進一步實施例的光導向膜仰視圖; 而圖6B為圖6A中的光導向膜的透視圖。 圖7為一用以解釋結構性參數的光導向膜斷面圖。 圖8為根據本發明一實施例的電子裝置,其包括一併 入本發明之新穎光導向膜的LCD面板。 【主要元件符號說明】LCDs in S 22 201207452 nested phones, digital cameras, PDAs, and the like) to make these displays brighter. As shown in FIG. 8, an electronic device 110 (which may be one of the following f: PDA, mobile phone, television, display screen, portable computer, refrigerator, etc.) includes an embodiment in accordance with the present invention. Novel backlight 1^1) 1〇. The LCD 10 includes the novel light directing film described above. The electronic device ιι〇 may further include a user input interface, such as buttons and buttons (shown generally by block 116); image data control electronics, for example, for managing the flow to the LCD 10. The controller of the image data (represented generally by block 112); the electronic device 11 is unique to the electronic component, which may include a processor, an A/D converter, a memory device, a data storage device, etc. (by block 118 And a power source, such as a power supply, a battery, or; I: an external power outlet (shown generally by block 114), which are well known in the art. In the present invention, although the invention is based on LCD, the invention can be turned over to other systems. The light guide form of the present day (10) may be a flexible or _, a sheet, a flat plate, and the like having a columnar structure surface, and may have a reverse 稜鏡 structure surface. "The person who knows the technology will understand that various modifications and improvements can be made to the disclosed structure of the present invention, and it will not be the spirit of the present invention. In front of the money, the present invention covers the application of the money face.敎 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Figure 3 is a cross-sectional view of a surface turret of a comparative-prism and a cylindrical lens. Figure 4 is a perspective view of a light guiding film according to another embodiment of the present invention. Figure 6A is a bottom view of a light directing film in accordance with a further embodiment of the present invention; and Figure 6B is a perspective view of the light directing film of Figure 6A. Figure 7 is a light directing for explaining structural parameters. Fig. 8 is an electronic device including an LCD panel incorporating the novel light guiding film of the present invention, in accordance with an embodiment of the present invention.

S 1 反射膜 2 V型切槽光導向板 3 逆稜鏡片 4 擴散膜 5 線光源/反射器 10 背光LCD 12 液晶顯不模組 14 背光模組 16 線光源 17 反射器 18 光導向膜 19 基板層 20 光調整結構 24 201207452 21 柱狀透鏡 22 反射薄片 24 溝槽 26 微稜鏡基板 27 擴散板 28 微棱鏡基板 40 柱狀表面 41 柱狀透鏡 42 基底膜 44 棱鏡表面 45 棱體 46 尖峰 47 凹谷 48 光導向膜 49 基板層 50 柱狀表面 51 柱狀透鏡 52 基底膜 54 棱鏡表面 55 稜體 58 光導向膜 59 基板層 110 電子裝置 112 影像資料控制電子元件 25 201207452 114 電源 116 使用者輸入介面 118 電子元件 150 光源 180 光導向膜 190 底表面 205 柱狀透鏡圖樣 510 基板層 520 柱狀透鏡 522 圓柱 524 凸彎曲表面 s 26S 1 Reflective film 2 V-grooved light guide plate 3 Reverse film 4 Diffusion film 5 Line source / reflector 10 Backlit LCD 12 LCD display module 14 Backlight module 16 Line source 17 Reflector 18 Light guide film 19 Substrate Layer 20 Light-adjusting structure 24 201207452 21 Cylindrical lens 22 Reflective sheet 24 Groove 26 Micro-tray substrate 27 Diffuser plate 28 Microprism substrate 40 Columnar surface 41 Cylindrical lens 42 Base film 44 Prism surface 45 Prism 46 Spike 47 Concave Valley 48 light guiding film 49 substrate layer 50 columnar surface 51 cylindrical lens 52 base film 54 prism surface 55 prism 58 light guiding film 59 substrate layer 110 electronic device 112 image data control electronic component 25 201207452 114 power supply 116 user input interface 118 Electronic component 150 Light source 180 Light guiding film 190 Bottom surface 205 Cylindrical lens pattern 510 Substrate layer 520 Cylindrical lens 522 Cylindrical 524 Convex curved surface s 26

Claims (1)

201207452 七、申凊專利範圍: 1. 一種光導,包括一主體,其包括:主要輸出經由該主體 傳播的光的一第一主表面;和該第一主表面反向的一第 一主表面,其會被建構成具有一類柱狀圖樣陣列;以及 一光輸入表面,其係延伸在該第一主表面的一邊緣和該 第二主表面的一邊緣之間。 2·如申%專利朗第1項之光導,其中該主體為-膜的形 式。 3·如申凊專利範圍第2項之光導,其中該膜為可撓性的。 4. 如申凊專利範圍第3項之光導,其中該膜包括一基板層, 用以支撐定義該等類柱狀圖樣的柱狀結構之一獨立層。 5. ^申請專利範圍第4項之光導,其中練狀結構包括由 k向平行排列之多個縱向柱狀透鏡組成的一陣列。 6. 如申請專利$111^ 5項之料,其中該等柱狀透鏡有相 同的向度。 7·如申請專利範,5項之光導,其中該等柱狀透鏡有相 同的寬度。 &如圍第5項之光導,其中至少部分該等柱狀 透鏡在相鄰的柱狀透鏡之間有相_間隔。 9.如申專利圍第5項之光導,其中至少部分該等柱狀 透鏡在相鄰的柱狀透鏡之間有不同的間隔。 1〇.如申請專利範圍第5項之光導,其中該等柱狀透鏡具有 延伸自該主體的一凸表面。 U.如申請專利範圍第H)項之光導,其中該凸表面實質上符 27 201207452 合於一柱形表面的一部分。 12.如申請專利範m第5項之料,其中該第二主表面包含 複數個區域’每-者皆由-群柱狀透鏡來定義,且盆中 每-群t的減錢配置奸—彳目轉巾陳狀透鏡配 置不同。 η.如申料利額第丨2項之料,其巾料複數個區域會 從該主體中相鄰於該光輸人表面的—第—邊緣開展至該 主體的-第二反向邊緣,料中該料裡面相鄰柱狀透 鏡之間的間隔會從社體的第—邊緣逐漸_至該第二 邊緣。 Μ.如申請專利顧第5項之光導,其中該第__主表面包括 多個微結構。 鏡 15.如申請專利範圍第Μ項之光導,其中該微結構包括稜 結構。 I6·—種背光模組,其包括: 如申請專利範圍第1項的光導;以及 -光源’其被設置在购於該光導的該光輸入表面 處0 Π.—種顯示裝置,其包括: 如申睛專利範圍第16項的背光模組;以及 光5周變裝置,用以接收與調變從該光導之該第一 f面發ilj而要根據—影像資料被該光調賴組輸出的 光。 18.如申請專利範圍第17項的顯示I置,其中該光調變模組 S 28 201207452 包括一平板光調變模組。 19.如申請專利範圍第18項的顯示|置,其中該光調變模組 包括'一液晶模組。 2〇.—種電子裝置,其包括: 如申請專利範圍第17項的顯示裝置;以及 控制電子元件,用以將影像資料引導至該顯示裝 置,以便根據該影像資料來提供一影像。 21-—種製造光導的方法,其包括: 提供一膜,其具有一第一主表面和與該第一主表面 反向的一第二主表面; 在該第二主表面處提供一類柱狀圖樣陣列;以及 提供一光輸入表面,其係延伸在該第一主表面的一 邊緣和該第二主表面的一邊緣之間。 22.如申請專利範圍第⑴員的方法,其中該膜包括一膜基板 層’用以支狀A該等_狀圖樣關立柱狀結構層, 且其中該方法包括軸雜狀結構層並將狀 黏結至該絲板,贱在該第二主表面處提 θ 圖樣陣列。 w 貝柱狀 29201207452 VII. Claims Patent Range: 1. A light guide comprising a body comprising: a first major surface that primarily outputs light propagating through the body; and a first major surface that is opposite the first major surface, It will be constructed to have an array of columnar patterns; and a light input surface extending between an edge of the first major surface and an edge of the second major surface. 2. The light guide of claim 1 of the patent, wherein the body is in the form of a membrane. 3. The light guide of claim 2, wherein the film is flexible. 4. The light guide of claim 3, wherein the film comprises a substrate layer for supporting a separate layer of columnar structures defining the columnar patterns. 5. ^ The light guide of claim 4, wherein the practice structure comprises an array of a plurality of longitudinal cylindrical lenses arranged in parallel by k. 6. If applying for a patent of $111^5, the lenticular lenses have the same divergence. 7. For example, the patent specification, the five light guides, wherein the lenticular lenses have the same width. & A light guide according to item 5, wherein at least some of the lenticular lenses have a phase-to-space between adjacent lenticular lenses. 9. The light guide of claim 5, wherein at least some of the lenticular lenses have different spacing between adjacent lenticular lenses. The light guide of claim 5, wherein the lenticular lens has a convex surface extending from the body. U. The light guide of claim H), wherein the convex surface substantially conforms to a portion of a cylindrical surface 27 201207452. 12. The material of claim 5, wherein the second major surface comprises a plurality of regions, each of which is defined by a group of cylindrical lenses, and each of the groups of the basins is reduced in money. The eye-catching tape-like lens configuration is different. η. For the material of item 2 of the claim, the plurality of areas of the towel are carried out from the first edge of the body adjacent to the surface of the light input to the second reverse edge of the body. The spacing between adjacent lenticular lenses in the material will gradually lag from the first edge of the body to the second edge.如. The light guide of claim 5, wherein the first major surface comprises a plurality of microstructures. Mirror 15. A light guide according to the scope of the patent application, wherein the microstructure comprises an edge structure. I6. A backlight module comprising: a light guide according to claim 1; and a light source 'which is disposed at the light input surface of the light guide. The display device comprises: For example, the backlight module of claim 16; and the light 5-cycle device for receiving and modulating the first f-plane from the light guide to be outputted according to the image data by the light-receiving group Light. 18. The display device of claim 17, wherein the light modulation module S 28 201207452 comprises a flat panel light modulation module. 19. The display device of claim 18, wherein the optical modulation module comprises a 'liquid crystal module. An electronic device comprising: a display device as claimed in claim 17; and control electronics for directing image data to the display device to provide an image based on the image data. 21 - A method of making a light guide, comprising: providing a film having a first major surface and a second major surface opposite the first major surface; providing a columnar shape at the second major surface An array of patterns; and a light input surface extending between an edge of the first major surface and an edge of the second major surface. 22. The method of claim 1, wherein the film comprises a film substrate layer 'for the shape of the A-like pattern to close the columnar structure layer, and wherein the method comprises a shaft-like structure layer and Bonded to the wire plate, the 贱 pattern array is lifted at the second major surface. w shell column 29
TW100119806A 2010-06-07 2011-06-07 Light guide film TWI485448B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35233910P 2010-06-07 2010-06-07
US13/073,859 US8638408B2 (en) 2010-03-26 2011-03-28 Optical substrates having light collimating and diffusion structures

Publications (2)

Publication Number Publication Date
TW201207452A true TW201207452A (en) 2012-02-16
TWI485448B TWI485448B (en) 2015-05-21

Family

ID=45501704

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119806A TWI485448B (en) 2010-06-07 2011-06-07 Light guide film

Country Status (2)

Country Link
KR (1) KR101671036B1 (en)
TW (1) TWI485448B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491835B (en) * 2012-04-13 2015-07-11 Radiant Opto Electronics Corp Lighting fixture and lighting apparatus
TWI510743B (en) * 2012-04-13 2015-12-01 Radiant Opto Electronics Corp Lighting fixture and lighting apparatus
US9341337B2 (en) 2014-01-08 2016-05-17 Coretronic Corporation Vehicle headlight device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866550B (en) * 2012-09-24 2015-03-25 北京京东方光电科技有限公司 Array substrate, display panel and preparation method thereof
KR102047232B1 (en) * 2012-11-26 2019-11-21 엘지디스플레이 주식회사 Diffusing light guide film, backlight unit, and liquid crystal display device having thereof
KR102243943B1 (en) * 2014-09-17 2021-04-23 엘지디스플레이 주식회사 Backlight Unit and Liquid Crystal Display Device having the same
US11448814B2 (en) * 2018-12-20 2022-09-20 3M Innovative Properties Company Light control film with turning film and lenticular diffuser for view enhancement in the horizontal plane
CN116736415A (en) * 2020-09-21 2023-09-12 郭生文 Optical waveguide lens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070279935A1 (en) * 2006-05-31 2007-12-06 3M Innovative Properties Company Flexible light guide
WO2008045681A1 (en) 2006-10-06 2008-04-17 3M Innovative Properties Company Backlight modules for autostereoscopic 3d display devices and scanning backlights for lcd devices
TWI351562B (en) * 2006-10-13 2011-11-01 Chimei Innolux Corp Backlight module, liquid crystal display apparatus
TWI322281B (en) * 2007-04-04 2010-03-21 Eternal Chemical Co Ltd Thin and flexible light guide element
US20080285304A1 (en) * 2007-05-18 2008-11-20 Rankin Jr Charles M Light extraction film system
JP5279015B2 (en) 2008-11-20 2013-09-04 旭化成ケミカルズ株式会社 Light guide plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491835B (en) * 2012-04-13 2015-07-11 Radiant Opto Electronics Corp Lighting fixture and lighting apparatus
TWI510743B (en) * 2012-04-13 2015-12-01 Radiant Opto Electronics Corp Lighting fixture and lighting apparatus
US9341337B2 (en) 2014-01-08 2016-05-17 Coretronic Corporation Vehicle headlight device

Also Published As

Publication number Publication date
TWI485448B (en) 2015-05-21
KR20110134297A (en) 2011-12-14
KR101671036B1 (en) 2016-10-31

Similar Documents

Publication Publication Date Title
US9261638B2 (en) Light guide film
TWI485448B (en) Light guide film
TWI378270B (en) Diffuser prism sheet comprising light diffuser in the valley of prism and lcd back light unit thereby
KR20120088121A (en) Backlight assembly and display apparatus having the same
US20090316433A1 (en) Light guide plate and backlight unit having the same
US20140367873A1 (en) Optical substrates having light collimating and diffusion structures
US20110001901A1 (en) Dual lightguide
US20060103777A1 (en) Optical film having a structured surface with rectangular based prisms
US8899768B2 (en) Luminance enhancement film having a substrate incorporating dispersed particles for diffusion
JP2009539146A (en) Flexible optical waveguide
KR20110108316A (en) Optical substrates having light collimating and diffusion structures
WO2003098100A1 (en) Planar light source and light guide for use therein
JP5071675B2 (en) Illumination device and display device
US20140104871A1 (en) Light management film
US7946747B2 (en) Backlight unit
US7726827B2 (en) Prism sheet and backlight module using the same
US8827532B2 (en) Light guides
US7753565B2 (en) Prism sheet and backlight module the same
US20120140513A1 (en) Light guide plate, light guide unit, lighting device, and display device
JP5493312B2 (en) Surface light emitting device and image display device
US10725330B2 (en) Optical substrates having light collimating and diffusion structures
TW201939080A (en) Display device
US20140375929A1 (en) Light management film
JP2009176437A (en) Light source unit, backlight unit, and display
US7845810B2 (en) Prism sheet and liquid crystal display device using the same