201206676 六、發明說明: 【發明所屬之技術領域】 本發明係關於模具的製造方法。 【先前技術】 稱為工程塑膠的一群塑膠具有很高的強度,而有逐漸 取代金屬零件。其中稱為液晶性樹脂的一群塑膠,可邊保 持結晶構造而邊熔融《基於該結晶構造的高強度為液晶性 樹脂之特徵之一。再者,液晶性樹脂由於固化時結晶^造 並不會很大地變化,故熔融時與固化時體積變化小。結果, 液晶性樹脂有成形收縮小而成形品的尺寸精度優良的有利 點。 如上所述,有效利用高強度、尺寸精度優良之優點, 液晶性樹脂組成物開始被用於精密機器零件。然而,精密 機器、光學機器等之情形’些微的垃圾、灰塵等即會影響 機器的性能。因此,用於精密機器、光學機器的零件,例 如照相機模組用零件等,於其製造時需使用水等做超音波 凊洗’去除附著於表面的微小垃圾、油分、灰塵等。但是 ’成形液晶性樹脂組成物而成的成形品,由於分子配向在 表面部分特別大,因此在通常的成形方法,係於表皮層上 形成表層,而表面相對較容易起毛。因此,若成形品的表 面剝落’將成脫落物(垃圾)的主要原因。由於如此地會成 為發生垃圾等的問題,故成形液晶性樹脂組成物而成的成 形品的超音波清洗非常的困難。 201206676 成為上述垃圾的發生原因的表層’由於如上所述分子 。在成形。。的表面特別大而形成表皮層。不形成該容易 起毛的表層的方法,有以2GGt:以上的模具溫度成形的方法 。根據該方法,可抑制起毛,但是成形循環變得非常的長 會發生生產率下降,樹脂的滞留惡化等的問題。此外, 作為改善表面特性的成形品,揭示有一種成形品,其係包 、丨南刀子及纖維狀填充劑的成形品,其特徵在於: 八有以既定的表面膠帶剝離試驗求得的表面粗Ra值的上升 幅度為0.4# m以下的平面部(專利文獻丨)。 根據專利文獻1所述的方法,有用於作為 器或光學機器的零件,可防止表面粒子(異物)的發= 此地使用專利文獻1上所述的技術,可改善表面特性。 但是,如專利文獻1的實施例所述,在於專利文獻i所 謂異物的發生係於純水中緩慢地攪拌丨分鐘的清洗表面時 所產生的異物。以專利文獻1所述的方法的表面特性的改善 ’難以抑制表層本身的產生,將成形品暴露在如超音波清 洗等強烈的條件’則會產生非常多的異物。 [專利文獻] [專利文獻1]日本特開2008-239950號公報 【發明内容】 [發明所欲解決的課題] 本發明奋為解決以上的课題而完成者,其目的係提供 可抑制由包含液晶性樹脂的樹脂組成物所組成的成形品的 4 201206676 、起毛T得優良外觀的成形品的模具的製造方法。 [用以解決課題的手段] 本發明者們為解決 ,蕤由、上34課題專心反覆研究。結果發現 藉由…傳導,析導出充填於模具的液 面附近的溫度及液晶性招 曰㈣八表 出不舍/& # 曰旲八内的保持時間的關係,導 出不會在成形品的表皮層上形成表層之模穴附近的樹脂溫 度的溫度範圍及保持時間 皿 巧保持時間乾圍,對模具設置可 題。更具俨而▲士 ]乾圍的隔熱層,而解決上述課 題更具體而吕,本發明提供如下者。 ⑴#模具的製造方法,其係製造由包含液 的液晶性樹脂組成物所組 十月曰 ,.^ v 成1的成形00者,其特徵在於:藉 由熱傳導分析導出充填於槿呈 精 、/f M f S v 、八的液日日性樹脂的模穴表面附 近的"度及液晶性樹脂模具内的保持時間的關係,導出不 會在成形品的表皮層上开彡占 導出不 溫度範圍及保持時間的保持 丨-皿度的 該溫度範圍及保持時間範圍 了滿足 J祀固的隔熱層,上述熱 係使用在模穴表面形成隔鼽 , 及上述液晶性樹脂的比重、''二以構成模具的材料 數作為參數所進行者。 ……料⑽、熱擴散係 ⑵如⑴所述的模具的製造方法,其 為23(TC以上,上述伴持眛pq e ’L '皿又範圍 述保持時間範圍為0.3秒以上。 ⑻如⑴或者⑺所述的模具的製造方法1中 傳導分析’決定範圍、隔熱層 '、述熱 增的材枓、設置位置、形 (4)如(1)至(3)之任何_ 形狀 項所述的模具的製造方法, 5 201206676 中上述隔熱層的熱傳導係數為〇· 3W/m · K以下,厚度為 6 0 m以上。 (5) 如(1)至(4)之任何一項所述的模具的製造方法,其 中上述隔熱層包含選自由聚苯並咪唑、聚醯亞胺及聚醚醚 酮之至少一種樹脂。 (6) 如(1)至(4)之任何一項所述的模具的製造方法,其 中上述隔熱層,由多孔性氧化锆所構成的陶瓷材料。 (7) 如(1)至(5)之任何一項所述的模具的製造方法,其 中上述隔熱層於表面具有金屬層。 [發明效果] 使用本發明所製造的模具,製造由包含液晶性樹脂的 樹脂組成物所組成的成形品,則即使做超音波清洗,可抑 制成形品表面的起毛,可得具有優良外觀的成形品。 【實施方式】 以下,詳細說明發明的實施形態。本發明並非受限於 於以下的實施形態。 本發明的模具的製造方法,藉由熱傳導分析導出充填 於模具的液晶性樹脂的模穴表面附近的溫度及液晶性樹脂 模具内的保持時間的關係,¥出不會在成形品的表皮層: 形成表層之模穴附近的樹脂溫度的溫度範圍及保持時間的 保持時間範圍,對模具設置可滿足該溫度範圍及保持時間 ,圍的隔熱層,上述熱傳導分析’係使用在模穴表面形成 隔熱層的模具’以構成模具的材料及上述液晶性樹脂的比 201206676 重、比熱、熱料餘、熱㈣職作為參數而進行。 使用藉由熱傳導分析所導出 導出之充填在模具的液晶性樹 在換八表面附近的溫度與液晶性樹脂在模具内的保持時 間的關係,區別於表皮層上在 層上存在表層的的成形條件及不存 在的成形條件。可區別模穴表面附近的樹脂溫度的下降容 易度’是否對表層的形成有所影響。然後,上述模穴表面 附近的溫度與上述保持時間的關係、,顯示所期望的舉動地 於模具設置隔熱層’而可得可使表面的起毛不容易發生, 可製作具有優良的外觀的成形品的模具。 以下,更詳細地說明本發明的模具的製造方法。 〈樹脂材料等的決定〉 樹脂材料,只要是包含液晶性樹脂的樹脂組成物即可 ,液晶性樹脂的種類並無特別限定。然而,對於樹脂組成 物全體’液晶性樹脂佔5。質量%以上之情形,特別容易形成 表層此外可於不損及本發明的效果的範圍,於樹脂組 成物調合其他的樹脂、氧化防止劑、顏料、穩定劑、無機 填充劑等添加劑。此外,具體的液晶性樹脂,可舉例如曰 本特開201 0-1 〇61 65號公報所述的液晶性樹脂(液晶性聚合 物)。 。 〈隔熱層的設置〉 隔熱層的設置’係首先導入不會在成形品的表皮層上 形成表層之模穴表面附近的樹脂之溫度範圍及保持時間範 圍(第一步驟)。 接者’滿足上述溫度範圍及保持時間範圍地於模具設 7 201206676 步驟) 置隔熱層(第 ’說明本發明的模具 以下’分成第一步驟及第二步驟 的製造方法。 〈第一步驟〉 於第-步驟,藉由熱傳導分析,導出充填於模且 晶性樹脂在模穴表面附近的樹脂溫度及液晶模 的保持時間的關係。在此,熱傳導分析,係使用二 表面形成隔熱層的模具, 的比重、比教、執傳導_ Γ 料及液晶性樹脂 …、…、傳導係數、熱擴散係數作為參數而進行 。具體而言,如下導出上述關係。 ,說明在進行熱傳導分析時所使用的參數。為抑 制模八表面附近的樹脂溫度的下降而使用隔熱層。在此, =進模具内的樹脂之熱的移動,需考慮 導係數及隔熱層的軚容 07…、傳 及液晶性樹脂之比重二:,需要將構成模具的材料 軌物性作為參激 比熱、熱傳導係數、熱擴散係數等 =為參數°進行熱傳導分析時輸人該等參數。 接著說明於模穴的表面形成隔熱層之模具。需預先 決定在模具内如何設 據隔熱層的設置方;=層而進行熱傳導分析。因為根 万式熱的移動程度不同。惟,模且 何設置隔熱層,具體決 …、門如 等適宜變更。❹疋至何種程度,可按照要求的精度 以下’更具體說明隔熱層的配置。 例如舉出在模穴的表面全體形成隔熱層的模具,於 表不隔熱層形成於模穴表面全體之分割模具之剖面 8 201206676 之示意圖。藉由如此地於模穴全體設置隔熱層可於成形 品的表面全體不會形成表層地成形。再者,分割模具係如 圖1所不,由固定側模具與移動側模具所組成。 決定使用如圖1(a)的模具進行熱傳導分析,則可決定 =層厚度Ls(與分割模具的合併面垂直的方向),隔熱層 r ^ 的与度Lm |W熱層的厚度方向的模穴的 厚度L”該等值亦於熱傳導分析時輸入。再者,於圖2表示 Ls、Lm、Lp的位置。 再者,於圖1(a),於描;々沾主二 桓八的表面全體形成有隔熱層, …圖Ub)所示,於模穴表面的—部分形成隔熱層。 且的::的例’可舉於上述模穴表面全體形成隔熱層的模 具的隔熱層上形成金屬層 層上帘於圖i(c)表不於該隔熱 層场成金屬層的分割模具之剖面之示意圖。 藉由在隔熱層上形成金屬層, ,,.. 提升模八表面的耐磨 性。特別是調和玻璃纖維等 面容易磨損。因此,使用二:填充劑時’模穴的表 ,使用如圖冑用調配玻璃纖維等的樹脂組成物時 使用如圖1(C)所示之模具為佳。 此外’於模穴的表面全體在力各邋s 的熱傳導係數高,合產生 ’則由於金屬層 曰產生使隔熱層變厚的需要。 心MUe)所示模具進行熱傳導 熱層的厚度Ls(與分割模具的合 、了决 的厚度方向的模且的垂直的方向),隔熱層 八的厚度Lm,隔熱層的厚声 厚度Lp,隔埶声子度方向的模穴的 加熱層的厚度方向的金屬層 係於傳導分析時輸 該專值, 9 201206676 使用如上決定的參數等的輸入條件,進行教 。邊變更模具溫度等的成形條件,導 刀析 什睪出母個成形條件盥上 述模穴表面附近的溫度及上述保持時間的關係。然後:、 每個成形條件實際進行成形,確認是否在表皮層上形成表 層。例如’將每個成形條件的關係導出如圖3所圖表(圖3 中的p,〜p4)。然後’以不會在成形品的表面形成表層的條件 之模具溫度2GG°C左右的沒有隔熱層的條件進行熱傳導分 析,導出上述模具表面附近溫度與上述保持時間的關係( 圖3的直線Q)。在此’假設於p2於成形品的表面沒有形成表 層’於成形品的表面有形成表層。於實祕與實線㈣ 交點α2,及實線p3與實線Q的交點&之間存在著是否會在 成形品的表面形成表層的限值。例如,可決定限值。在心 與α 3之間。 若α的位置為限值,則不會在成形品的表皮層上形成 表層的模具表面附近的溫度的溫度範圍,係如圖3所示之 T C以上,保持時間的保持時間範圍係t秒以上。 …再者,無法以熱傳導分析得到不會在成形品的表面上 形成表層的條件時’進行使隔熱層變厚,冑更材料等的進 ":條件的變更。此外’尸、能得到不會在成形品的表面 上形成表層的條件時,可於該條件之中㈣決定限值。 〈第二步驟〉 於宽一 ,u '驟,不會在成形品的表皮層上形成表層地於 模具叹置隔熱層。^熱層的材料、形狀、配置處等,可使 用於宽一此 、一步驟的熱傳導分析者,關於不同的隔熱層,亦可 10 201206676 二:上述熱傳導分析,研究滿足上述溫度 材料、位置IV 時’如上所述’輸入隔熱層的 置等,輸入構成模具的材料等的比重、比埶、 =1數、熱擴散係數’料個複數成形條件導出與上i 面附近的樹脂溫度及上述保持時間的關係。 〆、要疋滿^上述溫度範圍、保持時間範圍的成形條 ’不會在成形品的表面匕 ”午 形成表層。即,只要於模具形成 、輸入之隔熱層的資訊相同的隔熱層即可。 〈隔熱層〉 在此’說明隔熱層的形成方法之前,簡單說明容易滿 足上述溫度範圍、保持時間範圍的隔熱層等。 / 隔熱層’以熱傳導係數G_3w/ln.K以下,厚度以6〇^ 以上為佳。若滿足該等條件的隔熱層,則有可充分隔敎的 趨勢,容易滿則上述溫度範圍、保持時間範圍。 熱傳導係數為〇.熟心下’且具備可耐成形時的高 :益的程度的耐熱性的材料,可舉環氧樹脂、聚醢亞胺、聚 苯並咪唑、聚醯亞胺以及聚醚醚酮。 如上所述’於隔熱層上,可配置金屬層。金屬層,可 良好地使用紹、sus等的板。於隔熱層上形成金屬層的方法 ,可採用先前習知的層屋法等。金屬層的厚度,雖依包含 於金屬層的金屬種類,以0.1職以下為伟 。此外,如上述地 使用金屬板時,如上所述需要使隔熱層變厚,例如設定為 10mm以上,以20mm以更佳。 此外,使用減鍵法、離子錢法等先前習知的鑛膜形成 201206676 法,可於隔熱層上形成薄祺狀的金屬層。由於鍍膜非常的 薄,與設置金屬板之情形不同,隔熱層的厚度有6〇#m以上 即可。 模具的金屬部分的内表面形成隔熱層的方法,並無特 別限定。例如’以如下方法將隔熱層形成於模具的内表面 為佳。 可舉將可形成冑分子隔熱層的聚δ!亞胺前驅物等的聚 合物前驅物的溶液塗佈於模具的金屬部分的内表面加熱 使溶劑蒸發’進一步加熱聚合物化形成聚酿亞胺膜等的隔 ’’’、層的方法’將耐熱性高分子的單體,例如均苯四甲酸肝 與4, 4-二胺基二苯醚蒸鍍聚合之方法;相當於模穴表面的 刀由隔熱板所組成的门$,將门型安裝於主模具的方法 。此外,關於平面形狀的模#,可舉使用高分子隔熱膜以 適當的黏著方法或者使„帶狀的高分子隔熱膜黏貼於模 具的所期望部分形成隔熱層的方法。此外,隔熱層的形成 ’亦可係將形成隔熱層的樹脂電沉積於模具方法。再者, 亦可為賦予隔熱層、隔熱板表面的防止刮傷等的耐久性的 目的而形成金屬層。 此外,隔熱層,亦可使用陶曼材料。陶竟材料表面由 於耐磨耗性優良,纟需將上述金屬層配置^陶兗材料所構 成的隔熱層。心材料,使用於内部含有氣泡的多孔質氧 :锆、二氧化矽等為佳。其中’自多孔質氧化鍅構成的隔 J ’由於主要是以氧化錯構成’故射出成形時對施加於 隔熱層的屋力之耐久性高。因此,不容易發生因上述壓力 12 201206676 而產生的隔熱層的不良狀況。因此 斷成形的次數減少,可担一 出成$的途中中 J蛟向射出成形品的生產性。 氧化鍅’並無特別 a201206676 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of manufacturing a mold. [Prior Art] A group of plastics called engineering plastics have high strength and gradually replace metal parts. A group of plastics, which are referred to as liquid crystal resins, can be melted while maintaining the crystal structure. "The high strength based on the crystal structure is one of the characteristics of the liquid crystalline resin. Further, since the liquid crystalline resin does not largely change during the curing, the volume change during melting and curing is small. As a result, the liquid crystalline resin has an advantage that the molding shrinkage is small and the dimensional accuracy of the molded article is excellent. As described above, the liquid crystal resin composition is used for precision machine parts because of the advantages of high strength and excellent dimensional accuracy. However, in the case of precision machines, optical machines, etc., the amount of garbage, dust, etc., affects the performance of the machine. Therefore, parts used for precision machines and optical equipment, such as parts for camera modules, are required to be ultrasonically washed by water or the like to remove minute waste, oil, dust, and the like adhering to the surface. However, in the molded article obtained by molding the liquid crystalline resin composition, since the molecular alignment is particularly large on the surface portion, in the usual molding method, the surface layer is formed on the skin layer, and the surface is relatively easy to fluff. Therefore, if the surface of the molded article is peeled off, it will become a cause of falling off (garbage). As a result of the occurrence of garbage or the like, ultrasonic cleaning of a molded article obtained by molding a liquid crystalline resin composition is extremely difficult. 201206676 becomes the surface layer of the cause of the above-mentioned garbage 'Because of the molecule as described above. In forming. . The surface is particularly large to form a skin layer. A method of forming the surface layer which is easy to fluff is formed by a mold temperature of 2 GSt or more. According to this method, fluffing can be suppressed, but the molding cycle becomes extremely long, which causes a problem of deterioration in productivity and deterioration of resin retention. Further, as a molded article for improving surface characteristics, there is disclosed a molded article, a molded article of a woven bag, a burrowing knife, and a fibrous filler, which is characterized in that: 八 has a rough surface obtained by a predetermined surface tape peeling test. The rise of the Ra value is a plane portion of 0.4 # m or less (Patent Document 丨). According to the method described in Patent Document 1, there is a component for use as an actuator or an optical device, and it is possible to prevent the surface particles (foreign matter) from being emitted. The technique described in Patent Document 1 can be used to improve the surface characteristics. However, as described in the embodiment of Patent Document 1, the occurrence of foreign matter in Patent Document i is a foreign matter generated when the surface of the cleaning surface is slowly stirred in pure water for a minute. The improvement of the surface characteristics by the method described in Patent Document 1 is difficult to suppress the generation of the surface layer itself, and exposure of the molded article to a strong condition such as ultrasonic cleaning produces a large amount of foreign matter. [Patent Document 1] [Patent Document 1] JP-A-2008-239950 SUMMARY OF INVENTION [Problems to be Solved by the Invention] The present invention has been made to solve the above problems, and an object thereof is to provide suppression of inclusion. 4 201206676 of a molded article composed of a resin composition of a liquid crystalline resin, and a method for producing a molded article of a molded article having an excellent appearance. [Means for Solving the Problem] The inventors of the present invention have worked hard to solve the problems of the above-mentioned 34 subjects. As a result, it was found that the temperature in the vicinity of the liquid surface filled in the mold and the liquid crystal property were measured by conduction, and the relationship between the retention time and the holding time in the inside of the ,8 was not derived in the molded article. The temperature range of the resin temperature near the cavity where the surface layer is formed on the skin layer and the holding time are kept in a dry time, and the mold can be set. The invention is more particularly versatile and the above-mentioned problems are more specific and the present invention provides the following. (1) A method for producing a mold, which is a method of producing a liquid crystal resin composition containing a liquid, which is formed by a composition of 00:00, which is formed by a heat transfer analysis, and is obtained by heat conduction analysis. /f M f S v , the relationship between the degree of the vicinity of the cavity surface of the liquid solar resin and the holding time in the liquid crystal resin mold, and the derivation does not open on the skin layer of the molded article. The temperature range and the holding time are maintained. The temperature range and the holding time range satisfy the J-solid insulating layer. The heat system is used to form a barrier on the surface of the cavity, and the specific gravity of the liquid crystalline resin. 'Two is carried out with the number of materials constituting the mold as parameters. (10), Thermal diffusion system (2) The method for producing a mold according to (1), which is 23 (TC or more, and the above-mentioned accompanying 眛pq e 'L ' dish has a retention time range of 0.3 seconds or more. (8) As (1) Or, in the manufacturing method 1 of the mold according to (7), the conduction analysis 'determination range, the heat insulating layer', the heat-increasing material 枓, the installation position, and the shape (4) are any _ shape items of (1) to (3). In the method of manufacturing a mold described above, in 5 201206676, the thermal conductivity of the heat insulating layer is 〇·3 W/m·K or less, and the thickness is 60 m or more. (5) As in any of (1) to (4) The method for producing a mold, wherein the heat insulating layer comprises at least one resin selected from the group consisting of polybenzimidazole, polyamidimide, and polyetheretherketone. (6) Any one of (1) to (4) The method of manufacturing a mold according to any one of the above aspects, wherein the method of manufacturing the mold according to any one of (1) to (5), wherein The hot layer has a metal layer on the surface. [Effect of the Invention] Using the mold manufactured by the present invention, the production consists of a liquid crystalline resin. In the molded article composed of the resin composition, the surface of the molded article can be prevented from being raised by ultrasonic cleaning, and a molded article having an excellent appearance can be obtained. [Embodiment] Hereinafter, embodiments of the invention will be described in detail. In the method for producing a mold according to the present invention, the relationship between the temperature in the vicinity of the surface of the cavity of the liquid crystal resin filled in the mold and the holding time in the liquid crystal resin mold is derived by heat conduction analysis, and the relationship is not obtained. In the skin layer of the molded article: the temperature range of the resin temperature in the vicinity of the cavity forming the surface layer and the holding time range of the holding time, the heat insulating layer can be set to the mold to satisfy the temperature range and the holding time, and the heat conduction analysis described above The mold which uses the heat insulating layer on the surface of the cavity is used as a parameter for the material constituting the mold and the liquid crystal resin, which is the weight of the 201206676, the specific heat, the hot material, and the heat (four). The use of the heat conduction analysis is used to derive and export. Filling the liquid crystal tree in the mold at the temperature near the eight surface and the liquid crystal resin in the mold The relationship of the retention time is different from the molding conditions in which the surface layer exists on the layer on the skin layer and the molding conditions which are not present. The ease of the decrease in the temperature of the resin near the surface of the cavity can be distinguished from whether or not the formation of the surface layer is affected. In the relationship between the temperature in the vicinity of the surface of the cavity and the holding time, and the heat insulating layer is provided on the mold in a desired manner, it is possible to prevent the occurrence of fuzzing of the surface, and it is possible to produce a molded article having an excellent appearance. In the following, the method of producing the mold of the present invention will be described in more detail. <Determining Resin Material and the like> The resin material is not particularly limited as long as it is a resin composition containing a liquid crystalline resin. However, for the entire resin composition, the liquid crystal resin accounts for 5. In the case of a mass % or more, it is particularly easy to form a surface layer, and an additive such as another resin, an oxidation inhibitor, a pigment, a stabilizer, or an inorganic filler may be blended in the resin composition in a range that does not impair the effects of the present invention. In addition, a liquid crystal resin (liquid crystal polymer) described in JP-A-2010-10-161, JP-A No. 65-65, is exemplified. . <Setting of heat insulating layer> The setting of the heat insulating layer is to first introduce a temperature range and a holding time range of the resin in the vicinity of the surface of the cavity in which the surface layer is not formed on the skin layer of the molded article (first step). The receiver 'satisfies the above temperature range and the holding time range in the mold setting 7 201206676 step) The heat insulating layer (the 'description of the mold of the present invention' is divided into the manufacturing method of the first step and the second step. <First step> In the first step, the relationship between the temperature of the resin filled in the mold and the crystalline resin in the vicinity of the surface of the cavity and the holding time of the liquid crystal mold is derived by heat conduction analysis. Here, the heat conduction analysis is performed by using the two surfaces to form a heat insulating layer. The specific gravity, the ratio of the mold, the conduction, the conductivity, the liquid crystal resin, the conductivity coefficient, and the thermal diffusion coefficient are used as parameters. Specifically, the above relationship is derived as follows, and the use of the heat conduction analysis is described. In order to suppress the decrease in the temperature of the resin near the surface of the die, a heat insulating layer is used. Here, the thermal movement of the resin in the mold must be considered in consideration of the conductivity and the thermal insulation layer 07, and the liquid crystal. The specific gravity of the resin 2: It is necessary to use the physical properties of the material constituting the mold as the heat of the reference heat, the heat transfer coefficient, the thermal diffusivity, etc. In the conduction analysis, the parameters are input. Next, the mold for forming the heat insulation layer on the surface of the cavity is described. It is necessary to determine in advance how to set the heat insulation layer in the mold; the layer is used for heat conduction analysis. The degree of heat movement is different. However, the mold and the heat insulation layer are set, and the specifics, such as the door, etc., are appropriately changed. To what extent, the heat insulation layer can be more specifically described according to the required accuracy. A mold which forms a heat insulating layer on the entire surface of the cavity, and a schematic view of a section 8 201206676 of the divided mold formed on the surface of the cavity without a heat insulating layer is provided. By providing the heat insulating layer in the entire cavity. The entire surface of the molded article is not formed into a surface layer. Further, the split mold is composed of a fixed side mold and a movable side mold as shown in Fig. 1. It is decided to use the mold of Fig. 1(a) for heat conduction analysis. Then, it is determined that the layer thickness Ls (the direction perpendicular to the merged surface of the split mold), the thickness L of the heat insulation layer r ^ and the thickness Lm of the mold layer in the thickness direction of the heat layer are also in the heat conduction analysis. Input Furthermore, the positions of Ls, Lm, and Lp are shown in Fig. 2. Further, in Fig. 1(a), the entire surface of the 桓 主 main 桓 形成 is formed with a heat insulating layer, as shown in Fig. Ub). The part of the surface of the cavity is formed with a heat insulating layer. The example of:: can be used to form a metal layer on the heat insulating layer of the mold forming the heat insulating layer on the surface of the cavity surface. A schematic diagram showing a cross section of a split mold in which the heat insulating layer is formed into a metal layer. By forming a metal layer on the heat insulating layer, the wear resistance of the surface of the mold is improved, in particular, the glass fiber is tempered. The surface is easily worn. Therefore, when using the second: filler, the mold of the mold hole is preferably the same as the one shown in Fig. 1(C) when using a resin composition such as glass fiber. The surface of the hole has a high heat transfer coefficient in the force 邋s, and the combination produces a 'thickness due to the formation of the metal layer to thicken the heat insulating layer. The mold shown in the core MUe) performs the thickness Ls of the heat conductive layer (the direction perpendicular to the mold in the thickness direction of the split mold), the thickness Lm of the heat insulating layer 8, and the thick thickness Lp of the heat insulating layer. The metal layer in the thickness direction of the heating layer of the cavity in the phonon direction is transmitted at the time of conduction analysis, and the value is input, and 2012-06676 is taught using the input conditions such as the parameters determined above. The molding conditions such as the mold temperature are changed, and the relationship between the temperature in the vicinity of the surface of the cavity and the above holding time is determined by the guide. Then: Each forming condition is actually formed to confirm whether a surface layer is formed on the skin layer. For example, the relationship of each forming condition is derived as shown in the graph of Fig. 3 (p, ~p4 in Fig. 3). Then, the heat conduction analysis was carried out under the condition that the mold temperature was about 2 GG ° C without forming a surface layer on the surface of the molded article, and the relationship between the temperature near the surface of the mold and the holding time was derived (line Q of FIG. 3). ). Here, it is assumed that p2 is not formed on the surface of the molded article, and a surface layer is formed on the surface of the molded article. There is a limit between the solid point and the solid line (4) intersection point α2, and the intersection point between the solid line p3 and the solid line Q, whether or not the surface layer is formed on the surface of the molded article. For example, the limit can be determined. Between the heart and α 3. When the position of α is the limit value, the temperature range of the temperature near the surface of the mold layer of the surface layer is not formed on the skin layer of the molded article, and is TC or more as shown in FIG. 3, and the holding time range of the holding time is t seconds or more. . Further, when the conditions for forming the surface layer on the surface of the molded article cannot be obtained by heat conduction analysis, the conditions for changing the thickness of the heat insulating layer and changing the material are not changed. Further, when the corpse can obtain a condition that the surface layer is not formed on the surface of the molded article, the limit can be determined among the conditions (4). <Second Step> In the width of one, u', the surface layer of the molded article is not formed on the surface layer of the molded article. ^The material, shape, arrangement, etc. of the thermal layer can be used for the heat conduction analysis of one step and one step. For different insulation layers, 10 201206676 2: The above heat conduction analysis can be used to study the above temperature materials and positions. When IV is 'as described above', the input of the heat insulating layer is input, and the specific gravity, ratio 埶, =1, and thermal diffusivity of the material constituting the mold are input, and the temperature of the resin in the vicinity of the upper surface is derived. The above relationship of retention time.成形 疋 疋 ^ 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述 上述<Heat-insulating layer> Before describing the method of forming the heat-insulating layer, a heat-insulating layer that easily satisfies the above temperature range and holding time range will be briefly described. / The heat-insulating layer has a heat transfer coefficient of G_3w/ln.K or less. The thickness is preferably 6 〇 or more. If the heat-insulating layer satisfies these conditions, there is a tendency to be sufficiently entangled, and it is easy to be full of the above temperature range and holding time range. The heat transfer coefficient is 〇. Examples of materials having high heat resistance which are resistant to molding can be made of epoxy resin, polyimide, polybenzimidazole, polyimide, and polyetheretherketone. On the layer, a metal layer can be disposed. The metal layer can be used well for plates such as sho, sus, etc. The method of forming a metal layer on the heat insulating layer can be carried out by a conventional layer house method, etc. The thickness of the metal layer is According to the metal species contained in the metal layer In addition, when the metal plate is used as described above, it is necessary to thicken the heat insulating layer as described above, for example, it is set to 10 mm or more, and more preferably 20 mm. The previously known mineral film formation method 201206676 can form a thin metal layer on the heat insulation layer. Since the coating film is very thin, unlike the case of providing a metal plate, the thickness of the heat insulation layer is 6〇#m The method of forming the heat insulating layer on the inner surface of the metal portion of the mold is not particularly limited. For example, it is preferable to form the heat insulating layer on the inner surface of the mold by the following method. A solution of a polymer precursor such as a polyδ! imine precursor of a layer is applied to the inner surface of the metal portion of the mold to be heated to evaporate the solvent. Further heating to polymerize to form a partition of the polyimine film or the like. Method of evaporating and polymerizing a monomer of a heat resistant polymer, such as liver of pyromellitic acid and 4,4-diaminodiphenyl ether; a door composed of a heat shield plate corresponding to a surface of a cavity $, install the door type in the main mold Method. Further, the planar shape of the mold on #, may be held in an appropriate high-molecular insulation film adhesion method or a method "polymer strip insulation film affixed to a desired portion of the mold form an insulating layer. Further, the formation of the heat insulating layer may be a method of electrodepositing a resin forming the heat insulating layer in a mold. Further, a metal layer may be formed for the purpose of imparting durability against scratches or the like on the surface of the heat insulating layer or the heat insulating sheet. In addition, the insulation layer can also be used as a Tauman material. The surface of the ceramic material is excellent in wear resistance, and it is not necessary to arrange the above-mentioned metal layer to form a heat insulating layer composed of ceramic materials. The core material is preferably used for porous oxygen containing bubbles inside: zirconium, cerium oxide, and the like. In the case where the spacer J composed of the porous cerium oxide is mainly composed of oxidative erection, the durability against the force applied to the heat insulating layer is high at the time of injection molding. Therefore, it is not easy to cause a problem of the heat insulating layer due to the above-mentioned pressure 12 201206676. Therefore, the number of times of the break forming is reduced, and it is possible to produce the productivity of the injection molded article in the middle of the formation of $. Cerium oxide ‘no special a
仆n 1 別限疋’以安定化氧化锆、部分P 化氧化錯、未安定彳卜g 文疋 立方晶氧化锆被安定化至室溫者,強度及動性=械係 性及財磨耗性優良。此外部分安定 2特 的氧化錯在室溫亦殘存—部分的狀態 =方晶 則由正方晶經麻田散鈇轉變成單斜 =j M應力’ 應力的作用而進展的龜裂 1可抑制因拉張 。此外,未安定化氧化"二具有很高的破壞知性 氧化鍅。再者,亦可組合— t疋化的 化氧化錘、及未安定化羞/ *疋匕氧化錯、部分安定 及未女疋化氧化錯之至少2種以上使用。 含於安定化氧化錐、部分 __ 女疋化氧化鍅的安定化劊 可採用先前習知之-般者*疋化劑, & ·ί如 氧化銀、二氧介你 氧化鎂等。安定化劑的使 -Γ & 更用里並無特別限定,並使用番 可知照用途、使用材料等適宜設定。 量 此外,在不損及本發明的效果& 、安定“一 的政果的範圍’除上述氧化锆 匕劑之外,亦可進—部包含先前習知的添加劑等。 使用上述原科形成隔熱層的 忮Μ、土姿从 奸 1…、荷別限疋,採用 熔射去為佳。藉由採用熔射法, 數宜%杜+ 孔質氧化錯的熱傳導係 I :易調整在所期望的範圍。此外,並不會因於多孔質氧 化錯内部過度形成氣泡而大幅度 質氧 & 低機械強度等問題。 如此地藉由熔射形成隔熱層,⑮熱 用途。 9的構造適合本發明的 13 201206676 藉由熔射的隔熱層之形成,例如可 ’使隔熱層的原料溶融成液體。使該液體加速=。首先 表面衝擊。最後’使衝擊附著於模穴八的内 。益π 門表面之原料固化 ’可於模具的内表面形成非常薄的隔熱層。藉由將 炫融的原料衝擊附著在該非常薄的隔熱層使之固化 整隔熱層的厚度。再者,使原料固° 羽町万忐,可使用先前 I的冷卻Μ,或亦可單只是放置使之固化。再者,熔 射方法並無特別限定’可適宜選擇電弧熔射1漿熔射, 火焰溶射專的先前習知的方法。 具有上述的多層構造的隔熱層,可藉由調整隔熱層的 製造條件而製造。例如,以熔射法形成隔熱料,可藉由 調整將熔融的原料附著於模具内表面之條件而製造。 [實施例] 以下’根據實施例更詳細地本發明,惟本發明並非限 定於該等實施例。 〈實施例1> 於實施例1,使用以下的材料。 樹脂:液晶性樹脂(寶理塑膠株式會社製,r VECTRA E463ij ) 隔熱層:將聚醯亞胺樹脂(聚醯亞胺樹脂清漆(FINE CHEMICAL JAPAN公司製)’熱傳導係數0. 2W/m . K對模具的内 表面喷灑,以250°C,煅燒1小時後,將聚醯亞胺面研磨。) 此外,使用如圖4所示模具。隔熱層等的厚度為Lm= 1 Omm 、Lp=0. 7ππη、Ls=0. 0 6mm 0 14 201206676 構成模具的材料及液晶性樹脂的比重、比熱、敎 係數、熱擴散係數,如以下表!所示。熱傳導係數係以雷射 閃光法測定熱擴散係數而算出。比重係以阿基米德法測定 ’比熱係以DSC測定。 [表1 ] 比重 (kg/m3) 比熱 (J/(Kg-K) 1 熱傳導係數 (W/(m.K)) 熱擴散係數 模具的金屬材料 7800 461 33.1 \nl S ) 9. 21xl〇'6 聚醯亞胺樹脂 1270 1130 0.22 1 (V7 液晶性樹脂 1640 1730 0. 79 A · 00X1u 2 78v1(V7 g·丨〇入丄u 使用Thennl(—次元熱傳導分析軟體),將由模穴表面 //•η深度的樹脂溫度、樹脂在模具内的保持時間的關係, 以表2所示模具溫度等的成形條件導出。將導出之關係圖表 化示於圖5。此外,於圖5,亦一併表示,不具隔熱層之外 以與實施例1同樣的模具溫度20(TC的條件的熱傳導分析的 結果。 此外,將以表2所示成形條件製作成形品,對成形品點 貼透明膠帶(Sellotape :註冊商標)’藉由剝離透明膠帶 (Sellotape:註冊商標)確認有無表層。關於有無表層亦厂、 於表2。 [表2] 樹脂溫度 (°C) 模具溫度 (°〇 ---^ 有無表層 成形條件1 350 100 _有 成形條件2 120 — _ 些微有~ 成形條件3 140 —~〜 益 --^__^ ---- 15 201206676 將表示以無隔熱層’模具溫度2 0 〇 的條件之上述關係 之圖表’及表示以成形條件2、3之上述關係之圖表之交點 間存在是否會形成表層之限值。然後’由圖5,可推測只要 將流入模具的樹脂’在230°C以上的狀態,保持0.3秒Z上 >即不會在表皮層形成表層。 即,以熱傳導分析決定可將230t以上狀態保持〇3秒 以上的隔熱層’對模具設置該隔熱層,製造成形用的模具 。如此地製造模具,以既定的成形條件(例如上述成形條件 3)進行成形,即可射出成形於表皮層上沒有形成表層的成 形品。 〈實施例2 > 於實施例2 ’使用以下的材料。 樹脂:液晶性樹脂(寶理塑膠株式會社製,「vectra E463ij ) 隔熱層:由玻璃纖維及矽酸系膠合劑所組成的隔熱板 金屬層1 :sus板 金屬層2 :鋁板 設定於 .05mra ' 熱傳導 此外,使用如圖6所示模具。隔熱層等的厚度 L-l〇_、LP=0.7mm、Ls=1〇mm、2〇隨或3〇_、Lhi = 〇 〇. 1〇龍、0· 15mm、〇, 2〇mm,或 〇. 25mm。 構成模具的材料及液晶性樹脂的比重、比轨、 係數、熱擴散係數,如以下表3所示。 16 201206676 [表3 ] 比重 (kg/m3) 比熱 (J/(Kg-K) 熱傳導係數 (W/Cm-K)) 熱擴散係數 (m2.s) 板具的金屬材料 7800 461 33.1 9. 21xl〇·6 隔熱板 2000 990 0.24 1.21xl0'7 液晶性樹脂 1640 1730 0.79 2. 78x10'7 SUS板 7930 590 16.7 3. 57x10'6 鋁板 2700 900 237 9. 75x10'5 以與實施例1的成形條件3同樣地,進行熱傳導分析, 導出由模穴表面以7 // m的深度的樹脂溫度,在樹脂模具内 的保持時間的關係。流入模具的數之,將230°C以上狀態, 保持0. 3秒以上者評估為「〇」,其以外者評估為「X」。 將每個隔熱層的厚度及金屬層的厚度條件的評估結果示於 表4、5。Servant n 1 is limited to 疋 'to stabilize zirconia, partial P oxidation oxidization, unsettled g g 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 者 , , , , , , , , , , , , , , , , , , , , , , , , excellent. In addition, part of the stability of the two special oxidation faults remain at room temperature - part of the state = cubic crystals from the tetragonal transformation of the field to the monoclinic = j M stress ' stress and the progress of the crack 1 can inhibit the cause of tension . In addition, unstabilized oxidation " two has a high destruction of the intellectual bismuth oxide. Further, it is also possible to use at least two types of oxidized hammers, such as oxidized hammers, and unsettled smear, sputum oxidized, partially stabilized, and virgin oxidized. It can be used in the stable oxidized cone and some __ 疋 鍅 鍅 鍅 刽 刽 刽 刽 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 可采用 。 。 。 。 。 。 。 。 。 。 。 。 。 The use of the stabilizer is not particularly limited, and it can be appropriately set by using the use and materials. In addition to the above-mentioned zirconia tincture, the effect of the present invention is not limited to the effect of the present invention, and the above-mentioned zirconia tincture may be included. The thermal insulation layer is easy to adjust in the sputum and soil posture of the insulation layer. In addition, there is no problem of excessive oxygenation and low mechanical strength due to excessive formation of bubbles in the porous oxidation oxidization. Thus, thermal insulation is formed by spraying, and 15 heat is used. 13 201206676 suitable for the present invention, by the formation of a heat-insulating layer of the melt, for example, can melt the raw material of the heat-insulating layer into a liquid. Accelerate the liquid = first surface impact. Finally, the impact is attached to the cavity The inner surface of the π door surface is solidified to form a very thin thermal insulation layer on the inner surface of the mold. The impact of the glazed raw material is adhered to the very thin thermal insulation layer to cure the entire thermal insulation layer. Thickness. Furthermore, the raw material is fixed in the city.忐, the cooling enthalpy of the previous I can be used, or it can be cured only by placing it. Further, the spraying method is not particularly limited, and it is suitable to select an arc spray 1 slurry spray, a conventionally known flame spray ray. The heat insulating layer having the above-described multilayer structure can be produced by adjusting the manufacturing conditions of the heat insulating layer. For example, the insulating material is formed by a spray method, and the molten raw material can be attached to the inner surface of the mold by adjusting. [Examples] Hereinafter, the present invention will be described in more detail based on the examples, but the present invention is not limited to the examples. <Example 1> In Example 1, the following materials were used. Resin: Liquid crystalline resin (Breakfast Plastic Co., Ltd., r VECTRA E463ij) Insulation layer: Polyimide resin (polyimide resin varnish (manufactured by FINE CHEMICAL JAPAN)' heat transfer coefficient 0. 2W/m. K inside the mold The surface was sprayed, and after calcination at 250 ° C for 1 hour, the polyimide surface was ground.) Further, a mold as shown in Fig. 4 was used. The thickness of the heat insulating layer or the like was Lm = 1 Omm, and Lp = 0.71π? , Ls=0. 0 6mm 0 14 201206676 The specific gravity, specific heat, enthalpy coefficient, and thermal diffusivity of the material and the liquid crystalline resin are as shown in the following Table! The heat transfer coefficient is calculated by measuring the thermal diffusivity by the laser flash method. The specific gravity is measured by the Archimedes method. 'The specific heat system is determined by DSC. [Table 1] Specific gravity (kg/m3) Specific heat (J/(Kg-K) 1 Heat transfer coefficient (W/(mK)) Thermal diffusion coefficient Metal material of the mold 7800 461 33.1 \nl S ) 9. 21xl〇'6 Polyimine resin 1270 1130 0.22 1 (V7 liquid crystalline resin 1640 1730 0. 79 A · 00X1u 2 78v1 (V7 g·丨〇入丄u using Thennl (------ The relationship between the resin temperature of the cavity surface / / η depth and the holding time of the resin in the mold was derived under the molding conditions such as the mold temperature shown in Table 2. The derived relationship diagram is shown in Figure 5. In addition, Fig. 5 also shows the results of heat conduction analysis under the same mold temperature 20 (TC condition as in Example 1 except for the heat insulating layer. Further, molded articles were produced under the molding conditions shown in Table 2; For the molded article, attach a transparent tape (Sellotape: registered trademark) to confirm the presence or absence of the surface layer by peeling off the transparent tape (Sellotape: registered trademark). The presence or absence of the surface layer is also shown in Table 2. [Table 2] Resin temperature (°C) Mold temperature (°〇---^ Is there a surface forming condition 1 350 100 _ There are forming conditions 2 120 — _ Something is too ~ Forming condition 3 140 —~~ Benefit ---___^ ---- 15 201206676 will indicate no The graph "the above relationship of the condition of the temperature of the heat-insulating layer 'mold temperature of 20 〇' and the difference between the intersections of the graphs of the above-mentioned relationships of the forming conditions 2 and 3 are formed. Then, from Fig. 5, it can be inferred As long as the resin flowing into the mold is maintained at a temperature of 230 ° C or higher for 0.3 seconds Z, the surface layer is not formed in the skin layer. That is, the heat conduction analysis determines that the heat can be maintained at 230 t or more for 3 seconds or longer. Layer 'set this to the mold The hot layer is used to produce a mold for molding. The mold is produced in this manner, and the molded article is molded under predetermined molding conditions (for example, the above-described molding condition 3), whereby a molded article formed on the skin layer without forming a surface layer can be injected. <Example 2 > In the second embodiment, the following materials were used. Resin: Liquid crystalline resin ("Vectra E463ij", manufactured by Polyplastics Co., Ltd.) Thermal insulation layer: Thermal insulation sheet metal layer composed of glass fiber and phthalic acid binder 1: Sus board metal layer 2: aluminum plate set at .05mra 'heat transfer In addition, use the mold shown in Figure 6. Thickness of insulation layer, etc. Ll〇_, LP=0.7mm, Ls=1〇mm, 2〇 or 3〇 _, Lhi = 〇〇. 1〇龙, 0·15mm, 〇, 2〇mm, or 〇. 25mm. The specific gravity, specific rail, coefficient, thermal diffusivity of the material constituting the mold and the liquid crystal resin, as shown in Table 3 below. 16 201206676 [Table 3 ] Specific gravity (kg/m3) Specific heat (J/(Kg-K) Heat transfer coefficient (W/Cm-K)) Thermal diffusivity (m2.s) Metal material for plates 7800 461 33.1 9. 21xl〇·6 Thermal insulation board 2000 990 0.24 1.21xl0'7 Liquid crystalline resin 1640 1730 0.79 2. 78x10'7 SUS Plate 7930 590 16.7 3. 57x10'6 Aluminum plate 2700 900 237 9. 75x10'5 In the same manner as the molding condition 3 of Example 1, heat conduction analysis was performed, and the resin temperature at a depth of 7 // m from the surface of the cavity was derived. The relationship of retention time in the resin mold. The number of inflows into the mold is estimated to be "〇" in the state of 230 ° C or higher, and it is evaluated as "X". The evaluation results of the thickness of each of the heat insulating layers and the thickness conditions of the metal layers are shown in Tables 4 and 5.
[表4 ] 隔熱板的厚度(mm) 10 20 30 SUS板的厚度 (mm) 0.05 〇 〇 〇 0.10 X 〇 〇 0.15 X X X 0.20 X X X 0.25 X X X[Table 4] Thickness of heat shield (mm) 10 20 30 Thickness of SUS plate (mm) 0.05 〇 〇 〇 0.10 X 〇 〇 0.15 X X X 0.20 X X X 0.25 X X X
[表5] 隔熱板的厚度(mm) 10 20 30 鋁板的厚度 (mm) 0.05 〇 〇 〇 0.10 〇 〇 〇 0.15 〇 〇 〇 0.20 X 〇 〇 0.25 X X X 17 201206676 由實施例2的結果明顯可確認,即使在隔熱層上形成金 屬層,亦可製造於表面不會形成表層的成形品。此外,雖 確認到可容許的金屬層的厚度依存於金屬的種類,惟確認 到只要是在大約lmm以下’容易成為成形品的表面不會形成 表層的隔熱層。此外’確認到只要隔熱板的厚度大約在2〇mm 以上容易成為成形品的表面不會形成表層的隔熱層。 由以上,即使於隔熱層上形成金屬層的時,亦與實施 例1同樣地’以熱傳導分析決定可將23〇°c以上狀態保持〇 3 秒以上的隔熱層,於模具設置該隔熱層,製造成形用的模 具。藉由使用如此地製造的模具進行成形,可射出成形不 會在表皮層形成表層的成形品。 〈實施例3 > 於實施例3,使用以下的材料。 樹脂:液晶性樹脂(寶理塑膠株式會社製,「vectra E463i j ) 隔熱層:熔射氧化錯的多孔質氧化锆層 由實施例丨的結果,以實施例丨的成形條件3時,由於流 入模具的樹脂,可保持〇.3秒以上23吖以上狀態,故可推 定於表皮層不會形成表層。 於實施例3,使用Therml(-次元熱傳導分析軟體),導 出氧化錯層作為隔熱層•,可將流入模具的樹脂 保持0.3秒以上靴以上狀態的隔熱層的厚 定與實施例】同樣的圖4所示之模具。即― …關。構成模具的材料及液晶性樹脂之比重、比敎 18 201206676 、熱傳導係數、熱擴散係數,使用如下表6所示之值 _[表 6 ] 熱擴散係數 模具的金屬材料 氧化錯層 液晶性樹脂 比重(kg/m3) 7800 5860 1640 比熱(J/(kg · K)) 461 465 1730 熱傳導係數 33.1 0.96 lm2. S) _9. 21x10— 3. 52x10' 2. 78x10' 使用Therml(—次元熱傳導分析軟體),將由模穴表面 以7“的深度的樹脂溫度’在樹脂模具内的保持時間的關 係’改變隔熱層的厚度’各個每個厚度,與實施例】同樣地 導出,推定藉由使隔熱層的厚度為5〇〇以111,在於實施例工 的成形條件3之情形,流入模具的樹脂可保持〇· 3秒以上 23(TC以上的狀態。因此,實際製作LM=1〇mm、Lp=〇 ^、 之如圖4所示模#。此夕卜,關於隔熱層的形成方 法將於後述。 此外’以表7所示成形條件製作成形品,對成形品黏貼 透明膝帶(Μ1。—:註冊商標),藉由剝離透明膠帶 (SeU〇taPe:註冊商標)確認有無表層。關於有無表層亦示 於表7。[Table 5] Thickness of heat shield (mm) 10 20 30 Thickness of aluminum plate (mm) 0.05 〇〇〇0.10 〇〇〇0.15 〇〇〇0.20 X 〇〇0.25 XXX 17 201206676 It is apparent from the results of Example 2 Even if a metal layer is formed on the heat insulating layer, a molded article in which the surface layer is not formed on the surface can be manufactured. In addition, it was confirmed that the thickness of the metal layer which can be tolerated depends on the type of the metal, and it is confirmed that the heat insulating layer which does not form the surface layer is easily formed on the surface of the molded article as long as it is about 1 mm or less. Further, it has been confirmed that as long as the thickness of the heat shield is about 2 mm or more, it is easy to form a heat insulating layer on the surface of the molded article without forming a surface layer. As described above, even when a metal layer is formed on the heat insulating layer, in the same manner as in the first embodiment, it is determined by heat conduction analysis that the heat insulating layer can be maintained in a state of 23 ° C or more for 3 seconds or more, and the partition is provided in the mold. The hot layer is used to manufacture a mold for forming. By molding using the mold thus produced, it is possible to injection-mold a molded article which does not form a surface layer on the skin layer. <Example 3 > In Example 3, the following materials were used. Resin: liquid crystal resin ("vectra E463i j" manufactured by Polyplastics Co., Ltd.) Insulation layer: The powdery oxidized porous zirconia layer was obtained as a result of Example ,, and the molding conditions of Example 33 were The resin flowing into the mold can be maintained in a state of 33 seconds or more and 23 吖 or more. Therefore, it can be estimated that the surface layer is not formed on the skin layer. In Example 3, the Therml (-dimensional heat conduction analysis software) was used to derive the oxidized layer as the heat insulation. The thickness of the heat-insulating layer in which the resin flowing into the mold is maintained for 0.3 seconds or longer and the same as that of the embodiment can be the same as that of the embodiment shown in Fig. 4. That is, the material constituting the mold and the liquid crystalline resin can be used. Specific gravity, ratio 201218 201206676, heat transfer coefficient, thermal diffusivity, use the values shown in Table 6 below _[Table 6] Thermal diffusion coefficient mold metal material oxidized cross-layer liquid crystal resin specific gravity (kg/m3) 7800 5860 1640 Specific heat (J/(kg · K)) 461 465 1730 Heat transfer coefficient 33.1 0.96 lm2. S) _9. 21x10— 3. 52x10' 2. 78x10' Using Therml (--dimensional heat conduction analysis software), will be 7" from the cavity surface Deep resin The relationship between the retention time of the degree 'in the resin mold' and the thickness of the heat-insulating layer was changed in the same manner as in the example, and it was estimated that the thickness of the heat-insulating layer was changed to 5 〇〇 to 111. In the case of the molding condition 3 of the work, the resin flowing into the mold can be maintained for 3 seconds or more and 23 (TC or higher). Therefore, the actual production of LM = 1 〇 mm, Lp = 〇 ^, as shown in Fig. 4 In addition, the method of forming the heat-insulating layer will be described later. In addition, the molded article is produced under the molding conditions shown in Table 7, and the transparent knee band (Μ1.—: registered trademark) is adhered to the molded article by peeling off the transparent tape. (SeU〇taPe: registered trademark) It is confirmed whether or not there is a surface layer. The presence or absence of the surface layer is also shown in Table 7.
成形條件1 成形條件2 模具溫度 (。0 有無表層 100 __ 有 — 120 些微有 — 140 — 無 設定既定的成形料,以熱料分析Μ可㈣代以 19 201206676 沾保持Q.3秒以上的隔熱層的厚度,於模具設置該厚度 隔熱層,製造成形用的模具。如此地製造模具,以設定 的成形條件(例如上述的成形條件3)進行成形,可射出成形 不會在表皮層形成表層的成形品。 〈隔熱層的形成及物性的測定〉 說明關於上述隔熱層的形成方法,及表】所示隔熱層的 物性之測定方法。將主要由氧化錯構成的原料,以炼射法 對上述模具的内表面熔射。使隔熱層的表面變高地調整, 於模具内表面形成多層構造的隔熱層。持續炫射到隔熱層 的厚度成500 /z m。 熱傳導係數係藉由雷射閃光法測定熱擴散係數而算出 。比重係以阿基㈣法測定,比熱_dsc測定。 氧化結隔熱層的熱傳導係數係以雷射閃光法由熱擴散 係數、以DSC測定比熱、水中置換法(遵照mz88〇7固體比 重測定方法)測定比重,以[熱傳導係數]=[熱擴散係數伙 熱X比重]算出。再者’多層構造的隔熱層的熱傳導係數⑴ 係分別求密度低的層與高的層的各個熱傳導係數,以密产 低的層的熱傳導係數Ul)、密度高的層的熱傳導係^ (入h)、隔熱層全體的厚度的密度低的層的厚度比例Q)時 使用[l/;l] = [t/;Li] +[(卜t)/;lh]之式計算求得。 實際測定的結果,構成模具的材料及液晶性樹脂之比 重、比熱、熱傳導係數、熱擴散係數,如上述表6所示。 【圖式簡單說明】 20 201206676 圖1係示意表示形成有隔熱層的模具的气 係於模穴表面的全體形成隔熱層的分割模具面之圖' (a) 圖、⑴係於模穴表面的一部分形成隔熱層;;分示意 面之示意圖、⑷係於隔熱層上形成金屬^模具的剖 面之示意圖。 屬層的分割模具的剖 圖2係為說明隔熱層的厚度、模穴的厚声 之形成有隔熱層的分割模具的剖面之示意圖的厚度 與上=表:在於複數成形條件的模穴表面附近的溫度 、上述保持時間的關係的圖。 圖4係表示使用於實施例丨之模具之圖。 圖5係表不在於實施例卜由模穴表面 溫度盥槲胪捃目士 从m冰度的樹月曰 〃 ί月曰模具内的保持時間之關係之圖。 圖6係表示使用於實施例2之模具之圖。 【主要元件符號說明】 無 21Molding condition 1 Molding condition 2 Mold temperature (.0 with or without surface layer __ Yes - 120 Something is too - 140 - No setting of the specified forming material, with hot material analysis (4) Substitute 19 201206676 Dip for more than Q.3 seconds The thickness of the heat layer is set to the thickness of the heat insulating layer to form a mold for molding. The mold is manufactured in this manner, and the mold is molded under the set molding conditions (for example, the molding condition 3 described above), so that the injection molding can be formed not in the skin layer. (Formation of heat-insulating layer and measurement of physical properties) The method for forming the heat-insulating layer and the method for measuring the physical properties of the heat-insulating layer shown in the table are as follows. The refining method melts the inner surface of the mold, adjusts the surface of the heat insulating layer to a high degree, and forms a heat insulating layer having a multilayer structure on the inner surface of the mold. The thickness of the heat insulating layer is continuously slid to 500 / zm. It is calculated by measuring the thermal diffusivity by the laser flash method. The specific gravity is measured by the Aki (IV) method and the specific heat _dsc is measured. The thermal conductivity of the oxidized insulating layer is laser flash method. The thermal diffusivity, the DSC measurement specific heat, and the water displacement method (in accordance with the mz88〇7 solid specific gravity measurement method) were used to measure the specific gravity, and the [heat transfer coefficient] = [thermal diffusion coefficient hot X specific gravity] was calculated. The thermal conductivity of the layer (1) is the heat transfer coefficient of the layer with low density and the thermal conductivity of the layer with low density, and the thermal conduction system of the layer with high density (into h) and the entire thermal insulation layer. The thickness ratio Q) of the layer having a low density of thickness is calculated by using the formula [l/;l] = [t/; Li] + [(b t)/; lh]. As a result of actual measurement, the specific gravity, specific heat, heat transfer coefficient, and thermal diffusivity of the material constituting the mold and the liquid crystalline resin were as shown in Table 6 above. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view schematically showing a part of a mold surface in which a gas layer of a mold having a heat insulating layer is formed on a surface of a cavity to form a heat insulating layer; (a), (1) is attached to a cavity. A part of the surface forms a heat insulating layer; a schematic view of the surface, and (4) a schematic view of a cross section of the metal mold formed on the heat insulating layer. Section 2 of the split mold of the genus layer is a schematic diagram showing the thickness of the heat insulating layer, the thickness of the cavity, and the thickness of the cross section of the split mold in which the heat insulating layer is formed, and the upper surface: the cavity in the plural forming condition A graph showing the relationship between the temperature near the surface and the above holding time. Fig. 4 is a view showing a mold used in the embodiment. Fig. 5 is a diagram showing the relationship between the holding time in the mold of the mold surface temperature from the surface of the mold. Fig. 6 is a view showing a mold used in Example 2. [Main component symbol description] None 21