TW201203520A - Transistor having an adjustable gate resistance and semiconductor device comprising the same - Google Patents

Transistor having an adjustable gate resistance and semiconductor device comprising the same Download PDF

Info

Publication number
TW201203520A
TW201203520A TW99122066A TW99122066A TW201203520A TW 201203520 A TW201203520 A TW 201203520A TW 99122066 A TW99122066 A TW 99122066A TW 99122066 A TW99122066 A TW 99122066A TW 201203520 A TW201203520 A TW 201203520A
Authority
TW
Taiwan
Prior art keywords
memory
transistor
gate
resistance value
memory cell
Prior art date
Application number
TW99122066A
Other languages
Chinese (zh)
Other versions
TWI466271B (en
Inventor
Hang-Ting Lue
Kuo-Pin Chang
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW099122066A priority Critical patent/TWI466271B/en
Publication of TW201203520A publication Critical patent/TW201203520A/en
Application granted granted Critical
Publication of TWI466271B publication Critical patent/TWI466271B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A memory device comprises an array of memory cells each capable of storing multiple bits of data. The memory cells are arranged in memory strings that are connected to a common source line. Each memory cell includes a programmable transistor connected in series with a fixed resistance. The transistor includes a gate dielectric that is switchable between a plurality of different resistance values. The threshold voltage of the transistor changes according to the resistance value of the gate dielectric. Memory states of the memory cells can thus be associated with respective resistance values of the dielectric layer of the transistor.

Description

201203520201203520

I W5964PA 六、發明說明: 【發明所屬之技術領域】 本發明是有關於電子記憶體元 合用以當作非揮發性卞憎科-从 特別疋有關於適 【先前二,件之半導體記憶體元件。 電子。己隐體兀件係為—種廣為所知且可常見於不同 =電子f統中之電子元件。舉例來說’電子記憶體元件(有 時指的是電腦記憶體)可見於電腦&其他電腦元件中。不同 的可抽取式電子記憶體元件或獨立式電子記憶體元件亦 為人所熟知,像是記憶卡或者是固態數據存取系統。舉例 來說’像是使用可抽取式記憶卡從數位相機中存取照片, 或是利用數位錄影機存取所錄製之電影。 多數的電子記憶體元件可被區分成揮發性或非揮發 性。-般的揮發性電子記憶體元件係為—種需要電源來保 持所儲存之資訊。揮發性電子記憶體元件可例如是靜態隨 機存取§己k、體(SRAM)或是動態隨機存取記憶體(DRam) 電脂)0己憶體元件’ SRAM或是DRAM只有在電腦開啟時才 能保留所儲存的數據,而當電腦關閉後或是切斷電源後, 之前所儲存的數據則會遺失。相對地,一般非揮發性電子 記憶體元件係在沒有外接電源的情況下仍具有可保留儲 存數據的此力。非揮發性記憶體例如是記憶卡,記憶卡係 被廣泛地使用在數位相機上。記憶卡可以儲存相機所拍下 來的照片,而且即使是記憶卡已經從相機中抽離,記憶卡 依然可保留住這些照片數據。 當使用電子記憶體元件的系統變得越來越強大時,對 201203520 於數據儲存容量的要求也隨之增加。 ,、' 大量隨機存取記,J二二一般隨著 ::更高解析相機製造出更=:= 榀案就系要具有更大儲存容量的記憶 “ 以’找出增加記憶體元件之數據儲^、^所 :當 而僅僅是增加容量是不夠的, 通承還希望能在增加數據儲存容量的同時 元件的尺寸戋者其$请可α技-从 等住。己隐體 一p二 將π件尺寸作縮減。所以,在 二7尺寸下增加數據儲存容量為電子記憶體S件工掌 =另-個趨勢,換句話說就是朝向更大位元密度之趨勢 而:進。另外還有成本上的考量。舉例來說,當一個電子 兄憶體几件的位元密度增加時,希望能維持或減少1製造 成本。換句話說’就是希望能減少電子記憶體元件的位元 成本(每-位元的製造成本)。另外更有—個考量就是相關 的效能’例如是在電子記憶體元件上提供更快速的數據儲 存以及更快速的儲存數據存取。 提供增加位元密度之方法是減少個別記憶胞的尺 寸。舉例來說,當製程被改善後,可以形成更小的結構, 故允許製造出更小的記憶胞。然而有一些計晝指出,在未 來使用此方法時,位元成本將會開始增加,因為相較於記 憶胞縮減之速度,製程成本將有可能會開始更快速地增 加。 【發明内容】 本發明係揭露有關於記憶體元件之記憶體裝置及方 201203520 I wjy〇ifrn 根據本揭露書之-方面,提出一種記憶體元件可包括 =憶胞陣列^中,複數個記憶胞中的至少—個記憶胞 匕具有一第一端、第二端、以及一閘極結構之電晶 體,且此閘極結構係包括一閘極介電層。此記憶胞還包括 和电晶體之閘極結構串聯之電阻。此閘極介電層可切換 式地對應至-第-電阻值和_第二電阻值,此第—電阻值 和此第二電阻值分別對應—第—記憶態和—第二記憶態。I W5964PA VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an electronic memory element for use as a non-volatile sputum--from the singularity of the previous two, semiconductor memory components . electronic. The hidden parts are known as electronic components that are widely known and can be found in different electronic systems. For example, 'electronic memory components (sometimes referred to as computer memory) can be found in computers & other computer components. Different removable electronic memory components or stand-alone electronic memory components are also known, such as memory cards or solid state data access systems. For example, 'like using a removable memory card to access a photo from a digital camera, or using a digital video recorder to access a recorded movie. Most electronic memory components can be distinguished as volatile or non-volatile. A typical volatile electronic memory component is a type of power source that is required to maintain the stored information. The volatile electronic memory component can be, for example, a static random access device, a body (SRAM), or a dynamic random access memory (DRam). The memory component is SRAM or DRAM only when the computer is turned on. In order to retain the stored data, when the computer is turned off or the power is turned off, the previously stored data will be lost. In contrast, a generally non-volatile electronic memory component has this force that retains stored data without an external power source. The non-volatile memory is, for example, a memory card, and the memory card is widely used in digital cameras. The memory card can store photos taken by the camera, and the memory card retains the photo data even if the memory card has been removed from the camera. As systems using electronic memory components become more powerful, the requirements for data storage capacity for 201203520 also increase. ,, 'a large number of random access records, J 2nd generally with:: higher resolution camera manufacturing more =:= 榀 就 要 要 要 要 要 要 要 要 要 要 要 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出 找出Storage and ^: It is not enough to just increase the capacity. Tongguan also hopes to increase the data storage capacity while the size of the component is the same as its $-available. The size of the π piece is reduced. Therefore, increasing the data storage capacity under the size of 2 and 7 is the trend of the electronic memory S piece = another trend, in other words, the trend toward a larger bit density: There are cost considerations. For example, when the bit density of several electronic brothers is increased, it is hoped to maintain or reduce the manufacturing cost. In other words, it is hoped to reduce the bit cost of electronic memory components. (per-bit manufacturing cost). Another consideration is the related performance', for example, to provide faster data storage on electronic memory components and faster storage of data access. The method is to reduce Don't remember the size of the cell. For example, when the process is improved, a smaller structure can be formed, which allows a smaller memory cell to be fabricated. However, some points indicate that the bit cost in the future when using this method. It will start to increase, because the process cost will start to increase more rapidly than the speed of memory cell reduction. SUMMARY OF THE INVENTION The present invention discloses a memory device and a memory device for a memory element 201203520 I wjy〇 According to the aspect of the disclosure, a memory device can include a memory cell array, wherein at least one of the plurality of memory cells has a first end, a second end, and a gate structure. The transistor, and the gate structure comprises a gate dielectric layer. The memory cell further comprises a resistor connected in series with the gate structure of the transistor. The gate dielectric layer is switchably corresponding to the -first resistance The value and the _second resistance value, the first resistance value and the second resistance value respectively correspond to the first-memory state and the second memory state.

此閘極"電層之第—電阻值係和該電晶體之一軟性 崩潰狀態相對應。此閘極介電層之第二電阻值係和電晶體 之一至少部分反轉軟性崩潰狀態相對應。 此電晶體更可包括-井區端點。一讀取操作、一編程 #作、以及-抹除操作中之至少—者可包括施加一預定電 i:至井區H此編程操作包括施加預定電壓至問極結 構’以及此抹除操作包括施加預定電壓至井區端點 。此編The gate-resistance value of the gate' electrical layer corresponds to a soft collapse state of the transistor. The second resistance value of the gate dielectric layer corresponds to at least partially reversing the soft collapse state of the transistor. This transistor may further include a well region endpoint. A read operation, a programming #, and a - erase operation may include applying a predetermined power i: to the well region H. The programming operation includes applying a predetermined voltage to the gate structure 'and the erase operation includes A predetermined voltage is applied to the end of the well. This series

㈣作可誘發電晶體之軟性崩潰狀態。此抹除操作可至少 邛分地反轉電晶體之軟性崩潰狀態。 閘極介,層可包括二氧化石夕(Si〇2)、二氧化給 (Hf〇2)、一氧化锆(zroj、以及二氧化鈦(丁沁2)中之至少一 者0 電阻可包括一高電阻值層,以及閘極結構可包括一低 電阻值層’且其中⑥電阻值層可被設置於閘極介電層和低 電阻值層之間。 根據本揭露書之另一方面,提出一種記憶體元件可包 括位元線、-字元線、一包括一記憶胞之記憶串、以及 連接至該記憶串之共源極線。此記憶串係連接至位元 201203520 線此5己憶胞係連接於共源極線和位元绫 ,^ 包括一具有一第一端點、一:位t泉之間。此記憶胞 雷曰俨# , ”,, 弟一端點、以及一閘極結構之 =體丄其t此閘極結構包括—閘極介電層。此記憶胞還 二二且’ t電阻係為電性地串聯連接於電晶體之問極 ^層和子讀之間。此_介電層可切換式地對岸至一 =電阻值和-第二電阻值,此第—電阻值和此第二電阻 值/刀別對應-第一記憶態和一第二記憶態。 处閘極介電層之第—電阻值係和電晶體之—軟性崩潰 狀悲相對應。閘極介電層之第二電阻值係和電晶體之一至 少部分反轉軟性崩潰狀態相對應。 此電晶體更包括一井區端點。一讀取操作、一編程操 作、=及一抹除操作中至少一者可包括施加一預定電壓至 井區端點。此編程操作可包括施加預定電壓至閘極結構, 以及此抹除操作可包括施加該預定電壓至井區端點。此編 私刼作可誘發電晶體之軟性崩潰狀態。此抹除操作可至少 部分地反轉電晶體之軟性崩潰狀態。 閘極介電層可包括二氧化矽(Si02)、二氧化铪 (Hf〇2)、二氧化锆(Zr〇2)、以及二氧化鈦(Ti〇2)中之至少一 者。電阻可包括一高電阻值層’以及閘極結構可包括一低 電阻值層’且其中此高電阻值層係設置於閘極介電層以及 此低電阻值層之間。 此記憶胞可以係一第一記憶胞,以及此記憶體元件更 可包括一以一疊層方向形成於此第一記憶胞上之第二記 憶胞’使得此第一記憶胞以及此第二記憶胞係被包括在一 三維之記憶體陣列中。 201203520(4) It can induce the soft collapse state of the transistor. This erase operation reverses the soft collapse state of the transistor at least minutely. The gate dielectric layer may include at least one of SiO2 (Si〇2), oxidized (Hf〇2), zirconia (zroj, and TiO 2). 0 The resistance may include a high The resistor value layer, and the gate structure may comprise a low resistance layer ' and wherein 6 the resistor layer may be disposed between the gate dielectric layer and the low resistance layer. According to another aspect of the disclosure, a The memory component can include a bit line, a word line, a memory string including a memory cell, and a common source line connected to the memory string. The memory string is connected to the bit 201203520 line. The system is connected to the common source line and the bit 绫, ^ includes a first end point, and a bit: between the t springs. The memory cell 曰俨 曰俨 , , , , , , , , , , , , , The gate structure includes a gate dielectric layer. The memory cell is also two-two and the resistor is electrically connected in series between the transistor layer and the sub-reader of the transistor. The dielectric layer can be switched to the opposite side to a = resistance value and - the second resistance value, the first resistance value and the second resistance value / knife Corresponding to - the first memory state and the second memory state. The first resistance value of the gate dielectric layer corresponds to the soft breakdown of the transistor. The second resistance value of the gate dielectric layer is One of the crystals corresponds at least partially to a soft collapse state. The transistor further includes a well end point. At least one of a read operation, a program operation, and an erase operation may include applying a predetermined voltage to the well The end point of the zone. This programming operation can include applying a predetermined voltage to the gate structure, and the erasing operation can include applying the predetermined voltage to the end of the well region. This singulation can induce a soft collapse state of the transistor. In addition to the operation, the soft collapse state of the transistor can be at least partially reversed. The gate dielectric layer can include cerium oxide (SiO 2 ), hafnium oxide (Hf 〇 2 ), zirconium dioxide (Zr 〇 2 ), and titanium dioxide ( At least one of Ti〇2). The resistor may include a high resistance layer 'and the gate structure may include a low resistance layer' and wherein the high resistance layer is disposed on the gate dielectric layer and the low resistance Between the value layers. This memory cell can be tied The first memory cell, and the memory component, may further include a second memory cell formed on the first memory cell in a stacking direction such that the first memory cell and the second memory cell are included in a Three-dimensional memory array. 201203520

IW5964PA 為讓本發明之上述内容能更明顯易懂,本發明之此些 和其他之特徵、觀點、以及實施例係於下節【實施方式】 中作詳細說明。 【實施方式】 第1圖根據本發明所揭露之一實施例繪示一記憶體 陣列100之一方塊圖。記憶體陣列100包括複數個記憶胞 1〇2 ’複數個位元線BL1_Bl3,複數個字元線WL1-WL3, 一串接選擇線SSL·,一接地選擇線GSL,以及一共源極線 • SL。 可配置記憶體陣列100使得此些記憶胞102被設置成 mxn s己憶胞1 〇2之陣列’ m和n係分別為自然數。更特別 的是,記憶體陣列100更可以使其中之記憶胞1〇2係為多 個§己憶串MSI-MS3的方式來配置。各記憶串MS包括一 個串接選擇電晶體SST、一個群組的11個記憶胞102、以 及以串聯形式連接的接地選擇電晶體GST。記憶串 MS1-MS3係分別連接至位元線bli_BL3。記憶串 • MS1-MS3皆連接至共源極線SL。 第2圖繪示一記憶串MS 1之示意圖,記憶串MS丨係 為一記憶串之範例,記憶串可以是第1圖中繪示之任一記 |·意串MS1-MS3。s己憶串MSI包括一串接選擇電晶體SST、 第一記憶胞到第四記憶胞l〇2a-i〇2c、以及一接地選擇電 晶體GST。串接選擇電晶體SST、第一記憶胞到第三記憶 胞102a-102c、以及接地選擇電晶體GST係串聯連接於位 元線BL1和共源極線SL之間。雖然記憶串MS丨包括三個 記憶胞102a-102c,實際上之實施可以包括額外增加之記The above and other features, aspects, and embodiments of the present invention are described in detail in the following section [Implementation]. [Embodiment] FIG. 1 is a block diagram of a memory array 100 according to an embodiment of the present invention. The memory array 100 includes a plurality of memory cells 1 〇 2 'plurality of bit lines BL1_Bl3 , a plurality of word lines WL1 - WL3 , a series selection line SSL · , a ground selection line GSL , and a common source line • SL . The configurable memory array 100 is such that the memory cells 102 are arranged such that the array of mxn s memory cells ’2 and the n systems are natural numbers, respectively. More specifically, the memory array 100 can be configured in such a manner that the memory cell 1〇2 is a plurality of MIMO strings MSI-MS3. Each memory string MS includes a serial selection transistor SST, a group of 11 memory cells 102, and a ground selection transistor GST connected in series. The memory strings MS1-MS3 are connected to the bit line bli_BL3, respectively. Memory String • MS1-MS3 are connected to the common source line SL. FIG. 2 is a schematic diagram of a memory string MS1. The memory string MS is an example of a memory string, and the memory string can be any one of the pictures shown in FIG. The singular string MSI includes a series selection transistor SST, a first memory cell to a fourth memory cell 〇2a-i 〇 2c, and a ground selection transistor GST. The serial selection transistor SST, the first memory cell to the third memory cell 102a-102c, and the ground selection transistor GST are connected in series between the bit line BL1 and the common source line SL. Although the memory string MS includes three memory cells 102a-102c, the actual implementation may include an additional increase

» I 201203520 憶胞:例如是16、32、64或更多個記憶胞。第一記憶胞 至第三記憶胞102a-102c分別包括電晶體1〇8a_1〇8c。電晶 體_-職分別包括可調整電阻值之問極ma_u〇c。記 憶胞102a-102c還分別包括電阻U2a_n2c。此外,在一些 實2例中,鄰近之電晶體108可以分享共源極和/或共汲極 以縮減記憶胞尺寸。若在一鄰近之電晶體中,源極或汲極 皆非共用結構,如此則很難達到一所欲達到之設計規則, 此欲達到之設計規則將會無法大於4F2。 串接選擇電晶體SST之閘極係連接至串接選擇線 SSL。串接選擇電晶體SST之源極係連接至位元線】。 串接選擇電晶體SST之沒極係連接至第一記憶胞1 〇2a。 接地選擇電晶體GST之閘極係連接至接地選擇線 GSL。接地選擇電晶體GST之源極係連接至最後一個記憶 胞102c。接地選擇電晶體GST之汲極係連接至共源極線 SL。 第3圖根據本發明所揭露之一實施例繪示一記憶胞 102之示意圖。記憶胞l〇2a-102c可以被配置如第3圖所 示。記憶胞102包括電晶體1〇8以及電阻112。電晶體ι〇8 包括一可調整電阻值之閘極110。 電晶體108可以是一場效電晶體(FET),例如是一金 氧半場效電晶體(MOSFET)。電晶體108可包括一半導體 基板114、一源極116、一汲極118、以及閘極11〇。閘極 110包括一閘極介電層120以及一閘極電極122。電晶體 108之源極116係通過串接選擇電晶體SST以及如第2圖 所示之任意位於其中間的記憶胞1〇2連接至位元線bl。 201203520 1 WjyuHr/Λ 電晶體108之汲極118係通過接地選擇電晶體GST以及如 第2圖所示之任意位於其中間的記憶胞1〇2連接至共源極 線SL。電晶體1〇8之閘極電極122係通過電阻112連接至 字凡線WL。半導體基板114係連接至一陣列井區接觸引 線。 電阻112可以是一具有固定電阻值Rp之固定電阻。 電阻112係和閘極11〇串聯連接,閘極11〇具有一可變閘 極電阻值Rg’在此作說明的是,此電阻值Rg係為可調變 擊的a己憶胞1〇2接收來自於字元線施加於記憶胞之電麼 %。所產生之一壓差(Va_Vg)跨於電阻112上,此一閘極電 壓vg係施加於電晶體108之閘極11〇之上。依照如下所 不之方程式(1) ’閘極電壓Vg係和施加電壓Va有相對應 之關係。 & 故,閘極電壓Vg和閘極電阻值Rg係為相依關係。 因此,若控制閘極電阻值Rg使其從一電阻值轉變成為另 一電阻值,則有效閘極電壓Vg亦會隨之轉變,從而導致 出一不同之電流。 第4圖繪示一 M0SFET之模擬結果,當閘極電阻值 Rg從1 GQ轉變為丨ΜΩ,則其曲線隨之從實線134轉變 成虛線136。在此示例中,一 M〇SFET具有一 3 nm之閘 極氧化物、一約2E17cm·3之p型井區摻雜以及具有 之固定電阻值之電阻112。第4圖中顯示了電阻值Rg& i ⑽轉變成i ΜΩ,導致臨限電壓vth從較低的臨限電壓 1 201203520» I 201203520 Recall: for example, 16, 32, 64 or more memory cells. The first to third memory cells 102a-102c include transistors 1a8a_1〇8c, respectively. The electro-crystals _- positions include the polarity of the adjustable resistance value ma_u〇c. The memory cells 102a-102c also include resistors U2a_n2c, respectively. In addition, in some real cases, adjacent transistors 108 may share a common source and/or a common drain to reduce memory cell size. If the source or the drain are not shared in a neighboring transistor, it is difficult to achieve a design rule that is desired, and the design rule to be achieved will not be greater than 4F2. The gate of the serial selection transistor SST is connected to the serial selection line SSL. The source of the serial selection transistor SST is connected to the bit line]. The spurt of the series selection transistor SST is connected to the first memory cell 1 〇 2a. The gate of the ground selection transistor GST is connected to the ground selection line GSL. The source of the ground selection transistor GST is connected to the last memory cell 102c. The drain of the ground selection transistor GST is connected to the common source line SL. FIG. 3 is a schematic diagram showing a memory cell 102 according to an embodiment of the invention. The memory cells 1a-102c can be configured as shown in Fig. 3. The memory cell 102 includes a transistor 1〇8 and a resistor 112. The transistor ι 8 includes a gate 110 of an adjustable resistance value. The transistor 108 can be a field effect transistor (FET), such as a metal oxide half field effect transistor (MOSFET). The transistor 108 can include a semiconductor substrate 114, a source 116, a drain 118, and a gate 11A. The gate 110 includes a gate dielectric layer 120 and a gate electrode 122. The source 116 of the transistor 108 is connected to the bit line bl by a serial selection transistor SST and any memory cell 1〇2 located therebetween as shown in Fig. 2. 201203520 1 WjyuHr/Λ The drain 118 of the transistor 108 is connected to the common source line SL through the ground selection transistor GST and any memory cell 1〇2 located therebetween as shown in FIG. The gate electrode 122 of the transistor 1 is connected to the word line WL through a resistor 112. The semiconductor substrate 114 is connected to an array of well contact leads. The resistor 112 can be a fixed resistor having a fixed resistance value Rp. The resistor 112 is connected in series with the gate 11 ,, and the gate 11 〇 has a variable gate resistance value Rg'. Here, the resistance value Rg is a variable memory of the singular cell 1 〇 2 Receives the % of electricity from the word line applied to the memory cell. One of the generated differential voltages (Va_Vg) is across the resistor 112, and this gate voltage vg is applied to the gate 11A of the transistor 108. According to the following equation (1), the gate voltage Vg has a corresponding relationship with the applied voltage Va. & Therefore, the gate voltage Vg and the gate resistance value Rg are dependent. Therefore, if the gate resistance value Rg is controlled to change from a resistance value to another resistance value, the effective gate voltage Vg also changes, resulting in a different current. Fig. 4 is a graph showing the simulation result of a MOSFET. When the gate resistance Rg changes from 1 GQ to 丨ΜΩ, the curve changes from the solid line 134 to the broken line 136. In this example, an M〇SFET has a 3 nm gate oxide, a p-type well region doping of about 2E17 cm·3, and a resistor 112 having a fixed resistance value. Figure 4 shows the resistance value Rg& i (10) converted to i ΜΩ, resulting in a threshold voltage vth from a lower threshold voltage 1 201203520

Vthlow漂移至高臨限電壓^ 电監vt^igh。所以,此可調整電阻 之電晶體108經由改變閘極雷阳枯 电阻值Rg,而造成臨限電壓 t你移相|χ之下’對於洋停閘電晶體來說,浮停 晶體之臨限㈣vth漂移是由其所儲存之電荷所引起。可 ㈣電阻值值之電晶體⑽不需要具有儲存電荷以 限電壓Vth之漂移。 閘極介電層】20可由薄的二氧切_2)來形成。電 阻值在閘極no上之改變可以藉由利用—為人所熟知的軟 性崩潰_ breakdown, SBD)狀態來實施,此軟性崩潰係 為過去所不希望發生的情況。如第5圖所示,在最新製进 的MOS元件中,閘極介電層】2〇之間極氧化物中具有一 任意數量的缺陷130。隨著時間的推移,由於操作應力, 因而形成更多的缺陷13G,以至於產生出微小的導電路和 通過此氧化物。在此過程中,由於氧化物之缺陷而形成之 導電路徑以及透過閘極介電層12G之閘極氧化物穿随而引 發電流傳導。這些導電路徑的形成即被視為是軟性崩潰。 這些導電路徑可能因為高電流密度在缺陷位置處產生之 高溫而被修復。高溫可能會重置部份的氧化物缺陷13〇, 破壞掉導電路徑。可用一高介電常數材料替換掉薄二氧化 矽(Si〇2)以形成閘極介電層120,此高介電常數材料具有一 高介電常數或是高於二氧化矽之介電常數之尺值。合適的 高介電常數材料的例子包括二氧化铪出汜2)、二氧化鍅 (Zr〇2)、以及二氧化鈦(Ti〇2)。高介電常數材料通常比二氧 化矽具有更多的缺陷,故在改變閘極電阻值Rg上提供了 較簡單的操作。 201203520 第6圖繪示一電晶體108在軟性崩潰前和軟性崩潰後 =!!,:問極電壓%的關係圖,其中電晶體⑽ 車人f朋/貝别以貫線138表示,電晶體1〇8在軟性崩 以虛線M0表示。舉例來說,在軟性崩潰前,具有小於^ ,厚度之薄閘極介電層12G氧化層的間極漏電流通常小於 1 nA ’其對應的閘極電阻值Rg大於丨⑻。在—廳順Vthlow drift to high threshold voltage ^ electric monitoring vt^igh. Therefore, the transistor 108 of the adjustable resistance changes the gate Ryang resistance value Rg, thereby causing the threshold voltage t to be shifted to the bottom of the cell. (d) Vth drift is caused by the charge it stores. (4) The transistor (10) of the resistance value does not need to have a stored charge to limit the drift of the voltage Vth. The gate dielectric layer 20 can be formed by a thin dioxometer-2). The change in the resistance value at the gate no can be implemented by utilizing the well-known soft crash _ breakdown, SBD state, which is a situation that was not desired in the past. As shown in Fig. 5, in the newly fabricated MOS device, the gate dielectric layer has an arbitrary number of defects 130 in the epitaxial oxide. Over time, due to the operating stress, more defects 13G are formed, so that minute conductive circuits are generated and passed through the oxide. During this process, the conductive path formed by the defects of the oxide and the gate oxide through the gate dielectric layer 12G cause current conduction. The formation of these conductive paths is considered a soft collapse. These conductive paths may be repaired due to the high current density generated at the defect location. High temperatures may reset some of the oxide defects 13 〇, destroying the conductive path. The thin dielectric layer 120 may be replaced by a high dielectric constant material to form the gate dielectric layer 120. The high dielectric constant material has a high dielectric constant or a dielectric constant higher than that of the germanium dioxide. The ruler value. Examples of suitable high dielectric constant materials include ruthenium dioxide ruthenium 2), ruthenium dioxide (Zr 〇 2), and titanium dioxide (Ti 〇 2). High dielectric constant materials generally have more defects than ruthenium dioxide, thus providing a simpler operation in changing the gate resistance value Rg. 201203520 Figure 6 shows a graph of a transistor 108 before soft collapse and after a soft crash =!!,: asks the pole voltage %, where the transistor (10) is represented by a line 138, the transistor 1〇8 is represented by a broken line M0 in the soft collapse. For example, before the soft collapse, the interlayer leakage current of the oxide layer of the thin gate dielectric layer 12G having a thickness of less than ^, is usually less than 1 nA ', and its corresponding gate resistance value Rg is greater than 丨 (8). In the hall

L可藉由施加-約+4.3 V之閘極電壓%而誘發開極介 ^層m之軟性崩潰。在閘極介電層⑽發生軟性崩潰 後,閘極漏電流變成約丨μΑ,其對應㈣極電阻值心約 為1 ΜΩ |人性崩/貝比一般相變隨機存取記憶體(卩⑶扁) 或相變記憶體(PRAM)使用到更低的電源功率消耗。L can induce a soft collapse of the open-layer layer m by applying a gate voltage % of about +4.3 V. After the soft breakdown of the gate dielectric layer (10), the gate leakage current becomes about 丨μΑ, and its corresponding (four) pole resistance value is about 1 ΜΩ | humanity collapse/bebey general phase change random access memory (卩(3) flat ) or phase change memory (PRAM) uses lower power consumption.

可調整電阻值之電晶體108之特性可根據上述之說 明作改雙。舉例來說,閘極氧化物之厚度以及p型井區之 摻雜可根據上述之範例數值作改變。此外,固定電阻ιΐ2 之電阻值也可從上述之電阻值丨Mq作改變。 舉例來說,第7圖顯示一記憶胞1〇2之替換實施例對 於閘極漏電流Ig以及閘極電壓Vg之間的關係圖。電晶體 108係為具有1 nm厚之閘極氧化物的N通道m〇sfet。 電阻112具有一固定電阻值2〇μω。在軟性崩潰前的閘極 漏電流ig以及閘極電壓Vg之間的關係係以實線144來表 =,而在軟性崩潰後的關係則以虛線146來表示。在此實 施例中’軟性崩潰前的起始閘極氧化物電阻值Rg約為1 =Ω。使用為時約!叩的4 3 v脈衝電壓可以誘發出軟性崩 7貝。在权性崩潰後,閘極氧化物電阻值Rg會降低並且被 ©定電阻112所固定。在此實施例中,軟性崩潰後之間極 201203520 氧化物電阻值Rg會下降至約為1ΜΩ。 1 .. 跡二圖繪示此實施例之記憶胞1〇2的電晶體108之源 之關係θί性崩潰前的源極電流Is以及閘極電壓%間 線^^貫線M8表示:而在軟性崩潰後的關係是以虛 地 …如第8圖所不,軟性崩潰後,源極電流明顯 降,坆疋因為相較於閘極】10之閘極電阻值R 加之閘極電壓差係大多數跨在電阻112之固定電】值斤ς ^的關係。故軟性崩潰使得電晶體⑽之祕/源極電流有 一明顯之落差。在此實施例中,在軟性崩潰前的源極電流 [s和軟性崩潰後的源極電流ism差係超過2個數量 級以上。所以’此明顯不同的電晶體⑽之㈣/源極電流 可以被用纟當作記憶胞102之不同的記憶態。 第9圖和第10圖繪示了顯示出記憶胞1〇2之電阻值 Rp變化效果之模擬結果。更特殊的是,第9圖顯示在對應 不同數值的固定電阻值尺卩下,電晶體108之閘極電流特 I1生,第10圖顯示在對應不同數值的固定電阻值Rp下,電 晶體108之源極/汲極電流特性。在第9圖中,曲線16〇 顯不出軟性崩潰前之狀態之結果;曲線161顯示出當Rp = 4.7 ΜΩ時之結果;曲線162顯示出當Rp = 20 ΜΩ時之結 果;曲線163顯示出當Rp = 40 ΜΩ時之結果;以及曲線 164顯示出當Rp = 8〇 ΜΩ時之結果。在第圖中,曲線 170顯示出軟性崩潰前之狀態之結果;曲線丨71顯示出當 Rp = 4.7MQ時之結果;曲線172顯示出當Rp = 20MQ時 之結果;曲線173顯示出當Rp = 40 ΜΩ時之結果;以及 曲線174顯示出當Rp = 80 ΜΩ時之結果。故由第9圖以 201203520 I wjy〇nr/\ 及第10圖中的模擬結果可看出,當固定電阻值Rp之電阻 值增加時,閘極電流以及汲極/源極電流皆會降低。 在一些實施例中,記憶胞102可被用來當作一次性編 程(One Time Program)記憶體元件。第11圖繪示電晶體108 之閘極電流Ig以及施加至電晶體108的閘極100之軟性崩 潰誘發(SBD-inducing)電壓脈衝數目之關係圖。當軟性崩 潰誘發脈衝電壓施加至電晶體108時,閘極電流Ig逐步地 改變。當施加軟性崩潰誘發脈衝電壓的數目增加時,在一 • 給定+2 V的讀取電壓下之閘極電流Ig隨之增加。此情況 的發生係為閘極氧化物崩潰的漸進性機制的關係所造 成。所以記憶胞102可被用來當作多層一次性編程記憶體 元件。在這樣的實施例中,可以藉由施加一相對應預決定 數目之軟性崩潰誘發電壓脈衝於電晶體108的閘極110 上,以選擇所欲得到的閘極電流Ig。 在其他實施例中,記憶胞102可被用來當作重複寫入 之記憶體元件。第12圖繪示了根據軟性崩潰前之狀態(曲 • 線180)和軟性崩潰狀態(曲線182)的模擬結果所得之電晶 體108閘極特性。以曲線182表示之崩潰狀態可藉由施加 一預定周期時間之閘極脈衝電壓來誘發。在此模擬範例 中,係藉由施加一具有約1 ps之脈衝寬度之4.3 V之脈衝 電壓以誘發崩潰狀態。 然而,藉由施加具有和誘發軟性崩潰狀態電壓相反極 性之脈衝電壓,軟性崩潰狀態可以被至少部分反轉。此 外,軟性崩潰反轉(SBD-reversing)脈衝電壓之脈衝寬度係 可不同於軟性崩潰誘發脈衝電壓的脈衝寬度。在部分反轉 201203520 軟性崩潰電壓條件下,電晶體⑽之閘極特性係以第12 圖中的曲、線184來表示。在此繪示範例巾,藉由施加一具 =ir脈衝寬度之·4.3 v的脈衝電壓以達到部分反轉軟 性朋潰狀態。 。電晶體108之軟性崩潰狀態可以至少部分反轉至可 區分出軟性崩潰狀態下之電晶體⑽之閘極特性和部分反 轉軟,崩潰狀態下之電晶體⑽之閘極特性之程度。此 =,藉由施加適當的脈衝電壓,電晶體】〇8可以在二性崩 f狀態和反轉軟性崩潰狀態(或至少部分反轉軟性崩潰狀 怨)之間作多次重覆轉換。所以,軟性崩潰狀態和至少部八 :轉軟性崩潰狀態此二種狀態可以視為是各別的;己憶 恶。舉例來說’以曲線182表*之軟性崩潰狀態可視為是 5己憶胞102之-「編程」狀態,而以曲線184表示之至少 部分反轉軟性崩潰狀態可視為是記憶胞1〇2之一「抹除」 接著請參照第13圖,和第1圖與第2圖同樣的,記 憶體陣列100的可重複寫入記憶體實施例之操作將在此作 說明。一般來說,可以控制字元線WL1_WL3、位元線 BL1-BL3、以及源極線SL之電壓準位,以及接地選擇電 晶體GST和串接選擇電晶體SST之狀態以對記憶體陣列 1〇〇之任意記憶胞作編程、抹除、或讀取的動作。更詳細 的說明係隨著記憶體陣列之操作,會針對記憶體陣列 1〇〇之一個或多個特殊記憶胞得到具體的參考;然而本領 域熟知此技術者應可理解,此些說明應用可等同於記憶體 陣列100之其他記憶胞,並且也可等同於應用記憶體陣列 201203520 100之其他可替換實施例,包括額外加入的記憶胞、位元 線、字元線、接地選擇電晶體、串接選擇電晶體、以及/ 或其他元件。 記憶體陣列100可以是記憶體元件200的一部份,記 憶體元件200係由複數個區塊202組織所得,每一區塊202 更由複數個頁204組織所得。舉例來說,在一實施例中, 記憶體元件200之一 2-Gbit實施例可包括2048個區塊 202,每個區塊202中有64個頁204,而每個頁204有2112 • 個位元,使得記憶體元件200係由一系列128-kbyte區塊 202所組成。其他實施例可以包括額外增加的或少量位元 的記憶體、區塊202、頁204、以及/或每一頁204之位元。 記憶體元件100也可包括多位元介面(未顯示)用以對 記憶體陣列100作數據傳輸或接收,例如8或16位元介 面。收到之數據可以被寫入記憶體成為二進位數據,此二 進位數據係被儲存成邏輯準位1或邏輯準位0。可對記憶 體元件200作初始化,使得複數個記憶胞102在開始時被 • 設定成一邏輯準位1或一邏輯準位0。在初始化後,可利 用抹除和編程操作將數據寫入此些記憶胞102中。抹除操 作可將一邏輯準位1儲存至記憶胞102中。編程操作可將 一邏輯準位0儲存至記憶胞102中。在一些實施例中,係 於記憶體元件200之一區塊202中依次執行抹除操作,以 及於記憶體之位元上依次執行編程操作。 編程操作使被抹除位元的狀態改變成一邏輯準位0 之狀態。編程操作藉由誘發一選擇要編程的記憶胞102之 電晶體108,使其有一軟性崩潰狀態以完成此狀態之轉 15 201203520 4文3 Vi?:兄’在上述所說明之實施例中’可藉由施加一 μ山主子疋線WL電壓至所選擇的記憶胞以誘發出 狀態。記憶體陣列100餘下的記憶胞⑻可以被 保持在低於軟性崩潰誘發電壓準位之下。 一;^ Γ例來5兄’ ^參照第】®,一被選擇之記憶胞102(由 一虛線框所顯示)可藉由將字元線和《電壓提升至4.3 v —而位凡線BL3係設定在〇 v以完成編程。此時,其餘 線WL2和WL3被提升至3 3 v 1及其餘的位元 ‘:二?被提升至3·3 V。由於其他未被選擇的記 :已_L所跨之電位係小於誘發軟性崩潰狀態的電壓要 :文’、他未被選擇的έ己憶胞1〇2不會被編程。此外,第 ^己憶串的串接選擇電晶體SST導通,例如是藉由提升 串接選擇線SSL的電壓至(或大於)串接選擇電晶體咖之 h限電壓Vth’例如3.3 V。由於位元線BL3的電壓為〇v, 以及位元線BU和BL2的電壓為3 3 v,只有第三記憶串 觀的串接選擇電晶體SST導通;第-記憶串MS1和第 …己憶串MS2餘下的串接選擇電晶體似依然維持關 閉。第三記憶串MS3的接地選擇電晶體GST依然維持關 閉,以及源極線SL係為浮接的。因此跨在被選擇的記憶 胞1、〇2上^電壓在字元線wu和位元線犯之交點處係 至少足夠高的,以誘發被選擇的記憶胞1〇2之電晶體 的权性崩潰狀態,故被選擇的記憶胞1〇2被編程。 π —如另一範例,請依然參照第1圖,可將位元線BL3 设疋在0V,藉由提升字元線WL1的電壓至4·3 v,以對 被選擇的記憶胞1〇2(由一虛線框所顯示)作編程。同時, 201203520The characteristics of the transistor 108, which can adjust the resistance value, can be modified in accordance with the above description. For example, the thickness of the gate oxide and the doping of the p-type well region can be varied according to the above numerical values. Further, the resistance value of the fixed resistance ι ΐ 2 can also be changed from the above-described resistance value 丨 Mq. For example, Fig. 7 shows a relationship between an alternative embodiment of a memory cell 1 对 for a gate leakage current Ig and a gate voltage Vg. The transistor 108 is an N-channel m〇sfet having a gate oxide of 1 nm thick. The resistor 112 has a fixed resistance value of 2 〇 μω. The relationship between the gate leakage current ig and the gate voltage Vg before the soft collapse is indicated by the solid line 144, and the relationship after the soft collapse is indicated by the broken line 146. In this embodiment, the initial gate oxide resistance value Rg before the soft collapse is about 1 = Ω. Use for about time! The 4 4 3 v pulse voltage can induce a soft collapse of 7 Å. After the collapse of the weight, the gate oxide resistance value Rg is lowered and fixed by the fixed resistor 112. In this embodiment, the oxide resistance value Rg of the 201203520 is reduced to about 1 Μ Ω between the soft collapses. 1 .. trace 2 shows the relationship between the source of the transistor 108 of the memory cell 1〇2 of this embodiment θί, the source current Is before the collapse, and the gate voltage % line, the line M8 represents: The relationship after the soft collapse is virtual ground... As shown in Fig. 8, after the soft collapse, the source current drops significantly, because the gate resistance value of the gate is higher than that of the gate 10 plus the gate voltage difference is large. Most of the relationship across the fixed resistance of the resistor 112 is 值^. Therefore, the soft collapse causes a significant drop in the secret/source current of the transistor (10). In this embodiment, the difference between the source current [s and the source current ism after the soft collapse is more than two orders of magnitude or more before the soft collapse. Therefore, the (four)/source current of the significantly different transistor (10) can be used as the different memory state of the memory cell 102. Fig. 9 and Fig. 10 show simulation results showing the effect of the change in the resistance value Rp of the memory cell 1〇2. More specifically, Fig. 9 shows that the gate current of the transistor 108 is specific to the fixed resistance value 对应 corresponding to different values, and Fig. 10 shows the transistor 108 under the fixed resistance value Rp corresponding to different values. Source/drain current characteristics. In Fig. 9, curve 16 〇 shows the result of the state before the soft collapse; curve 161 shows the result when Rp = 4.7 Μ Ω; curve 162 shows the result when Rp = 20 Μ Ω; curve 163 shows The result when Rp = 40 Μ Ω; and the curve 164 shows the result when Rp = 8 〇Μ Ω. In the figure, curve 170 shows the result of the state before the soft collapse; curve 丨71 shows the result when Rp = 4.7MQ; curve 172 shows the result when Rp = 20MQ; curve 173 shows when Rp = The result is 40 ΜΩ; and curve 174 shows the result when Rp = 80 ΜΩ. Therefore, it can be seen from the simulation results in Fig. 9 with 201203520 I wjy〇nr/\ and Fig. 10 that when the resistance value of the fixed resistance value Rp is increased, both the gate current and the drain/source current are lowered. In some embodiments, memory cell 102 can be used as a One Time Program memory component. Figure 11 is a graph showing the relationship between the gate current Ig of the transistor 108 and the number of soft burst induced (SBD-inducing) voltage pulses applied to the gate 100 of the transistor 108. When a soft breakdown induced pulse voltage is applied to the transistor 108, the gate current Ig is gradually changed. When the number of applied soft-induced pulse voltages increases, the gate current Ig at a given +2 V read voltage increases. This occurs because of the relationship between the progressive mechanisms of gate oxide collapse. Therefore, memory cell 102 can be used as a multi-layer, one-time programming memory component. In such an embodiment, the desired gate current Ig can be selected by applying a corresponding predetermined number of soft crash induced voltage pulses to the gate 110 of the transistor 108. In other embodiments, memory cell 102 can be used as a memory component for repeated writes. Fig. 12 is a graph showing the gate characteristics of the electromorph 108 obtained from the simulation results of the state before the soft collapse (curve line 180) and the soft collapse state (curve 182). The collapsed state, represented by curve 182, can be induced by applying a gate pulse voltage for a predetermined period of time. In this simulation example, a collapse state is induced by applying a pulse voltage of 4.3 V having a pulse width of about 1 ps. However, the soft collapse state can be at least partially inverted by applying a pulse voltage having a polarity opposite to that induced the soft collapse state voltage. In addition, the pulse width of the soft burst inversion (SBD-reversing) pulse voltage may be different from the pulse width of the soft crash induced pulse voltage. Under partial reversal 201203520 soft breakdown voltage conditions, the gate characteristics of the transistor (10) are represented by the curve and line 184 in Fig. 12. Here, the exemplary embodiment is shown to achieve a partial inversion soft state by applying a pulse voltage of 4.3 v with a width of =ir. . The soft collapse state of the transistor 108 can be at least partially reversed to distinguish the gate characteristics of the transistor (10) in a soft collapse state and the degree of gate reversal of the transistor (10) in a collapsed state. This =, by applying the appropriate pulse voltage, the transistor 〇8 can make multiple iterations between the dimorphic collapse state and the reversal soft collapse state (or at least partially reverse the soft crash). Therefore, the soft crash state and at least part 8: the soft crash state can be regarded as individual; it has been recalled. For example, the soft collapse state of the curve 182 table * can be regarded as the "program" state of the 5 memory cell 102, and the at least partially inverted soft collapse state indicated by the curve 184 can be regarded as the memory cell 1 〇 2 An "erase" Next, referring to Fig. 13, the operation of the rewritable memory embodiment of the memory array 100 will be described herein in the same manner as in Figs. 1 and 2. In general, the voltage levels of the word line WL1_WL3, the bit lines BL1-BL3, and the source line SL, and the states of the ground selection transistor GST and the series selection transistor SST can be controlled to the memory array 1 Any memory cell that is programmed, erased, or read. A more detailed description will be specifically referenced to one or more special memory cells of the memory array 1 随着 as the memory array operates; however, those skilled in the art should understand that such descriptions can be applied. Equivalent to other memory cells of the memory array 100, and may also be equivalent to other alternative embodiments of the application memory array 201203520 100, including additional memory cells, bit lines, word lines, ground selection transistors, strings Select the transistor, and / or other components. Memory array 100 can be part of memory component 200, and memory component 200 is organized from a plurality of blocks 202, each block 202 being organized from a plurality of pages 204. For example, in one embodiment, a 2-Gbit embodiment of memory element 200 can include 2048 blocks 202, with 64 pages 204 in each block 202 and 2112 • each page 204. The bits cause the memory element 200 to consist of a series of 128-kbyte blocks 202. Other embodiments may include additional or fewer bits of memory, block 202, page 204, and/or bits of each page 204. The memory component 100 can also include a multi-bit interface (not shown) for data transmission or reception of the memory array 100, such as an 8 or 16 bit interface. The received data can be written to the memory as binary data, and the binary data is stored as a logic level 1 or a logic level 0. The memory component 200 can be initialized such that a plurality of memory cells 102 are initially set to a logic level 1 or a logic level 0. After initialization, data can be written to the memory cells 102 using erase and program operations. The erase operation stores a logic level 1 into the memory cell 102. The programming operation stores a logic level 0 into the memory cell 102. In some embodiments, an erase operation is performed sequentially in one of the blocks 202 of the memory element 200, and a program operation is sequentially performed on the bits of the memory. The programming operation changes the state of the erased bit to a state of logic level 0. The programming operation induces a state of rotation of the transistor 102 of the memory cell 102 to be programmed to complete the transition of the state by the soft state of the memory cell 102 201203520 4 text 3 Vi?: brother 'in the embodiment described above' The state is induced by applying a λ voltage to the selected memory cell. The remaining memory cells (8) of the memory array 100 can be kept below the soft crash induced voltage level. A; ^ example to 5 brothers ' ^ reference to the first }, a selected memory cell 102 (shown by a dashed box) can be used to increase the word line and "voltage to 4.3 v - and the line BL3 Set to 〇v to complete programming. At this time, the remaining lines WL2 and WL3 are raised to 3 3 v 1 and the remaining bits ‘: 2? It was upgraded to 3·3 V. Because of other unselected notes: the potential across _L is less than the voltage that induces a soft collapse state: the text, his unselected 忆 忆 忆 1 〇 2 will not be programmed. Further, the serial selection of the transistor SST is turned on, for example, by raising the voltage of the series selection line SSL to (or greater than) the serial selection voltage threshold Vth' such as 3.3 V. Since the voltage of the bit line BL3 is 〇v, and the voltage of the bit lines BU and BL2 is 3 3 v, only the serial selection transistor SST of the third memory string is turned on; the first memory string MS1 and the first memory The serial connection of the string MS2 selects the transistor as if it remains off. The ground selection transistor GST of the third memory string MS3 remains closed, and the source line SL is floating. Therefore, the voltage across the selected memory cell 1, 〇2 is at least sufficiently high at the intersection of the word line wu and the bit line to induce the weight of the selected memory cell 1〇2. The crash state, so the selected memory cell 1〇2 is programmed. π - As another example, please still refer to Figure 1, the bit line BL3 can be set to 0V, by raising the voltage of the word line WL1 to 4·3 v, to the selected memory cell 1〇2 (displayed by a dashed box) for programming. Meanwhile, 201203520

I W5V04PA 其餘的字元、線WL2和WL3被提升至3 v,而其餘的位元 線BL1和BL2也被提升至! v。由於跨在其他未被選擇的 記憶胞102上的電塵係小於誘發出軟性崩潰狀態電壓的要 求,因此其他未被選擇的記憶胞1〇2不會被編程。此外, 第三記憶串MS3的串接選擇記憶體SST為導通,例如是 藉由將串接選擇線SSL的電壓提升至(或大於)串接選擇電 晶體sst的臨限電壓,例如1 v,而串接選擇電晶於SST 的臨限電壓係為0.7 V。由於位元線BL3的電壓為〇,而 •位元線BL1和BL2的電壓為! v,故只有第三記憶串湖 的串接選擇電晶體SST為導通;餘下第-記憶串MS1和 第二記憶串MS2的串接選擇電晶體SST依然為關閉。第 二記憶串MS3的接地選擇電晶體GST可維持關閉,且源 極線SL可為浮接。因此,跨在被選擇的記憶胞ι〇2上之 電壓在子元線W1和位元線BL3之交點處係至少足夠高 的,以誘發被選擇的記憶胞102之電晶體1〇8的軟性崩潰 _ 狀態,故被選擇的記憶胞1〇2係被編程。 抹除操作使被編程的位元狀態改變成一邏輯準位i 之狀態。抹除操作藉由至少部分反轉一選擇要抹除的記憶 胞102之電晶體108之軟性崩潰狀態以完成此狀態之轉 變。舉例來說’在上述所說明之實施例中,可藉由施加一 •4.3 V的字元線WL電壓跨至所選擇的記憶胞1〇2以部分 反轉軟性崩潰狀態。換句話說,被編程的記憶胞1〇2之字 元線係被設定至-電位,此電位係相較於那些被編成的記 憶胞102之電晶體108的基板井區之電位要低於4 3 v。 記憶體陣列100餘下的記憶胞102可以被保持在低於軟性 崩潰誘發電壓準位之下。 舉例來說’請參照第】目,一被選擇的記憶胞102(由 一虛線框所顯示)可藉由—包括抹除記憶體陣们〇〇整體 記憶胞102的-區塊抹除步驟的抹除過程而被抹除。在此 區塊抹除後’任意應存有邏輯準位Q之記憶胞⑽可被再 編程至邏輯準位0。抹除過程包括將字元線WL1-WL3之 電愿設定在〇 V,而基板井區的電壓係設定在43 v。此 外’第一記憶串MSI至第三記憶串MS3的串接選擇電晶 體sst以及接地選擇f晶體GST係為關閉,例如是藉由 提升串接選擇線SSL以及接地選擇線GSL之電壓至大約I W5V04PA The remaining characters, lines WL2 and WL3 are boosted to 3 v, and the remaining bit lines BL1 and BL2 are also boosted! v. Since the electric dust system across other unselected memory cells 102 is less than the requirement to induce a soft collapse state voltage, other unselected memory cells 1〇2 will not be programmed. In addition, the serial selection memory SST of the third memory string MS3 is turned on, for example, by raising the voltage of the series selection line SSL to (or greater than) the threshold voltage of the serial selection transistor sst, for example, 1 v, The threshold voltage of the serial selection of the electro-optic crystal in the SST is 0.7 V. Since the voltage of the bit line BL3 is 〇, and the voltage of the bit lines BL1 and BL2 is! v, so only the serial selection transistor SST of the third memory string lake is turned on; the serial selection transistor SST of the remaining first-memory string MS1 and the second memory string MS2 remains off. The ground selection transistor GST of the second memory string MS3 can be kept off, and the source line SL can be floating. Therefore, the voltage across the selected memory cell ι 2 is at least sufficiently high at the intersection of the sub-line W1 and the bit line BL3 to induce softness of the transistor 1 〇 8 of the selected memory cell 102. Crash_state, so the selected memory cell 1〇2 is programmed. The erase operation changes the state of the programmed bit to a state of a logical level i. The erase operation completes the transition of this state by at least partially inverting a soft collapse state of the transistor 108 that selects the memory cell 102 to be erased. For example, in the embodiment described above, the soft collapse state can be partially reversed by applying a • 4.3 V word line WL voltage across the selected memory cell 1〇2. In other words, the programmed word line of the memory cell 1 〇 2 is set to the -potential, which is lower than the potential of the substrate well region of the transistor 108 of the memory cell 102 that is programmed. 3 v. The remaining memory cells 102 of the memory array 100 can be kept below the soft crash induced voltage level. For example, 'please refer to the first item】, a selected memory cell 102 (shown by a dashed box) can be used - including the block erase step of erasing the memory cells 〇〇 the whole memory cell 102 Wipe the process and erase it. After this block is erased, any memory cell (10) that should have a logic level Q can be reprogrammed to a logic level of zero. The erase process includes setting the power of the word lines WL1-WL3 to 〇 V, and the voltage of the substrate well region is set at 43 volts. Further, the serial selection of the first memory string MSI to the third memory string MS3 and the ground selection f crystal GST are turned off, for example, by raising the voltage of the series selection line SSL and the ground selection line GSL to approximately

相同於井區電壓4.3 V’而產生—跨在串接選擇電晶體SST 以及接地選擇電晶豸GST上之〇 v〉爭電位。位元線 BL1-BL3以及源極線SL可以為浮接的。因此,跨在記憶 體陣列100之複數個記憶胞1〇2上之負的字元線乳電位 係至少足夠高的’以至少部分反轉此些記憶胞102的電晶 體1〇8之軟性崩潰狀態,故這些記憶胞1〇2係被抹除。此 處應可理冑’若一數量不足的記憶胞102被抹除,那麼一 二抹除過耘可包括抹除狀態驗證以及上述所說明的區塊 抹除過程。 、£項取操作偵測一被選擇的記憶胞102狀態,以測定此 被選擇的記憶胞102是被設定在邏輯準位〇或是邏輯準位 1的狀態。讀取操作可藉由施加一讀取電壓Vread至字元 ^以偵測被選擇的記憶月包102的邏輯準纟,此字元線係連 、’、。被選擇之5己憶胞1〇2,在此範例中係為字元線WL1。如 第4圖所不,電晶體108之臨限電壓Vth和電晶體1〇8被 201203520Same as the well voltage of 4.3 V' - generated across the series selection transistor SST and the ground selection transistor GST. The bit lines BL1-BL3 and the source line SL may be floating. Therefore, the negative word line milk potential across the plurality of memory cells 1〇2 of the memory array 100 is at least sufficiently high to soften the softness of the transistor 1〇8 at least partially inverting the memory cells 102. State, so these memory cells 1 〇 2 are erased. It should be possible to do this. If an insufficient number of memory cells 102 are erased, then one or two erases can include erase state verification and the block erase process described above. The item fetch operation detects a selected state of the memory cell 102 to determine whether the selected memory cell 102 is set to a logic level or a logic level 1. The read operation can detect the logical reference of the selected memory pack 102 by applying a read voltage Vread to the character ^, which is tied to , ',. The selected 5 cells are 1 〇 2, which in this example is the word line WL1. As shown in Fig. 4, the threshold voltage Vth of the transistor 108 and the transistor 1〇8 are 201203520

I W^y〇4t"A 設定於一軟性崩潰狀態或者是被設定於一至少部分反轉 軟性崩潰狀態相關。當電晶體108處於軟性崩潰狀態時, 閘極電阻值Rg係相對較低的,故臨限電壓Vth被設定至 相對較高的臨限電壓Vthhigh。另一方面,當電晶體108處 於至少部分反轉軟性崩潰狀態時,閘極電阻值Rg係相對 較高的,故臨限電壓Vth被設定置相對較低的臨限電壓 VthlQW。所以,電晶體108的狀態,以及記憶胞102上類 似的記憶態可藉由偵測電晶體108之臨限電壓係為高臨限 • 電壓Vthhigh或者是低臨限電壓Vthlow以測知。所以,被選 擇的記憶胞102之邏輯準位可藉由施加一閘極電壓至被選 擇的記憶胞102之電晶體108以測知,使得電晶體108只 有在電晶體的臨限電壓Vth被設定至低臨限電壓VthlQW才 會導通。故,此所施加的閘極電壓應被選為是大於或等於 低臨限電壓VthlQW,並且小於高臨限電壓Vthhigh。 舉例來說,被選擇之記憶胞102之記憶態可藉由施加 一讀取電壓Vread至跨在記憶胞102上之字元線以測知。 • 選擇此讀取電壓Vread,使得被選擇之記憶胞102之電晶 體108之Vqs小於南臨限電壓Vthhigh ’並且大於或等於低 臨限電壓Vthlow。記憶串MS3中其餘的記憶胞102被操作 於一通透(pass-through)模式。由於記憶串MS3餘下的記憶 胞102記憶態可以為邏輯準位1或邏輯準位0,施加於這 些記憶胞102上之VGS應該要大於或等於高臨限電壓 Vthhigh以在通透模式下操作這些電晶體108,而不需理會 這些記憶胞102的記憶態。此外,記憶串MS3的串接選擇 電晶體SST以及接地選擇電晶體GST為導通,並且位元 19 201203520 線BL3的電壓準位係被提升,使得若被選擇之記憶胞102 之電晶體108為導通時,被選擇之記憶胞102之電晶體108 的VDS將會提升至足夠高的電壓以通過一可察覺的汲極電 流Id。餘下的記憶串MSI和MS2的串接選擇電晶體SST 以及接地選擇電晶體GST係為關閉。 下表(表1)根據記憶體陣列100之一實施例,藉由使 用電壓準位範例的方法來總結記憶體陣列100的操作。對 於不同的實施例,表1中所列的準確電壓準位係可以有所 改變,尤其是那些電晶體108特性和電阻112特性的改變。 · 寫 抹除 讀取 BL1 BL2 BL3 BL1 BL2 BL3 BL1 BL2 BL3 ον IV IV OPEN OPEN OPEN IV ον ον SSL IV 4.3 V IV WL1 4.3 V ον 3 V WL2 3 V ον Vread WL3 3 V ον 3 V GSL ον 4.3 V IV SL ον OPEN ον WELL ον 4.3 V ον 20 201203520I W^y〇4t"A is set in a soft crash state or is set in an at least partial reversal soft crash state. When the transistor 108 is in a soft collapse state, the gate resistance value Rg is relatively low, so the threshold voltage Vth is set to a relatively high threshold voltage Vthhigh. On the other hand, when the transistor 108 is in at least partially inverted soft collapse state, the gate resistance value Rg is relatively high, so the threshold voltage Vth is set to a relatively low threshold voltage VthlQW. Therefore, the state of the transistor 108 and the similar memory state on the memory cell 102 can be detected by detecting the threshold voltage of the transistor 108 as a high threshold voltage Vthhigh or a low threshold voltage Vthlow. Therefore, the logic level of the selected memory cell 102 can be detected by applying a gate voltage to the transistor 108 of the selected memory cell 102, so that the transistor 108 is only set at the threshold voltage Vth of the transistor. The low threshold voltage VthlQW will be turned on. Therefore, the applied gate voltage should be selected to be greater than or equal to the low threshold voltage VthlQW and less than the high threshold voltage Vthhigh. For example, the memory state of the selected memory cell 102 can be detected by applying a read voltage Vread to a word line spanning the memory cell 102. • The read voltage Vread is selected such that the Vqs of the transistor 108 of the selected memory cell 102 is less than the south threshold voltage Vthhigh' and greater than or equal to the low threshold voltage Vthlow. The remaining memory cells 102 in the memory string MS3 are operated in a pass-through mode. Since the memory state of the remaining memory cell 102 of the memory string MS3 can be a logic level 1 or a logic level 0, the VGS applied to these memory cells 102 should be greater than or equal to the high threshold voltage Vthhigh to operate in the transparent mode. The transistor 108 does not need to pay attention to the memory state of these memory cells 102. In addition, the series selection transistor SST and the ground selection transistor GST of the memory string MS3 are turned on, and the voltage level of the line 19 201203520 line BL3 is boosted, so that the transistor 108 of the selected memory cell 102 is turned on. At this time, the VDS of the transistor 108 of the selected memory cell 102 will be boosted to a sufficiently high voltage to pass a perceptible drain current Id. The series connection selection transistor SST and the ground selection transistor GST of the remaining memory strings MSI and MS2 are off. The following table (Table 1) summarizes the operation of the memory array 100 by a method using a voltage level paradigm according to one embodiment of the memory array 100. For different embodiments, the exact voltage levels listed in Table 1 may vary, particularly those of transistor 108 characteristics and resistance 112 characteristics. · Write erase read BL1 BL2 BL3 BL1 BL2 BL3 BL1 BL2 BL3 ον IV IV OPEN OPEN OPEN IV ον ον SSL IV 4.3 V IV WL1 4.3 V ον 3 V WL2 3 V ον Vread WL3 3 V ον 3 V GSL ον 4.3 V IV SL ον OPEN ον WELL ον 4.3 V ον 20 201203520

I W:>y〇4PA 接者請參照第14圖,結構220係顯示出記 之-實施例。如第3圖所示,記憶胞1〇2包括和I W:>y〇4PA Please refer to Fig. 14, and structure 220 shows the embodiment. As shown in Figure 3, the memory cell 1〇2 includes and

串聯的電阻值Rp。結構220可提供電阻值Rp之電阻 串聯至電晶體108之閘極11〇。結構22〇包括—古且112 層222設置於閘極介電| 120上方。結構22〇也值 電阻值層224設置於高電阻值層咖方。低電阻U 可由一低電阻值材料所形成,例如是一金屬矽化物\ 低電阻值層224可用以當作一低電阻值閘極電極。::得 值層222可由-低摻雜複晶石夕材料所組成。形成此 複晶矽材料之層222以提供寄生電阻Rp,例如是在二雜 ΜΩ到1 〇 ΜΩ之區間。 疋 —1 第15圖係顯示可選用何種的p型複晶石夕材料之換 濃度,以提供所欲達到的低電阻值層224 〜电丨且半。如第 15圖中所示之數據,p型複晶矽材料可被摻雜至—低於 1017cm3的濃度,以得到高於的電阻率。故對高 電阻值層222而言,在15 nm節點上,可得到一大於i〇m= 之電阻值Rp。 第]6圖顯示一具有三維架構的記憶體陣列1〇〇之一 實施例的三維記憶體陣列250。三維記憶體陣列25〇包括 以一層壓方向形成於基板254上之記憶體陣列252。記憶 體陣列252形成於導電源極線攔256以及一系列垂直間距 的位元線導體258a-258c之間。一系列的導電串接選擇線 260a-260b係以層壓方向形成於記憶體陣列252上。串接 選擇線260a-260b可藉由導電枉260c和260d連接至串接 選擇電晶體區域266。 21 201203520 ·· -一 ··-- * * . . 基板2 5 4可由一晶元所形成’例如是一石夕晶圓或其他 形式的晶圓。在一些實施例中,基板254可以包括埋藏氧 化層。舉例來說,基板254可以包括一絕緣層石夕晶 (silicon-on-insulator, SOI)材料。 導電源極線欄256可為記憶體陣列250提供一共源極 線。此位元線導體258a-258c可分別提供為位元線 BL1-BL3。導電源極線攔256、位元線導體258a-258c、以 及串接選擇線和導電柱260a-260d可由一導電材料所形 成,例如是鎢。 φ 記憶體陣列252包括接地選擇電晶體區域262、記憶 胞區域264、以及串接選擇電晶體區域266。複數個導電 通道268提供接地選擇電晶體區域262、記憶胞區域264、 以及串接選擇電晶體區域266之間想要達到的導電内連。 此些導電通道268可由一導電材料所形成,例如是鎢。 接地選擇電晶體區域262包括數個記憶體柱狀半導 體層270。數個記憶體閘極絕緣層272係分別形成為此些 記憶體柱狀半導體層270之側壁。數個閘極結構274係分 _ 別形成於記憶體閘極絕緣層272之側壁上。記憶體柱狀半 導體層270和閘極結構274係由複晶矽所形成。部分的記 憶體柱狀半導體層270可由p+以及n+摻雜之複晶石夕所形 成。記憶體閘極絕緣層272可由閘極介電材料所形成,例 如是氧化石夕。 記憶胞區域264包括數個記憶體柱狀半導體層280。 記憶體閘極絕緣層282係分別形成為此些記憶體柱狀半導 體層280之側壁。數個閘極結構284係形成於記憶體閘極 22 201203520 絕緣層282之側壁上。記憶體柱狀半導體層28〇以及閘極 結構284可由複晶矽所形成。部分的記憶體柱狀半導體層 280可由p以及η摻雜之複晶矽所形成。記憶體閘極絕緣 層282可由閘極介電材料所形成,例如是二氧化矽(si〇2) 或咼介電常數材料’例如是二氧化铪(Hf〇2)、二氧化結 (Zr02)、以及二氧化鈦(Ti〇2)。 串接選擇電晶體區域266包括數個記憶體柱狀半導 體層290。記憶體閘極絕緣層292係分別形成為此些記憶 • 體柱狀半導體層290之側壁。數個閘極結構294係形成於 5己憶體閘極絕緣層292之側壁上。記憶體柱狀半導體層290 以及閘極結構294可由複晶矽所形成。部分的記憶體柱狀 半導體層290可由p+以及n+摻雜之複晶矽所形成。記憶體 閘極絕緣層292可由閘極介電材料所形成,例如是氧化矽。 因此,依照本發明揭露書,提供一 1T MOSFET記憶 體,並使用閘極電阻值Rg之變化使得記憶體電晶體之臨 限電壓漂移。藉由一串聯連接之電阻值Rp,閘極電阻值 Rg的改變導致了臨限電壓Vth明顯的漂移。較佳地,Rg(軟 性崩潰之後)和Rp係在一類似地電阻值範圍之間。汲極電 流Id和臨限電壓Vth的不同係用來定義記憶胞之記憶態為 邏輯準位1或疋邏輯準位〇。記憶胞可如一四端點元件般 操作,包括閘極/電阻值Rp和Rg、源極、汲極、以及井區。 不同的高介電常數材料或類似相變記憶體之材料可作為 閘極電阻值Rg的材料。一類似反及閘之陣列結構可用來 當作本發明所揭露之記憶體元件。可以一 4F2的設計法則 來製作記憶胞。一三維類似反及閘之結構也可用以提供超 23 201203520 高的記憶體密度,例如是it位元之容量。 相較於相變記憶體,本發明所揭露之記憶胞可使用相 _ 變記憶體材料於一 MOSFET之閘極介電層上,並且本發明 所揭露之記憶胞,係使用閘極電阻之改變以作編程/抹除操 作,而不是使用電荷儲存來作操作。由於本發明之記憶胞 會通過電晶體之源極發送彳貞測電流,故不需要求一較大的 電流使材料朋潰’因此本發明之記憶胞的編程電流係可更 低於一相變記憶體之編程電流。由於本發明係使用閘極的 電阻值改變而非利用電荷儲存來作數據儲存,故本發明之 φ 記憶胞也不會遇到電荷儲存的問題。 本發明之記憶胞可包括一超薄閘極氧化層(〜1 nm) MOSFET於一具有4F2記憶胞之記憶體陣列中。由於此超 薄閘極氧化層MOSFET係可微縮至低於10 nm,複數個極 微縮之元件(例如,通道長寬比小於10 nm)以本發明之記 憶體陣列來說係有可能達到的。 綜上所述,雖然本發明已以較佳實施例說明揭露如 上,然其並非用以限定本發明。本發明所屬技術領域中具 鲁 有通常知識者,在不脫離本發明之精神和範圍内,當可作 各種之更動與潤飾。因此,本發明之保護範圍當視後附之 申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖繪示根據本發明所揭露之實施例的一記憶體 陣列區塊圖。 第2圖繪示第1圖中所示之記憶體元件之一記憶串的 示意圖。 24 201203520The resistance value Rp in series. Structure 220 can provide the resistance of resistor value Rp in series to gate 11 of transistor 108. Structure 22 includes an ancient and 112 layer 222 is disposed over gate dielectric | 120. The structure 22 is also valued. The resistance value layer 224 is disposed on the high resistance layer. The low resistance U can be formed from a low resistance material such as a metal germanide \ low resistance layer 224 which can be used as a low resistance gate electrode. The value layer 222 can be composed of a low-doped cermet material. A layer 222 of the polysilicon material is formed to provide a parasitic resistance Rp, for example, in the range of two Μ Ω to 1 〇 Ω.疋 —1 Figure 15 shows the type of p-type polycrystalline stone material that can be used to provide the desired low-resistance layer 224 ~ 丨 and half. As shown in Fig. 15, the p-type polysilicon material can be doped to a concentration lower than 1017 cm3 to obtain a higher resistivity. Therefore, for the high resistance layer 222, a resistance value Rp greater than i 〇 m = can be obtained at the 15 nm node. Fig. 6 shows a three-dimensional memory array 250 of an embodiment having a three-dimensional memory array. The three-dimensional memory array 25A includes a memory array 252 formed on the substrate 254 in a lamination direction. Memory array 252 is formed between conductive source line barriers 256 and a series of vertically spaced bit line conductors 258a-258c. A series of conductive series select lines 260a-260b are formed on the memory array 252 in a lamination direction. The series select lines 260a-260b can be connected to the series select transistor region 266 by conductive turns 260c and 260d. 21 201203520 ···一··-- * * . . . The substrate 2 5 4 may be formed by a wafer, such as a wafer or other form of wafer. In some embodiments, substrate 254 can include a buried oxide layer. For example, substrate 254 can include an insulating silicon-on-insulator (SOI) material. The power supply line bar 256 can provide a common source line for the memory array 250. The bit line conductors 258a-258c can be provided as bit lines BL1-BL3, respectively. Conductor line stop 256, bit line conductors 258a-258c, and series select lines and conductive posts 260a-260d may be formed of a conductive material, such as tungsten. The φ memory array 252 includes a ground selection transistor region 262, a memory region 264, and a series select transistor region 266. A plurality of conductive vias 268 provide a conductive interconnect between the ground select transistor region 262, the memory cell region 264, and the series select transistor region 266. The conductive vias 268 may be formed of a conductive material, such as tungsten. The ground selection transistor region 262 includes a plurality of memory columnar semiconductor layers 270. A plurality of memory gate insulating layers 272 are respectively formed as sidewalls of the memory columnar semiconductor layers 270. A plurality of gate structures 274 are formed on the sidewalls of the memory gate insulating layer 272. The memory columnar semiconductor layer 270 and the gate structure 274 are formed of a polysilicon. A portion of the memory columnar semiconductor layer 270 may be formed of p+ and n+ doped smectite. The memory gate insulating layer 272 may be formed of a gate dielectric material such as oxidized oxide. The memory cell region 264 includes a plurality of memory pillar semiconductor layers 280. The memory gate insulating layer 282 is formed as a sidewall of the memory columnar semiconductor layer 280, respectively. A plurality of gate structures 284 are formed on the sidewalls of the memory gate 22 201203520 insulating layer 282. The memory columnar semiconductor layer 28A and the gate structure 284 may be formed of a polysilicon. A portion of the memory columnar semiconductor layer 280 may be formed of p and n-doped polysilicon. The memory gate insulating layer 282 may be formed of a gate dielectric material such as cerium oxide (si〇2) or a lanthanum dielectric constant material such as cerium oxide (Hf〇2) or a cerium dioxide (Zr02). And titanium dioxide (Ti〇2). The series select transistor region 266 includes a plurality of memory columnar semiconductor layers 290. The memory gate insulating layer 292 is formed as a sidewall of the memory columnar semiconductor layer 290, respectively. A plurality of gate structures 294 are formed on the sidewalls of the 5 memory gate insulating layer 292. The memory columnar semiconductor layer 290 and the gate structure 294 may be formed of a germanium. A portion of the memory columnar semiconductor layer 290 may be formed of p+ and n+ doped germanium. The memory gate insulating layer 292 may be formed of a gate dielectric material such as hafnium oxide. Thus, in accordance with the present disclosure, a 1T MOSFET memory is provided and the threshold voltage drift of the memory transistor is caused by a change in the gate resistance value Rg. The change in the gate resistance value Rg results in a significant drift of the threshold voltage Vth by a series connected resistance value Rp. Preferably, Rg (after soft collapse) and Rp are between a similar range of resistance values. The difference between the drain current Id and the threshold voltage Vth is used to define the memory state of the memory cell as a logic level 1 or a logic level. The memory cell can operate as a four-terminal component, including gate/resistance values Rp and Rg, source, drain, and well regions. Different high dielectric constant materials or materials similar to phase change memory can be used as the material of the gate resistance value Rg. An array structure similar to the NAND gate can be used as the memory component of the present invention. The memory cell can be made by a 4F2 design rule. A three-dimensional structure similar to the gate can also be used to provide a high memory density of 23,035,035, for example, the capacity of the it bit. Compared with the phase change memory, the memory cell disclosed in the present invention can use the phase memory material on the gate dielectric layer of a MOSFET, and the memory cell disclosed in the present invention uses the gate resistance change. For programming/erasing operations, instead of using charge storage for operation. Since the memory cell of the present invention transmits the measurement current through the source of the transistor, it is not necessary to obtain a large current to make the material collapse. Therefore, the programming current of the memory cell of the present invention can be lower than the phase transition. The programming current of the memory. Since the present invention uses the resistance value change of the gate instead of the charge storage for data storage, the φ memory cell of the present invention does not encounter the problem of charge storage. The memory cell of the present invention can include an ultra-thin gate oxide (~1 nm) MOSFET in a memory array having 4F2 memory cells. Since the ultra-thin gate oxide MOSFET can be shrunk to less than 10 nm, a plurality of extremely miniature components (e.g., channel aspect ratios less than 10 nm) are possible with the memory array of the present invention. In the above, the present invention has been described in terms of the preferred embodiments, and is not intended to limit the invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a memory array in accordance with an embodiment of the present invention. Fig. 2 is a view showing a memory string of one of the memory elements shown in Fig. 1. 24 201203520

里 VV —立第3圖緣示第1圖中所示之記憶體it件之-記憶胞的 不意圖。 第4圖!會示第3圖中所示之記憶胞電阻之問極電阻值 和臨限電壓之間的關係曲線圖。 第5圖、..曰不第3圖中所不之記憶胞之一電晶體示意 圖。 、第6圖緣示第3圖和第5圖中所示之電晶體之問極漏 電流Ig和閘極電壓Vg之間的關係曲線圖。 鲁 《 7圖繪示第3圖中所示之記憶胞之一可替換實施例 之閘極漏電流Ig和閘極電壓Vg之間的關係曲線圖。 第8圖緣示第3圖和第5圖中所示之電晶體之源極特 性曲線圖。 第9圖和第1〇圖績示一顯示出記憶胞的電阻值邱 變化的效果之模擬結果。 第11圖繪示第3圖和第5圖中所示之電晶體之開極 電流Ig和施加在閘極上之軟性崩潰誘發電壓脈衝數目之 • 關係圖。 …第12圖緣示第3圖和第5圖中所示之電晶體在前軟 性崩潰狀態、軟性崩潰狀態、以及至少部分反轉軟性崩潰 狀態下之閘極特性曲線圖。 第13圖繪不一記憶體元件之方塊圖,包括第丨圖中 所示之記憶體陣列。 第14圖繪示第1圖中所示之記憶體陣列以及第2圖 中所示之記憶串之一實施例之記憶胞示意圖。 第15圖繪不一可用於第14圖中所示之記憶胞的複晶 25 201203520 矽電阻率特性示意圖。 第16圖繪示第1圖所示之具有三維結構之記憶體陣 列的一實施例之示意圖。 【主要元件符號說明】 100、252 :記憶體陣列 102a-102c ··記憶胞 108a-108c :電晶體 110a-110c :閘極 112a-112c :電阻 114、254 :半導體基板 116 :源極 118 :汲極 120 :閘極介電層 122 :閘極電極 130 :缺陷 134、138、144、148 :實線 136、140、146、150 :虛線 160 、 161 、 162 、 163 、 164 、 170 、 171 、 172 、 173 、 174、180、182、184 :曲線 200 :結構 202 .區塊 204 :頁 222 :高電阻值層 224 :低電阻值層 250 :三維記憶體陣列 26 201203520In the VV-figure diagram, the memory of the memory device shown in Fig. 1 is not intended. Figure 4! A graph showing the relationship between the sense resistor value and the threshold voltage of the memory cell resistance shown in Fig. 3. Fig. 5 is a schematic diagram of a transistor of a memory cell not shown in Fig. 3. Fig. 6 is a graph showing the relationship between the terminal leakage current Ig and the gate voltage Vg of the transistor shown in Figs. 3 and 5. Fig. 7 is a graph showing the relationship between the gate leakage current Ig and the gate voltage Vg of an alternative embodiment of the memory cell shown in Fig. 3. Fig. 8 shows the source characteristic curves of the transistors shown in Figs. 3 and 5. Fig. 9 and Fig. 1 show the simulation results showing the effect of the change in the resistance value of the memory cell. Fig. 11 is a graph showing the relationship between the open current Ig of the transistor shown in Figs. 3 and 5 and the number of soft breakdown induced voltage pulses applied to the gate. ... Figure 12 shows the gate characteristics of the transistor shown in Figures 3 and 5 in a pre-soft collapse state, a soft collapse state, and at least a partial reversal soft collapse state. Figure 13 depicts a block diagram of a memory component, including the memory array shown in the second figure. Fig. 14 is a view showing a memory cell of an embodiment of the memory array shown in Fig. 1 and the memory string shown in Fig. 2. Fig. 15 is a schematic diagram showing the resistivity characteristics of the double crystal 25 201203520 which can be used for the memory cell shown in Fig. 14. Fig. 16 is a view showing an embodiment of a memory array having a three-dimensional structure shown in Fig. 1. [Description of main component symbols] 100, 252: Memory arrays 102a-102c · Memory cells 108a-108c: Transistors 110a-110c: Gates 112a-112c: Resistors 114, 254: Semiconductor substrate 116: Source 118: 汲Pole 120: gate dielectric layer 122: gate electrode 130: defects 134, 138, 144, 148: solid lines 136, 140, 146, 150: dashed lines 160, 161, 162, 163, 164, 170, 171, 172 , 173 , 174 , 180 , 182 , 184 : Curve 200 : Structure 202 . Block 204 : Page 222 : High Resistance Value Layer 224 : Low Resistance Value Layer 250 : Three Dimensional Memory Array 26 201203520

I W^y〇-4rA 2 5 6 .導電源極線棚 258a-258c :位元線導體 260c-260d :導電柱 262 :接地選擇電晶體區域 264 .記憶胞區域 266 :串接選擇電晶體區域 268 :導電通道 270、280、290 :記憶體柱狀半導體層 • 272、282、292 :記憶體閘極絕緣層 274、284、294 :閘極結構 BL1-BL3 :位元線 GSL :接地選擇線 MS1-MS3 :記憶串IW^y〇-4rA 2 5 6 . Conductor power line shed 258a-258c: bit line conductor 260c-260d: conductive post 262: ground selection transistor region 264. memory cell region 266: serial selection transistor region 268 : Conductive path 270, 280, 290: Memory columnar semiconductor layer • 272, 282, 292: Memory gate insulating layer 274, 284, 294: Gate structure BL1-BL3: Bit line GSL: Ground selection line MS1 -MS3: memory string

Rg : 固定電阻值 Rp : 可變閘極電 阻值 SL : 源極線 SSL ' 260a-260b :串接選擇線 Va : 施加電壓 Vg : 閘極電壓 Vth 臨限電壓Rg : fixed resistance value Rp : variable gate resistance value SL : source line SSL ' 260a-260b : series connection line Va : applied voltage Vg : gate voltage Vth threshold voltage

Vthhigh :高臨限電壓 VthlQW :低臨限電壓 WELL :井區 WL1-WL3 :字元線 27Vthhigh: high threshold voltage VthlQW: low threshold voltage WELL: well area WL1-WL3: word line 27

Claims (1)

201203520 七、申請專利範圍: 1. 一種記憶體元件,包括—I '、有複數個記憶胞之p車 列,該些記憶胞中之至少一者包括: 皁 -電晶體’具有一第一端點、一第二端點、以及 極結構,該閘極結構包括一閘極介電層;以及 -電阻’和該電晶體之該閘極結構串聯, 其中該閘極介電層可㈣式地對應至 和一第二電阻值,該第一雷 和弘丨且值 ^ Μ電阻值和該第三電阻值分別對鹿 一弟一 S己憶態和一第二記憶態。 …201203520 VII. Patent application scope: 1. A memory component, comprising -I ', a p-car array having a plurality of memory cells, at least one of the memory cells comprising: a soap-transistor having a first end a gate, a second terminal, and a pole structure, the gate structure including a gate dielectric layer; and a resistor 'in series with the gate structure of the transistor, wherein the gate dielectric layer can be (4) Corresponding to and a second resistance value, the first ray and the 丨 丨 value and the third resistance value respectively correspond to the deer and the second memory state. ... 2·如申請專利範圍第1項所述之記憶體元件,1中 :閘極介電層之該第一電阻值係和該電晶體之一 潰狀態相對應。 朋 3.如申請專利範圍第2項所述之記憶概件, 該間極介電層之該第二電阻值係和該電日日日體之m 分反轉軟性崩潰狀態相對應。 叫2. The memory device according to claim 1, wherein the first resistance value of the gate dielectric layer corresponds to a collapse state of the transistor. 3. According to the memory profile described in claim 2, the second resistance value of the interpolar dielectric layer corresponds to the m-inversion soft collapse state of the electric day and day. call …4.㈣請專利範圍第3項所述之記憶體元件,其中 §亥電晶體更包括一井區端點。 5.如申請專利範圍第4項所述之記憶體元件,盆中 -讀取操作、-編程操作、以及—抹除操作中之至少二者 包括施加一預定電壓至該井區端點。 > 6.如申請專利範圍第5項所述之記憶體元件,其中 该編程操作包括施加該狀t壓至該_結構,以及該抹 除操作包括施加該預定電壓至該井區端點。 ▲ 7.如申請專利範圍第6項所述之記憶體元件,其中 該編程操作誘發該電晶體之該軟性崩潰狀‘態。 八 28 201203520 1 wovo^rA 8.如申請專利範圍第7項所述之記憶體元件,其中 該抹除操作至少部分地反轉該電晶體之該軟性崩潰狀態。 ^ 9.如申請專利範圍第1項所述之記憶體元件,其中 該間極介電層包括二氧化石夕(Si〇2)、二氧化給(Hf〇2)、二氧 化錯(ZrOJ、以及二氧化鈦(丁 i〇2)中之至少一者。 “10.如申請專利範圍第丨項所述之記憶體元件,其中 該電阻包括-高電阻值層,以及該閑極結構包括一低電阻 值層’且其中該高電阻值層係設置於該閘極介電層和該低 琴電阻值層之間。 —記憶體元件包括: 一位元線; 一字元線; 一 s己憶串,包括一記憶胞;以及 一共源極線,連接至該記憶串; 其中該記憶串係連接至該位元線; • 其中該記憶胞係連接於該共源極線和該位元線之 間,該記憶胞包括: 一電晶體,具有一第一端點、一第二端點、以 及一閘極結構,該閘極結構包括一閘極介電層;以及 電阻,係為電性地串聯連接於該電晶體之該 間極介電層和該字元線之間, 其中該閘極介電層可切換式地對應至一第一電 阻值和一第二電阻值,該第一電阻值和該第二電阻值分別 對應一第一記憶態和一第二記憶態。 12.如申請專利範圍第u項所述之記憶體元件,其 29 201203520 一電阻值係和該電晶體之一軟性 中該閘極介電層之該第 崩潰狀態相對應。 士申口月專利範圍第i 2項所述之記憶體元件,其 中該閘極介電層之該第二電阻值係和該電晶體之一至少 部分反轉軟性崩潰狀態相對應。 ;14.如申請專利範圍帛13工員所述之記憶體元件,其 中泫電晶體更包括一井區端點。 ^如申請專利範圍帛14工員所述之記憶體元件,其 中。貝取才木4乍編私操作、以及—抹除操作中至少一者 包括施加一預定電壓至該井區端點。 比如申請專利範圍帛15工員戶斤述之記憶體元件,其 中該編程操作包括施加該狀電壓至該閘極結構,以及該 抹除操作包括施加該預定電壓至該井區端點。 上17.如申請專利範圍第16項所述之記憶體元件,其 中該編程操作誘發該電晶體之該軟性崩潰狀態。 18.如申請專利範圍第17項所述之記憶體元件,其 中該抹除操作至少部分地反轉該電晶體之該軟性崩潰狀 態。 ▲ 19·如申請專利範圍第n項所述之記憶體元件,其 :°亥閘極;1電層包括二氧化⑦(Sl〇2)、二氧化給(Hf〇2)、二 氧化鍅(Zr〇2)、以及二氧化鈦(Ti〇2)中之至少一者。 2〇·如申請專利範圍第11項所述之記憶體元件,其 中該電阻包括—高電阻值層,以及該閘極結構包括一低電 阻值層,且其中該高電阻值層係設置於該閘極介電層以及 5亥低電阻值層之間。 201203520 I W^y〇4KA …Ο M專利範圍第11項所述之記憶體元件,其 °亥。己憶胞係為-第—記憶胞,並且其中該記憶體元件更 包括一以一疊層方向形成於該第一記憶胞上之第二記憶 胞,使得該第一記憶胞以及該第二記憶胞係被包括在一三 維之記憶體陣列中。...4. (4) The memory component described in item 3 of the patent scope, wherein the circuit further includes a well end point. 5. The memory component of claim 4, wherein at least two of the basin-read operation, the -program operation, and the erase operation comprise applying a predetermined voltage to the end of the well region. 6. The memory component of claim 5, wherein the programming operation comprises applying the shape t to the structure, and the erasing operation comprises applying the predetermined voltage to an end of the well region. ??? 7. The memory component of claim 6, wherein the programming operation induces the soft collapse state of the transistor. 8. The memory element of claim 7, wherein the erasing operation at least partially reverses the soft collapse state of the transistor. The memory device of claim 1, wherein the inter-electrode layer comprises cerium dioxide (Si〇2), oxidized (Hf〇2), and dioxed (ZrOJ, And a memory element according to the above-mentioned claim, wherein the resistor comprises a high resistance layer, and the idle structure comprises a low resistance a value layer 'and wherein the high resistance layer is disposed between the gate dielectric layer and the low piano resistance layer. - The memory component comprises: a bit line; a word line; a memory cell; and a common source line connected to the memory string; wherein the memory string is connected to the bit line; wherein the memory cell is connected between the common source line and the bit line The memory cell includes: a transistor having a first terminal, a second terminal, and a gate structure, the gate structure including a gate dielectric layer; and a resistor electrically connected in series Connected between the interposer of the transistor and the word line, wherein The gate dielectric layer is switchably coupled to a first resistance value and a second resistance value, the first resistance value and the second resistance value respectively corresponding to a first memory state and a second memory state. For example, in the memory component described in claim U, the resistance value of 29 201203520 corresponds to the collapse state of the gate dielectric layer in one of the softness of the transistor. The memory device of claim 2, wherein the second resistance value of the gate dielectric layer corresponds to at least partially inverting a soft collapse state of the transistor. 14. The patent application scope is 13 workers. The memory component, wherein the germanium transistor further comprises a well region end point. ^ The memory component as described in the patent application 帛 14 workers, wherein the beard is a private operation, and the erase operation At least one of the methods includes applying a predetermined voltage to the end of the well region, such as the memory component of the patent application, wherein the programming operation includes applying the voltage to the gate structure, and the erasing Operation includes The memory element of claim 16, wherein the programming operation induces the soft collapse state of the transistor. 18. Patent Application No. 17 The memory component of the item, wherein the erasing operation at least partially reverses the soft collapse state of the transistor. ▲ 19. The memory component of claim n, wherein: The electric layer includes at least one of oxidized 7 (Sl 〇 2), oxidized (Hf 〇 2), cerium oxide (Zr 〇 2), and titanium dioxide (Ti 〇 2). The memory device of claim 11, wherein the resistor comprises a high resistance layer, and the gate structure comprises a low resistance layer, and wherein the high resistance layer is disposed on the gate dielectric layer And 5 litres between low resistance layers. 201203520 I W^y〇4KA ...Ο M The memory component described in Item 11 of the patent range, °H. The memory cell is a - memory cell, and wherein the memory component further comprises a second memory cell formed on the first memory cell in a lamination direction, such that the first memory cell and the second memory The cell line is included in a three-dimensional array of memory. 3131
TW099122066A 2010-07-05 2010-07-05 Transistor having an adjustable gate resistance and semiconductor device comprising the same TWI466271B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099122066A TWI466271B (en) 2010-07-05 2010-07-05 Transistor having an adjustable gate resistance and semiconductor device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099122066A TWI466271B (en) 2010-07-05 2010-07-05 Transistor having an adjustable gate resistance and semiconductor device comprising the same

Publications (2)

Publication Number Publication Date
TW201203520A true TW201203520A (en) 2012-01-16
TWI466271B TWI466271B (en) 2014-12-21

Family

ID=46756380

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099122066A TWI466271B (en) 2010-07-05 2010-07-05 Transistor having an adjustable gate resistance and semiconductor device comprising the same

Country Status (1)

Country Link
TW (1) TWI466271B (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281823A (en) * 1994-04-15 1995-10-27 Hosiden Corp Coordinate input device
US5622884A (en) * 1996-05-30 1997-04-22 Winbond Electronics Corp. Method for manufacturing a semiconductor memory cell and a polysilicon load resistor of the semiconductor memory cell
JP3940485B2 (en) * 1997-02-27 2007-07-04 東芝マイクロエレクトロニクス株式会社 Reference voltage generation circuit
US6346734B2 (en) * 1999-06-04 2002-02-12 International Business Machines Corporation Modified gate conductor processing for poly length control in high density DRAMS
KR100604808B1 (en) * 2000-07-27 2006-07-28 삼성전자주식회사 non-volatile semiconductor memory device and manufacturing method thereof
KR100885276B1 (en) * 2001-05-07 2009-02-23 어드밴스드 마이크로 디바이시즈, 인코포레이티드 Floating gate memory device using composite molecular material
TW544860B (en) * 2002-05-10 2003-08-01 Powerchip Semiconductor Corp Structure, fabrication and operation method of flash memory
US6771534B2 (en) * 2002-11-15 2004-08-03 International Business Machines Corporation Thermally-assisted magnetic writing using an oxide layer and current-induced heating
US6807119B2 (en) * 2002-12-23 2004-10-19 Matrix Semiconductor, Inc. Array containing charge storage and dummy transistors and method of operating the array
US7492635B2 (en) * 2005-01-06 2009-02-17 Samsung Electronics Co., Ltd. NOR-type hybrid multi-bit non-volatile memory device and method of operating the same
JP2006245280A (en) * 2005-03-03 2006-09-14 Matsushita Electric Ind Co Ltd Field effect transistor and its operation method
TWI290369B (en) * 2005-07-08 2007-11-21 Ind Tech Res Inst Phase change memory with adjustable resistance ratio and fabricating method thereof
KR20070008969A (en) * 2005-07-14 2007-01-18 삼성전자주식회사 Method of manufacturing a flash memory device
TWI265629B (en) * 2005-07-28 2006-11-01 Taiwan Semiconductor Mfg Resistance-reduced semiconductor device and fabrication thereof
TW200822342A (en) * 2006-11-08 2008-05-16 Ind Tech Res Inst Variable resistor, resistance random access memory and methods for manufacturing thereof
US7796443B2 (en) * 2008-06-12 2010-09-14 Fs Semiconductor Corp., Ltd. Method of erasing a flash EEPROM memory

Also Published As

Publication number Publication date
TWI466271B (en) 2014-12-21

Similar Documents

Publication Publication Date Title
US10026782B2 (en) Implementation of VMCO area switching cell to VBL architecture
US9673257B1 (en) Vertical thin film transistors with surround gates
TW475267B (en) Semiconductor memory
CN110189777B (en) Non-volatile ferroelectric memory device and driving method thereof
US10276792B2 (en) Low power barrier modulated cell for storage class memory
JP5750456B2 (en) Memcapacitor device, field effect transistor device, non-volatile memory array, and programming method
JP5722180B2 (en) Nonvolatile memory device
KR101738533B1 (en) Stacked memory devices and method of manufacturing the same
US10290680B2 (en) ReRAM MIM structure formation
US10120816B2 (en) Bad column management with data shuffle in pipeline
TWI266309B (en) Nonvolatile ferroelectric memory device
JP2008251059A (en) Nonvolatile semiconductor memory device and its data erasing method
CN102263122B (en) NV (nonvolatile) storing device
US8675381B2 (en) Transistor having an adjustable gate resistance and semiconductor device comprising the same
US10115820B2 (en) Vertical transistors with sidewall gate air gaps and methods therefor
KR20110040461A (en) Nonvolatile memory device and method of manufacturing the same
CN102339846B (en) There is the semiconductor memery device of the transistor of adjustable grid resistance value
CN109427398B (en) Memory device and operating method thereof
US20220343962A1 (en) System on chip (soc) with processor and integrated ferroelectric memory
JPWO2012023266A1 (en) Variable resistance nonvolatile memory device
US20180138292A1 (en) Methods and apparatus for three-dimensional nonvolatile memory
US10541273B2 (en) Vertical thin film transistors with isolation
US10153430B1 (en) Germanium-based barrier modulated cell
JP2011192827A (en) Nand nonvolatile semiconductor memory device
TW201203520A (en) Transistor having an adjustable gate resistance and semiconductor device comprising the same