201207087 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種螢光物,特別是指一種利用混色 產生白光的發光二極體之螢光物。 【先前技術】 自從尚功率與南受度LED成功發展以來,白光發光二 極體(Light Emitting Diode,LED)已被公認為21世紀最具 潛力之環保照明光源。而目前市面上常見的白光發光二極 體’主要是以螢光材料進行光色轉變,具有成本低、製程 簡易等優勢。 參閱圖1,以一般發光二極體單元1為例,主要包含一 基座11、黏固在該基座11上的一發光二極體12、與該發光 一極體12電連接的一對導腳13,及覆蓋該發光二極體 且含有螢光粉的一黏膠層14。藉此,利用互補原理,以該 發光二極體12發出波長介於420nm〜490nm的藍光,激發 該黏膠層14内的黃色螢光粉,就可以發出白光。 然而,以藍光的發光二極體搭配Y3Al5〇i2 : Ce3+黃色螢 光粉(YAG)獲得白光的方式,或搭配Tb3Ai5〇u : Ce3+黃 色蟹光粉(TAG)獲得白光的方式,分別為曰本曰亞公司的 專利(WO 98/〇5〇78)、及 0sram 公司的專利(w〇 98八2757), 必義交權利金,以致於價錢居高不下,且前述發光二極 體単7L屬二波長型白光(藍色激發光與黃色螢光混合),在演 色性及色溫的顯示方面,反而不及三波長型白光。 因此,為了改善前述缺失,中華民國專利第1263360號 201207087 案’主要是以(Mbx-yEuxRyhMgJSiOdmCln之全新螢光物所 產生的色光,與藍光發光二極體混色產生白光。惟,由於 C1是含有劇毒的元素,在使用上及製程上有安全性的疑慮 ’而不符合使用需求》 【發明内容】 因此’本發明之目的,即在提供一種可以提升使用安 全性的發光二極體之螢光物。 於是’本發明發光二極體之螢光物,用於產生色光, 與發光二極體的光源混色形成白光,該螢光物至少包含式 ⑴之化合物: (Mi.x.yEuxRy)8Mg(Si〇4)mBr2...............⑴ 其中,Μ材料選自於πΑ族元素、财族元素及此等之 一組合,R材料選自於鑭系元素。 本發明的功效是利用利用Eu元素的穩定性,及扮元 素具有助熔效果、熔點低且毒性較小等特性,提升白光二 極體發光時的穩定性 '發光效率,且有助於簡化製程,及 提升使用安全性。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之—個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖2 ’本發明之螢光一 笨尤物2的一車又佳貫施例用於產生 色光,與一發光二極體3的出 的先源k色形成白光,該螢光物2 至少包含下列式(I)之化八铷 . ’ σ物’或包含下列式(i)、(n)、(m) 201207087 之化合物。 式⑴之化合物·· (Mi.x.yEuxRy)8Mg(Si04)mBr2...............(I) 式(Π)之化合物: (Mi.x.yEuxRy)s........................... ( Π ) 式(HI)之化合物: (Ca丨-x_ySr x Bay)5(P〇4)3Br : Eu、Gd......(Π) 鲁 其中,Μ材料為Π Α族元素,選自於下列所構成之群組 :鈣、锶、鎂、鋅、鋁、鎵、銦及此等之一組合^ R材料為 鑭系元素,選自於下列所構成之群組:銖、鏑、銪、猛、 知及此等之一組合。且〇<χ$〇 8,而〇Sy$2.〇, 1.0$m$6.0,0.1 刍 η$3.0。 以下即針對本發明之螢光物2並結合實施例說明如后 1、 依化學計量比分別取5·〇克之碳酸鈣[CaC〇3]、丨83 _ 克之二氧化矽[Si〇2]、0.5860克之氧化銪[Eu2〇3]、〇,4i4i克 之氧化鏑(Dy2Ch)與1.1185克之氧化鎂[Mg〇],將所秤取之 化合物以研磨方式均勻混合,經繞結、還原後,再加入適 置HBr ’可以形成產生綠光的化合物Ca7 8]v[g(Si04)4Br2 : Eu〇.丨2Dy0.〇8。參閱圖3、圖4可以發現,包含化合物 Ca7.sMg(Si〇4)4Br2: Euo.nDyo.os的螢光物,可以發出波長約 508.2nm且最高強度約220mcd的色光。 2、 依化學計量比分別取5.〇克之碳酸錕[SrC03]、 201207087 0.9970克之碳酸鈣[CaC〇3 ]、3.29克之二氧化矽[Si〇2]、 1.0515克之氧化銪[Eu203]與1.145克之氧化錳(Μπ2〇3)、 2.007克之氧化鎂[MgO],將所秤取之化合物以研磨方式均 勻混合’經繞結、還原後,再加入適量HBr,可以形成產生 焭黃光的化合物(Sr7_48Ca〇.2 )Mg(Si04)4 Br2: Eu〇.丨2Mn〇.2。參 閱圖5、圖6可以發現,包含化合物(sr748Ca0.2 )Mg(Si04)4 Br2 : Eu0.12Mn0.2的螢光物,可以發出波長約563 2nm且最 局強度約160mcd的色光。 3、 依化學計量比分別取0.8059克之碳酸鈣[CaC〇3]、 5_〇克之碳酸鋰[SrC03]、3.6945克之硫化鈉[Na2S]、1.6668 克之氧化銪[Ειΐ2〇3]與0.3812克之氧化釤(Sm2〇3),將所科取 之化合物以研磨方式均勻混合,經繞結、還原後,可以形 成產生紅光的化合物(Sr〇.78Ca〇.i7)S : EuojMno.ow。參閱圖7 、圖8可以發現’包含化合物(Sr〇.78Ca〇.17)S : EuojMno.w的 螢光物,可以發出波長約616.2nm且最高強度約i4〇mcd的 色光。 4、 依化學計量比分別取5.0克之碳酸锶[SrC〇3]、 0.3575克之氧化銪[Eu2〇3]與0.3683克之氧化亂(Gci2〇3),將 所秤取之化合物以研磨方式均勻混合,經繞結、還原後, 再加入適量HBr及2_31克之構酸[HJO4],可以形成產生藍 光的化合物 Sr4.7(P〇4)3Br : Eu〇.15Gd〇.15。參閱圖 9、圖 1〇 可 以發現’包含化合物Si*4.7(P〇4)3Br : Euo.^Gdo 15的螢光物, 可以發出波長約449.4nm且最高強度約240mcd的色光。 依據前述’該螢光物2可以選用不同的化合物,及改變 201207087 化合物比例’發出綠光,或亮黃光、或紅光、或藍光。 參閱圖2、圖11,以該發光二極體3發出波長介於 440nm〜490nm的藍光為例,可以選擇綠光螢光物2與亮黃 光螢光物2產生與藍光混色的色光,其中,螢光物2的比 例為:20%之綠光化合物 Ca7.8Mg(Si04)4Br2: EU。·uDy().。8搭 配 80。/。之亮黃光化合物(Sr? 48Ca〇 2 )Mg(Si〇4)4 Br2 : Euo.nMno.2。藉此,該發光二極體3可以發出波長455nm的 藍色激發光,而綠光化合物可以被激發出51〇nm〜525nm的 綠色螢光,亮黃光化合物可以被激發出56〇nm〜59〇nm的亮 黃螢光’在藍色激發光、綠色螢光以及亮黃螢光的混色下 ,形成三波長型且具高演色性的白光。 參閱圖2、圖12,以該發光二極體3發出波長介於 250nm〜440nm的紫光為例,可以選擇綠光化合物 Ca7.sMg(Si〇4)4Br2 : EumDyo』8搭配亮黃光化合物 (Sr7.48Ca〇.2 )Mg(Si04)4 Br2 : EU(M2Mn〇.2、紅光化合物 (Sr0.78Ca〇.17)S : EuuMno.m,及藍光化合物 Sr47(p〇4)3Br : EuojGdo·]5。藉此,該發光二極體3可以發出波長385nm 的紫色激發光,而綠光化合物可以被激發出5〇82nm的綠 色勞光,9C黃光化合物可以被激發出564nm的亮黃螢光, 遂紅光化合物可以被激發出6156nm的紅色螢光,藍光化 合物可以被激發出450.2nm的藍色螢光,在藍色激發光、 綠色螢光、亮黃螢光、紅色螢光,以及藍色螢光的混色下 ,形成四波長型且具南演色性的白光。 據上所述可知,本發明之發光二極體之螢光物具有下 201207087 列優點及功效: 1、 本發明屬矽酸鹽之螢光物,耐水性比先前技術的鋁 酸鹽佳,且新矽酸鹽營光物採用Ca、Sr、Ba等元素為基本 材料,比重較低(本發明的比重約3 458g,YAG & TAG螢光 粉比重約4.33g),所以,該螢光物2在於封裝時更不易沉降 ,月b夠提升封裝效果,重要的是,本發明能夠利用Eu元素 的穩疋性,及Br元素具有助熔效果、熔點低且毒性較小等 特性,提升白光二極體發光時的穩定性、發光效率,且有 助於簡化製程,及提升使用安全性。 2、 本發明以Eu元素為發光體,會比先前技術中的Ce 元素更穩定,而不易衰退,且在還原過程中,Eu3+離子會還 原成Eu2+,進而能夠提升整體的發光亮度,及透光性。 3、 本發明的螢光物2能夠被波長25〇nm〜485nm的光 源激發,iUb,適用於紫光及藍&,有別於先前技術中只 吸收小區段波長的螢光物’且由於可接受的激發㈣如叫 波長寬,放射(emission)波長穩定,所以,能夠將該發光二 極體2的能量全部轉換,進而能夠提升發光效率,且封裝 後色度穩定。 准以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 I巳圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1疋一剖視圖,說明一般的發光二極體單元; 201207087 圖2是一剖視圖,說明本 +發明一發光二極體之螢光物 的一較佳實施例;201207087 VI. Description of the Invention: [Technical Field] The present invention relates to a phosphor, and more particularly to a phosphor of a light-emitting diode that produces white light by color mixing. [Prior Art] Since the successful development of the power and the South Receiver LED, the Light Emitting Diode (LED) has been recognized as the most promising environmentally friendly lighting source in the 21st century. At present, the white light-emitting diodes commonly used in the market are mainly made of fluorescent materials for light color conversion, and have the advantages of low cost and simple process. Referring to FIG. 1 , a general LED unit 1 is taken as an example, and mainly includes a susceptor 11 , a light-emitting diode 12 adhered to the susceptor 11 , and a pair electrically connected to the illuminating body 12 . The lead pin 13 and an adhesive layer 14 covering the light emitting diode and containing the phosphor powder. Thereby, by using the complementary principle, the light-emitting diode 12 emits blue light having a wavelength of 420 nm to 490 nm, and the yellow phosphor powder in the adhesive layer 14 is excited to emit white light. However, the method of obtaining white light by using blue light emitting diode with Y3Al5〇i2 : Ce3+ yellow fluorescent powder (YAG), or using Tb3Ai5〇u : Ce3+ yellow crab light powder (TAG) to obtain white light, respectively, is a copy The company's patent (WO 98/〇5〇78) and the 0sram company's patent (w〇98 八 2757), must pay the right, so that the price remains high, and the above-mentioned light-emitting diode 単7L The two-wavelength white light (mixed with blue excitation light and yellow fluorescent light) is in contrast to the three-wavelength white light in terms of color rendering and color temperature display. Therefore, in order to improve the aforementioned deficiency, the Republic of China Patent No. 1263360 No. 201207087 is mainly based on the color light produced by the new fluorescent material of Mbx-yEuxRyhMgJSiOdmCln, which is mixed with the blue light emitting diode to produce white light. However, since C1 is highly toxic. The element has a safety concern in use and process, and does not meet the requirements for use. [Inventive content] Therefore, the object of the present invention is to provide a fluorescent substance capable of improving the safety of use of a light-emitting diode. Thus, the phosphor of the light-emitting diode of the present invention is used to generate color light, and is mixed with a light source of the light-emitting diode to form white light, and the phosphor contains at least a compound of the formula (1): (Mi.x.yEuxRy) 8Mg ( Si〇4)mBr2 (1) wherein the ruthenium material is selected from the group consisting of a π Α group element, a genomic element, and a combination thereof, and the R material is selected from the group consisting of lanthanoid elements. The effect of the present invention is to utilize the stability of the Eu element, and the element has a melting effect, a low melting point and a low toxicity, thereby improving the stability of the white light diode when emitting light, and contributing to simplification. Process, and upgrade The above-mentioned and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments with reference to the drawings. The preferred embodiment of the present invention is for producing a color light, and forming a white light with a pre-source k color of a light-emitting diode 3, the phosphor 2 comprising at least the following formula (I)八之铷. ' σ物' or a compound containing the following formula (i), (n), (m) 201207087. Compound of formula (1) · (Mi.x.yEuxRy) 8Mg(Si04)mBr2.... ...........(I) Compound of formula (Π): (Mi.x.yEuxRy)s..................... ( Π ) Compound of formula (HI): (Ca丨-x_ySr x Bay)5(P〇4)3Br : Eu, Gd......(Π) Lu, the bismuth material is Α Α element, selected from the group consisting of calcium, barium, magnesium, zinc, aluminum, gallium, indium, and a combination thereof. The R material is a lanthanide selected from the group consisting of Group: 铢, 镝, 铕, 猛, know and combine one of these. And 〇<χ$〇8, and 〇Sy$2.〇, 1.0$m$6. 0,0.1 刍η$3.0. The following is a description of the phosphor 2 of the present invention in combination with the examples, and the stoichiometric ratio of 5 g of calcium carbonate [CaC〇3], 丨83 _ gram of bismuth矽[Si〇2], 0.5860g of yttrium oxide [Eu2〇3], yttrium, 4i4i gram of yttrium oxide (Dy2Ch) and 1.1185g of magnesium oxide [Mg〇], the compound weighed is uniformly mixed by grinding, and wound After the formation and reduction, the addition of the appropriate HBr ' can form a green-emitting compound Ca7 8]v[g(Si04)4Br2 : Eu〇.丨2Dy0.〇8. Referring to Figures 3 and 4, it was found that a phosphor comprising the compound Ca7.sMg(Si〇4)4Br2: Euo.nDyo.os can emit a color light having a wavelength of about 508.2 nm and a maximum intensity of about 220 mcd. 2. According to the stoichiometric ratio, take 5 grams of strontium carbonate [SrC03], 201207087 0.9970 grams of calcium carbonate [CaC〇3], 3.29 grams of cerium oxide [Si〇2], 1.0515 grams of cerium oxide [Eu203] and 1.145 grams. Manganese oxide (Μπ2〇3), 2.007 g of magnesium oxide [MgO], the compound weighed is uniformly mixed by grinding. After the ring is formed and reduced, an appropriate amount of HBr is added to form a compound which produces yellow light (Sr7_48Ca). 〇.2) Mg(Si04)4 Br2: Eu〇.丨2Mn〇.2. Referring to Fig. 5 and Fig. 6, it was found that a phosphor containing a compound (sr748Ca0.2)Mg(Si04)4Br2: Eu0.12Mn0.2 can emit a color light having a wavelength of about 563 2 nm and a maximum intensity of about 160 mcd. 3. According to the stoichiometric ratio, 0.8059 g of calcium carbonate [CaC〇3], 5_〇克 of lithium carbonate [SrC03], 3.6945 g of sodium sulfide [Na2S], 1.6668 g of cerium oxide [Ειΐ2〇3] and 0.3812 g of cerium oxide were respectively taken. (Sm2〇3), the compound obtained by the method is uniformly mixed by grinding, and after melting and reduction, a compound (Sr〇.78Ca〇.i7) S: EuojMno.ow which produces red light can be formed. Referring to Fig. 7 and Fig. 8, it can be seen that a phosphor containing a compound (Sr〇.78Ca〇.17)S: EuojMno.w emits a color light having a wavelength of about 616.2 nm and a maximum intensity of about i4 〇mcd. 4. According to the stoichiometric ratio, 5.0 g of strontium carbonate [SrC〇3], 0.3575 g of cerium oxide [Eu2〇3] and 0.3683 g of oxidative disorder (Gci2〇3) were respectively taken, and the weighed compound was uniformly mixed by grinding. After ringing and reduction, an appropriate amount of HBr and 2_31 g of phytic acid [HJO4] are added to form a blue-emitting compound Sr4.7(P〇4)3Br:Eu.15Gd〇.15. Referring to Fig. 9 and Fig. 1, a fluorescent material containing the compound Si*4.7(P〇4)3Br: Euo.^Gdo 15 can be found, and a color light having a wavelength of about 449.4 nm and a maximum intensity of about 240 mcd can be emitted. According to the foregoing, the phosphor 2 may be selected from different compounds, and the ratio of the compound of 201207087 may be changed to emit green light, or bright yellow light, or red light or blue light. Referring to FIG. 2 and FIG. 11 , the blue light emitting body 2 and the bright yellow light fluorescent material 2 are selected to generate color light mixed with blue light, for example, the light emitting diode 3 emits blue light having a wavelength of 440 nm to 490 nm. The ratio of the photophysin 2 was: 20% of the green light compound Ca7.8Mg(Si04)4Br2: EU. uDy(). 8 with 80. /. Bright yellow compound (Sr? 48Ca〇 2 )Mg(Si〇4)4 Br2 : Euo.nMno.2. Thereby, the light-emitting diode 3 can emit blue excitation light with a wavelength of 455 nm, and the green light compound can be excited by green fluorescence of 51 〇 nm to 525 nm, and the bright yellow compound can be excited by 56 〇 nm to 59. The bright yellow fluorescent light of 〇nm' forms a three-wavelength type and high color rendering white light under the mixed color of blue excitation light, green fluorescent light and bright yellow fluorescent light. 2 and 12, the green light compound Ca7. Sr7.48Ca〇.2)Mg(Si04)4 Br2: EU(M2Mn〇.2, red light compound (Sr0.78Ca〇.17)S: EuuMno.m, and blue light compound Sr47(p〇4)3Br : EuojGdo [5] Thereby, the light-emitting diode 3 can emit purple excitation light with a wavelength of 385 nm, and the green light compound can be excited with green light of 5 〇 82 nm, and the 9C yellow light compound can be excited by bright yellow fluorescent light of 564 nm. The ruthenium red compound can be excited by 6156nm red fluorescence, and the blue light compound can be excited by 450.2nm blue fluorescent light, blue excitation light, green fluorescent light, bright yellow fluorescent light, red fluorescent light, and blue fluorescent light. Under the mixed color of light, a white light having a four-wavelength type and a south color rendering property is formed. According to the above, the phosphor of the light-emitting diode of the present invention has the advantages and effects of the next 201207087 column: 1. The present invention belongs to the present invention. Fluorescent material, water resistance is better than prior art aluminate, and neodymium citrate Ca, Sr, Ba and other elements are basic materials, and the specific gravity is low (the specific gravity of the present invention is about 3 458 g, and the YAG & TAG fluoresce powder has a specific gravity of about 4.33 g). Therefore, the phosphor 2 is less likely to settle when packaged. The monthly b is sufficient to enhance the encapsulation effect. What is important is that the present invention can utilize the stability of the Eu element, and the Br element has a melting effect, a low melting point, and low toxicity, thereby improving the stability of the white light emitting body when illuminated. Luminous efficiency, and help to simplify the process, and improve the safety of use. 2. The invention uses Eu element as the illuminant, which is more stable than the Ce element in the prior art, and is not easy to decay, and during the reduction process, Eu3+ ions It will be reduced to Eu2+, which can improve the overall light-emitting brightness and light transmission. 3. The phosphor 2 of the present invention can be excited by a light source having a wavelength of 25 〇 nm to 485 nm, iUb, suitable for violet light and blue & Unlike the prior art, which only absorbs a small segment of wavelength phosphors' and because the acceptable excitation (four) is called a wide wavelength and the emission wavelength is stable, the energy of the light-emitting diode 2 can be completely converted. can It is sufficient to improve the luminous efficiency, and the chromaticity after encapsulation is stable. The above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, the patent application according to the present invention is And the simple equivalent changes and modifications made by the description of the invention are still within the scope of the present invention. [Simplified Schematic] FIG. 1 is a cross-sectional view showing a general LED unit; 201207087 A cross-sectional view showing a preferred embodiment of the phosphor of a light-emitting diode of the present invention;
圖3是該較佳實施例中—绊A J T綠色螢光物的一光譜圖; 圖4是該較佳實施例中嗜纟年Α J Τ 3綠色螢光物的一 X光繞射圖 圖5是該較佳實施例中—亮黃色登光物的—光譜圖; 圖6是該較佳實施例中該亮黃色螢光物的-X光繞射3 is a spectrum diagram of the 绊AJT green phosphor in the preferred embodiment; FIG. 4 is an X-ray diffraction pattern of the leucorrhea J Τ 3 green phosphor in the preferred embodiment. Is a spectral diagram of the bright yellow light-emitting material in the preferred embodiment; Figure 6 is a -X-ray diffraction of the bright yellow phosphor in the preferred embodiment.
圖7是該較佳實施例中—紅色f光物的—光譜圖; 圖8是該較佳實施例中該紅色螢光物的_ X光繞射圖 圖9是該較佳實施例中一藍色螢光物的一光譜圖; 圖10是該較佳實施例中該藍色螢光物的_ χ光繞射圖 , 圖11是該較佳實施例中以綠色螢光,及亮黃螢光與藍 色激發光混色形成白光的一光譜圖;及 圖.12是該較佳實施例中以綠色螢光、亮黃螢光、紅色 螢光,及藍色螢光與藍色激發光混色形成白光的一光譜圖 〇 201207087 【主要元件符號說明】 2 ..........螢光物 3 ..........發光二極體Figure 7 is a spectrum diagram of a red light material in the preferred embodiment; Figure 8 is a ray diffraction diagram of the red phosphor in the preferred embodiment. Figure 9 is a preferred embodiment of the present invention. A spectrogram of the blue phosphor; FIG. 10 is a ray diffraction diagram of the blue phosphor in the preferred embodiment, and FIG. 11 is a green fluorescent and bright yellow fluorescent light in the preferred embodiment. a spectrogram formed by mixing with blue excitation light to form white light; and FIG. 12 is a combination of green fluorescent light, bright yellow fluorescent light, red fluorescent light, and blue fluorescent light and blue excitation light to form white light in the preferred embodiment. A spectrum diagram 〇201207087 [Main component symbol description] 2 .......... luminescent material 3 .......... illuminating diode