TW201206744A - Moving device and controlling method thereof - Google Patents

Moving device and controlling method thereof Download PDF

Info

Publication number
TW201206744A
TW201206744A TW99125994A TW99125994A TW201206744A TW 201206744 A TW201206744 A TW 201206744A TW 99125994 A TW99125994 A TW 99125994A TW 99125994 A TW99125994 A TW 99125994A TW 201206744 A TW201206744 A TW 201206744A
Authority
TW
Taiwan
Prior art keywords
blades
track
blade
propulsion device
state
Prior art date
Application number
TW99125994A
Other languages
Chinese (zh)
Inventor
Ching-Min Shu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99125994A priority Critical patent/TW201206744A/en
Publication of TW201206744A publication Critical patent/TW201206744A/en

Links

Landscapes

  • Blinds (AREA)

Abstract

A moving device and a controlling method thereof. The moving device includes a carrier and a caterpillar band. The caterpillar band is disposed on the carrier. The caterpillar band includes a plurality of paddles, a driving unit and a turning unit. The paddles are disposed around an edge of caterpillar band. The driving unit drives each paddle move around the edge of the caterpillar band. The turning unit turns each paddle such that each paddle transforms between a first status and a second status. When the each paddle is at the first status, the normal line of each paddle is substantially parallel to a moving direction of the paddle. When the each paddle is at the second status, the normal line of each paddle is substantially perpendicular to the moving direction of the paddle.

Description

201206744 六、發明說明: 【發明所屬之技術領域】 ,發明是㈣於-種推進裝置及其控制方法,且特別 ^有關於—種洲履帶進行推進之推進裝置及其控制方 【先前技術】 為因應各種不同的需求,各種推钱 >新。部分的推進裝置適合於陸地辦推陳出 適合於流雜中使用。其中,、==分的推進裝置 展較為緩慢,目前仍揭限於幾種;=用的推進裝置發 舉例純,潛水_帛祕式葉 =力。因此,潛水艇只能朝某一方向 化,使得其行進模式有相當多進方式有太多的變 【發明内容】 本發明係有關於一種推 履帶及其葉片@ μ 4 、 ,、控制方法,其利用 生各種不二 =;式使得推進裝置及其控制方法能夠產 根據本發明之一方面, 包括-载體及-履帶。 &錢置。推進裝置 葉片、驅動單元及轉向單元體上。履帶包括數個 驅動單元係驅動各個葉片屬^者履帶之周緣排列。 用以轉動各個葉片、 之周緣繞行。轉向單元 葉片叹各個葉片在一第—狀態與一第二 201206744 的法線方向與繞行方 的法線方向與繞行方 狀態之間轉換。第-狀態為各個葉片 向實質上平行,第二狀態為各個葉片 向實質上垂直。 根據本發明之另一方面,提出一 法。推進裝置包括一載體 裒置之控制方 履帶包括數個葉片:二二履帶設置於載體上。 法包括以下牛挪葉片/0履7之周緣排列。控制方 動各個葉片,以使各個葉片在一第丁:轉 間轉換。第一狀能為各個笹 〜、 第一狀態之 上μ 線方向與繞行方向實質 上垂I _為各轉片的法線方向與繞行方向實質 下文特舉實施 為讓本發明之上述内容能更明顯易懂 例’並配合所附圖心作詳細說明如下: 【實施方式】 #」下係提出貫施例進行詳細說明’實施例僅用以作為 範例。兄明’亚不會限縮本發明欲保護之範圍。此外,實施 例中之圖式係省略不必要之元件,以清楚顯示本發明之技 第一實施例 月多’、、、第1 2圖’弟1圖缘示第一實施例之推進裝 置1〇〇之不意圖,第2圖繪示第1圖之履帶120之示意圖。 推進裝置100包括—載體110及一履帶120。履帶120設 201206744 如第1圖所示,载體11〇具有一 表面112 衣囬U 1、一 面ill、第三表面113 序連接。 第一表面113及一第四表面114’第一表 第二表面112及第四表面114依201206744 VI. Description of the invention: [Technical field to which the invention pertains] The invention is (d) a propulsion device and a control method thereof, and particularly relates to a propulsion device for propelling a variety of track tracks and a control device thereof [prior art] In response to a variety of different needs, various push money > new. Some of the propulsion units are suitable for land use and are suitable for use in flow. Among them, the == sub-promotion device exhibition is relatively slow, and is still limited to several types; = the propulsion device used for example is pure, diving _ 帛 secret leaf = force. Therefore, the submarine can only be oriented in a certain direction, so that there are too many changes in the traveling mode. The present invention relates to a driving track and its blade @μ 4 , , , and a control method. It utilizes a variety of formulas to enable the propulsion device and its control method to produce an aspect according to one aspect of the invention, including a carrier and a crawler. & money set. Propulsion device Blade, drive unit and steering unit body. The crawler includes a plurality of drive units that drive the peripheral arrangement of the tracks of each blade. It is used to rotate the circumference of each blade. The steering unit blade sighs between the respective blades in a first state and a second 201206744 normal direction and a normal direction of the bypass and a bypass state. The first state is substantially parallel to each blade, and the second state is substantially vertical to each blade. According to another aspect of the invention, a method is proposed. The propulsion device includes a control unit of the carrier. The crawler includes a plurality of blades: the two or two tracks are disposed on the carrier. The method includes the following arrangement of the horns of the horns. Each blade is controlled to cause each blade to switch between a first pass: turn. The first shape can be each 笹~, the μ line direction and the bypass direction are substantially perpendicular to the first state. _ is the normal direction and the bypass direction of each of the rotators, and is specifically described below to make the above contents of the present invention The following is a detailed description of the following examples: [Embodiment] #" The following is a detailed description of the embodiments. The embodiment is only used as an example. Brother Ming's Asia will not limit the scope of the invention to be protected. In addition, the drawings in the embodiments omit unnecessary elements to clearly show the first embodiment of the present invention, and the first embodiment of the propulsion device 1 of the first embodiment Illustrated in FIG. 2 is a schematic view of the crawler belt 120 of FIG. The propulsion device 100 includes a carrier 110 and a crawler belt 120. The crawler belt 120 is set to 201206744. As shown in Fig. 1, the carrier 11 has a surface 112, a garment back U1, a face ill, and a third surface 113. The first surface 113 and the fourth surface 114' are first surface second surface 112 and fourth surface 114

β如第2圖所示’履帶120包括數個葉片(paddle:)12卜 驅動單兀122及轉向單元123(帛2圖僅繪示轉向單元⑵ 之轉換擋板123e ’轉向單元123之其餘元件係繪示於第 3A:3B 11 )。葉片121係沿著履帶12〇之周緣排列,且為 類^划槳之平板狀結構。驅動單幻22係驅動各個葉片⑵ ^著履f 120之周緣繞行。驅動單元122 在本貝知例中,其中之一驅動單元122為動力滾 輪,另一驅動單元122為惰輪。 轉向單70 123係在各個葉片121繞行的過程中,轉動 固葉片121,以使葉片121朝向不同的方向。轉向 \23例如域械式結構、電子式結構或磁性結構,在本實 她例中,係以機械式結構說明如下。 一 ^參照第3A〜3B圖,其繪示轉向單元123與葉片121 ,不意圖。本實施例之轉向單元123包括複數個連桿 ^復3 =簧擔塊挪、複數個轉向擔塊版、複 轉換辦^ d及一轉換擋板1236。請參見第2圖, 圖所-§ \2扣係沿著履帶120之周緣設置。如S 3A、3B 『斤二母個葉片m對應一個連桿12如、一個彈簧擔塊 固轉向擋塊123c及一個復位彈簧123(1。連桿123a 201206744 之一端連接於葉片121,彈簧擋塊123b及轉向擋塊123c 設置於連桿123a上,復位彈簣123d套接於連桿123a上。 彈簣擔塊123b抵靠於復位彈簧】23d之一端,轉向播塊 123c設置於對應轉換擋板12如之位置。 如第3A圖所不,葉片“I尚未繞行到轉換擋板123e 之位置時,復位彈簧123d推抵彈簧擋塊12北,以使葉片 121之=線方向L維持於平行繞行方向c之第一狀態。 如第3B圖所示,在葉片121進入轉換擋板12如後, 轉換擋板123e將推抵轉向擋塊123c,以使葉片121之法 線方向L維持於垂直繞行方向c之第二狀態。 一如帛3A〜3B11所示,本實施例之轉換撞板12知具有 s戶斤以轉換擔板123e係以漸進式推抵轉向擔塊 轉動。也就是說’轉向單元⑵係在各個葉片121 、冗—預定㈣R内,漸進式轉動各葉片12卜 在另-實施例中,轉向單元123亦可以採用電控或盆 他=幾械設計’來瞬間轉動葉片121。舉例來說,轉向單 =3可以設置於履帶120之轉角處,使得各個荦片121 繞行!1轉角處時,轉向單元m瞬間式轉動各個葉片= 5月參照苐2及3A〜3R fi J. ^ 係固本貫施例之轉換擋板123e 鄰近第二表面112之處。因此,在各個葉 各個-—表面112時,轉向單元123冑開始轉動 各個=121,讀繞行到第二表面112之處的各個 121由第一狀態改變為第二狀態。 Μ 之處 ,以 201206744 , , 1 »f I τι / 推動載體110前進。葉片121為第二狀態時(例如位 表面112之處的葉片121),葉片121相對於流體將產生 較小之阻力,以減少載體110前進的阻力。 請參照第4Α〜4Β圖,其綠示第一實施例之推進裝 1〇〇之幾種動作示意圖。第—實_之推進以 了之控财法下,將產生幾種不同的動作。如第Μ _ 不’驅動早7〇 122驅動各個葉片121沿 於第n 〇 11之各個葉片121位 ; 久、,、’使位於第二表面112之各個苹片121 二狀態。此時各個葉片121相斟、…广片121為第 漆士一 ^ ^ 121相對流體在第一表面111處將 產向—左之推力F,而使推進裝置1〇〇向左前進。 如第4Β圖所示,,驅動單元】 2,片叫目對流體在第—表面ln處將產生—向右之 推力而使推進裝i 100向右前進。 設置二中板i23e亦可固定式 夺 表面111之處。在各個葉片121進入第一 進入第4面?=2·!將開始轉動各個葉片121,以 狀態。 目葉片121由第-狀態改變為第二 第一貫施例 示音固,太^ 5圖’其緣不第二實施例之推進褒置200之 — 貫施例之推進裝置2⑽與第—實施例之推進裝 置100不同之處在於第二實施例之轉向單元223包括兩個 轉換擋板(第一轉換擋板223el及第二轉換擋板223el, 轉向單元223之其餘元件繪示於第6A〜6B圖中)。第一轉 換擋板223el以可活動式之方式(可靠近轉向擋塊123c 或遠離第6A〜6B圖之轉向擋塊123c)設置於鄰近第一表 面111之處。第二轉換擋板223e2以可活動之方式(可靠 近轉向擋塊123c或遠離第6A〜6B圖之轉向擋塊123c)設 置於鄰近第二表面112之處,其餘相同之處不再重複敘 述。至於第一轉換檔板223el與第二轉換擋板223e2的活 動方式,例如可以於驅動單元122之旋轉軸的軸向進行移 動運動,使第一轉換擋板223el與第二轉換擋板223e2選 擇性地靠近或遠離轉向擋塊123c。當第一轉換擋板223el 或第二轉換擋板223e2靠近轉向擋塊123c時,便可發揮 作用使得葉片121轉換為第二或第一狀態。 請參照第6A〜6B圖,其繪示轉向單元223之第一轉 換擋板223el與轉向擋塊123c之作動示意圖。如第6A圖 所示,當第一轉換擋板223el於Y軸方向上靠近轉向擋塊 123c,而使轉換檔板223el位於轉向擋塊123c之X軸的 行徑路徑上時,轉向擋塊123c與第一轉換擋板223el將 會接觸而發揮作用,使得葉片121被轉動成如第3B圖所 示之第二狀態。如第6B圖所示,當第一轉換擋板223e2 於Y軸方向上遠離轉向擋塊123c,而使轉換擋板223el不 位於轉向擋塊123c之X軸的行徑路徑上時,轉向擋塊123c 與第一轉換擋板223el將不會接觸而不會發揮作用,使得 葉片121不被轉動,而成為如第3A圖所示之第一狀態。 201206744 所以结在本實關巾,藉㈣向單元223包括兩個轉換擒 板’弟-轉換撞板223el及第二轉換撞板2 ^ 性的發揮作用。 、擇 第二實施例之推進裝置_在以下之控制方法下,將 f生幾種不同的動作。請參照第7A〜7D圖,其繪示第二 貫施例之推進裝置_之㈣動作示意^其中,第 換擒板223el及第二轉換擒板223e2中,繪示斜線者表干 其正在作用中,而未繪示斜線者表示其未作用。 —如第7A圖所示,第一轉換擋板223el正在作用中, 而第二轉換檔板223e2未作用。驅動單元122驅動此些 片121沿著履φ 220之周緣順時針繞行 I轉 動各個葉片12卜以使位於第一…"々广:…轉 災促趴弟表面111之各個葉片121 為第二狀態’並使位於第二表面U2之各個葉請為第 :狀態,此時位於第二表面112處之葉片121相對流體在 第-表面112處將產生一向左之推力?,而使推進裝置2〇〇 向左前進。 如第7Β圖所示,第一轉換擋板223el正在作用中, 而第二轉換擋板223e2未作用。驅動單元122改以逆時針 之繞行方向驅動此些葉片121。轉向單元223轉動各個葉 ^ 121,,以使位於第一表面lu之各個葉片121為第二狀 態,並使位於第二表面112之各個葉片121為第一狀態。 =於第二表面112處之葉片121將在第:表面112處產生 —向右之推力F,而使推進裝置2〇〇向右前進。 々如第7C圖所示,第一轉換擋板223e丨未作用中,而 第一轉換擋板223e2正在作用中。驅動單元122以逆時針 201206744 之繞行方向驅動此些葉片121。轉向單元122轉動各個葉 片121 ’以使位於第一表面lu之各個葉片121為第一狀 態,並使位於第二表面112之各個葉片121為第二狀態。 位於第一表面111處之葉片121將在第一表面U1處產生 一向左之推力F,而使推進裝置200向左前進。 如第7D圖所示,第一轉換擋板223el未作用中,而 第二轉換擋板223e2正在作用中。驅動單元122以順時針 之繞行方向驅動此些葉片121。轉向單元223轉動各個葉 片121,以使位於第一表面U1之各個葉片121為第一狀 態,並使位於第二表面112之各個葉片121為第二狀態。 位於第一表面111處之葉片121將在第一表面lu處產生 一向右之推力F,而使推進裝置2〇〇向右前進。 第三實施例 請參照第8圖,其繪示第三實施例之推進裝置3〇〇之 示意圖,本實施例之推進裝置300與第二實施例之推進裝 置200不同之處在於第三實施例之轉向單元323包括四個 轉換擋板(第一轉換擋板323el、第二轉換擋板323e2、 第二轉換擔板323e3及第四轉換擔板323e4 )。第一轉換擔 板323el以可活動式之方式設置於鄰近第一表面lu之 處。第一轉換擔板323e2以可活動之方式設置於鄰近第二 表面112之處。第三轉換擋板323e3以可活動式之方式設 置於苐二表面113之處。第四轉換擔板323e4以可活動之 方式設置於第四表面114之處。至於第一、第二、第三與 第四轉換擋板323e卜323e2、323e3、323e4的活動方式, 例如可以於驅動單元122之旋轉軸的軸向進行移動運動, 使第一、第二、第三與第四轉換擋板323el、323e2、323e3、 323e4選擇性地靠近或遠離轉向擋塊123c (繪示於第3A 圖)。其餘相同之處不再重複敘述。 其中,本實施例之第一轉換擋板323el與第二轉換擋 板323e2之端點僅延伸至轉角處而略短於第二實施例之第 一轉換擋板223el與第二轉換擋板223e2。 第一轉換擋板323el、第二轉換擋板323e2、第三轉 • 換擋板323e3及第四轉換擋板323e4可以選擇性的發揮作 用。而第三實施例之推進裝置300在以下之控制方法下, 將產生幾種不同的動作。請參照第9A〜9D圖,其繪示第 三實施例之推進裝置300之幾種動作示意圖。其中,第一 轉換擋板323el、第二轉換擋板323e2、第三轉換擋板323e3 及第四轉換擋板323e4中,繪示斜線者表示其正在作用 中,而未繪示斜線者表示其未作用。 如第9A圖所示’第一轉換擋板323el、第三轉換擋 •板323e3、第四轉換擋板323e4正在作用中,而第二轉換 擋板323e2未作用。第9A圖之動作與第7Α〜7β圖類似, 當驅動單兀122驅動此些葉片12ι沿著履帶32〇之周緣順 曰寸針或逆時針繞行時,透過第一轉換擋板323el、第三轉 換擔板323e3、第四轉換擔板323e4的作用而改變葉片121 的狀態,即可使得推進裝置3〇〇向左前進或向右前進。由 於動作與第7A〜7B圖類似,在此不再重複敘述。 如第9B圖所示,第二轉換擋板323以、第三轉換擋 板323e3、第四轉換擔板323e4正在作用巾,而第一轉換 201206744 擋板323el未作用。第9B圖之動作與第7C〜7D圖類似, 當驅動單兀122驅動此些葉片121沿著履帶320之周緣順 時針或逆時針繞行時,透過第二轉換擋板323e2、第三轉 換擋板323e3及第四轉換擋板323e4的作用而改變葉片 121的狀態’即可使得推進裝置3〇〇向左前進或向右前進。 由於動作與第7C〜7D圖類似,在此不再重複敘述。 如第9C圖所示,第一轉換擋板323el及第二轉換擋 板323e2正在作用中,而第三轉換擋板323e3及第四轉換 擋板323e4未作用。驅動單元122驅動此些葉片121沿著 履帶320之周緣逆時針繞行。透過第一轉換擋板323el、 第二轉換擔板323e2的作用使得位於第一表面ill及第二 表面112之各個葉片121為第二狀態,並由於第三轉換擋 板323e3及第四轉換擋板323e4未作用而使位於第三表面 113及第四表面114之各個葉片121為第一狀態。此時推 進裝置300相對流體在第三表面113及第四表面114將會 產生順時針方向的推力F,而使得推進裝置300以履帶320 之中心點為中心順時針翻轉。此種動作方式可以改變推進 裝置300與水平面的角度。 同理,當第9C圖之驅動單元122驅動此些葉片121 沿著履帶320之周緣順時針繞行時,推進裝置300相對流 體在第三表面113及第四表面114將會產生逆時針方向的 推力,而使得推進裝置300以履帶230之中心點為中心逆 時針翻轉。 如第9D圖所示,第一轉換擋板323el、第二轉換擋 板323e2及第四轉換擋板323e4正在作用中,而第三轉換 201206744 擔板323e3未作用。驅動單元122驅動此些葉片121沿著 履帶320之周緣逆時針繞行。透過第一轉換擋板323el、 第二轉換擔板323e2及第四轉換擋板323e4的作用使得位 於第一表面111、第二表面112及第四表面114之各個葉 片121為第二狀態’並由於第三轉換擋板323e3未作用而 使位於第三表面丨丨3之各個葉片121為第一狀態。此時推 進裝置300相對流體在第三表面U3將會產生順時針方向 的推力F ’而使推進裝置3〇〇以履帶23〇之偏心點為中心 鲁順時針翻轉,此偏心點為靠近第四轉換擋板323e4之驅動 單元122的旋轉中心。此種動作方式可以改變推進裝置3〇〇 與水平面的角度。尤其是當推進裝置300沈在水底而以第 一表面111接觸或鄰近水底時,可快速有效地將推進裝置 300抬起離開水底。 第四實施例 請參照第10圖,其繪示第四實施例之推進裝置4〇〇 鲁之示意圖’本實施例之推進裝置400與第二實施例之推進 裝置200不同之處在於第四實施例之推進裝置4〇〇包括二 個履帶(第一履帶420a及第二履帶420b),而第一履帶 420a包括數個第一葉片421a,第二履帶42〇a包括數個第 一葉片421b,其餘相同之處不再重複敘述。 第一履帶420a及第二履帶420b實質上相互平行,且 第一履帶420a之寬度W41及第二履帶420b之寬度W42實 質上相等。第一履帶420a及第二履帶420b可以選擇性地 應用上述第一〜第三實施例之設計。在本實施例中,第一 201206744 I vv jy I r\ 履帶420a及第二履帶420b係以第二實施例之設計為例做 說明。 第-履帶420a及第二履帶伽在繞行方向相同、繞 行速度相同且轉換擋板(未繪示)之控制相同的情況下, 推進3置4 0 0可以貫現前述各種類似的動作。 而除了上述幾種動作以外,第四實施例之推進裝置 400在以下之控制方法下,將產生幾種不同的動作。請參 照第11A〜11D圖,其繪示第四實施例之推進裝置4〇〇之 一種動作示意圖。如第11A〜11β圖所示,此些第一葉片 镛 421a與此第二葉片42ab之繞行方向相同,但此些第一葉 片421a與此些第二葉片421b之繞行速度不同時,推進裝 置400將會相對流體產生方向相同 '大小不同的第一推力 F41及第二推力F42。如第lie圖所示,由於在推進裝置 400產生之第一推力F41小於第二推力F42,所以第—推 力F41之處的移動速度較慢,第二推力ρ42之處的移動速 度幸父快。如第11D圖所示,由於推進裝置4〇〇在第一推力 F41之處及第二推力F42之處的移動速度不同,使得推進_ 裝置400將以大圈圈之方式公轉。 。月參知、第12A〜12D圖,其繒'示第四實施例之推進裝 置400之一種動作示意圖。如第12A〜12β圖所示,此些又 第一葉片421a與此些第二葉片42lb之繞行速度實質上相 同,但此些第一葉片421a與此些第二葉片4211)之繞行方 向相反時,推進裝置400相對流體將會產生方向相反、大 小相同的第一推力F41及第二推力F42。如第12C圖所示, 由於在推進裝置4〇〇產生之第一推力F41與第二推力F42 14 201206744 方向相反’所以第一推力F41處的移動方向與第二推力ρ42 處的移動方向將會相反。如第12D圖所示,由於推進裝置 4〇〇在第一推力F41之處及第二推力F42之處的移動^向 相反且大小相同,使得推進裝置4〇〇將會自轉。As shown in Fig. 2, the crawler belt 120 includes a plurality of blades (paddle: 12), a driving unit 122 and a steering unit 123 (the figure 2 shows only the switching plate 123e of the steering unit (2). The remaining components of the steering unit 123 The figure is shown in 3A: 3B 11). The blades 121 are arranged along the circumference of the crawler belt 12, and are of a flat structure like a paddle. Drive the single magic 22 system to drive each blade (2) ^ around the circumference of the f 120. Drive unit 122 In this example, one of the drive units 122 is a power wheel and the other drive unit 122 is an idler. The steering unit 70 123 rotates the solid blades 121 during the winding of the respective blades 121 so that the blades 121 face in different directions. Turning to \23 such as a field mechanical structure, an electronic structure, or a magnetic structure, in the present example, the mechanical structure is explained as follows. Referring to Figures 3A to 3B, the steering unit 123 and the blade 121 are shown, not intended. The steering unit 123 of this embodiment includes a plurality of links, a complex 3 = a spring load block, a plurality of steering load plate plates, a complex conversion device, and a conversion baffle 1236. Referring to Figure 2, the § \2 buckle is placed along the circumference of the track 120. For example, S 3A, 3B "the two mother blades m correspond to one link 12, such as a spring load block steering block 123c and a return spring 123 (1. One end of the link 123a 201206744 is connected to the blade 121, the spring stop 123b and the steering block 123c are disposed on the connecting rod 123a, and the reset magazine 123d is sleeved on the connecting rod 123a. The magazine block 123b abuts against one end of the return spring 23d, and the turning block 123c is disposed on the corresponding switching plate 12, as shown in Fig. 3A, when the blade "I has not been detoured to the position of the switching flap 123e, the return spring 123d pushes against the spring stopper 12 north, so that the blade direction = line direction L is maintained in parallel. The first state of the bypass direction c. As shown in Fig. 3B, after the blade 121 enters the conversion flapper 12, the switching flapper 123e will push against the steering block 123c to maintain the normal direction L of the vane 121 at The second state of the vertical bypass direction c. As shown in Figures 3A to 3B11, the conversion striker 12 of the present embodiment is known to have a shackle to convert the support plate 123e to progressively push the steering block to rotate. Said that the 'steering unit (2) is in each blade 121, redundant - predetermined (four) R, progressive Turning the blades 12 in another embodiment, the steering unit 123 can also use the electronic control or the potted design to instantaneously rotate the blades 121. For example, the steering single = 3 can be placed at the corner of the track 120 So that each of the cymbals 121 is wound around! At the corner of the corner, the steering unit m instantaneously rotates the respective blades = May reference 苐 2 and 3A to 3R fi J. ^ The conversion flapper 123e of the present embodiment is adjacent to the second At the surface 112. Thus, at each leaf-surface 112, the diverting unit 123A begins to rotate each = 121, and the respective 121 where the read-by-row to the second surface 112 is changed from the first state to the second state. Where, the carrier 110 is advanced by 201206744 , , 1 »f I τι /. When the blade 121 is in the second state (for example, the blade 121 at the bit surface 112), the blade 121 will generate less resistance with respect to the fluid. In order to reduce the resistance of the advancement of the carrier 110. Please refer to the figure 4 to 4, which is a green diagram showing several actions of the propulsion device of the first embodiment. The first implementation of the first implementation is controlled by the money control method. Generate several different actions. For example, Μ _ not 'drive early 7 122 drives each of the vanes 121 along the position of each of the vanes 121 of the nth 11; for a long time, ', the second sheet 121 of the second surface 112 is in two states. At this time, each of the vanes 121 is opposite to each other. The lacquer 1 ^ ^ 121 relative to the fluid will produce a thrust to the left at the first surface 111, and the propulsion device 1 前进 forward to the left. As shown in Fig. 4, the drive unit is 2 The fluid will produce a rightward thrust at the first surface ln to advance the propulsion assembly i 100 to the right. Setting the second midplane i23e can also be used to secure the surface 111. When each of the blades 121 enters the first entry into the fourth face? = 2·! will start to rotate the respective blades 121 to the state. The eye blade 121 is changed from the first state to the second first embodiment to exemplify the sound, and the image is not the second embodiment of the thrust device 200. The propulsion device 2 (10) and the first embodiment of the embodiment The propulsion device 100 differs in that the steering unit 223 of the second embodiment includes two conversion baffles (a first conversion baffle 223el and a second conversion baffle 223el, and the remaining components of the diverting unit 223 are shown in FIGS. 6A-6B In the picture). The first changeover shutter 223el is disposed in a movable manner (near the steering stopper 123c or the steering stopper 123c away from the 6A to 6B drawings) adjacent to the first surface 111. The second switching flapper 223e2 is disposed in a movable manner (reliable near the steering stopper 123c or the steering stopper 123c away from the sixth to sixth panels) to be adjacent to the second surface 112, and the rest will not be repeatedly described. As for the movement manner of the first conversion baffle 223el and the second conversion baffle 223e2, for example, the moving movement of the rotation axis of the driving unit 122 can be performed to make the first conversion baffle 223el and the second conversion baffle 223e2 selectively The ground is close to or away from the steering block 123c. When the first changeover flapper 223el or the second shifting flapper 223e2 approaches the steering block 123c, it can function to cause the vane 121 to be switched to the second or first state. Please refer to FIGS. 6A-6B for a schematic diagram of the operation of the first switching baffle 223el and the steering block 123c of the steering unit 223. As shown in FIG. 6A, when the first switching flap 223el approaches the steering stopper 123c in the Y-axis direction and the shifting plate 223el is positioned on the path of the X-axis of the steering stopper 123c, the steering stopper 123c and The first switching flap 223el will come into contact to function such that the blade 121 is rotated into the second state as shown in Fig. 3B. As shown in FIG. 6B, when the first switching flap 223e2 is away from the steering stopper 123c in the Y-axis direction and the switching flapper 223el is not located on the path of the X-axis of the steering stopper 123c, the steering stopper 123c The first switching plate 223el will not come into contact with each other and will not function, so that the blade 121 is not rotated, and becomes the first state as shown in Fig. 3A. 201206744 Therefore, in the actual closing towel, the (four) to unit 223 includes two conversion boards, the brother-switching plate 223el and the second switching plate. The propulsion device of the second embodiment is selected. In the following control method, f is given several different actions. Please refer to FIG. 7A to FIG. 7D, which illustrate the fourth embodiment of the propulsion device _ (four) action schematic ^ wherein the first slab 223el and the second conversion slab 223e2, the slash is shown to be active The person who does not show the slash indicates that it is not working. - As shown in Fig. 7A, the first switching flap 223el is acting, and the second shifting shutter 223e2 is not acting. The driving unit 122 drives the pieces 121 to rotate the respective blades 12 clockwise around the circumference of the φ 220 to make the respective blades 121 located on the first surface of the surface 111 The two states 'and the respective leaves on the second surface U2 are in the first state, at which time the blades 121 at the second surface 112 will produce a leftward thrust relative to the fluid at the first surface 112. And the propulsion device 2〇〇 is advanced to the left. As shown in Fig. 7, the first switching flap 223el is acting, and the second switching flap 223e2 is not acting. The drive unit 122 drives the vanes 121 in a counterclockwise direction. The steering unit 223 rotates the respective blades 127 such that the respective blades 121 on the first surface lu are in the second state, and the respective blades 121 on the second surface 112 are in the first state. The blade 121 at the second surface 112 will produce a thrust F to the right at the surface: 112, causing the propulsion device 2 to advance to the right. As shown in Fig. 7C, the first switching flap 223e is not in effect, and the first switching flap 223e2 is acting. The drive unit 122 drives the vanes 121 in a bypass direction counterclockwise 201206744. The steering unit 122 rotates the respective vanes 121' such that the respective vanes 121 on the first surface lu are in a first state and the respective vanes 121 on the second surface 112 are in a second state. The blade 121 at the first surface 111 will produce a leftward thrust F at the first surface U1 to advance the propulsion device 200 to the left. As shown in Fig. 7D, the first switching flap 223el is not in effect, and the second switching flap 223e2 is acting. The drive unit 122 drives the vanes 121 in a clockwise direction. The steering unit 223 rotates the respective vanes 121 such that the respective vanes 121 on the first surface U1 are in the first state, and the respective vanes 121 on the second surface 112 are in the second state. The blade 121 at the first surface 111 will produce a rightward thrust F at the first surface lu, causing the propulsion device 2 to advance to the right. Third Embodiment Referring to FIG. 8 , a schematic diagram of a propulsion device 3 of a third embodiment is shown. The propulsion device 300 of the present embodiment is different from the propulsion device 200 of the second embodiment in a third embodiment. The steering unit 323 includes four switching flaps (a first switching flap 323el, a second shifting flap 323e2, a second shifting plate 323e3, and a fourth shifting plate 323e4). The first conversion pad 323el is disposed in a movable manner adjacent to the first surface lu. The first transfer plate 323e2 is movably disposed adjacent to the second surface 112. The third switching flapper 323e3 is disposed in a movable manner at the surface of the second surface 113. The fourth conversion plate 323e4 is disposed in a movable manner at the fourth surface 114. As for the movement manners of the first, second, third, and fourth conversion flaps 323e, 323e2, 323e3, and 323e4, for example, the movement movement of the rotation axis of the driving unit 122 may be performed to make the first, second, and The third and fourth switching flaps 323el, 323e2, 323e3, 323e4 are selectively moved closer to or away from the steering block 123c (shown in Figure 3A). The rest of the similarities will not be repeated. The end points of the first conversion baffle 323el and the second conversion baffle 323e2 of the present embodiment extend only to the corners and are slightly shorter than the first conversion baffle 223el and the second conversion baffle 223e2 of the second embodiment. The first changeover flapper 323el, the second shifting flapper 323e2, the third shifting flapper 323e3, and the fourth shifting flapper 323e4 can selectively function. The propulsion device 300 of the third embodiment, under the following control method, will produce several different actions. Referring to Figures 9A to 9D, there are shown several schematic views of the operation of the propulsion device 300 of the third embodiment. Wherein, the first conversion baffle 323el, the second conversion baffle 323e2, the third conversion baffle 323e3, and the fourth conversion baffle 323e4 indicate that the slash indicates that it is acting, and the slash not indicates that it is not effect. As shown in Fig. 9A, the first switching flap 323el, the third shifting plate 323e3, and the fourth switching flapper 323e4 are acting, and the second switching flapper 323e2 is not actuated. The action of FIG. 9A is similar to that of the 7th to 7th steps. When the driving unit 122 drives the blades 121 to follow the circumference of the track 32〇, the first conversion plate 323el, the first transmission plate The three conversion plate 323e3 and the fourth conversion plate 323e4 function to change the state of the blade 121, so that the propulsion device 3 can advance to the left or to the right. Since the actions are similar to those of Figs. 7A to 7B, the description will not be repeated here. As shown in Fig. 9B, the second switching flapper 323, the third shifting flap 323e3, and the fourth shifting plate 323e4 are acting on the towel, and the first transition 201206744 flapper 323el is inactive. The operation of FIG. 9B is similar to that of FIGS. 7C to 7D. When the driving unit 122 drives the blades 121 to rotate clockwise or counterclockwise along the circumference of the track 320, the second switching plate 323e2 and the third switching block are transmitted. The action of the plate 323e3 and the fourth switching flapper 323e4 to change the state of the blade 121 enables the propulsion device 3 to advance to the left or to the right. Since the action is similar to that of the 7th to 7th drawings, the description will not be repeated here. As shown in Fig. 9C, the first switching flapper 323el and the second shifting flap 323e2 are in action, and the third shifting flapper 323e3 and the fourth shifting flapper 323e4 are not in effect. The drive unit 122 drives the vanes 121 to rotate counterclockwise along the circumference of the track 320. Through the action of the first conversion baffle 323el and the second conversion plate 323e2, the respective blades 121 located on the first surface ill and the second surface 112 are in the second state, and due to the third conversion baffle 323e3 and the fourth conversion baffle 323e4 is inactive so that each of the vanes 121 located on the third surface 113 and the fourth surface 114 is in the first state. At this time, the pushing device 300 will generate a clockwise thrust F with respect to the fluid at the third surface 113 and the fourth surface 114, so that the propulsion device 300 is turned clockwise around the center point of the crawler belt 320. This mode of action can change the angle of the propulsion device 300 to the horizontal plane. Similarly, when the driving unit 122 of FIG. 9C drives the blades 121 to circulate clockwise along the circumference of the track 320, the propulsion device 300 will have a counterclockwise direction with respect to the fluid at the third surface 113 and the fourth surface 114. The thrust causes the propulsion device 300 to flip counterclockwise about the center point of the track 230. As shown in Fig. 9D, the first switching flapper 323el, the second shifting flap 323e2, and the fourth shifting flapper 323e4 are in action, and the third transition 201206744, the pallet 323e3 is inactive. The drive unit 122 drives the vanes 121 to rotate counterclockwise along the circumference of the track 320. Through the action of the first conversion baffle 323el, the second conversion plate 323e2, and the fourth conversion baffle 323e4, the respective blades 121 located at the first surface 111, the second surface 112, and the fourth surface 114 are in the second state' The third switching flap 323e3 is inactive so that the respective vanes 121 located on the third surface 丨丨3 are in the first state. At this time, the propulsion device 300 will generate a clockwise thrust F′ with respect to the fluid on the third surface U3, and the propulsion device 3〇〇 will be turned clockwise with the eccentric point of the track 23〇 as the center, and the eccentric point is close to the fourth. The center of rotation of the drive unit 122 of the conversion flapper 323e4. This type of action can change the angle of the propulsion device 3〇〇 to the horizontal plane. In particular, when the propulsion device 300 sinks to the bottom of the water and contacts the first surface 111 or is adjacent to the bottom of the water, the propulsion device 300 can be quickly and efficiently lifted off the bottom of the water. Fourth Embodiment Referring to FIG. 10, a schematic diagram of a propulsion device 4 of the fourth embodiment is shown. 'The propulsion device 400 of the present embodiment is different from the propulsion device 200 of the second embodiment in the fourth embodiment. The propulsion device 4 includes two crawler belts (a first crawler belt 420a and a second crawler belt 420b), and the first crawler belt 420a includes a plurality of first vanes 421a, and the second crawler belt 42A includes a plurality of first vanes 421b. The rest of the similarities will not be repeated. The first crawler belt 420a and the second crawler belt 420b are substantially parallel to each other, and the width W41 of the first crawler belt 420a and the width W42 of the second crawler belt 420b are substantially equal. The first crawler belt 420a and the second crawler belt 420b can selectively apply the designs of the first to third embodiments described above. In the present embodiment, the first 201206744 I vv jy I r\ crawler 420a and the second crawler belt 420b are described by taking the design of the second embodiment as an example. When the first crawler belt 420a and the second crawler belt gamma are the same in the bypass direction, the bypass speed is the same, and the control of the switching flapper (not shown) is the same, the advancement of 3 to 400 can achieve the various similar operations described above. In addition to the above-described several actions, the propulsion device 400 of the fourth embodiment will produce several different actions under the following control methods. Referring to Figures 11A to 11D, there is shown a schematic diagram of an action of the propulsion device 4A of the fourth embodiment. As shown in FIGS. 11A to 11β, the first blade ridge 421a and the second blade 42ab have the same bypass direction, but when the bypass speeds of the first blades 421a and the second blades 421b are different, the advancement is performed. The device 400 will produce a first thrust F41 and a second thrust F42 that are the same size in the same direction as the fluid. As shown in the lie diagram, since the first thrust F41 generated by the propulsion device 400 is smaller than the second thrust F42, the moving speed at the first thrust force F41 is slow, and the moving speed at the second thrust ρ42 is fast. As shown in Fig. 11D, since the moving speed of the propulsion device 4 at the first thrust F41 and the second thrust F42 is different, the propulsion device 400 will revolve in a large circle. . The monthly reference, the 12A to 12D drawings, is a schematic view showing an operation of the propulsion device 400 of the fourth embodiment. As shown in FIGS. 12A to 12β, the bypass speeds of the first blades 421a and the second blades 421 are substantially the same, but the bypass directions of the first blades 421a and the second blades 4211) Conversely, the propulsion device 400 will produce a first thrust F41 and a second thrust F42 that are opposite in direction and of the same magnitude relative to the fluid. As shown in FIG. 12C, since the first thrust F41 generated in the propulsion device 4 is opposite to the second thrust F42 14 201206744, the moving direction at the first thrust F41 and the moving direction at the second thrust ρ42 will be in contrast. As shown in Fig. 12D, since the movement of the propulsion device 4 at the first thrust F41 and the second thrust F42 are opposite and the same magnitude, the propulsion device 4 will rotate.

3月參照第13A〜13D圖,其繪示第四實施例之推進裝 ,400之一種動作示意圖。如第13A〜13β圖所示,此些、 第—葉片421a與此些第二葉片4211)之繞行方向不同,且 驅動此些第一葉片421a與此些第二葉片421b之繞行速度 實質上相同。位於第一表面U1之各個第一葉片42ia及又 位於第二表面112之各個第二葉片421b為第一狀態,位 於第—表面112之各個第一葉片421&及位於第一表面I。 之各個第二葉片421b為第二狀態。推進裝置4〇〇相對流 體將會在第-表面⑴及第二表面112產生方向相同、大 "目同的第一推力F41及第二推力F42 (以實線表示第一 推力F41位於第一表自lu,以虛線表示第二推力m位 2二表面112)。位於第-表面⑴之第一推力ρ41及位 H面112之第一推力F42皆產生向左之推力。但由 :第—推力位於第-表面⑴,所以推進裝置權將 二破弟一推力F41的帶動而略微抬起,而第二推力ρ42位 2二表面112 ’所以推進裝置彻將會被第二推力㈣ 勺帶=而略微下推。因此,如s i 3 c圖所*,推進裝置綱 丄从〕進的同時’也會在第一推力F41之處略微抬起,並 =一推力F42之處略微下推。如第13D圖所示,此時推 置400將會以螺旋狀之方式翻轉並同時向前移動。 201206744 第五實施例 請參照第14圖,其繪示第五實施例之推進裝置5〇〇 之示意圖’本實施例之推進裝置5〇〇與第二實施例之推進 裝置200不同之處在於第五實施例之推進裝置5〇〇包括三 個履帶(第一履帶520a、第二履帶520b及第三履帶 520c)’而第一履帶520a包括數個第一葉片521a,第二履 帶520b包括數個第二葉片521b,第三履帶520c包括數個 第二葉片521c ’其餘相同之處不再重複敛述。 第一履帶520a設置於第二履帶520b及第三履帶520c 之間’第一履帶520a、第二履帶520b及第三履帶520c實 質上相互平行,且第一履帶520a之寬度W51實質上等於 第二履帶520b之寬度W52及第三履帶520c之寬度W53之 合。第一履帶520a、第二履帶520b及第三履帶520c可以 選擇性地應用上述第一〜第三實施例之設計。在本實施例 中’第一履帶520a、第二履帶520b及第三履帶520c係以 第二實施例之設計為例做說明。 第—履帶520a、第二履帶520b及第三履帶520c在 繞行方向相同、繞行速度相同且轉換擔板(未綠示)之控 制相同的情況下,推進裝置500可以實現前述各種類似的 動作。 而除了上述幾種動作以外,第五實施例之推進裝置 500在以下之控制方法下,將產生幾種不同的動作。請參 照第15A〜15E圖,其繪示第五實施例之推進裝置5〇〇之 一種動作示意圖。如第15A〜15C圖所示,此些第一葉片 521a之繞行方向不同於此些第二葉片521b及此些第三葉 201206744 ι ··〜〆···.. 片52lc之繞行方向,且此些第一葉片5仏、此些第 片521b與此些第二葉片521c之繞行速度 位 於第二表㈣之各個第一葉片521a、位於第一表门二 個第二葉片521b及位於第一表面111之各個第三葉 —21c為第一狀態,並且位於第一表面ui之各個第— 葉片521a、位於第二表面⑴之各個第二葉片_及位 於第二表面112之各個第三葉片521c為第二狀態。透過 上述方式,第一履帶520a將在第二表面112產生第一推 §力F51,第二履帶520b及第三履帶520c將在第一表面⑴ 產生第二推力F52及第三推力F53 (以虛線表示第一推力 F51位於第二表面112,以實線表示第二推力ρ52及第三 推力F53位於第一表面111}。位於第一表面ui之第二推 力F52及第三推力F53將會略微抬起推進裝置5〇〇,位於 第二表面112之第一推力F51將會略微下推推進裝置 500。如第15D圖所示,由於第一履帶52〇a之寬度w5i實 質上等於第二履帶52〇b之寬度W52及第三履帶52〇c之寬 _度W53之合’所以第一推力F51為第二推力ρ52及第三推 力F53之合。並且第一推力F51所產生之係下推力量也會 等於第二推力F52及第三推力F53所產生之抬起力量之曰 合。如此一來,第一表面m的第二、第三推力F52' F53 及第二表面112的第一推力f51能夠獲得平衡。如第l5E 圖所示(第15E圖為推進裝置500之側視圖),此時推進 裝置500能夠穩定的水平前進,而不會因抬起之力量與下 推之力量不平均而逐漸浮起或下沈。 17 第六實施例 請參照第16圖,其繪示第六實施例之推進農置6〇〇 之示意圖,本實施例之推進裝置600與第二實施例之推進 裝置200不同之處在於第五貫施例之推進裝置包括四 個履帶(第一履帶620a、第二履帶620b、第三履帶62〇c 及第四履帶620d),第一履帶620a包括數個第—葉片 621a’第二履帶620b包括數個第二葉片621b,第三履帶 620c包括數個第三葉片631c,第四履帶620d包括數個第 四葉片621d,其餘相同之處不再重複敘述。 第一履*jfT 620a及弟·一履帶620b設置於第三履帶620c 及第四履帶639d之間,第一履帶620a、第二履帶620b、 第三履帶620c及第四履帶620d實質上相互平行,且第一 履帶620a、第二履帶620b、第三履帶620c及第四履帶62〇d 之寬度W61、W62、W63、W64實質上相等。 此些第一葉片621a、此些第二葉片621b、此些第三 葉片621c及此些第四葉片621d分別沿著第一履帶620a、 第一履帶620b、第三履帶620c及第四履帶620d之周緣繞 行的情況下’可以實現前述各種類似的動作。 綜上所述,雖然本發明已以諸實施例揭露如上,然其 並非用以限定本發明。本發明所屬技術領域中具有通常知 識者’在不脫離本發明之精神和範圍内,當可作各種之更 動與潤飾。因此’本發明之保護範圍當視後附之申請專利 範圍所界定者為準。 【圖式簡單說明】 201206744Referring to Figures 13A to 13D in March, a schematic diagram of an action of the propulsion device 400 of the fourth embodiment is shown. As shown in the 13th to 13th graphs, the bypass directions of the first vane 421a and the second vane 4211) are different, and the bypass speeds of the first vane 421a and the second vane 421b are driven substantially. Same on the same. Each of the first blades 42ia of the first surface U1 and the second blades 421b of the second surface 112 are in a first state, and the first blades 421 & located at the first surface 112 and the first surface I are located. Each of the second blades 421b is in the second state. The propulsion device 4 〇〇 will generate the same first and larger first thrust F41 and second thrust F42 in the first surface (1) and the second surface 112 (the solid line indicates that the first thrust F41 is located first) The table is from lu, and the second thrust m position 2 two surfaces 112) is indicated by a broken line. The first thrust ρ41 at the first surface (1) and the first thrust F42 at the position H plane 112 all generate a thrust to the left. However, the first thrust is located on the first surface (1), so the propulsion device will be lifted slightly by the second thruster and the thrust F41, while the second thrust ρ42 is 2 and the second surface 112', so the propulsion device will be second. Thrust (4) Spoon belt = slightly pushed down. Therefore, as shown in the s i 3 c diagram, the propulsion device is also slightly raised from the first thrust F41 and slightly pushed down at the thrust F42. As shown in Fig. 13D, at this time, the pusher 400 will be flipped in a spiral manner and moved forward at the same time. 201206744 Fifth Embodiment Referring to FIG. 14, there is shown a schematic diagram of a propulsion device 5 of a fifth embodiment. The propulsion device 5 of the present embodiment is different from the propulsion device 200 of the second embodiment in that The propulsion device 5 of the fifth embodiment includes three crawlers (first crawler 520a, second crawler 520b, and third crawler 520c)' and the first crawler 520a includes a plurality of first blades 521a, and the second crawler 520b includes a plurality of The second blade 521b, the third crawler 520c includes a plurality of second blades 521c', and the rest are not repeated. The first crawler belt 520a is disposed between the second crawler belt 520b and the third crawler belt 520c. The first crawler belt 520a, the second crawler belt 520b, and the third crawler belt 520c are substantially parallel to each other, and the width W51 of the first crawler belt 520a is substantially equal to the second. The width W52 of the crawler belt 520b and the width W53 of the third crawler belt 520c are combined. The first crawler belt 520a, the second crawler belt 520b, and the third crawler belt 520c can selectively apply the designs of the first to third embodiments described above. In the present embodiment, the first crawler belt 520a, the second crawler belt 520b, and the third crawler belt 520c are described by taking the design of the second embodiment as an example. When the crawler belt 520a, the second crawler belt 520b, and the third crawler belt 520c have the same bypass direction, the same bypass speed, and the same control of the shifting plate (not shown), the propulsion device 500 can implement various similar actions as described above. . In addition to the above-described several actions, the propulsion device 500 of the fifth embodiment will produce several different actions under the following control methods. Referring to Figures 15A to 15E, there is shown a schematic diagram of an action of the propulsion device 5A of the fifth embodiment. As shown in FIGS. 15A-15C, the direction of the first blades 521a is different from the direction of the second blades 521b and the third leaves 201206744 ι ··~〆···. And the first blades 5仏, the winding speeds of the second blades 521b and the second blades 521c are located in the first table 521a of the second table (4), the second blades 521b located in the first door and Each of the third leaves 21c of the first surface 111 is in a first state, and each of the first blades 521a of the first surface ui, the second blades of the second surface (1), and the second surface of the second surface 112 The three blades 521c are in the second state. In the above manner, the first crawler belt 520a will generate a first thrust force F51 on the second surface 112, and the second crawler belt 520b and the third crawler belt 520c will generate a second thrust F52 and a third thrust F53 on the first surface (1) (with a dotted line It is indicated that the first thrust F51 is located on the second surface 112, and the solid line indicates that the second thrust ρ52 and the third thrust F53 are located on the first surface 111}. The second thrust F52 and the third thrust F53 located at the first surface ui will be slightly raised. Starting from the propulsion device 5, the first thrust F51 at the second surface 112 will slightly push down the propulsion device 500. As shown in Fig. 15D, since the width w5i of the first track 52〇a is substantially equal to the second track 52 The width W52 of the 〇b and the width _degree W53 of the third crawler belt 52〇c are combined. Therefore, the first thrust force F51 is the combination of the second thrust force ρ52 and the third thrust force F53, and the thrust force generated by the first thrust force F51 is It is also equal to the combination of the lifting forces generated by the second thrust F52 and the third thrust F53. Thus, the second and third thrusts F52' F53 of the first surface m and the first thrust f51 of the second surface 112 A balance can be obtained, as shown in Figure 15E (Fig. 15E is a propulsion device 50) The side view of 0), at this time, the propulsion device 500 can advance at a stable level without gradually floating or sinking due to the uneven force of the lifting force and the pushing force. 17 For the sixth embodiment, please refer to FIG. The schematic diagram of the propulsion device 600 of the sixth embodiment is different from the propulsion device 200 of the second embodiment in that the propulsion device of the fifth embodiment includes four crawlers. (the first crawler belt 620a, the second crawler belt 620b, the third crawler belt 62〇c, and the fourth crawler belt 620d), the first crawler belt 620a includes a plurality of first blades 621a', and the second crawler belt 620b includes a plurality of second blades 621b, and a third The crawler belt 620c includes a plurality of third blades 631c, and the fourth crawler belt 620d includes a plurality of fourth blades 621d, and the rest of the same portions are not repeatedly described. The first crawler *jfT 620a and the younger crawler belt 620b are disposed on the third crawler belt 620c and Between the fourth crawler belts 639d, the first crawler belt 620a, the second crawler belt 620b, the third crawler belt 620c, and the fourth crawler belt 620d are substantially parallel to each other, and the first crawler belt 620a, the second crawler belt 620b, the third crawler belt 620c, and the fourth crawler belt 62〇d width W61, W62, W63 The first vane 621a, the second vane 621b, the third vane 621c, and the fourth vane 621d are respectively along the first crawler belt 620a, the first crawler belt 620b, the third crawler belt 620c, and The foregoing various similar actions can be implemented in the case where the circumference of the fourth crawler belt 620d is bypassed. In summary, although the present invention has been disclosed above in the embodiments, it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. [Simple diagram] 201206744

I t 1 W l*trM 第1圖繪示第—每a , ^ 3匕例之推進裝置之示意圖。 弟2圖繪不第1圖之履帶之示意圖。 第3A〜3B11繪示轉向單元與葉片之示意圖。 第4A〜4B圖給··^-仿 — 口 1 TR第一實施例之推進裝置之幾種動作 不意圖。 ^ 5 ® 第二實施例之推進裝置之示意圖。 第6A〜6B圖繪示轉向單元之第一轉換擋板與轉向擋 塊之動作示意圖。 鲁 帛7A〜7D圖纟會示第:實施例之推進裝置之幾種動作 示意圖。 第8圖繪不第三實施例之推進裝置之示意圖。 —第9A〜9D圖綠示第三實施例之推進裝置之幾種動作 示意圖。 第10圖繪示第四實施例之推進裝置之示意圖。 第11A〜11D圖繪示第四實施例之推進裝置之一種動 作示意圖。 籲 第12A〜12D圖繪示第四實施例之推進裝置之一種動 作示意圖。 第13A〜13D圖繪示第四實施例之推進裝置之一種動 作示意圖。 第14圖繪示第五實施例之推進裝置之示意圖。 第15A〜15E圖繪示第五實施例之推進裝置之一種動 作示意圖。 第16圖繪示第六實施例之推進裝置之示意圖。 201206744 【主要元件符號說明】 100、200、300、400、500、600 :推進裝置 110 :載體 111 :第一表面 112 :第二表面 113 :第三表面 114 :第四表面 120、220、320 :履帶 121 :葉片 122 :驅動單元 123、223、323 :轉向單元 123a :連桿 123b :彈簧擋塊 123c :轉向擔塊 123d :復位彈簧 123e :轉換擋板 223el、323el :第一轉換擋板 223e2、323e2 :第二轉換擋板 323e3 :第三轉換擋板 323e4 :第四轉換擋板 420a、520a、620a :第一履帶 420b、520b、620b :第二履帶 421a、521a、621a :第一葉片 421b、521b、621b :第二葉片 520c、620c :第三履帶 201206744 , , 1 vv i-ri r\ 521c、621c :第三葉片 620d :第四履帶 621d :第四葉片 C :繞行方向 F :推力 F41、F51 :第一推力 F42、F52 :第二推力 F53 :第三推力 φ L :法線 R :預定範圍 S :斜面 W41、W51、W61 :第一履帶之寬度 W42、W52、W62 :第二履帶之寬度 W53、W63 :第三履帶之寬度 W64 :第四履帶之寬度I t 1 W l*trM Figure 1 shows a schematic diagram of the propulsion device of the first - every ^, ^ 3 example. Brother 2 draws a schematic diagram of the crawler that is not in Figure 1. 3A to 3B11 show schematic views of the steering unit and the blade. 4A to 4B. Fig. 1 - Imitation - Port 1 TR Several actions of the propulsion device of the first embodiment are not intended. ^ 5 ® Schematic diagram of the propulsion device of the second embodiment. 6A to 6B are schematic views showing the operation of the first switching baffle and the steering block of the steering unit. Lu Hao 7A~7D will show the following: a schematic diagram of several actions of the propulsion device of the embodiment. Figure 8 is a schematic view showing the propulsion device of the third embodiment. - Figures 9A to 9D are green diagrams showing several actions of the propulsion device of the third embodiment. Fig. 10 is a schematic view showing the propulsion device of the fourth embodiment. 11A to 11D are views showing an operation of the propulsion device of the fourth embodiment. A schematic diagram of an action of the propulsion device of the fourth embodiment is shown in Figs. 12A to 12D. 13A to 13D are views showing an operation of the propulsion device of the fourth embodiment. Figure 14 is a schematic view showing the propulsion device of the fifth embodiment. 15A to 15E are views showing an operation of the propulsion device of the fifth embodiment. Figure 16 is a schematic view showing the propulsion device of the sixth embodiment. 201206744 [Description of main component symbols] 100, 200, 300, 400, 500, 600: propulsion device 110: carrier 111: first surface 112: second surface 113: third surface 114: fourth surface 120, 220, 320: Track 121: blade 122: drive unit 123, 223, 323: steering unit 123a: link 123b: spring stop 123c: steering load block 123d: return spring 123e: conversion flapper 223el, 323el: first shifting flapper 223e2 323e2: second conversion flapper 323e3: third shifting flapper 323e4: fourth shifting flapper 420a, 520a, 620a: first crawler belt 420b, 520b, 620b: second crawler belt 421a, 521a, 621a: first vane 421b, 521b, 621b: second blade 520c, 620c: third track 201206744, , 1 vv i-ri r\ 521c, 621c: third blade 620d: fourth track 621d: fourth blade C: bypass direction F: thrust F41 , F51 : first thrust F42 , F52 : second thrust F53 : third thrust φ L : normal R : predetermined range S : inclined faces W41 , W51 , W61 : width of the first crawler belt W42 , W52 , W62 : second crawler Width W53, W63: width of the third track W64: width of the fourth track

Claims (1)

201206744 七、申請專利範圍: ., h —種推進裝置’包括: 一载體;以及 -第-履帶’設置於該載體上,該 複數個第一荦片,、T匕括. H二第一履帶之周緣排列; 驅動早兀,係驅動各該第—葉 履▼之周緣繞行;及 &者s亥第一 該第-葉轉動各該第—葉片,以使各 狀態為各該第—荦片的二狀態之間轉換’該第- =狀態為各該第-葉片的法線方向與繞行二實 棘二?請專利範圍第1項所述之推進裝置,其中該 爭7° 了、在各遠第—葉片繞行於—預定範圍内’漸進 轉動各該第一葉片。 漸進式 轉向ί元專利範圍第1項所述之推進裝置,其中該 各該第-葉片。 _處_式轉動 4. 如申請專利範圍第丨項所述之推進裝置,1 =具有相對之一第一表面及一第二表面,該轉向單元: 轉各5亥第一葉片,以使位於該第一表面之各該第—葉片 狀態,並使位於該第二表面之各該第一葉片為該 弟一狀恶。 5. 如申請專利範圍第丨項所述之推進裝置,复 載體具有—第-表面、-第二表面、-第三表面及二第°二 22 201206744 =序Lt—表面、該第三表面、該第二表面及該第四表 面:序:接,該轉向單元係轉動各該第一葉片,以使位於 面及該第四表面之各該第一葉片為該第一狀 心6 亥弟—表面及該第二表面為該第二狀態。 載體具有二=範圍第:項所述之推進裝置,其中該 表面,該第一声^、士 μ第一表面、—第三表面及一第四 面依庠、ί技:、邊第二表面、該第二表面及該第四表 n ’該轉向單71係轉動各該第—葉片,以使位於 各該葉片為該第一狀態,並使位於該第-表 態。Λ —表面及该弟四表面之各該第一葉片為該第二狀 推丄項所述之推進裝置,其中該 質上柏^ ’該第—履帶及該第二履帶實 ^相互平行,且該第—履帶及該第二履帶之寬度實質上 二述:推進裝置,該 置於,笛:第二履帶’該第-履帶設 履帶履帶、該第二 實質上笔於:? 且該第一履帶之寬度 貫貝上寺於,亥弟二履帶及該第三履帶之寬度之合。 9.如申請專利範圍第1項所述之推進裝置 推進裝置更包括一第二履帶、一第三履帶及一第四履^ 履帶及該第二履帶設置於該第三履帶及該第四:’ =間,邊第-履帶、該第二履帶、該第三履帶及 履m相互平行,且該第—履帶、該第二履帶 23 201206744 三履帶及該第,帶之寬度實質上相等。 體及丄0第::進裝置之控制方法,該推進裝置包括-載 帶包括複數個第一葉片,各該第-葉片沿該第一履1 = 緣排列’該㈣方法包括: 4 ·之周 第一葉片沿著該第一履帶之周緣繞行;以及 β一笛省第一葉片,以使各該第一葉片在一第一狀態 線:二態之間轉換,該第一狀態為各該第-葉片的: 線方向與、.堯仃方向實質上平行,該第二狀 片的法線方向與繞行方向實質上垂直。 χ '、 方法,11 其範1^1G項所述之推進裝置之控制 行於一預定範圍内,漸進式轉動各該第一葉片第葉片% I專利第10項所述之推進裝置之控制 方法’其中轉動各該第之㈣係 行於一轉角處,瞬間式轉動各該第一葉片。4葉片% 方去IcT申5月專利跑圍帛10項所述之推進裝置之控制 方法’其令該載體具有相對之一第 在轉動各該第一举片 第一表面 -犖片心^ 中,位於該第—表面之各該第 該第二該第二表面之各該第-葉片為 方、#·h專利範圍第10項所述之推進裝置之控制 方=其”載體具有—第—表面一第m三 表面及一弟四表面,兮筮— 面及該苐四表面依序連接, 24 201206744 位於該第三表面及該第四表面之各該第一葉片為該第一 狀態,位於該第-表面及該第二表面之各 第二狀態。 糸乃马及 請專利範圍第1〇項所述之推 方法,其中該載體具有一第一表面、一第二表面、―第^ 表面及一第四表面,該第一表面、該第三表面、該第二: =第四表面依序連接,在轉動各該第一葉片之步;表 • 三表面之各該第一葉片為該第-狀態,位於 該第二狀態/亥弟一表面及該第四表面之各該第一葉片為 方二述之推進裝置之控制 m… 《置更包括一第二履帶’該第二履帶包 平某』’該第一履帶及該第二履帶實質上相互 二=履帶及該第二履帶之寬度實質上相等,該 • 片沿著該第二履帶之周緣繞行;以及 *該第-狀二:以使各該第二葉片在該第-狀態 /、茨乐一狀恶之間轉換。 方法,%專利範圍第16項所述之推進I置之控制 ^夂在驅動各該第-葉片及各該第二荦片之牛; 中,各該第—葉^ 之步驟 一葉片與各該第二^ 繞行方向相同’各該第 第一葉片之繞行速度不同。 方法項所述_裝置之控制 中,各玆第—一 μ弟葉片及各該第二葉片之步驟 第—某片與該黛-接Ρ ΖΑ· 一葉片之、,:70行方向相反,各該第 25 201206744 葉片與各料二葉片之繞行速度實質上相同。 方二專利範圍第16項所述之推進裝置之控制 方法其中该载體具有相對之一第一表面及 第-葉片及各該第二葉片之步财2該 盥各令第il l葉片之繞行方向相同’各該第一葉片 /、各.Λ第一葉片之繞行速度實質上相同; 在轉動各該第一葉片及各該二葉 ^ 之"Si第一葉片及位於該la之該第 二ΓΐΓΓ位於該第二表面之各該第-葉片及位於 該第一表面之各該第二葉片為該第二狀態。 士申。月專利範圍第10項所述之推進裝置之$制 推進裝置更包括-第二履帶及-第= 第;=“复數個第二葉片’該第三履帶包括複數個 J二!: 該第二履帶及該第三履帶實質上相互平 ;丁:=第:履帶之寬度實質上等於該第二履帶及該第三 履τ之&,邊控制方法更包括: 驅動各該第二葉片沿著該第二履帶之周緣繞行; 轉動各該第二葉片,以使各該第二葉片在該第一狀態 與5亥第二狀態之間轉換; “ 各:亥第:葉片沿著該第三履帶之周緣繞行;以及 ”第一二該第三葉片’以使各該第三葉片在該第-狀態 契5亥第一狀恶之間轉換。 21^如中請專利範圍第2()項所述之推進裝置之控制 方法,5亥載體具有相對之一第一表面及-第二表面; 26 201206744 在驅動各該第一葉片、各該第二葉片及各 二t驟中,各該第—葉片、各該第二葉片與各該第:Ξ片 片丁::相同,各該第一葉片、各該第二葉片與各該第 一葉片之繞行速度實質上相同; 在轉動各該第一葉片、各該第_ 之步驟中,位於m::弟-葉片及各该第三葉片 々 面之各該第—葉片、位於該第- f第二葉片及位於該第一表面之各該第三苹J 為-第一狀態,位於該第一表面之各該 :、^ >第二表面之各該第— 、位於5亥 葉片為該第二狀^ 於該第二表面之各該第三 方法Μ項所述之推進裝置之控制 -第四履帶,嗲第括一第二履帶、-第三履帶及 嫌A Μ第—履贡包括複數個第二筆Η,分--® 咿匕括複數個第三葉片,兮册 ’、 b弟二履 片,該第-履帶及玆第一二,包括複數個第四葉 履帶之間,該第-履帶、該第二履帶=履:及該第四 四履帶實質上相互平行, 4二履帶及該第 :三履帶及該第四履帶之寬度;質:二該::履帶、該 括: 相4,該控制方法包 驅動各該第二葉片沿著該 1轉動各該第二葉片,以使各之周緣繞行; 與该第二狀態之間轉換; 人一某片在該第一狀態 驅動各該第三葉片沿著哕 轉動各該第三葉片,以使各之周緣繞行,· 與該第二狀態之間轉換; 。第二葉片在該第一狀態 27 201206744 驅動各該第四葉片沿著該第四履帶之周緣繞行;以及 轉動各該第四葉片,以使各該第四葉片在該第一狀態 與該第二狀態之間轉換。201206744 VII. Patent application scope: ., h - propulsion device 'includes: a carrier; and - the first crawler' is disposed on the carrier, the plurality of first cymbals, T 匕. H II first The circumference of the track is arranged; the drive is early, and the circumference of each of the first-blades is driven; and & the first of the first leaves rotates the first-blade, so that each state is the first - Converting between the two states of the cymbal 'The first - = state for each of the first-blade normal direction and the two-way two-spindle? The propulsion device of claim 1, wherein the first vane is progressively rotated by a predetermined extent within each of the farthest vanes. The progressive device of the invention of claim 1, wherein each of the first vanes. _ _ type of rotation 4. As described in the scope of the patent application, the propulsion device, 1 = has a first surface and a second surface, the steering unit: Each of the first surfaces of the first surface is in a state of the first vane, and each of the first vanes located on the second surface is in the form of the first vane. 5. The propulsion device of claim 2, wherein the composite carrier has a first surface, a second surface, a third surface, and a second surface 22 22 201206744 = a sequence Lt surface, the third surface, The second surface and the fourth surface are connected: the steering unit rotates each of the first blades such that each of the first blades located on the surface and the fourth surface is the first core 6 The surface and the second surface are in the second state. The carrier has the propulsion device of the second item of the second aspect, wherein the surface, the first surface, the first surface, the third surface, and the fourth surface are 庠, ί, and the second surface The second surface and the fourth table n' the steering unit 71 rotates each of the first blades so that the blades are in the first state and are located in the first state. Λ 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面The width of the first crawler belt and the second crawler belt are substantially the same as follows: the propulsion device, the placement, the flute: the second crawler belt, the first crawler track track, and the second substantially pen: And the width of the first crawler is connected to the width of the temple, the width of the two brothers and the width of the third track. 9. The propulsion device propulsion device of claim 1, further comprising a second crawler belt, a third crawler belt and a fourth crawler track, and the second crawler belt is disposed on the third crawler belt and the fourth: '=Between, the side-track, the second track, the third track and the track m are parallel to each other, and the first crawler belt, the second crawler 23 201206744 three crawler belts and the first belt have substantially the same width. And a method of controlling a device: the propulsion device includes a carrier tape including a plurality of first blades, each of the first blades being aligned along the first track 1 = edge. The method includes: a first blade is circumscribed along a circumference of the first track; and a first blade of the β-first flute, such that each of the first blades is switched between a first state line: a two state, the first state being each The first vane: the line direction is substantially parallel to the .尧仃 direction, and the normal direction of the second sheet is substantially perpendicular to the bypass direction. χ ', method, 11 The control device of the propulsion device described in the item 1^1G is within a predetermined range, and the control method of the propulsion device described in the tenth item of the first blade is progressively rotated. 'While turning each of the fourth (four) lines at a corner, each of the first blades is instantaneously rotated. 4 blade % to go to IcT to apply the control method of the propulsion device described in the 10th patent running cofferdam, which causes the carrier to have a relative one of the first surfaces of the first lifting piece - the core of the first piece Each of the first and second blades of the second surface of the first surface is a square, and the control device of the propulsion device described in Item 10 of the patent scope of the invention has its carrier a surface of the m-th surface and a fourth surface, the surface of the crucible and the surface of the crucible are sequentially connected, 24 201206744, the first vane located on the third surface and the fourth surface is in the first state, located at The second surface of the first surface and the second surface. The method of claim 1, wherein the carrier has a first surface, a second surface, and a surface And a fourth surface, the first surface, the third surface, the second:=the fourth surface are sequentially connected, and the first blade is rotated; the first blade of the three surfaces is the first blade a first state, located in the second state/the jersey surface and the fourth surface The first blade is the control of the propulsion device of the second embodiment. The device further includes a second track, the second track is flat, and the first track and the second track are substantially opposite each other. The width of the two tracks is substantially equal, the sheet is circumscribed along the circumference of the second track; and *the first-shaped second: so that each of the second blades is in the first state / Method, the control of the propulsion I set in the 16th item of the patent scope, in the driving of each of the first vane and the cow of each of the second slivers; Different from each of the second winding directions, the bypass speed of each of the first blades is different. In the control of the device, the steps of each of the first and second blades are - a piece and the 黛- Ρ ΖΑ · one blade,: 70 rows in the opposite direction, each of the 25th 201206744 blade and the material two blades of the bypass speed is substantially the same. Control method of the propulsion device wherein the carrier has a first surface and a first leaf The winding direction of the sheet and each of the second blades is the same. The winding directions of the first il l blades are the same. The winding speeds of the first blades/the first blades are substantially the same; a first blade and each of the first blades of the two leaves and the first blade located at the second surface of the second and the second blade located at the first surface are the first blade The second state. The slinger of the propulsion device described in item 10 of the monthly patent range further includes - the second crawler and - the third = the first; the "multiple second blades" the third crawler includes a plurality of J The second track and the third track are substantially flat with each other; the:: the: the width of the track is substantially equal to the second track and the third track τ & the side control method further comprises: driving each The second blade is wound along a circumference of the second track; each of the second blades is rotated to switch between the first state and the second state; and each: Haidi: The blade circumscribes along the circumference of the third track; and "the first two of the third blade" In the first third blade - 5 Hai state transition between the first wedge-shaped evil. 21) The method for controlling a propulsion device according to the second aspect of the patent, wherein the 5-well carrier has a first surface and a second surface; 26 201206744 driving each of the first blades, each of the first In the two blades and each of the two steps, each of the first blade and each of the second blades is identical to each of the first blade segments: each of the first blade, each of the second blade, and each of the first blade The bypass speed is substantially the same; in the step of rotating each of the first vanes and each of the first step, each of the first vanes located at m::-blade and each of the third vane planes is located at the first f second blade and each of the third panels located on the first surface is in a first state, each of the first surface of the first surface: the second surface of the second surface is located at 5 The second shape is the control of the propulsion device described in the third method of the second surface - the fourth crawler, the second crawler, the third crawler, and the suspected A Including a plurality of second pens, sub--- including a plurality of third blades, 兮 ' ', b brother two slabs, the first - crawler 12, comprising between a plurality of fourth blade tracks, the first crawler track, the second crawler track: the track and the fourth track are substantially parallel to each other, the 4th track and the third track and the fourth track Width; quality: two:: track, the inclusion: phase 4, the control method package drives each of the second blades to rotate each of the second blades along the 1 to bypass each circumference; and the second Switching between states; a person in a first state drives each of the third blades to rotate each of the third blades along the crucible to bypass each of the circumferences, and to switch between the second state; a second blade driving each of the fourth blades to follow a circumference of the fourth track in the first state 27 201206744; and rotating each of the fourth blades such that each of the fourth blades is in the first state and the first Conversion between two states. 2828
TW99125994A 2010-08-04 2010-08-04 Moving device and controlling method thereof TW201206744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99125994A TW201206744A (en) 2010-08-04 2010-08-04 Moving device and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99125994A TW201206744A (en) 2010-08-04 2010-08-04 Moving device and controlling method thereof

Publications (1)

Publication Number Publication Date
TW201206744A true TW201206744A (en) 2012-02-16

Family

ID=46762026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125994A TW201206744A (en) 2010-08-04 2010-08-04 Moving device and controlling method thereof

Country Status (1)

Country Link
TW (1) TW201206744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594913B (en) * 2014-11-28 2017-08-11 塔斯全球有限公司 Caterpillar apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594913B (en) * 2014-11-28 2017-08-11 塔斯全球有限公司 Caterpillar apparatus

Similar Documents

Publication Publication Date Title
Waldrop More than moore
TWI505269B (en) Memory device
Dean et al. A sound idea: Manipulating domain walls in magnetic nanowires using surface acoustic waves
TW201234764A (en) Spin torque oscillator having multiple fixed ferromagnetic layers or multiple free ferromagnetic layers
Nikonov et al. Automotion of domain walls for spintronic interconnects
WO2004059435A3 (en) Using shared files in a game console or computer for cross-game state sharing
CN104737318A (en) High speed precessionally switched magnetic logic
Azimi et al. Efficient and robust SRAM cell design based on quantum-dot cellular automata
Kumar et al. Ultralow energy domain wall device for spin-based neuromorphic computing
National Academies of Sciences et al. frontiers of materials research: A decadal survey
Sivasubramani et al. Shape and positional anisotropy based area efficient magnetic quantum-dot cellular automata design methodology for full adder implementation
Gorshkov et al. DMI-gradient-driven skyrmion motion
TW201206744A (en) Moving device and controlling method thereof
Fernandez-Roldan et al. Dynamics of chiral domain walls under applied current in cylindrical magnetic nanowires
TWI291415B (en) Printer capable of printing double sides of printing media
Bourianoff et al. (Keynote) Progress, Opportunities and Challenges for Beyond CMOS Information Processing Technologies
Barhoumi et al. Laser-induced ultrafast spin-transfer processes in non-linear zigzag carbon chain systems
US20150371696A1 (en) Memory device
Mention et al. Moonshot innovations: Wishful Thinking or Business-As-Usual?
Haque et al. Magnetic logic gate for binary computing
Lopez-Diaz et al. Fast and controllable switching in narrow ring nanomagnets
Gruner Trends in spin and orbital magnetism of free and encapsulated Fe P t nanoparticles
Blügel et al. Spintronics-from GMR to quantum information
Fossheim Superconductivity: discoveries and discoverers: ten physics Nobel laureates tell their story
Li et al. Memory of elastic collisions drives high minority spin and oscillatory entropy in underdamped chiral spinners