TW201205761A - Through silicon via treatment device and method arranged for treatment of TSVs in a chip manufacturing process - Google Patents

Through silicon via treatment device and method arranged for treatment of TSVs in a chip manufacturing process Download PDF

Info

Publication number
TW201205761A
TW201205761A TW100117057A TW100117057A TW201205761A TW 201205761 A TW201205761 A TW 201205761A TW 100117057 A TW100117057 A TW 100117057A TW 100117057 A TW100117057 A TW 100117057A TW 201205761 A TW201205761 A TW 201205761A
Authority
TW
Taiwan
Prior art keywords
donor
wafer
perforation
rti
laser beam
Prior art date
Application number
TW100117057A
Other languages
Chinese (zh)
Inventor
Gerrit Oosterhuis
In T Veld Huis
Vreede Frederikus Johannes Maria De
Den Eijnden Edwin Adrianus Cornelius Van
Raymond Jacobus Wilhelmus Knaapen
Original Assignee
Tno
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tno filed Critical Tno
Publication of TW201205761A publication Critical patent/TW201205761A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/048Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating

Abstract

According to an aspect of the invention, there is provided a chip die TSV treatment device arranged for treatment of TSVs in chip dies in a chip manufacturing process, comprising: a carrier plate comprising clamping zones on a top face arranged for placement of a wafer having identified TSVs to be treated; a donor guiding system for guiding a donor over a TSV to be treated, the guiding system adapted to keep the donor distanced from the wafer top surface; an alignable laser system arranged for impinging a laser beam on a side of the donor opposite a side facing the wafer; the laser beam tuned in timing, energy and direction to generate donor matter directed towards the TSV; and a control system for aligning the laser beam and the donor guiding system relative to the TSV. Advantages may further include reduction of process steps and process locations-in particular, obviating the necessity of a photolithographic process step-less material waste and combining manufacturing process stages of TSV cladding and filling.

Description

201205761 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係關於一晶片製造程序中的一種裸晶石夕穿孔 (Through Silicon Via,TSV)處理裝置以及被設置以 處理裸晶内的矽穿孔之方法。 【先前技術】 [0002] 100117057 積體電路的尺寸不斷地縮小,最新的發展是將數片具有 100微米以下、甚至10至50微米厚度的超薄矽裸晶堆疊在 一起。此種在一封裝中的1C堆疊也可稱為3D堆疊(31)此 stacking)。為了要讓.3D堆疊能夠發揮功用,必須有垂 直的連接,也就是矽穿孔(Through SiUeon \r TSV)。一般來說’ TSV可視為穿過薄裸晶的穿孔,此—孔 狀結構-般需要壁襯塾(wall liner)處理,剩下的部分 具有包覆(cladding),其包括,舉例來說,一障壁層(刀 障壁層 barrier Uyer)' 隔離層(Elation ^叶) ’或種子層(seed layer)。此外’ m係具有導電的 充物質,像是銅(CuhTSV的寬度—般為1〇微米以下,、 因此填充物的解析度大概是在2至5微米之間。為 此種解析度,會應用傳統的消減技術(例如光刻了達到 (PhC)tQHthC^aPhle)) “像是鍍膜、上光阻 、顯影、蝕刻等複雜步驟,以及沖洗,其令會良費才吞 多沒有用到的功能性物質。因此有需要提供-種穿= 充技術,能夠簡化並加速製造流程,並且降低材料的浪 費。要注意的是’如果要讓此種技術在經濟上可行,必 須在直接寫入和平行技術之間作取捨, 仃必 里十^亍技4标 表單編號A01G1 第4頁/共27頁 e>括像疋反應離子#刻(Rea(:·^;iVeIC)np十レ μ — .一 一… fttching)、化 1003290195-0 201205761 學氣相沉積(Chemical Vapour Deposition)、物理氣 相沉積(Phyisical Vapour Deposition)或(電鍍 (Plating)製程。 [〇〇〇3] 還有,要注意的是過去已知的直接寫入(印刷)技術像 是液體和熔融金屬的喷墨技術與雷射化學氣相沉積 (Laser Chemical Vapor Deposition,LCVD)等無法 提供所需的解析度,一般被限制在10至20微米。在應用 物理期刊Appl· Phys. Lett. 89,193107 (2006); Banks所著的「沉積在微陣列中的奈米微滴(Nano droplets deposited in microarrays)」,係揭示 了用以產生非常精細的微滴的方法。 【發明内容】 [0004] 根據本發明的一型態’本發明係提供一種裸晶片矽穿孔 (TSV)處理裝置,用以處理在—晶片製造程序中的裸晶片 (chip die)之石夕穿孔’該裝置包含一包含夾緊區的載體 板’該些夾緊區係位於該載體板的一被設置以放置一具 有要被處理的已識別矽穿孔之晶圓的上表面上;一施體 引導系統’用以引導一施體(d〇nor)越過一要被處理的梦 穿孔之上,該引導系統係適於將該施體遠離該晶圓上表 面,一可對準雷射系統,其被設置以將一雷射光束照射 至該施體面對該晶圓的一側之相反侧;該雷射光束係被 調整時序、能量,以及方向,用以產生被導向該矽穿孔 的施體物質;以及一控制系統,用以相對於該矽穿孔對 準該雷射光束與該施體引導系統。 [0005]在另一型態中,本發明提供一種在一晶片製造流程中處 1003290195-0 100117057 表單編號A0101 第5頁/共27頁 201205761 理裸晶片中的矽穿孔的方法’包含:夹緊一具有要被處 理的已識別矽穿孔之晶圓;提供一遠離該晶圓上表雨的 施體;相對於在該晶圓上的一已識別石夕穿孔對準一雷射 糸統的一雷射光束並引導該施體;以及將該雷射光束照 射至該施體面對該晶圓的一侧之相反侧;該雷射光束係 被調整時序、能量,以及方向,用以產生被導向該要被 處理的矽穿孔之施體物質。 [0006] [0007] 令人驚奇的是,此一技術的產生能力在裸晶片上的矽穿 孔數目小於大約100 TSV/mm2的時候特別顯著。和傳統 平行處理製程相較,此一數目是序列處理方式能夠妥善 處理的數量。本發明的優點更可包括減少製程步驟與製 程位置,尤其是因省除一光刻製程步驟,達到更少材料 浪費並結合珍穿孔包覆與填充的製程階段。 【實施方式】 參考第一圖,其中係裸晶片的矽穿孔處理之第一實施例 。尤其是,該實施例係關於以一電漿沉積製程包覆矽穿 孔壁(TSV wall)l〇l,藉由將雷射光束1〇2照射在施體 130 ,以便產生被引導進矽穿孔(TSV)1〇〇的電漿14〇。在 此實施例中一具有穿孔1〇〇的矽裸晶11〇 (圖中所示具有 一底板105,但是有可能沒有)係以襯墊(liner)1〇6包 覆。在此範例中,發裸晶1 1 Q係具有二氧化梦隔離壁1 〇 1 和由鈕(Tantalum,Ta)、氮化鈕(Tantalum Nitride, TaN) 、 鈦 (Titanium, Ti) 、 氮化鈦 (Titanium Nitride,TiN)之群組中的任一個所形成的 障壁層(barrier layer)1 〇6。在電鍍程序中除了障壁 100117057 表單編號A0101 第6頁/共27頁 1003290195-0 201205761 ❸ [0008]201205761 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a through silicon wafer (TSV) processing apparatus in a wafer manufacturing process and is disposed to process a die The method of perforation. [Prior Art] [0002] 100117057 The size of the integrated circuit is continuously shrinking, and the latest development is to stack a plurality of ultra-thin germanium crystals having a thickness of 100 micrometers or less and even 10 to 50 micrometers. Such a 1C stack in a package can also be referred to as a 3D stack (31). In order for the .3D stack to function, there must be a vertical connection, namely the through hole (Through SiUeon \r TSV). In general, 'TSV can be viewed as a perforation through a thin die, which - a hole-like structure - typically requires a wall liner treatment, and the remaining portion has cladding, including, for example, A barrier layer (barrier Uyer) 'Isolate layer' or seed layer. In addition, the 'm series has a conductive charge, such as copper (the width of the CuhTSV is generally less than 1 μm, so the resolution of the filler is about 2 to 5 μm. For this resolution, it will be applied Conventional subtractive techniques (such as photolithography (PhC) tQHthC^aPhle)) "Complete steps such as coating, photoresist, development, etching, etc., as well as rinsing, which will cost more than just use. Sexual substances. Therefore, there is a need to provide a kind of wear-and-fill technology that can simplify and speed up the manufacturing process and reduce the waste of materials. It should be noted that 'if this technology is economically feasible, it must be written directly and parallelly. The choice between technology, 仃必里10^亍技4标表号 A01G1 Page 4 / 27 pages e> 疋 疋 疋 疋 # 刻 ( Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re Re One... fttching), chemical 1003290195-0 201205761 Chemical Vapour Deposition, Physical Vapour Deposition or Plating process [〇〇〇3] Also, note that Direct writes known in the past ) Inkjet technology such as liquid and molten metal and Laser Chemical Vapor Deposition (LCVD) cannot provide the required resolution and is generally limited to 10 to 20 microns. In Applied Physics Journal Appl · Phys. Lett. 89, 193107 (2006); "Nano droplets deposited in microarrays" by Banks reveals methods for producing very fine droplets. SUMMARY OF THE INVENTION [0004] According to one aspect of the present invention, the present invention provides a bare wafer via (TSV) processing apparatus for processing a diamond die of a chip die in a wafer fabrication process. 'The device comprises a carrier plate comprising a clamping zone, the clamping zones being located on an upper surface of the carrier plate disposed to place a wafer having the identified defect perforation to be processed; The guiding system is configured to direct a donor body over a dream perforation to be processed, the guiding system being adapted to move the donor body away from the upper surface of the wafer, an alignable laser system, Is set to a laser beam is incident on the opposite side of the side of the donor facing the wafer; the laser beam is adjusted in timing, energy, and direction to produce a donor substance directed to the pupil perforation; and a control a system for aligning the laser beam with the donor guiding system relative to the bore. [0005] In another form, the present invention provides a form in the wafer manufacturing process at 1003290195-0 100117057 Form No. A0101 5 pages/total 27 pages 201205761 The method of controlling the perforation of the crucible in the bare wafer includes: clamping a wafer having the identified crucible to be processed; providing a donor body away from the rain on the wafer; An identified Shishi perforation on the wafer is directed to a laser beam of a laser system and directs the donor; and the laser beam is illuminated to the opposite side of the side of the donor facing the wafer The laser beam is adjusted in timing, energy, and direction to produce a donor substance that is directed to the perforated perforation to be treated. [0007] Surprisingly, the ability to produce this technique is particularly significant when the number of through-holes on the bare wafer is less than about 100 TSV/mm2. Compared with the traditional parallel processing process, this number is the number that the sequence processing method can properly handle. Advantages of the present invention may further include reduced process steps and process locations, particularly by eliminating a lithography process step, achieving less material waste and incorporating process steps for cladding and filling. [Embodiment] Referring to the first figure, there is a first embodiment of a boring process of a bare wafer. In particular, this embodiment relates to coating a TSV wall 101 with a plasma deposition process by irradiating a laser beam 1 〇 2 onto the donor body 130 to produce a guided perforation ( TSV) 1 〇〇 plasma 14 〇. In this embodiment, a tantalum die 11 having a perforation of 1 turns (shown with a bottom plate 105, but possibly not) is covered with a liner 1〇6. In this example, the bare crystal 1 1 Q system has a dioxide dioxide barrier wall 1 〇 1 and a button (Tantalum, Ta), a nitride button (Tantalum Nitride, TaN), titanium (Titanium, Ti), titanium nitride A barrier layer 1 〇 6 formed by any one of the group of Titanium Nitride (TiN). In addition to the barrier in the plating process 100117057 Form No. A0101 Page 6 of 27 1003290195-0 201205761 ❸ [0008]

[0009] 層外,還可以有一種子層’舉例來說,一銅襯墊。對於 這些包覆的任何一個來溥,沉積步驟可以用在晶片製造 程序中處理裸晶片150的TSV 1〇〇的方法的一個實施例來 執行’方法包含夾緊一具有要被處理的已識別TSV 1〇〇之 晶圓110 ;提供一遠離該晶圓上表面1U的施體丨3〇 ;相 對於在晶圓110上的一已識別TSV 100對準一雷射系統 120的一雷射光束1〇2並引導施體130 ;以及將雷射光束 1 02照射至施體1 3〇面對晶圓1丨〇的一侧132之相反側1 31 ;雷射光束102係被調整時序、能量,以及方向,用以產 生被導向要被處理的TSV 100之施體物質,其為電漿140 的形式。 因此,電漿140係由較佳為鈕(Ta)、氮化钽(TaN)、鈦 (Ti)、氮化欽(TiN)的一群組所選出的施體130所產生。 鉗子112可以由矽、玻璃,或者是樹脂所形成的支架所製 成。在一實施例中,鉗子11 2可為,舉例來說,一多孔鋁 的真空鉗,其中晶圓110底下抽真空,並且透過通道114 被傳送至夾緊區113。 第二圖所示為方法的第二實施例,其為第一圖的包覆處 理較佳的後續製程。在此,後續的程序為以導電材料200 像是銅填充TSV 100,其中後續的施體物質231係藉由將 後續施體230的粒子231引導進TSV 100而被導向TSV 100。較佳地,包覆和填充步驟係於相同的製程環境250 以施體130、230執行。因此,在此程序中,TSV處理包 含將施體物質231導向要被處理的TSV 1〇〇以填充TSV 100。在一多次照射(multishot process)重複步驟中 100117057 表單編號A0101 第7頁/共27頁 1003290195-0 201205761 執行相對於TSV lG〇引導新的施體材料230並將雷射光束 102照射於施體230上’以便將一施體物質的粒子如引 導進TSV副中。合適的導體m包括銅、紹、鶴、鉻, 以及多晶砍。 [0010] [0011] [0012] [0013] 為了執行方法以達财孔填朗目的,還有讓穿孔具有 在5'15微㈣㈣典鼓徑,《比較佳社5至1:10 而冰度通常疋在2〇至1〇〇微米的範圍,填充微滴 (droplet)較佳是2至5微米的範圍。為了在每秒至少 1〇〇〇至綱0個穿孔的速率下達到具成本效制填充效果 ,雷射重複率較佳是在至少6GW_Hz的範圍。 為了讓施體在這些速率下更新,在此触為制具有高 更新速率能力的施體更新模組(donor refreshment module) ’舉例來說,讓相對於TSV的施體更新速度超過 2 ro/s,甚至超過4 m/s。高雷射重複率加上相當高的每 穿孔60至2GG個微滴數目,可以為穿孔填充應用提供有效 的操作條件。 有利地,本發明可利用具有2至5微米的典型直徑之微滴 來填充TSV。以TSV的密度在1〇至1〇〇 TSV/mm2之間來說 ’為了達到足夠’也就是經濟上可行的速率,較佳係提 供一介於200至1〇〇〇奈米的施體薄膜,並相對於要被填充 的TSV以1〇 m/s或更高的速率移動。此種系統之雷射頻 率可以是1至2 MHz或更高,而雷射點大小為10至2〇微米 在第二圖所示的實施例中,施體引導系統300包含一可移 100117057 表單編號A0101 第8頁/共27頁 1003290195-0 201205761 Ο [0014] 〇 [0015] 動透明載體,其係被維持遠離晶圓上表面111,並於其一 面311上具有施體材料23〇j在此實施例中雷射光束 102透過與施體230相反的載體面312照射至施體230,以 引導施體物質的粒子231進入TSV 100。較佳地,施體 230係由施體引導系統300所引導的同質層(homogenous layer)。為了強化微滴的形成,施體13〇、230可以為預 先製造的形式,舉例來說,包含一犧牲層(sacrificial layer)311、一預先圖樣化施體層,以及/或者一被提 供於一犧牲材料的基質中之施體。同質層的合適厚度可 以在50至20〇〇 nm之間,較佳為在50至500 nm之間,甚 至更佳為50至250 nm之間。 替代地’施體13〇、230可為直接提供在一移動載體310 上的同質層。如圖示,載體310可以是薄玻璃板或任何合 適的透明載體’舉例來說,1至5 mm以高速旋轉的玻璃板 。其與裸晶表面11丨的距離係維持在1至5 〇微米的範圍, 較佳為1至20微米。 第四圖所不為在—重複處理程序中用以處理TSV 100的步 進實施例。如圖示,一雷射光束102係被導向一夾緊晶圓 110的掃描臺(Scanning stage) » —高速光束調變器 400 (電流鏡(galvano mirror)、多角鏡(polygon mirror)、聲光或電光調變器等)在一第一方向提供雷射 光束102的掃描動作。調變器較佳係應用於一前饋程序 (feed forward process)中,其中TSV的座標係由提 供裸晶片的佈局資料之外部來源所提供。替代地,該調 變器可作為-掃插單元,在—預先掃描階段先行映對Tsv 100117057 表單編號A0101 第9頁/共27頁 1003290195-0 201205761 的座標。替代地’一額外的光回授系統可相對於TSV提供 雷射對準。選擇性地’ 一主要光束:潍分割為2至20個子光 束。在此實施例中,每一個TSV 100係以多次照射程序處 理,其中重複相對於TSV 1〇〇引導新的施體材料23〇並產 生一粒子231的步驟。在第一步驟中,施體230係相對於 晶圓表面111維持固定’而雷射光束102係藉由一光束調 變器400的傾斜動作而掃描過TSV 100。在第二步驟中, 施體230係相對於晶圓110而位移,並重複掃描步驟。所 以新的施體材料230會被引導至每一俩TSV 1〇〇。在第二 步驟,施體材料230會被位移一步級,並重複同樣的掃描 動作。位移步驟可以在雙重平面方向進行,以便覆蓋整 個晶圓表面111。替代地,晶圓可在與掃描光束動作垂直 的方向連續地移動。 [0016] 第五圖所不為包括一旋轉載體盤500的施體引導系統。旋 轉盤500可位於-致動器510上,由致動器510在一相對 於晶圓11G的平移方向移動,所以藉由旋轉,新的施體材 ^可以被帶到TSV 11()之上。旋轉盤⑽可具有一_周 整裝置’舉例來說,在CD-ROM技術中傳統可見的自動對 焦形式,用以機械式地控制施體在晶圓表面上的高度。 實施例中,可以利用磁性定位或替代地,如圖示 ’施體引導系统包含一空氣軸承520,用以讓同質層23〇 遠離晶圓上表面111。有利地’空氣轴承520的寬度約為 二或三片裸晶15〇 ’所以在單一裸晶15〇上的距離高度係 維持固定在低於1微米,而施體230被保持在1至2〇微米範 最佳距離。旋轉盤500可具有一中央空氣軸承521以 100117057 表單編號A0101 第10頁/共27頁 ^)03290195-0 201205761 〇 [⑻ 17] 〇 及一週邊轴承522,在旋轉㈣G高速旋轉時可確伴 230的平面剛性(planaTi rigidity)。透過適當的 = 其剛性’舉例來說,在碟盤邊緣提供機又翼 又计空氣流’以便提供白努利夾緊效果 (BernouHi cIamping)(圖中未顯示)。因此在— 實施例中’施體引導系統50G具有中央空氣轴承521,以 ^在高速旋轉動作中跨越施體層230的週邊轴承522。在 B日圓110上放置空氣軸承52〇可痛保施體材料23〇相對於 晶圓表面111的2軸位置保持—定。空氣轴承52G —般包含 一組流動通道(flow channel)524和一已知的軸承表面 523,所以軸承表面523和流動通道524可經由調整以提 供一空氣轴承層525 ’確保固定的z軸定位。此外,碟盤 致動器510包含一控制器511以調整轉速,使得對tsv的 相對速度實質上是固定的。在一較佳實施例中,控制器 511控制載體盤500,以一相對於要被填充的TSV 1〇〇超 過4 m/s的速度轉動。 第六圖所示為一包括帶引導系統600的施體。帶引導系統 600可包括一預先製造的線帶610,位於一對捲進/捲出 的線軸(圖中未顯示)上,其中線帶610係沿著帶引導系 統600以高速移動,帶引導系統600讓線帶610可以在固 定高度下移動經過要被處理的TSV 100。替代地,在所示 的實施例中,線帶610係無限供應,並包括一再生系統 650,讓線帶610在剝除步驟(蝕刻/反電鍍)和沉積步 驟(PVD或電鍍)中會被更新。根據此實施例,再生系統 650係被設置用以在載體610上沉積施體材料的同質層 100117057 表單編號A0101 第11頁/共27頁 1003290195-0 201205761 630,然後讓載體610從再生系統650移動至要被步進或 連續動作處理的;TSV 100。所以,在一連續程序中,在引 導施體材料630至TSV 100之前,可先將施體材料630沉 積在載體610上。引導系統600可選擇性地配備z軸高度感 應器(圖中未顯示),用以自行Z軸定位,確保Z軸定位 固定。 [0018] 第七圖所示為一系列的熔融沉積的實驗結果的掃描電子 顯微鏡影像(SEM image)700。710所示為最佳化的製程 窗口。由圖中可發現平均功率範圍在50至100 mW,微滴 大小約為2至6微米,而其與裸晶表面的距離係維持在1至 2 0微米的範圍。 [0019] 第八圖進一步提供具有約1 50nm厚度的銅施體層的傳送點 大小和功率的關係,其中間隙距離從〇至40微米不等。從 圖表中可知,尺寸會跟著能量的增加和縮減的距離而變 小。在一範例中,具有80、120,以及200 nm厚度的銅 施體係位於1 min厚的玻璃載體上,其中空氣間隙固定在1 至10 lam之間。雷射光束會掃描過固定的施體和載體配件 。額外的製程參數包括: [0020][0009] Outside the layer, there may also be a seed layer 'for example, a copper pad. For any of these claddings, the deposition step can be performed with one embodiment of a method of processing the TSV 1〇〇 of the bare wafer 150 in a wafer fabrication process. The method includes clamping a identified TSV having to be processed. a wafer 110; a donor 丨3 远离 away from the upper surface of the wafer; a laser beam 1 aligned with a laser system 120 with respect to an identified TSV 100 on the wafer 110 〇2 and guiding the donor body 130; and irradiating the laser beam 102 to the opposite side 1 31 of the side 132 of the donor body 1 〇 facing the wafer 1 ;; the laser beam 102 is adjusted in timing, energy, And a direction for producing a donor substance directed to the TSV 100 to be processed, which is in the form of a plasma 140. Thus, the plasma 140 is produced by a donor 130 selected from the group consisting of a button (Ta), tantalum nitride (TaN), titanium (Ti), and nitride (TiN). The forceps 112 can be made of a bracket formed of enamel, glass, or resin. In one embodiment, the pliers 11 2 can be, for example, a porous aluminum vacuum clamp in which the wafer 110 is evacuated underneath and transmitted through the passage 114 to the clamping zone 113. The second figure shows a second embodiment of the method which is a preferred subsequent process for the cladding process of the first figure. Here, the subsequent procedure is to fill the TSV 100 with a conductive material 200 like copper, wherein the subsequent donor material 231 is directed to the TSV 100 by directing the particles 231 of the subsequent donor 230 into the TSV 100. Preferably, the cladding and filling steps are performed in the same process environment 250 with the donor bodies 130, 230. Therefore, in this procedure, the TSV process involves directing the donor substance 231 to the TSV 1〇〇 to be processed to fill the TSV 100. In a repeating step of multishot process 100117057 Form No. A0101 Page 7 / Total 27 Page 1003290195-0 201205761 Performing a new donor material 230 relative to the TSV lG〇 and irradiating the laser beam 102 to the donor body 230' to direct particles of a donor substance into the TSV pair. Suitable conductors m include copper, shovel, crane, chrome, and polycrystalline chopping. [0013] [0013] [0013] In order to perform the method to fill the hole, the perforation has a diameter of 5'15 micro (four) (four), "Comparative Jiashe 5 to 1:10 and ice Typically, the crucible is in the range of 2 to 1 micrometer, and the filling droplet is preferably in the range of 2 to 5 micrometers. In order to achieve a cost effective filling effect at a rate of at least 1 to 0 per second per second, the laser repetition rate is preferably in the range of at least 6 GW Hz. In order to allow the donor to be updated at these rates, it is hereby implemented as a donor refreshment module with a high update rate capability. For example, let the donor update rate relative to the TSV exceed 2 ro/s. Even more than 4 m/s. The high laser repetition rate plus a relatively high number of 60 to 2 GG droplets per perforation provides effective operating conditions for perforated filling applications. Advantageously, the present invention can utilize a droplet having a typical diameter of 2 to 5 microns to fill the TSV. In the case of a density of TSV between 1 〇 and 1 〇〇 TSV/mm 2 , in order to achieve a sufficient economical rate, it is preferred to provide a donor film of between 200 and 1 Å. And moving at a rate of 1 〇 m/s or higher with respect to the TSV to be filled. The laser frequency of such a system can be 1 to 2 MHz or higher, and the laser spot size is 10 to 2 microns. In the embodiment shown in the second figure, the donor guidance system 300 includes a removable 100117057 form. No. A0101 Page 8 of 27 1003290195-0 201205761 Ο [0015] The movable transparent carrier is maintained away from the upper surface 111 of the wafer and has a donor material 23〇j on one side 311 thereof. In this embodiment, the laser beam 102 is incident on the donor body 230 through a carrier surface 312 opposite the donor 230 to direct the particles 231 of the donor substance into the TSV 100. Preferably, the donor 230 is a homogenous layer that is guided by the donor guidance system 300. To enhance droplet formation, the donor bodies 13, 230 may be in a pre-manufactured form, for example, comprising a sacrificial layer 311, a pre-patterned donor layer, and/or one provided at a sacrifice. The donor body in the matrix of the material. A suitable thickness of the homogenous layer may be between 50 and 20 Å, preferably between 50 and 500 nm, and even more preferably between 50 and 250 nm. Alternatively, the donor bodies 13, 230 may be provided as a homogenous layer directly on a moving carrier 310. As illustrated, the carrier 310 can be a thin glass sheet or any suitable transparent carrier', for example, a glass plate that rotates at a high speed of 1 to 5 mm. The distance from the bare surface 11 维持 is maintained in the range of 1 to 5 μm, preferably 1 to 20 μm. The fourth figure is not a step-by-step embodiment for processing the TSV 100 in a repeating process. As shown, a laser beam 102 is directed to a scanning stage that clamps the wafer 110. - a high speed beam modulator 400 (galvano mirror, polygon mirror, sound and light) Or an electro-optical modulator or the like) provides a scanning action of the laser beam 102 in a first direction. The modulator is preferably applied to a feed forward process in which the coordinates of the TSV are provided by an external source that provides layout information for the bare wafer. Alternatively, the modulator can be used as a -sweep unit to map the coordinates of Tsv 100117057 Form No. A0101 Page 9 of 27, 1003290195-0 201205761 in the pre-scanning phase. Alternatively, an additional optical feedback system can provide laser alignment with respect to the TSV. Optionally, a primary beam: 潍 is divided into 2 to 20 sub-beams. In this embodiment, each TSV 100 is processed in a plurality of irradiation procedures in which the step of guiding a new donor material 23 相对 relative to the TSV 1 〇 and producing a particle 231 is repeated. In the first step, the donor 230 is maintained stationary relative to the wafer surface 111 and the laser beam 102 is scanned across the TSV 100 by the tilting action of a beam modulator 400. In the second step, the donor 230 is displaced relative to the wafer 110 and the scanning step is repeated. Therefore, the new donor material 230 will be directed to each of the two TSVs. In the second step, the donor material 230 is displaced one step and the same scanning action is repeated. The displacement step can be performed in a double planar direction to cover the entire wafer surface 111. Alternatively, the wafer can be continuously moved in a direction perpendicular to the scanning beam motion. [0016] The fifth figure is not a donor guiding system including a rotating carrier disk 500. The rotary table 500 can be located on the actuator 510 and moved by the actuator 510 in a translational direction relative to the wafer 11G so that a new donor material can be brought over the TSV 11() by rotation. The rotating disk (10) can have a peripheral device', for example, a conventionally visible autofocus form in CD-ROM technology for mechanically controlling the height of the donor body on the wafer surface. In an embodiment, magnetic positioning may be utilized or alternatively, as illustrated, the donor guiding system includes an air bearing 520 for moving the homogenous layer 23 away from the wafer upper surface 111. Advantageously, the 'air bearing 520 has a width of about two or three bare crystals 15' so that the height of the distance on the single bare 15 维持 remains fixed below 1 micron and the donor 230 is maintained at 1 to 2 〇. Micron van optimum distance. The rotating disk 500 can have a central air bearing 521 with 100117057 form number A0101 page 10 / total 27 pages ^) 03290195-0 201205761 〇 [(8) 17] 〇 and a peripheral bearing 522, which can be accompanied by 230 when rotating (four) G high speed rotation PlanaTi rigidity. By appropriate = its rigidity', for example, the airfoil is provided at the edge of the disk to provide a Bernou Hi cimamping (not shown). Thus, in the embodiment, the donor guiding system 50G has a central air bearing 521 to span the peripheral bearing 522 of the donor layer 230 during high speed rotational motion. The placement of the air bearing 52 on the B-yen 110 can be used to ensure that the donor material 23 is held relative to the 2-axis position of the wafer surface 111. The air bearing 52G generally includes a set of flow channels 524 and a known bearing surface 523 so that the bearing surfaces 523 and flow passages 524 can be adjusted to provide an air bearing layer 525' to ensure a fixed z-axis positioning. In addition, the disk actuator 510 includes a controller 511 to adjust the rotational speed such that the relative speed to tsv is substantially fixed. In a preferred embodiment, controller 511 controls carrier disk 500 to rotate at a speed of more than 4 m/s relative to the TSV 1 要 to be filled. The sixth figure shows a donor body including a belt guiding system 600. The belt guiding system 600 can include a pre-manufactured wire strip 610 on a pair of rolled-in/out spools (not shown), wherein the tape 610 is moved at high speed along the tape guiding system 600, with a guiding system 600 allows the tape 610 to move past the TSV 100 to be processed at a fixed height. Alternatively, in the illustrated embodiment, the tape 610 is infinitely supplied and includes a regeneration system 650 that allows the tape 610 to be removed during the stripping step (etch/back plating) and deposition step (PVD or plating) Update. According to this embodiment, the regeneration system 650 is configured to deposit a homogenous layer 100117057 of the donor material on the carrier 610, Form No. A0101, Page 11 of 27, 1003290195-0 201205761 630, and then move the carrier 610 from the regeneration system 650 To be processed by stepping or continuous action; TSV 100. Therefore, in a continuous procedure, the donor material 630 can be deposited onto the carrier 610 prior to directing the donor material 630 to the TSV 100. The guidance system 600 can optionally be equipped with a z-axis height sensor (not shown) for self-Z-axis positioning to ensure that the Z-axis is fixed. [0018] Figure 7 shows a series of SEM images of the experimental results of fused deposition 700. 710 shows an optimized process window. It can be seen from the figure that the average power range is from 50 to 100 mW, the droplet size is about 2 to 6 microns, and the distance from the bare crystal surface is maintained in the range of 1 to 20 microns. [0019] The eighth figure further provides a relationship between the transfer point size and power of a copper donor layer having a thickness of about 150 nm, wherein the gap distance varies from 〇 to 40 microns. As you can see from the chart, the size will decrease as the energy increases and decreases. In one example, a copper system having thicknesses of 80, 120, and 200 nm is placed on a 1 min thick glass carrier with an air gap between 1 and 10 lam. The laser beam scans the fixed donor and carrier accessories. Additional process parameters include: [0020]

波長:515 nm ( 單位 綠)、343 nm (UV) 脈衝時間 6. 7 ps 脈衝頻率 100 kHz 脈衝能量 0.5-1 μJ / pulse 平均功率 50 - 100 raW 表單編號A0101 第12頁/共27頁 1003290195-0 100117057 201205761 儘管本發明已經透過圖示與前述的實施例加以說明,然 而這些說明應視為秦例而非限制,本發明並不限於所述 的實施例。尤其是,除非在内容中有明示,在各種實施 例中的各種處理型態應視為各種相關變化的組合,並且 在實體上是可行的,而本發明的範疇係延伸至這些組合 。熟悉此技藝者在利用圖示、實施方式以及所附的申請 專利範圍實施本發明時,應可了解各種實施例的變化。 在申請專利範圍中,「包含(comprising)」一詞並不排 除其他元件或步驟,而冠詞「a」或「an」並不排除複數 的可能。單一單元可能可完成在申請專利範圍中所提到 的各種項目,而在不同的申請專利範圍中所提到的某些 度量單位也可組合使用以增進效用。在申請專利範圍中 所提到的任何參考符號不應視為限制本發明的範疇。 【圖式簡單說明】 [0021] 第一圖所示為本發明的一第一實施例; [0022] 第二圖所示為本發明的一第二實施例; 〇 [0023] 第三圖所示為使用一移動載體的一處理裝置; [0024] 第四圖所示為在一重複處理流程中一用以處理一矽穿孔 的步進實施例; [0025] 第五圖所示為一包括一旋轉盤的施體系統; [0026] 第六圖所示為一包括一帶引導系統的施體系統; [0027] 第七圖所示為一系列的熔融沉積之實驗結果;以及 [0028] 第八圖所示為微滴大小與雷射功率之間關係的圖表。 1003290195-0 100117057 表單編號A0101 第13頁/共27頁 201205761 【主要元件符號說明】 [0029] 100 矽穿孔(TSV) [0030] 101 矽穿孔壁 [0031] 102 雷射光束 [0032] 105 底板 [0033] 106 襯塾 [0034] 110 碎裸晶 [0035] 111 晶圓上表面 [0036] 112 甜子 [0037] 113 夾緊區 [0038] 114 通道 [0039] 120 雷射系統 [0040] 130 施體 [0041] 131 施體一側 [0042] 132 施體一側 [0043] 140 電漿 [0044] 150 裸晶片 [0045] 200 導電材料 [0046] 230 施體 [0047] 231 粒子 表單編號A0101 湖117057 第14頁/共27頁 1003290195-0 201205761Wavelength: 515 nm (unit green), 343 nm (UV) Pulse time 6.7 ps Pulse frequency 100 kHz Pulse energy 0.5-1 μJ / pulse Average power 50 - 100 raW Form number A0101 Page 12 of 27 1003290195- 0 100117057 201205761 While the invention has been described by way of illustration and the foregoing embodiments, In particular, the various treatments in the various embodiments should be considered as a combination of various related variations, and are physically feasible, and the scope of the present invention extends to these combinations, unless expressly stated in the context. Variations of the various embodiments will be apparent to those skilled in the art of the invention. In the scope of the patent application, the word "comprising" does not exclude other elements or steps, and the articles "a" or "an" do not exclude the plural. A single unit may be able to complete the various items mentioned in the scope of the patent application, and some of the units of measurement mentioned in the different patent applications may also be used in combination to enhance utility. Any reference signs mentioned in the patent application should not be construed as limiting the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS [0021] The first figure shows a first embodiment of the present invention; [0022] The second figure shows a second embodiment of the present invention; 〇[0023] Shown as a processing device using a mobile carrier; [0024] The fourth figure shows a stepping embodiment for processing a puncturing hole in a repetitive processing flow; [0025] FIG. a donor system of a rotating disk; [0026] Figure 6 shows a donor system including a belt guiding system; [0027] Figure 7 shows a series of experimental results of fused deposition; and [0028] Figure 8 shows a graph of the relationship between droplet size and laser power. 1003290195-0 100117057 Form No. A0101 Page 13 of 27 201205761 [Description of Main Components] [0029] 100 矽 Perforation (TSV) [0030] 101 矽 Perforated Wall [0031] 102 Laser Beam [0032] 105 Backplane [ 0033] 106 lining [0034] 110 broken bare [0035] 111 wafer upper surface [0036] 112 sweetener [0037] 113 clamping zone [0038] 114 channel [0039] 120 laser system [0040] 130 Body [0041] 131 body side [0042] 132 body side [0043] 140 plasma [0044] 150 bare wafer [0045] 200 conductive material [0046] 230 body [0047] 231 particle form number A0101 lake 117057 Page 14 of 27 1003290195-0 201205761

Ο [0048] 250 製程環境 [0049] 300 施體引導糸統 [0050] 310 可移動透明載體 [0051] 311 載體面 [0052] 312 載體面 [0053] 400 高速光束調變器 [0054] 500 旋轉載體盤 [0055] 510 致動器 [0056] 511 控制器 [0057] 520 空氣軸承 [0058] 521 中央空氣軸承 [0059] 522 週邊轴承 [0060] 523 軸承表面 [0061] 524 流動通道 [0062] 525 空氣軸承層 [0063] 600 帶引導系統 [0064] 610 線帶 [0065] 630 同質層 [0066] 650 再生系統 100117057 表單編號Α0101 第15頁/共27頁 1003290195-0 201205761 [0067] 700 SEM影像 [0068] 710 最佳化的製程窗口 [0069] 縱軸 :Cu尺寸(微米) [0070] 橫軸 :功率(mW ) 100117057 表單編號A0101 第16頁/共27頁 1003290195-0制 [0048] 250 Process Environment [0049] 300 Body Guide System [0050] 310 Movable Transparent Carrier [0051] 311 Carrier Face [0052] 312 Carrier Face [0053] 400 High Speed Beam Modulator [0054] 500 Rotation Carrier disk [0055] 510 actuator [0056] 511 controller [0057] 520 air bearing [0058] 521 central air bearing [0059] 522 peripheral bearing [0060] 523 bearing surface [0061] 524 flow channel [0062] 525 Air bearing layer [0063] 600 belt guiding system [0064] 610 belt [0065] 630 homogenous layer [0066] 650 regeneration system 100117057 Form number Α 0101 Page 15 / Total 27 pages 1003290195-0 201205761 [0067] 700 SEM image [ 0068] 710 Optimized Process Window [0069] Vertical Axis: Cu Size (μm) [0070] Horizontal Axis: Power (mW) 100117057 Form No. A0101 Page 16 of 27 1003290195-0

Claims (1)

201205761 七、申請專利範圍: 1 ·-種祿晶片石夕穿孔(tsv)處理敦置,其被設置以處理在— 晶片製造程序中的裸晶片之石夕穿孔,包含:_包含夹⑼ 的载體板,該些炎緊區係位於該載體板的一被設置以放: —具有要被處理的已識別矽穿孔之晶圓的上表面上;一施 體引導系統,用以引導-施體越過一要被處理的石夕穿孔之 上,該引導系統係適於將該施體遠離該晶圓上表面;—可 對準雷射系統,其被設置以將-雷射光束照射至該施體面 〇 對該晶圓的一側之相反側;該雷射光束係被調整時序、能 量,以及方向,用以產生被導向該矽穿孔的施體物質;— 控制系統,用以相對於該矽穿孔對準該雷射光束與該施體 引導系統;其中該施體引導系統包含一可移動透明载體, 其被保持遠離該晶圓上表面並具有該施體被提供於其一面 上;該雷射光束被設置以經由一與該施體相反的載體面照 射至該施體上;該雷射係一具有一至少60 kHZ的重複率 之脈衝雷射;以及該施體引導系統被設置以一相對於該要 0 被填充的矽穿孔大於4 m/s的速度移動該施體。 2 .如申請專利範圍第1項所述之裸晶片矽穿孔處理裝置,其 中該施體係被提供為一由該施體引導系統引導之同質層。 3 .如申請專利範圍第2項所述之裸晶片矽穿孔處理裝置,其 中3亥同質層具有一介於50至250 nm的一範圍之厚度。 4 ·如申請專利範圍第2項所述之裸晶片矽穿孔處理裝置其 中該施體引導系統包含一被設置以將該同質層遠離該晶圓 上表面之空氣軸承。 5 .如申請專利範圍第1項所述之裸晶片矽穿孔處理裝置,更 100117057 表單編號A0101 第17頁/共27頁 1003290195-0 201205761 包含一用以提供一施體材料的同質層之再生系統,該再生 系統被設置以沉積一施體材料的同質層於該载體上’該載 體係從該再生系統被移動至一要被一步進或連續動作處理 的矽穿孔。 6 .如申請專利範圍第1項所述之裸晶片矽穿孔處理裝置,其 中該移動載體係一旋轉盤或帶引導系統。 7 .如申請專利範圍第1項所述之裸晶片矽穿孔處理裝置,其 中該施體係被提供為一預先製造形式。 8 .如申請專利範圍第7項所述之裸晶片矽穿孔處理裝置,其 中該預先製造形式包含—犧牲層、一預先圖樣化施體層, 以及/或者一被提供於一犧牲材料的基質中之施體。 9 .如申凊專利範圍第1項所述之裸晶片矽穿孔處理裝置,其 中該雷射系統包含一掃描鏡、一聲光調變器,或者一電光 調變器,用以相對於該矽穿孔引導該雷射光束。 1〇 . —種在一晶片製造流程中處理裸晶片辛的矽穿孔(TSV)的 方法,包含:夾緊一具有要被處理的已識別矽穿孔之晶圓 ;提供一遠離該晶圓上表面的施體;相對於在該晶圓上的 -已識财穿孔對準m统的—雷射光束並引導該施 體;將該雷射光束照射至該施體面對該晶圓的—側之相反 侧;該雷射光束係被調整時序、能量,以及方向用以產 生被導向該要被處理的矽穿孔之施體物質;移動一具有該 施體於其一面上之透明載體並且讓該雷射光束經由一與該 施體相反的載體面照射至該施體;其中該雷射光束係以一 具有一至少60 kHz的頻率產生脈衝以及該施體係以一相 對於該要被填充的矽穿孔大於4 m/s的速度移動。 n .如申請專利範圍第10項所述之方法,其中處理該石夕穿孔包 1003290195-0 100117057 表單編號A0101 第18頁/共27頁 201205761 含填充該石夕穿孔,以及其中施體物質係被導向一要被處理 的矽穿孔,以在一多次照射程序中執行相對於該矽穿孔引 導新的施體材料並將該雷射光束照射於該施體上的重複步 驟,以便將一施體物質的粒子引導進該矽穿孔中。 12 13 Ο 14 . 15 . Ο 如申請專利範圍第ίο項所述之方法,其中處理該矽穿孔包 含藉由一電槳沉積程序包覆該矽穿孔,藉由將該雷射光束 照射至該施體以便產生一被引導進該矽穿孔之電漿。 如申請專利範圍第10項所述之方法,其中處理該矽穿孔包 含包覆該矽穿孔壁的第一程序步驟,其中施體物質係藉由 在一電漿沉積程序中產生一被引導進該矽穿孔的電漿而被 導向-發穿孔;以及更包含填充财穿孔的第二程序步驟 ,其中後續的施體物質係藉由將後續的施體物質的粒子引 導進該梦穿孔而被導向-外孔;其中該包覆與該填充步 驟係於該同一程序環境中以後績施體執行。 如申請專利範圍第1G項所述之方法,其中與該裸晶表面的 距離係維持在1至20微米的一範圍。 如申請專利範圍第1G項所述之方法,更包含在—連續程序 中於引導該施體至該施體前沉積施體物質於該載體上。 100117057 表單編號Α0101 第19頁/共27頁 1003290195-0201205761 VII. Patent application scope: 1 ·--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- a body plate, the inflammatory region is disposed on the carrier plate to: - have an upper surface of the wafer with the identified 矽 perforation to be processed; a body guiding system for guiding the body Over the perforation of the stone to be treated, the guiding system is adapted to move the donor away from the upper surface of the wafer; an alignable laser system configured to illuminate the laser beam to the donor surface The opposite side of the side of the wafer; the laser beam is adjusted in timing, energy, and direction to produce a donor substance directed to the crucible perforation; - a control system for opposing the perforation pair Directing the laser beam and the donor guiding system; wherein the donor guiding system includes a movable transparent carrier that is held away from the upper surface of the wafer and has the donor body provided on one side thereof; the laser beam is set Via one The opposite carrier surface of the donor is irradiated onto the donor; the laser system has a pulsed laser having a repetition rate of at least 60 kHZ; and the donor guiding system is configured to have a pupil perforation greater than the zero to be filled The donor body is moved at a speed of 4 m/s. 2. The bare wafer boring apparatus according to claim 1, wherein the system is provided as a homogenous layer guided by the donor guiding system. 3. The bare wafer boring apparatus according to claim 2, wherein the 3H homogenous layer has a thickness ranging from 50 to 250 nm. 4. The bare wafer boring apparatus of claim 2, wherein the donor guiding system comprises an air bearing disposed to move the homogenous layer away from the upper surface of the wafer. 5. The bare wafer boring and perforating processing apparatus according to the first application of the patent scope, 100117057, Form No. A0101, page 17 of 27, 1003290195-0 201205761, comprising a homogenous layer regeneration system for providing a donor material The regeneration system is configured to deposit a homogenous layer of donor material onto the carrier. The carrier is moved from the regeneration system to a bore of a crucible to be treated by a step or continuous action. 6. The bare wafer boring apparatus according to claim 1, wherein the moving carrier is a rotating disk or tape guiding system. 7. The bare wafer boring apparatus according to claim 1, wherein the system is provided in a pre-manufactured form. 8. The bare wafer boring apparatus according to claim 7, wherein the pre-fabricated form comprises a sacrificial layer, a pre-patterned donor layer, and/or a substrate provided in a sacrificial material. Body. 9. The bare wafer boring apparatus according to claim 1, wherein the laser system comprises a scanning mirror, an acousto-optic modulator, or an electro-optical modulator for opposing the cymbal A perforation directs the laser beam. A method of processing a bare wafer stencil (TSV) in a wafer fabrication process, comprising: clamping a wafer having an identified tantalum perforation to be processed; providing a surface away from the wafer a donor beam; directing the laser beam with respect to the perforated beam on the wafer and directing the donor beam; illuminating the laser beam to the opposite side of the donor body facing the wafer Side; the laser beam is adjusted in timing, energy, and direction to produce a donor substance directed to the perforated perforation to be processed; moving a transparent carrier having the donor body on one side and allowing the laser beam Irradiating the donor body through a carrier surface opposite the donor body; wherein the laser beam is pulsed at a frequency of at least 60 kHz and the system is greater than 4 m/s with respect to the bore of the crucible to be filled The speed of movement. n. The method of claim 10, wherein the processing of the stone-shaped piercing bag 1003290195-0 100117057 form number A0101 page 18/27 pages 201205761 containing the filling of the stone etch, and wherein the donor substance is Directing a perforated perforation to be treated, in a plurality of illumination procedures, performing a repeating step of directing a new donor material relative to the perforation and irradiating the laser beam onto the donor to facilitate application of a donor substance The particles are guided into the perforation of the crucible. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> In order to produce a plasma that is directed into the bore of the crucible. The method of claim 10, wherein the processing the perforation comprises a first process step of coating the perforated perforated wall, wherein the donor material is introduced into the plasma by a plasma deposition process The perforated plasma is guided-punched; and further comprises a second procedural step of filling the perforation, wherein the subsequent donor material is directed by directing particles of the subsequent donor substance into the dream perforation - An outer hole; wherein the coating and the filling step are performed in the same program environment. The method of claim 1G, wherein the distance from the surface of the bare crystal is maintained in a range of 1 to 20 microns. The method of claim 1G, further comprising depositing a donor substance onto the carrier prior to directing the donor to the donor in a continuous process. 100117057 Form No. Α0101 Page 19 of 27 1003290195-0
TW100117057A 2010-05-17 2011-05-16 Through silicon via treatment device and method arranged for treatment of TSVs in a chip manufacturing process TW201205761A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10163027 2010-05-17

Publications (1)

Publication Number Publication Date
TW201205761A true TW201205761A (en) 2012-02-01

Family

ID=42676801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117057A TW201205761A (en) 2010-05-17 2011-05-16 Through silicon via treatment device and method arranged for treatment of TSVs in a chip manufacturing process

Country Status (2)

Country Link
TW (1) TW201205761A (en)
WO (1) WO2011145930A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136434A2 (en) 2011-04-08 2012-10-11 Asml Netherlands B.V. Lithographic apparatus, programmable patterning device and lithographic method
EP2824699A1 (en) 2013-07-08 2015-01-14 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Providing a chip die with electrically conductive elements
WO2017173281A1 (en) 2016-03-31 2017-10-05 Electro Scientific Industries, Inc. Laser-seeding for electro-conductive plating
EP3521483A1 (en) 2018-02-06 2019-08-07 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Lift deposition apparatus and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895735A (en) * 1988-03-01 1990-01-23 Texas Instruments Incorporated Radiation induced pattern deposition
JPH0361366A (en) * 1989-07-28 1991-03-18 Matsushita Electric Ind Co Ltd Laser beam sputtering device
DE4232373A1 (en) * 1992-09-03 1994-03-10 Deutsche Forsch Luft Raumfahrt Structural semiconductor layer deposition method - heating applied film using laser beam, to transfer the film material to surface of substrate
EP0862791B1 (en) * 1996-07-26 2002-09-18 Koninklijke Philips Electronics N.V. Method of manufacturing and transferring metallic droplets
AU5179098A (en) * 1996-11-18 1998-06-10 Micron Technology, Inc. Method and apparatus for directional deposition of thin films using laser ablation
US6060127A (en) * 1998-03-31 2000-05-09 Matsushita Electric Industrial Co., Ltd. Mechanically restricted laser deposition
US6792326B1 (en) * 1999-05-24 2004-09-14 Potomac Photonics, Inc. Material delivery system for miniature structure fabrication
KR100752198B1 (en) * 2006-09-13 2007-08-27 동부일렉트로닉스 주식회사 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
WO2011145930A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
CN1198318C (en) System and methods using sequential lateral solidifcation for producing single or polycrystalline silicon thin films at low temperatures
TW521387B (en) Method and apparatus for processing thin metal layers
TWI326626B (en) Laser processing method
TWI376284B (en) Laser beam manufacturing method
TWI300372B (en) Laser machining apparatus and method of adjusting the same
JP6758480B2 (en) High resolution full material Fresnel zone plate array and its manufacturing method
TW201205761A (en) Through silicon via treatment device and method arranged for treatment of TSVs in a chip manufacturing process
JP2000504498A (en) Fabrication of electronic devices by energy beam crystallization
TW200937514A (en) Semiconductor chip fabrication method
KR20030045082A (en) Deposition of thin films by laser ablation
JP2002289525A (en) Method for controlling crystallographic orientation in polysilicon film annealed by laser
JP2005109323A (en) Laser beam dicing device
He et al. Maskless laser nano-lithography of glass through sequential activation of multi-threshold ablation
Batič et al. Decomposition of thin Au films on flat and structured Si substrate by annealing
US9446949B2 (en) Vicinal surfaces of polycrystalline structures
TWI280292B (en) Method of fabricating a poly-silicon thin film
JP2005109322A (en) Laser beam dicing device
WO2013172965A1 (en) Advanced excimer laser annealing for thin films
Lisunova et al. Combination of thermal scanning probe lithography and ion etching to fabricate 3D silicon nanopatterns with extremely smooth surface
KR100839222B1 (en) Apparatus for pulsed laser deposition and fabrication method of magnetic nanodot arrays using the same
Sachan et al. Laser‐induced self‐assembled nanostructures on electron‐transparent substrates
Mentel et al. Shaping graphene with optical forging: from a single blister to complex 3D structures
JPH04331800A (en) Method of smoothing diamond surface, device therefor and diamond product taking advantage of the same method
JP2002235168A (en) Method and apparatus for film deposition
JP3790640B2 (en) Sample preparation method by quantum effect atomic delamination