TW201204190A - The thin circuit board with induction coil and method of the same - Google Patents

The thin circuit board with induction coil and method of the same Download PDF

Info

Publication number
TW201204190A
TW201204190A TW99122956A TW99122956A TW201204190A TW 201204190 A TW201204190 A TW 201204190A TW 99122956 A TW99122956 A TW 99122956A TW 99122956 A TW99122956 A TW 99122956A TW 201204190 A TW201204190 A TW 201204190A
Authority
TW
Taiwan
Prior art keywords
magnetic induction
substrate
circuit board
layer
magnetic
Prior art date
Application number
TW99122956A
Other languages
Chinese (zh)
Other versions
TWI404467B (en
Inventor
Kuo-Yuan Hsu
Chin-Fen Cheng
Kun-Shan Yang
Feng-Chi Hsiao
Tung-Fu Lin
Chih-Wei Lee
I-Hsueh Yang
Jia-Jiu Song
Original Assignee
Phytrex Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phytrex Technology Corp filed Critical Phytrex Technology Corp
Priority to TW99122956A priority Critical patent/TWI404467B/en
Publication of TW201204190A publication Critical patent/TW201204190A/en
Application granted granted Critical
Publication of TWI404467B publication Critical patent/TWI404467B/en

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The present invention discloses a novel thin circuit board and method of the same. The substrate of said thin circuit board is made of organic resin mixing with absorbent powder capable of forming build-up layers and circuit architecture thereon which is required by RFID tag. The induction coil's design of said thin-film circuit board is dependent on the characteristic of electromagnetic wave absorption of said substrate.

Description

201204190 六、發明說明: 【發明所屬之技術領域】 本發明與一種具有感應線圈的薄型電路板及其製造方 法有關。具體言之,其係關於一種考量吸波特性之感應線 圈設計的薄型電路板及其製造方法。 【先前技術】 射頻辨識技術(radio freqUenCy identification technology, RFID) ’是一種透過電磁波訊號辨識特定目標並讀寫相關資 料的通信技術。射頻識別元件運作的原理係利用一外部的201204190 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a thin circuit board having an induction coil and a method of manufacturing the same. Specifically, it relates to a thin circuit board designing a sensing coil that considers absorbing characteristics and a method of manufacturing the same. [Prior Art] Radio frequency identification (radio freqUenCy identification technology, RFID) is a communication technology that recognizes specific targets through electromagnetic wave signals and reads and writes related materials. The principle of operation of RFID components is based on an external

射頻辨識讀取器(RFID reader)發射電磁波觸動處於感應範 圍内的射頻辨識元件(如射頻辨識標籤RnDtag),該射頻辨 識元件會因電磁感應產生電流來供應其上的射頻辨識晶片 運作,繼而發出電磁波回應該感應器達成射頻辨識之效 果。由於是透過電磁4應方式來進行辨識,射賴識系統(如 讀取器reader)與辨識目標(如射頻辨識標籤)之間盔須 任何機械性或光學性的接觸。射頻 :有效的辨識距離較長、可儲存傳送大量的“ ί 標織中的資料、安全性較佳等,故已廣 為業界用來取代傳統的辨識條碼(bar code)。現今射頻辨識 =用擴及零售物流供應、資產追縱、及驗證應用等 的射- r:具有嶋^ ^ 取、、。構截面圖。如圖所示,典型的 射頻辨識元件励主要係由-軟性基板而、感廡^ 1〇3、金屬佈線層1〇5、及-射頻辨識晶#1〇7等四;部件 201204190 所構成,其中習知軟性基板101不具吸收電磁波之特性, 所以感應線圈103之設計無須考量軟性基板101的磁通特 性。該軟性基板101係作為射頻辨識元件100各部件設置 之結構基材,其多使用 PET(polyethylene terephthalate,聚 對苯二甲二乙酯)等軟性材質形成,而具有質輕、可撓、易 於攜帶等優點。軟性基板101的上表面的感應線圈103,用 來接收由外部射頻辨識讀取器所發出的電磁波,以藉由電 磁感應方式產生電流。軟性基板101的下表面形成有一金 屬佈線層105,其會透過互連結構104與感應線圈1〇3電性 連接。該金屬佈線層105亦含有射頻辨識元件1〇〇的電路 佈線區域,使射頻辨識晶片]07電性連接感應線圈1〇3。 依先前技術,軟性基板101中形成有數個連通上 面的通孔⑽來讓軟性基板1G1下表面的金屬佈線展表 與軟性基板101上表面的射頻辨識晶片1 S =的射頻辨識讀取器,完成標軸^ 因使用電磁波感應機制,射頻 對金屬和液體等使用環境相去敏咸5牛在同頻運作下 面或是内含液體的容器上。:此種使严J貼附在金屬表 器和射頻辨識元件發出之電磁、、由 衣兄下,外部讀取 件附近的金屬或液體干擾,導容易受到射頻辨識元 ,此問題在被動式射頻辨識不良等問 在-般被動式射頻辨識標鐵的應用圖 201204190 射頻辨識元件100與金屬表面1〇2之間會加設一磁感應貼 片(ferrite sheet ’或稱之為吸波貼片)1〇6,以抑制所接收/發 出的電磁波在金屬或液體表面生成表面波、空腔共振波、 反射波、或/及電磁干擾等現象,避免感應訊號讀取不良。 然’ 一般業界常用的磁感應貼片會佔用不少的射頻辨 識元件製作成本,加之磁感應貼片具有一定的厚度,會使 射頻辨識元件的薄型化變得困難;再者,因應射頻辨識元 件的不同感應線圈設計,磁感應貼片必須審慎選用以免影 • 響其作用效果。於此,本發明人立意在薄型電路板製程之 際’其感應線圈設計即考量基板預設之磁通特性,以避免 曰後該薄型電路板應用於金屬表面上對於選用磁感應貼片 之困擾’俾使本發明之射頻辨識元件能應用到薄型化設計 中’遂特以開發出一種具有吸波作用的薄型電路板結構及 其製造方法。 【發明内容】 鐘於上述習知技術之缺點’本發明揭露了一種薄塑電 φ 路板及其製造方法。本發明薄型電路板的基板係以混有吸 波粉體的有機樹脂材質製成,使基板具有吸收電磁波之特 性’同時又兼具一般軟性電路板之特性,可在薄型電路板 '' 上製作出射頻辨識元件所需之增層與電路構造。 在本發明一態樣中,一種薄型電路板包含磁感應基 板、感應線圈及金屬佈線層等組成部件。該感應線圈形成 在該磁感應基板之其中一側表面。金屬佈線層則形成在該 磁感應基板之其中一側表面並與該感應線圈電性連接。一 射頻辨識晶片則設置在該磁感應基板之其中一側表面並與 201204190 該金屬佈線層電性連接。該感應線圈的設計係 應基板的磁通特性以設置在該磁感應基板的表=磁感 應線圈能藉由電磁感應產生電流以供應射頻 =感 並發出電磁波回應外部的感應器(reader)。 5曰曰 作 ”在+ =另一態樣中,該感應線圈係為多層阻圈的芦 線圈間夾置有一磁感應層,以增強磁感庫丨 θ / μ 果。該磁感摩μ从哲彻讲β生並加強吸波效 禾邊磁a應層材質與磁感應基板之材質相同。 本發明之目的在於提供-種新賴的薄電 其製造方法’其採用之結構支揮性基板具有== 電路板無需配置額外的磁感 片即可達到優良的射頻辨識效果。 乃次及波貼 構及一種新穎的薄膜電路板結 距離。 【°亥感應線圈的有效感應 r圖ί參!:述詳細的實施方式及相關的圖示盘申往專利 點。 伞赞明其他的目的、特徵、及優 【實施方式】 現在請參照第二圖,其兔妲 識元件之載面圖。在射頻辨 曰207抓罟於目古*赞月的實施例中’將射頻辨識 曰曰片07①置於具錢應線圈 辨識元件2。。之例示。射頻辨識元件20。 屬表面202用來表示其使用 卜万1、·會有金 文用°又置之關係。如圖所示,本發 201204190 明之射頻辨識元件200主要係由磁感應基板2(U、感應線圈 203、金屬佈線層205、及射頻辨識晶片207等四個部件所 構成,其中磁感應基板201、感應線圈203與金屬佈線層 205組成一薄型電路板。在本發明中,磁感應基板201是為 一具有良好吸波特性的板材,其不僅作為射頻辨識元件2〇〇 各部件設置之結構基材,且可有效抑制射頻辨識元件2〇〇 在高頻(如13.56MHz)或超高頻(如900MHz)環境下靠近金屬 或液體表面時生成表面波、空腔共振波、反射波、或/及電 •磁干擾等現象,避免衍生感應訊號讀取不良的問題。本發 明磁感應基板201固有的電磁波吸收功能使得本發明之射 頻辨識元件200可輕易適用在一般習知射頻辨識元件(如 RFID)無法使用的環境中,如黏貼在罐頭等金屬表面或裝有 液體的藥瓶上、或是置於手機等行動裝置的金屬外殼中, 不需再額外搭配習知昂貴的吸波貼片,得以省下可觀的標 籤製作成本。 本發明之磁感應基板201係以有機樹脂與無機粉體兩 鲁 種材質混合而成,其中該有機樹脂係賦予磁感應基板201 機械特性及製程上的可行性,而該無機粉體則使磁感應基 板201有吸收電磁波的功能。在一實施例中,磁感應基板 2〇1中的有機樹脂為一般軟性印刷電路板常用的PI (polyimide,聚亞醯胺)材質。以此材質形成的基板具有質 輕、可撓、易於攜帶、製程簡易、可適用於捲軸式連續製 程(roll-to-roll)、及可大面積製作等優點,使得後續製作出 的射頻辨識標籤成品可適用性較佳。須注意在其他實施例 中’磁感應基板201的有機樹脂亦可為其他具有相同特性 201204190 的合適材質,其包含但不限定於下列材質及其組合:聚對 苯二甲二乙酯(polyethylene terephthalate,PET)、聚對萘二 甲酸乙二酯(polyethylene naphthalate,PEN)、聚丙稀 (polypropylene,PP)、聚趟石風(Polyether sulfone,PES)、 聚次苯基醚砜(Polyphenylene Sulfone,PPSU)、聚苯噁唑共 聚合物(Poly-p- phenylenebenzobisoxazole,PBO)、液晶聚合物 (Liquid Crystal Polymer,LCP)、丙烯酸樹脂(Acrylate)、聚 氨脂(Polyurethane ’ PU)、或環氧樹脂(Epoxy)等。 另一方面’磁感應基板201的無機粉體材料是為具有籲 良好吸波特性之材質,其可有效使電磁波的訊號衰減,避 免射頻辨識元件200在金屬體或液體表面受到逆向的電磁 波干擾。本發明實施例中無機粉體之材質可如軟性鐵氧 體,其包含但不限定於錳鋅鐵氧體、鎳鋅鐵氧體、鎳銅鋅 鐵氧體、錳鎂鋅鐵氧體、錳鎂鋁鐵氧體、錳銅鋅鐵氧體、 钻鐵氧體或是其混合物;合金材料,其包含但不限定於鎳 鐵合金、鐵矽合金、及鐵鋁合金;金屬材料,其包含但不 =定於銅、鋁、鐵、及鎳等合金等。在本發明中,有機樹 月曰與無機粉體混合的比例分別約在15%〜35%與85%〜65%φ 之間,兩者混合後可形成具有吸波特性的漿料或塗料,其 可再進-步固化成具有結構支撐性的固體,如膠#、薄膜、 $狀、塊狀基材等。上述比例混合調配而成的磁感應基板 1可元全適用於傳統的Ρ〖軟板製程,如在磁感應基板2〇1 上進行鑛膜、蚀洗、雕銑、及鑽孔等動作,亦可適用於射 識晶片所需的向溫製程’如表面黏著技術中的覆晶製 程(fliD chin、。 201204190 於本發明中’磁感應基板201係同時作為射頻辨識元 件200的結構支撐件及吸波件,其上可透過軟板製程形成 射頻辨識元件所需的通孔(through hole)、電路佈線(trace)、 及互連接點(interconnect)等電路結構。如第二圖所示,磁感 應基板201的上表面形成有感應線圈203,該感應線圈203 為一多匝迴圈設計,其係設置來接收由一外部射頻辨識讀 取器(reader)所發出在不同極化方向上的電磁波,以藉由感 應耦合(Inductive Coupling)或後向散射耦合(Back-scatterAn RFID reader emits an electromagnetic wave to activate an RFID component (such as a radio frequency identification tag RnDtag) in a sensing range, and the RFID component generates a current due to electromagnetic induction to supply the RFID chip on the device, and then emits The electromagnetic wave should return to the sensor to achieve the effect of RF identification. Since the identification is performed by means of an electromagnetic 4, the helmet must be in any mechanical or optical contact between the detection system (such as the reader reader) and the identification target (such as the RFID tag). RF: The effective identification distance is long, and it can store and transmit a large amount of “the data in the standard weaving, and the security is better. Therefore, it has been widely used by the industry to replace the traditional bar code. Today's RF identification = use Expanded to retail logistics supply, asset tracking, and verification applications, etc. - r: has a 嶋 ^ ^ take, and the structure of the cross-section. As shown, the typical RF identification component excitation is mainly based on - soft substrate Sense 〇1〇3, metal wiring layer 1〇5, and -RF identification crystal #1〇7, etc.; component 201204190, wherein the conventional flexible substrate 101 does not have the characteristics of absorbing electromagnetic waves, so the design of the induction coil 103 does not need to be The magnetic flux characteristics of the flexible substrate 101 are considered. The flexible substrate 101 is a structural substrate provided as a component of the radio frequency identification device 100, and is formed of a soft material such as PET (polyethylene terephthalate). The utility model has the advantages of light weight, flexibility, easy portability, etc. The induction coil 103 on the upper surface of the flexible substrate 101 is used for receiving electromagnetic waves emitted by an external radio frequency identification reader for electromagnetic induction. The lower surface of the flexible substrate 101 is formed with a metal wiring layer 105 electrically connected to the induction coil 1〇3 through the interconnection structure 104. The metal wiring layer 105 also includes a circuit wiring region of the radio frequency identification element 1〇〇. The radio frequency identification chip]07 is electrically connected to the induction coil 1〇3. According to the prior art, a plurality of through holes (10) communicating with the upper surface are formed in the flexible substrate 101 to allow the metal wiring on the lower surface of the flexible substrate 1G1 to be on the flexible substrate 101. Surface RFID chip 1 S = RFID reader, complete the standard axis ^ Due to the use of electromagnetic wave induction mechanism, the radio frequency is sensitive to the environment of metal and liquid, and the container is under the same frequency or contains liquid. Above: This kind of rigorous J is attached to the electromagnetic device emitted by the metal watch and the RF identification component, and is interfered by the metal or liquid near the external reading member. The guide is easily exposed to the RF identification element. This problem is in the passive RF. Bad identification, etc. Application diagram of passive RF identification standard 201204190 A magnetic induction patch is added between the RF identification component 100 and the metal surface 1〇2 The ferrite sheet 'or absorbing wave patch' is 1〇6 to suppress the generation of surface waves, cavity resonance waves, reflected waves, or/and electromagnetic interference on the metal or liquid surface by the received/exposed electromagnetic waves. The inductive signal is not well read. However, the magnetic induction patch commonly used in the industry will occupy a lot of RF identification component manufacturing costs, and the magnetic induction patch has a certain thickness, which makes the thinning of the RFID component difficult; In view of the different induction coil design of the RF identification component, the magnetic induction patch must be carefully selected to avoid the effect of the effect. Therefore, the inventor intends to design the magnetic circuit of the substrate in the process of the thin circuit board process. Through the characteristics, in order to avoid the trouble of using the thin magnetic circuit board on the metal surface for the selection of the magnetic induction patch, the radio frequency identification component of the invention can be applied to the thin design, and the utility model has developed a wave absorbing effect. Thin circuit board structure and its manufacturing method. SUMMARY OF THE INVENTION The present invention discloses a thin plastic electric φ board and a method of manufacturing the same. The substrate of the thin circuit board of the present invention is made of an organic resin material mixed with a absorbing powder, so that the substrate has the characteristics of absorbing electromagnetic waves, and at the same time has the characteristics of a general flexible circuit board, which can be fabricated on a thin circuit board. The build-up and circuit construction required for the RF identification component. In one aspect of the invention, a thin circuit board includes components such as a magnetic induction substrate, an induction coil, and a metal wiring layer. The induction coil is formed on one side surface of the magnetic induction substrate. A metal wiring layer is formed on one side surface of the magnetic induction substrate and electrically connected to the induction coil. A radio frequency identification chip is disposed on one side surface of the magnetic induction substrate and electrically connected to the metal wiring layer of 201204190. The induction coil is designed to have magnetic flux characteristics of the substrate so that the surface of the magnetic induction substrate can be supplied with current by electromagnetic induction to supply a radio frequency sense and emit electromagnetic waves in response to an external reader. 5曰曰"" In another aspect, the induction coil is a multi-layered resistance ring with a magnetic induction layer interposed between the reed coils to enhance the magnetic susceptibility θ / μ. The material of the magnetic layer is the same as that of the magnetic induction substrate. The object of the present invention is to provide a method for manufacturing a thin electric circuit. = The board can achieve excellent RF identification without the need of additional magnetic sensors. It is a wave and a new thin film board junction distance. [The effective inductance of the induction coil of °H ί !!: Detailed implementations and related illustrations apply to patent points. Umbrellas praise other purposes, features, and advantages [Embodiment] Please refer to the second figure, the carrier diagram of the rabbit identification component. In the embodiment of the 古 * * 赞 赞 赞 赞 ' 将 将 将 将 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频 射频10,000, there will be a gold text with ° As shown in the figure, the radio frequency identification component 200 of the present invention is mainly composed of four components: a magnetic induction substrate 2 (U, an induction coil 203, a metal wiring layer 205, and a radio frequency identification wafer 207), wherein the magnetic induction substrate 201, The induction coil 203 and the metal wiring layer 205 form a thin circuit board. In the present invention, the magnetic induction substrate 201 is a plate material having good absorbing properties, which is not only used as a structural substrate provided for each component of the radio frequency identification component 2 And can effectively suppress the surface acoustic wave, cavity resonance wave, reflected wave, or/and the radio frequency identification component 2 when it is close to the metal or liquid surface in a high frequency (such as 13.56 MHz) or ultra high frequency (such as 900 MHz) environment. The phenomenon of electrical and magnetic interference avoids the problem of poor reading of the induced inductive signal. The electromagnetic wave absorbing function inherent to the magnetic sensing substrate 201 of the present invention makes the radio frequency identification component 200 of the present invention easily applicable to conventional radio frequency identification components (such as RFID). In the environment used, such as sticking to a metal surface such as cans or a liquid-filled vial, or placed in a metal casing of a mobile device such as a mobile phone. The magnetic induction substrate 201 of the present invention is a mixture of an organic resin and an inorganic powder, wherein the organic resin is used in addition to the conventional expensive absorbing patch. The magnetic induction substrate 201 is imparted with mechanical characteristics and process feasibility, and the inorganic powder has a function of absorbing electromagnetic waves from the magnetic induction substrate 201. In an embodiment, the organic resin in the magnetic induction substrate 2〇1 is a general flexible printed circuit board. Commonly used PI (polyimide) material. The substrate formed by this material is light, flexible, easy to carry, easy to process, suitable for roll-to-roll, and large The advantages of area production and other advantages make the finished RFID identification label finished product more suitable. It should be noted that in other embodiments, the organic resin of the magnetic induction substrate 201 may also be other suitable materials having the same characteristics of 201204190, including but not limited to the following materials and combinations thereof: polyethylene terephthalate (polyethylene terephthalate, PET), polyethylene naphthalate (PEN), polypropylene (PP), polyether sulfone (PES), polyphenylene sulfone (PPSU), Poly-p-phenylenebenzobisoxazole (PBO), Liquid Crystal Polymer (LCP), Acrylate, Polyurethane 'PU, or Epoxy Wait. On the other hand, the inorganic powder material of the magnetic induction substrate 201 is a material having a good absorbing property, which can effectively attenuate the electromagnetic wave signal and prevent the radio frequency identification element 200 from being subjected to reverse electromagnetic interference on the metal body or the liquid surface. The material of the inorganic powder in the embodiment of the present invention may be, for example, a soft ferrite, which includes, but is not limited to, MnZn ferrite, nickel zinc ferrite, nickel copper zinc ferrite, manganese magnesium zinc ferrite, manganese. Magnesium aluminum ferrite, manganese copper zinc ferrite, drill ferrite or a mixture thereof; alloy material, including but not limited to nickel iron alloy, iron bismuth alloy, and iron aluminum alloy; metal material, including but not = is set for alloys such as copper, aluminum, iron, and nickel. In the present invention, the ratio of the organic tree sorghum mixed with the inorganic powder is about 15% to 35% and 85% to 65% φ, respectively, and the two can be mixed to form a slurry or coating having absorbing properties. It can be further solidified into a structurally supported solid such as a glue #, a film, a shape, a bulk substrate or the like. The magnetic induction substrate 1 prepared by mixing the above ratios can be fully applied to the conventional Ρ 软 soft board process, such as performing mineral film, etching, engraving, and drilling on the magnetic induction substrate 2〇1, and is also applicable. The photothermal process required for imaging wafers, such as the flip chip process in surface adhesion technology (fliD chin, 201204190, in the present invention, the magnetic induction substrate 201 serves as both a structural support member and a absorbing member for the radio frequency identification device 200, A circuit structure such as a through hole, a circuit trace, and an interconnection required for forming a radio frequency identification component through a flexible board process. As shown in the second figure, the magnetic induction substrate 201 is mounted thereon. The surface is formed with an induction coil 203, which is a multi-turn loop design, which is arranged to receive electromagnetic waves emitted by an external radio frequency reader in different polarization directions to induce Inductive Coupling or Backscattering

Coupling)等電磁感應方式產生電流。發明中,該感應線圈 203可採用蝕刻(如銅蝕刻及鋁蝕刻)、銀膠印刷(包含網版印 刷、凸版印刷、凹版印刷、或喷墨方式等)、化學沉積銅、 及電鍍銅等方式形成。感應線圈203的材質、厚度、匝數、 Q值(quality factor)、及設置等會對應所使用之磁感應基板 201的吸波性質來進行設計或微調以達成所需的阻抗匹配 (Impedance Matching),並維持在電磁感應上線性極化之要 求。本發明之感應線圈203的工作頻率會視其應用的環境 而定’其包含但不限定於125/13伙出(低頻)、13.56^[出(高 頻)等運作頻段。 另一方面,磁感應基板201的下表面形成有一金屬佈 線層205,是為射頻辨識元件200之線圈模組的一部份。金 屬佈線層205會透過通孔或互連結構204a, 204b分別與兩 端的感應線圈203耦接,以傳導電性訊號。在本發明其他 實施例中,金屬佈線層205亦可作為感應線圈203的接地 平面(ground plane),以將感應線圈203因電磁感應所生成 過多的渦電流導引出射頻辨識元件200外避免產生電磁干 201204190 擾。在本發明中,金屬佈線層205可同時作為射頻辨識元 件200的§凡號傳遞層或電路佈線層。如第二圖所示,磁感 應基板201上形成有數個連通上下表面的通孔2〇9,該些通 孔209内部會填滿導電材質以與磁感應基板2〇1下表面的 金屬佈線層205產生電性連結。通孔209位於磁感應基板 2 01上表面的開口位置(即線圈接點位置)係對應射頻辨識晶 片207的各接腳位置(如帶金凸塊bump)。於覆晶製程中, 該複數個線圈接點位置會點上導電膠2Π,如異向性導電膠 (ACP)、異向性導電膜(ACF)或/及非導電膠(Ncp)等,之後鲁 藉由該導電膠211將線圈接點與射頻辨識晶片2〇7的接腳黏 合接著,使線圈模組(包含感應線圈2〇3及金屬佈線層2〇5) 與射頻辨識晶片207產生電性連結以傳遞感應電流。至此 步驟,即完成了本發明射頻辨識元件2〇〇的内部嵌片丨a 之製作。 在本發明實施例中,射頻辨識晶片2〇7會接收感應線 圈203所產生之感應電流並藉以發出電磁波以回應外部的 射頻辨識讀取器,完成射頻元件的辨識動作。射頻辨識晶 ^ 207可為多種功能性電路之結合,其包含但不限定於:鲁 父流轉直流電路,將外部讀取器送過來的射頻訊號轉換成 直流電源,穩壓電路,提供射頻辨識晶片2〇7穩定的電源; 調變電路,把概去除以取出真正的調變訊號;微處理器, 把外部讀取器所送過來的信號解碼,並依其要求回送資料 給外部讀取器;記憶體,作為射頻辨識元件存放識別 資料的位置;及調變電路’將上述微處理器送出的資訊調 變後載到感應線圈送出給讀卡機。 201204190Coupling) and other electromagnetic induction methods generate current. In the invention, the induction coil 203 can be etched (such as copper etching and aluminum etching), silver offset printing (including screen printing, letterpress printing, gravure printing, or inkjet method), chemical deposition of copper, and electroplating copper. form. The material, thickness, number of turns, Q factor, and setting of the induction coil 203 are designed or fine-tuned according to the absorbing properties of the magnetic induction substrate 201 used to achieve the required impedance matching (Impedance Matching). And maintain the requirement of linear polarization in electromagnetic induction. The operating frequency of the inductive coil 203 of the present invention will depend on the environment in which it is applied. 'It includes but is not limited to operating frequencies such as 125/13 out (low frequency) and 13.56^ [out (high frequency). On the other hand, the lower surface of the magnetic induction substrate 201 is formed with a metal wiring layer 205 which is a part of the coil module of the radio frequency identification component 200. The metal wiring layer 205 is coupled to the inductive coils 203 at both ends through vias or interconnect structures 204a, 204b to conduct electrical signals. In other embodiments of the present invention, the metal wiring layer 205 can also serve as a ground plane of the induction coil 203 to prevent the excessive eddy current generated by the induction coil 203 from being electromagnetically induced out of the RFID component 200 to avoid generation. Electromagnetic dry 201204190 Disturbance. In the present invention, the metal wiring layer 205 can simultaneously serve as a singular transfer layer or a circuit wiring layer of the radio frequency identification element 200. As shown in the second figure, the magnetic induction substrate 201 is formed with a plurality of through holes 2〇9 communicating with the upper and lower surfaces, and the through holes 209 are filled with a conductive material to be generated with the metal wiring layer 205 on the lower surface of the magnetic induction substrate 2〇1. Electrical connection. The opening position of the through hole 209 on the upper surface of the magnetic induction substrate 201 (i.e., the position of the coil contact) corresponds to the position of each pin of the radio frequency identification chip 207 (e.g., with a gold bump bump). In the flip chip process, the plurality of coil contacts are spotted with a conductive paste 2, such as an anisotropic conductive paste (ACP), an anisotropic conductive film (ACF) or/and a non-conductive paste (Ncp), etc. Lu bonds the coil contacts to the pins of the RFID chip 2〇7 by the conductive adhesive 211, and then causes the coil module (including the induction coil 2〇3 and the metal wiring layer 2〇5) to generate electricity with the RFID chip 207. Sexually connected to transmit induced current. At this point, the fabrication of the inner panel 丨a of the radio frequency identification component 2 of the present invention is completed. In the embodiment of the present invention, the radio frequency identification chip 2〇7 receives the induced current generated by the sensing coil 203 and generates an electromagnetic wave to respond to the external RFID reader to complete the identification operation of the RF component. The radio frequency identification crystal 207 can be a combination of various functional circuits, including but not limited to: Lu parent flow DC circuit, converting the RF signal sent by the external reader into a DC power supply, a voltage stabilization circuit, and providing a radio frequency identification chip. 2〇7 stable power supply; modulation circuit, remove the actual modulation signal; microprocessor, decode the signal sent by the external reader, and send data to the external reader according to its requirements The memory is used as a location for storing the identification data as the radio frequency identification component; and the modulation circuit 'transforms the information sent by the microprocessor to the induction coil and sends it to the card reader. 201204190

在完成射頻辨識晶片207的黏合後 兀件200之製作即告一段落。然而,=貝辨J 辨t識元件雇係可作為射頻辨識標籤的内部嵌 片(包含感應_、磁感應基板、與晶片等部 I ^ 貼驟(丨a——以完成最後的射頻辨識標 2二步驟是標籤生產的最終製程,該製程係 將射頻辨識標織的内部嵌片插人自黏性貼After the completion of the bonding of the RFID chip 207, the fabrication of the component 200 is brought to an end. However, the identifiable component can be used as an internal panel of the RFID tag (including the sensing _, the magnetic sensing substrate, and the chip, etc.) (丨a - to complete the final RF identification 2 The second step is the final process of label production, which inserts the internal insert of the RF identification standard into the self-adhesive sticker.

St使2露在外部環境中的感應線圈2〇3:磁感應基 的標藏產品。依業者需求的不同,所製作 ΪΓ頻Γί!籤型態亦有所不同’如自黏性的射頻辨識 該些型態之最終產品可應用在 不卡、’戴貼紙、防盜晶片等應用中。 士、甘if:圖所示,於設置中’射頻辨識元件2〇0會設置 佈線層朝向金屬表面202,感應線圈部分則朝向外 :。在實際應用中’該金屬表面202可能為手機内部的ic H板、電池、金屬載體或罐頭的金屬殼皮等。由於磁感 心二2〇1阻隔在感應線圈2〇3與金屬表面202之間,故 此《又置方式可使感應線圈2Q3接收或放出之電磁波不會受 到^金屬表面202的影響。然、’上述設置方式僅為本發明 的、施例之’於其他實施例中,本發明射頻辨識元件2〇0 的感應線圈203與金屬佈線層2G5亦可能設置在磁感應基 板201的同一側上。 上述本發明實施例之射頻辨識元件設計係將吸波材與 201204190 基材整合在一起,不需如習知技術般設置額外的磁感應貼 片或吸波貼片才能達到吾人所欲的射頻感應辨識效果。除 了省去一筆貼片的成本外,由於本發明之射頻辨識元件騰 出了原先預留來設置磁感應貼片的空間(約150μηι〜200μηι 的厚度),故元件中可提供更多的容置空間。如第三圖所示, 其為根據本發明另一實施例一射頻辨識標籤之截面圖。該 實施例中射頻辨識元件與第二圖中射頻辨識元件之設計大 同小異,惟其利用了射頻辨識元件中騰出來的高度空間將 感應線圈203設計成複數層層疊設置的線圈結構。在本實_ 施例中,該各層的感應線圈203間更設置有磁感應層213 來作為層與層之間的隔離層並強化射頻辨識元件内部的整 體吸波效果。該磁感應層213之材質與磁感應基板201之 材質相同,具有良好的電磁波吸收特性。在本發明實施例 中’磁感應線圈203可先採用塗膜增層法形成在底層的感 應線圈203上,再於其上繼續形成它層的感應線圈203。最 上層的感應線圈203會再透過一通孔或互連結構215與磁 感應基板201下的金屬佈線層205產生電性連結。本實施 例中的多層感應線圈設計之優點在於可利用原本預留給磁Φ 感應或吸波貼片的空間來設置複數層感應線圈,在不變的 單位面積增加線圈的匝數,進而顯著增加本發明射頻辨識 元件的感測距離。須注意第三圖中的雙層感應線圈僅為一 範例性實施例’在其他實施例中,該感應線圈203可往上 形成更多層的線圈結構進一少增加射頻辨識元件的可感應 距離。 綜上述本發明兩實施例所述’本發明設計之特點在於 12 201204190 提供-具有吸=性質又㈣㈣崎完_ 來製作射賴識元件,其元件上不f要配置額外的吸波貼 片’節省了可^的製作成本。發财感應_與磁感應層 又可採多層料’以進-步增加射頻辨識標籤的可感應距 離。 上述說明係關於本發明具有感應線圈的薄型電路板之 實施例,在下述實施例中,本發明提供了一種罝 圈的薄型電路板之製造方法。在本方法中,首先提供二^ 感應基板,遠磁感應基板由有機樹脂與無機粉體所製成, 其中該有機樹脂係賦予該磁感應基板機械特性及製程上的 可行性,而該無機粉體則使該磁感應基板有吸收 功能;接著,於該磁感應基板之其中一側表面上形成一感 應線圈,該感應線圈係參考該磁感應基板的磁通特性設置 在該磁感應基板的表面,其可用來接收由外部射頻辨識讀 取器所發出的電磁波,以藉由電磁感應方式產生電流' ^ 後,再於該磁感應基板之其中一側表面上形成一金^佈線 層,該金屬佈線層與該感應線圈電性連接以傳遞電性訊 號,或是可將感應線圈因電磁感應所生成過多的渦電流導 引出薄型電路板外以避免產生電磁干擾。 一本方法可進一步附著一積體電路於該磁感應基板之其 中一侧表面,並使該積體電路經由該金屬佈線層電性連接 該f應線圈。而在另—方法實施例中,磁感應基板上會形 成二層以上的感應線圈,其各層感應線圈之間更形成有一 磁ίίί來作為層與層之間的隔離層並強化射頻辨識元件 内部的整體吸波效果。 13 201204190 在上述方法實施例中,該磁感應基板或磁感應層中係 由有機樹脂與無機粉體構成’其有機樹脂與無機粉體分別 佔磁感應基板與磁感應層約15〜35%與85〜65%的重量百分 比。該有機樹脂選自以下材質或其組合:聚亞醯胺 (polyimide,PI)、聚對苯二曱二乙酯(Polyethylene terephthalate,PET)、聚對萘二甲酸乙二酯(polyethylene naphthalate,PEN)、聚丙烯(polypropylene,PP)、聚謎石風 (Polyethersulfone,PES)、聚次苯基醚礙(Polyphenylene Sulfone,PPSU)、聚苯噁 σ坐共聚合物(P〇ly-p_phenylene φ benzobisoxazole,PBO)、液晶聚合物(Liquid Crystal Polymer, LCP)、丙烯酸樹脂(Acrylate)、聚氨脂(Polyurethane,PU)、 或環氧樹脂(Epoxy)。而該無機粉體選自以下材質或其組 合:錳鋅鐵氧體、鎳鋅鐵氧體、鎳銅鋅鐵氧體、錳鎂鋅鐵 氧體、錳鎂鋁鐵氧體、錳銅鋅鐵氧體、鈷鐵氧體、鎳鐵合 金、鐵矽合金、鐵鋁合金、銅、鋁、鐵、或鎳。 文中所述之實施例與圖說係供予閱者,俾其對於本發明 各不同實施例結構有通盤性的瞭解。該些圖示與說明並非 意欲對利用此處所述結構或方法之裝置與系統中的所有元籲 件及特徵作完整性的描述。於參閱本發明揭露書中,本發 明領域之熟習技藝者將更能明白本發明許多其他的實施 例,其得以採由或得自本發明之揭露。在不悖離本發明範 疇的情況下,發明中可以進行結構與邏輯的置換與改變。 例如:於本發明中,射頻辨識元件的感應線圈與金屬佈線 層可以設置在磁感應基板的同一側;射頻辨識元件的磁感 應基板亦可能採行多層軟性電路板之設計;射頻辨識元件 201204190 戶:採用或_接的射頻辨識晶片可能行使射頻辨識 你,功能,如制、整流、訊號轉換等;㈣辨識 ’成後可進一步進行其他製程步驟,如標籤壓合、 標示等。&amp;外,言兒明書中所示圖式僅用於呈具口 = =繪製、。圖式中的某些部分可能會被放大強調,而复例 7刀可能被簡略據此,本發明之揭露與圖式理二部 非限制性質’並將由下文巾財料·圍來㈣^述而 【圖式簡單說明】 '參閱後續的圖式與描述將可更了解本發明的系 法。文中未詳列暨非限制性之實施例則請參考嗲饴缺及方 之描述。圖式中的組成元件並不4符合比例Ί續圖式 調的方式描繪出本發明的原理。在圖式中,相二係以強 於不同圖示中標出相同對應之部分。 、元件係 圖 圖;及 第二圖為根據本發明實施例另一射頻辨識襟 *·®*Ί 面 第—圖為習知技術中一典型的射頻辨識標 ; Τ ^之戴 第二圖為根據本發明實施例一射頻辨識 面 $織&lt; 戴 【主要元件符號說明】 100 射頻辨識元件 101 軟性基板 102 金屬表面 103 感應線圈 104 互連結構 15 201204190 105 106 107 109 200 201 202 203 204a 204b 205 207 209 211 213 215 金屬佈線層 磁感應貼片 射頻辨識晶片 通孔 射頻辨識元件 磁感應基板 金屬表面 感應線圈 互連結構 · 互連結構 金屬佈線層 射頻辨識晶片 通孔 導電膠 磁感應層 互連結構St makes 2 exposed in the external environment of the induction coil 2〇3: the magnetic induction base of the product. Depending on the needs of the operators, the 签 Γ ! 签 签 签 签 签 签 签 签 签 签 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如士,甘if: As shown in the figure, in the setting, the RF identification component 2〇0 will set the wiring layer toward the metal surface 202, and the induction coil portion will face outward: In practical applications, the metal surface 202 may be an ic H plate inside the mobile phone, a battery, a metal carrier, or a metal shell of a can. Since the magnetic core 2 is blocked between the induction coil 2〇3 and the metal surface 202, the electromagnetic wave received or discharged by the induction coil 2Q3 is not affected by the metal surface 202. However, the above arrangement is only the embodiment of the present invention. In other embodiments, the inductive coil 203 and the metal wiring layer 2G5 of the radio frequency identification element 2〇0 of the present invention may also be disposed on the same side of the magnetic induction substrate 201. . The above-mentioned radio frequency identification component design of the embodiment of the present invention integrates the absorbing material with the 201204190 substrate, and does not need to set an additional magnetic induction patch or absorbing patch as in the prior art to achieve the desired RF sensing. effect. In addition to the cost of eliminating a patch, the RF identification component of the present invention frees up the space (about 150 μηι to 200 μηι thickness) originally reserved for the magnetic induction patch, so that more space is provided in the component. . As shown in the third figure, it is a cross-sectional view of a radio frequency identification tag according to another embodiment of the present invention. In this embodiment, the design of the radio frequency identification component is similar to that of the radio frequency identification component in the second figure, but it utilizes the height space vacated in the radio frequency identification component to design the induction coil 203 into a coil structure in which a plurality of layers are stacked. In the present embodiment, the magnetic induction layer 213 is further disposed between the induction coils 203 of the layers as an isolation layer between the layers and enhances the overall absorbing effect inside the radio frequency identification component. The material of the magnetic induction layer 213 is the same as that of the magnetic induction substrate 201, and has good electromagnetic wave absorption characteristics. In the embodiment of the present invention, the magnetic induction coil 203 can be formed on the underlying inductive coil 203 by a coating film build-up method, and the induction coil 203 of its layer is further formed thereon. The uppermost inductive coil 203 is electrically connected to the metal wiring layer 205 under the magnetic sensing substrate 201 through a via or interconnect structure 215. The multi-layer induction coil design in this embodiment has the advantage that the space of the magnetic Φ sensing or the absorbing patch can be used to set the complex layer induction coil, and the number of turns of the coil is increased in a constant unit area, thereby significantly increasing The sensing distance of the radio frequency identification component of the present invention. It should be noted that the double-layer induction coil in the third figure is only an exemplary embodiment. In other embodiments, the induction coil 203 can form more layers of coil structures upward to further increase the sensible distance of the RFID element. According to the above two embodiments of the present invention, the design of the present invention is characterized by the fact that 12 201204190 provides - with suction = nature and (4) (four) Saki _ to make the ray-receiving component, and the component does not have to configure an additional absorbing patch. It saves the production cost of the product. The wealth sensory_and the magnetic sensing layer can also be used to multi-layer material' to increase the inductive distance of the RFID tag. The above description is directed to an embodiment of a thin circuit board having an induction coil of the present invention. In the following embodiments, the present invention provides a method of manufacturing a thin circuit board having a coil. In the method, first, a sensing substrate is provided. The far magnetic sensing substrate is made of an organic resin and an inorganic powder, wherein the organic resin imparts mechanical properties and process feasibility to the magnetic sensing substrate, and the inorganic powder is The magnetic induction substrate has an absorption function; then, an induction coil is formed on one surface of the magnetic induction substrate, and the induction coil is disposed on the surface of the magnetic induction substrate with reference to the magnetic flux characteristic of the magnetic induction substrate, which can be used for receiving The electromagnetic wave emitted by the external radio frequency identification reader generates a current ' ^ by electromagnetic induction, and then forms a gold wiring layer on one side surface of the magnetic induction substrate, and the metal wiring layer and the induction coil are electrically connected Sexual connection to transmit electrical signals, or excessive eddy current generated by the induction coil due to electromagnetic induction can be guided out of the thin circuit board to avoid electromagnetic interference. A method further attaches an integrated circuit to a side surface of the magnetic induction substrate, and electrically connects the integrated circuit to the f-cord via the metal wiring layer. In another embodiment, a two or more layers of induction coils are formed on the magnetic induction substrate, and a magnetic layer is formed between the layers of the induction coils to form an isolation layer between the layers and strengthen the entire interior of the RFID component. Absorbing effect. 13 201204190 In the above method embodiment, the magnetic induction substrate or the magnetic induction layer is composed of an organic resin and an inorganic powder. The organic resin and the inorganic powder respectively occupy about 15 to 35% and 85 to 65% of the magnetic induction substrate and the magnetic induction layer, respectively. Percentage by weight. The organic resin is selected from the following materials or a combination thereof: polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) Polypropylene (PP), Polyethersulfone (PES), Polyphenylene Sulfone (PPSU), P〇ly-p_phenylene φ benzobisoxazole, PBO ), Liquid Crystal Polymer (LCP), Acrylate, Polyurethane (PU), or Epoxy. The inorganic powder is selected from the following materials or a combination thereof: manganese zinc ferrite, nickel zinc ferrite, nickel copper zinc ferrite, manganese magnesium zinc ferrite, manganese magnesium aluminum ferrite, manganese copper zinc iron Oxygen, cobalt ferrite, nickel-iron alloy, iron-iron alloy, iron-aluminum alloy, copper, aluminum, iron, or nickel. The embodiments and figures described herein are intended to be preferred by those of the various embodiments of the invention. The illustrations and descriptions are not intended to describe the completeness of all of the elements and features in the devices and systems that utilize the structures or methods described herein. Many other embodiments of the invention will be apparent to those skilled in the <RTIgt; Structural and logical permutations and changes may be made in the invention without departing from the scope of the invention. For example, in the present invention, the induction coil and the metal wiring layer of the radio frequency identification component may be disposed on the same side of the magnetic induction substrate; the magnetic induction substrate of the radio frequency identification component may also adopt the design of the multilayer flexible circuit board; the radio frequency identification component 201204190 Or the RF identification chip connected to the RF may identify you, functions such as system, rectification, signal conversion, etc.; (4) Identification can be further processed in other processes, such as label pressing, labeling, etc. In addition, the pattern shown in the book is only used to present the mouth = = drawing. Some parts of the drawing may be magnified and emphasized, while the case of the seventh case may be abbreviated accordingly. The disclosure of the present invention and the unrestricted nature of the two parts of the schema will be described by the following materials. [Brief Description] [See the following drawings and descriptions to better understand the system of the present invention. For a detailed and unrestricted example, please refer to the description of the missing and the party. The constituent elements of the drawings do not describe the principles of the invention in a manner consistent with the following. In the drawings, the second phase is stronger than the different corresponding parts in the different figures. And the second diagram is another radio frequency identification 襟*·®* 第 surface according to an embodiment of the present invention. The figure is a typical radio frequency identification standard in the prior art; According to an embodiment of the present invention, a radio frequency identification surface is woven and worn; [main element symbol description] 100 radio frequency identification element 101 flexible substrate 102 metal surface 103 induction coil 104 interconnection structure 15 201204190 105 106 107 109 200 201 202 203 204a 204b 205 207 209 211 213 215 Metal wiring layer magnetic induction patch RF identification wafer through hole RF identification component Magnetic induction substrate Metal surface induction coil interconnection structure · Interconnect structure Metal wiring layer RF identification Wafer through hole Conductive magnetic induction layer interconnection structure

1616

Claims (1)

201204190 七、申請專利範圍: 1. 一種薄型電路板,包含: 一磁感應基板,由有機樹脂與無機粉體所製成; 一感應線圈,形成在該磁感應基板之其中一側表 面;及 一金屬佈線層,形成在該磁感應基板之其中一側表 面,並與該感應線圈電性連接; 一積體電路,設置在該磁感應基板之其中一側表面 且與該金屬佈線層電性連接; 其中*該感應線圈參考該磁感應基板的磁通特性設 置在該磁感應基板的表面。 2. 如申請專利範圍第1項所述之薄型電路板,其中該感應 線圈包含一層以上的線圈,該各層感應線圈間形成有一 磁感應層,該磁感應層由有機樹脂與無機粉體所製成。 3. 如申請專利範圍第1項所述之薄型電路板,其中該磁感 應基板中的有機樹脂與無機粉體分別佔該磁感應基板約 15〜35%與85〜65%的重量百分比。 4. 如申請專利範圍第2項所述之薄型電路板,其中該磁感 應層中的有機樹脂與無機粉體分別佔該磁感應層約 15〜35%與85〜65%的重量百分比。 5. 如申請專利範圍第3或4項所述之薄型電路板,其中該 17 201204190 有機樹脂選自以下材質或其組合:聚亞醯胺(polyimide, PI)、聚對苯二甲二乙酉旨(polyethylene terephthalate,PET)、 聚對萘二甲酸乙二 g旨(polyethylene naphthalate,PEN)、聚 丙烯(polypropylene,PP)、聚醚石風(Polyethersulfone, PES)、聚次苯基峻石風(Polyphenylene Sulfone,PPSU)、聚 苯0惡 σ坐共聚合物(p〇ly-p-phenylenebenzobisoxazole, PBO)、液晶聚合物(Liquid Crystal Polymer,LCP)、丙場 酸樹脂(Acrylate)、聚氨脂(Polyurethane,PU)、或環氧樹 脂(Epoxy)。 6.如申請專利範圍第第3或4項所述之薄型電路板,其中 該無機粉體選自以下材質或其組合:錳鋅鐵氧體、鎳辞 鐵氧體、鎳銅鋅鐵氧體、錳鎂鋅鐵氧體、錳鎂鋁鐵氧體、 猛銅鋅鐵氧體、録鐵氧艘、錄鐵合金、鐵梦合金、鐵銘 合金、銅、鋁、鐵、或鎳。 7. 如申請專利範圍第1項所述之薄型電路板,其中該積體 電路電性it接該感應線®。 · 8. 如申請專利範圍第1項所述之薄型電路板,其中該薄型. 電路板為一射頻辨識元件。 9,一種具有感應線圈的薄杳電路板之製造方法,包括: 提供一磁感應基板,该磁感應基板由有機樹脂與無 機粉體所製成; 201204190 二形成一感應線圈於該磁感應基板之其中一側表面, 且忒感應線圈參考該磁感應基板的磁通特性設置在該磁 感應基板的表面;及 形成一金屬佈線層於該磁感應基板之其中一侧表 面,該金屬佈線層與該感應線圈電性連接。 10,如申請專利範圍第9項所述之製造方法,其中該感應線 圈包含一層以上的線圈,該各層感應線圈間形成有一磁 感應層’該磁感應層由有機樹脂與無機粉體所製成。 11_如申請專利範圍第9項所述之製造方法,其中該磁感應 基板中的有機樹脂與無機粉體分別佔該磁感應基板約 15〜35%與85〜65%的重量百分比。 12·如申請專利範圍第1〇項所述之製造方法,其中該磁感應 層中的有機樹脂與無機粉體分別佔該磁感應層約15〜35〇/〇 與85〜65%的重量百分比。 13.如申請專利範圍第u或12項所述之製造方法,其中該 有機樹脂選自以下材質或其組合:聚亞酿胺(polyimide, PI)、聚對苯二甲二乙酉旨(polyethylene terephthalate, PET)、聚對萘二甲酸乙二醋(polyethylene naphthalate, PEN)、聚丙烯(p〇iypr〇pyiene,pp)、聚醚石風(p〇iy ethersulfone ’ PES)、聚次苯基醚石風(Polyphenylene Sulfone,PPSU)、聚苯 °惡吐共聚合物(p〇ly-p-phenylene benzobisoxazole ’ PBO)、液晶聚合物(Liquid Crystal 201204190 Polymer,LCP)、丙稀酸樹月旨(Acrylate)、聚氨脂(Poly urethane,PU)、或環氧樹脂(Epoxy)。 14. 如申請專利範圍第11或12項所述之製造方法,其中該 無機粉體選自以下材質或其組合:錳鋅鐵氧體、鎳鋅鐵 氧體、鎳銅鋅鐵氧體、錳鎂鋅鐵氧體、錳鎂鋁鐵氧體、 猛銅鋅鐵氧體、銘鐵氧體、鎳鐵合金、鐵砍合金、鐵I呂 合金、銅、銘、鐵、或鎳。 15. 如申請專利範圍第9項所述之製造方法,進一步包括附® 著一積體電路於該磁感應基板之其中一側表面,且該積 體電路經由該金屬佈線層電性連接該感應線圈。201204190 VII. Patent application scope: 1. A thin circuit board comprising: a magnetic induction substrate made of an organic resin and an inorganic powder; an induction coil formed on one side surface of the magnetic induction substrate; and a metal wiring a layer formed on one surface of the magnetic induction substrate and electrically connected to the induction coil; an integrated circuit disposed on one side surface of the magnetic induction substrate and electrically connected to the metal wiring layer; wherein The magnetic flux characteristic of the induction coil with reference to the magnetic induction substrate is set on the surface of the magnetic induction substrate. 2. The thin circuit board of claim 1, wherein the induction coil comprises more than one layer of coils, and a magnetic induction layer is formed between the layers of the induction coils, the magnetic induction layer being made of an organic resin and an inorganic powder. 3. The thin circuit board of claim 1, wherein the organic resin and the inorganic powder in the magnetic sensing substrate account for about 15 to 35% and 85 to 65% by weight of the magnetic induction substrate, respectively. 4. The thin circuit board of claim 2, wherein the organic resin and the inorganic powder in the magnetic induction layer respectively comprise about 15 to 35% and 85 to 65% by weight of the magnetic induction layer. 5. The thin circuit board according to claim 3, wherein the 17 201204190 organic resin is selected from the following materials or a combination thereof: polyimide (PI), polyethylene terephthalate (polyethylene terephthalate, PET), polyethylene naphthalate (PEN), polypropylene (PP), polyethersulfone (PES), polyphenylene (Polyphenylene) Sulfone, PPSU), p〇ly-p-phenylenebenzobisoxazole (PBO), Liquid Crystal Polymer (LCP), Acrylate, Polyurethane , PU), or epoxy (Epoxy). 6. The thin circuit board of claim 3, wherein the inorganic powder is selected from the group consisting of: manganese zinc ferrite, nickel ferrite, nickel copper zinc ferrite , manganese magnesium zinc ferrite, manganese magnesium aluminum ferrite, ferro-copper zinc ferrite, recorded iron oxygen vessel, iron alloy, iron dream alloy, iron alloy, copper, aluminum, iron, or nickel. 7. The thin circuit board of claim 1, wherein the integrated circuit is electrically connected to the sensing line®. 8. The thin circuit board of claim 1, wherein the thin circuit board is an RFID component. 9. A method of manufacturing a thin tantalum circuit board having an induction coil, comprising: providing a magnetic induction substrate made of an organic resin and an inorganic powder; 201204190 forming an induction coil on one side of the magnetic induction substrate And a surface of the magnetic induction substrate is disposed on a surface of the magnetic induction substrate; and a metal wiring layer is formed on one surface of the magnetic induction substrate, and the metal wiring layer is electrically connected to the induction coil. 10. The manufacturing method according to claim 9, wherein the induction coil comprises more than one layer of coils, and a magnetic induction layer is formed between the layers of the induction coils. The magnetic induction layer is made of an organic resin and an inorganic powder. The manufacturing method according to claim 9, wherein the organic resin and the inorganic powder in the magnetic induction substrate account for about 15 to 35% and 85 to 65% by weight of the magnetic induction substrate, respectively. 12. The manufacturing method according to claim 1, wherein the organic resin and the inorganic powder in the magnetic induction layer respectively occupy about 15 to 35 Å/〇 and 85 to 65% by weight of the magnetic induction layer. 13. The manufacturing method according to claim 5, wherein the organic resin is selected from the following materials or a combination thereof: polyimide (PI), polyethylene terephthalate (polyethylene terephthalate) , PET), polyethylene naphthalate (PEN), polypropylene (p〇iypr〇pyiene, pp), polyether stone (p〇iy ethersulfone ' PES), polyphenylene ether stone Polyphenylene Sulfone (PPSU), p〇ly-p-phenylene benzobisoxazole 'PBO, liquid crystal polymer (Liquid Crystal 201204190 Polymer, LCP), Acrylate , Polyurethane (PU), or Epoxy (Epoxy). 14. The manufacturing method according to claim 11 or 12, wherein the inorganic powder is selected from the group consisting of manganese zinc ferrite, nickel zinc ferrite, nickel copper zinc ferrite, manganese Magnesium-zinc ferrite, manganese-magnesium-aluminum ferrite, ferro-copper-zinc ferrite, ferrite, nickel-iron alloy, iron-cut alloy, iron I-lu alloy, copper, indium, iron, or nickel. 15. The manufacturing method of claim 9, further comprising: attaching an integrated circuit to one side surface of the magnetic induction substrate, and the integrated circuit is electrically connected to the induction coil via the metal wiring layer .
TW99122956A 2010-07-13 2010-07-13 The thin circuit board with induction coil and method of the same TWI404467B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99122956A TWI404467B (en) 2010-07-13 2010-07-13 The thin circuit board with induction coil and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99122956A TWI404467B (en) 2010-07-13 2010-07-13 The thin circuit board with induction coil and method of the same

Publications (2)

Publication Number Publication Date
TW201204190A true TW201204190A (en) 2012-01-16
TWI404467B TWI404467B (en) 2013-08-01

Family

ID=46756522

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99122956A TWI404467B (en) 2010-07-13 2010-07-13 The thin circuit board with induction coil and method of the same

Country Status (1)

Country Link
TW (1) TWI404467B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI664577B (en) * 2017-05-18 2019-07-01 創新聯合科技股份有限公司 Electronic identification tag for carbon fiber objects
WO2024088486A1 (en) * 2022-10-25 2024-05-02 MICRO-EPSILON-MESSTECHNIK GmbH & Co. K.G. Sensor for measuring distance or position

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM396454U (en) * 2010-07-13 2011-01-11 Phytrex Technology Corp The thin circuit board with induction coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI664577B (en) * 2017-05-18 2019-07-01 創新聯合科技股份有限公司 Electronic identification tag for carbon fiber objects
WO2024088486A1 (en) * 2022-10-25 2024-05-02 MICRO-EPSILON-MESSTECHNIK GmbH & Co. K.G. Sensor for measuring distance or position

Also Published As

Publication number Publication date
TWI404467B (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP4653440B2 (en) RFID tag and manufacturing method thereof
CN101346853B (en) Antenna built-in module, card type information device and methods for manufacturing them
CN101040289B (en) RFID device with combined reactive coupler
WO2012013119A1 (en) Thin pcb having induction coil and manufacturing method thereof
JP5077335B2 (en) IC card
JP2013258779A (en) Wireless communication device
US20110169115A1 (en) Wireless Communication Device for Remote Authenticity Verification of Semiconductor Chips, Multi-Chip Modules and Derivative Products
US10381720B2 (en) Radio frequency identification (RFID) integrated circuit (IC) and matching network/antenna embedded in surface mount devices (SMD)
JP2006262054A (en) Antenna module and portable information terminal provided with the same
US20140224882A1 (en) Flexible Smart Card Transponder
JP2010109674A (en) Antenna device
TW201204190A (en) The thin circuit board with induction coil and method of the same
US8720789B2 (en) Wireless IC device
JP4840275B2 (en) Wireless IC device and electronic apparatus
TWM396454U (en) The thin circuit board with induction coil
JP5668894B2 (en) Wireless IC device and wireless communication terminal
KR101444905B1 (en) Antenna for near field communication
JP5746543B2 (en) Non-contact communication medium
WO2012013097A1 (en) Embedded anti-metal radio frequency identification label
JP5098478B2 (en) Wireless IC device and manufacturing method thereof
JP2009027341A (en) Wireless ic device
Luniak et al. Smart label uses polymer thick film technology on low-cost substrates
JP2019097138A (en) Double dipole antenna, inlet, and semi-active tag
CN112163659A (en) Miniature electronic tag and preparation method thereof
JP2011175340A (en) Ic tag medium, and conductive article to which the medium is attached

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees