TW201205124A - An adjustment system of a 3D display module - Google Patents

An adjustment system of a 3D display module Download PDF

Info

Publication number
TW201205124A
TW201205124A TW99125112A TW99125112A TW201205124A TW 201205124 A TW201205124 A TW 201205124A TW 99125112 A TW99125112 A TW 99125112A TW 99125112 A TW99125112 A TW 99125112A TW 201205124 A TW201205124 A TW 201205124A
Authority
TW
Taiwan
Prior art keywords
display
color
pattern
shutter glasses
light source
Prior art date
Application number
TW99125112A
Other languages
Chinese (zh)
Inventor
Chen-Tai Chen
Wen-Chin Chen
Jing-Shing Ding
Feng-Pang Tu
Guan-Shing Yu
Original Assignee
Danic Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danic Ind Co Ltd filed Critical Danic Ind Co Ltd
Priority to TW99125112A priority Critical patent/TW201205124A/en
Publication of TW201205124A publication Critical patent/TW201205124A/en

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

An adjustment system of a 3D display module includes a 3D signal emitter which is incorporated inside or outside the display module and provides a sequence of 3D synchronization signal according to the vertical synchronizing signal for the display module, for each image having one pattern with the first color and another pattern with the second color on its diagonal angles; a pair of the first image sensors which are placed on the diagonal angles of the display module corresponding to the pattern of the first color and another pattern of the second color; a shutter glasses testing block having a placement surface which is placed before the display module; a pair of light source, which is placed on the left side or right side of the front of the shutter glasses test block; a pair of the second image sensors, which is placed on the back side of the shutter glasses test set and is corresponding to the left light source and right light source; a shutter glasses, which is placed between the pair of the left-right light source and the pair of the second image sensors; and a calibrator, which is placed on the display module and is electrically connected to the 3D signal emitter.

Description

201205124 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係有關於一種三維(3D)顯示之調校系統,特別是 有關於一種將三維顯示中的三維顯示畫面更新頻率之影 像與快門鏡上的快門整合同步的一種調校系統。 【先前技術·】 [0002] 近年來由於3D(3維/Three Dimensional )電影盛行,人 們對於3D影片的需求曰趨增多。相對的3D產品亦從電影 轉至LCD產業。首先,人類為什麼能透過視覺看出深度、 並感覺到立體感,最主要的一點就是,人眼的視覺是可 以感覺出深度的,也就是「深度知覺(depth percep- t ion)」;而有了深度的資訊後,才能判斷出立體空間中 的相對位置。由於人的兩個眼睛的位置不一樣,一般人 兩眼間距約5到7公分,所以看到的東西會有兩眼視差 (binocular parallax),而人腦會再將這兩個影像做 融合(convergence),而產生出立體的感覺;而這就是 所謂的「binocular cues」。另外,人類亦可從眼睛對 遠近焦距的調適(accommodation)、動態視差(motion parallax)、透視(perspective)或光影等來判斷物體 的遠近,亦即使人類只有單眼亦可判斷遠近。 [0003] 因此,為了使在2D(2維/Two Dimensional)平面的影片 變成3D立體感的影片,必須使人類左、右的眼睛分別看 到不同的影像(即是一般視物的兩眼視差),在經由大腦 融合,2D影片即可變為棚栩如生的3D影片。 [0004] 在現有技術中,是運用快門鏡(shutter glasses),此 099125112 表單編號A0101 第4頁/共31頁 0992044131-0 201205124 種技術的基本原理就是,在螢幕上以兩倍的頻率交互地 顯示左眼和右眼的影像,而眼鏡則會去動怨地屏蔽使用 者的左眼和右眼,在螢幕顯示左眼影像時遮住右眼、在 螢幕顯示右眼影像時遮住左眼’以此達到讓兩眼看到各 自不同的影像◊雖然在這種狀況下’沒有兩隻眼睛是同 時看到影像的,但是由於人眼的視覺暫留等機制的效果 ,還是能感覺到兩眼都有看到各自不同的影像,進而產 生立體感。 Λ [0005] 〇 ❹ 此項技術首先需由連接顯示器上的訊赛發射器將影像顯 示頻率傳送至快門鏡上的接收器’並藉此訊號決定快門 鏡上左、右眼快門開、關的時機及開、關需持續多久的 時間。一般在市售的3D電視(LCD) ’即是運用此技術。但 由於市售電視會將快門鏡的啟動時間固定在顯示器垂直 訊號發送後的一段特定時間(如顯示器垂直訊號發送後4 毫秒)啟動、快門鏡的開啟時間(保持在啟動狀態的時間) :B . · ;: . :. , 固定在一特定時間(如1. 5毫秒),而不進行精確的微調。 因此,在啟動時間太晚或開啟時間過短的任一種情況下 ,可能造成晝面偏灰暗,或者在啟動時間太早或開啟時 間過長的任一種情況下,會造成畫面的疊影、3D無法成 像、以致觀賞者造成嘔吐、暈眩…等不適的情況。 [0006] 此外,市售的3D-LCD顯示器會將3D訊號發射器30内建 (build-in)在LCD顯示器内或外接於顯示器外,因此’ 只需再打開LCD在3D顯示模式下,3D訊號發射器30便根 據LCD垂直同步訊號進行3D訊號的發送。但購買的 3D-LCD顯示器經過一段時間之操作後,或是經過不同觀 099125112 表單編號A0101 第5頁/共31頁 0992044131-0 201205124 賞者調整3D訊號發射器30之設定後,都有可能會產生LCD 顯示器所發射出的3D影像訊號的更新時間點(Timing)之 與快門鏡上的快門啟動時間不同步,而造成3D影像效果 變差之情形,因此,在一較佳之設計中,需内建一套自 調整系統於3D-LCD顯示器中,可讓消費者自行調整。 [0007] 因此,本發明提供一種可在LCD顯示器或電視出廠前,將 晝面更新頻率之影像與快門鏡上的快門整合同步的一種 微調系統,使市售之LCD顯示器或電視售至客戶時,即有 精確的3D影像。此外,本發明進一步在LCD顯示器或電視 上配置一自調裝置,使得即使LCD顯示器或電視於操作一 段時間後,可能造成LCD顯示器或電視與快門鏡產生同步 偏差,或是經由另一觀賞者調整後,目前之觀賞者等, 均可依據本發明所提供之方法藉由自調裝置自行調整。 【發明内容】 [0008] 依據上述之狀況,本發明之一主要目的在提供一種三維 (3D)顯示之調校系統,利用此調校系統對三維畫面更新 影像與快門鏡上的快門進行同步校正。 [0009] 本發明之另一主要目的,係提供一種三維(3D)顯示之調 校系統,利用此調校系統之校正過程,可準確的將快門 鏡上的快門,開啟在最大的限度(亦即螢幕畫面停留的時 間等於快門保持在開啟狀態的時間)。 [0010] 本發明之再一主要目的,係提供一種三維顯示之自調校 系統,可在三維畫面更新之影像與快門鏡上的快門之同 步發生偏差時,可自行調整,不需在送回廠商校準。 099125112 表單編號A0101 第6頁/共31頁 0992044131-0 201205124 [0011] ❹201205124 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a three-dimensional (3D) display calibration system, and more particularly to an image for updating a three-dimensional display screen in a three-dimensional display A calibration system that integrates shutter synchronization on a shutter mirror. [Prior Art·] [0002] In recent years, due to the popularity of 3D (3D/Three Dimensional) movies, the demand for 3D movies has increased. Relative 3D products have also moved from film to LCD industry. First of all, why can humans see the depth through the visual and feel the three-dimensional sense? The most important point is that the human eye can feel the depth, that is, "depth percep- t ion"; After the depth of information, the relative position in the three-dimensional space can be judged. Because the position of the two eyes of the person is different, the average distance between the two eyes is about 5 to 7 cm, so there will be binocular parallax when the object is seen, and the human brain will merge the two images together (convergence). ), and produce a three-dimensional feeling; and this is called "binocular cues". In addition, humans can also judge the distance of objects from the eye's adaptation to the near and far focal lengths, motion parallax, perspective or light and shadow. Even if humans have only one eye, they can judge the distance. [0003] Therefore, in order to make a 2D (Two Dimensional) plane film into a 3D stereoscopic film, it is necessary to make the left and right eyes of the human being see different images separately (that is, the binocular parallax of the general object). ), through the fusion of the brain, 2D movies can become a savvy 3D movie. [0004] In the prior art, the use of shutter glasses, this 099125112 Form No. A0101 Page 4 / Total 31 page 0992044131-0 201205124 The basic principle of the technology is that interactively on the screen at twice the frequency The images of the left and right eyes are displayed, and the glasses shield the left and right eyes of the user with grievances, cover the right eye when the left eye image is displayed on the screen, and cover the left eye when the right eye image is displayed on the screen. 'In this way, the two eyes can see each other's different images. Although in this situation, no two eyes see the image at the same time, but because of the effect of the visual persistence of the human eye, the two eyes can still be felt. They all see different images and create a three-dimensional effect. Λ [0005] 此项 This technology first needs to transmit the image display frequency to the receiver on the shutter mirror by the communication transmitter on the connected display, and this signal determines the shutter opening and closing of the left and right eyes on the shutter mirror. The timing and how long it takes to open and close. This technology is generally used in commercially available 3D televisions (LCDs). However, since the commercially available TV will fix the start time of the shutter mirror to a certain period of time after the vertical signal transmission of the display (such as 4 milliseconds after the vertical signal is transmitted), the shutter mirror is turned on (the time kept in the startup state): B · ;: . :. , Fixed at a specific time (such as 1.5 milliseconds) without precise fine-tuning. Therefore, in any case where the startup time is too late or the opening time is too short, the surface may be grayed out, or in any case where the startup time is too early or the opening time is too long, the image may be superimposed, 3D. Unable to image, such as vomiting, dizziness, etc., caused by discomfort. [0006] In addition, a commercially available 3D-LCD display will build-in the 3D signal transmitter 30 inside or outside the display, so 'just re-open the LCD in 3D display mode, 3D The signal transmitter 30 transmits the 3D signal according to the LCD vertical sync signal. However, after the purchase of the 3D-LCD display has been operated for a period of time, or after the different view 099125112 Form No. A0101 Page 5 / Total 31 Page 0992044131-0 201205124 Appreciator adjusts the setting of the 3D signal transmitter 30, it may be The timing of updating the 3D image signal emitted by the LCD display is not synchronized with the shutter activation time on the shutter mirror, which causes the 3D image effect to be deteriorated. Therefore, in a preferred design, A self-adjusting system is built into the 3D-LCD display, allowing consumers to adjust themselves. [0007] Accordingly, the present invention provides a fine-tuning system that can synchronize the image of the face-up update frequency with the shutter on the shutter mirror before the LCD display or the TV is shipped from the factory, so that when the commercially available LCD display or TV is sold to the customer That is, there are accurate 3D images. In addition, the present invention further configures a self-adjusting device on the LCD display or the television such that even after the LCD display or the television is operated for a period of time, the LCD display or the television and the shutter mirror may be synchronously offset or adjusted by another viewer. Thereafter, the current viewers and the like can be adjusted by the self-adjusting device according to the method provided by the present invention. SUMMARY OF THE INVENTION [0008] In view of the above circumstances, one of the main objects of the present invention is to provide a three-dimensional (3D) display calibration system, which uses the calibration system to synchronously correct a three-dimensional image update image and a shutter on a shutter mirror. . [0009] Another main object of the present invention is to provide a three-dimensional (3D) display calibration system, which can accurately open the shutter on the shutter mirror to the maximum extent by using the calibration process of the calibration system (also That is, the time the screen stays is equal to the time when the shutter is kept open. [0010] A further main object of the present invention is to provide a self-tuning system for three-dimensional display, which can be adjusted when the image of the updated image of the three-dimensional image and the shutter of the shutter mirror are deviated, and need not be sent back. Manufacturer calibration. 099125112 Form No. A0101 Page 6 of 31 0992044131-0 201205124 [0011] ❹

基於上述之目的,本發明首先提供一種三維(3D)顯示之 調校系統,包括:一顯示器,具有一矩形之顯示螢幕, 用以顯示影像;一 3D訊號發射器,係配置於顯示器中或 外接於顯示器外,並提供一連串之3D影像訊號,每一3D 影像訊號上之一對角上,配置一第一顏色之圖案以及一 第二顏色之圖案,其中第一顏色之圖案以及第二顏色之 圖案中的顏色對比色不相同;一對第一感應器,係配置 在顯示器之顯示螢幕之一對角上且相應第一顏色之圖案 以及第二顏色之圖案;一快門眼鏡測試座,放置於顯示 器之矩形顯示螢幕前,並具有一放置面;一左侧光源, 放置於快門眼鏡測試座前緣左側;一右側光源,放置於 快門眼鏡測試座前緣右侧;一左第二感應器,放置於快 門眼鏡測試座之放置面上並放置於左側光源之相對之另 一側上;一右第二感應器,放置於快門眼鏡測試座之放 置面上並放置於右侧光源之相對之另一侧上;一快門眼 鏡,係放置於快門眼鏡測試座之放置面上,並放置於左 側光源、右側光源與左第二感應器、右第二感應器之間 ,快門眼鏡上配置有一接收裝置用以接收3D訊號發射器 所發射之該3D影像同步訊號,以使該快門眼鏡依序開關 左鏡與右鏡;及一校準器,係配置在顯示器上,並電性 連接於3D訊號發射器。 [0012] 本發明接著提供另一種三維(3D)顯示之調校系統,包括 :一顯示器,具有一矩形之顯示螢幕,用以顯示影像; 一3D訊號發射器,係配置於顯示器中或外接於顯示器外 ,並提供一連串之3D影像訊號,每一3D影像訊號上之一 099125112 表單編號A0101 第7頁/共31頁 0992044131-0 201205124 對角上,配置一第一顏色之圖案以及一第二顏色之圖案 ’其中第一顏色之圖案以及第二顏色之圖案中的顏色對 比色不相同;一框架,係配置於顯示螢幕上,且於相對 顯示勞皋之區域為一透明層,並於透明層上配置複數個 第一感應器’每一第一感應器係相應第一顏色之圖案以 及第二顏色之圖案之位置;一快門眼鏡測試座,放置於 顯不器之矩形顯示螢幕前,並具有一放置面;一左側光 源’放置於快門眼鏡測試座前緣左側;一右侧光源,放 置於快門眼鏡測試座前緣右側;一左第二感應器,放置 於快門眼鏡測試座之放置面上並放置於左側光源之相對 之另一側上;一右第二感應器,放置於快門眼鏡測試座 之放置面上並放置於右侧光源之相對之另一侧上;一快 門眼鏡,係放置於快門眼鏡測試座之放置面上,並放置 於左側光源、右側光源與左第二感應器、右第二感應器 之間,快門眼鏡上配置有一接收裝置用以接收該3D訊號 發射器所發射之該3D影像同步訊號丨以使快門眼鏡依序 開關左鏡與右鏡;及一校準器,係配置在顯示器上,並 電性連接於該3D訊號發射器。 [0013] 本發明再提供一種三維顯示之自調校系統,包括:一顯 不器,具有一矩形之顯示螢幕,用以顯示影像;一3〇訊 號發射益,係配置於顯示器中或外接於顯示器外,並提 供一3D影像訊號,而3D影像訊號由一左眼測試畫面與一 右眼測試畫面交替重複顯示;—屏幕視控裝置,係配置 於3D Λ號發射中’屏幕視控裝置係由__延遲時間調整 電路與—職時_整料所組成;-㈣眼鏡,具有 099125112 表單編號Α0101 第8頁/共31 頁 0992044131-0 201205124 -接《置用以接㈣訊號發射器所發射之3d影像訊號 ’以使快門眼鏡依序_左鏡與右鏡;及-終端控制器 ,係用以啟動3D訊號發射器提供_像訊號;1中,藉 由終端控制器來調整延遲啟動時間調整電路與㈣(㈣ 在啟動狀態)時間調整電路。 [0014] Ο [0015] ❹ [0016] 經由本發明所提供之設計’可經由精準的調整將畫面 更新頻率之影像與快門鏡上的快門整合同步,使顯現出 的三維畫面不會過於陰暗或發生疊影的情況,以達到最 佳的三維效果。 【實施方式】 本發明主要在揭露一種三維<i3D)顯示之調校系統及其調 校方法’故配置於調校系統中之具有提供三維畫面的顯 示器及快門鏡等均為習知技術,故對於顯示器及快門鏡 之詳細結構及三維畫面之編輯或製作等,並未描述於細 節中,以避免造成本發明不必要之限制。然而,對於與 本發明之三維(3 D)顯示之譌校系統及其調校方法的較佳 實施例,則會詳細梅魂如下,然而除了這些詳細描述之 外,本發明還可以廣泛地施行在其他的實施例中,其以 之後的專利範圍為準。為使本發明所運用之技術内容、 發明目的及其達成之功效有更完整且清楚的揭露,茲於 下詳細說明之,並請一併參閱所揭之圖示及圖號。 一般液晶電視(LCD TV)之畫面是由一連串靜態畫面持續 更新畫面來形成’由於人眼有殘影功能,因此,在一連 串靜態畫面持續更新畫面中,會形成一動態晝面。液晶 電視畫面更新有以下幾種:由右上至左下更新、由左上 099125112 表單編號A0101 第9頁/共31真 0992044131-0 201205124 至右下更新、由上至下更新及由下至上更新。一般液晶 電視更新頻率為60hz(每秒60次),人眼殘影約為 1/16〜1/24秒(相對顯示頻率為16hz~24hz),因此有足 夠時間形成動態畫面。 [0017] 要顯示三維畫面(以下將三維以3D表示),首先,必須要 將左、右晝面交替穿插更新,且由於是交替穿插更新, 因此更新頻率必須提升至人眼殘影頻率的兩倍以上至 60hz〜120hz,或者更高至240hz,才能讓人眼殘影動作 連續。當人眼要從3D顯示器看出3D畫面時,需配戴一快 門眼鏡,此快門眼鏡有一左快門及一右快門。當播放3D 影像之液晶電視之發射器送出一個更新左眼畫面之訊號 時,快門眼鏡之左快門開啟同時關閉快門眼鏡之右快門 ,故觀賞者只有左眼看到畫面。當3D影像之液晶電視之 發射器送出一個更新右眼畫面之訊號時,快門眼鏡之左 快門關閉同時開啟快門眼鏡之右快門,故觀賞者只有右 眼看到畫面。經大腦融合左、右眼畫面後,產生出立體 的感。如果左、右快門開啟停留時間過長或者太早開啟 ,會產生疊影的晝面,使得3D效果變差,嚴重時甚至會 無法達成3D效果;如果左、右快門開啟停留時間過短或 者太晚開啟,則3D晝面會偏黯淡;只有精準剛好的開啟 時間,能產生完美的3D效果。 [0018] 首先,請參考第1圖,係為本發明3D顯示之調校系統示意 圖。如第1圖所示,3D顯示之調校系統包括一顯示器10, 具有一顯示螢幕101 ;複數個第一感應器20,係將一對第 一感應器20配置在顯示器之矩形顯示螢幕101之對角上; 099125112 表單編號A0101 第10頁/共31頁 0992044131-0 201205124 而在本發明之最佳實施方式,係在四角落上均配置有第 一感應器20 ; — 3D訊號發射器30,電性連接於顯示器10 上,且配置有一校準器301,其中3D訊號發射器30用以輸 出一連串之3D影像之訊號,其中3D訊號發射器30所提供 之3D影像訊號係由一左眼測試畫面90與一右眼測試畫面 91交替重複顯示,同時,每一3D影像訊號30上之一對角 上,配置有第一顏色之圖案901以及第二顏色之圖案902 ,其中第一顏色之圖案901以及第二顏色之圖案902中的 顏色對比色不相同(例如:第一顏色之圖案901為深色, 而第二顏色之圖案902為淺色(請參考第3圖);一快門眼 鏡測試座40,係配置於顯示器10之顯示螢幕101之前方一 距離,其具有一放置面401,且在放置面401之靠近顯示 螢幕101之第一端左右側邊上,各放置一左光源50及一右 光源51,而在放置面401相對於第一端之另一端(即第二 端)之左右側邊上各配置一個與左光源5 0及右光源51相對 之一對第二感應器,包括左第二感應器70及右第二感應 器71 ;本實施例之左光源50與右光源51之最佳發光源為 發光二極體(LED),但本實施例並不加以限制其光源類型 ;一快門眼鏡6 0,其上配置一接收器(未顯示於圖中), 用以接收3D訊號發射器30所發出之3D影像同步訊號,使 得快門眼鏡6 0可以依據3 D影像同步訊號來控制快門眼鏡 60左鏡61之開(ON)與關(OFF)以及右鏡62之開(ON)與關 (OFF),其中,快門眼鏡60置於快門眼鏡測試座40之放 置面401的兩端間,即快門眼鏡60位於左光源50、右光源 51與左右相對之第二感應器70、71之間,且快門眼鏡60 之左鏡61與左光源50及左第二感應器70成一直線配置, 099125112 表單編號A0101 第11頁/共31頁 0992044131-0 201205124 同時,快門眼鏡60之右鏡62與右光源51及右第二感應器 71成一直線配置。一波形顯示器80(例如:示波器),其 第一偵測訊號輸入端藉由導線13與一對第一感應器20電 性連接’同時其第二偵測訊號輸入端藉由導線〗5與左第 二感應器7 0及右第二感應器71電性連接。 [0019] 接著’請參考第2圖’係為本發明之複數個第一感應器另 一實施例之配置示意圖。在顯示器10之顯示螢幕1〇1前方 配置一框體11 ’此框體11有一透明面11丨與由透明面j i 1 往前延伸之一框邊113 ’透明面111與框邊113形成一蓋 體狀。透明面111大小與顯示螢幕1〇1相尊,且藉由框邊 113框住顯示器10以固定住框體u。而複數個第一感應器 20則安裝在框體π之透明面丨〗〗,其配置之位置與上述之 母一3D影像訊號上第一顏色之圖案go〗以及第二顏色之圖 案902相對應’·例如:當每一3D影像訊號只在一對角上配 置有第一顏色之圖案901以及第二顏色之圖案9〇2時,此 時,即使用兩個第一感應器2〇與3D影像訊號上第一顏色 之圖案901以及第二顏色之圖案9〇2相對應;當每一影 像訊號之四角落均配置有第一顏色之圖案9〇1以及第二顏 色之圖案902時,則需使用四個第一感應器2〇配置在透明 面111之四角落。藉由此實施例之配置,在調整另一顯示 裝置時,只需將框體11直接卸除,再安裝至另一顯示裝 置即可,可大幅減少更換第一感應器20至另一顯示裝置 所需耗費的時間。 本發明之複數個第一感應器20可以如第1圖所示,直接配 置於.4示器1 G之顯示螢幕⑻上,例如:使用黏性材料將 099125112 表單編號A0101 第12頁/共31頁 0992044131-0 [0020] 201205124 複數個第一感應器2〇黏貼於顯示螢幕1〇1之至少一對角上 並與每一3D影像訊號上第一顏色之圖案以及第二顏色之 圖案相對應,或如第2圖所示,將複數個第一感應器2〇黏 貼於透明面111上並與每一 3d影像訊號上第一顏色之圖案 以及第二顏色之圖案相對應,對此實施方式,本發明並 不加以限制。 [0021] Ο ο 接著,請參考第3圖’係為本發明在進行調校時之3D影像 測試畫面示意圖。如第3圖所示,在左眼測試晝面9 〇之四 角落之右上及左下配置一第一顏_之圖案9〇1,在左上及 右下上配置一第二顏色之圖案9〇2。而在右眼測試畫面91 之四角落之右上及左下配置一第二顏之圖案色9〇2,在左 上及右下上配置一第一顏色之圖案9〇1。如前所述,本發 明之最佳實施例是以第一顏色為一深色,第二顏色為一 淺色,藉由對比色加以區別,但本實施例並不侷限任何 顏色。當畫面更新時(如由右上至左下更新),左眼測試 畫面90之右上第一顏椠之圖案9〇1會先變成第二顏色之圖 案902 °而更新將完早時,左下之第一,顏色之圖案901會 變成第二顏色之圖案902,此時左眼測試畫面90即會變成 右上及左下皆為第二顏色之圖案902之右眼測試畫面91, 而左上及右下相繼變色的這段時間,即為畫面更新所需 時間。而左下變完色至下次右上要再次變更顏色的時間 ,即為畫面停留時間。 請參考第4圖,係為本發明3D影像訊號更新時間轴之示意 圖。若以一般120hz顯示器為例,晝面更新時間約有4毫 秒(ms) ’畫面停留時間約有4. 3毫秒,亦即畫面更新完至 099125112 表單編號A0101 第13頁/共31頁 0992044131-0 [0022] 201205124 下一次更新時間共有8. 3毫秒。因此,畫面如需完整呈現 完美的3D效果,其快門眼鏡6〇之左鏡61或右鏡62之開啟 時間必須愈接近4. 3毫秒效果愈好,即畫面停留時間等於 左鏡61或右鏡62開啟時間(要說明一點,因快門眼鏡6〇控 制左鏡61或右鏡62之開啟快門速度非常之快,因此快門 開啟時間不需加入計算)。接著,如第4圖之時間軸T所示 ,在一開始晝面更新的4毫秒期間,左鏡61與右鏡62皆為 關閉狀態’在大約3. 9 5毫秒至4毫秒之間,左鏡61會開啟 完成’故此時只有左眼看的到畫面(即左眼測試晝面9 〇) ,當至8. 3毫秒時,左鏡61會蘭閉,然後回復成畫面更新 狀態,此時,左鏡61與右鏡62皆為關閉之狀態。當時間 至12. 25〜12. 3毫秒之間的時刻(即左鏡61關閉再經過 3. 95〜4毫秒)’此時右鏡62會剛好開啟完成,因此只有 右眼看的到畫面(即右眼測試畫面91 ),當至16· 6毫秒時 (即右鏡62開啟再經過4.3毫秒),右鏡會62關閉,又再 回復成畫面更新狀態,此時的左鏡61與古:鏡62皆為關閉 之狀態,依此循環。 [0023]在上述之3D影像訊號之更新過程中,由於左眼測試畫面 90與右眼測试畫面91在同一角落之位置上配置之圖形不 相同,因此,位於同一角落之第一感應器2〇所感應到的 顏色對比度也不相同’故其輸出也不相同;例如:當第 一感應器20測得左眼測試晝面9〇之第一顏色之圖案9〇1( 即為深色)時,輸出一低狀態之訊號,而當更新為右眼測 試畫面91時’此相同位置配置為第二顏色之圖案9〇2(即 為淺色)時,則第一感應器20輸出一高狀態之訊號,此過 099125112 表單編號A0101 第14頁/共31頁 0992044131-0 201205124 程產生第一偵測訊號;因此,第一感應器20會隨LCD之3D 畫面更新,將其感應出的訊號狀態經由導線13將此第一 偵測訊號傳送至波形顯示器80顯示;很明顯地,此第一 偵測訊號其顯示之波形是具有高與低狀態之方波訊號。 [0024] ❹Based on the above purpose, the present invention first provides a three-dimensional (3D) display calibration system, comprising: a display having a rectangular display screen for displaying images; and a 3D signal transmitter disposed in the display or externally connected Outside the display, a series of 3D video signals are provided, and a pattern of the first color and a pattern of the second color are arranged on one of the diagonals of each 3D image signal, wherein the pattern of the first color and the second color The color contrast color in the pattern is different; a pair of first sensors are disposed on a diagonal of one of the display screens of the display and corresponding to the pattern of the first color and the pattern of the second color; a shutter glasses test seat is placed on the display The rectangle is displayed in front of the screen and has a placement surface; a left side light source is placed on the left side of the front edge of the shutter glasses test seat; a right side light source is placed on the right side of the front edge of the shutter glasses test seat; and a left second sensor is placed Placed on the opposite side of the shutter glass test stand and placed on the opposite side of the left side light source; a right second sensor placed on the shutter The mirror test seat is placed on the opposite side of the right side of the light source; a shutter glass is placed on the placement surface of the shutter glasses test stand and placed on the left side light source, the right side light source and the left second sensor Between the right sensor and the second sensor, a receiving device is disposed on the shutter glasses for receiving the 3D image synchronization signal emitted by the 3D signal transmitter, so that the shutter glasses sequentially switch the left mirror and the right mirror; and a calibration The device is disposed on the display and electrically connected to the 3D signal transmitter. [0012] The present invention further provides another three-dimensional (3D) display calibration system, comprising: a display having a rectangular display screen for displaying images; a 3D signal transmitter configured in the display or externally connected to Outside the display, and provide a series of 3D video signals, one of each 3D video signal 099125112 Form No. A0101 Page 7 / Total 31 Page 0992044131-0 201205124 On the diagonal, configure a first color pattern and a second color The pattern of the first color and the color of the second color are different; a frame is disposed on the display screen, and is transparent on the transparent display layer. Configuring a plurality of first sensors 'each first sensor is a pattern of a corresponding first color and a pattern of a second color; a shutter glasses test stand is placed in front of the rectangular display screen of the display device and has a Place the surface; a left light source 'placed on the left side of the front edge of the shutter glasses test seat; a right side light source placed on the right side of the front edge of the shutter glasses test seat; The sensor is placed on the placement surface of the shutter glasses test stand and placed on the opposite side of the left side light source; a right second sensor is placed on the placement surface of the shutter glasses test stand and placed on the right side of the light source On the other side of the shutter glasses, placed on the placement surface of the shutter glasses test stand, and placed between the left side light source, the right side light source and the left second sensor, the right second sensor, the shutter glasses are configured a receiving device is configured to receive the 3D image synchronization signal emitted by the 3D signal transmitter, so that the shutter glasses sequentially switch the left mirror and the right mirror; and a calibrator is disposed on the display and electrically connected to the 3D signal transmitter. [0013] The present invention further provides a three-dimensional display self-tuning system, comprising: a display device having a rectangular display screen for displaying images; a 3-way signal transmission benefit, configured in the display or externally connected to Outside the display, a 3D video signal is provided, and the 3D video signal is alternately displayed by a left eye test picture and a right eye test picture; - the screen visual control device is configured in the 3D nickname transmission 'screen control device system It consists of __delay time adjustment circuit and -timetime_monolithic material;-(four) glasses, with 099125112 form number Α0101 page 8/total 31 page 0992044131-0 201205124 - connected with "transmitted by (four) signal transmitter The 3d video signal 'to make the shutter glasses in order _ left mirror and right mirror; and - the terminal controller is used to start the 3D signal transmitter to provide _ image signal; 1, in the terminal controller to adjust the delay start time Adjust the circuit with (4) ((4) in the startup state) time adjustment circuit. [0015] [0016] The design provided by the present invention can synchronize the image of the image update frequency with the shutter on the shutter mirror through precise adjustment, so that the displayed three-dimensional image is not too dark or The situation of overlapping occurs to achieve the best three-dimensional effect. [Embodiment] The present invention mainly discloses a three-dimensional <i3D) display calibration system and a calibration method thereof. Therefore, a display having a three-dimensional image and a shutter mirror disposed in the calibration system are conventional technologies. Therefore, the detailed structure of the display and the shutter mirror, and the editing or production of the three-dimensional image are not described in detail to avoid unnecessary limitation of the present invention. However, for the preferred embodiment of the three-dimensional (3D) display calibration system and the calibration method thereof of the present invention, the details are as follows, but in addition to these detailed descriptions, the present invention can be widely implemented. In other embodiments, it is subject to the scope of the patents that follow. For a more complete and clear disclosure of the technical content, the object of the invention, and the effect thereof, the invention will be described in detail below. Generally, the screen of a liquid crystal television (LCD TV) is continuously updated by a series of still pictures. Since the human eye has a residual image function, a dynamic picture is formed in a series of still pictures continuously updating pictures. There are several types of LCD TV screen updates: from top right to bottom left, from top left 099125112 Form number A0101 Page 9 / Total 31 true 0992044131-0 201205124 to the bottom right update, top to bottom update and bottom to top update. Generally, the LCD TV update frequency is 60hz (60 times per second), and the residual image of the human eye is about 1/16~1/24 seconds (relative display frequency is 16hz~24hz), so there is enough time to form a dynamic picture. [0017] To display a three-dimensional picture (hereinafter 3D is represented by 3D), firstly, the left and right sides must be alternately interspersed and updated, and since the update is alternately interpolated, the update frequency must be raised to two of the human eye residual frequencies. More than 60hz~120hz, or higher to 240hz, can make people's eyes and shadows move continuously. When the human eye wants to see the 3D picture from the 3D display, it is necessary to wear a shutter glasses having a left shutter and a right shutter. When the transmitter of the LCD TV playing the 3D image sends a signal to update the left eye image, the left shutter of the shutter glasses is opened and the right shutter of the shutter glasses is closed, so that the viewer only sees the picture with the left eye. When the transmitter of the LCD TV of the 3D image sends a signal for updating the image of the right eye, the left shutter of the shutter glasses is closed and the right shutter of the shutter glasses is opened, so that the viewer only sees the picture with the right eye. After the brain merges the left and right eye images, a three-dimensional sense is produced. If the left and right shutter opening time is too long or too early, it will produce a superimposed surface, which will make the 3D effect worse. In severe cases, even 3D effect will not be achieved; if the left and right shutter opening time is too short or too When it is turned on late, the 3D face will be faint; only the precise opening time will produce a perfect 3D effect. [0018] First, please refer to FIG. 1 , which is a schematic diagram of a calibration system for a 3D display of the present invention. As shown in FIG. 1, the calibration system of the 3D display includes a display 10 having a display screen 101, and a plurality of first sensors 20 for arranging a pair of first sensors 20 on the rectangular display screen 101 of the display. Diagonally; 099125112 Form No. A0101 Page 10 / Total 31 Page 0992044131-0 201205124 In the preferred embodiment of the present invention, the first inductor 20 is disposed on all four corners; 3D signal transmitter 30, Electrically connected to the display 10, and configured with a calibrator 301, wherein the 3D signal transmitter 30 is used to output a series of 3D image signals, wherein the 3D image signal provided by the 3D signal transmitter 30 is controlled by a left eye test screen. 90 and a right eye test screen 91 are alternately displayed repeatedly. At the same time, on one diagonal of each 3D video signal 30, a first color pattern 901 and a second color pattern 902 are arranged, wherein the first color pattern 901 And the color contrast color in the pattern 902 of the second color is different (for example, the pattern 901 of the first color is dark, and the pattern 902 of the second color is light (refer to FIG. 3); a shutter glasses test 40 is disposed at a distance from the display screen 101 of the display 10, and has a placement surface 401, and a left light source 50 and a left side are disposed on the left and right sides of the first end of the display surface 401 adjacent to the display screen 101. a right light source 51, and a pair of second sensors, including a left light source 50 and a right light source 51, are disposed on the left and right sides of the other end (ie, the second end) of the first end (ie, the second end), including The left second sensor 70 and the right second sensor 71; the optimal light source of the left light source 50 and the right light source 51 in this embodiment is a light emitting diode (LED), but the embodiment does not limit the light source type. a shutter glasses 60, configured with a receiver (not shown) for receiving the 3D image sync signal sent by the 3D signal transmitter 30, so that the shutter glasses 60 can be synchronized according to the 3D image sync signal. The opening and closing (OFF) of the left mirror 61 of the shutter glasses 60 and the ON and OFF of the right mirror 62 are controlled, wherein the shutter glasses 60 are placed on the placement surface 401 of the shutter glasses test stand 40. Between the ends, that is, the shutter glasses 60 are located at the left light source 50, the right light source 51, and left and right. Between the second sensors 70, 71, and the left mirror 61 of the shutter glasses 60 is arranged in line with the left light source 50 and the left second sensor 70, 099125112 Form No. A0101 Page 11 / Total 31 Page 0992044131-0 201205124 At the same time, the right mirror 62 of the shutter glasses 60 is arranged in line with the right light source 51 and the right second sensor 71. A waveform display 80 (for example, an oscilloscope) has a first detection signal input end through a wire 13 and a pair of A sensor 20 is electrically connected to the second sensor 71 and the second sensor 70 and the second sensor 71 are electrically connected to each other by a wire 5 . [0019] Next, please refer to FIG. 2 for a configuration diagram of another embodiment of the plurality of first inductors of the present invention. A frame 11 is disposed in front of the display screen 1 of the display 10. The frame 11 has a transparent surface 11 and a frame edge 113 extending forwardly from the transparent surface ji 1 . The transparent surface 111 and the frame 113 form a cover. Body shape. The transparent surface 111 is sized to conform to the display screen 〇1, and the display 10 is framed by the frame edge 113 to fix the frame u. The plurality of first sensors 20 are mounted on the transparent surface of the frame π, and the position of the configuration is corresponding to the pattern of the first color and the pattern 902 of the second color on the mother-side 3D image signal. '· For example: when each 3D video signal is arranged with a first color pattern 901 and a second color pattern 9〇2 on a pair of corners, at this time, two first sensors 2〇 and 3D are used. The pattern 901 of the first color and the pattern 9〇2 of the second color on the image signal correspond to each other; when the pattern 9 〇 1 of the first color and the pattern 902 of the second color are arranged in the four corners of each image signal, Four first inductors 2 are required to be disposed at four corners of the transparent surface 111. With the configuration of this embodiment, when the other display device is adjusted, the frame 11 can be directly removed and then mounted to another display device, which can greatly reduce the replacement of the first sensor 20 to another display device. The time it takes. The plurality of first inductors 20 of the present invention can be directly disposed on the display screen (8) of the .4 display 1 G as shown in FIG. 1, for example, using a viscous material, 099125112, form number A0101, page 12/total 31 Page 0992044131-0 [0020] 201205124 A plurality of first sensors 2 〇 are adhered to at least one pair of corners of the display screen 〇1 and correspond to the pattern of the first color and the pattern of the second color on each 3D image signal Or as shown in FIG. 2, the plurality of first sensors 2 〇 are adhered to the transparent surface 111 and correspond to the pattern of the first color and the pattern of the second color on each 3d image signal. The invention is not limited. [0021] ο ο Next, please refer to FIG. 3, which is a schematic diagram of a 3D image test screen when the invention is calibrated. As shown in Fig. 3, a first color pattern 9〇1 is arranged on the upper right and lower left corners of the four corners of the left eye test surface, and a second color pattern 9〇2 is arranged on the upper left and lower right sides. . On the upper right and lower left corners of the four corners of the right eye test screen 91, a pattern color 9〇2 of the second color is arranged, and a pattern 9〇1 of the first color is arranged on the upper left and the lower right. As described above, the preferred embodiment of the present invention has a first color as a dark color and a second color as a light color, which is distinguished by contrast colors, but this embodiment is not limited to any color. When the screen is updated (such as from the upper right to the lower left), the pattern 9〇1 of the first color on the upper right side of the left eye test screen 90 will first become the pattern 902 ° of the second color and the update will be early, the first left lower The color pattern 901 will become the pattern 902 of the second color. At this time, the left eye test screen 90 will become the right eye test screen 91 of the upper right and lower left images 902 of the second color, and the upper left and lower right are successively discolored. This time is the time required for the picture to be updated. And the time when the lower left is finished until the next time you want to change the color again, it is the screen stay time. Please refer to FIG. 4, which is a schematic diagram of the time axis of the 3D video signal update of the present invention. For example, in the case of a general 120hz display, the face update time is about 4 milliseconds (ms). The screen stay time is about 3.4 milliseconds, that is, the screen is updated to 099125112. Form number A0101 page 13/31 page 0992044131-0 [0022] 201205124 The next update time is 8.3 milliseconds. Therefore, if the screen needs to fully present a perfect 3D effect, the opening time of the left mirror 61 or the right mirror 62 of the shutter glasses must be closer to 4.3 mm. The better the effect, that is, the screen stay time is equal to the left mirror 61 or the right mirror. 62 On time (to explain, since the shutter glasses 6〇 control the left mirror 61 or the right mirror 62 to open the shutter speed very fast, the shutter open time does not need to be added to the calculation). Then, as shown by the time axis T of FIG. 4, during the 4 milliseconds of the start of the facet update, both the left mirror 61 and the right mirror 62 are in a closed state 'between about 3.9 milliseconds to 4 milliseconds, left. The mirror 61 will be turned on. Therefore, only the left eye can see the picture (ie, the left eye test surface is 9 〇). When it reaches 8.3 milliseconds, the left lens 61 will be closed, and then the screen will be updated. At this time, Both the left mirror 61 and the right mirror 62 are in a closed state. When the time is between 12.25~12. 3 milliseconds (ie, the left mirror 61 is closed and then 3.95~4 milliseconds), then the right mirror 62 will just be turned on, so only the right eye will see the picture (ie Right eye test screen 91), when it is 16·6 milliseconds (that is, the right mirror 62 is turned on and then 4.3 milliseconds), the right mirror 62 is turned off, and then returns to the screen update state. At this time, the left mirror 61 and the ancient mirror: 62 is in the state of being closed, and cycles accordingly. [0023] In the process of updating the 3D video signal, since the left eye test screen 90 and the right eye test screen 91 are arranged at the same corner, the first sensor 2 is located at the same corner. The color contrast sensed by 〇 is not the same', so its output is also different; for example, when the first sensor 20 measures the pattern of the first color of the left eye test 〇9〇9〇1 (that is, dark) When a low-state signal is output, and when the same position is configured as the second color pattern 9〇2 (ie, a light color) when updating to the right-eye test screen 91, the first sensor 20 outputs a high value. The status signal, this 099125112 form number A0101 page 14 / 31 page 0992044131-0 201205124 process generates the first detection signal; therefore, the first sensor 20 will be updated with the 3D picture of the LCD, the signal it induces The state transmits the first detection signal to the waveform display 80 via the wire 13; obviously, the waveform of the first detection signal is a square wave signal having high and low states. [0024] ❹

接著,請參考第5A圖及第5B圖,係為本發明3D顯示之調 校系統之調校示意圖。首先,如第5A圖所示,於前述之 LCD畫面更新過程中,當3D畫面更新為左眼測試畫面90時 ,3D訊號發射器30會將左眼測試晝面90之訊號傳送至快 門眼鏡60,當快門眼鏡60之接收器接收左眼測試畫面90 之訊號時,即刻將左鏡61開啟(此時右鏡62仍為關閉狀態 )。由於本發明置於快門眼鏡60前之左右相對之左光源50 與右光源51為永照光源,且其光線對著快門眼鏡60後方 之左右相對之左第二感應器70與右第二感應器71。以第 5A圖為例,當前述之左鏡61開啟時,其左第二感應器70 會感應到前方之左光源50之光線;很明顯地,此時因右 鏡62仍為關閉狀態,故右第二感應器71無法感應到前方 之右光源51之光線。因此,當左第二感應器70從左鏡61 開啟並偵測到光線至左鏡61關閉(更新為右眼測試畫面 91),這段時間便是3D影像之左畫面停留時間,而這感應 訊號便會經由左第二感應器7 0以導線15將此第二偵測訊 號傳送至波形顯示器80顯示,而其顯示之波形可以是具 有高與低狀態之方波訊號。而在此同時,第一感應器20 亦會將LCD之3D畫面更新之感應訊號經由導線13將第一偵 測訊號傳送波形顯示器80顯示。此時,便可藉由波形顯 示器8 0上所顯示之第一偵測訊號與第二偵測訊號間的波 099125112 表單編號A0101 第15頁/共31頁 0992044131-0 201205124 形啟始點來判斷是否同步;即判斷快門眼鏡60之左鏡61 之開啟時間是否符合顯示器10上的4. 3毫秒。而第5B圖係 顯示3D畫面更新為右眼測試畫面之示意圖,由於其過程 與第5 A圖之測試過程相同,故不再贅述之。 [0025] 若當波形顯示器8 0上所顯示之第一偵測訊號與第二偵測 訊號間的波形啟始點不同步時,即表示LCD發設器所送出 之3 D測試晝面之時間點與快門眼鏡6 0之接收器開啟左眼 之時間點之間產生時間延遲(time lag),此時即會造成 左鏡61之開啟時間還未到達4. 3毫秒時,下一更新晝面之 訊號已經將左鏡61關閉,故當第一偵測訊號與第二偵測 訊號間的時間延遲愈長時,即表示左鏡61之開啟時間愈 短,因此會造成前述之3D晝面會偏黯淡且效果變差;同 樣地,如果左鏡61之開啟時間愈長時,則會產生疊影的 晝面,使得3D效果變差;只有精準剛好的開啟時間,能 產生完美的3D效果。 [0026] 故當本發明之調效裝置藉由波形顯示器顯示而判斷出3D 畫面停留時間有所偏差時,便經由3D訊號發射器30上之 校準器301來進行微調,以使第一偵測訊號與第二偵測訊 號間的兩個訊號同步。右鏡62調整方式亦與左鏡61相同 ,由波形顯示器80分析第一偵測訊號與右第二感應器71 之第二偵測訊號是否同步,再經由校準器301調整。以上 述方法調整快門眼鏡60之左鏡61與右鏡62,可達成亮度 最大、3D影像最清楚且不發生疊影之完美畫面。在此要 說明的是,校準器301為一可變電阻之調整器,可藉由此 可變電阻之阻質改變來調整3D訊號發射器30的啟始時間 099125112 表單編號A0101 第16頁/共31頁 0992044131-0 201205124 ο [0027] 請參考第6圖,係為本發明之自調整系統之示意圖。如第 6圖所示’自調整系統是在LCD顯示器1〇之31)訊號發射器 30中’内建有—屏幕視控裝置(On-Screen Display ; 〇SD)300 ’其中’屏幕視控裝置3〇〇中至少提供一延遲時 Ο ο 間調整電路302與一開啟時間調整電路3〇3,可以用來調 整3D訊號發射器3〇之更新延遲時間。而在LCD顯示器1〇 啟動或設定為自調系統時,LCD顯示器1〇之3D訊號發射器 30會送出一個執行自調整之畫面1〇〇〇至螢幕1〇1上顯示 ;同時屏幕視控裝置300也會送出一個延遲時間調整圖標 (time lag icon)i〇〇i及—個開啟時間辨整圖標 (black frame time ic〇n)1〇{)2,並且同時顯示在自 調整畫面1GGG上’以提供延遲時間調整電路3Q2及自開啟 時間調整電路3G3執行調整時之參考晝面。接著,一終端 控制器1_(例如-種遙㈣),可用以提供—控制訊號 13〇1來啟動自調整系統並可以進—步地g制延遲時間調 整圖標1001與開啟時間調整圖標1〇〇2上之數值。當終端 控制器1 300啟動並進入自調整模式時,LCD顯示器1〇之 3D訊號發射器30會送出 一個執行自調整之畫面1000至顯 不榮幕101上’而此-調整晝面1〇〇()之内容包括一個左畫 面1100及—個右畫面UGG,並且在左畫面ΐιοο上會形成 一個第一圖案1101 而在右畫面1200相對於左畫面1100 相同位置上會形成-個第二圖案12〇1 ;其中,在一較佳 實施例中,第—圖案11〇1為X型圖案,第二圖案1201為0 型圖案H本發明之實施例對此第_圖案及第二圖 099125112 表單編號A0101 第17頁/共31頁 0992044131-0 201205124 案之圖像並不加以侷限,其可以是不同之任何型式之圖 像即可。 [0028] 接著,請參考第7圖,係為本發明自調整系統之調整步驟 流程示意圖。首先,當調整者以終端控制器1 300來啟動 自調整系統後,LCD顯示器10之3D訊號發射器30會送出 一個執行自調整之畫面1000至顯示螢幕101上,同時此一 調整畫面1000會以一個左畫面1100及一個右畫面1200來 重復並交替顯示;同時,屏幕視控裝置300也會送出一個 延遲時間調整圖標10 01及一個開啟時間調整圖標1 0 0 2, 並且同時顯示在自調整畫面1000上,以提供延遲時間調 整電路302及自開啟時間調整電路303執行調整時之參考 晝面。此時,調整者必須配戴快門眼鏡60來做調整。接 著,即進入本實施例之自調整步驟。 [0029] 如前所述,當調整畫面1 000之左畫面1100及右晝面1200 更新之影像與快門眼鏡60上的快門啟動速度不同步時, 畫面會出現疊影之現象;或是當快門眼鏡60上的左眼或 右眼開啟時間愈短,此會造成3D畫面會偏黯淡且效果變 差,故此時即需要進行調整。首先,請參考步驟一7001Next, please refer to FIG. 5A and FIG. 5B, which are diagrams for adjusting the calibration system of the 3D display of the present invention. First, as shown in FIG. 5A, during the LCD screen update process, when the 3D picture is updated to the left eye test picture 90, the 3D signal transmitter 30 transmits the signal of the left eye test face 90 to the shutter glasses 60. When the receiver of the shutter glasses 60 receives the signal of the left eye test screen 90, the left mirror 61 is turned on immediately (when the right mirror 62 is still closed). Since the left and right light sources 50 and 50 of the left and right light sources 51 are placed in front of the shutter glasses 60 as the permanent light source, and the light is directed to the left and right of the shutter glasses 60, the left second sensor 70 and the right second sensor 71 are opposite to each other. . Taking FIG. 5A as an example, when the left mirror 61 is turned on, the left second sensor 70 senses the light of the left front light source 50; obviously, since the right mirror 62 is still closed, The right second sensor 71 cannot sense the light of the right right source 51. Therefore, when the left second sensor 70 is turned on from the left mirror 61 and the light is detected until the left mirror 61 is turned off (updated to the right eye test screen 91), this time is the left screen stay time of the 3D image, and this induction The signal will be transmitted to the waveform display 80 via the left second sensor 70 via the wire 15, and the displayed waveform may be a square wave signal having high and low states. At the same time, the first sensor 20 also displays the first detection signal of the LCD 3D picture update signal via the wire 13 to the waveform display 80. At this time, it can be judged by the wave starting point between the first detection signal displayed on the waveform display 80 and the second detection signal 099125112 Form No. A0101 Page 15 / 31 page 0992044131-0 201205124 Whether it is synchronized; that is, it is determined whether the opening time of the left mirror 61 of the shutter glasses 60 conforms to 4.3 milliseconds on the display 10. The 5B picture shows a schematic diagram of updating the 3D picture to the right eye test picture. Since the process is the same as the test process of FIG. 5A, it will not be described again. [0025] If the waveform start point between the first detection signal and the second detection signal displayed on the waveform display 80 is not synchronized, it indicates the time of the 3D test surface sent by the LCD transmitter. A time lag occurs between the point and the time when the receiver of the shutter glasses 60 turns on the left eye. At this time, the opening time of the left mirror 61 has not yet reached 4. 3 milliseconds, and the next update is performed. The signal has been turned off by the left mirror 61. Therefore, the longer the time delay between the first detection signal and the second detection signal, the shorter the opening time of the left mirror 61 is, so that the aforementioned 3D surface will be caused. In the same way, if the opening time of the left mirror 61 is longer, the overlapping surface of the left mirror 61 is generated, which makes the 3D effect worse; only the precise opening time can produce a perfect 3D effect. [0026] Therefore, when the mode control device of the present invention determines that the 3D picture stay time is deviated by the waveform display, the calibrator 301 on the 3D signal transmitter 30 is used for fine adjustment to make the first detection. The two signals between the signal and the second detection signal are synchronized. The adjustment mode of the right mirror 62 is also the same as that of the left mirror 61. The waveform display 80 analyzes whether the first detection signal is synchronized with the second detection signal of the right second sensor 71, and then is adjusted by the calibrator 301. The above method adjusts the left mirror 61 and the right mirror 62 of the shutter glasses 60 to achieve a perfect picture with the highest brightness, the clearest 3D image, and no overlap. It should be noted that the calibrator 301 is a variable resistor adjuster, and the start time of the 3D signal transmitter 30 can be adjusted by the change of the resistance of the variable resistor. 099125112 Form No. A0101 Page 16 / Total Page 31 0992044131-0 201205124 ο [0027] Please refer to FIG. 6 , which is a schematic diagram of the self-adjusting system of the present invention. As shown in Fig. 6, the 'self-adjusting system is in the LCD display 1', the signal transmitter 30 has built-in-screen display device (On-Screen Display; 〇SD) 300 'where the screen control device At least one delay time adjustment circuit 302 and an open time adjustment circuit 3〇3 can be used to adjust the update delay time of the 3D signal transmitter 3〇. When the LCD display is activated or set to a self-adjusting system, the 3D signal transmitter 30 of the LCD display sends a self-adjusting screen 1 to the screen 1〇1; and the screen display device 300 will also send a delay time adjustment icon (time lag icon) i〇〇i and a black time time ic〇n 1〇{)2, and simultaneously displayed on the self-adjusting screen 1GGG' The reference time when the adjustment is performed by the delay time adjustment circuit 3Q2 and the self-on time adjustment circuit 3G3 is performed. Then, a terminal controller 1_ (for example, remote (four)) can be used to provide the control signal 13〇1 to start the self-adjusting system and can further adjust the delay time adjustment icon 1001 and the opening time adjustment icon 1〇〇. 2 on the value. When the terminal controller 1 300 is activated and enters the self-adjusting mode, the 3D signal transmitter 30 of the LCD display 1 sends out a self-adjusting picture 1000 to the display screen 101. The content of () includes a left picture 1100 and a right picture UGG, and a first pattern 1101 is formed on the left picture ΐιοο and a second pattern 12 is formed on the right picture 1200 at the same position relative to the left picture 1100. In a preferred embodiment, the first pattern 11〇1 is an X-type pattern, and the second pattern 1201 is a 0-type pattern H. The embodiment of the present invention numbers the first pattern and the second pattern 099125112. A0101 Page 17 of 31 0992044131-0 201205124 The image of the case is not limited, it can be any type of image. [0028] Next, please refer to FIG. 7 , which is a schematic flow chart of the adjustment steps of the self-adjusting system of the present invention. First, when the adjuster starts the self-adjusting system with the terminal controller 1 300, the 3D signal transmitter 30 of the LCD display 10 sends a screen 1000 for performing self-adjustment to the display screen 101, and the adjustment screen 1000 is A left picture 1100 and a right picture 1200 are repeated and alternately displayed; at the same time, the screen display device 300 also sends a delay time adjustment icon 10 01 and an on time adjustment icon 1 0 0 2, and simultaneously displays the self-adjusting picture. In 1000, the reference time when the adjustment is performed by the delay time adjustment circuit 302 and the self-on time adjustment circuit 303 is performed. At this time, the adjuster must wear the shutter glasses 60 to make adjustments. Next, the self-adjusting step of this embodiment is entered. [0029] As described above, when the image updated on the left screen 1100 and the right side 1200 of the adjustment screen 1000 is not synchronized with the shutter activation speed on the shutter glasses 60, the screen may appear to be superimposed; or when the shutter The shorter the opening time of the left eye or the right eye on the glasses 60, the 3D picture will be faint and the effect will be worse, so adjustment is needed at this time. First, please refer to step one 7001

,先以終端控制器1 300將延遲時間調圖標1001調低,使 快門眼鏡60上的快門延後開啟時間,故會使得快門眼鏡 60上的快門開啟時間縮短,例如:當屏幕視控裝置300之 延遲時間調整圖標1001顯示值在50%的位置時,此時即將 延遲時間調整圖標10 01顯示值從在5 0 %的位置調整至小於 50%的位置;此一調整的位置值需視調整過程中,當調小 至某一值後(例如調整至小於40%時),已經無法辨識為3D 099125112 表單編號A0101 第18頁/共31頁 099204413卜0 201205124First, the delay time adjustment icon 1001 is turned down by the terminal controller 1 300 to delay the shutter on the shutter glasses 60 to open the time, so that the shutter opening time on the shutter glasses 60 is shortened, for example, when the screen control device 300 When the delay time adjustment icon 1001 displays the value at the position of 50%, the display value of the delay time adjustment icon 10 01 is adjusted from the position of 50% to the position of less than 50%; the position value of the adjustment needs to be adjusted. In the process, when the value is reduced to a certain value (for example, when it is adjusted to less than 40%), it is not recognized as 3D 099125112 Form No. A0101 Page 18 / Total 31 Page 099204413 Bu 0 201205124

號發射器30會送出之更新頻率後的開啟時間之間具有最 小之延遲且快門眼鏡6〇之快門具有最大之開啟時間,因 此在完成步驟四7_之調整後,調整考視覺所觀察到的 3D影像畫面會逐漸變亮且3D影像效果變佳。 衫像時!uy ·當調整過小時漏像畫面There is a minimum delay between the turn-on time after the update frequency of the transmitter 30 is sent, and the shutter of the shutter glasses has the maximum open time, so after adjusting the adjustment of step 4 7_, the adjustment of the visual observation is observed. The 3D image will gradually brighten and the 3D image will be better. Shirt like time! Uy · When adjusting the hourly leak image

影像太暗而看不清袪 月失或3D 楚’以此判斷調整界線);接著 步驟二:,將延遲時間調整圖標―示值:二 像成像之最錢遲=時Γ即為㈣眼鏡6G之讓3D影 二之調整後,調=值。很明顯地,在完成步驟 會偏暗。接著,進門眼鏡6G所看到_影像 J碉大,使得快門眼鏡60上的 時間變長,—直到快Η眼鏡6Q之讓婦像出現3 = 例如:當調整過多時,-影像畫面會出現叠影,=:( 斷凋整界’:),此時’進入步_7〇〇4,將開啟 圖標刪顯示值往回調整至可辨識為抑影像之重影整 為止,此時即為快門眼_之讓3D影像成像之最大開啟 時間值;很明顯地,此時,快門目_之快門接㈣訊 _再接著,請參考第8圖,係為本發明3D調整系統畫面調整 完畢示意圖。當調整完畢時,遮住快門眼鏡6〇之右鏡62 ’其左眼只會看見畫面中顯示左畫面1100之第—圖案 1101(即X型圖案),並不會看見第二圖案12〇1(即〇型圖 案)。相同地’遮住快門眼鏡60之左鏡61,其右眼只會看 見畫面中顯示右畫面1200之第二圖案1201(即〇型圖案) ’並不會看見第一圖案1101(即X型圖案),且上敛所看到 099125112 表單編號A0101 第19頁/共31頁 0992044131-0 201205124 之晝面亮度皆為最大。而將快門眼鏡60拿下裸視時,則 會看見第一圖案1101( X型圖案)與第二圖案1201(0型圖 案)在相同位置相互交疊。此時,即表示晝面調整完畢。 [0031] 雖然本發明以前述之較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習相像技藝者,在不脫離本發明 之精神和範圍内,當可作些許之更動與潤飾,因此本發 明之專利保護範圍須視本說明書所附之申請專利範圍所 界定者為準。 【圖式簡單說明】 [0032] 第1圖係為本發明3D顯示之調校系統示意圖。 [0033] 第2圖係為本發明之第一感應器之配置示意圖。 [0034] 第3圖係為本發明進行調校時之3D影像之測試畫面示意 圖。 [0035] 第4圖係為本發明畫面更新時間軸之示意圖。 [0036] 第5A圖係為本發明3D顯示之調校系統之左鏡調校之示意 圖。 [0037] 第5B圖係為本發明3D顯示之調校系統之右鏡調校之示意 圖。 [0038] 第6圖係為本發明之自調整系統之示意圖。 [0039] 第7圖係為本發明自調整系統之調整步驟流程示意圖。 [0040] 第8圖係為本發明3D自調整系統畫面調整完畢示意圖。 【主要元件符號說明】 099125112 表單編號A0101 第20頁/共31頁 0992044131-0 201205124The image is too dark to see if the moon is lost or 3D Chu's decision to adjust the boundary line; then step 2:, the delay time adjustment icon - indication value: the second image of the image is the latest money = when the time is (4) glasses 6G After the adjustment of 3D Shadow 2, adjust = value. Obviously, the steps will be darker when you complete the steps. Then, the image of the entrance lens 6G is large, so that the time on the shutter glasses 60 becomes long, until the portrait of the quick glasses 6Q appears 3 = For example, when the adjustment is excessive, the image frame appears. Shadow, =: (breaking the whole world ':), at this time 'enter step _7 〇〇 4, will open the icon to delete the display value back to adjust to the image can be recognized as the shadow of the image, this is the shutter The maximum opening time value of the 3D image imaging of the eye _; obviously, at this time, the shutter of the shutter is connected (four) _ and then, please refer to Fig. 8, which is a schematic diagram of the adjustment of the screen of the 3D adjustment system of the present invention. When the adjustment is completed, the right mirror 62' of the shutter glasses 6 is blocked, and the left eye only sees the first pattern 1101 of the left picture 1100 (ie, the X-shaped pattern), and the second pattern 12〇1 is not seen. (ie 〇 pattern). Similarly, the left mirror 61 of the shutter glasses 60 is hidden, and the right eye only sees the second pattern 1201 (ie, the 〇 pattern) of the right screen 1200 displayed in the screen and does not see the first pattern 1101 (ie, the X pattern). ), and the above view is 099125112 Form No. A0101 Page 19 / Total 31 Page 0992044131-0 201205124 The brightness of the face is the largest. When the shutter glasses 60 are taken down to the naked eye, the first pattern 1101 (X-shaped pattern) and the second pattern 1201 (0-type pattern) are overlapped at the same position. At this point, it means that the face adjustment is completed. [0031] While the invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and may be modified and modified without departing from the spirit and scope of the invention. Therefore, the scope of patent protection of the present invention is defined by the scope of the patent application attached to the specification. BRIEF DESCRIPTION OF THE DRAWINGS [0032] Fig. 1 is a schematic diagram of a calibration system for a 3D display of the present invention. 2 is a schematic diagram of the configuration of the first inductor of the present invention. [0034] FIG. 3 is a schematic diagram of a test screen of a 3D image when the invention is calibrated. 4 is a schematic diagram of a screen update time axis of the present invention. [0036] FIG. 5A is a schematic diagram of the left mirror adjustment of the calibration system of the 3D display of the present invention. [0037] FIG. 5B is a schematic diagram of the right mirror adjustment of the calibration system of the 3D display of the present invention. 6 is a schematic diagram of a self-adjusting system of the present invention. [0039] FIG. 7 is a schematic flow chart of an adjustment step of the self-adjusting system of the present invention. [0040] FIG. 8 is a schematic diagram of the screen adjustment of the 3D self-adjusting system of the present invention. [Main component symbol description] 099125112 Form No. A0101 Page 20 of 31 0992044131-0 201205124

[0041] 10 顯示器 [0042] 101 顯示螢幕 [0043] 11 框體 [0044] 111 透明面 [0045] 113 框邊 [0046] 13 導線 [0047] 15 導線 [0048] 20 第一感應器 [0049] 30 3D訊號發射器 [0050] 300 屏幕視控裝置 [0051] 301 校準器 [0052] 302 延遲時間調整電路 [0053] 303 開啟時間調整電路 [0054] 40 快門眼鏡測試座 [0055] 401 放置面 [0056] 50 左光源 [0057] 51 右光源 [0058] 60 快門眼鏡 [0059] 61 左鏡 099125112 表單編號A0101 第21頁/共31頁 0992044131-0 201205124 [0060] 62右鏡 [0061] 70左第二感應器 [0062] 71右第二感應器 [0063] 700 1 步驟一 [0064] 7002 步驟二 [0065] 7003 步驟三 [0066] 7004 步驟四 [0067] 80波形顯示器 [0068] 90左眼測試畫面 [0069] 901 第一顏色之圖案 [0070] 91右眼測試畫面 [0071] 902 第二顏色之圖案 [0072] 1000 3D調整系統顯示畫 [0073] 1001 延遲時間調整圖標 [0074] 1002 開啟時間調整圖標 [0075] 1100 左畫面 [0076] 1101 第一圖案 [0077] 1200 右晝面 [0078] 1201 第二圖案 099125112 表單編號A0101 第22頁/共31頁 0992044131-0 201205124 [0079] 1300 [0080] 1301 終端控制器 控制訊號10 Display [0042] 101 Display Screen [0043] 11 Frame [0044] 111 Transparent Surface [0045] 113 Frame Edge [0046] 13 Wire [0047] 15 Wire [0048] 20 First Sensor [0049] 30 3D Signal Transmitter [0050] 300 Screen Control Device [0051] 301 Calibrator [0052] 302 Delay Time Adjustment Circuit [0053] 303 On Time Adjustment Circuit [0054] 40 Shutter Glasses Test Seat [0055] 401 Placement Surface [ 0056] 50 Left light source [0057] 51 Right light source [0058] 60 Shutter glasses [0059] 61 Left mirror 099125112 Form number A0101 Page 21 / Total 31 page 0992044131-0 201205124 [0060] 62 right mirror [0061] 70 left Two sensors [0062] 71 right second sensor [0063] 700 1 Step one [0064] 7002 Step two [0065] 7003 Step three [0066] 7004 Step four [0067] 80 waveform display [0068] 90 left eye test Screen [0069] 901 Pattern of First Color [0070] 91 Right Eye Test Screen [0071] 902 Pattern of Second Color [0072] 1000 3D Adjustment System Display [0073] 1001 Delay Time Adjustment Icon [0074] 1002 Opening Time Adjustment icon [0075] 1100 Left screen [0076] 1101 A pattern [0077] 1200 day the right side [0078] 1201 099 125 112 The second pattern 22 on the sheet number A0101 / 31 0992044131-0 Total 201 205 124 [0079] 1300 [0080] 1301 terminal controller control signal

❹ 099125112 表單編號A0101 第23頁/共31頁 0992044131-0❹ 099125112 Form No. A0101 Page 23 of 31 0992044131-0

Claims (1)

201205124 七、申請專利範圍: 1 . 一種三維顯示之調校系統,包括:一顯示器,具有一矩形 之顯示面,用以顯示影像;一 3D訊號發射器,係配置於該 顯示器中或外接於顯示器外,並提供一連串之3D影像同步 訊號,每一該3D影像訊號上之一對角上,配置一第一顏色 之圖案以及一第二顏色之圖案,其中該第一顏色之圖案以 及該第二顏色之圖案中的顏色對比色不相同;一對第一感 應器,係配置在該顯示器之該顯示面之一對角上且相應該 第一顏色之圖案以及該第二顏色之圖案;一快門眼鏡測試 座,放置於該顯示器之矩形顯示面前,並具有一放置面; 一左侧光源,放置於該快門眼鏡測試座前緣左側;一右側 光源,放置於該快門眼鏡測試座前緣右側;一左第二感應 器,放置於該快門眼鏡測試座之該放置面上並放置於該左 側光源之相對之另一側上;一右第二感應器,放置於該快 門眼鏡測試座之該放置面上並放置於該右側光源之相對之 另一側上;一快門眼鏡,係放置於該快門眼鏡測試座之 該放置面上,並放置於該左側光源、該右側光源與該左第 二感應器、該右第二感應器之間,該快門眼鏡上配置有一 接收裝置用以接收該3D訊號發射器所發射之該3D影像訊 號,以使該快門眼鏡依序開關左鏡與右鏡;及一校準器, 係配置在該顯示器上,並電性連接於該3D訊號發射器。 2 .如申請專利範圍第1項所述之調校系統,其中該3D訊號發 射器提供之3D影像訊號係由一左眼測試晝面與一右眼測試 畫面交替重複顯示。 3 .如申請專利範圍第1項所述之調校系統,其中該第一顏色 099125112 表單編號A0101 第24頁/共31頁 0992044131-0 201205124 之圖案為一深色圖案,第二顏色之圖案為一淺色圖案。 4 .如申請專利範圍第1項所述之調校系統,其中在該顯示器 之該顯示面之另一對角上再配置一對第一感應器。 5 . —種三維顯示之調校系統,包括:一顯示器,具有一矩形 之顯示面,用以顯示影像;一3D訊號發射器,係配置於該 顯示器中或外接於顯示器外,並提供一連串之3D影像同步 訊號,每一該3D影像訊號上之一對角上,配置一第一顏色 之圖案以及一第二顏色之圖案,其中該第一顏色之圖案以 及該第二顏色之圖案中的顏色對比色不相同;一框架,係 配置於該顯示面上,且於相對該顯示面之區域為一透明層 ,並於該透明層配置複數個第一感應器,每一該第一感應 器係相應該第一顏色之圖案以及該第二顏色之圖案之位置 ;一快門眼鏡測試座,放置於該顯示器之矩形顯示面前, 並具有一放置面;一左側光源,放置於該快門眼鏡測試座 前緣左側;一右侧光源,放置於該快門眼鏡測試座前緣右 側;一左第二感應器,放置於該快門眼銑測試座之該放置 面上並放置於該左側光源之相對之另一側上;一右第二感 應器,放置於該快門眼鏡測試座之該放置面上並放置於該 右側光源之相對之另一側上;一快門眼鏡,係放置於該快 門眼鏡測試座之該放置面上,並放置於該左侧光源、該右 側光源與該左第二感應器、該右第二感應器之間,該快門 眼鏡上配置有一接收裝置用以接收該3D訊號發射器所發射 之該3D影像訊號,以使該快門眼鏡依序開關左鏡與右鏡; 及一校準器,係配置在該顯示器上,並電性連接於該3D訊 號發射器。 6 .如申請專利範圍第5項所述之調校系統,其中該3D訊號發 099125112 表單編號A0101 第25頁/共31頁 0992044131-0 201205124 射器提供之3 D影像訊號係由一左眼測試畫面與一右眼測試 晝面交替重複顯示。 7 .如申請專利範圍第4項所述之調校系統,其中該第一顏色 之圖案為一深色圖案,第二顏色之圖案為一淺色圖案。 8 .如申請專利範圍第1或4項所述之調校系統,其中在該框 架之該透明層之另一對角上再配置一對第一感應器。 9 . 一種三維顯示之自調校系統,包括:一顯示器,具有一矩 形之顯示面,用以顯示影像;一3D訊號發射器,係配置於 該顯示器中或外接於顯示器外,並提供一3D影像同步訊號 ,而該3D影像訊號由一左眼測試畫面與一右眼測試畫面交 替重複顯示;一屏幕視控裝置,係配置於該3D訊號發射器 中,該屏幕視控裝置係由一延遲時間調整電路與一開啟時 間調整電路所組成;一快門眼鏡,具有一接收裝置用以接 收該3D訊號發射器所發射之該3D影像訊號,以使該快門 眼鏡依序開關左鏡與右鏡;及一終端控制器,係用以啟動 該3D訊號發射器提供該3D影像訊號;其中,藉由該終端 控制器來調整該延遲時間調整電路與該開啟時間調整電路 〇 10 .如申請專利範圍第9項所述之自調校系統,其中該3D訊號 發射器提供之左眼測試畫面上,進一步配置一第一圖案及 一第二圖案。 099125112 表單編號A0101 第26頁/共31頁 0992044131-0201205124 VII. Patent application scope: 1. A three-dimensional display calibration system, comprising: a display having a rectangular display surface for displaying images; a 3D signal transmitter disposed in the display or externally connected to the display In addition, a series of 3D image synchronization signals are provided, and a pattern of the first color and a pattern of the second color are arranged on a diagonal of each of the 3D image signals, wherein the pattern of the first color and the second The color contrast color is different in the color pattern; a pair of first sensors are disposed on a diagonal of the display surface of the display and corresponding to the pattern of the first color and the pattern of the second color; a shutter glasses The test stand is placed in front of the rectangular display of the display and has a placement surface; a left light source is placed on the left side of the front edge of the shutter glasses test seat; a right side light source is placed on the right side of the front edge of the shutter glasses test seat; a second second sensor disposed on the placement surface of the shutter glasses test stand and placed on the opposite side of the left side light source; a second sensor is disposed on the placement surface of the shutter glasses test stand and placed on the opposite side of the right side light source; a shutter glasses are placed on the placement surface of the shutter glasses test seat and placed Between the left side light source, the right side light source, the left second sensor, and the right second sensor, the shutter glasses are provided with a receiving device for receiving the 3D image signal emitted by the 3D signal transmitter, The shutter glasses are sequentially turned on and off the left mirror and the right mirror; and a calibrator is disposed on the display and electrically connected to the 3D signal transmitter. 2. The calibration system of claim 1, wherein the 3D image signal provided by the 3D signal transmitter is alternately repeated by a left eye test surface and a right eye test screen. 3. The calibration system according to claim 1, wherein the first color 099125112 form number A0101 page 24/31 page 0992044131-0 201205124 is a dark pattern, and the second color pattern is A light color pattern. 4. The calibration system of claim 1, wherein a pair of first sensors are disposed on another diagonal of the display surface of the display. 5. A three-dimensional display calibration system, comprising: a display having a rectangular display surface for displaying images; a 3D signal transmitter disposed in the display or externally connected to the display and providing a series of a 3D image synchronization signal, on a diagonal of each of the 3D image signals, a pattern of a first color and a pattern of a second color, wherein the pattern of the first color and the color of the pattern of the second color The contrast color is different; a frame is disposed on the display surface, and is a transparent layer in a region opposite to the display surface, and a plurality of first inductors are disposed on the transparent layer, and each of the first inductors is configured The pattern of the first color and the position of the pattern of the second color; a shutter glasses test stand placed in front of the rectangular display of the display and having a placement surface; a left side light source placed on the front edge of the shutter glasses test seat a left side light source, placed on the right side of the front edge of the shutter glasses test seat; a left second sensor placed on the placement surface of the shutter eye milling test seat and placed Placed on the opposite side of the left side light source; a right second sensor is placed on the placement surface of the shutter glasses test stand and placed on the opposite side of the right side light source; a shutter glasses, Placed on the placement surface of the shutter glasses test stand, and placed between the left side light source, the right side light source and the left second sensor, the right second sensor, and the receiving device is disposed on the shutter glasses Receiving the 3D image signal emitted by the 3D signal transmitter, so that the shutter glasses sequentially switch the left mirror and the right mirror; and a calibrator disposed on the display and electrically connected to the 3D signal launcher. 6. The calibration system according to claim 5, wherein the 3D signal is 099125112, the form number A0101, the 25th page, the total 31 page 0992044131-0201205124, the 3D image signal provided by the detector is tested by a left eye. The picture is displayed alternately with a right eye test. 7. The calibration system of claim 4, wherein the pattern of the first color is a dark pattern and the pattern of the second color is a light pattern. 8. The calibration system of claim 1 or 4, wherein a pair of first sensors are disposed on another diagonal of the transparent layer of the frame. 9. A self-tuning system for three-dimensional display, comprising: a display having a rectangular display surface for displaying images; a 3D signal transmitter disposed in the display or externally connected to the display and providing a 3D An image synchronization signal, wherein the 3D video signal is alternately displayed by a left eye test screen and a right eye test screen; a screen visual control device is disposed in the 3D signal transmitter, and the screen visual control device is delayed by a delay a time adjustment circuit and an opening time adjustment circuit; a shutter glasses having a receiving device for receiving the 3D image signal emitted by the 3D signal transmitter, so that the shutter glasses sequentially switch the left mirror and the right mirror; And a terminal controller for enabling the 3D signal transmitter to provide the 3D video signal; wherein the delay controller and the turn-on time adjustment circuit 调整10 are adjusted by the terminal controller. The self-tuning system described in the above, wherein the left eye test screen provided by the 3D signal transmitter further configures a first pattern and a second image. . 099125112 Form No. A0101 Page 26 of 31 0992044131-0
TW99125112A 2010-07-29 2010-07-29 An adjustment system of a 3D display module TW201205124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99125112A TW201205124A (en) 2010-07-29 2010-07-29 An adjustment system of a 3D display module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99125112A TW201205124A (en) 2010-07-29 2010-07-29 An adjustment system of a 3D display module

Publications (1)

Publication Number Publication Date
TW201205124A true TW201205124A (en) 2012-02-01

Family

ID=46761534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99125112A TW201205124A (en) 2010-07-29 2010-07-29 An adjustment system of a 3D display module

Country Status (1)

Country Link
TW (1) TW201205124A (en)

Similar Documents

Publication Publication Date Title
JP4886094B1 (en) Stereoscopic image display system and control method of stereoscopic image display system
JP4951076B2 (en) Display device, system, and glasses
CN203117631U (en) Equipment for stereo visual vision
KR20110080035A (en) 3d glass driving method and 3d glass and 3d image providing display apparatus using the same
US20120169778A1 (en) 3d glasses with adjusting device for allowing user to adjust degrees of crosstalk and brightness and related 3d display system thereof
CN102387377B (en) Adjusting method for synchronous signals in three-dimensional display
CN201774634U (en) 3D system synchronous adjusting frame structure
EP2532168A1 (en) Stereoscopic display system based on glasses using photochromatic lenses
KR20110009421A (en) 3-dimensional image providing apparatus and receiving apparatus, 3-dimensional image providing method and receiving method using the same, and 3-dimensional image system
TW201142781A (en) Stereoscopic image displaying method and stereoscopic display device
KR20060007662A (en) Display apparatus and method for stereo-scopic image based to liquid crystal shutter
US20120098831A1 (en) 3d display apparatus and method for processing 3d image
TWM394470U (en) A frame structure of a 3D display modul
KR20120059947A (en) 3D glasses and method for controlling 3D glasses thereof
KR101768538B1 (en) Method for adjusting 3-Dimension image quality, 3D display apparatus, 3D glasses and System for providing 3D image
TW201205124A (en) An adjustment system of a 3D display module
CN102387376A (en) Adjustment system of three-dimensional (3D) display synchronous signals
WO2013127235A1 (en) Shutter-type 3d display method, device and system
TW201206164A (en) An adjustment method of a 3D display module
JPS61144192A (en) Stereoscopic television picture display device
KR20120015831A (en) 3-dimension glasses, method for driving 3-dimension glass and system for providing 3d image
JP2013042194A (en) Remote controller for stereoscopic display device and multi-screen stereoscopic display system
KR20120009897A (en) Method for outputting userinterface and display system enabling of the method
KR101142176B1 (en) 3-Dimension stereograph providing apparatus and method thereof
TWI470996B (en) Three-dimensional video display method and three-dimensional video display system