TW201203891A - Optical communication system and communication apparatus - Google Patents

Optical communication system and communication apparatus Download PDF

Info

Publication number
TW201203891A
TW201203891A TW100105936A TW100105936A TW201203891A TW 201203891 A TW201203891 A TW 201203891A TW 100105936 A TW100105936 A TW 100105936A TW 100105936 A TW100105936 A TW 100105936A TW 201203891 A TW201203891 A TW 201203891A
Authority
TW
Taiwan
Prior art keywords
node
optical
communication
ring
ring network
Prior art date
Application number
TW100105936A
Other languages
Chinese (zh)
Inventor
Yoshifumi Hotta
Hiroyuki Sato
Kenichi Nakura
Takashi Nishitani
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201203891A publication Critical patent/TW201203891A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/271Combination of different networks, e.g. star and ring configuration in the same network or two ring networks interconnected
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

This invention includes a ring network consisted of nodes (OLT1, ring nodes 21 to 2n) having a ROADM function, a remote node received in the node consisting the ring network, and a star network in which the remote node and one or more ONU (10G-ONU510, 1G-ONU51, 10G/1G-ONU5101) are connected via an optical coupler 4 in a one-to-many connection way, wherein a node (OLT1) of the nodes consisting the ring network performs a PON control action containing up-band allocation control with respect to respective ONU in the system.

Description

201203891 六、發明說明: 【發明所屬之技術領域】 本發明係有關於將局側裝置和加入者側裝置(加入者 終端裝置)1對多地連接而構成之光通信系統。 【先前技術】 光通信系統之一形態之Ρ 0 N (被動式光纖網路,P a s s i V e Optical Network)係以星型耦合器(star coupler)、以及 光纖(fiber)而將配置於中央局的局側裝置(〇LT : Optical Line Terminal,光線路終端裝置)和複數的配置於加入者 屋宅之加入者終端裝置(〇NU : Optical Network Unit,光 纖網路單元)1對多地連接,上行方向(自加入者往中央局 的方向)係進行分時多重通信,下行方向係進行連續通信。 該Ρ0Ν係错由具有於0NU侧以賦予於訊框(frame)的0NU識 別符而過濾下行信號的功能’據此作為能以1台的0LT收 容複數個0NU之經濟型的通信系統而達於普及(例如,參考 非專利文獻1)。此外,近年來,已完成以更為增大存取 (access)網的通信容量為目的之i〇Gbps級Ρ0Ν的標準化 (例如’參考非專利文獻2)。該標準係以習知之IEEE802.3 所規定之lGbps級Ρ0Ν之lOGbps版,其係規定有能混合收 容習知之lGbps的ΕΡ0Ν和lOGbps的l〇G-ΕΡ0Ν的0NU之 0LT、和被收容於該0LT的0NU應實現的功能旧樣地,πυ_τ 亦發展lOGbps級的PON之標準化。 適用此等之國際標準時’Ρ0Ν區間的通信速度則形成 10倍’該情形時係考量2個優點(merit)。第1個優點係 3 322835 201203891 藉由以使每i台GLT的加人者收容數和iGbps級的酬之 加入者數相同的方式運用通信载體,據此而使每—個加入 者的通里〜大’使加人者受到p⑽區間大容量化的恩 惠。第2個優點係藉由以使每1台0LT的加入者收容數收 容較1GbpS級的Ρ0Ν更多之加入者運用通信載體,據此, 即能降低運用成本(eGst),且可對加人者提供和 1Gbps 級 Ρ0Ν同專或其以上的服務(通信容量)。 -般而言,lGbps級的P〇N之星型耦合器最大係使用 32分歧乃至64 |歧,其以上之分歧數則由於通信容量小、 以及因星_合器的分歧所導致之光傳送路徑衰減(i〇ss) 而歲乎無法實現’但由多分歧化而得之_的收容數則一 直都被提出檢討。例如,專利文獻丨即揭示多分歧化方法, 其係使用設置於中央局之複數個局側裝置,連接於將不同 波長之複數的PGN信號予以合波或依—波長分波之WM 輕合器,將藉由WDM福合器予以合波之波長多重信號藉由 1條光纖和星縣合器而連接能收送對應於特定局侧裝置 之波長的Ρ0Ν信號之複數個詢答器(tran_der),進而藉 =1條錢和星麵合H錢接詢答器和複數的圆,使 得上行方向能以分時多重方式而接收傳送p〇N信號。 (先前技術文獻) (專利文獻) 專利文獻1 :特開2008-206008號公報 (非專利文獻) 非專利文獻1 : IEEE 802. 3 322835 4 201203891 非專利文獻2 : IEEE 802. 3av 【發明内容】 (發明所欲解決的課題) 考量有效利用lOGbps級Ρ0Ν裝置時,相較於考量僅提 升每1個加入者的通信速度,以增加每1台〇LT的加入者 數’而降低通信載體的運用成本且亦提升加入者的滿足度 之運用形癌為較佳。 使用如此之運用形態,由更多的加入者共用〇LT,其 結果亦能降低0LT的消費電力(局側之全部〇lt的合計消費 電力),沿襲世界上廣為流行之低消費電力化。 但’若僅依循於lOGbps級的國際標準(上述非專利文 獻2)所規定之規定,則由於多分歧化而導致傳送品質惡 化,故無法縮短目前服務的中央局和加入者宅的距離,而 難以實現多分歧化。例如,雖亦有考量提高〇LT和之 送信器的功率,或將放大器插入於光纖中等,兼顧服務距 離矛夕刀歧化之方法,但,〇LT和⑽U之送信功率一提高, ^ f取系統光纖鋪設作業者之危機位準(hazard 1 eve 1) 放卩及不易使用放大器將上行方向的叢發信號予以 等產生操作(operation)或技術上的問題。 晋」外上述專利文獻1所揭示之方法,由於其局側裝 、冓成為不改變目前為止的構成,而進一步新插入詢答 的問1 成多分歧化,但將產生難以達成低消費電力 更多I此外’ &知方式上的共通課題,當以—個0lt對 入者提供服務時,由於係以1絲纖而連接中央 322835 5 201203891 裝置’故當中央局裝置或光纖(特別是主幹 ’則產生障礙區域(area)擴大的問題。201203891 6. EMBODIMENT OF THE INVENTION: TECHNICAL FIELD The present invention relates to an optical communication system in which a side device and a subscriber side device (joiner terminal device) are connected in one-to-one manner. [Prior Art] One form of optical communication system Ρ 0 N (passive optical fiber network, P assi V e Optical Network) is arranged in a central office with a star coupler and a fiber. A side-side device (〇LT: Optical Line Terminal, optical line terminal device) and a plurality of subscriber terminal devices (〇NU: Optical Network Unit) connected to the subscriber's house are connected in one-to-one manner, and uplink The direction (from the direction of the joining party to the central office) is time-divisional multi-communication, and the downstream direction is continuous communication. The function of filtering the downlink signal by having the ONU identifier given to the frame on the 0NU side is based on the economical communication system capable of accommodating a plurality of ONUs in one 0LT. Popularization (for example, refer to Non-Patent Document 1). In addition, in recent years, standardization of the i 〇 Gbps class for the purpose of increasing the communication capacity of the access network has been completed (for example, 'Reference Non-Patent Document 2'). The standard is a 10 Gbps version of the lGbps class defined by the conventional IEEE 802.3, which is defined as a 0 LT that can mix and receive the conventional 1 Gbps Ν 0 Ν and 10 Gbps l 〇 ΕΡ Ν Ν 和 和 和 和 和 和 和 和 和 和The function that the 0NU should implement is old, and πυ_τ also develops the standardization of the PON of the lOGbps class. When these international standards are applied, the communication speed of the 'Ρ0Ν interval is 10 times'. In this case, two merits are considered. The first advantage is that 3 322835 201203891 uses the communication carrier in such a way that the number of additional persons in each GLT is the same as the number of participants in the iGbps level, thereby making each of the participants It is the favor of the capacity increase of the p(10) interval. The second advantage is that the user can use the communication carrier by allowing the subscribers of each 0LT to accommodate more than 1GbpS-level subscribers, thereby reducing the operating cost (eGst) and adding Provides services (communication capacity) of the same level or above with 1 Gbps class. In general, the 1 Gbps P〇N star coupler uses a maximum of 32 divergence or even 64 |discrimination, and the above divergence number is due to the small communication capacity and the optical transmission caused by the divergence of the star-combiner. The path attenuation (i〇ss) and the age of the inability to achieve 'but the number of containment that has been obtained from multiple divergence has been reviewed. For example, the patent document discloses a multi-division method, which uses a plurality of side-side devices installed in a central office, and is connected to a WM light combiner that combines PGN signals of different wavelengths into a multiplexed or wavelength-divided wave. The wavelength multi-signal to be combined by the WDM blessing device is connected to a plurality of interrogators (tran_der) capable of transmitting the Ρ0Ν signal corresponding to the wavelength of the specific side-side device by one optical fiber and the star county combiner. Then, by l = 1 money and the star face H money to answer the respondent and the complex circle, so that the uplink direction can receive and transmit the p〇N signal in a time-sharing multiple manner. (Prior Art Document) (Patent Document) Patent Document 1: JP-A-2008-206008 (Non-Patent Document) Non-Patent Document 1: Non-Patent Document 1: IEEE 802. 3 322835 4 201203891 Non-Patent Document 2: IEEE 802. 3av [Summary of the Invention] (Problems to be Solved by the Invention) When considering the effective use of the 10 Gbps class Ρ0 Ν device, the communication speed of each entrant is increased as compared with the consideration, so as to increase the number of entrants per 〇LT and reduce the use of the communication carrier. It is better to use the shape cancer which is cost and also improves the satisfaction of the subscriber. With such an application form, 更多LT is shared by more subscribers, and as a result, the consumption power of the 0LT (the total consumption power of the local side) is reduced, and the low-consumption power consumption that is widely popular in the world is followed. However, if the regulations specified in the international standard of the lOGbps class (the above-mentioned non-patent document 2) are used, the transmission quality deteriorates due to the divergence, and the distance between the central office and the subscriber's house of the current service cannot be shortened. It is difficult to achieve multiple divergence. For example, although the power of the LT and the transmitter is increased, or the amplifier is inserted into the optical fiber, and the service distance is disproportionated, the transmission power of the LT and (10) U is improved, and the system is improved. The crisis level of the fiber laying operator (hazard 1 eve 1) is difficult to use and the amplifier is not easy to use the uplink signal to generate operational or technical problems. In the method disclosed in the above-mentioned Patent Document 1, the method of the side-side installation and the sputum is not changed, and the question of further inserting the inquiry is more divergent, but it is difficult to achieve low-consumption power. In addition to the common problem of 'I' and 'Knowledge', when the service is provided by a 0lt, it is connected to the central 322835 5 201203891 device by a wire. Therefore, it is a central office device or fiber (especially the trunk). 'There is a problem of expanding the area of the obstacle.

者側裝置的收容數)之增加(多分歧化),且能提升省電力 局裝置和加入者裝置, 線)發生故障時,則產 通信 化、以及可靠性。 (解決課題的手段) 為了解決上述的課題,達成其目的,則本發明之特徵 係含有:環型網路,其係由具有R0ADM功能的節點所構成% 运端郎點’其係被收容於構成前述環型網路的節點· ,Μ 及 星型網路’其係經由光搞合器而丨對多連接前述遠端節點 和1個以上之0NU,構成前述環型網路的節點之中之—邛 分的節點係作為0LT而動作,且執行含有對系統内之各〇而 的上行頻寬分配控制的Ρ0Ν控制動作。 (發明之效果) 本發明之光通信系統係達成能實現系統的低消費電力 化之功效。 【實施方式】 以下,根據圖式而詳細說明本發明之光通信系統及通 信裝置之實施形態。又,本發明並不被本實施形態而限定。 在各實施形態中,雖說明有關於支援lGbps* 10讥卵之兩 個不同速度的網路,但,其係簡單理解發明的要點之簡單 例示,並未限定發明的範圍。亦可包含更高速的加入者收 容系統。 322835 6 201203891 實施形態1. 〈系統構成〉 首先,說明有關於系統的全體構成。第i圖係表示本 發明之光通信系統的實施形態1的構成例之圖示。如圖 示,本實施形態之光通信系統係含有下列構成: 環型網路’其係以2重化之光纖(幹線光纖)連接複數 的節點(0LT 1、以及環型節點2丨〜2〇而構成; 遠端節點(RN) 3ιι〜3ιΡ、32丨〜32^、“.3n丨〜3nr,其係經由2 重化之光纖而連接於環型節點2i〜2n ;以及 ONUCIOG-ONUS!。、1G-0NU5!、10G · lG-〇NU5m),其係經 由光纖、以及光耗合器(32分歧搞合器)4而連接於rn。 又’1 OG_ONU5lD係可進行上下兩方向1 OGbps通信之0NU (例如,由IEEE802.3av所規定者),1G_0NU5l係可進行上 下兩方向lGbps通信之0NU(例如,由IEEE802 3所規定 者),10G · 1G-0NU51()1係可藉由上行方向1Gbps,下行方向 lOGbps而進行通信之〇NU(例如,由ΙΕΕΕ8〇2.3&amp;ν所規定 者)。在以下說明中,簡單地記載為「0NU」時,即表示When the number of accommodating devices is increased (multiple divergence), and the power-saving device and the subscriber device can be improved, and the line is faulty, communication and reliability are produced. (Means for Solving the Problem) In order to solve the above-described problems and achieve the object, the present invention is characterized in that the present invention includes a ring network which is composed of a node having a function of R0ADM and which is contained in a The nodes Μ, Μ and the star network constituting the ring network are connected to the remote node and one or more ONUs via the optical combiner to form a node of the ring network. The node of the division is operated as 0LT, and the Ν0Ν control operation including the allocation control of the uplink bandwidth for each 系统 in the system is executed. (Effects of the Invention) The optical communication system of the present invention achieves the effect of realizing low power consumption of the system. [Embodiment] Hereinafter, embodiments of an optical communication system and a communication device according to the present invention will be described in detail based on the drawings. Further, the present invention is not limited to the embodiment. In each of the embodiments, a network that supports two different speeds of 1 Gbps * 10 讥 eggs has been described. However, it is a simple illustration that simply understands the gist of the invention, and does not limit the scope of the invention. It can also include a higher speed subscriber access system. 322835 6 201203891 Embodiment 1. <System Configuration> First, the overall configuration of the system will be described. Fig. i is a view showing a configuration example of the first embodiment of the optical communication system of the present invention. As shown in the figure, the optical communication system of the present embodiment has the following configuration: a ring type network which connects a plurality of nodes (0LT 1, and a ring type node 2丨~2〇) with a double-stranded fiber (trunk fiber). And the remote node (RN) 3 ιι 3 Ρ Ρ, 32 丨 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 , 1G-0NU5!, 10G · lG-〇NU5m), which is connected to rn via optical fiber and optical consumables (32 divergence combiner) 4. Also '1 OG_ONU5lD is capable of 1 OGbps communication in both directions 0NU (for example, as defined by IEEE802.3av), 1G_0NU5l is an ONU that can perform 1Gbps communication in both directions (for example, as defined by IEEE8023), and 10G · 1G-0NU51()1 can be uplinked. 1 Gbps, communication NU in the downlink direction of 10 Gbps (for example, as defined by 〇8〇2.3 &amp; ν). In the following description, when simply stated as "0NU", it means

10G-ONU5!。、1G-0NU5!、以及 i〇G · lG-0NU5m。此外,RN 係連接於0LT1,進而亦可連接各種〇腿於RN。本實施形態 雖係說明有關於將光搞合器4作成32分歧耦合器之情形, 但,亦可作成另外之分歧數。 在第1圖所示之光通信系統中,0LT1係連接上位網和 環型網路之通錢置,具有多 重分離部、冗長化之2個的 IF 凰視控制部、以及 R〇ADM(Rec〇nHgUrabie 〇ptiCai 7 322835 20120389110G-ONU5!. , 1G-0NU5!, and i〇G · lG-0NU5m. In addition, the RN is connected to the 0LT1, and can also connect various legs to the RN. In the present embodiment, the case where the optical combiner 4 is formed as a 32-difference coupler is described, but another divergence number may be created. In the optical communication system shown in Fig. 1, the 0LT1 is connected to the upper network and the ring network, and has multiple separation units, two redundant IF control units, and R〇ADM (Rec). 〇nHgUrabie 〇ptiCai 7 322835 201203891

Md/D卿Multiplexer)部。各環型節點均為相同構成的 通信裳置,具有職⑽部、以及詢答器。各rn均為相同構 成的通信裝置’具有詢答器、以及監視控制部。又,0LT1 係除了具有各環型節點的功能之外,尚具有作為酬的0LT 而動作的功能之通信裝置,本實施形態之光通信系統,係 將在習知技術上為各環型節點轄屬的通信裝置(配置在第i 2中各RN處之通彳。裂置)所具有之⑽功能(作為犯而作 動的功能)集約成1個環型節點而作成〇LTi。 〇m之多重分離部係將純自上㈣之下行传 (訊框)輸出於2個的0LT_IF之中任意一方,此外,將接 自OLT-1F之上行信號光輸出於上位網。QLT_ t F係執 用以作為PON的局側裝置而動作之各種處理。詳 說明。此外,2個㈣㈣之中,其中—方係設定為卜 糸統’另-方係設定為預備系統。監視控制部 系統内的監視(故障檢測)、以及故障檢測時的路= 等。0LT1牙口各環型節點的R_M部係以流通環 矣 域(光)作為對象,進行特定波長的抽出和追加上的 路之輸出)。各環型節點之詢答H係進行接收的信^型網 長變換。* RN之詢答n雖亦進行接㈣信號光^之攻 換’但,在上行方向中,亦合併實施將通信迷度/長變 數的光叢發信號作為終端,且變換成RN和〇Lt丨通:的複 至少1波以上的波長之光連續信號之處理。另一方面之 下行方向中,預先自各RN所規定之特定的通信波長面二在 抽出各詢答器的信號,並使用標準規格所規定之^ 322835 201203891 的波長而以特定的 號。 °凡框格式(frame format)傳送通信信 0LT1 和 RN3ii〜t ^ 〜, Ρ (Ρ係連接於環型節點2ι轄屬之RN r ”係連接於環型節點22轄屬之抓數)、以 、s 1^係連接於環型節點2n轄屬之rn數)係經由1 固U上之%型即點2ι〜2η (η係構成環型網路的環型節點之 數)而連接’並藉由以較RN和其轄屬的刪(1GG-0NU、 1G ONU U及l〇G · 1G_〇NU)之間的通信速度更高速之傳送 速度進行連續光麵之0TU(0ptica卜channel Transport Unit)訊框傳送而通信。另一方面,收容於各RN之詢答器 和連接於其轄屬的0NU係和習知之P0N同樣地藉由星型拓 樸(topology)方式而相連接,並以習知之TDMA_p⑽方式而 進行通信。 此外’如圖示,本實施形態之光通信系統,其特徵為 將0LT功能集約於構成環型網路的節點(通信裝置)之中的 一個。其中’將0LT功能集約於一個節點係為了使說明簡 單化’而並非必須集約於一個。亦可將0LT功能分散於一 部份的節點。 〈0LT的構成〉 繼而說明有關於0LT1的構成。第2圖係表示第1圖所 示之0LT1的構成例之圖示。此處,其中一例係〇LTl為進 行根據IEEE標準的Ρ0Ν控制。如圖示’ 0LT1係具備多重 分離部11、0LT-IF12A和12B、由現用系統監視控制部ι3Α 和預備系統監視控制部13B所構成之監視控制部13、以及 322835 9 201203891 ROAM部14。0LT-IF12A、12B和監視控制部13(現用系統 監視控制部13A、預備系統監視控制部13B)係藉由監視控 制匯流排(bus)而連接。又,0LT-IF12A、12B和監視控制 部13係構成0LT處理手段。 多重分離部11係於經由NNI (Network Network Interface,網路對網路介面)而自上位網接收下行信號光 (訊框)時,將接收之信號光輸出於2個的0LT-IF之中之任 意一方。此外’將接收自0LT-IF12A、12B之上行信號光向 上位網傳送。 0LT-IF12A和12B係形成相同的構成,任意一方設定 為現用系統,另一方係設定為預備系統。第2圖中, 0LT-IF12A係設定為現用系統。0LT-IF12A和12B係由 CPU12-1、該CPU12-1的動作所必需之記憶體(memory) 12-2、高積體PON控制部12-3、光送受信器(Optical TRx) 12-4、以及封包緩衝記憶體(packet buffer memory)12-5 所構成’南積體PON控制部12-3係具備:L2橋部(bridge) 121、PON 控制部 122、多工器(MUX, multiplexer) 123、解 多工器(DEMUX, demultipiexer)124、本地定時器(local timer)管理部 125、P0N-TS供應部 126、OTN 映射器(mapper) /解映射器(demapper)127、以及 SER/DES128。 L2橋部121係實施將經由多重分離部11而從複數的 ㈣I所輸入的信號進行橋接之處理、以及VLAN標籤之處 理。Ρ0Ν控制部122係為了支援複數的詢答器,而支援超Md/D Qing Multiplexer). Each ring node is a communication device of the same composition, with a job (10) and a responder. Each of the communication devices rn having the same configuration ’ has a voice responder and a monitor control unit. Further, the 0LT1 is a communication device having a function of operating as a 0LT in addition to the function of each ring node, and the optical communication system according to the present embodiment is a ring-shaped node in the prior art. The (10) function (function that acts as a sin) that is owned by the communication device (which is placed at each RN in i2) is integrated into one ring node to create 〇LTi. The multi-separation unit of 〇m outputs purely from the upper (four) line (frame) to either of the two 0LT_IFs, and outputs the upstream signal light from the OLT-1F to the upper network. QLT_t F is a variety of processes that operate as a side device of the PON. Detailed explanation. In addition, among the two (four) and (four), the - system is set as the Buddhism system and the other system is set as the preparatory system. Monitoring and control unit Monitoring (fault detection) in the system, and the path at the time of failure detection. The R_M part of each ring type node of the 0LT1 mouthpiece is used for the extraction of the specific wavelength and the output of the additional path in the flow ring 矣 field (light). The inquiry and response H of each ring type node performs the received network type network length conversion. * RN's inquiry and answer n are also connected (4) signal light ^ attack and change 'however, in the uplink direction, the optical burst signal with communication jitter/long variable is also implemented as the terminal, and is transformed into RN and 〇Lt丨通: The processing of a continuous signal of light having a wavelength of at least one wave or more. On the other hand, in the downlink direction, the signals of the respective responders are extracted in advance from the specific communication wavelength plane 2 defined by each RN, and a specific number is used using the wavelength of ^322835 201203891 specified by the standard specifications. ° The frame format transmits the communication letters 0LT1 and RN3ii~t^~, Ρ (the RN r connected to the ring node 2) is connected to the number of the ring nodes 22) s 1^ is connected to the rn number of the ring node 2n) and is connected by the % type on the solid U, that is, the point 2ι~2η (the number of the ring nodes constituting the ring network of the η system) The continuous optical surface 0TU is transmitted at a higher speed than the communication speed between the RN and its subordinates (1GG-0NU, 1G ONU U and l〇G · 1G_〇NU) (0ptica bu channel Transport) Unit) transmits and communicates with the frame. On the other hand, the interrogator contained in each RN is connected to the 0NU system and its P0N connected to it by the same star topology. The communication is performed by the conventional TDMA_p (10) method. Further, as shown in the figure, the optical communication system of the present embodiment is characterized in that the 0LT function is integrated into one of the nodes (communication devices) constituting the ring network. The 0LT function is aggregated on one node in order to simplify the description' and does not have to be aggregated into one. The 0LT function is distributed over a part of the nodes. <Configuration of 0LT> Next, the configuration of the 0LT1 will be described. Fig. 2 is a view showing a configuration example of the 0LT1 shown in Fig. 1. Here, an example of the system LT1 In order to perform the control according to the IEEE standard, the '0LT1 system includes the multiple separation unit 11, the OLTs IF12A and 12B, the monitoring control unit 13 composed of the active system monitoring control unit ι3 and the preparatory system monitoring control unit 13B, and 322835 9 201203891 ROAM unit 14. The 0LT-IFs 12A and 12B and the monitoring control unit 13 (the active system monitoring control unit 13A and the standby system monitoring control unit 13B) are connected by a monitoring control bus. Further, 0LT-IF12A The 12B and the monitoring control unit 13 constitute an OLT processing means. The multiple separation unit 11 receives the downlink signal light (frame) from the upper network via the NNI (Network Network Interface). The signal light is output to either of the two 0LT-IFs. In addition, the uplink signal received from the 0LT-IF12A and 12B is transmitted to the upper network. The 0LT-IF12A and 12B have the same configuration, and either one is set. In the case of the active system, the other system is set as the standby system. In Fig. 2, 0LT-IF12A is set as the active system. The 0LT-IF12A and 12B are the memory necessary for the operation of the CPU 12-1 and the CPU 12-1 (memory) 12-2. The high-integration PON control unit 12-3, the optical transmitter (Optical TRx) 12-4, and the packet buffer memory 12-5 constitute a 'Southern product PON control unit 12- The 3 system includes an L2 bridge 121, a PON control unit 122, a multiplexer (MUX, multiplexer) 123, a demultiplexer (DEMUX, demultipiexer) 124, a local timer (local timer) management unit 125, and a PON. - TS supply unit 126, OTN mapper/demapper 127, and SER/DES 128. The L2 bridge unit 121 performs a process of bridging signals input from a plurality of (IV) I via the multiple separation unit 11, and a VLAN tag arrangement. Ρ0Ν control unit 122 supports super in order to support a plurality of responders

多連結(LLID: Logical Link ID,邏輯連結ID),並執行MPCP 10 322835 201203891 (Multi-Point Control Protocol,多點控制協議)控制、RTT (Round Trip Time,往返時間)管理、以及上行頻寬分配控 制等之控制。MUX123係將自下行方向的丽1側所輸入的乙 太網路(登錄商標)訊框(以下,記載為乙太訊框)、以及由 P〇N控制部122所產生之乙太訊框予以多重化。DMUX124係 將上行方向的訊框分配於p〇N控制所必需之乙太訊框(p⑽ 控制部122所處理之訊框)、以及應傳送於NNI側之乙太訊 框。本地定時器管理部125係藉由p〇N控制而管理標準上 所使用之16ns粒度之32位元計數器(bit c〇unter)。Multi-link (LLID: Logical Link ID), and perform MPCP 10 322835 201203891 (Multi-Point Control Protocol) control, RTT (Round Trip Time) management, and uplink bandwidth allocation Control of control, etc. The MUX123 is an Ethernet (registered trademark) frame (hereinafter referred to as an Ethernet frame) input from the MN1 side in the downward direction, and an Ethernet frame generated by the P〇N control unit 122. Multiple. The DMUX 124 assigns the uplink frame to the Ethernet frame necessary for the p〇N control (the frame processed by the p(10) control unit 122) and the Ethernet frame to be transmitted to the NNI side. The local timer management unit 125 manages a 32-bit counter (bit cuntunter) of 16 ns granularity used in the standard by the p〇N control.

PON TS供應126係提供時間印記(time stamp)於MPCP 訊框。0ΤΝ映射器/解映射器i27係進行將經由Μυχι23和 P0N-TS供應部126而由NNI或Ρ0Ν控制部122所輸入之乙 太訊框映射(封入)於0TU訊框而傳送之處理、以及將經由 SER/DES128而接收之〇τυ訊框解映射(解封入)於乙太訊 框之處理。SER/DES128係和連接於0TN (〇pticalThe PON TS supply 126 provides a time stamp to the MPCP frame. The 0ΤΝ mapper/demapper i27 performs a process of mapping (encapsulating) the Ethernet frame input by the NNI or the Ν0Ν control unit 122 via the Μυχι 23 and the PON-TS supply unit 126 to the 0TU frame, and The 〇 υ frame received via SER/DES 128 is demapped (decapsulated) into the processing of the Ethernet frame. SER/DES128 is connected to 0TN (〇ptical

Transport Network)-IF的光送受信器12-4之介面所必需 之串化器(serializer)/解串化器(deseriaHzer)。_ 訊框係指0ΤΝ所使用之訊框。 光送受信器12-4係在將自SER/DES128所輸出之波長 入111〜又1故的信號光傳送至如八跗部14的同時,亦自 麵Μ部14接收波長又511]5仙的信號光,並輸出於娜 /DES128。 監視控制部13的現用系統監視控制部13A和預備系統 監視控制部13B仙同的構成,進行光路徑(path)轉換控 322835 11 201203891 制或〇LT-IF的故障檢測/通知、以及町]ρ的轉換等。 此等之現用系統監視控制部13A和預備系 則具備_31、該CPU131的動作 = 132、管理贿送受信部m、TS供應部134,同^ 135、RTT計异部136、0TN映射器/解映射器m、以及光 送受信器(Optical TRx)138。 管理訊框送受信部133係經由職_14而接收傳送 管理訊框。管理職之接㈣,t理訊純崎之訊 框即自光敎信器138輸人至GTN映射器/解映射器137, 並藉由議映射器/解映射器137而變換成乙太訊框格式 之後’經纟RTT計算部136而接收。另_方面,當傳送時, 管理訊框毅信部133職生6纽轉式㈣理訊框而 輸出於_映射器/解映射器137’因此’在乙太訊框(管 理訊框道崎成_訊框之後,則自光送受信旧38 送。 TS供應部134係當管理訊框送受信部133纟生管理訊 框而傳送時,因應於需求而自時刻同步部135接收目前時 刻的資訊,並作為時間印記而寫入於管理訊框。時刻同步 部135係和上述之0LT-IF的本地定時器管理部125同樣 地,其係16ns精度的計數器(計時器),作為管理時刻用。 RTT計算部136係確認經由_映射器/解映射器137而 接收之官理訊框的内容,當判斷為有必要算出rtt(延遲) 時’亦即,接收到含有RTT測定用的時刻資訊之管理訊框 時’則根據接收之時刻資訊和時刻同步部135所管理的資 322835 12 201203891 訊(表示目前時刻的時 134、時刻同步部 訊)而计异RTT。又’以供應部 定和各環型節點之間的^及RTT計算部136係實現用以測 如後述間的傳运路徑延遲之功能(該功能則詳 器/解解映射器137係進行和上述之_映射 态/解映射器127同楛 m 咖部14的方向)中樣的^ 上4- ^訊框予以封入化而產生GTU訊框。此外,有關於 以缺私° Ml係將從光送受信器138所輸人之QTU訊框予 1 u入化而取出乙太訊框。光送受信器138係在和R_ 指之間接收傳送波長又川的信號光。 如纖部14係對流通於環型網路的信號光進行特定波 ^的U光之抽出處理和追加處理。又,⑽通部14係由 -般功月b之習知的光開關(switch)和詢答器所構成。 〈RN的構成〉 繼而說明有關於遠端節點(RN) 3u〜31P、321〜32q…、 3nr的構成。又’第!圖所示之各RN為相同的構成。因 此’此處係以RN3n為例而說明各RN的構成。第3圖係第i 圖所示之RN3n的構成例之圖示。如圖示,RN3&quot;係具備: 耦口器31,監視控制部32,由現用系統監視控制部32A和 預備系統監視控制部32B所構成;以及詢答器部33,由〇TN 5旬答器33A和詢答器33ΒΡ33ΒΠ所構成。監視控制部32(現 =系統監視控制部32A、預備系統監視控制部32B)和詢答 器部33(0TN詢答器33A、詢答器33Bl~33Bn)係藉由監視控 322835 201203891 制匯流排而連接。 = 行下行的通信波長 化,進们皮長λ421]仏的上行信號光 長入2U]21s的下行信號光之接收。傳②以及波 二用系統監視控制部32A和預備系統 皿視控制。M2B係相同的構成, 元 測/通知、波長映射設定等。 的故障檢 32A釦箱锯备β 見用系統監視控制部 n先監視控制部32Β係具備光 0ptr )321、GTN映射器/解映射_、管理= 达受信部323、TS供庳卹Q0/j *士, B里以框 326、以及同步部325、記憶體 ,吏用該记憶體326而進行動作之cpU327。 光送受信器321係在和麵麵合器 號光。0ΤΝ映射器/解映㈣竹9 a u 』按收1寻达j5 、射322於上行方向(朝向環型節 點^的方,為將自管理訊框送受信部323所輸入之乙太 Λ匡予以密封化而產生〇Τϋ訊框’並輸出於麵#合器 ^卜,有關於下行方向,則係將自麵輕合器31所輸入之 訊框料編认化㈣以纽框。管㈣框送受信 4 323係經由%型g卩點2ι而接收傳送管理訊框。管理訊框 =接收# g理訊框被映射之〇υτ訊框即自光送受信器奶 剧入至0ΤΝ映射器7解映射器322,並藉由㈣映射器/Transport Network) - A serializer/deserializer necessary for the interface of the IF optical transmitter 12-4. _ Frame refers to the frame used by 0ΤΝ. The optical transmitter 12-4 transmits the signal light of the wavelength output from the SER/DES 128 to 111 to 1 while transmitting the wavelength from the fascia 14 to the 511] 5 sen. Signal light and output to Na/DES128. The configuration of the current system monitoring control unit 13A and the preparatory system monitoring control unit 13B of the monitoring control unit 13 is the same as that of the preparatory system monitoring control unit 13B, and performs the path detection control of the optical path conversion control 322835 11 201203891 or the LT-IF failure detection and notification, and the cho] Conversion and so on. The active system monitoring control unit 13A and the standby system include _31, the operation of the CPU 131 = 132, the management bribe receiving unit m, the TS supply unit 134, the same 135, the RTT counter 136, and the 0TN mapper/solution. A mapper m and an optical transmitter (Optical TRx) 138. The management frame transmission/reception unit 133 receives the transmission management frame via the job_14. In the management role (4), the message frame of the pure music is sent from the optical signal 138 to the GTN mapper/despapping device 137, and converted into the Ethernet by the mapper/demapper 137. The frame format is then received by the RTT calculation unit 136. On the other hand, when transmitting, the management frame of the letter box 133 occupant 6 转 式 (4) 理 box and output to the _ mapper / demapper 137 ' so 'in the Ethernet frame (management frame Doosaki After the frame is received, the old signal is sent from the optical transmission. The TS supply unit 134 receives the current time information from the time synchronization unit 135 when the management frame transmission/reception unit 133 transmits the management frame. The time synchronization unit 135 is written in the management frame as a time stamp. The time synchronization unit 135 is a management timer for the 16 ns precision counter (timer) in the same manner as the local timer management unit 125 of the above-mentioned OLT-IF. The calculation unit 136 confirms the content of the official frame received by the _mapper/demapper 137, and when it is determined that it is necessary to calculate rtt (delay), that is, the management of the time information including the RTT measurement is received. In the case of the frame, the RTT is calculated based on the received time information and the information 322835 12 201203891 (indicating the current time 134 and the time synchronization unit) managed by the time synchronization unit 135. ^ and RTT between type nodes The calculation unit 136 implements a function for measuring a propagation path delay as will be described later (the function details/demapper 137 performs the same as the above-described _ mapping state/demapper 127 In the direction), the 4-th frame is encapsulated to generate a GTU frame. In addition, the MTU is used to input the QTU frame from the optical transmitter 138. The optical transceiver 138 receives the signal light of the transmission wavelength and the signal between the R_ finger. The fiber portion 14 extracts the U-light of the specific wave of the signal light flowing through the ring network. Processing and additional processing. Further, (10) the communication unit 14 is constituted by a conventional optical switch and a responder of the general power b. <Configuration of the RN> Next, the remote node (RN) 3u is explained. The configuration of ~31P, 321~32q..., 3nr. The RNs shown in the figure are the same. Therefore, the configuration of each RN will be described by taking RN3n as an example. The third figure is the i-th diagram. An illustration of a configuration example of the RN3n shown. As shown, the RN3&quot; includes: a coupler 31, and a monitoring control unit 32, which is monitored and controlled by the active system. 32A and the preparatory system monitoring control unit 32B; and the responder unit 33 is composed of the TN 5 server 33A and the interrogator 33 33. The monitoring control unit 32 (currently, the system monitoring control unit 32A, the standby system monitoring) The control unit 32B) and the interrogator unit 33 (0TN interrogator 33A, interrogator 33B1 to 33Bn) are connected by the monitoring control 322835 201203891 bus. = The downstream communication wavelength is increased, and the length of the communication is λ421. ] The uplink signal light of 仏 grows into the reception of the downlink signal light of 2U] 21s. The transmission 2 and the wave two-system monitoring control unit 32A and the preparatory system control. M2B has the same configuration, measurement/notification, wavelength mapping setting, and the like. Fault detection 32A buckle box saw β See system monitoring control unit n first monitor control unit 32 具备 system light ptr 321 , GTN mapper / demapping _, management = reach receiver 323, TS for shirt Q0 / j In the case of B, the block 326, the synchronization unit 325, and the memory are used to operate the cpU 327 by the memory 326. The light transmitting receiver 321 is attached to the surface of the surface. 0ΤΝmapper/resolution (4) Bamboo 9 au 』 According to the receipt 1 to find j5, the shot 322 in the upward direction (toward the ring node ^, to seal the Ethernet input from the management frame to the receiving unit 323 The signal frame is generated and outputted to the surface #合器^, and in the downstream direction, the frame material input from the surface fastener 31 is edited (four) by the button frame. The tube (four) frame is sent to the letter. 4 323 receives the transmission management frame via the % type g卩 point 2ι. Management frame = Receive # g The rational frame is mapped to the 讯τ frame, that is, from the optical transmitter to the 0 ΤΝ mapper 7 demapper 322, and by (4) mapper /

,映射器322而變換成乙太訊框格式的管理訊框之後,進 行接收動作。另-方面,當傳送時’管理訊框送受信部淵 係產ΐ乙太訊框格式的管理訊框而輸出於0ΤΝ映射器/解 映射器322 ’因此,在乙太訊框(管理訊框)被映射成0TU 14 322835 201203891 訊框之後’則自光送受信器321而傳送至麵#合器3卜 在丽柄合器被波長多重化後向環型節點2 部324係,訊框送受信部卿產生管理訊框而傳; 時’因應於㈤求而自時刻同步部325接收目前時刻的資 汛並作為時間印§己而寫入於管理訊框。時刻同步部挪 =和上述之^LT IF的本地定時器管理部125同樣地係⑽ 度的計數器(計時器),作為管理時刻用。又,TS供應部 324、時刻同步部325係實現用以測定與收容自身RN的環 型節點之_傳送路徑延遲之功能(該功能料如後述)。 、〇TN 答器33A係具備光送受信器(Optical TRx)33卜 以及0ΤΝ映射器//解映射器332。光送受信器33i係在和 耗目器31之間接收傳送信號光。鬧映射器/解映射 器332係在上行方向將自連接之各詢答器(詢答器33βι〜 33Βη)所接收之信號予以映射於〇τυ訊框,並輸出於光送受 信器331。此外,有關於下行方向,則係將自光送受信器 331所輸入之〇τυ訊框中抽出乙太訊框,並輸出於詢答器 33Β]~33Β„中之任一個。又,第3圖所示之構成例,其〇ΤΝ δ旬答器33Α係雖未2重化(冗長化),但,亦可2重化而提 升可靠性。 詢答器33Βι〜33Βη係相同的構成,具備上行用雙重比率 叢發CDR(Cl〇ck Data Recovery :時脈資料回復)333、雙 重比率叢發光受信器(Dual rate Optical Burst Rx) 334、 lOGbps 連續光送信器(Continuous 10G-Tx)335、lGbps 連 續光送信器(Continuous 1G-Tx)336、以及WDM耦合器337。 15 322835 201203891 上打用雙重比率叢發CDR333和雙重比率叢發光受信 器334’係接收通信速度為iGbps和1〇Gbps的上行信號光, 具體而言,係經由WDM耦合器337而接收自⑽u傳送之波 長Α=41和AUP42的叢發信號,作為1Gbps和1〇Gbps的 連接U而予以再生。此外,1QGbps連續光送信器335和 Mbps連續光送信器336係將自〇TN詢答器33a傳送的下 饤㈣光之lGbps和lOGbps的乙太訊框變換成腿標準 所規定的波長,並經由WDM耦合器337而傳送於星型耦合 器(光耦合器4)所連接的光纖側。 〈下行方向的通信控制動作〉 坛而使用第4圖而說明有關於本實施形態之光通信系 統之下行方向的通信控制動作。又,第4圖係表示下行方 向的通信控制動作的一例之圖示。 (順序D1) 自上位網介面所輸入之使用者訊框在0LT中,其係藉 由多重分離部(第2圖所示之多重分離部11)而輸入於任意 一個之0LT-IF(第2圖所示之0LT-IF12A、12B之中,設定 為現用系統之側)’並在0LT-IF被提供固定分配於⑽U的 邏輯連結ID(LLID)〇〇LT-IF係具有能辨識LLID為何RN所 轄屬之0NU的功能,使用者資料係根據llid而收容於各 RN之0TU訊框。〇TU訊框係如第5圖所示,可依各通信速 度產生(相當於第5圖上段之情形),亦可將不同通信速度 的訊框混合收容於1個〇TU訊框(相當於第5圖下段之情 形)。0TU訊框係自連接〇LT-1F的R0ADM部14使用作為〇LT 1 16 322835 201203891 和各RN的通信用而預先設定之通信波長群而以固定延遲 方式而輸出。 第4圖中,;U11〜;llii(i為〇LTl和RN3u〜狀31()之 通信頻寬所必需之波長數)係0LT1和環型節點2!之通信波 長,;U21〜;I 12j(j為0LT1和RN32i〜RN32qi通信頻寬所必 需之波長數)係0LT1和環型節點22之通信波長,λ In卜λ lnk(k為0LT1和RN3nl〜RN3nr之通信頻寬所必需之波長數) 係0LT1和環型節點2n之通信波長。實際所使用之波長數係 因應於0LT1和各RN所應通信的傳送容量而決定。 (順序D2) 在0LT1中’用以自動登錄〇nu的MPCP Discovery(多 點控制協議發現)訊框、或用以控制來自〇關的上行叢發信 說之MPCP訊框係在0LT-IF内的Ρ0Ν控制部122(參閱第2 圖)產生,並與使用者訊框在MUX123予以MUX(多工)化。 此等之控制訊框(MPCP Discovery訊框、用以控制上行叢 發信號之MPCP訊框)亦和使用者訊框同樣地根據LL丨D而收 谷於對應的0TU訊框’並輸出於r〇aDM部14側。 (順序D3) 連接RN之各環型節點係抽出預先設定之通信波長,且 在以詢答器進行波長變換之後,輸出於以固定延遲方式連 接之各RN。各RN和環型節點係以p〇丨nt—to—po丨η(點對點) 方式藉由2重化光纖而連接,並以因應於各RN和環型節點 間通信容量之至少1波長以上的波長而進行通信(進行波 長多重通信)。例如,環型節點2,係抽出λ 111〜Alii的信 322835 17 201203891 號光’ it以詢答哭 λ犯。第4圖中Γλ : 長λ 21卜λ 21s、··. λ 21卜 和跗礼之张v U〜A21s (s為經由環型節點的0LT1 信波長,七需之波長數)係環型節點2々RN3n之通 之通信所必兩夕、由(t為、'里由環型節點的0LT1和RN3ip 長,數)係環型節'點2】和啊之通信波 信所必需之波長=為經由環型節點的町1和RN321之通 21H2lw(w為以環型節點22和狐之通信波長,又 之波長數)=:=rr之通信所必需 (x為經由環型“^通信波長,λ211〜又21x 係環型節點2„和RN T1/lRN3nl之通信所必需之波長數) 環型節點的。叫:Γ==λ211,為經由 點24 I之所必需之波長數)係環型節 0LT1 ^ (順序D4) 各RN係由儲存於接收自上位的環型節點之波長群的 〇TU訊框而將㈣者訊框和控制訊框予以再生,再由供應 於所再生出的訊框之LLID辨識其為以何詢答器所轄屬之 0NU為目的地的訊框,且以固定延遲方式而分配於肋内之 複數的詢答器(相當於第3圖所示之詢答n 33Bl〜33Bn)。 (順序D5) 各RN内之詢答器係分別將接收到的使用者訊框和控 制訊框變換成根據IEE副2·3、舰8Q2.如、ιτυ_τ規格 等之各通信速度的波長,並傳送於画(1QG__5i〇、 322835 201203891 G-〇NU5i、1OG · lG-0NU5m)。第4圖中,各詢答器和各〇nu 間之通信波長係以;l 311和λ 312表示,此等係分別表示 lGbps用的波長和lOGbps用的波長。又311和人312係以 波長多重化之方式而傳送。 (順序D6) 各 ONU(10G-ONU51(»、G-0NU5!、10G · 1G-0NU51()1)係執行 以 IEEE802. 3、IEEE802. 3av、ITU-T 規格將接收自上位 rn 之使用者訊框和控制訊框予以標準化之特定的動作而進行 處理。 又’環型節點間(環型網路内)所使用之〇DU (Opticalchannel Data Unit’光通道資料單元)的階梯和 環型節點-RN間所使用之〇DU的階梯可作成相同,根據運 用的情形,則亦可以環型節點的詢答器予以變換,而使用 不同的階梯。 〈上行方向的通信控制動作〉 繼而使用第6圖而說明有關於本實施形態之光通信系 統之上行方向的通信控制動作。又,第6圖係表示上行方 向的通信控制動作的一例之圖示。 (順序U1) 各 ONU(10G-〇NU5h·、G-ONl^、10G · 自0LT1經由環型節點和RN而接收的控制訊框,糸根據 之間進行Auto Discovery(自動發現)的動作,並汽 1 0LT1。此後,根據在為接收自〇LTl的控制訊框之^錄於 MPCP Gate訊框所包含的時刻資訊,朝向上位的 個的 从分時 19 322835 201203891 夕重方式傳送上行傳送資料(使肖者訊框)《控制訊框。此 等之動作係由IEEE8G2. 3、IEEE8G2.3av、ITU-T規格等而 ,以標準化之動作。第6圖係以λ 321和λ 322而表示各詢 答器和各咖的通信波長,此等係分別表示lGbps用的波 長和腸阳用的波長。λ 321和λ 322係以分時多重方式 而傳送。 (順序U2)After the mapper 322 converts the management frame into the Ethernet frame format, the receiving operation is performed. On the other hand, when transmitting, the management frame is sent to the receiver and the management frame of the frame format is output to the mapper/demapper 322. Therefore, in the Ethernet frame (management frame) After being mapped to 0TU 14 322835 201203891 frame, then it is transmitted from the optical transmitter 321 to the surface #合器3. After the wavelength is multiplexed, the stalk is multiplexed to the ring node 2, and the frame is sent to the receiver. When the management frame is generated, the message is received from the time synchronization unit 325 in response to the (5) request, and is written in the management frame as a time stamp. The time synchronization unit shift = a counter (timer) of 10 degrees in the same manner as the local timer management unit 125 of the above-described LT IF is used as the management time. Further, the TS supply unit 324 and the time synchronization unit 325 implement a function for measuring the delay of the transmission path with the ring node accommodating the own RN (this function is described later). The 〇TN responder 33A is provided with an optical transmitter (Optical TRx) 33b and a ΤΝ mapper/demapper 332. The optical transmitter 33i receives the transmitted signal light between the optical receiver 31i and the eyepiece 31. The map mapper/demapper 332 maps the signals received from the connected interrogators (interrogators 33β1 to 33Βη) to the 〇τ frame in the uplink direction, and outputs them to the optical transmitter 331. In addition, regarding the downward direction, the Ethernet frame is extracted from the 〇τυ frame input by the optical transmitter 331 and output to any one of the responders 33Β]~33Β„. In the example of the configuration shown in the figure, the 〇ΤΝ 旬 答 器 33 33 Α Α Α Α Α Α , , , , , 冗 Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Dual ratio burst CDR (Cl〇ck Data Recovery) 333, Dual rate Optical Burst Rx 334, lOGbps continuous optical transmitter (Continuous 10G-Tx) 335, lGbps continuous The optical transmitter (Continuous 1G-Tx) 336, and the WDM coupler 337. 15 322835 201203891 The dual ratio burst CDR 333 and the dual ratio burst illuminator 334' are used to receive uplink signals with communication speeds of iGbps and 1 Gbps. Specifically, the light is transmitted from the (10) u transmitted wavelength Α=41 and AUP42 via the WDM coupler 337, and is reproduced as a connection U of 1 Gbps and 1 〇 Gbps. Further, the 1Q Gbps continuous optical transmitter 335 And Mbps continuous light delivery The 336 system converts the 1 Gbps and 10 Gbps Ethernet frames transmitted from the 〇TN acknowledgment 33a into the wavelengths specified by the leg standard, and transmits them to the star coupler via the WDM coupler 337 (optical coupling) 4) The optical fiber side to be connected. <Communication control operation in the downlink direction> The communication control operation in the downlink direction of the optical communication system according to the present embodiment will be described using FIG. 4, and FIG. 4 shows the downlink. An illustration of an example of the communication control operation in the direction. (Sequence D1) The user frame input from the upper network interface is in the 0LT by the multiple separation unit (the multiple separation unit 11 shown in FIG. 2). Input any one of the 0LT-IF (the 0LT-IF12A, 12B shown in Figure 2, set to the side of the active system)' and provide a logical link ID (LLID) that is fixedly assigned to the (10)U at the 0LT-IF. 〇LT-IF has the function of recognizing the NUID as the NU of the RN. The user data is stored in the 0TU frame of each RN according to the llid. The TU frame is shown in Figure 5, and can be used according to each communication. Speed generation (equivalent to the situation in the upper part of Figure 5), can also be different The frame of the signal speed is mixed and stored in one frame of the TU (corresponding to the case of the lower part of Fig. 5). The 0TU frame is used as the 〇LT 1 16 322835 201203891 and each RN from the R0ADM part 14 connected to the LT-1F. The communication is output in a fixed delay manner using a predetermined communication wavelength group. In Fig. 4, U11~llII (i is the number of wavelengths necessary for the communication bandwidth of 〇LT1 and RN3u~31()) is the communication wavelength of 0LT1 and ring node 2!; U21~; I 12j (j is the number of wavelengths necessary for the communication bandwidth of 0LT1 and RN32i to RN32qi) is the communication wavelength of 0LT1 and the ring node 22, λ Inb λ lnk (k is the number of wavelengths necessary for the communication bandwidth of 0LT1 and RN3n1 to RN3nr ) The communication wavelength between 0LT1 and the ring node 2n. The actual number of wavelengths used is determined by the transmission capacity that 0LT1 and each RN should communicate with. (Sequence D2) In 0LT1, the MPCP Discovery frame for automatically logging in to 〇nu, or the MPCP frame for controlling the upstream plexus from the gate is Ρ0Ν in the 0LT-IF. The control unit 122 (see Fig. 2) is generated and MUX (multiplexed) is performed on the MUX 123 with the user frame. The control frame (MPCP Discovery frame, MPCP frame for controlling the uplink burst signal) is also received in the corresponding 0TU frame according to the LL丨D and output to the r in the same manner as the user frame. 〇 aDM part 14 side. (Sequence D3) Each of the ring-type nodes connected to the RN extracts a predetermined communication wavelength, and after wavelength conversion by the responder, outputs the RNs connected in a fixed delay manner. Each RN and the ring type node are connected by a 2 plex fiber in a p〇丨nt-to-po丨η (point-to-point) manner, and are at least one wavelength or more in response to the communication capacity between each RN and the ring node. Communication with wavelength (multi-wavelength communication). For example, the ring type node 2 extracts the letter 322835 17 201203891 from λ 111~Alii to ask for a cry. In Fig. 4, Γλ : length λ 21 λ 21s, ··· λ 21 卜 and 跗 之 v v U~A21s (s is the 0LT1 letter wavelength via the ring node, the number of wavelengths required) 2 々 RN3n communication must be both eve, by (t is, 'the length of the ring-shaped node 0LT1 and RN3ip length, number) is the ring type 'point 2】 and the necessary wavelength of the communication wave letter = It is necessary for communication between the town 1 and the RN 321 via the ring node (w is the communication wavelength of the ring node 22 and the fox, and the number of wavelengths) =:=rr (x is the wavelength of the communication via the ring type "^" , λ211~ and 21x are the number of wavelengths necessary for the communication between the ring type node 2 and the RN T1/lRN3nl. Γ==λ211, which is the number of wavelengths necessary for passing through the point 24 I) The ring type section 0LT1 ^ (sequence D4) Each RN is a 〇 TU frame stored in the wavelength group received from the upper ring node And (4) the frame and the control frame are reproduced, and then the LLID supplied to the reconstructed frame identifies the frame to which the ONU of the respondent belongs, and the fixed delay mode A plurality of interrogators assigned to the ribs (equivalent to the queries n 33B1 to 33Bn shown in Fig. 3). (Sequence D5) The interrogator in each RN converts the received user frame and control frame into wavelengths according to the communication speeds of the IEE sub-2, 3, ship 8Q2, eg, ιτυ_τ specifications, and Transferred to the painting (1QG__5i〇, 322835 201203891 G-〇NU5i, 1OG · lG-0NU5m). In Fig. 4, the communication wavelength between each interrogator and each nu is represented by l 311 and λ 312, which respectively represent the wavelength for lGbps and the wavelength for lOGbps. Further, 311 and 312 are transmitted in a wavelength multiplex manner. (Sequence D6) Each ONU (10G-ONU51 (», G-0NU5!, 10G · 1G-0NU51()1) is a user who receives the reception from the upper rn in IEEE802.3, IEEE802. 3av, and ITU-T specifications. Frames and control frames are processed for specific actions that are standardized. Also, 'steps and ring nodes of 〇DU (Opticalchannel Data Unit') used between ring nodes (in a ring network) - The steps of the 〇DU used between the RNs can be made the same. Depending on the application, the responder of the ring node can also be converted to use different steps. <Upper direction communication control action> Then use the sixth The communication control operation in the uplink direction of the optical communication system according to the present embodiment will be described. Fig. 6 is a diagram showing an example of the communication control operation in the uplink direction. (Sequence U1) Each ONU (10G-〇NU5h) ·, G-ONl^, 10G · The control frame received from the 0LT1 via the ring node and the RN, and the Auto Discovery action is performed according to the operation, and the steam is 1 LLT1. Thereafter, it is received according to 〇LTl's control frame is recorded in MPCP The time information contained in the Gate frame is transmitted to the upper-level one from the time-sharing 19 322835 201203891, and the uplink transmission data is transmitted to the control frame. The actions are controlled by IEEE8G2.3, IEEE8G2. .3av, ITU-T specifications, etc., to standardize the action. Figure 6 shows the communication wavelengths of each responder and each coffee with λ 321 and λ 322, which represent the wavelength and intestinal yang for 1 Gbps, respectively. The wavelengths used are λ 321 and λ 322 are transmitted in a time-sharing multiple manner (sequence U2)

在Ν中各5旬答器(相當於第3圖所示之詢答器 =係將接_之上行的叢發信號(以分時多重方式傳送 芦換成連續的信號,進而詢答器33A係將此等之連 二〜2於為0TN格式訊框之〇TU訊框,並藉由olti所 二1波長以上的波長之光信號,以固定延遲方式 框二二位的環型節點(以波長多重方式傳送)。_訊 產生:亦3=通信控制動作同樣地,可依各通信速度 訊框(參閱第5圖)的通信速度的訊框混合收容於1個0TU 第6圖中,入‘Μ 孤的通信所必· A42S(S為經由環型節點之0LT1和 波長,λ421]42^長數)係環型節點21和腿”之通信 信所必需之波長數經由環型節點之GLT1和肌ρ的通 421〜A42u(u為經由:^即·點2丨和酬ip之通信波長,入 之波長數)係環型r %型節點之GLT1和RN321的通信所必需 (w為經由環型節點點22和RN321之通信波長,又421〜;U2w 係環型節點22和通信所必需之波長數) 、之通#波長,又421〜;^42乂(义為經由 322835 20 201203891 環型節點之OLT1和RN3nl的通信所必需之波長數)係環型節 點2„和RN3nl之通信波長,λ 421 ~ λ仏心為經由環型節點 之〇LTl * RN34通信所必需之波長數)係環型節點匕和 歡r之通信波長。實際所使用之波長數係因應於㈣ RN所應通信的傳送容量而決定。 (順序U3) :恤點係將自連接之抓所接收的信號,變換成作 用口 0LH側的其他環型節點的通信用(環型網路内的通信 於療而先設定之波長群的信號,細®定延遲方式而輸出 &amp;的^路上。第6圖中,λ51Η5Η(ί為0LT1和〜 長,、^糾需之波長數)係㈣和環型節點^通信波 波長數為仰和咖21麵通信 為_ ㈣節點22之通信波長,WH5nk(k 型節點σ斤必需之波長數)係0LT1和環 和各肋所二“ Λ際所使用之波長數係因應於0LT1 卵所應通信的傳送容量而決定。 (顺序U4) LTl中,R〇ADM部係從經由久 號光中插出各Μ之#波m點所接收到的信 於雙方的GLT-IF。或’依H將抽出之全部的波長輸入 0LT々嘗IF_OT_m=輸入於任意一個 且進行R鮮所規定之PG 4制者贿和控制訊框 料傳送於多重分離部。多重=動m亦將使用者資 方式,將接收自GLHF#7^部係根據上位網路的多重 15唬傳送於上位網路侧。 322835 201203891 • 和下行方向的通信控制動作同樣地,環型節點之 間所❹之0DU的p皆梯和環型節點·間所使用之刪的 階梯可相同,亦可使用不梯。 〈几長切換控制動作、以及RTT(R〇undIn the Ν 各 5 5 5 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( These two are connected to the TU frame of the 0TN format frame, and the optical signals of the wavelengths above the wavelength of the olti are used to frame the two or two ring nodes in a fixed delay manner. Wavelength multi-mode transmission)._Signal generation: also 3=Communication control action Similarly, the frame of communication speed according to each communication speed frame (refer to Fig. 5) can be mixed and accommodated in one 0TU picture 6 'Μ 孤 的 · A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 420 to A42u of the muscle ρ (u is the communication wavelength via ^: ie, point 2丨 and paid ip, the number of wavelengths entered) is necessary for the communication of GLT1 and RN321 of the ring type r% node (w is via the ring) The communication wavelength of the node point 22 and the RN321 is 421~; the U2w is the ring type node 22 and the number of wavelengths necessary for communication), the pass# wavelength, and 421 ~;^42乂(meaning the number of wavelengths necessary for communication between OLT1 and RN3nl via the 322835 20 201203891 ring node) is the communication wavelength of the ring node 2„ and RN3nl, and λ 421 ~ λ仏 is via the ring node 〇 LTl * RN34 communication necessary wavelength number) is the communication wavelength of the ring type node 欢 and Huan r. The actual number of wavelengths used depends on the transmission capacity of the (4) RN should communicate. (Sequence U3): Shirt point The signal received from the connection is converted into communication for other ring nodes on the 0LH side of the port (the signal in the ring network is set to the wavelength group set by the therapy first, and the delay mode is Output &amp; ^ Road. In Figure 6, λ51 Η 5 Η (ί is 0LT1 and ~ long, ^ required wavelength number) (four) and ring node ^ communication wave wavelength is Yang and coffee 21 surface communication is _ (four) The communication wavelength of node 22, WH5nk (the number of wavelengths necessary for k-type node σ jin) is 0LT1 and the number of wavelengths used by the ring and each rib. The number of wavelengths used in response to the 0LT1 egg is determined by the transmission capacity of the 0LT1 egg. Sequence U4) In LT1, the R〇ADM part is inserted from each of the long-numbered lights. Μ之# Waves received by the m-points on both sides of the GLT-IF. Or 'All wavelengths extracted by H are input into the 0LT 々 IF_OT_m= entered in any one and the PG 4 system specified by R Xian is bribed. And the control frame material is transmitted to the multiple separation unit. The multiple=action m is also transmitted to the upper network side according to the multiple 15唬 received from the GLHF#7^ system according to the upper network. 322835 201203891 • and Similarly, the communication control operation in the downlink direction may be the same as the deleted ladder used for the 0DU between the ring nodes and the ring node, and may be used instead. <Several long switching control actions, and RTT (R〇und

Trip Time)管 理方法〉 繼而參閱第7圖和第8圖而說明本實施形態之光通信 系統的冗長切換控制動作、以及與此密切關聯之RTT的管 理方法。 一般而言’ TDMA-P0N系統係為了避免上行的叢發信號 之衝突’控制0NU所傳送的叢發信號到達〇LT的時刻,並 有效收集上行方向的頻寬分配控制所必需的資訊,而進行 0LT和0NU的測距(ranging,距離測定)。在本實施形態之 光通信系統中’為了避免rN和〇NU間的上行叢發信號之衝 突’且有效地進行上行頻寬分配控制,亦必需距離測定功 能。習知所運用之TDMA-P0N系統,其支援0LT之0NU的台 數為高達32台的程度,故雖〇lt和0NU的連接未被冗長 化,但’由於本實施形態之光通信系統係將0LT之MAC功 能集中於0LT1,故當0LT1内的0LT-IF產生故障和光纖斷 線之情形時的障礙區域將擴大。為了解決此問題,本實施 形態之光通信系統係將0LT和RN間的通信路徑全部予以2 重化’實現通信網之高堅定(robust)性。在此,為了將通 信路予以2重化且實現線路之高速轉換,則不僅現用系統 通信路,連預備系統通信路亦必須預先個別測定為用以控 制使星型耦合器(光耦合器4)上其上行信號不致於衝突之 22 322835 201203891 PON特有參數之〇LT和各0NU間的距離(Rn)。但,習知方 式中存有無法同時管理現用系統通信路和預備系統通信&amp; 之課題。 第7圖係表示本實施形態之光通信系統以現用系統通 信路徑進行通信時的動作例之圖示。 例如,0LT1和10G-ONU 5ι。係於第7圖所示之通信路進 行上行方向和下行方向的通信。該通信路的RTT,其原、# 上係能進行和習知的TDMA-P0N系統相同的距離測定。亦 即’根據IEEE802.3和802.3av等之標準所規定之Au1^ Discovery、以及MPCP通訊協定等,0LT1即能取得i〇g、〇_ 51〇之間的RTT資訊。將據此而取得之RTT作成打了 Active—Total時,則藉由第7圖所示之0LT1-環型節·點 2!間現用系統下行通信路徑跳脫時間(TT_A),0LT1-環型 節點間現用系統上行通信路徑跳脫時間(TT—B),環型節 點2i-RN3n間現用系統通信路徑循環跳脫時間(RTT—C), RN3u_10G_ONU 5ι。間現用系統通信路徑循環跳脫時間 (RTT_D),RTT_Active_Total 可表示如下式(1)。 RTT_Active —Total = TT—A + RTT_C + RTT —D + TT_B …(1) 第8圖係表示以第7圖的通信路進行通信之本實施形 態之光通信系統中,下行0LT1-環型節點間通信所使用 之光纖產生故障,並切換成預備系統通信路時的動作例之 圖示。 應適用於該情形時的控制之RTT_Standby___Jotal係 23 322835 201203891 藉由0LT1-環型節點2ι間現用系統下行通信路跳脫時間 (TT_A),0LT1-環型節點2!間預備系統下行通信路跳脫時 間(TT—A’),及根據式(1)所示之 Rn一Active—T〇tal, 而可表示如下式(2)。 RTT一Standby一Total = RTT__ Active _Total — TT—A + TT一 A’ …⑵ — 因此,在本實施形態之光通信系統中,〇LT1係具有個 別測定冗長化之傳送路徑的傳送路徑長度且予以保存之手 段,故只要預先設定好預備系統的通信路徑,則能於產生 光纖故障等之傳送路徑障礙時,瞬間自故障處所之跳脫時 間、冗長路徑之跳脫時間、以及現用系統之跳脫時間轉換 為路徑轉換後之RTT,而易於形成冗長化。上述之例雖係 說明有關於下行的GLT1-環型節點2ι間所使用之傳送路押 發生障礙時之情形,但,對本實施㈣之錢㈣統之: 部的冗長路徑(光纖被2重化之路徑),亦可進行同樣的= 法之冗長化切換。 万 為了實現上述方法之冗長切換,0LT1的監視控制部 具有與自裝置内的_M部所具有之監視控制部阁 不)、壞型即,點之心的R_M部之監視控制部(未圖示· 以及各_N3ll~3lp、紙如·之監視部确 繫’而測定現用純和預㈣統的跳脫時間之功能’ ㈣中,在部的内部進行監視控制之監視 ^ 圖示)與_Μ部的外部之監視控制箱示之未 外部之監視控制部亦可進行腦Μ部的監視控制動作 °的 322835 24 201203891 可兼用。 以下,敘述有_⑽丨和_ _ 的通信路徑之測定所%的功能和方心預備= 和10G—_5丨。之間的通信路經測定。 〇m 首先,說明現用系統和 定所使用之監視控制信㈣^ ^統社路之跳脫時間測 〇琥的傳迗方法。第9圖係表示太眚 施形態之光通信系統的監視控制信號之傳送動作的—例之 圖不。1 9 _示’本實施形態之光通信系統的監視控 制動Uk錢通信波長係特別使用監視控制用波長 A6sn °於構成㈣網路之咖和各環型節財,為流通 於%型網路上之波長λ 611的信號之監視控制用信號一定 會暫時先被丟下(drop),而由監視控制部進行終端。繼而, 對抽出之0TU訊框(監視控制用信號)追加並更新本身裝置 的監視控制資訊’且將更新後之監視控制信號傳送至鄰接 之節點(0LT1或環型節點)。此外’於接收到的監視控制信 號含有應傳送到連接於本身裝置之抓的資訊時,則抽出該 資訊而映射於0TU §孔框,並使用和rn之間的下行監視控制 用波長;1711而傳送至RN。此外,如圖示,〇LT1和環型節 點與RN之間的上行監視控制用波長為λ712,該波長係使 用於對來自環型郎點的〇TU訊框(監視控制信號)之回應、 或將RN所應傳送之監視控制資訊傳送至環型節點。 繼而說明有關於測定現用系統和預備系統通信路之跳 脫時間所必需的功能和手段。各環型節點、各RN、以及0LT1 之監視控制部係具有時刻同步功能。就時刻同步之具體手 25 322835 201203891 段而言可列舉 GPS 或 IEEE802. 1AS,NTP(Network Time Protocol,網路時間協議)。有關於時刻同步手段係必須由 網路予以統一,此外,該時刻同步手段被要求具有例如和 所收容的TDMA-P0N所必需之RTT精度同等的精度。例如, 當為收容IEEE802. 3所規定之G-EP0N、或IEEE802. 3av所 規疋之1OG-EPON之網路時,則要求16ns的精度。 繼而說明有關於測定現用系統和預備系統通信路徑之 RTT的方法。現用系統和預備系統通信路徑之跳脫時間測 定係由下列步驟所構成: 測定環型網路的傳送路徑延遲(構成環型網路的各路 徑(鄰接的節點間的傳送路徑)之傳送路徑延遲)之步驟(步 驟# 1);以及 測定各環型節點和其轄屬所連接之各RN之間的傳送 路徑延遲之步驟(步驟#2)。 藉由執行該等步驟而測定傳送路徑延遲,0LT1即能根 f所保存之現m的m、以及執行步驟#1、#2而取 付之傳达^延遲資訊,算出路徑轉換後之(預備系统 的ΚΤΌ。算出預備系統的RTT之方法係如使 8圖所說明。 .今乐 ’閱第10圖、第11圖而說明有關於步驟#1、#2的 型網路之傳送路徑延遲的測定動作 Μ之間之傳、、例)之圖示。第11圖係表示環型節點和 之圖示。迗路徑延遲的測定動作例(步驟#2的動作例) 322835 26 201203891 (步驟#1) 如第1()圖所示,㈣LT1之監視控制部中,其時刻同 生部、以及時間印記供應部係產生填註時間 η之乙太訊框,將該乙太訊框儲存於〇τ 預備系統通信路徑而以咖的蝴;:: 錢即點2„處。環型節點2η之監視控制部,當由現用 存^預傷系統通信路徑接收填註時間印記訊框時,則保 之刻ΓΓ並自該接收時刻資訊減去0lt^ 2n) 接之環型節二2 #%型即點2n之監視控制部係對鄰Trip Time) Management Method> The redundant switching control operation of the optical communication system according to the present embodiment and the management method of the RTT closely related thereto will be described with reference to Figs. 7 and 8 . In general, the 'TDMA-P0N system is designed to avoid the collision of the uplink burst signals' and control the time when the burst signal transmitted by the ONU reaches the 〇LT and effectively collect the information necessary for the bandwidth allocation control in the uplink direction. 0LT and 0NU ranging (ranging, distance measurement). In the optical communication system of the present embodiment, in order to avoid the collision of the uplink burst signal between rN and 〇NU and to perform the uplink bandwidth allocation control efficiently, the distance measuring function is also required. The TDMA-P0N system used by the conventional technology supports the number of 0NUs of 0LT to be as high as 32, so the connection between 〇lt and ONU is not redundant, but the optical communication system of this embodiment will be The MAC function of 0LT is concentrated on 0LT1, so the obstacle area when the 0LT-IF in 0LT1 is faulty and the fiber is broken is expanded. In order to solve this problem, the optical communication system of the present embodiment doubles the communication path between the OLT and the RN, and realizes the high robustness of the communication network. Here, in order to double the communication path and realize high-speed conversion of the line, not only the active system communication path but also the preparatory system communication path must be separately measured in advance to control the star coupler (optocoupler 4). The uplink signal does not conflict with the 22 322835 201203891 PON-specific parameters 〇 LT and the distance between each 0NU (Rn). However, in the conventional method, there is a problem that the communication system of the active system and the communication of the standby system cannot be managed at the same time. Fig. 7 is a view showing an example of an operation when the optical communication system of the present embodiment performs communication using the active system communication path. For example, 0LT1 and 10G-ONU 5ι. The communication is performed in the uplink direction and the downlink direction in the communication path shown in FIG. The RTT of the communication path can be measured by the same distance as the conventional TDMA-P0N system. That is, according to the "Au1^ Discovery" and the MPCP communication protocol defined by the standards of IEEE802.3 and 802.3av, etc., 0LT1 can obtain RTT information between i〇g and 〇_51〇. When the RTT obtained according to this is made Active-Total, the downlink communication path trip time (TT_A), 0LT1-ring type, is used by the active system between the 0LT1-ring type and the point 2! The current system uplink communication path trip time (TT-B) between nodes, the active system communication path cyclic trip time (RTT-C) between the ring nodes 2i-RN3n, RN3u_10G_ONU 5ι. The current system communication path loop trip time (RTT_D), RTT_Active_Total can be expressed as the following equation (1). RTT_Active - Total = TT - A + RTT_C + RTT - D + TT_B (1) Fig. 8 shows the downlink 0LT1-ring type node in the optical communication system of the present embodiment which communicates with the communication path of Fig. 7. A diagram showing an example of an operation when a fiber used for communication generates a failure and is switched to a communication path of the preparatory system. The RTT_Standby___Jotal system should be applied to the control in this case. 23 322835 201203891 The downlink communication path trip time (TT_A) of the active system by the 0LT1-ring type node 2ι, and the downlink communication path of the 0LT1-ring type node 2! The time (TT_A'), and Rn_Active_T〇tal shown by the formula (1), can be expressed by the following formula (2). RTT-Standby-Total = RTT__Active_Total - TT_A + TT_A' (2) - Therefore, in the optical communication system of the present embodiment, the 〇LT1 system has a transmission path length for individually measuring the redundant transmission path and The means of preservation, so as long as the communication path of the preparatory system is set in advance, the trip time of the faulty location, the skipping time of the redundant path, and the jump of the active system can be instantaneously generated when the transmission path of the optical fiber failure or the like is generated. The time is converted to the RTT after the path conversion, and it is easy to form a verbose. The above example is a description of the case where the transmission path used by the downstream GLT1-ring type node 21 is inconvenient, but the money (4) of this implementation (4) is unified: the redundant path of the part (the optical fiber is doubled The path can also be switched to the same = method. In order to achieve the tedious switching of the above method, the monitoring control unit of the OLT 1 has a monitoring control unit of the R_M portion of the _M portion of the self-device, and the monitoring unit of the R_M portion of the bad type. In the case of the _N3ll~3lp, the monitoring unit of the paper, etc., and the function of measuring the skip time of the current pure and pre- (four) systems, (in the fourth part, the monitoring of the monitoring control is performed inside the unit) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Hereinafter, the function of the measurement of the communication path of _(10) 丨 and _ _ and the square center preparation = and 10G - _5 丨 will be described. The communication path between them is determined. 〇m First, explain the current control system and the monitoring control signal used by the system (4) ^ ^Tongshe Road's trip time measurement method. Fig. 9 is a view showing an example of the operation of transmitting the monitoring control signal of the optical communication system in the form of the present invention. 1 9 _ shows the monitoring and control of the optical communication system of the present embodiment. The Uk money communication wavelength is particularly used for the monitoring control wavelength A6sn ° in the configuration (4) network coffee and each ring type of money, for circulation on the % network The signal for monitoring and controlling the signal of the wavelength λ 611 is always dropped first, and is terminated by the monitoring control unit. Then, the extracted 0TU frame (monitoring control signal) is added and updated with the monitoring control information of the own device, and the updated monitoring control signal is transmitted to the adjacent node (0LT1 or ring node). In addition, when the received monitoring control signal contains information to be transmitted to the device connected to its own device, the information is extracted and mapped to the 0TU § hole frame, and the downstream monitoring control wavelength between and rn is used; Transfer to the RN. In addition, as shown, the uplink monitoring control wavelength between 〇LT1 and the ring node and the RN is λ712, which is used for responding to the 〇TU frame (monitoring control signal) from the ring type, or The monitoring control information that the RN should transmit is transmitted to the ring node. It then describes the functions and means necessary to determine the trip time of the active system and the preparatory system communication path. Each ring type node, each RN, and the monitoring control unit of OLT1 have a time synchronization function. For the specific hand of the time synchronization 25 322835 201203891 paragraphs can be cited GPS or IEEE802. 1AS, NTP (Network Time Protocol). The time synchronization means must be unified by the network, and the time synchronization means is required to have, for example, the same accuracy as the RTT accuracy necessary for the contained TDMA-P0N. For example, when it is a network that accommodates G-EP0N as defined in IEEE802.3 or 1OG-EPON as defined by IEEE802.3av, an accuracy of 16 ns is required. Next, a method for determining the RTT of the active system and the preparatory system communication path will be described. The trip time measurement of the active system and the standby system communication path is composed of the following steps: Measuring the transmission path delay of the ring network (the transmission path delay of each path constituting the ring network (the transmission path between adjacent nodes) a step (step #1); and a step of determining a transmission path delay between each ring type node and each RN to which its jurisdiction is connected (step #2). By performing these steps, the transmission path delay is measured, and 0LT1 is the m of the current m stored in the root f, and the delay information transmitted by executing the steps #1 and #2, and the path conversion is calculated. The method of calculating the RTT of the preparatory system is as described in Fig. 8. This is a description of the transmission path delay of the type network of steps #1 and #2 as shown in Fig. 10 and Fig. 11 A diagram of the transmission between the movements, and examples. Fig. 11 is a diagram showing a ring type node and . Example of measurement operation of the 迗 path delay (operation example of step #2) 322835 26 201203891 (Step #1) As shown in the first figure (1), (4) the monitoring unit of LT1, the time sharing unit, and the time stamp supply unit The E-frame of the filling time η is generated, and the E-frame is stored in the communication path of the 〇τ preparatory system, and the money is displayed. The money is the point 2 „. The monitoring control unit of the ring node 2η, When receiving the filling time stamp frame from the current storage pre-injury system communication path, it is saved and subtracted from the receiving time information by 0 lt^ 2n) and the ring type section 2 2 #% type is point 2n Surveillance control department

現用系統和預備系統通信路徑而以 的波長傳送填註先前取得的RTT 該0TU訊框亦填註有間印::框。 點係依序進行如此的動作。亦即,:二…各環型節 統和預備系統通信路獲接收道以广=當自現用系 時’則對其根據接收時刻、以及為包八=長傳送的訊框 之-的表示由傳送源節罐T1二州欠訊框的資訊 的時刻之時間印_ 行訊框傳送 =,分別執行附加表示所算出的^:卩1 點之間的抓, 時刻之時間印記 貝訊、和表示傳送 或環型節點)_理,訊框傳送至鄰接節點(0LT1 點間之現㈣統和預 4卩取得各環型節 送路經延遲資訊)。備^通“#之跳料間資訊(傳 (步驟#2) 322835 27 201203891 此處雖係舉-例而說明有關於環型節點_動作, 但’另外的環型節點22~2„亦執行相同的動作。亦即,各環 型節點係依序執行以下所說_動作,據此而將現用系統 和預備系統的RTT資訊通知於㈣之監視控制部。 如第11圖所示,首先,環型節點2ι之監視控制部係對 齡之監視控制部,將現用线和職系統通信路徑的跳 脫時間測定請求訊框(request frame)載人於_訊框並 分別以波長λ 711傳送。隱之監視控制部巾,其時刻同 步部、訊框產生部、以及時間印記供應部係產生為填註有 時間印記(傳送時刻資訊)之_訊框的回應(response)訊 框’並以λ 712的波長傳送至環型節點2ι。回應訊框係分 別自現用系統和預備系統通信路徑而傳送。環型節點&amp;之 監視控制部當由現料、統和祕通信路徑接收到回應 ^框^,龍存該接收時刻資訊,並藉由將自該接收時刻 f訊減去RN3n所提供之時間印記之值作成2倍,藉此而取 付各個RTT資訊。環型節點2ι係依相同的順序而循環性地 (cycilc)取得其所轄屬的抓之抓資訊。取得的資訊 係附加於自環型網路去下之波長λ 611的監視控制用㈣ 而通知鄰接之節點(該情形時為GLT1)。®此,0LT1即能^ 節點21和其所轄屬的各抓之間之現用 ^ 系統的RTT資訊。 ^ %型即點和連接於此等之各RN係實施相同的動 ,象此,0LT1最後即能取得全部的環型節點和&amp;轄 的跗之現用系統和預備系統之RTT資訊。 ° 322835 28 201203891 如此,本貫施形態之光通信系統,在環型網路内所傳 送的監視控㈣訊(監視㈣用㈣)之中,係定義有用以 測定預備系統通信路徑之RTT的通㈣定,且根據如上所 述之方法和順序,預先計測預備系統通信路徑之RTT。藉 此貝現虽於現用系統之通信路經產生障礙時的高速切換。 〃繼而’參閱第12圖而說明冗長切換控制動作例。此處 係說明當連接0LT1和環型節點2ι的光纖發生故障時(相當 於第8圖所示之情形時)之動作例。 0LT1和每型節點2l之間的光纖發生輯,且當環型節 點2】檢測出表示該故障的警報時,則環型節點㈣對鄰接 之環型㈣22發出(傳送)切換請求訊息而請求切換路徑 (步驟SU、S12)。此外’將信號傳送路徑切換成預備的路 控(在此之前作為預備系統的路經)(步驟S13)。當環型r 接收到自環型節點21傳送的切換要求訊息時,則 接收到的訊息傳送至鄰接之環型節點23的同時,亦將信 傳达路㈣換成預備雜。各環型節_依序執行如二 述動作,且當由環型節點2„傳送的切換請求訊息到 =0=部即於將信號傳送路徑切換成“ 仫之後對鄰接之環型節點2n發出切換結束訊息: S14)此外,部即對對應於切換後路徑之 出RTT變更請求訊息(步驟S15)。接收到RTT冑更發 息之0LT-IF係進行往對應於切換後路徑之m #變^' = 驟S16),且將RTT變更結束訊息傳送至腿⑽ S17)。㈣㈣2&quot;係當接收到為對於傳送至GLT1的切換, 322835 29 201203891 求訊息之回應訊息(於上述步驟S14所傳送之切換結束訊 息)時’則將所接收到之切換結束訊息傳送至鄰接之環型節 點2n_1°%型節點2n以外之環型節點亦同樣地當接收為對 應於=換π求H之回應訊息的切換結束訊息時,則傳送 &quot;亥汛:虽切換結束訊息到達至檢測出傳送路徑(光纖)故 障之%3^卩點21時’縣束錢傳送雜之切換動作。 又&amp;型節點和其轄屬的rn之間的傳送路徑(現用系 統光纖)發生故料’騎㈣該故障的 環型節點即使用預 備系統的通信路徑而將切換請求訊息傳送至rn,據此而將 和該RN之間的傳送路徑轉換成預備祕光纖,進而將和該 RN,間的光纖發生故障的情形通知0LT1。0LT1係當接收 到環型節點和該㈣的RN之_錢發生故障之宗旨的 通=時’則根據通知内容而變更RTT(轉換成對應於切換後 路t之RTT)。如此’環型節點和該轄屬的抓之間的光纖 發生故IV之情形亦和環型網路上域發生故障之情形同樣 地’均可於短時間内進行2重化切換(切換成預備系統光 纖)。 =此,本實施形態之光通信系統係含有: 路’其係由具有R〇ADM功能的節點所構成;以 及 、星型網路’收容於構成環型網路的節點之RN、和1個 以上之0NU係經由光耗合器而】對多連接,上行方向(自 0NU往RN的方向)係進行分時多重傳送; 構成環型網路的節點之中的—個係作為局側裝 置(0LT)而 322835 30 201203891 作動,進订和糸統内的各_之間的 之上行頻寬分配等。此外,將包含 I、對於 以及構成環型網路的節點和R ㈣姆的傳运路徑、 化’將-方之傳送路㈣定為現用;:傳== 備系統。結果即取得如下所示之功效。方&amp;疋為預 習知統的低消費電力化。說明該理由如下。 &amp;知之0㈣係例如第18圖所示之構成,—般而言,0LT 框體係收容有複數個0LT-IF。另—ϋ ° i畜栌会站仫脸羽I 乃曲,本實施形態之光 ==__卩份集中於為城域 =Γ網路内之一部份節點(相當於上述之 0LTD/N係將Ρ0Ν的信號直收於㈣網n_ 成不而依各PON-IF作觸控制之構成,因此除了可削減習 ^之0LT所必需之·控制功能之外,尚能大幅削減構成 CPU、記‘隐體、NNI側ΡΗγ(物理層)的零件,故相較於採用 習知構成的情形’其係能達成低消費電力化。又,此處所 謂之習知的構成係指0NU經由光耦合器而直接連接於〇LT 之構成,亦即,相當於將本實施形態之光通信系統(參閱第 1圖荨)之各RN置換成作為〇lt而動作的節點,進而將QLT1 轉換成和環型節點2,〜2n相同的節點(無需具有0LT-IF的節 點)之構成。 此外’能提升網路的可靠性。如前所述’若僅集中〇LT 功能,則於發生傳送路徑故障時,服務障礙區域將擴大, 但’本實施形態之光通信系統係能以1個0LT而收容多數 個0NU的服務,此外,自局側裝置(〇lt)至RN的通信路徑 31 322835 201203891 • 係完全作成2重化。因此,即使集中〇LT功能,相較於習 知例(上述之專利文獻1所揭示之構成的系統)亦可提升可 罪性。此外’由於本實施形態之光通信系統係具有預先測 定預備系統通信路的RTT之手段,故於檢測出障礙時能高 速切換通信路徑。 此外’在習知之p⑽系統中,由於存有光叢發信號增 幅之技術上的課題而難以延長化,但,本實施形態之光通 仏系統係以習知的IEEE標準的PDM (Physical MediumThe current system and the preparatory system communication path are used to transmit the previously obtained RTT by the wavelength transfer. The 0TU frame is also filled with the imprint:: box. The point system performs such actions in sequence. That is, two: each ring type system and the preparatory system communication channel is received by the channel = when it is used by the current system, then it is represented by the receiving time, and the frame of the packet The time stamp of the transmission of the information of the source canister T1 and the state of the understated frame _ frame transmission =, respectively, the additional representation of the calculated ^: 抓 1 point between the capture, the time stamp of the time, and the indication The transmission or ring type node) is transmitted to the adjacent node (the current (4) system and the pre-4卩 between the 0LT1 points to obtain the delay information of each ring type).备^通"#的跳料信息(传(步骤#2) 322835 27 201203891 Here is a description of the ring node_action, but the 'other ring node 22~2' is also executed The same action is performed, that is, each ring type node sequentially performs the following _ actions, and accordingly, the RTT information of the active system and the standby system is notified to the monitoring control unit of (4). As shown in FIG. 11, first, The monitoring control unit of the ring type node 2i monitors the tripping time measurement request frame of the active line and the occupational system communication path, and transmits the request frame to the frame at the wavelength λ 711. The hidden monitoring control unit, the time synchronization unit, the frame generation unit, and the time stamp supply unit are generated as a response frame filled with a time stamp (transmission time information) and are λ The wavelength of 712 is transmitted to the ring node 2. The response frame is transmitted from the active system and the standby system communication path respectively. The monitoring control unit of the ring node & receives the response frame from the current source, the system, and the secret communication path. ^, Longcun the receiving moment The information is obtained by subtracting the value of the time stamp provided by the RN3n from the reception time f to double the number of RTT information. The ring node 2 is cyclically (cycilc) in the same order. Obtain the information of the arrested information of the affiliation. The obtained information is used for the monitoring control of the wavelength λ 611 attached to the self-loop type network (4) to notify the adjacent node (in this case, GLT1). The RTT information of the current system that can be used between the node 21 and each of its own nodes. ^ The type of the point and the RNs connected to it perform the same action, so that 0LT1 can finally obtain all the The RTT information of the ring system and the current system and the standby system of the 辖 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 In (4)), it is defined to determine the RTT of the preparatory system communication path, and the RTT of the preparatory system communication path is pre-measured according to the method and sequence as described above. When the communication path is broken High-speed switching. Next, the operation example of the redundant switching control will be described with reference to Fig. 12. Here, the operation when the optical fiber connecting the 0LT1 and the ring node 2ι is broken (corresponding to the case shown in Fig. 8) For example, when the optical fiber between 0LT1 and each type of node 2l is generated, and when the ring node 2 detects an alarm indicating the fault, the ring node (4) issues a (transfer) switching request message to the adjacent ring type (4) 22; The switching path is requested (steps SU, S12). Further, 'the signal transmission path is switched to the preparatory road control (the path that was previously used as the preparatory system) (step S13). When the ring type r receives the switching request message transmitted from the ring type node 21, the received message is transmitted to the adjacent ring type node 23, and the communication path (4) is also replaced with the preliminary line. Each ring type section performs the following two actions in sequence, and when the switching request message transmitted by the ring type node 2 is switched to the == part, the signal transmission path is switched to "仫", and the adjacent ring type node 2n is issued. Switching End Message: S14) Further, the unit is an RTT change request message corresponding to the post-switching path (step S15). The 0LT-IF that receives the RTT change message proceeds to m #变^' = step S16) corresponding to the post-switching path, and transmits the RTT change end message to the leg (10) S17). (4) (4) 2&quot; When receiving a response message for the transfer to GLT1, 322835 29 201203891 request message (in the above-mentioned step S14, the handover end message is transmitted), then the received handover end message is transmitted to the adjacent ring. Similarly, when the ring node other than the node 2n_1°% type node 2n receives the switching end message corresponding to the response message of == π, the message is transmitted, and the message is transmitted to the detected end. The transmission path (optical fiber) failure is %3^卩21 when the 'county bundle money transfer miscellaneous switching action. The transmission path between the &amp; type node and its ordinate (current system fiber) occurs. The rider (four) the faulty ring node uses the communication path of the standby system to transmit the handover request message to rn. Therefore, the transmission path between the RN and the RN is converted into a preliminary secret fiber, and the OLT is notified of the failure of the optical fiber between the RN and the RN. The LT1 receives the ring node and the (4) RN. The pass=time of the purpose of the failure changes the RTT according to the content of the notification (converted to the RTT corresponding to the post-switching t). Thus, the case where the optical fiber between the ring-shaped node and the grasping of the circumstance is also the same as the case where the domain on the ring-type network is faulty can be switched in two times in a short time (switching to the standby system) optical fiber). = The optical communication system of the present embodiment includes: a path 'which is composed of nodes having an R〇ADM function; and a star network' which is housed in a node constituting a ring network, and one The above 0NU is a multi-connection, and the uplink direction (from the 0NU to the RN) is time-division multiplex transmission; the one of the nodes constituting the ring network is used as a side device ( 0LT) and 322835 30 201203891 Actuation, ordering and allocation of the upstream bandwidth between each _ in the system. In addition, the transmission path including the node I and the nodes constituting the ring network and the R (four) um, and the transmission path (four) of the directional-party are defined as active; As a result, the following effects were obtained. Fang &amp; 疋 is a low-consumption electricization that is pre-aware. The reason for this is as follows. &lt; Knowing that 0 (4) is a configuration as shown in Fig. 18, in general, the 0LT frame system accommodates a plurality of 0LT-IFs. In addition, ϋ ° i 栌 栌 仫 仫 仫 仫 仫 仫 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The signal of Ρ0Ν is directly received by the (4) network n_ into the PON-IF touch control configuration. Therefore, in addition to the control functions necessary for the 0LT of the control, the CPU can be greatly reduced. 'Invisible body, NNI side ΡΗ γ (physical layer) parts, so it can achieve low power consumption compared to the case of using conventional structure. Moreover, the conventional structure here means that 0NU is coupled via light. The configuration is directly connected to the 〇LT, that is, the RN of the optical communication system (see FIG. 1) of the present embodiment is replaced by a node that operates as 〇lt, and the QLT1 is converted into a ring. Type node 2, ~2n the same node (no need to have a node with 0LT-IF). In addition, 'can improve the reliability of the network. As mentioned above', if only the LT function is concentrated, when the transmission path fails The service barrier area will be expanded, but the optical communication system of this embodiment can be 1 LT. In addition, the service of the majority of the ONU is accommodated, and the communication path from the office side device (〇lt) to the RN 31 322835 201203891 is completely doubled. Therefore, even if the LT function is concentrated, compared to the conventional example (the above) The system of the configuration disclosed in Patent Document 1 can also improve the sinfulness. Further, since the optical communication system of the present embodiment has a means for measuring the RTT of the communication path of the preparatory system in advance, it is possible to switch at high speed when an obstacle is detected. In addition, in the conventional p(10) system, it is difficult to extend the technical problem of the increase of the optical burst signal. However, the optical communication system of the present embodiment is based on the conventional IEEE standard PDM ( Physical Medium

Dependent、物理媒體依存部)能支援之距離配置RN,RN係 具有作為將來自0NU的上行信號之叢發信號變換成連續信 號而傳送之中繼器的功能,故可輕易地將〇LT至〇NU的傳 送路徑延長化。 如上述,根據本實施形態之光通信系統,藉由融合次 世代的城域·存取網路技術,即可達成省電力化、由冗長 化時之高速切換而得之高信賴化、以及農村區域(rural area)收容用之延長化。 實施形態2. 實㈣態1係說明有關於將環型網路之通信所使用之 通信波長、以及環型節點和RN之通信所使用之通信波長以 環型節點進行波長變換之構成的光通信系統。相對於此, 本實施形態係說明有關於環型節點將未進行波長變換的信 唬予以中繼的光通k系統。又,有關於以監視控制而行之 現用系統通信路徑和預備祕通信路徑的rtt 以及障礙檢測時的路徑切換動作(冗長切換控制動作),由 322835 32 201203891 於和實施形態1相同,故省略其說明。此外,有關於和實 施形態1的光通信系統共通之部份則省略其說明。 第13圖係表示實施形態2之光通信系統的構成、以及 下行方向的通信控制動作之一例之圖示。如圖示,本實施 形態之光通信系統係將實施形態丨之光通信系統的環型^ 點2ι〜2:1置換成環型節點2ai〜2an。此外,環型節點2出〜2&amp; 係自環型節點2,〜2„削除詢答器。本實施形態之環型節: 2a!〜2an係在下行方向的通信控制動作中,以不進行波長變 換的方式將自於環型網路上流通的信號光中所抽出之特定 波長的信號光傳送至轄屬的rN。 本實知形感之光通#糸統的下行方向的通信控制動作 係如下所示。 (順序Dla) 首先,0LT1係執行實施形態1所示之(順序pi)、以及 (順序D2),並將下行信號傳送至環型網路。 (順序D2a) 每型喊點2a丨〜2an係藉由R〇ADM部内之wsS(Wavelength lect Switch,波長選擇切換器)等,抽出預先設定之通信 長並將抽出之各波長分配於連接該抓之埠(光纖)。 (順序D3a) 接收 各肋和環型節點係以p〇int_t〇__p〇int方式藉由2重 光纖而連接,rn係將其所連接之環型節點自環型網路抽 =朝向本身分配的信號以保持抽出時之波長的方式予以 。第13圖中,又Uh1H係環型節點%和麗 322835 33 201203891 隊之通信波長,入m]12j係、環型節點〜和叫卜 嶋q之通信波長,;unl]lnk係環型節點^和 之通信波長,實際所使用之波長數係因應於㈣ Μ所應通信的傳送容量而決定。 (順序D4a) 各RN係執行實施形態i所示之(频序Μ)、以及(川員序 D5),並將下行信號傳送至轄屬的圆(i〇G—〇腿1。、 g-〇nu5i、10G · 1G_〇NU5lQ1)。RN轄屬的各_係執行實施 形態1所示之(順序D6)。 又,第14圖係表示實施形態2之光通信系統之上行方 向的通信控制動作之-例之圖示。本實施形態之環型節吨 2a广2an係在上行方向的通信控制動作中,料進行波 換的方式將接收自轄屬之Μ的彳光傳送至環型網路。 本實施形態之光通信系統的上行方向的通信控制 係如下所示。 (順序Ula) 各 〇NU(10G-〇NU51()、G-0NU5i、l〇G · lG-0NU5m)係執行 實施形態1所示之(順序Ul),並將上行信號傳送至上位 RN。 (順序U2a) 在各RN中,詢答器係將自轄屬的各〇NU所接收之上行 的叢發信號(以分時多重方式傳送的信號)變換成連續的信 號,進而將此等之連續信號收容於為〇TN格式訊框之〇τυ 訊框,並藉由0LT1所指定之至少丨波長以上的波長之光信 322835 34 201203891 號(波長多重之光信號),以固定延遲的方式而輸出至上位 的環型節點。οτυ訊框係可依各通信速度產生,亦可將不 同通信速度的訊框混合收容於丨個〇τυ訊框。又,於前述 之實施形態1中,構成内藏於各RN的〇ΤΝ詢答器之光送受 信機器331(參閱第3圖)的光送信器雖使用固定波長的= 射即可,但,本實施形態的RN係將該等雷射(光送信器) 作成波長可變式雷身卜傳送波長係㈣由監視控制部所指 定之波長。 第14圖中,A 51卜λ 51ι係環型節點2出和RN3ii〜RN3ip 之通信波長’ λ52Η52]·係環型節點^和腿21〜腦以 之通錢長,A5nH5nk係環型節點2〜和RM3nr 之通信波長,實際所使用之波長數係因應於0LT1和各RN 所應通信的傳送容量而決定。 (順序U3a) ^環型節關將自連接之RN簡收的信號保持原狀 地輸出至環型網路上。 (順序U4a) 用者執行實施形態丨料之(順序U4),並將上行使 用者貝枓傳送至上位網路侧。 之各在本實施形態之光通信系統中,構成環型網路 特定波長將自於環型網路上流通的信號光所抽出之 ㈣之⑽下行信號保持原狀(不進行波長變換)地傳送至 Ν,並且亦將接收自轄屬之RN的 狀地輪出至严剂咖妨L ^ 扪上仃仏唬保持原 衣型網路上。據此,即能取得和實施形態Μ 322835 35 201203891 同的功效。此外,可省略各環型節點的詢答器,且能將網 路之構成予以簡化。 實施形態3. 實施形態1和2係說明有關於以光纖而連接環型節點 和RN之構成的光通信系統,但,亦可將實施形態1和2所 示之RN作為環型節點的詢答器而直接收容於環型節點。因 此,本實施形態係說明有關於將RN直接收容於環型節點之 構成的光通信系統。又,有關於以監視控制進行之現用系 統通信路徑和預備系統通信路徑的RTT測定方法、以及障 礙檢測時的路徑切換動作(冗長切換控制動作),由於和實 施形態1相同,故省略其說明。此外,有關於和實施形態 1的光通信系統共通之部份則省略其說明。 第15圖係表示實施形態3之光通信系統的構成例之圖 示。如圖示,本實施形態之光通信系統係將實施形態1之 光通信系統(參閱第1圖)的環型節點2!和RN3u〜RN31P、環 型節點22和RN321〜RN32q.....環型節點2&gt;&gt;和RN3nl〜RN3nr置 換成環型節點2th、環型節點2b2.....環型節點2bn。 環型節點2b!、環型節點2b2.....環型節點2bn係具 備R0ADM部、以及相當於實施形態1所說明之RN3u〜RN31P、 RN321〜RN32q.....RN3nl〜RN3nr(參照第 3 圖)之 RN#11 〜#lp、 RN# 21〜# 2q、…、RN# nl〜# nr。又,在包含於各環型節 點之RN的0ΤΝ詢答器所裝載之光送受信器之傳送器係作成 波長可變式雷射。在各環型節點中,RN係構成0NU收容手 段。 36 322835 201203891 第16圖係表示實施形態3之光通信系統之下行方向 =控制動作之一例之圖示。參閱第16圖而說明 實施形態之光通信系統的下行方向的通信控制動作。 (順序Dlb) 首先,0LT1係執行實施形態1所示之(順序、以及 (順序D2),並將下行信號傳送至環型網路。 (順序D2b) 環型節點21^21^係藉由R0ADM部内之WSs(Wav ^ 让The Dependent and the physical media dependencies are configured to support the distance RN. The RN has a function as a repeater that converts the burst signal from the ONU uplink signal into a continuous signal, so that the RN can be easily moved to 〇. The transmission path of the NU is extended. As described above, according to the optical communication system of the present embodiment, by integrating the next-generation metropolitan area access network technology, it is possible to achieve power saving, high-speed switching from high-speed switching, and rural areas. The area (rural area) is extended for containment. Embodiment 2. The actual (fourth) state 1 describes an optical communication in which a communication wavelength used for communication of a ring network and a communication wavelength used for communication between a ring node and an RN are wavelength-converted by a ring node. system. On the other hand, in the present embodiment, an optical communication k system in which a ring node relays a signal that has not undergone wavelength conversion is described. In addition, the rtt of the active system communication path and the preliminary secret communication path which are performed by the monitoring control and the path switching operation (the redundant switching control operation) at the time of the obstacle detection are the same as those of the first embodiment since 322835 32 201203891, and therefore the description thereof is omitted. Description. Further, the description of the portion common to the optical communication system of the first embodiment will be omitted. Fig. 13 is a view showing an example of the configuration of the optical communication system of the second embodiment and the communication control operation in the downward direction. As shown in the figure, in the optical communication system of the present embodiment, the ring type 2 2 to 2: 1 of the optical communication system of the embodiment is replaced with the ring type nodes 2ai to 2an. In addition, the ring type node 2 outputs ~2&amp; is a self-loop type node 2, and the 2-2 is cut off. The ring type section of the present embodiment: 2a!~2an is not performed in the communication control operation in the downlink direction. The wavelength conversion method transmits the signal light of a specific wavelength extracted from the signal light circulating on the ring network to the ruling rN. The communication control action system of the downlink direction of the optical sensation (Sequence Dla) First, 0LT1 performs (sequence pi) and (sequence D2) as shown in Embodiment 1, and transmits the downlink signal to the ring network. (Sequence D2a) Each type of call point 2a丨~2an extracts a predetermined communication length by using a wsS (Wavelength Lect Switch) or the like in the R〇ADM unit, and allocates the extracted wavelengths to the connection (the optical fiber). (Sequence D3a The receiving ribs and the ring-shaped nodes are connected by a 2-fold optical fiber in the manner of p〇int_t〇__p〇int, and the rn-system connects the ring-shaped node to which the ring-connected node is connected to the signal distributed to itself. Maintain the wavelength at the time of extraction. In Figure 13, the Uh1H ring Type node % and Li 322835 33 201203891 The communication wavelength of the team, the communication wavelength of the m]12j system, the ring type node ~ and the called 嶋 嶋 q; the unl]lnk ring type node ^ and the communication wavelength, the actual use The number of wavelengths is determined by the transmission capacity to be communicated in (4). (Sequence D4a) Each RN performs the (frequency sequence Μ) and (Chuanjin order D5) shown in the embodiment i, and transmits the downlink signal to The circle of the jurisdiction (i〇G—〇 leg1., g-〇nu5i, 10G·1G_〇NU5lQ1). Each _ system of the RN is executed as shown in the first embodiment (sequence D6). The figure shows an example of the communication control operation in the uplink direction of the optical communication system according to the second embodiment. The ring type ton 2a wide 2an of the present embodiment is configured to perform wave switching in the uplink communication control operation. The method transmits the light received from the jurisdiction to the ring network. The communication control system in the uplink direction of the optical communication system according to the present embodiment is as follows. (Sequence Ula) Each 〇NU (10G-〇NU51() , G-0NU5i, l〇G · lG-0NU5m) is executed in the first embodiment (sequence U1), and the uplink signal is transmitted. To the upper RN. (Sequence U2a) In each RN, the interrogator converts the uplink burst signal (the signal transmitted in the time division multiple manner) received from each of the 〇NUs under its jurisdiction into a continuous signal, and further The continuous signal is received in a frame of 〇TN format frame and is fixed by a wavelength of at least 丨 wavelength specified by 0LT1, 322835 34 201203891 (wavelength multiple optical signal), with a fixed delay The way to output to the upper ring node. The οτυ frame can be generated according to each communication speed, and the frames of different communication speeds can be mixed and accommodated in a single frame. Further, in the first embodiment described above, the optical transmitter constituting the optical transmission/reception device 331 (see FIG. 3) of the RN 〇ΤΝ 内 内 各 各 ( ( ( ( ( ( ( ( ( ( , , , , , , , , , In the RN according to the embodiment, the laser (optical transmitter) is a wavelength-variable Rayleigh transmission wavelength system (4) wavelength designated by the monitoring control unit. In Fig. 14, A 51 λ 51ι is a ring type node 2 and RN3ii ~ RN3ip communication wavelength ' λ52 Η 52 · · 环 ring type node ^ and leg 21 ~ brain with a long money, A5nH5nk ring type node 2 ~ The communication wavelength with RM3nr, the actual number of wavelengths used depends on the transmission capacity that 0LT1 and each RN should communicate with. (Sequence U3a) ^The ring type switch outputs the signal received from the connected RN to the ring network as it is. (Sequence U4a) The user executes the configuration data (sequence U4) and transmits the upper user's user to the upper network side. In the optical communication system of the present embodiment, the specific wavelength of the ring network is transmitted from the signal light flowing through the ring network (4), and the (10) downlink signal is transmitted to the original state (without wavelength conversion). And will also receive the RN from the jurisdiction of the wheel to the strict coffee 妨 ^ 扪 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬 仃仏唬According to this, the same effect as the form 322 322835 35 201203891 can be obtained and implemented. In addition, the interrogator of each ring node can be omitted, and the structure of the network can be simplified. (Embodiment 3) Embodiments 1 and 2 describe an optical communication system in which a ring node and an RN are connected by an optical fiber. However, the RN shown in Embodiments 1 and 2 may be used as a ring node. And directly housed in the ring node. Therefore, this embodiment describes an optical communication system in which the RN is directly housed in the ring type node. In addition, the RTT measurement method for the active system communication path and the preliminary system communication path by the monitoring control and the path switching operation (the redundant switching control operation) for the obstacle detection are the same as those of the first embodiment, and thus the description thereof will be omitted. In addition, the description of the part common to the optical communication system of the first embodiment will be omitted. Fig. 15 is a view showing an example of the configuration of an optical communication system according to the third embodiment. As shown in the figure, the optical communication system according to the present embodiment is a ring type node 2! and RN3u to RN31P, a ring type node 22, and RN321 to RN32q..... of the optical communication system (see Fig. 1) of the first embodiment. The ring type node 2 &gt;&gt; and RN3n1 to RN3nr are replaced by a ring type node 2th, a ring type node 2b2, and a ring type node 2bn. The ring type node 2b!, the ring type node 2b2, the ring type node 2bn includes the ROADM unit, and the RN3u to RN31P, RN321 to RN32q.....RN3n1 to RN3nr described in the first embodiment (refer to 3rd) RN#11~#lp, RN# 21~# 2q, ..., RN# nl~# nr. Further, the transmitter of the optical transmitter mounted in the acknowlerder of the RN included in each of the ring-shaped nodes is a wavelength-variable laser. Among the ring nodes, the RN constitutes the ONU receiving means. 36 322835 201203891 Fig. 16 is a view showing an example of the direction of the lower direction of the optical communication system of the third embodiment = control operation. The communication control operation in the downlink direction of the optical communication system according to the embodiment will be described with reference to Fig. 16. (Sequence Dlb) First, 0LT1 performs the first embodiment (sequence, and (sequence D2), and transmits the downlink signal to the ring network. (Sequence D2b) The ring node 21^21^ is by ROADM WSs in the department (Wav ^ let

Select Sw,tch)# , , 之各波長分配於對應的RN。 (順序D3b) ,節點内之各RN係將如_部自環型網路抽出並 ^向本身分配的信號以抽㈣的波長接收。第Μ圖中,入 係由環型節點2bl抽出且分配於環型節點%内 之通信波長,λ121]%係由環型節點2b2抽 =分配於環型節點2b2内部的各⑽之通信波長,化卜 2係由環型節點歸出且分配於環型節點%内部的 之通信波長’實際所使用之波長數係因應於〇m和 各壞型節㈣之RN所應通信㈣送容量而決定。 (順序D4b) 各環型節點内之各RN係執行實施形態1所示之(順序 = '以及(順序⑹’並將下行信號傳送至轄屬的画 :鳴°、G—_51、⑽,轄屬的各_ 係執行實施形態1所示之(順序D6)。 322835 37 201203891 此外,第17圖係表示實施形態3之光通信系統之上一 方向的通信控制動作之—例之圖示。參閱第17圖而說明: 關於本A施形態之光通信系統的上行方向的通信控 4乍。 (順序Ulb) 各 〇mj(l〇G-〇NU5le、G-0NU5!、10G · lG-0NU5m)係執行 實施形態1所示之(順序υυ ’並將上行信號傳送至仃 RN(環型節點内之抓)。 的 在各環型節點内之各rN中,詢答器係將自轄屬的各 〇NU所接收之上行的叢發信號變換成連續的信號,進而將 此等之連續信號收容於0ΤΝ規格的訊框之0TU訊框,教藉 由0LT1所指定之至少1波長以上的波長之光信號,以固^ 延遲的方式而輪出於相同的環型節點内之R0ADM部。〇Τϋ Λ框係可依各通信速度產生,亦可將不同的通信速度的訊 框混合收容於1個0TU訊框。 第17圖中,;151卜λ 51 i係分配於環型節點2b!内的 各RN之通信波長,λ 521〜λ 52 j係分配於環型節點2匕内 的各RN之通信波長,λ5η卜;l5nk係分配於環型節點 内的各RN之通信波長,實際所使用之波長數係因應於〇LTl 和各RN(環型節點内的rn)所應通信的傳送容量而決定。 如此,在本實施形態之光通信系統中’構成環型網路 之環型節點係直接收容於實施形態1所說明的RN。據此, 即能取得和實施形態1相同的功效。此外’將RN配置於環 型節點的近傍時,即能構成無需多餘光纖之最佳網路。 38 322835 201203891 又,本實施形態亦可混合實 p 貫轭形態1或實施形態2, 且月b柔軟性地構成網路。例如, 止、Sx 了作成僅將實施形態1之 先通尨系統(參閱第1圖)之環型餡 ,1郎點2!和RN3u〜31P轉換成 本貫施形態所說明之環型節點 P&quot;' 2bl之構成、或僅將實施形態 2之光通信系統(參閱第13圖) 之%型郎點2a2和RN321~32q 轉換成本實施形態所說明之環^節點%之構成。 (產業上可利用性) 如上述’本發明之光通信系統係可有效利用於進行p⑽ 控制之通信系統,特別是適合於含有複數個丨對多連接網 路的構成之光通信系統。 【圖式簡單說明】 第1圖係表示本發明之光通信系統的實施形態丨的構 成例之圖示。 弟2圖係表示局侧裝置(0LT)的構成例之圖示。 第3圖係表示遠端節點(RN)的構成例之圖示。 第4圖係表示實施形態1之光通信系統的下行方向的 通信控制動作之一例之圖示。 第5圖係表示0TU訊框的構成例之圖示。 第6圖係表示實施形態1之光通信系統的上行方向的 通信控制動作之一例之圖示。 第7圖係表示實施形態1之光通信系統為以現用系統 通信路徑而進行通信時的動作例之圖示。 第8圖係表示實施形態1之光通信系統中,光纖為故 障時的動作例之圖不。 39 322835 201203891 第9圖係表示實施形態1之光通信系統的監視控制信 號之傳送動作的—例之圖示。 第10圖係表示環型網路之傳送路徑延遲的測定動作 例之圖示。 第11圖係表示環型節點和RN之間之傳送路徑延遲的 測定動作例之圖示。 第12圖係表示冗長切換控制順序之一例的程序圖。 第13圖係表示實施形態2之光通信系統的下行方向的 通信控制動作之一例之圖示。 第14圖係表示實施形態2之光通信系統的上行方向的 通信控制動作之一例之圖示。 第15圖係表示實施形態3之光通信系統的構成例之圖Each wavelength of Select Sw, tch)# , , is assigned to the corresponding RN. (Sequence D3b), each RN in the node extracts the signal assigned to itself from the ring-type network and transmits it to the wavelength of (4). In the figure, the input is extracted by the ring type node 2b1 and distributed to the communication wavelength in the ring type node%, and λ121]% is extracted by the ring type node 2b2 = the communication wavelength of each (10) allocated to the inside of the ring type node 2b2, The communication wavelength 2 is derived from the ring node and is allocated to the communication wavelength inside the ring node %. The actual number of wavelengths used depends on the communication capacity of the RN and the RN of each bad type (4). . (Sequence D4b) Each RN in each ring type node performs the sequence shown in the first embodiment (sequence = ' and (sequence (6)' and transmits the downlink signal to the ruling picture: °°, G__51, (10), Each of the genus is executed as shown in the first embodiment (sequence D6). 322835 37 201203891 In addition, Fig. 17 is a diagram showing an example of the communication control operation in one direction of the optical communication system according to the third embodiment. Fig. 17 is a view showing the communication control in the uplink direction of the optical communication system of the present embodiment. (Sequence Ulb) Each 〇mj (l〇G-〇NU5le, G-0NU5!, 10G · lG-0NU5m) Performing the sequence shown in Embodiment 1 (sequence υυ ' and transmitting the uplink signal to 仃RN (catch in the ring node). Among the rNs in each ring node, the responder system will be self-administered. The uplink burst signals received by each NU are converted into continuous signals, and the continuous signals are received in the 0TU frame of the frame of 0ΤΝ specification, and the wavelength of at least 1 wavelength specified by 0LT1 is taught. The optical signal is rotated in the same way as the R0ADM part in the same ring node. 〇Τϋ Λ It can be generated according to each communication speed, and can also mix and match frames of different communication speeds in one 0TU frame. In Fig. 17, 151 λ 51 i are allocated to each RN in the ring node 2b! The communication wavelength, λ 521 λ λ 52 j is the communication wavelength of each RN allocated in the ring type node 2 ,, λ5 η b; l5 nk is the communication wavelength of each RN allocated in the ring type node, and the actual number of wavelengths used This is determined by the transmission capacity to be communicated between 〇LT1 and each RN (rn in the ring node). Thus, in the optical communication system of the present embodiment, the ring-shaped node constituting the ring network is directly housed in According to the RN described in the first embodiment, it is possible to obtain the same effect as that of the first embodiment. Further, when the RN is placed in the vicinity of the ring node, it is possible to constitute an optimum network without unnecessary fibers. 38 322835 201203891 Further, in the present embodiment, it is also possible to mix the real yoke form 1 or the second embodiment, and the month b is flexible to form a network. For example, Sx is used to create only the first pass system of the first embodiment (see the first Figure) Ring-shaped stuffing, 1 lang 2! and RN3u~31P conversion cost The configuration of the ring-shaped node P&quot;' 2bl described in the embodiment, or only the %-type point 2a2 and the RN321-32q of the optical communication system (see Fig. 13) of the second embodiment are converted into the ring described in the embodiment. The configuration of the node %. (Industrial availability) The optical communication system of the present invention can be effectively utilized in a communication system for performing p(10) control, and is particularly suitable for a light having a plurality of 丨-to-multi-connection networks. [Brief Description of the Drawings] Fig. 1 is a view showing an example of the configuration of an embodiment of the optical communication system of the present invention. The second diagram shows an example of a configuration example of the office side device (0LT). Fig. 3 is a view showing a configuration example of a remote node (RN). Fig. 4 is a view showing an example of a communication control operation in the downlink direction of the optical communication system according to the first embodiment. Fig. 5 is a view showing an example of the configuration of the 0TU frame. Fig. 6 is a view showing an example of the communication control operation in the uplink direction of the optical communication system according to the first embodiment. Fig. 7 is a view showing an example of an operation when the optical communication system according to the first embodiment performs communication using the active system communication path. Fig. 8 is a view showing an operation example in the case where the optical fiber is in a failure in the optical communication system according to the first embodiment. 39 322835 201203891 Fig. 9 is a diagram showing an example of the operation of transmitting the monitoring control signal of the optical communication system according to the first embodiment. Fig. 10 is a view showing an example of the measurement operation of the transmission path delay of the ring network. Fig. 11 is a view showing an example of the operation of measuring the propagation path delay between the ring node and the RN. Fig. 12 is a flowchart showing an example of a redundant switching control sequence. Fig. 13 is a view showing an example of the communication control operation in the downward direction of the optical communication system of the second embodiment. Fig. 14 is a view showing an example of the communication control operation in the uplink direction of the optical communication system according to the second embodiment. Figure 15 is a diagram showing a configuration example of an optical communication system according to the third embodiment.

TfC 〇 第16圖係表示實施形態3之光通信系統的下行方向的 通信控制動作之一例之圖示。 第Π圖係表示實施形態3之光通信系統的上行方向的 通信控制動作之一例之圖示。 第18圖係表示習知之olt-IF的構成例之圖示。 【主要元件符號說明】TfC 〇 Fig. 16 is a view showing an example of a communication control operation in the downlink direction of the optical communication system according to the third embodiment. The figure is a diagram showing an example of the communication control operation in the uplink direction of the optical communication system according to the third embodiment. Fig. 18 is a view showing a configuration example of a conventional olt-IF. [Main component symbol description]

1 0LT 1 、2n、2ai、2az、2an、2bi、2b2、2bn 環型節點 3u、3ιΡ、321、32tl、3nl、3nr 遠端節點(RN) 光輕合器1 0LT 1 , 2n, 2ai, 2az, 2an, 2bi, 2b2, 2bn ring type nodes 3u, 3ιΡ, 321, 32tl, 3nl, 3nr remote node (RN) optical light combiner

5l 1G-0NU 40 322835 2012038915l 1G-0NU 40 322835 201203891

5i0 10G-ONU 5i〇i 10G · 1G-0NU 11 多重分離部 12A、12B OLT-IF 12-1 ' 131 ' 327 CPU 12-2 、 132 、 326 12-3 12-4 、 138 、 32卜 331 12-5 135i0 10G-ONU 5i〇i 10G · 1G-0NU 11 Multiple separation unit 12A, 12B OLT-IF 12-1 '131 ' 327 CPU 12-2, 132, 326 12-3 12-4, 138, 32 331 12 -5 13

13A、32A13A, 32A

13B 、 32B 14 31 ' 337 32 33 33A 33Bi ' 33Bn 121 122 123 124 125 126 記憶體 高積體PON控制部 光送受信器(Optical TRx) 封包緩衝記憶體 監視控制部 現用系統監視控制部 預備系統監視控制部 R0ADM 部 WDM耦合器 分歧耦合器 詢答器部 0ΤΝ詢答器 詢答器 L2橋部 Ρ0Ν控制部 多工器(MUX) 解多工器(DEMUX) 本地定時器管理部 P0N-TS供應部 41 322835 20120389113B, 32B 14 31 ' 337 32 33 33A 33Bi ' 33Bn 121 122 123 124 125 126 Memory high-product PON control unit optical transmitter (Optical TRx) Packet buffer memory monitoring control unit system monitoring control unit preparation system monitoring control Part R0ADM Part WDM Coupler Bifurcator Coupler Unit 0 ΤΝ 答 询 询 L L2 Bridge Ρ 0 Ν Control Unit Multiplexer (MUX) Demultiplexer (DEMUX) Local Timer Management Department P0N-TS Supply Department 41 322835 201203891

127、137、322、332 0ΤΝ映射器/解映射器 128 SER/DES 133 、 323 134 、 324 135 、 325 136 333 334 335 336 管理訊框送受信部 TS供應部 時刻同步部 RTT計算部 上行用雙重比率叢發CDR (Clock Data Recovery) 雙重比率叢發光受信器 (Dual rate Optical Burst Rx) lOGbps連續光送信器(Continuous 10G-Tx) lGbps連續光送信器(Continuous 1G-Tx) 42 322835127, 137, 322, 332 0ΤΝ Mapper/Demapper 128 SER/DES 133, 323 134, 324 135, 325 136 333 334 335 336 Management Frame Transmission and Receiving Unit TS Supply Unit Time Synchronization Unit RTT Calculation Unit Upward Dual Ratio CDR (Clock Data Recovery) Dual Rate Optical Burst Rx lOGbps Continuous Optical Transmitter (Continuous 10G-Tx) lGbps Continuous Optical Transmitter (Continuous 1G-Tx) 42 322835

Claims (1)

201203891 七 ι· 2. 3. 4. 、申請專利範圍: 一種光通信系統,包含: 環型網路,其係由具有R0ADM功能的節點所構成; 遠端節點,其係被收容於構成前述環型網路的節點 中;以及 ‘ 星型網路,其係藉由將前述遠端節點和丨個以上之 〇NU經由光耦合器而1對多連接而構成, 構成前述環型網路的節點之中之一部分的節點係 作為0LT而動作,且執行含有對於系統内之各〇NU的上 行頻寬分配控制的Ρ0Ν控制動作。 如申請專利範圍第1項所述之光通信系統,其中, 其為作為前述0LT而動作的節點之局側裴置、以及 前述遠端節點係設定資料和控制資訊於〇τυ訊框而互 相進行通信。 如申請專利範圍第1項所述之光通信系統,其中, 前述遠端節點係將從所連接的各〇NU接收之光叢 發信號分別變換成光連續信號,且將變換後之各光連續 信號予以波長多重化而傳送。 如申請專利範圍第1項所述之光通信系統,立中, 其為作為前述GLT而動作的節點之局側裝置係具 /、丨/丁、机订目則述環型網路抽出特定波 $錢U處理、以及將特定波錢錢光輸出於前 型網路之處理而實現前述咖Μ功能;以及 322835 1 201203891 0LT處理手段,其係執行含有對系統内之各0NU的 上行頻寬分配控制的Ρ0Ν控制動作、以及含有和各0NU 之間的傳送路徑延遲測定之監視控制動作。 5. 如申請專利範圍第4項所述之光通信系統,其中, 連接前述節點彼此的各傳送路徑、以及連接前述節 點和其轄屬的遠端節點之各傳送路徑係由2重化之光 纖所構成,局側裝置和遠端節點係將2重化之光纖的一 方設定為現用系統,而將另一方設定為預備系統而進行 通信, 前述0LT處理手段係在監視控制動作中,測定使用 前述2重化光纖的一方時的與各0冊之間的各傳送路徑 延遲並予以保存,並且亦測定使用另一方時的與各0NU 之間的各傳送路徑延遲並予以保存,在Ρ0Ν控制動作 中,係使用對應於作為現用系統而使用之光纖的傳送路 徑延遲。 6. 如申請專利範圍第5項所述之光通信系統,其中, 構成前述環型網路的節點係進行下述運作: 當檢測出和前述環型網路上的鄰接節點之間的傳 送路徑之通信障礙、或和轄屬的遠端節點之間的傳送路 徑之通信障礙時,則朝向局側裝置傳送表示其宗旨之訊 息,並且變更設定以便使用在此之前作為預備系統之光 纖進行通信, 此外,當接收到表示通信障礙檢測之訊息時,則朝 向局側裝置轉送該訊息,並且變更設定以便使用在此之 2 322835 201203891 • 前作為職*^之域進行通信。 7. 如申請專利範圍第1項至第6項中任1所述之光通信 系統,其中, ° 構成前述環型網路的節點係具備:詢答器,其係將 由環型網路所接收的信號光中所包含之特定波長的信 號光進行波長變換’並且亦將接收自轄屬的遠端節點之 信號光進行波長變換。 8. 一,光通信系、統,包含有:環型網路,其係由具有R0ADM 功月b、且具備複數的經由光耦合器而收容複數個〇NU 的0NU收容手段之節點所構成, 構成前述環型網路的節點之中之一部分的節點係 作為0LT而動作,且執行含有對系統内之各的上行 頻寬分配控制的Ρ0Ν控制動作。 9. 如申請專利範圍第8項所述之光通信系統,其中, 其為作為前述〇 L τ而動作的節點之局側裝置、以及 其他節點所具備之0 N U收容手段係於0 T U訊框設定資料 和控制資訊而互相進行通信。 10. 如申請專利範圍第8項所述之光通信系統,其中, 前述0NU收容手段係將接收自所連接的各〇之光 叢發信號分別變換成光連續信號,且將變換後之各光連 續信號予以波長多重化而傳送。 如申請專利範圍第8項、第9項或第10項所述之光通 信系統,其中, 其為作為前述〇LT而動作的節點之局側裝置係具 322835 3 201203891 • 備·· R0ADM手段,其係執行自前述環型網路抽出特定波 長的信號光之處理、以及將特定波長的信號光輸出於前 述環型網路之處理而實現前述R0ADM功能;以及 0LT處理手段,其係執行含有對於系統内之各〇 的上行頻寬分配控制的Ρ0Ν控制動作、以及含有和各 0NU之間的傳送路徑延遲測定之監視控制動作。 12.如申請專利範圍第丨丨項所述之光通信系統,其中, 連接前述節點彼此的各傳送路徑、以及連接前述節 點和其轄屬的遠端節點之各傳送路徑係由2重化之光 纖所構成,局側裝置和遠端節點係將2重化之光纖的一 方設定為現用祕’而將另-方設定為預備系統而進行 通信, 前述〇 L T處理手段係在監視控制動作中,測定使用 前述2重化之光纖的一方時的和各〇NU之間的各傳送路 徑延遲並予以保存,並且亦測定使用前述另一方時的和 各0NU之間的各傳送路徑延遲並予以保存,在p〇N控制 動作中’係使用對應於作為現用系統而使用之光纖^ 送路徑延遲。 13·如申請專利範圍第12項所述之光通信系統,其中, 構成前述環型網路的節點係進行下述運作: 當檢測出和前述環型網路上的鄰接節點之間的傳 送路徑之通信障礙時,則朝向局側裝置傳送表示其穴t 之訊息’並且變更設定以便使用在此之前作為預備= 322835 4 201203891 之光纖進行通信, 此外,s接收到表示通信障礙檢測之訊息時,則朝 二局侧裳置轉送該訊息,並且變更設定以便使用在此之 刖作為預備系統之光纖進行通信。 14.、+.=通信裝置’其係在含有環型網路、被收容於構成前 :被型網路的節點中之遠端節點、以及將前述遠端節點 I1個以上之_經由純合器1對多連接而構成之星 舰之光通信系統中,和具有R咖功能之另外的節 ”,占一起構成前述環型網路,該通信裝置具備: 手段’其係執行自前述環型網路抽出特 、4號光之處理、以及將特定波長的俨號 乂 述環型網路之處理而實現前述_功;:;以:1 理m純仃含有對系統内之各_的 分配控制的酬控制動作、以及含有和各0_ 3的傳迗路徑延遲測定之監視控制動作。 置,其係在含有環型網路之Μ㈣統t 和八有_M功能且具備經由光輕合器而收 〇之複數個_收容手段之其他節點— = 型網路’該通信裝置具備: 月長 嶋Μ手段,其係執行自前述環型網路抽 長的信號光之處理、以及將特定波長的 = 述環型網路之處理而實現前述職D =出於列 ⑽處理手段,其錢行含有對_’二及 上仃頻寬分配控制的酬控制動作、以及含有和各0Nl] 322835 5 201203891 之間的傳送路徑延遲測定之監視控制動作。201203891 七·· 2. 3. 4. Patent application scope: An optical communication system, comprising: a ring network, which is composed of nodes having the function of R0ADM; and a remote node, which is housed in the ring a node of a type network; and a 'star network', which is constructed by one-to-many connection of the aforementioned remote node and more than one 〇NU via an optical coupler, constituting a node of the aforementioned ring network One of the nodes operates as 0LT, and performs a Ν0Ν control operation including uplink bandwidth allocation control for each 〇NU in the system. The optical communication system according to claim 1, wherein the office side of the node operating as the OLT and the remote node setting data and control information are mutually performed in the υτ frame. Communication. The optical communication system of claim 1, wherein the remote node converts the optical burst signals received from the connected 〇NU into optical continuous signals, and converts the converted light continuously. The signal is transmitted by multiplexing the wavelength. In the optical communication system according to the first aspect of the patent application, the center side device is a node of the node that operates as the GLT, and the ring network extracts a specific wave. $钱U processing, and the processing of the specific wave money output to the front-end network to achieve the aforementioned curry function; and 322835 1 201203891 0LT processing means, the implementation of the system includes the allocation of the upstream bandwidth of each 0NU in the system The control operation of the control and the monitoring control operation including the measurement of the delay of the transmission path with each ONU. 5. The optical communication system according to claim 4, wherein each of the transmission paths connecting the nodes and the transmission path connecting the node and the remote node to which the node belongs is a double-stranded fiber In the configuration, the office side device and the remote node set one of the double-stranded optical fibers as the active system, and the other is set as the standby system to perform communication. The 0LT processing means is used in the monitoring control operation, and the measurement uses the foregoing. When the one of the two optical fibers is duplicated, the transmission paths between the zero and the zero volumes are delayed and stored, and the delays of the respective transmission paths between the respective ONUs are measured and stored, and the control is performed in the Ν0Ν control operation. The transmission path delay corresponding to the optical fiber used as the active system is used. 6. The optical communication system according to claim 5, wherein the node constituting the ring network performs the following operation: when detecting a transmission path with an adjacent node on the ring network; When there is a communication failure of the communication barrier or the transmission path between the remote node under the jurisdiction, the message indicating the purpose thereof is transmitted to the office side device, and the setting is changed to communicate using the optical fiber as the standby system beforehand. When the message indicating the communication failure detection is received, the message is forwarded to the office side device, and the setting is changed to communicate using the domain as the job*2 2 322835 201203891. 7. The optical communication system according to any one of claims 1 to 6, wherein the node constituting the ring network has a: a responder, which is received by the ring network. The signal light of a specific wavelength included in the signal light is wavelength-converted' and the signal light received from the remote node of the jurisdiction is also wavelength-converted. 8. The optical communication system includes: a ring network comprising a node having a ROAA power cycle b and having a plurality of ONU receiving means for accommodating a plurality of 〇NU via an optical coupler. The node constituting one of the nodes of the ring network operates as 0LT, and performs a control operation including allocation control for each uplink bandwidth in the system. 9. The optical communication system according to claim 8, wherein the station side device that is the node that operates as the aforementioned 〇L τ and the other NU housing means that are provided by the other node are in the 0 TU frame. Set data and control information to communicate with each other. 10. The optical communication system according to claim 8, wherein the ONU receiving means converts the received light burst signals received from the respective connected lines into optical continuous signals, and converts the converted lights. The continuous signal is transmitted by multiplexing the wavelength. The optical communication system according to the eighth aspect, the ninth aspect, or the tenth aspect of the invention, wherein the station side device of the node that operates as the 〇LT is 322835 3 201203891 • The R0ADM means And performing the processing of extracting signal light of a specific wavelength from the ring network and outputting signal light of a specific wavelength to the ring network to implement the foregoing ROADM function; and the OLT processing means, The 频0Ν control operation of each uplink bandwidth allocation control in the system and the monitoring control operation including the transmission path delay measurement with each ONU. 12. The optical communication system according to claim 2, wherein each of the transmission paths connecting the nodes to each other and the transmission paths connecting the nodes and the remote nodes to which they belong are divided into two. The optical fiber is configured such that the side device and the remote node communicate one of the two-folded optical fibers as the current secret and the other is set as the standby system, and the 〇LT processing means is in the monitoring control operation. The transmission path delay between each of the two multiplexed optical fibers and each of the 〇NUs is measured and stored, and each transmission path delay between each of the above-mentioned ONUs is measured and stored. In the p〇N control action, the use of the fiber-optic path delay corresponding to the use as the active system is used. 13. The optical communication system according to claim 12, wherein the node constituting the ring network performs the following operation: when detecting a transmission path with an adjacent node on the ring network; In the case of a communication failure, the message indicating the hole t is transmitted toward the office side device and the setting is changed to use the optical fiber that was previously used as the preparatory = 322835 4 201203891, and when the s receives the message indicating the communication failure detection, The message is forwarded to the side of the second office, and the settings are changed to communicate using the fiber as the standby system. 14. The +.= communication device' is a remote node that includes a ring network, is housed in a node that is pre-constructed: a typed network, and has more than one or more of the aforementioned remote nodes. In the optical communication system of the star-to-many to be connected to the multi-connection, and the other node having the R- coffee function, the communication device has the following means: the means is executed from the aforementioned ring type The operation of the network extraction, the processing of the 4th light, and the processing of the nucleus of a specific wavelength to the ring network realize the aforementioned _ work;:; 1: m pure 仃 contains the allocation of each _ in the system The control control action and the monitoring control action including the delay measurement of each of the 0_3 transmission paths. The system is equipped with a ring network (4) system t and eight _M functions and has a light coupling device. And the plurality of other nodes of the receiving means - the type network - the communication device has: a month long means, which performs processing of signal light drawn from the ring network, and a specific wavelength = The processing of the ring network is implemented to achieve the aforementioned job D = out of the column (10) The processing means includes a charge control operation for the _'2 and the upper bandwidth allocation control, and a monitoring control operation for measuring the transmission path delay between each of the 0N1 and 322835 5 201203891.
TW100105936A 2010-05-21 2011-02-23 Optical communication system and communication apparatus TW201203891A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058659 WO2011145218A1 (en) 2010-05-21 2010-05-21 Optical communication system and communication apparatus

Publications (1)

Publication Number Publication Date
TW201203891A true TW201203891A (en) 2012-01-16

Family

ID=44991342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105936A TW201203891A (en) 2010-05-21 2011-02-23 Optical communication system and communication apparatus

Country Status (3)

Country Link
JP (1) JPWO2011145218A1 (en)
TW (1) TW201203891A (en)
WO (1) WO2011145218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552536B (en) * 2015-03-20 2016-10-01 國立交通大學 Optical data center network system and optical switch
CN106656447A (en) * 2016-09-30 2017-05-10 北京邮电大学 LR-EPON communication system and communication method based on LR-EPON communication system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2675102B1 (en) * 2011-02-08 2023-11-08 Mitsubishi Electric Corporation Communication system time synchronization method, slave station apparatus, master station apparatus, control apparatus, and program
EP2713626A1 (en) * 2012-10-01 2014-04-02 NTT DoCoMo, Inc. Method and system for providing an external optical data packet to a destination node of a packet optical network
US9749078B2 (en) 2012-10-27 2017-08-29 Zte Corporation 10 gigabit per second capable passive optical network system with flexible nominal upstream bitrate
EP3107227B1 (en) 2014-03-20 2019-05-01 Nippon Telegraph and Telephone Corporation Transport apparatus and transport method
JP5917629B2 (en) * 2014-08-20 2016-05-18 Nttエレクトロニクス株式会社 Optical transmission system integrated circuit and optical transmission system
JP6310534B2 (en) * 2016-11-30 2018-04-11 日本電信電話株式会社 Scheduler
WO2020194554A1 (en) * 2019-03-26 2020-10-01 三菱電機株式会社 Master node and round-trip transmission delay time acquisition method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271009A (en) * 1994-08-02 2006-10-05 Fujitsu Ltd Optical transmission system, optical multiplexing transmission system, and its peripheral technique
JP3533370B2 (en) * 2000-11-01 2004-05-31 日本電信電話株式会社 Trunk node device and optical access network
JP2002198905A (en) * 2000-12-26 2002-07-12 Speednet Inc Subscriber local loop communication system for optical fiber network
JP3984195B2 (en) * 2003-06-17 2007-10-03 日本電信電話株式会社 Remote node and optical communication system using the same
DE102005010610A1 (en) * 2005-03-08 2006-09-21 Siemens Ag Optical transmission system
JP2007124422A (en) * 2005-10-28 2007-05-17 Pyxisway Networks Inc Optical ring network apparatus
JP4072184B2 (en) * 2005-12-09 2008-04-09 古河電気工業株式会社 Optical transmission system
JP5092895B2 (en) * 2008-05-23 2012-12-05 富士通株式会社 Optical communication apparatus and optical communication system
JP5025581B2 (en) * 2008-07-04 2012-09-12 株式会社日立製作所 Communication system and communication apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552536B (en) * 2015-03-20 2016-10-01 國立交通大學 Optical data center network system and optical switch
US9807477B2 (en) 2015-03-20 2017-10-31 National Chiao Tung University Optical data center network system and optical switch
CN106656447A (en) * 2016-09-30 2017-05-10 北京邮电大学 LR-EPON communication system and communication method based on LR-EPON communication system

Also Published As

Publication number Publication date
WO2011145218A1 (en) 2011-11-24
JPWO2011145218A1 (en) 2013-07-22

Similar Documents

Publication Publication Date Title
TW201203891A (en) Optical communication system and communication apparatus
US10454574B2 (en) System and method for performing in-service optical network certification
US11146330B2 (en) System and method for performing in-service optical network certification
ES2667691T3 (en) Wavelength negotiation method, system and device and multi-wavelength passive optical network device
US8655166B2 (en) System and method for performing in-service optical fiber network certification
US20090208210A1 (en) Passive optical network remote protocol termination
US20160241335A1 (en) Relay device, relay method, and optical communication system which uses relay device
JP2008532448A (en) Optical transmission system
JP5068594B2 (en) Optical network terminator, optical access system and communication service system
US20170317779A1 (en) Channel Bonding in Multiple-Wavelength Passive Optical Networks (PONs)
US9680575B2 (en) Relay device, station side device, and communication system and communication method using relay device
TW201308921A (en) Optical communication system, communication device and band control method
JP2009171441A (en) Registration method for house-side device, ason system, and station-side device
Kim et al. Low‐Cost, Low‐Power, High‐Capacity 3R OEO‐Type Reach Extender for a Long‐Reach TDMA‐PON
JP6459588B2 (en) Access control system, access control method, master station device, and slave station device
US9148222B2 (en) AFDX network with a passive optical network
JP2012129942A (en) Optical communication system
CN111316575B (en) Data sending and receiving method in PON system, network equipment and system
KR100947711B1 (en) WDM-TDM hybride optical network and self defection method of optical channel problem thereof
JP2019009500A (en) Relay node apparatus, PON system, and network system
JP2016025575A (en) Optical line terminal, optical network unit, pon system, and optical communication method
Yeh et al. Simply self-restored ring-based time-division-multiplexed passive optical network
Kneifati Passive optical networks and FTTx: technology and solutions
JP2013046132A (en) Communication system and master station device
Cheng Performance modeling of the SPECjAppServer business case using LQN templates