TW201205896A - Method for producing light-emitting device, light-emitting device, and reflector - Google Patents

Method for producing light-emitting device, light-emitting device, and reflector Download PDF

Info

Publication number
TW201205896A
TW201205896A TW100125083A TW100125083A TW201205896A TW 201205896 A TW201205896 A TW 201205896A TW 100125083 A TW100125083 A TW 100125083A TW 100125083 A TW100125083 A TW 100125083A TW 201205896 A TW201205896 A TW 201205896A
Authority
TW
Taiwan
Prior art keywords
reflector
light
emitting device
inorganic filler
metal layer
Prior art date
Application number
TW100125083A
Other languages
Chinese (zh)
Inventor
Yoshiaki Taguchi
Yasuyuki Takeda
Hiromitsu Seitoh
Original Assignee
Polyplastics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co filed Critical Polyplastics Co
Publication of TW201205896A publication Critical patent/TW201205896A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A reflector having a smooth surface and a method for producing said reflector by using a liquid crystal resin composition obtained by mixing an inorganic filler with a liquid crystal resin are provided. The reflector is produced in such a manner that the difference (ΔRa) between the surface roughness (Ra) of the reflector and the surface roughness (Ra) of the inner wall surface of a mold for producing the reflector is not more than 0.1 mm. The mean primary particle diameter of the inorganic filler that is used is ideally not more than 15 μm. Furthermore, the content of the inorganic filler is ideally between 5 parts by mass and 70 parts by mass per 100 parts by mass for the liquid crystal resin.

Description

201205896 六、發明說明: 【發明所屬之技術領域】 本發明係關於發光裝置的製造方法、發光裝置及反射 體。 【先前技術】 先前’已知有裝載發光元件的發光裝置(例如,參照專 利文獻1)。上述專利文獻1所所述的發光裝置,包括:裝載 作為光源的LED(Light Emi tt ing Diode :發光二極體)元件 (發光元件)的電路基板;及反射體(reflect〇r),其係反射 由設於印刷電路板上的LED元件的光。於專利文獻i所所述 的發光裝置,反射體係由金屬材料所構成,藉由樹脂接著 劑固定在電路基板上。 然而,近幾年’被要求發光裝置的薄型化、小型化。 即反射體亦被要求小型化、輕量化。但是,如上所述,現 狀的反射體係由金屬材料所構成,小型化、輕量化並不容 易。因此,如專利文獻2所記載,可考慮製造由樹脂材料所 組成的反射體。由於樹脂材料具有容易成形等的特徵,故 可認為較容易製造小型化,輕量化的反射體。 於專利文獻2 ’記載以熱硬化性樹脂作為原料製造反射 體。但是,專利文獻2所述的反射體,有因硬化收縮、尺寸 不穩定的問題。再者,即使是使用熱塑性樹脂時,由於樹 脂在成形後的冷卻會收縮,與使用熱硬化性樹脂時同樣地 有無法得到尺寸穩定的反射體之問題的趨勢。 201205896 [專利文獻1]曰本特開201 0-80723號公報 [專利文獻2]日本特開2001-24233號公報 【發明内容】 [發明所欲解決的課題] 成形後的收縮率小的樹脂,已知有液晶性樹脂。可認 為以液性樹脂為原料成形反射體’藉由在該成形體表面 形成金屬層,可得尺寸的穩定的反射體。 然而,在於發光裝置的製造步驟中,反射體會暴露在 同伽·。因此,使用液晶性樹脂作為反射體的原料時,有需 要對液晶性樹脂添加無機填充劑以提升耐熱性。 但是,為了提升耐熱性,將對液晶性樹脂調合無機填 充劑而成的樹脂組合物作為原料製造反射體,則反射體的 表面會粗糙。若反射體的表面粗糙,則無法將由lED元件 的光反射的金屬層,平滑地形成在反射體上。結果,反射 體無法有效地將由led元件的光反射。 本發明係為解決如以上的課題而完成者,其目的係在 於使用對液晶性樹脂調合無機填充劑的液晶性樹脂組合物 ’提供表面平滑的反射體及該反射體的製造方法。 [用以解決課題的手段] 本發明者們,為解決上述課題專心反覆研究。結果發 現反射體的表面粗糙度Ra及用於製造反射體的模具之内壁 面的表面粗糖度Ra之差成〇.1 mm以下地製造反射體 ’即可解決上述課題而達至完成本發明。更具體而言,本 4 201205896 發明提供如下者。 (1) 種發光袈置的製造方法,上述發光裝置包括:電 路基板’I光元件’其係裝載於電路基板丨及反射體,其 係。圍發光元件地配置於上述電路基板上,上述反射體, 具有將由發光TL件的光向所期望的方向反射的傾斜面,上 述發光裝置的製造方法包括:反射體製造步驟,其係由液 曰曰性樹知組合物製造反射體;金屬層形成步驟,其係對上 述反射體製造步驟所得的反射體的上述傾#面形成金屬層 ,發光7L件裝載步驟,其係於電路基板上裝載發光元件; 及反射體配置步驟,其係於上述電路基板上配置反射體, 上述反射體製造步驟,係將反射體的表面粗糙度Ra,及用 於製造上述反射體的模具之内壁面的表面粗糙度Ra之差 (△Ra)成0.1mm以下地製造反射體之步驟。 (2) 如(1)所述的發光裝置的製造方法,其中上述差 (△ Ra)為 0. 0 3mm 以下。 (3) —種發光裝置,其包括:電路基板;發光元件,其 係裝載於電路基板上;及反射體,其係包圍發光元件地配 置於上述電路基板上,上述反射體,包含:液晶性樹脂; 及無機填充劑,平均一次粒徑為15 # m以下;於上述反射 體的表面配置金屬層。 (4) 如(3)所述的發光裝置,其中上述無機填充劑,係 板狀填充劑及/或粉狀填充劑。 (5) 如(3)所述的發光裝置,其中上述無機填充劑係平 均一次粒徑為0 · 7 &quot; m以下的二氧化石夕。 201205896 (6) 如(3)至(5)之任何一項所述的發光裝置,其中上述 無機填充劑的含量,對上述液晶性樹脂⑽質量部為5質量 部以上7 0質量部以下。 :液晶性樹脂;及無機填充劑 ,於表面具有金屬層。 (7) —種反射體,其包含 ’平均一次粒徑為15//m以下 [發明效果] 根據本發明,即使使用對液晶性樹脂調合無機填充劑 的液晶性樹脂組合物’亦可得到表面平滑的反射體。由於 形成在反射體表面的傾斜面也變平滑的結果,形成於傾斜 面的金屬層也變平滑,而可有效地反射來自發光層的光。 再者’根據本發明’反射體的表面幾乎不會原纖化。 結果,形成於反射體表面的金屬層,不會因反射體表面的 原纖化而產生剝落。因此,金屬層與反射體表面的密著性 非常兩。 【實施方式】 以下’詳細說明本發明之實施形態,惟本發明並非限 定於以下的實施形態。 〈發光裝置〉 圖1係示意表示本發明的發光裝置1之立體圖。圖2係示 意表示本發明的反射體12之圖,(a)係反射體12之立體圖, (b)係(a)之XX線之剖面圖。 本發明的發光裝置1,包括:電路基板1 〇、發光元件i i 、及反射體12。於圖1所示發光裝置1,係於電路基板i〇之 6 201205896 一面上,配置發光元件u, 體12。 包圍該發光元件11地配置反射 氧樹脂或液晶性樹脂等所 ’分別形成複數電極層( 電路基板10,係在由破璃環 構成的絕緣基材表面上及背面上 無圖示)。 發光元件U,係配置在電路基板10之一面上。發光元 件11的個數並無特別限定,可於電路基板之一面上配置一 個或複數個發光元件。 發光7G件11,包括電極部(無圖示),該電極部,與電 路基板10的電極層電性連接。對電極層施加電壓,則藉由 該電性連接,使電流在發光元件U流通,使發光元件丨丨發 光0 反射體12,係使用模具成形之板狀零件,使底面與電 路基板10的一面接合地配置於電路基板1〇上。此外,反射 體12,具有:貫通底面與表面之開口部丨2〇;反射由發光元 件的光的傾斜面121 ;及形成於表面上的金屬層122。再者 ,金屬層122,只要至少設於傾斜面121即可,再者亦可設 於反射體表面的傾斜面1 21以外的部分。 開口部1 2 0 ’由平面所視係圓形,由底面向上面呈錐狀 擴大。 傾斜面121 ’係開口部120的内側面。如上所述,由於開 口部12 0係由底面向表面呈錐狀擴大地形成,故傾斜面121對 電路基板10的一面呈傾斜。由於傾斜面傾斜,故可藉由形成 於傾斜面121上的金屬層122’有效地將發光元件的光向上方 201205896 反射。在此’使反射光的所期望的進行方向為上方(與電路 基板ίο的一面垂直的方向),為使反射光向上方以外的方向 反射,亦可既由調整傾斜角調整反射光的方向。 本發明係使反射體的表面粗縫度,及用於製造反射 體的模具之内壁面的表面粗糙度Ra之差(△ R)呈〇. 1關以下 地製造反射體12。表面粗糙度Ra之差(ARa),如上所述地 變小,表示反射體12的表面變平滑。反射體12的表面變平 滑,則反射體表面的一部分的傾斜面i 2丨亦變平滑。然後, 形成於平滑的傾斜面121上之金屬層122的表面亦變平滑。 金屬層122的表面變平滑,則可提升反射率’可有效地反射 由發光元件之光。如以上所述,本發明在之特徵在於反射 體12。 以下,更加詳細地說明使用於反射體12之材料。 用於本發明之發光裝置1之反射體丨2,係由包含液晶性 樹脂及無機填充劑的液晶性樹脂組合物所組成。以下,依 液晶性樹脂、無機填充劑的順序說明。 [液晶性樹脂] 由於液晶性樹脂具有很高的尺寸穩定性,藉由使用液 晶性樹脂可得尺寸敎的反射體12。然後,由於液晶性樹 脂具有很高的流動性,故亦可容易地進行反射體12的小型 化、薄型化。 用於本發明之液晶性樹脂,係指具有可形成光學異向 性熔融相的性質之熔融加工性聚合物。異向性熔融相的性 質’可藉由利用正交偏振器的慣用偏光檢查法確認。更具 8 201205896 體而s,異向性熔融相的確認,係使用Leitz偏光顯微鏡, 將載置於Lei tz加熱台上的熔融試料在氮氣氛下用4〇倍倍 率觀察實施。可適用於本發明的液晶性樹脂係在正交偏振 益之間檢查的時’即使是熔融靜止狀態,偏光會通常透過, 而顯示光學異向性。 如上所述的液晶性樹脂並無特別限定以芳香族聚脂 或芳香族聚&amp; 胺為佳’於同—分子鏈中部份包含芳香族 聚月曰或方香族聚脂醯胺之聚脂亦在該範圍。使用該等以 60°C以〇·1重量%的濃度溶解於五氟酚時,至少具有約 dl/g以2· 0〜10. 〇dl/g更佳的對數黏度(丨.ν·)者。 匕可適用於本發明的液晶性樹脂的芳香族聚脂或芳香族 :脂醯胺’以具有選自由芳香族羥基羧酸、芳香族羥基胺、 * —胺之群之至少丨種以上的化合物作為構成成分之 方族I月日、芳香族聚脂醯胺特別佳。 更具體而言,可舉: 2種以 (1)主要以芳香族羥基羧酸及其衍生物的丨種或 上所組成的聚脂; 1種或2 (2)主要以(a)芳香 種以上、 族經基羧酸及其衍生物的 種或2種 (b)方香族二羧酸、脂環族二羧酸及其衍生物的 以上、及 芳香族二醇、脂環族二醇、脂肪族 夕1種或2種以上所組成的聚脂; 二醇及其衍生物 之至 (3)主要以⑷芳香㈣基㈣及其衍生物的i種或 201205896 種以上、 (b)芳香族羥基胺 上、及 芳香族二胺及其衍生物的 1種或2種以 (c)芳香族二羧酸、脂環族 以上所組成的聚脂醯胺; 二羧酸及其衍生物的 1種或2種 (4)主要以(a)芳香 種以上、 族羥基羧酸及其衍生物 的1種或2 1種或2種以 ⑻芳香族經基胺、芳香族二胺及其衍生物的 (〇方香族二賴、脂環族二竣酸及其衍生物的!種或2種 以上、及 ⑷芳香族—醇、脂環族二醇、脂肪族二醇及其^生物至少 1種或2種以上所組成的聚脂酿胺等。再者,亦可按照需 要對上述的構成成分並用分子量調整劑。 構成可適用於本發明之上述液晶性樹脂之具體的化合 物的較佳例,可舉對經基安息香酸、6 _經基_ 2 _萘酸等的芳 香族羥基羧酸;2,6-二羥基1,4-二羥基萘、4,4,-二羥基 聯苯,對苯二酚,間苯二酚,以下述通式(1)及下述通式(Η) 表示的化合物等的芳香族二醇;對苯二甲酸、異苯二甲酸、 4, 4 -聯苯二羧酸、2, 6_二羧酸及以下述通式(π丨)表示的 化合物等的芳香族二羧酸;對胺基酚,對苯二胺等的芳香 族胺類。 (I)201205896201205896 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to a method of manufacturing a light-emitting device, a light-emitting device, and a reflector. [Prior Art] A light-emitting device in which a light-emitting element is mounted has been known [for example, refer to Patent Document 1). The light-emitting device described in Patent Document 1 includes a circuit board on which an LED (Light Emitting Diode) element (light-emitting element) as a light source is mounted, and a reflector (reflector). Reflecting light from LED elements provided on a printed circuit board. In the light-emitting device described in Patent Document i, the reflection system is made of a metal material and is fixed to the circuit board by a resin adhesive. However, in recent years, the light-emitting device has been required to be thinner and smaller. That is, the reflector is also required to be small and lightweight. However, as described above, the current reflective system is made of a metal material, and it is not easy to reduce the size and weight. Therefore, as described in Patent Document 2, it is conceivable to manufacture a reflector composed of a resin material. Since the resin material has characteristics such as easy molding, it is considered that it is easier to manufacture a compact and lightweight reflector. Patent Document 2' describes the production of a reflector using a thermosetting resin as a raw material. However, the reflector described in Patent Document 2 has a problem of shrinkage due to hardening and dimensional instability. Further, even when a thermoplastic resin is used, since the resin shrinks after cooling after molding, there is a tendency that a problem of a dimensionally stable reflector cannot be obtained as in the case of using a thermosetting resin. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2001-24233 [Patent Document 2] [Problems to be Solved by the Invention] A resin having a small shrinkage ratio after molding, A liquid crystalline resin is known. It is considered that the reflector is formed by using a liquid resin as a raw material. By forming a metal layer on the surface of the molded body, a stable reflector having a size can be obtained. However, in the manufacturing steps of the light-emitting device, the reflector is exposed to the same gamma. Therefore, when a liquid crystalline resin is used as a raw material of a reflector, it is necessary to add an inorganic filler to the liquid crystalline resin to improve heat resistance. However, in order to improve the heat resistance, when a resin composition obtained by blending an inorganic filler with a liquid crystalline resin is used as a raw material to produce a reflector, the surface of the reflector is rough. If the surface of the reflector is rough, the metal layer reflected by the light of the lED element cannot be smoothly formed on the reflector. As a result, the reflector cannot effectively reflect the light from the led element. The present invention has been made to solve the problems as described above, and the object thereof is to provide a reflector having a smooth surface and a method for producing the reflector using a liquid crystalline resin composition in which an inorganic filler is blended with a liquid crystalline resin. [Means for Solving the Problem] The inventors of the present invention have focused on the above-mentioned problems. As a result, it was found that the difference between the surface roughness Ra of the reflector and the surface roughness of the inner wall surface of the mold for producing the reflector was 0.1 mm or less, and the above problem was solved. More specifically, the present invention 4 201205896 provides the following. (1) A method of manufacturing a light-emitting device, wherein the light-emitting device includes a circuit board 'I-light element' mounted on a circuit board and a reflector. The light-emitting element is disposed on the circuit board, and the reflector has an inclined surface that reflects light of the light-emitting TL in a desired direction. The method of manufacturing the light-emitting device includes a reflector manufacturing step of liquid helium The invention relates to a reflector for producing a reflector; a metal layer forming step of forming a metal layer on the inclined surface of the reflector obtained in the reflector manufacturing step, and a step of loading the light beam 7L, which is mounted on the circuit substrate to mount the light And a reflector arrangement step of disposing a reflector on the circuit board, wherein the reflector manufacturing step is to roughen the surface roughness Ra of the reflector and the surface of the inner wall surface of the mold for manufacturing the reflector. The step of producing a reflector is such that the difference (ΔRa) of the degree Ra is 0.1 mm or less. (2) The method of manufacturing a light-emitting device according to the above aspect, wherein the difference (ΔRa) is 0.03 mm or less. (3) A light-emitting device comprising: a circuit board; a light-emitting element mounted on the circuit board; and a reflector disposed on the circuit board surrounding the light-emitting element, wherein the reflector includes liquid crystal The resin; and the inorganic filler have an average primary particle diameter of 15 # m or less; and a metal layer is disposed on the surface of the reflector. (4) The light-emitting device according to (3), wherein the inorganic filler is a plate-like filler and/or a powder filler. (5) The light-emitting device according to (3), wherein the inorganic filler has an average primary particle diameter of 0·7 &quot; m or less. The light-emitting device according to any one of the aspects of the present invention, wherein the content of the inorganic filler is 5 parts by mass or more and 70 parts by mass or less with respect to the mass portion of the liquid crystalline resin (10). A liquid crystalline resin; and an inorganic filler having a metal layer on the surface. (7) A reflector having an average primary particle diameter of 15/m or less. [Effect of the invention] According to the present invention, a surface can be obtained by using a liquid crystalline resin composition in which an inorganic filler is blended with a liquid crystalline resin. Smooth reflector. As a result of the smoothing of the inclined surface formed on the surface of the reflector, the metal layer formed on the inclined surface also becomes smooth, and the light from the light-emitting layer can be efficiently reflected. Further, the surface of the reflector according to the present invention is hardly fibrillated. As a result, the metal layer formed on the surface of the reflector does not peel off due to fibrillation of the surface of the reflector. Therefore, the adhesion between the metal layer and the surface of the reflector is very high. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments. <Light-emitting device> Fig. 1 is a perspective view schematically showing a light-emitting device 1 of the present invention. Fig. 2 is a view showing the reflector 12 of the present invention, (a) is a perspective view of the reflector 12, and (b) is a cross-sectional view taken along line XX of (a). The light-emitting device 1 of the present invention includes a circuit board 1 〇, a light-emitting element i i , and a reflector 12 . In the light-emitting device 1 shown in Fig. 1, a light-emitting element u, a body 12, is disposed on a surface of a circuit board i 〇6 201205896. A plurality of electrode layers are formed to surround the light-emitting element 11 so as to form a reflective oxygen resin or a liquid crystal resin (the circuit board 10 is not shown on the surface and the back surface of the insulating substrate made of the glass ring). The light emitting element U is disposed on one surface of the circuit board 10. The number of the light-emitting elements 11 is not particularly limited, and one or a plurality of light-emitting elements may be disposed on one surface of the circuit board. The light-emitting 7G member 11 includes an electrode portion (not shown) that is electrically connected to the electrode layer of the circuit substrate 10. When a voltage is applied to the electrode layer, current is passed through the light-emitting element U by the electrical connection, and the light-emitting element 丨丨 emits the light-reflecting body 12, and the bottom surface and the circuit board 10 are formed by using a plate-shaped member formed by a mold. The joint is disposed on the circuit board 1A. Further, the reflector 12 has an opening portion 贯通2〇 penetrating the bottom surface and the surface, an inclined surface 121 for reflecting light by the light-emitting element, and a metal layer 122 formed on the surface. Further, the metal layer 122 may be provided on at least the inclined surface 121, and may be provided on a portion other than the inclined surface 211 of the surface of the reflector. The opening portion 1 2 0 ' is circular in plan view, and is tapered upward from the bottom surface. The inclined surface 121' is an inner side surface of the opening portion 120. As described above, since the opening portion 120 is formed to be tapered in a tapered shape from the bottom surface, the inclined surface 121 is inclined toward one surface of the circuit board 10. Since the inclined surface is inclined, the light of the light-emitting element can be efficiently reflected upward by 201205896 by the metal layer 122' formed on the inclined surface 121. Here, the direction in which the desired progress direction of the reflected light is upward (the direction perpendicular to the surface of the circuit board ίο) is adjusted so that the direction of the reflected light is adjusted by adjusting the tilt angle. In the present invention, the difference between the surface roughness of the reflector and the surface roughness Ra of the inner wall surface of the mold for producing the reflector is Δ. The difference in surface roughness Ra (ARa) becomes smaller as described above, indicating that the surface of the reflector 12 is smooth. When the surface of the reflector 12 is smooth, the inclined surface i 2丨 of a part of the surface of the reflector is also smooth. Then, the surface of the metal layer 122 formed on the smooth inclined surface 121 is also smooth. When the surface of the metal layer 122 is smoothed, the reflectance can be increased to effectively reflect the light from the light-emitting element. As described above, the present invention is characterized by the reflector 12. Hereinafter, the material used for the reflector 12 will be described in more detail. The reflector 丨2 used in the light-emitting device 1 of the present invention is composed of a liquid crystalline resin composition containing a liquid crystalline resin and an inorganic filler. Hereinafter, the description will be given in the order of the liquid crystalline resin and the inorganic filler. [Liquid Crystal Resin] Since the liquid crystalline resin has high dimensional stability, the size 12 of the reflector 12 can be obtained by using a liquid crystalline resin. Further, since the liquid crystal resin has high fluidity, the reflector 12 can be easily reduced in size and thickness. The liquid crystalline resin used in the present invention means a melt-processable polymer having a property of forming an optically anisotropic molten phase. The nature of the anisotropic melt phase can be confirmed by conventional polarizing inspection using a crossed polarizer. Further, it was confirmed that the molten phase of the molten film placed on the Leitz heating stage was observed under a nitrogen atmosphere at a magnification of 4 Torr using a Leitz polarizing microscope. When the liquid crystalline resin to be used in the present invention is inspected between orthogonal polarizations, the polarized light is normally transmitted even when it is in a molten stationary state, and optical anisotropy is exhibited. The liquid crystalline resin as described above is not particularly limited to an aromatic polyester or an aromatic polyamine; the amine is preferably a part of the same molecular chain containing aromatic polyyttrium or aramid polyglycolamine. Lipid is also in this range. When such a solution is dissolved in pentafluorophenol at a concentration of 〇·1% by weight at 60 ° C, it has a logarithmic viscosity (丨.ν·) of at least about dl/g of 2·0 to 10. 〇dl/g. By.芳香族Aromatic polyester or aromatic: lipotein which is applicable to the liquid crystalline resin of the present invention has at least one selected from the group consisting of aromatic hydroxycarboxylic acid, aromatic hydroxylamine, and *-amine As a constituent component, the aromatic I amide is particularly preferable. More specifically, there are two types of polyesters which are (1) mainly composed of an aromatic hydroxycarboxylic acid and a derivative thereof; or one or two (2) mainly of (a) aromatic species The above, the race of the carboxylic acid and its derivatives, or the two (b) the above-mentioned aromatic carboxylic acid, the alicyclic dicarboxylic acid and the derivative thereof, and the aromatic diol and the alicyclic diol Polyester composed of one or more of aliphatic eves; diol and its derivatives to (3) mainly of (4) aromatic (tetra)yl (tetra) and its derivatives i or 201205896 or more, (b) aromatic One or two kinds of aromatic hydroxylamines and derivatives thereof, (c) aromatic dicarboxylic acid, polyaliphatic amine composed of alicyclic or higher; dicarboxylic acid and its derivatives 1 or 2 (4) mainly one or two or two kinds of (a) aromatic species or more, a group of hydroxycarboxylic acids and derivatives thereof, (8) aromatic transamines, aromatic diamines and derivatives thereof (A kind or more than two kinds, and (4) an aromatic-alcohol, an alicyclic diol, an aliphatic diol, and at least one of the compounds of the genus 1 or 2 Further, a polyester resin or the like may be used. Further, a molecular weight modifier may be used in combination with the above-mentioned constituent components as needed. A preferred example of a specific compound which can be applied to the liquid crystal resin of the present invention may be mentioned. An aromatic hydroxycarboxylic acid such as benzoic acid, 6-trans-based _ 2 _naphthoic acid; 2,6-dihydroxy1,4-dihydroxynaphthalene, 4,4,-dihydroxybiphenyl, hydroquinone, Resorcinol, an aromatic diol such as a compound represented by the following formula (1) and the following formula (Η); terephthalic acid, isophthalic acid, 4,4-diphenyldicarboxylic acid, 2, 6-dicarboxylic acid, an aromatic dicarboxylic acid such as a compound represented by the following formula (π丨); an aromatic amine such as an aminophenol or p-phenylenediamine; (I) 201205896

(x ’選自由亞烷基(Cl〜C4),亞烯基、-ο-、-S〇_ -S〇2-、-s-、-CO-之基)(x ' is selected from the group consisting of alkylene (Cl~C4), alkenylene, -ο-, -S〇_-S〇2-, -s-, -CO-)

ΌΗΌΗ

(II(II

HOOCHOOC

COOH (i (Y_ 選自由-(CH2)n~(n=l 〜4)、-0(CH2)n〇-(n =卜 4)之。) [無機填充劑] 無機填充劑’係為提升液晶性樹脂組合物的耐熱性$ 的物ϋ及形成密著性良好的金屬層而添加。此外,盔機与 充劑,亦可將料性等等的物性賦予反射體⑴無機❸ 劑的種類,並無特別限定,根據無機填充劑,亦存在沒^ 防止成形體表面起毛之效 ^ 以表面會起毛的成形體, 則於成形體的表面形成金屬層 密著有變的不充分的趨勢,但二金屬層與成形體表面* 在成形體的表面形成金屬層時,^不起毛的成形體’貝 著力強。即,只要反射體二表屬層與成形體表面的$COOH (i (Y_ is selected as -(CH2)n~(n=l 〜4), -0(CH2)n〇-(n =Bu4).) [Inorganic filler] Inorganic filler' is for lifting The liquid crystal resin composition is added with a material having a heat resistance of $ and a metal layer having a good adhesion. The helmet and the filler can also impart physical properties such as properties to the reflector (1) type of inorganic sputum. There is no particular limitation on the surface of the molded body, and there is a tendency that the metal layer on the surface of the molded body is insufficiently adhered to the surface of the molded body. However, when the two metal layers and the surface of the molded body* form a metal layer on the surface of the formed body, the molded body which is not hairy has a strong strength. That is, as long as the surface of the reflector and the surface of the molded body are $

成形體表面強固地密著之反斯 j可得金屬層J W體。因此,女 射體的表面粗糙度Ra與用於制' 必要選擇使 化反射體的模具之内壁a 201205896 的表面粗縫度Ra之差(ARa)成0.1 mm以下之無機填充劑。 使上述表面粗糙度Ra之差(△ Ra)成為0. 1 mm以下地,按照 液晶性樹脂的種類及無機填充劑的尺寸適宜選擇無機填充 劑。具體而言,由纖維狀填充劑、粉粒狀填充劑、板狀填 充劑等的一般的無機填充劑中選擇。 為將上述表面粗糙度Ra之差(^Ra)調整為〇 lmm以 下,無機填充劑中,使用粒粉狀填充劑、板狀填充劑為佳。 粒粉狀填充劑,可舉二氧化矽、石英粉末、玻璃珠、磨碎 玻璃纖維、玻璃氣球、玻璃粉、矽酸鈣、矽酸鋁、高嶺土' 滑石粉、黏土、矽藻土、矽灰石等的矽酸鹽、氧化鐵、氧 化鈦、氧化辞、三氧化録、氧化铭等的金屬氧化物、碳酸 鈣、碳酸鎂等的金屬碳酸鹽' 硫酸鈣、硫酸鋇等的金屬硫 酸鹽、其他的鐵氧體,碳化矽,氮化矽,氮化硼,各種2 屬粉末等。此外’料板狀填充劑,可舉例如,雲母,破 續片’各種金屬。該等之中,使用二氧化矽了滑石粉 *卿/又^々左、Δ Ra)調整為 妗:以下’使用平均一次粒徑較小的粒粉狀填充劑及平 了-次粒徑較小的板狀填充劑為佳。所謂平均—次粒徑較 ^係指15㈣以下。若平均-次粒徑為以下,則 ::曰性樹脂組合物因含有無機填充劑的流動性下降較小而 平均一次粒 卜再者,使用二氧化矽作為無機填充劑時, t以0. 7以m以下者特別佳。 12 201205896 於以上的說明,說明關於上述表面粗糙度Ra之差 (△ Ra)容易成〇· lmm以下的無機填充劑。接著,說明上述 表面粗糙度Ra之差(△ Ra)為〇_ lmm以下時,無機填充劑在 反射體12的表面如何存在。上述所謂表面粗之差 在0. lmm以下係指,反射體的表面特性大幅度地被改善的 狀態。表面特性大幅度地被改善的結果,反射體12的表面 變的平滑,作為反射體12的表面的一部分的傾斜面121也 變的平滑,由於形成於反射體12的金屬層122也變的平 m故本發明的發光裝置1,可藉由形成在傾斜面121上 金屬層122的表面,有效地將發光元件丨丨的光反射。此外, 反射體12,即使做超音波清洗,反射體丨2的表面亦幾乎 不會原纖化。即,在於上述反射體12,反射體的表面不容 易呈起毛的狀態。結果,可於反射體表面形成密著性良好 的金屬層。 特別是’若可將上述表面粗糙度Ra之差(△ Ra)抑制在 〇· 03ηππ以下,則反射體12的表面將變的非常的平滑。藉 由使表面粗縫度Ra之差(△“)在〇.〇3_以下,可更有效 地將來自發光元件11的光以金屬層122的表面反射,並且 憂的更容易抑制反射體的表面起毛。藉由使用平均一次粒 徑為0.7//m以下的二氧化矽,或平均一次粒徑2 〇ym以 下的板狀填充劑或平均一次粒徑2. 〇/zm以下的粉狀填充 劑作為無機填充劑,可容易地將上述表面粗糙度Ra之差 (△ Ra)調整在〇. 〇3_以下。 最後,說明關於反射體12中的無機填充劑的含量。反 13 201205896 射體12中的無機填充劑的含量並無特別限定,對液晶性樹 脂100質量部,α 5個質量部以上70質量部以下為佳。無 機填充劑的含量纟5 !量_±,則可穩定地成形的同 時,容易賦予所期望的物性(特別是耐熱性、流動性)而佳。 另一方面,無機填充劑的含量在7〇質量部以下,則容易得 到使用液晶性樹脂之上述優點(例如流動性,尺寸穩定性) 而佳。更佳的無機填充劑的含4,係對液晶性樹月旨⑽質 量部’以15質量部以± 6G f量部以下。只要在上述較佳 的範圍,液晶性樹脂組合物可兼具充分的流動性、及高的 财熱性。 關於液晶性樹脂組合物應具什麼程度的流動性,並益 特別限定’例如以實施例所述的方法測定的溶融黏度以 5Ρ&quot;以上5〇Ρ&quot;以下為佳。此外’關於液晶性樹脂組合 物應具有什麼程度的耐熱性’並無特別限定,例如,以實 施例所述的方法所測定的荷重彎曲溫度以200。〇以上 4 0 0 °C以下為佳,以? c; n。 #物性,/ 35〇t以下更佳。再者,該 亦可藉由改變無機填充劑的種 粒徑而調整。 卞3 -人改變The surface of the formed body is strongly adhered to the opposite side, and the metal layer J W body is obtained. Therefore, the surface roughness Ra of the female projectile is 0.1 mm or less with respect to the difference (ARa) between the surface roughness Ra of the inner wall a 201205896 of the mold which is necessary to make the reflector. The inorganic filler is appropriately selected in accordance with the type of the liquid crystalline resin and the size of the inorganic filler, so that the difference (? Ra) of the surface roughness Ra is 0.1 mm or less. Specifically, it is selected from general inorganic fillers such as a fibrous filler, a particulate filler, and a plate-like filler. In order to adjust the difference (?Ra) of the surface roughness Ra to 〇1 mm or less, it is preferable to use a granular filler or a plate-shaped filler in the inorganic filler. Granular fillers, such as cerium oxide, quartz powder, glass beads, ground glass fiber, glass balloons, glass powder, calcium silicate, aluminum silicate, kaolin 'talc, talc, diatomaceous earth, ash Metal oxides such as citrate, iron oxide, titanium oxide, oxidized, trioxide, oxidized, etc., metal carbonates such as calcium carbonate and magnesium carbonate, such as calcium sulfate and barium sulfate, Other ferrites, tantalum carbide, tantalum nitride, boron nitride, various 2 gene powders, etc. Further, the "plate-like filler" may, for example, be a mica or a tablet. Among these, the use of cerium oxide talc powder *Qing / 々 々 left, Δ Ra) is adjusted to 妗: the following 'use of the average primary particle size of the smaller granular filler and flat-secondary particle size Small plate fillers are preferred. The average-secondary particle size is less than 15 (four). When the average-secondary particle diameter is the following:: The inert resin composition has an average decrease in fluidity due to a decrease in fluidity of the inorganic filler, and when cerium oxide is used as the inorganic filler, t is 0. 7 or less is particularly good. 12 201205896 In the above description, an inorganic filler which is likely to be less than or equal to 1 mm or less in relation to the difference in surface roughness Ra (Δ Ra) will be described. Next, when the difference (? Ra) between the surface roughness Ra is 〇 _ lmm or less, how the inorganic filler exists on the surface of the reflector 12 will be described. The difference between the above-mentioned surface roughness is 0.1 mm or less, and the surface characteristics of the reflector are greatly improved. As a result of the surface characteristics being greatly improved, the surface of the reflector 12 is smooth, and the inclined surface 121 which is a part of the surface of the reflector 12 is also smooth, and the metal layer 122 formed on the reflector 12 is also flat. Therefore, the light-emitting device 1 of the present invention can effectively reflect the light of the light-emitting element 藉 by forming the surface of the metal layer 122 on the inclined surface 121. Further, even if the reflector 12 is subjected to ultrasonic cleaning, the surface of the reflector 丨 2 is hardly fibrillated. That is, in the reflector 12 described above, the surface of the reflector is not easily raised. As a result, a metal layer having good adhesion can be formed on the surface of the reflector. In particular, if the difference (Δ Ra) between the surface roughness Ra is suppressed to 〇·03ηππ or less, the surface of the reflector 12 becomes very smooth. By making the difference (?" of the surface roughness Ra (?" below 〇.3__, the light from the light-emitting element 11 can be more effectively reflected on the surface of the metal layer 122, and it is easier to suppress the reflection of the reflector. The surface is raised by using a cerium oxide having an average primary particle diameter of 0.7/m or less, or a plate-like filler having an average primary particle diameter of 2 〇 ym or less or a powdery filling having an average primary particle diameter of 2. 〇/zm or less. As the inorganic filler, the difference in the above-mentioned surface roughness Ra (Δ Ra) can be easily adjusted to 〇.3_ or less. Finally, the content of the inorganic filler in the reflector 12 will be described. Counter 13 201205896 The content of the inorganic filler in the liquid crystal resin is preferably 5 parts by mass or more and 70 parts by mass or less, and the content of the inorganic filler is 纟5. At the same time, it is easy to provide desired physical properties (especially heat resistance and fluidity). On the other hand, when the content of the inorganic filler is 7 parts by mass or less, the above advantages of using a liquid crystalline resin are easily obtained (for example, Fluidity, dimensional stability Further, a more preferable inorganic filler is contained in the liquid crystal resin, and the liquid crystal resin composition is not more than or equal to or less than ±6 G f in 15 parts by mass. It is possible to have sufficient fluidity and high heat retention. What is the degree of fluidity of the liquid crystalline resin composition, and it is particularly limited to, for example, the melting viscosity measured by the method described in the examples is 5 Ρ &quot; Further, the following is not particularly limited, and the heat resistance of the liquid crystalline resin composition is not particularly limited. For example, the load bending temperature measured by the method described in the examples is 200. 0 ° C or less is preferable to ? c; n. #物性, / 35〇t or less is better. Furthermore, it can also be adjusted by changing the particle size of the inorganic filler. 卞 3 - person change

[其他的成分;I 液晶性樹脂,尤尤4〇 „ 1 不知及本發明的效果的範圍亦可係盥 其他的熱塑性樹脂共混 &amp; 眾。物者。使用於该情形之熱塑 树月曰’並無特職定,例示料舉;聚^ 烯烴;聚對苯二甲酸r ^ 嗽丙烯4聚 T酸乙一醇酯、聚對苯二甲酸丁二 的芳香族二羧酸盥醇Ss等 一、一知或羥羧酸所組成的芳香族聚酯;聚 14 201205896 縮醛樹脂(單聚物或共聚物);聚苯乙烯、聚氣乙烯、聚醯 胺、聚碳酸酯、ABS、聚氧苯撐氧化物,聚氧苯撐硫化物, 氟化樹脂等《此外,該等熱塑性樹脂可混合2種以上使用。 此外,該等樹脂,為改善機械性、電性、化學性質或難燃 I1 4的諸f生質,可知Γ照必要添加各種添加劑、強化劑、穩 定劑、氧化防止劑、顏料等。 〈發光裝置的製造方法〉 本發明的發光裝置的製造方法,係製造包括:電路基 板10,發光70件11 ’其係裝載於電路基板10;及反射體 12,其係包圍發光元件u地配置於上述電路基板i。上之 發光裝置1的方法,其包括:反射體製造步驟、金屬層形 成步驟、發光TL件裝載步驟及反射體配置步驟。以 明各步驟。 成 、.體製造步驟,由液晶性樹脂組合物製造反射體 1 2反射體1 2的製造方法,只要是使用模具成形的方法, 並無特別^,可採用-般的利用模具的成形方法。例如, 可藉由射出成形法製造反射體12。 於金屬層形成步驟於反射體製造步驟所得之反射體 、表面上形成金屬層122。為形成金屬層 如,鋁、銀、级、μ , 將例 各鹿私 鎳、鈀、鉑及金等的各種金屬作為 金屬層122的犯+ + ~尽枓。 的、、甚々制。/成方法並無特別限定,以金屬鍍敷所代表 程,及以真空蒸鍍法、濺鍍法及離子 的乾式製程均可揼用^ 去所代表 』知用。該等金屬層122的形成方 按照成為金屬層122 ,、要 巧1々的原料的金屬的種類適宜運用及可。 201205896 於金屬層形成步驟 取驟於反射體製造步驟所得之反射體 12的表面上形成合展思 ’屬層122。為形成金屬層122,可將例 如,鋁、銀、鉻、錄、知 h ^ 纪、始及金等的各種金屬作為原料。 金屬層122的形成方法 、 , /取万忐並無特別限定,以金屬鍍敷所代表 的。式製知,及以真空蒸鍍法、濺鍍法及離子鍍法所代表 的―乾式製程均可採用。該等金屬㈣2的形成方法,只要 H為金屬f 122的原料的金屬的種類適宜運用及可。 於發光元件襄載步驟,將發光元件11配置在電路基板 10的形成有電極層的—面上的中央附近。具體而言,係以 接著劑等將發光元件11固定在電路基板10的-面上,使發 光兀件11的電極部與電極層電性連接,將發光元件U裝載 於電路基板10上。 於反射體配置步驟,係將反射體12配置在電路基板10 上。反射體12的底面側的端面與電路基板1〇的—個面接觸 ’以傾斜面包圍發光元件!丨及電極層的周圍地,於電路基 板上配置反射體12。以接著劑等將反射體12固定在電路基 板的一面上。 [實施例] 以下表示實施例及比較例,具體說明本發明,惟本發 明並非限定於該等實施例。 〈材料〉 液晶性樹脂:Vectra E950iSX(寳理塑料株式會社製) 玻璃纖維:ECS03T-786IK日本電氣硝子社製),纖維徑 10. 5# m(後述的玻璃纖維之纖維長’係藉由擠出條件(螺^ 201205896 旋轉數,料管溫度)調整。) 真球狀二氧化矽1 : AMAFINE S0-C2(ADMATECHS公司製 ),平均一次粒徑〇. 5# m 真球狀二氧化矽2:DENKA熔融二氧化矽FB-5S DC(電氣 化學工業公司製),平均一次粒徑4.0//m 玻璃珠:EGB731(Potters-Ballotini公司製製)平均 一次粒徑18 // m 滑石粉:Crown Talc PP(松村產業株式會社製)平均一 次粒徑11 M m 諾伊堡石夕土 (Neuburg Siliceous Earth): Sillikolloid P87(霍夫曼礦物公司製)平均一次粒徑κ m 〈用於製造實施例及比較例之組合物之調製〉 對液晶性樹脂1 0 0質量部’將表1、2所示無機填充劑, 以表1、2所示的添加量(質量部)添加,調製液晶性樹脂組 合物。 〈流動性評估〉 為了確s忍用於製造實施例及比較例之液晶性樹脂組合 物的流動性’將該等樹脂組合物的熔融黏度,使用該等樹 脂組合物膠粒,以L = 20mm,d= lmm毛細管流變儀(東洋精機 製Capillograph 1B型)’以溫度 350°C,剪斷速度 1000/s, 遵照I SO 11443 ’測定熔融黏度。將測定結果示於表1、2。 〈荷重彎曲的溫度(DTUL)&gt; 將用於製造實施例及比較例之液晶性樹脂組合物作為 原料’得到10mmx4nimx80nim之射出成形片。遵照IS075-1、 17 201205896 2 ’測定該等射出成形試驗片的荷重彎曲溫度。將測定結果 示於表1、2。 〈反射體的製造〉 將表1、2所述的樹脂組合物成形’製造成形各個樹脂 組合物而成之圖2所述反射體。確認所製造的所有反射體 的表面的平滑性都一樣。 〈表面粗糖度Ra的評估〉 關於向貫通開口部的方向對半切斷的反射體的中央部 分’以超深度彩色3D形狀測定顯微鏡νκ_95〇〇(基恩斯公 司製),測定傾斜面的表面粗糙度Ra。此外,模具的表面 粗糙度Ra亦以與成形體相同方法測定。於表1、2表示實 施例及比較例的反射體的傾斜面的表面粗糙度。此外,對 應於傾斜面的模具内壁面的表面粗度為〇· 25_,關於實施 例及比較例的表面粗之差(△ Ra)亦示於表1、2。 〈金屬層之形成〉 使用濺锻裝置(日立製造所製E102),首先,將真空槽 内尚真空化至0. 05Torr。接著,將電流值設定成15mA。最 後,使用鉑-鈀靶,對安裝在設定在離靶3〇mm的位置的基 板的反射體進行濺鍍,形成鉑鈀膜。結果,得到金屬層形 成於表面全體之反射體。關於所有的實施例、比較例,以 上述方法知到於表面形成金屬層之反射體。再者,金屬層 的表面的平滑性都一樣。 形成於反射體之金屬層表面之反射率,由於反射體太 小而難以測定。因此,以使用於製造實施例及比較例之液 18 201205896 晶性樹脂組合物為原料製作8—關之射出成形 式驗片測疋形成於該射出成形試驗片之金屬&amp; n # 率。金屬層之形成方法以與形成於反射體上的方法相同的 方法形成。 用於製造試驗片的模具,與上述實施例同樣地,使用 内壁面的表面粗糙度Ra為0.25mm者。 此外,所得射出成形試驗片的表面的平滑性都—樣。 因此關於射出成形試驗片的表面中央部,以上述方法進 行表面粗糙度Ra的敎。測^結果,在所有射出成形試驗 片,與使用相同組合物所得之實施例及比較例的反射體的 表面粗縫度為同樣的結果。 關於各射出成形試驗片,對於形成金屬層的射出成形 試驗片中央部的上面的金屬層側的面,使用¥_5?〇型紫外線 分光光度計(日本分光株式會社製),以波長47〇nm的光,進 行反射率的測定。將測定結果示於表1、2。 [表1] 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 真球狀二氧化矽1 10 25 45 65 真球狀二氧化矽2 45 玻璃珠 45 滑石 45 諾伊堡二氧化矽 45 熔融黏度(Pa-s) 22 26 33 ] 42 --— 270 28 77 37 41 DTULCC) 257 262 266 264 258 267 276 成形體表面粗糙度 Ra(&quot;m) 0.227 0.232 0.223 0.222 0.312 0.325 0.258 0.223 差(ARa) 〇m) 0.023 0.018 0.027 0.028 0.062 0.072 0.054 0.029 反射率(¾) 86 85 84 84 82 81 83 84 19 201205896 [表2 ] 比較例1 比較例2 比較例3 玻璃纖維 45 45 45 (織維長/Mm) (500) (390) (280) 玻璃珠 熔融黏度 (Pa.s) 54 52 49 DTUL(°C) 297 294 292 成形體表面粗糙度 Ra(jtnn) 0.383 0. 374 0.335 差(ARa) (/zm) 0.133 0.124 0.105 反射率(¾) 74 77 78 由表1、2的結果明顯可知,藉由使反射體的表面粗棱 度與模具内壁面的表面粗縫度之差(ARa)為0. 1 mm以下,確 認到形成於反射體上的金屬層,可有效地將光反射。然後 ’由實施例1 ~ 8確認,該效果並不依無機填充劑的種類。此 外,由實施例1 ~4及實施例5確認,該效果不依無機填充劑 的尺寸。此外,由實施例、比較例的結果,確認使用板狀 填充劑、粒粉狀填充劑作為無機填充劑,則可容易地將表 面粗之差(ARa)調整在0.1 mm以下。 由實施例1〜4的結果,確認到無機填充劑的含量越少, 表面粗糙度Ra之差(△ Ra)變小,金屬層表面的反射率變高 。此外,確認到無機填充劑的含量越少,炼融黏度變小。 即’確認到無機填充劑的含量越少,流動性高,容易成厚 度薄、輕量的產品。此外’由荷重彎曲溫度的評估,確認 到即使將無機填充劑的含量’對液晶性樹脂1 〇〇質量部,抑 制在1 0質量%程度,顯示充分的耐熱性。 20 201205896 由實施例3、5〜8的結果,確認到無機填充劑的平均一 次粒徑’超過大約18口,貝,】流動性大大地下降(溶融點度 大大地上升),若無機填充劑的平均一次粒徑大約在11以 以下’則可調整在大約3〇Pa.s以上—&quot;以下的低熔融: 度。 〈確認傾斜面有無起毛〉 將實施例卜5之金屬層形成前的反射體,於室溫的水中 =超音波洗淨機施加1分鐘。之後,比較施加超音波洗淨機 刖後的反射體’以目視評估反射體表面的起毛。評估係以 如下4阳奴進行評估,將評估結果示於表3。 ◎ 〇 Δ 完全沒有起毛。 以目視確認表面幾乎沒有起毛 可以目視確認起毛。 x .以目視確認表面的大部分起毛。 [表3][Other components; I liquid crystal resin, Youyou 4 〇 1 I do not know the scope of the effect of the present invention may also be blended with other thermoplastic resins &amp; the object. The thermoplastic tree used in this case曰 'There is no special job, exemplified material; poly-olefin; poly-terephthalic acid r ^ 嗽 propylene 4 poly T acid ethyl alcohol ester, polybutylene terephthalate aromatic dicarboxylic acid sterol Ss, etc. Aromatic polyester composed of mono- or hydroxycarboxylic acid; poly 14 201205896 acetal resin (monomer or copolymer); polystyrene, polystyrene, polyamine, polycarbonate, ABS, poly Oxyphenylene oxide, polyoxyphenylene sulfide, fluorinated resin, etc. Further, these thermoplastic resins may be used in combination of two or more kinds. In addition, these resins are used to improve mechanical, electrical, chemical properties or flame retardancy. It is known that various additives, reinforcing agents, stabilizers, oxidation inhibitors, pigments, and the like are added as needed. <Method for Producing Light-Emitting Device> A method for manufacturing a light-emitting device according to the present invention includes: manufacturing a circuit Substrate 10, 70 pieces of light 11' a substrate 10; and a reflector 12, which is disposed on the circuit board i surrounding the light-emitting element u. The method of the light-emitting device 1 includes a reflector manufacturing step, a metal layer forming step, a light-emitting TL device loading step, and a reflection The step of disposing the body. The steps of manufacturing the substrate and the liquid crystal resin composition to produce the reflector 1 2 reflector 1 2 are not particularly limited as long as they are formed by using a mold. A method of forming a mold by a general method. For example, the reflector 12 can be produced by an injection molding method. The metal layer 122 is formed on the surface of the reflector obtained in the reflector manufacturing step in the metal layer forming step. Aluminium, silver, grade, and μ, various metals such as nickel, palladium, platinum, and gold are used as the metal layer 122. The method is not limited. The process represented by metal plating, and the dry process of vacuum evaporation, sputtering, and ion can be used. The formation of the metal layer 122 is made into the metal layer 122. Want The type of the metal of the raw material of 1々 is suitable for use and can be used. 201205896 The step of forming the metal layer is performed on the surface of the reflector 12 obtained by the step of manufacturing the reflector, and the layer 122 is formed. For example, various metals such as aluminum, silver, chromium, nickel, silver, and gold are used as raw materials. The method for forming the metal layer 122 is not particularly limited, and is represented by metal plating. The formula can be used, and the dry process represented by the vacuum vapor deposition method, the sputtering method, and the ion plating method can be used. The method for forming the metal (4) 2 is as long as the metal of the material of the metal f 122 is suitable. In the light-emitting element carrying step, the light-emitting element 11 is disposed in the vicinity of the center of the surface of the circuit board 10 on which the electrode layer is formed. Specifically, the light-emitting element 11 is fixed to the surface of the circuit board 10 by a relay or the like, and the electrode portion of the light-emitting element 11 is electrically connected to the electrode layer, and the light-emitting element U is mounted on the circuit board 10. In the reflector arrangement step, the reflector 12 is placed on the circuit board 10. The end surface on the bottom surface side of the reflector 12 is in contact with the surface of the circuit board 1'. The light-emitting element is surrounded by the inclined surface! The reflector 12 is disposed on the circuit board around the electrode layer. The reflector 12 is fixed to one side of the circuit board with an adhesive or the like. [Examples] Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the examples. <Materials> Liquid crystal resin: Vectra E950iSX (manufactured by Polyplastics Co., Ltd.) Glass fiber: ECS03T-786IK, manufactured by Nippon Electric Glass Co., Ltd.), fiber diameter: 10.5# m (fiber length of glass fiber to be described later) is squeezed The condition (screw ^ 201205896 rotation number, tube temperature) is adjusted.) True spherical cerium oxide 1: AMAFINE S0-C2 (made by ADMATECHS), average primary particle size 〇. 5# m True spherical cerium oxide 2 : DENKA fused cerium oxide FB-5S DC (manufactured by Electric Chemical Industry Co., Ltd.), average primary particle size 4.0//m Glass beads: EGB731 (manufactured by Potters-Ballotini), average primary particle size 18 // m talc: Crown Talc PP (made by Matsumura Industry Co., Ltd.) average primary particle size 11 M m Neuburg Siliceous Earth: Sillikolloid P87 (manufactured by Hoffman Minerals Co., Ltd.) average primary particle diameter κ m <for manufacturing examples Preparation of the composition of the comparative example and the addition of the inorganic fillers shown in Tables 1 and 2 to the amount of the inorganic filler shown in Tables 1 and 2 (mass portion) to prepare a liquid crystalline resin combination. <Fluidity Evaluation> In order to confirm the fluidity of the liquid crystalline resin compositions of the examples and the comparative examples, the melt viscosity of the resin compositions was used, and the resin compositions were used to obtain L = 20 mm. , d = lmm capillary rheometer (Toyo Seiki Capillograph 1B type) 'measured melt viscosity according to I SO 11443' at a temperature of 350 ° C, a shear rate of 1000 / s. The measurement results are shown in Tables 1 and 2. <temperature at which the load was bent (DTUL)&gt; The liquid crystal resin composition used in the production of the examples and the comparative examples was used as a raw material to obtain an injection-molded sheet of 10 mm x 4 nim x 80 nm. The load bending temperature of the injection-molded test pieces was measured in accordance with IS075-1, 17 201205896 2 '. The measurement results are shown in Tables 1 and 2. <Production of Reflector> The resin composition described in Tables 1 and 2 was molded to produce a reflector as shown in Fig. 2 in which each resin composition was molded. It was confirmed that the smoothness of the surface of all the reflectors produced was the same. <Evaluation of Surface Roughness Ra> The center portion of the reflector that is cut in half in the direction of the through-hole portion is measured by an ultra-deep color 3D shape measurement microscope νκ_95 (manufactured by Keyence), and the surface roughness Ra of the inclined surface is measured. . Further, the surface roughness Ra of the mold was also measured in the same manner as the molded body. Tables 1 and 2 show the surface roughness of the inclined surface of the reflector of the examples and the comparative examples. Further, the surface roughness of the inner wall surface of the mold corresponding to the inclined surface was 〇·25_, and the difference (Δ Ra) between the surface roughness of the examples and the comparative examples is also shown in Tables 1 and 2. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Next, the current value was set to 15 mA. Finally, a reflector attached to a substrate set at a position of 3 离 mm from the target was sputtered using a platinum-palladium target to form a platinum palladium film. As a result, a reflector in which the metal layer is formed on the entire surface is obtained. With respect to all of the examples and comparative examples, a reflector of a metal layer formed on the surface was known by the above method. Furthermore, the smoothness of the surface of the metal layer is the same. The reflectance of the surface of the metal layer formed on the reflector is difficult to measure because the reflector is too small. Therefore, the injection molding test piece of the liquid crystal resin composition used in the production of the examples and the comparative examples was used as a raw material to form a metal &amp; n # rate formed on the injection-molded test piece. The method of forming the metal layer is formed in the same manner as the method of forming on the reflector. The mold for producing the test piece was the same as the above-described embodiment, and the surface roughness Ra of the inner wall surface was 0.25 mm. Further, the smoothness of the surface of the obtained injection-molded test piece was the same. Therefore, regarding the central portion of the surface of the injection-molded test piece, the surface roughness Ra was measured by the above method. As a result of the measurement, the same results were obtained for all the injection-molded test pieces, and the surface roughness of the reflectors of the examples and the comparative examples obtained by using the same composition. For each of the injection-molded test pieces, a surface of the metal layer side on the upper surface of the center portion of the injection-molded test piece in which the metal layer was formed was used, and a wavelength of 47 〇 nm was used by a UV-ray spectrophotometer (manufactured by JASCO Corporation). The light is measured for reflectance. The measurement results are shown in Tables 1 and 2. [Table 1] Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 True spherical ceria 1 10 25 45 65 True spherical ceria 2 45 Glass beads 45 Talc 45 Neuburger ruthenium oxide 45 Melt viscosity (Pa-s) 22 26 33 ] 42 --- 270 28 77 37 41 DTULCC) 257 262 266 264 258 267 276 Shape roughness of the formed body Ra(&quot;m) 0.227 0.232 0.223 0.222 0.312 0.325 0.258 0.223 Difference (ARa) 〇m) 0.023 0.018 0.027 0.028 0.062 0.072 0.054 0.029 Reflectance (3⁄4) 86 85 84 84 82 81 83 84 19 201205896 [Table 2] Comparative Example 1 Comparative Example 2 Comparative Example 3 Glass fiber 45 45 45 (woven length / Mm) (500) (390) (280) Glass bead melt viscosity (Pa.s) 54 52 49 DTUL (°C) 297 294 292 Shaped surface roughness Ra (jtnn) 0.383 0. 374 0.335 Difference (ARa) (/zm) 0.133 0.124 0.105 Reflectance (3⁄4) 74 77 78 It is apparent from the results of Tables 1 and 2 that the surface of the reflector is thick and the surface of the inner wall of the mold is made thick. The difference in the roughness (ARa) is 0.1 mm or less, and it is confirmed that it is formed on the reflector. Metal layer, can effectively reflect light. Then, it was confirmed by Examples 1 to 8, that the effect was not dependent on the type of the inorganic filler. Further, it was confirmed from Examples 1 to 4 and Example 5 that the effect was not dependent on the size of the inorganic filler. Further, from the results of the examples and the comparative examples, it was confirmed that the use of the plate-like filler or the particulate filler as the inorganic filler can easily adjust the difference in surface roughness (ARa) to 0.1 mm or less. As a result of the results of Examples 1 to 4, it was confirmed that the smaller the content of the inorganic filler, the smaller the difference in surface roughness Ra (ΔRa), and the higher the reflectance of the surface of the metal layer. Further, it was confirmed that the smaller the content of the inorganic filler, the smaller the smelting viscosity. In other words, it has been confirmed that the content of the inorganic filler is small, the fluidity is high, and it is easy to form a product having a small thickness and a light weight. In addition, it has been confirmed that the content of the inorganic filler is not more than 10% by mass, and the heat resistance is sufficient. 20 201205896 From the results of Examples 3 and 5 to 8, it was confirmed that the average primary particle diameter of the inorganic filler was more than about 18, and the fluidity was greatly lowered (the melting point was greatly increased), if the inorganic filler was used. The average primary particle size of about 11 or less 'can be adjusted to be above about 3 〇 Pa.s -&quot; below the low melting: degree. <Check whether the inclined surface is raised or not.> The reflector before the formation of the metal layer of Example 5 was applied for 1 minute in a room temperature water = ultrasonic cleaner. Thereafter, the reflectors applied with the ultrasonic cleaning machine were compared to visually evaluate the fuzzing of the surface of the reflector. The evaluation was evaluated by the following 4 yang slaves, and the results of the evaluation are shown in Table 3. ◎ 〇 Δ No fluffing at all. Visually confirm that the surface is barely raised. The fuzzing can be visually confirmed. x. Visually confirm most of the fuzz of the surface. [table 3]

m:二於使用平均一次粒徑為°·5”的二氧切的實施 氧化石;;毛’確認使用平均—次粒徑為的二 乳化石夕的貫施例5,發生芒;如&lt; 體與金屬層的客菩_ 起毛。由於起毛越少表示成形 屬…者性越佳’故由該等結果,表示上述表面 21 201205896 βρ可顯著地改善反 粗糙度之差(△ Ra)大約在0. 〇3aun以下 射體表面與金屬層的密著性。 【圖式簡單說明】 圖1係示意表示本發明的發光裝置丨之立體圖。 圖2係示意表示本發明的反射體12之圖,(a)係反射體 12之立體圖,(b)係(a)2XX線之剖面圖。 【主要元件符號說明】 1〜發光裝置; 10〜電路基板; 11〜發光元件; 12〜反射體; 12 0 ~開口部; 121 ~傾斜面; 122〜金屬層。 22m: two using an oxidized stone with an average primary particle diameter of 5·5";; hair 'confirming the use of the average-secondary particle size of the second emulsified stone eve, the occurrence of awn; such as &lt; The body and the metal layer are pilgrimages. The less the fluffing is, the better the forming genus is. The result is that the above surface 21 201205896 βρ can significantly improve the difference in inverse roughness (Δ Ra). The adhesion between the surface of the emitter and the metal layer is below 0. 〇3aun. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view schematically showing a light-emitting device of the present invention. Fig. 2 is a view schematically showing a reflector 12 of the present invention. (a) is a perspective view of the reflector 12, and (b) is a cross-sectional view of the line (a) 2XX. [Description of main components] 1 to a light-emitting device; 10 to a circuit substrate; 11 to a light-emitting element; 12 to a reflector; 12 0 ~ opening; 121 ~ inclined surface; 122 ~ metal layer. 22

Claims (1)

201205896 七、申請專利範圍: 1'種發光裝置的製造方法,上述發光裝置包括: 電路基板; 發光元件’其係裝載於電路基板;及 反射體’其係包圍發光元件地配置於上述電路基板上, 上述反射體具有將由發光元件的光向所期望的方向反 射的傾斜面, 上述發光裝置的製造方法包括: 反射體製造步驟,其係由液晶性樹脂組成物製造反射 體; 金屬層形成步驟,其係對上述反射體製造步驟所得的 反射體的上述傾斜面形成金屬層; 發光7L件裝載步驟’其係於電路基板上裝載發光元件 ;及 反射體配置步驟,其係於上述電路基板上配置反射體, 上述反射體製造步驟’係將反射體的表面粗糖度Ra,及用於 製造上述反射體的模具之内壁面的表面粗糙度Ra之差 (△Ra)成0.1mm以下地製造反射體之步驟。 2. 如申請專利範圍第1項所述的發光裝置的製造方法, 其中上述差(△ Ra)為〇. 〇3mm以下。 3. —種發光裝置,包括: 電路基板; 發光元件’其係裝載於電路基板上;及 反射體’其係包圍發光元件地配置於上述電路基板上, 23 201205896 上述反射體包含·· 液晶性樹脂;及 無機填充劑,平均— 於上述反射體的表面 二人教徑為15 // m以下 配置金屬層。 4.如申請專利範圍第3項所述的發光裝 無機填充劑,係板狀填充劑及/或粉狀填充劑 5·如申請專利範圍第3項所述的發光裝: 無機填充劑係平均一次粒徑為〇.7#^以下的 6.如申請專利範圍第&amp; 5項中任_項戶 置,其中上述無機填充劑的含量,對上述液曰e •’其中上述 ) ’其中上述 '氧化碎。 述的發光裝 性樹脂 1 0 0 質量部為5質量部以上7 〇質量部以下 7.—種反射體,包含: 液晶性樹脂; 無機填充劑,平均一次粒徑主 1二芍15 # m以下 於表面具有金屬層。 24201205896 VII. Patent application scope: 1) A method for manufacturing a light-emitting device, wherein the light-emitting device includes: a circuit substrate; the light-emitting device is mounted on the circuit substrate; and the reflector is disposed on the circuit substrate surrounding the light-emitting device The reflector has an inclined surface that reflects light from the light-emitting element in a desired direction, and the method of manufacturing the light-emitting device includes: a reflector manufacturing step of manufacturing a reflector from a liquid crystalline resin composition; and a metal layer forming step; a step of forming a metal layer on the inclined surface of the reflector obtained in the reflector manufacturing step; a step of loading the light-emitting 7L; mounting the light-emitting element on the circuit board; and a step of disposing the reflector on the circuit board In the reflector, the reflector manufacturing step 'produces a reflector by making a difference (ΔRa) between the surface roughness of the reflector and the surface roughness Ra of the inner wall surface of the mold for producing the reflector to 0.1 mm or less. The steps. 2. The method of manufacturing a light-emitting device according to claim 1, wherein the difference (Δ Ra) is 〇. 〇 3 mm or less. 3. A light-emitting device comprising: a circuit board; a light-emitting element 'mounted on a circuit board; and a reflector' disposed on the circuit board surrounding the light-emitting element, 23 201205896 The reflector includes · liquid crystal Resin; and inorganic filler, average - a metal layer is disposed on the surface of the reflector at a distance of 15 // m or less. 4. The luminescent filler inorganic filler according to claim 3, which is a platy filler and/or a pulverulent filler. 5. The illuminating device according to claim 3: the inorganic filler is an average 6. The primary particle size is 〇.7#^ or less. 6. If the content of the above-mentioned inorganic filler is the content of the above-mentioned inorganic filler, the above liquid 曰e • 'where the above' 'Oxide crushed. The luminescent resin 100 described above is a mass portion of 5 mass parts or more and 7 〇 mass parts or less. 7. The type of reflector includes: a liquid crystalline resin; an inorganic filler, an average primary particle diameter of 1 芍 15 # m or less It has a metal layer on the surface. twenty four
TW100125083A 2010-07-30 2011-07-15 Method for producing light-emitting device, light-emitting device, and reflector TW201205896A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172351A JP2012033726A (en) 2010-07-30 2010-07-30 Manufacturing method of light-emitting device, light-emitting device, and reflector

Publications (1)

Publication Number Publication Date
TW201205896A true TW201205896A (en) 2012-02-01

Family

ID=45529895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100125083A TW201205896A (en) 2010-07-30 2011-07-15 Method for producing light-emitting device, light-emitting device, and reflector

Country Status (5)

Country Link
JP (1) JP2012033726A (en)
KR (1) KR20130005313A (en)
CN (1) CN103069594A (en)
TW (1) TW201205896A (en)
WO (1) WO2012014679A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101262872B1 (en) * 2012-04-17 2013-05-09 (주)알텍테크놀로지스 Method for manufacturing reflector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632507B2 (en) * 1999-07-06 2005-03-23 日亜化学工業株式会社 Light emitting device
JP2005159045A (en) * 2003-11-26 2005-06-16 Sumitomo Electric Ind Ltd Semiconductor light emitting element mounting member and light emitting diode using the same
JP5102051B2 (en) * 2007-01-18 2012-12-19 シチズン電子株式会社 Semiconductor light emitting device
JP5221122B2 (en) * 2007-12-28 2013-06-26 株式会社朝日ラバー Silicone resin base material
KR20110089292A (en) * 2008-10-28 2011-08-05 스미또모 가가꾸 가부시키가이샤 Resin composition, reflector plate and light-emitting device
JP2010106165A (en) * 2008-10-30 2010-05-13 Polyplastics Co Liquid crystalline resin composition for injection molding, molded item obtained by molding the resin composition, and camera module comprising the molded item

Also Published As

Publication number Publication date
CN103069594A (en) 2013-04-24
KR20130005313A (en) 2013-01-15
WO2012014679A1 (en) 2012-02-02
JP2012033726A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
US8066907B2 (en) Liquid crystalline polyester resin composition, molded article and holder for optical pickup lenses
TWI486391B (en) High thermal conductivity of thermoplastic resin
TWI583736B (en) Liquid crystal polyester resin composition, connector and method for manufacture of a liquid crystal polyester resin composition
TWI682966B (en) Liquid crystal resin composition for camera module, manufacturing method thereof, and camera module using the composition
JP2011063699A (en) Molding method for and molded article of liquid crystal polyester resin composition
JP2007218980A (en) Reflector and its manufacturing method
JP6335175B2 (en) Liquid crystalline polyester composition
TWI513745B (en) Liquid crystal polyester composition and connector obtained by molding the same
JP6823760B2 (en) Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using it
TW201345971A (en) Polyester resin composition used in reflective plate for surface-mounted led
JP5087958B2 (en) Molded product comprising liquid crystalline resin composition
JP5866423B2 (en) Liquid crystal polyester resin composition, molded article and LED reflector
JP2018016754A (en) Liquid crystal polymer composition
JPWO2017051883A1 (en) Liquid crystal polyester composition, molded product and connector
JP2007254717A (en) Liquid crystalline resin composition and molded article consisting of the same
JP2007320996A (en) Liquid crystalline resin composition and molded article made thereof
WO2017073387A1 (en) Camera module-use liquid crystalline polyester resin composition and camera module-use molded product formed thereof
JP2009179763A (en) Liquid crystal resin composition, method of manufacturing the same and molded article
JPWO2019203157A1 (en) Liquid crystalline resin composition
TWI491660B (en) High thermal conductivity of thermoplastic resin
TW201205896A (en) Method for producing light-emitting device, light-emitting device, and reflector
TWI732060B (en) Liquid crystal polyester resin composition
KR101996091B1 (en) Liquid crystalline polyester composition
KR20130097205A (en) Laminated film, laminated film having electrode, and organic el element
TWI628267B (en) Liquid crystal polyester composition