TW201203033A - Device and method for detecting proximity and touch behavior of a touch panel - Google Patents

Device and method for detecting proximity and touch behavior of a touch panel Download PDF

Info

Publication number
TW201203033A
TW201203033A TW99121895A TW99121895A TW201203033A TW 201203033 A TW201203033 A TW 201203033A TW 99121895 A TW99121895 A TW 99121895A TW 99121895 A TW99121895 A TW 99121895A TW 201203033 A TW201203033 A TW 201203033A
Authority
TW
Taiwan
Prior art keywords
proximity
axis
touch
electrodes
touch panel
Prior art date
Application number
TW99121895A
Other languages
Chinese (zh)
Inventor
Yi-Ta Chen
Min-Feng Yen
Original Assignee
Edamak Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edamak Corp filed Critical Edamak Corp
Priority to TW99121895A priority Critical patent/TW201203033A/en
Publication of TW201203033A publication Critical patent/TW201203033A/en

Links

Landscapes

  • User Interface Of Digital Computer (AREA)

Abstract

The disclosure is a device and method for detecting proximity and touch behavior of a touch panel. The disclosure adopts the proximity detection function of a capacitive touch panel having multiple electrodes arranged in matrix manner for detecting the proximity signal and transform to a one order or multi-order proximity data. Utilizing the sequential one order proximity data to produce a 2 dimensional moving trend then producing a 2-D gesture, while utilizing the sequential multi-order proximity data to produce 3 dimensional moving trend then producing a 3-D gesture.

Description

201203033 六、發明說明: 【發明所屬之技術領域】 本發明係關於為一種觸控面板,特別是關於一種觸控面板近接偵測裝 置與方法。 【先前技術】 隨著光電科技的發展,近接切換裝置已被大量運用在不同的機器上, 例如:智慧性手機、運輸工具之購票系統、數位照像機、遙控器與液晶螢 • 幕等。常見的近接切換裝置(Prox丨mity Device)包括如近接感測器(proxjmity sensor)與觸控面板(touch pane丨)等。其中,近接感測器之運作方式為:當 一物體靠近感測器之感應範圍内,近接感測器在觸及該物體或不觸及物體 的狀況下,經由近接感應之方式得知該物體接近近接感測器所在之位置。 近接感測ϋ職觸得之錢轉變為—電子城,祕或齡會依據該電 子訊號做出適當的反應,達成控制系統狀態之目的。觸控面板則用於觸碰 座標之計算,如單點觸碰座標或者多點觸碰座標之計算。 鲁 近接感測器又稱近接開關(Proximity Switch),應用在許多液晶電視、 .電源Μ、家電麵、門料、統 '手持式遙控器與手機等,近年來,更是 _這些裝置與设備不可或缺的角色之一。它負責偵測物體是否靠近,以便讓 控制器了解目前物體所在之位置。以家電應用來說,近接感測器被大量用 在燈源的控制上,只要靠近近接感測器或碰觸近接感測器,依據感測訊號 燈源就可進行開或關之動作^而近接感廳之種類及外型琳琰滿目,係為 長方型、四方型、圓柱型'圓孔型、溝型、多點型等。依其原理可分成以 下4種類型:電感式、電容式、光電式與磁氣式。 201203033 由上可知,近接感測器與觸控面板的應用領域差異極大,分別做為切 換開關與觸碰座標之計算。以目前的技術而言,並未有如何處理近接感測 器與觸控面板兩者的整合應用技術。因此,如何能整合近接感測器與觸控 面板兩者,進而讓近接感測器的短距離空間感測功能與觸碰座標偵測功能 整合,成為可讓電子設備大幅增加應用功能可能性的研究方向。 【發明内容】 鑒於以上習知技術的問題,本發明提供一種觸控面板近接偵測裝置與 方法,用以偵測空間中物件進入觸控面板的感應範圍的情形。 本發明係提出一種觸控面板近接债測裝置,包括以下主要元件:電容 式觸控面板與控制單元。其中,電容式觸控面板,具有位於同一平面之複 數個電極,該些電極彼此絕緣並各自對應於一座標,該些電極用以偵測一 物件之接近而產生一感應訊號,並偵測該物件之觸碰而產生一觸碰訊號。 控制單s,連接電容式馳面板並具有—近接侧模式與—觸碰偵測模 式,當執行近接伽赋時,依據祕贿產生—近接資料;當執行觸碰 谓測模式時,依據觸碰訊號計算物件之至少一座標資料。 本發明更提供-義㈣板近難财法,運驗具錢數個電極之 一面板,該些電極彼此絕緣且對應於一座標,用以偵測一物件之接近而產 生-感應讀且_軸叙_而產生—_訊號,該方法包含以下步 驟:提供魏容式難面板__近接_模式;執行該近接_模式;依據 -工作時序’制—物件進人該些電極之空間感應區所產生之該感應訊 號’依據該工辦序與該電極所輸出之該感應訊號,產生—近接資料;及 依據不同之似作時序、該之職標無電酬誠之騎接資料, 201203033 計算該物件之一 X軸移動趨勢、一 γ轴移動趨勢與一 z轴移動趨勢。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特 舉數個較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 本發明運用電容式觸控面板本身所具有的近接感應功能,將所偵測到 的近接感應訊號輸出為近接資料,並依據近接資料計算出各個維度的移動 趨勢,再依據各個維度的移動趨勢來計算近接空間當中的手勢判斷,進而 # 輸出為控織令。其巾’本發明運用―㈣單元來實ί見驗制與近接感 測功能,並藉由單一匯流排輸出代表近接感應訊號結果的近接資料與代表 觸碰座標的座標資料。 電容式觸控面板主要分兩類,分別為表面電容式觸控面板與投射電容 式觸控面板。投射電容式觸控面板具有可偵測多點觸碰的功能,然而,近 年來,也有廠商將表面電容式觸控面板製作為可偵測多點觸碰的功能。無 論何種電容式觸控面板,本發明可運用單層並具有複數個單獨的掃描電極 • 的電容式觸控面板結構,其中,每個電極均對應於一個特定的座標。以下 •的矩形電極的實施例,僅為本發明為說明起見所列舉者,並非用以限定本 發明,其他不同的電極形狀亦可採用,例如菱形、圓形、正方形…。 首先,睛參考第1Α圖,其為本發明之觸控面板近接偵測裝置之功能方 塊圖之一實施例,其為以矩形電極排列於單層的實施例。觸控面板近接偵 測裝置1包含有:觸控面板11、連接板24與控制單元22。其中,觸控面 板11上有電極Ε1〜Ε24 ’以矩陣排列的方式排列為4X6的矩陣。每個電極 係用來偵測物件之接近而產生感應訊號並用來偵測物件之觸碰而產生觸碰 201203033 訊號。控制單元22當中包含有:觸控_電路14、近接_電路16與控 制電路18。控制單元22透過連接板24連接驗面板u,並具有一近接偵 測模式與-觸碰_模式,錢行近接_模式時,依賊應訊號產生近 接資料;t執摘碰侧模續,依獅碰喊計算物狀至少_座標資 料。 在控制單元22當中,近接偵測電路16經由連接板24連接觸控面板 11 ’用以触感應訊號並產生近接資料;觸控偵測電路14經由連接板24 連接觸控面板11 ’用以接收該觸碰訊號並計算觸碰座標;控制電路18連 接近接侧 16與觸控侧電路14,贱㈣近接侧模式與觸控债 測模式之切換執行,並將該近接資料與該觸碰座標傳輸出去。須注意第 1A圖的近接偵測電路16、觸控偵測電路14與控制電路18的連接關係, 僅為本發明為說明起見所列舉者’並非用以限定本發明。 此外,本發明亦可將可偵測多點觸碰座標的電容式觸控面板以選擇性 偵測的方式來進行近接感測控制。例如,第1B圖即為選擇了第1A圖當中 的電極 E1、E3、E5、E8、E10、E12、E13、E15、E17、E20、E22、E24 作為選擇近接偵測模式的偵測電極,其餘的電極不做近接偵測用。具體的 作法後續將會描述之。 當把電容式觸控面板當作空間的近接偵測之用時,近接偵測電路16的 偵測輸出結果有兩種,分別為一階近接資料與多階近接資料。其中一階近 接資料係為物件進入電容式觸控面板的近接感應空間後,所輸出的一位元 資料。多階近接資料則為依據物件之接近距離而產生之不同感應量大小, 可輸出多位元資料,例如,二位元、三位元、四位元…。 201203033 依據一階近接資料與多階近接資料的輸出,可做不同的移動趨勢與手 勢的判斷,以下將於實際的實施例中分別說明。 首先,請參考第2A圖,其為運用本發明觸控面板近接偵測裝置中,物 件以執跡32經過觸控面板11時之偵測示意圖。由圖中可發現,軌跡經過 E2、E3、E9、E10、E16、E17、E23、E24 的上方,並且,有以負 z 軸 的移動趨勢(未畫出)。軌跡32的實際制與輸出資料,將由㈣的圖式說 明之。 清參考第2B Η ’其為運用本發明觸控面板近接摘測裝置巾,物件2 以軌跡32經過觸控面板彳彳時之Α_Α勤細示意圖,察第2Β圖可發 現’物件2以執跡32經過觸控面板糾上方時,在時序Τ1〜Τ6會分別經過 不同的電極的感應範圍其中,第2Β圖分別顯示了電極 Ε1、Ε7、Ε13、 Ε19的感應範圍41、47、53、59,而物件2由電極E1的感絲圍逐漸往 電極E19的感應範圍移動,並且,有往負Z軸的移動趨勢。 第2C圖係為運用本發明觸控面板近接侧裝置中,物件2以軌跡32 經過觸控面板11時之日_日剖面細示意圖。觀察第%圖可發現,物件2 以軌跡32經過觸控面板t上方時,在時序丁卜丁6會分別經過不同的電極 的感應範®其中,第2C圖分別顯示了電極□、Ε2、'以、日5、Ε6 的感應範圍41、42、Μ >iir 44、45、46,而物件2由電極E1的感應範圍逐 漸往電極E6的感應範圍移動,並且,有往負三軸的移動趨勢。 接著叫參考第2D圖,其為運用本發明觸控面板近接俄測裝置中,物 件2以軌跡32經過觸控面板11時,於時序T1、T2所輸出之近接資料示 心在時序丁1時’電極E1、E2 '日7感測到感應訊號,而近接摘測電路 201203033 16也輸出對應的近接資料(端視設定為一階或多階)。時序丁2時,分別有電 極Ε1、Ε2、Ε3、Ε4、Ε7、Ε8、Ε9、Ε13、Ε14感測到感應訊號,而近接 偵測電路16也輸出對應的近接資料β 第2Ε圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11時,於時序Τ3、Τ4所輸出之近接資料示意圖。時序Τ3 時’分別有電極 Ε1、Ε2、Ε3、Ε4、Ε5、Ε6、Ε7、Ε8、Ε9、Ε10、Ε11、 Ε12、Ε13、Ε14、Ε15、Ε16、Ε17、Ε21、Ε22 感測到感應訊號,而近接 偵測電路16也輸出對應的近接資料。時序丁4時,分別有電極Ε3、Ε4、 Ε5、Ε6、Ε8、Ε9、Ε10、Ε11、Ε12、Ε13、Ε14、Ε15、Ε16、Ε17、Ε18、 Ε19、Ε20、Ε21、Ε22感測到感應訊號,而近接偵測電路16也輸出對應 的近接資料。 第2F圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11時’於時序Τ5、Τ6所輸出之近接資料示意圖。時序Τ5 時,分別有電極 Ε5、Ε6、Ε10、Ε11、Ε12、Ε15、Ε16、Ε17、Ε18、Ε20、 Ε21、Ε22、Ε23、Ε24感測到感應訊號,而近接偵測電路16也輸出對應 的近接資料。時序Τ6時,有電極Ε18、Ε23、Ε24感測到感應訊號,而近 接偵測電路16也輸出對應的近接資料。 第2D〜2F圖中,近接資料可以是一階近接資料或者多階近接資料。若 為一階近接資料,則可依據一階近接資料的改變趨勢來計算得X軸移動趨 勢與Υ軸移動趨勢’進而獲得平面手勢指令。在一階近接資料的基礎上, 若要計算X轴相對座標與γ轴相對座標,可採用重心法或其他方法來將一 階近接資料統計後取得。 201203033 為?階近接資料’則可依據彡階近接資料來計算得χ軸相201203033 VI. Description of the Invention: [Technical Field] The present invention relates to a touch panel, and more particularly to a touch panel proximity detecting device and method. [Prior Art] With the development of optoelectronic technology, the proximity switching device has been widely used in different machines, such as: smart phones, transportation ticket purchasing systems, digital cameras, remote controls, LCD screens, etc. . Common Proximity Devices include proxjmity sensors and touch panes. Wherein, the proximity sensor operates in a manner that when an object is in proximity to the sensing range of the sensor, the proximity sensor senses that the object is close to the proximity by touching the object or not touching the object. The location of the sensor. The money that touches the sensory job is transformed into the electronic city, and the secret or age will respond appropriately according to the electronic signal to achieve the purpose of controlling the state of the system. The touch panel is used to calculate the coordinates of the touch, such as the calculation of single touch coordinates or multi-touch coordinates. Lu proximity sensor, also known as Proximity Switch, is used in many LCD TVs, power supplies, home appliances, door materials, handheld remote controls and mobile phones. In recent years, these devices have been installed. One of the indispensable characters. It is responsible for detecting the proximity of an object so that the controller knows where the current object is. In the case of home appliance applications, the proximity sensor is used in a large number of control of the light source. As long as it is close to the proximity sensor or touches the proximity sensor, the light source can be turned on or off according to the sensing signal source. The types and appearances of the proximity halls are dazzling, and are rectangular, square, cylindrical, round, groove, and multi-point. According to its principle, it can be divided into the following four types: inductive, capacitive, photoelectric and magnetic. 201203033 It can be seen from the above that the application fields of the proximity sensor and the touch panel are extremely different, respectively, as the calculation of the switch and the touch coordinates. In the current technology, there is no integrated application technology for how to handle both proximity sensors and touch panels. Therefore, how to integrate both the proximity sensor and the touch panel, thereby integrating the short-distance spatial sensing function of the proximity sensor with the touch coordinate detection function, becomes a possibility that the electronic device can greatly increase the application function. research direction. SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a touch panel proximity detecting device and method for detecting a situation in which an object in a space enters a sensing range of the touch panel. The invention provides a touch panel proximity measurement device, which comprises the following main components: a capacitive touch panel and a control unit. The capacitive touch panel has a plurality of electrodes on the same plane, and the electrodes are insulated from each other and respectively correspond to a target. The electrodes are used to detect the proximity of an object to generate an inductive signal, and detect the A touch signal is generated by the touch of the object. The control unit s is connected to the capacitive jacking panel and has a near-side mode and a touch-detection mode. When the proximity gamma is performed, the proximity data is generated according to the secret bribe; when the touch predicate mode is executed, according to the touch The signal calculates at least one of the subject matter of the object. The invention further provides a panel of a plurality of electrodes, which are insulated from each other and corresponding to a label for detecting the proximity of an object to generate a sensing read and _ The axis _ generates a _ signal, the method comprises the following steps: providing a Wei Rong type difficult panel __ proximity _ mode; performing the proximity _ mode; according to the - working sequence 'system - the object into the space sensing area of the electrodes The generated sensing signal generates a near-contact data according to the sensing signal outputted by the electrode and the electrode; and according to different timings, the job information of the job is unpowered, 201203033 calculates the object One of the X-axis movement trends, a gamma-axis movement trend, and a z-axis movement trend. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The proximity sensing function of the touch panel itself outputs the detected proximity sensing signal as a proximity data, and calculates the movement trend of each dimension according to the proximity data, and then calculates the proximity space according to the movement trend of each dimension. The gesture is judged, and then #output is the control weaving order. The invention uses the "(4) unit to implement the inspection and proximity sensing functions, and outputs a proximity data representing the result of the proximity sensing signal and a coordinate data representing the touch coordinates by a single bus. Capacitive touch panels are mainly divided into two types, namely surface capacitive touch panels and projected capacitive touch panels. The projected capacitive touch panel has the ability to detect multi-touch. However, in recent years, some manufacturers have made the surface capacitive touch panel as a function to detect multi-touch. Regardless of the type of capacitive touch panel, the present invention can utilize a capacitive touch panel structure having a single layer and having a plurality of individual scanning electrodes, wherein each electrode corresponds to a particular coordinate. The following embodiments of the rectangular electrode are merely for the purpose of illustration of the present invention and are not intended to limit the invention, and other different electrode shapes may be employed, such as diamond, circle, square, .... First, the eye is referred to as a first embodiment, which is an embodiment of a functional block diagram of the touch panel proximity detecting device of the present invention, which is an embodiment in which rectangular electrodes are arranged in a single layer. The touch panel proximity detecting device 1 includes a touch panel 11, a connecting board 24, and a control unit 22. The touch panel 11 has electrodes Ε1 to Ε24' arranged in a matrix arrangement of a 4×6 matrix. Each electrode is used to detect the proximity of the object to generate an inductive signal and to detect the touch of the object to generate a touch 201203033 signal. The control unit 22 includes a touch control circuit 14, a proximity circuit 16 and a control circuit 18. The control unit 22 is connected to the inspection panel u through the connection board 24, and has a proximity detection mode and a touch mode. When the money line is close to the _ mode, the thief should generate the proximity data according to the signal; The lion shouted to calculate the object at least _ coordinates. In the control unit 22, the proximity detecting circuit 16 is connected to the touch panel 11' via the connecting board 24 for sensing the signal and generating the proximity data; the touch detecting circuit 14 is connected to the touch panel 11' via the connecting board 24 for receiving The touch signal and the touch coordinates are calculated; the control circuit 18 is connected to the proximity side 16 and the touch side circuit 14, and the switching between the proximity mode and the touch debt measurement mode is performed, and the proximity data and the touch coordinate are transmitted. Go out. It should be noted that the connection between the proximity detecting circuit 16, the touch detecting circuit 14, and the control circuit 18 of FIG. 1A is merely for the purpose of illustration of the present invention and is not intended to limit the present invention. In addition, the present invention can also perform proximity sensing control by selectively detecting a capacitive touch panel capable of detecting multi-touch coordinates. For example, in FIG. 1B, the electrodes E1, E3, E5, E8, E10, E12, E13, E15, E17, E20, E22, E24 in the first drawing are selected as the detecting electrodes for selecting the proximity detecting mode, and the rest. The electrodes are not used for proximity detection. The specific practices will be described later. When the capacitive touch panel is used as a proximity detection for the space, the proximity detection circuit 16 has two detection output results, which are first-order proximity data and multi-stage proximity data. The first-order near-term data is one-dimensional data outputted after the object enters the proximity sensing space of the capacitive touch panel. The multi-order close-in data is a different amount of inductance generated according to the proximity distance of the object, and can output multi-bit data, for example, two bits, three bits, four bits... 201203033 According to the output of first-order proximity data and multi-level proximity data, different mobile trends and gestures can be judged. The following will be explained in the actual embodiment. First, please refer to FIG. 2A, which is a schematic diagram of detecting when an object passes through the touch panel 11 in the touch panel proximity detecting device of the present invention. As can be seen from the figure, the trajectory passes over E2, E3, E9, E10, E16, E17, E23, E24, and there is a tendency to move with a negative z-axis (not shown). The actual system and output data of track 32 will be explained by the pattern of (4). Referring to FIG. 2B Η 'which is a touch panel of the touch panel of the present invention, the object 2 is traced through the touch panel 轨迹 Α Α 细 , , , , , , , , , , , , , , , 第 第 第 第 第 第 第 第 第 第 第32 After the touch panel is corrected, the timing ranges from Τ1 to Τ6 respectively pass through different sensing ranges of the electrodes, and the second figure shows the sensing ranges 41, 47, 53, 59 of the electrodes Ε1, Ε7, Ε13, Ε19, respectively. On the other hand, the object 2 is gradually moved toward the sensing range of the electrode E19 by the wire circumference of the electrode E1, and has a tendency to move toward the negative Z axis. FIG. 2C is a schematic diagram showing a day-to-day cross-section of the object 2 with the track 32 passing through the touch panel 11 in the near-side device of the touch panel of the present invention. Observing the %th image, it can be found that when the object 2 passes the track 32 above the touch panel t, the timing Ding Ding 6 will pass through the sensing electrodes of different electrodes respectively, and the 2C figure shows the electrodes □, Ε 2, respectively. The sensing ranges 41, 42, Μ > iir 44, 45, 46 of the day, day 5, and ,6, and the object 2 is gradually moved from the sensing range of the electrode E1 toward the sensing range of the electrode E6, and has a movement to the negative three axes. trend. Referring to FIG. 2D, in the proximity of the touch panel of the present invention, when the object 2 passes the touch panel 11 through the track 32, the proximity data outputted at the timings T1 and T2 is displayed at the time of the sequence. The 'electrode E1, E2' day 7 senses the sensing signal, and the proximity measurement circuit 201203033 16 also outputs the corresponding proximity data (the terminal view is set to first or multiple orders). When the timing is 2, the electrodes Ε1, Ε2, Ε3, Ε4, Ε7, Ε8, Ε9, Ε13, Ε14 respectively sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding proximity data β. In the touch panel proximity detecting device of the present invention, when the object 2 passes through the touch panel 11 with the track 32, the data of the proximity data outputted at the timings Τ3 and Τ4 are schematic. When the timing is Τ3, the electrodes Ε1, Ε2, Ε3, Ε4, Ε5, Ε6, Ε7, Ε8, Ε9, Ε10, Ε11, Ε12, Ε13, Ε14, Ε15, Ε16, Ε17, Ε21, Ε22 sense the sensing signal, respectively. The proximity detection circuit 16 also outputs corresponding proximity data. When the timing is 4, the electrodes Ε3, Ε4, Ε5, Ε6, Ε8, Ε9, Ε10, Ε11, Ε12, Ε13, Ε14, Ε15, Ε16, Ε17, Ε18, Ε19, Ε20, Ε21, Ε22 sense the sensing signal. The proximity detection circuit 16 also outputs the corresponding proximity data. FIG. 2F is a schematic diagram of the proximity data outputted by the object 2 when the track 2 passes through the touch panel 11 by using the touch panel proximity detecting device of the present invention. When the timing is Τ5, the electrodes Ε5, Ε6, Ε10, Ε11, Ε12, Ε15, Ε16, Ε17, Ε18, Ε20, Ε21, Ε22, Ε23, Ε24 respectively sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding Proximity information. At timing Τ6, electrodes Ε18, Ε23, Ε24 sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding proximity data. In the 2D~2F diagram, the proximity data may be a first-order proximity data or a multi-stage proximity data. If it is a first-order proximity data, the X-axis movement trend and the x-axis movement tendency can be calculated according to the change trend of the first-order proximity data to obtain a plane gesture instruction. On the basis of the first-order close-in data, to calculate the relative coordinates of the X-axis relative coordinates and the γ-axis, the centroid method or other methods can be used to obtain the first-order close-up data. 201203033? The near-term data of the order can be calculated based on the close-order data of the order

標、丫轴相對座標、z軸相對座標與X轴移動趨勢、Y軸移動趨勢與Z 軸移動趨勢。最後,再依據㈣趨勢來靖平面手勢指令、垂直手勢指令 或者三維手勢指令。 帛2G〜2L_為多階近接賴的—實施例以下說明之。 第2G圖係為第2D圖中,於時序丁】所輸出之近接資料詳細内容示意 圖。在時序τι時’電極E1、E2、E7所代表的多階近接資料分別為2小 • 1。 第2H圖係為第2D圖中,於時序T2所輸出之近接資料詳細内容示意 圖。時序 T2 時’電極 E1、E2、E3、E4、E7、E8、E9、E13、E14 所代 表的多階近接資料分別為2、3、2、1、1、2、1、1、1。 第2丨圖係為第2E圖中,於時序T3所輸出之近接資料詳細内容示意 圖;時序 T3 時’電極 E1、E2、E3、E4 ' E5 ' E6、E7 ' E8、E9、E10、 E11、E12、E13、E14、E15、E16、E17、E21、E22 所代表的多階近接 鲁 資料分別為1、.2、3'3、2、1、1、3、4、4、2、1、1、1、2、2、1、1。 _ 第2J圖係為第2E圖中,於時序T4所輸出之近接資料詳細内容示意 圖。時序 T4 時,電極 E3、E4、E5、E6、E8、E9、E10、E11、E12、E13、 E14、E15、E16、E17、E18、E19、E20、E21、E22 所代表的多階近接 資料分別為1、2、2、1、1、2、3、3、2、1、2、4、5、5、4、1、2、2、 3、4、2 〇 第2K圖係為第2F圖中,於時序T5所輸出之近接資料詳細内容示意 圖;時序 T5 時,電極 E5、E6、E10、E11、E12、E15、E16、E17、E18、 201203033 E20、E21、E22、E23、E24所代表的多階近接資料分別為彳、彳、,、2、 2、1、3、5、5、1、3、5'7、7〇 第2L圖係為第2F圖中,於時序T6所輸出之近接資料詳細内容示意 圖,時序Τ6時’電極Ε18、Ε23、Ε24所代表的多階近接資料分別為3、3、 6。 藉由第2G 2L圖的感應量大小值,可推算出物件在ζ袖的相對距離。 亦即在每個掃描週期中,以感應量最大的一個或數個電極的多階近接資 料的平均健料物件觸控面缺ζ躺相對雜。運祕相對距離的 變化,可計算出ζ轴的移動趨勢與垂直移動手勢等資訊。而X軸相對座標 與Υ轴相對雜’在每麟描週期巾,可由制量最大的_個或數個電極 的座標的重讀為X、γ座標。至於χ軸飾趨勢、γ軸移動趨勢、ζ轴移 動趨勢’則可由不同的掃描週期如Τ1〜Τ6來計算取得。計算得X轴移動趨 勢Υ轴移動趨勢、ζ轴移動趨勢後,即可據以計算平面手勢指令、垂直手 勢指令或者三維手勢指令。 第2L圖係為抓取全掃描式的近接摘測手段,另外可採取選擇掃描 式的近接備測手段,請參考第3Α〜3L圖之說明。 田 參考第3Α圖,其為運用本發明觸控面板近接摘測裝置中,物 件以軌跡32經過觸控面板11時之侧示意圖,其為選擇近接偵測模式下 之實施例。由圖中可發現,軌跡經過Ε3、Ε10、Ε17、Ε24的上方,並且, 有、轴的移動趨勢(未畫出)**軌跡32的實際感測與輸出資料,將 績的圖式說明之。 明參考第3Β圆,其為運用本發明觸控面板近接摘測裝置中,物件2 201203033 以執跡32經過觸控面板Ή時之Α·Α剖面债測示意圖。觀察第3B圖可發 現,物件2以軌跡32經過觸㈣板彳彳上方時,在時序了㈣會分別經過 不同的電極的感應範圍。其中,第3B圖分別顯示了電極E1、曰13的感應 ‘範圍41 53,而物件2由電極E1的感絲圍逐漸往電極E13的感應範圍 移動,並且,有往負Z軸的移動趨勢。 第3C圖係為運用本發明觸控面板近接細裝置中,物件2以軌跡 經過觸控面板11時之β·β剖面翻示意i觀察第2C圖可發現物件2 •峨跡32、經過觸控面板11上方時,在時序丁1〜T6會分別經過不同的電極 的感應範圍。其中’第3C圖分別顯示了電極E1、E3、E5的感絲圍41、 43、45’而物件2 的感絲圍逐漸往電極E5的感應範圍移動, 並且’有往負Z轴的移動趨勢。 接著,請參考第3D圖,其為運用本發明觸控面板近接偵測裝置中物 件2以軌跡32經過觸控面板11時,於時序T1、T2所輸出之近接資料示 意圖。在時序Τ1時’電極Ε1感測到感應訊號,而近接偵測電路16也輸 • 出對應的近接資料(端視設定為一階或多階)。時序Τ2時,分別有電極Ε1、 Ε3、Ε8、Ε13感測到感應訊號,而近接偵測電路也輸出對應的近接資 料。 第3Ε圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11時,於時序Τ3、Τ4所輸出之近接資料示意圖。時序Τ3 時’分別有電極 Ε1、Ε3、Ε5、Ε8、Ε10、Ε12、Ε13、Ε15、Ε17、Ε22 感測到感應訊號,而近接偵測電路16也輸出對應的近接資料。時序丁4時, 分別有電極 Ε3、Ε5、Ε8、Ε10、Ε12、Ε13、Ε15、Ε17、Ε20、Ε22 感測 201203033 到感應訊號’而近接偵測電路16也輸出對應的近接資料》 第3F圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11時,於時序Τ5、Τ6所輸出之近接資料示意圖。時序Τ5 時,分別有電極 Ε5、Ε10、Ε12、Ε15、Ε17、Ε20、Ε22、Ε24 感測到感 應訊號,而近接偵測電路16也輸出對應的近接資料。時序丁6時,有電極 Ε24感測到感應訊號’而近接偵測電路16也輸出對應的近接資料。 第3D〜3F圖中’近接資料可以是一階近接資料或者多階近接資料。若 為一階近接資料,則可依據一階近接資料的改變趨勢來計算得X轴移動趨 · 勢與Υ軸移動趨勢’進而獲得平面手勢指令。在一階近接資料的基礎上, 若要計算X轴相對座標與γ轴相對座標,可採用重心法或其他方法來將一 階近接資料統計後取得。 右近接資料為多階近接資料’則可依據多階近接資料來計算得X轴相 對座標、丫轴相對座標、Ζ軸相對座標與X轴移動趨勢、γ轴移動趨勢與Ζ 軸移動趨勢。最後,再依據移祕勢來騎平面手勢指令、垂直手勢指令 或者三維手勢指令。 鲁 第3G〜3L圖即為選擇近接偵測模式中多階近接資料的一實施例,以下 說明之。 第圖係為第3D圖中,於時序Τ1所輸出之近接資料詳細内容示意 圖。在時序了1時’電極Ε1所代表的譜近接資料分別為2。 第3Η圖係為第3D圖中’於時序丁2所輸出之近接資料詳細内容示意 圖時序丁2時’電極日1、巳3、日8、日13所代表的多階近接資料分別為2、 2、2、1 〇 12 201203033 第31圖係為第3E圖中,於時序T3所輸出之近接資料詳細内容示意 圖;時序 Τ3 時,電極 Ε1、Ε3、Ε5、Ε8、Ε10、Ε12、Ε13、Ε15、Ε17、 Ε22所代表的多階近接資料分別為ι、3、2、3、4、1、2、2、1» 第3J圖係為第3Ε圖中,於時序Τ4所輸出之近接資料詳細内容示意 圖。時序 Τ4 時,電極 Ε3、Ε5、Ε8、Ε10、Ε12、Ε13、Ε15、Ε17、Ε20、 Ε22所代表的多階近接資料分別為1、2、1、3、2、1、4、5、4、1、3、 2 °Target, 相对 axis relative coordinate, z axis relative coordinate and X axis movement trend, Y axis movement trend and Z axis movement trend. Finally, according to the (4) trend, the plane gesture command, the vertical gesture command or the three-dimensional gesture command.帛2G~2L_ is a multi-step close-to-be-connected embodiment. The 2G graph is a detailed view of the close-up data outputted in the 2D graph at the timing. At the timing τι, the multi-order close-in data represented by the electrodes E1, E2, and E7 are 2 small • 1 respectively. The 2Hth diagram is a detailed view of the proximity data outputted at the timing T2 in the 2D diagram. At time T2, the multi-order close-up data represented by the electrodes E1, E2, E3, E4, E7, E8, E9, E13, and E14 are 2, 3, 2, 1, 1, 2, 1, 1, and 1, respectively. The second diagram is the schematic diagram of the details of the proximity data outputted at the timing T3 in the second E diagram; the electrodes E1, E2, E3, E4 'E5 ' E6, E7 ' E8, E9, E10, E11, at the timing T3 The multi-order near-end data represented by E12, E13, E14, E15, E16, E17, E21, E22 are 1, 2. 2, 3'3, 2, 1, 1, 3, 4, 4, 2, 1, respectively. 1, 1, 2, 2, 1, 1. _ The 2J figure is a detailed view of the close-up data outputted at the timing T4 in the 2E figure. At time T4, the multiple-order close-in data represented by electrodes E3, E4, E5, E6, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22 respectively 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, 2, 4, 5, 5, 4, 1, 2, 2, 3, 4, 2 〇 2K is the 2F In the figure, the detailed content of the close-up data outputted at the timing T5; at the timing T5, the electrodes E5, E6, E10, E11, E12, E15, E16, E17, E18, 201203033 E20, E21, E22, E23, E24 represent The multi-order close-in data are 彳, 彳,,, 2, 2, 1, 3, 5, 5, 1, 3, 5'7, 7〇. The 2L picture is the 2F picture, which is output at timing T6. The details of the near-contact data are as follows: at the time of Τ6, the multiple-order close-in data represented by the electrodes Ε18, Ε23, and Ε24 are 3, 3, and 6, respectively. By the magnitude of the inductive amount of the 2G 2L map, the relative distance of the object to the crotch sleeve can be derived. That is, in each scanning cycle, the average health object touch surface of the multi-step proximity data of one or several electrodes having the largest sensing amount is relatively short. The relative movement distance of the secret can be used to calculate the movement trend of the ζ axis and the vertical movement gesture. The X-axis relative coordinates are opposite to the Υ axis. In each rib cycle, the coordinates of the largest _ or several electrodes can be reread as X and γ coordinates. As for the cymbal trend, the γ axis movement trend, and the 移 axis movement tendency, it can be calculated by different scanning periods such as Τ1~Τ6. After calculating the X-axis movement trend, the axis movement trend, and the axis movement trend, the plane gesture command, the vertical gesture command, or the three-dimensional gesture command can be calculated accordingly. The 2L picture is a full-scanning proximity picking and measuring method, and a selective scanning type near-reading method can be adopted. Please refer to the description of Figures 3 to 3L. Referring to FIG. 3, which is a schematic side view of the object in which the track 32 passes through the touch panel 11 in the proximity touch device of the touch panel of the present invention, which is an embodiment in which the proximity detection mode is selected. It can be seen from the figure that the trajectory passes over Ε3, Ε10, Ε17, Ε24, and there is a tendency of the axis to move (not shown) ** the actual sensing and output data of the trajectory 32, and the pattern of the performance is explained. . Referring to the third circle, it is a schematic diagram of the 债·Α profile of the object 2 201203033 in the proximity of the touch panel of the touch panel of the present invention. Looking at Figure 3B, it can be seen that when the object 2 passes over the track (four) plate 以 with the trajectory 32, it will pass through the sensing range of the different electrodes at the timing (4). Here, Fig. 3B shows the induction of the electrodes E1, 曰13, respectively, the range "41, 53, and the object 2 is gradually moved toward the sensing range of the electrode E13 by the wire circumference of the electrode E1, and has a tendency to move toward the negative Z axis. In the third embodiment, in the touch device of the touch panel of the present invention, the object 2 is turned over by the β·β section when the track passes through the touch panel 11 to observe the second image. The object 2 can be found. When the panel 11 is above, the timing ranges from 1 to T6, respectively, through different sensing ranges of the electrodes. Among them, '3C shows the wire circumferences 41, 43 and 45' of the electrodes E1, E3, and E5, respectively, and the wire circumference of the object 2 gradually moves toward the sensing range of the electrode E5, and 'has a tendency to move toward the negative Z axis. . Next, please refer to FIG. 3D, which is a schematic diagram of the proximity data outputted at timings T1 and T2 when the object 2 in the touch panel proximity detecting device of the present invention passes the touch panel 11 through the track 32. At timing Τ1, the electrode Ε1 senses the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding proximity data (the terminal view is set to one or more stages). When the timing is Τ2, the electrodes Ε1, Ε3, Ε8, and Ε13 sense the sensing signals, and the proximity detecting circuit also outputs the corresponding proximity data. The third drawing is a schematic diagram of the proximity data outputted by the time series Τ3 and Τ4 when the object 2 passes through the touch panel 11 by using the touch panel proximity detecting device of the present invention. At timing Τ3, electrodes Ε1, Ε3, Ε5, Ε8, Ε10, Ε12, Ε13, Ε15, Ε17, Ε22 sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding proximity data. When the timing is 4, there are electrodes Ε3, Ε5, Ε8, Ε10, Ε12, Ε13, Ε15, Ε17, Ε20, Ε22 sensing 201203033 to the sensing signal 'and the proximity detecting circuit 16 also outputs the corresponding proximity data” 3F In the touch panel proximity detecting device of the present invention, when the object 2 passes through the touch panel 11 with the track 32, the short-circuit data outputted at the timings Τ5 and Τ6 is shown. When the timing is Τ5, the electrodes Ε5, Ε10, Ε12, Ε15, Ε17, Ε20, Ε22, Ε24 sense the sensing signal, and the proximity detecting circuit 16 also outputs the corresponding proximity data. When the timing is 6,000, the electrode Ε 24 senses the sensing signal ’ and the proximity detecting circuit 16 also outputs the corresponding proximity data. In the 3D~3F diagram, the near-contact data may be first-order near-term data or multi-stage near-term data. If it is a first-order proximity data, the X-axis movement trend and the x-axis movement tendency can be calculated according to the change trend of the first-order proximity data to obtain a plane gesture instruction. On the basis of the first-order close-in data, to calculate the relative coordinates of the X-axis relative coordinates and the γ-axis, the centroid method or other methods can be used to obtain the first-order close-up data. The right-hand side data is multi-order near-station data', and the X-axis relative coordinates, the 相对-axis relative coordinates, the Ζ-axis relative coordinates and the X-axis movement trend, the γ-axis movement trend, and the 轴-axis movement tendency can be calculated according to the multi-order close-up data. Finally, the plane gesture command, vertical gesture command or three-dimensional gesture command is taken according to the moving secret. Lu 3G~3L is an embodiment of selecting multi-order proximity data in the proximity detection mode, which is explained below. The figure is a detailed view of the close-up data outputted in the time series 第1 in the 3D picture. At the time of timing 1, the spectral proximity data represented by the electrode Ε1 is 2, respectively. The third figure is the 3D picture, the detailed data of the short-circuit data outputted by the timing D2 is shown in the figure 2, and the multi-step near-end data represented by the electrode day 1, 巳3, day 8, and day 13 are respectively 2. 2, 2 1 12 201203033 Figure 31 is a detailed diagram of the details of the proximity data outputted at time series T3 in Figure 3E; at time Τ3, electrodes Ε1, Ε3, Ε5, Ε8, Ε10, Ε12, Ε13, Ε15 The multi-order close-in data represented by Ε17 and Ε22 are ι, 3, 2, 3, 4, 1, 2, 2, 1» respectively. The 3J picture is the 3rd picture, and the close-up data outputted in time series Τ4 is detailed. The content is schematic. When the time is Τ4, the multi-order close-in data represented by the electrodes Ε3, Ε5, Ε8, Ε10, Ε12, Ε13, Ε15, Ε17, Ε20, Ε22 are 1, 2, 1, 3, 2, 1, 4, 5, 4, respectively. 1,3, 2 °

第3Κ圖係為第3F圖中,於時序Τ5所輸出之近接資料詳細内容示意 圖;時序 Τ5 時,電極 Ε5、Ε10、Ε12、Ε15、Ε17、Ε20、Ε22、Ε24 所代 表的多階近接資料分別為1、1、2、1、5、1、5、7。 第3L圖係為第3F圖中’於時序丁6所輸出之近接資料詳細内容示意 圖’時序Τ6時’電極Ε24所代表的多階近接資料分別為6。 藉由第3G〜3L圖的感應量大小值,可推算出物件在乙轴的相對距離。 '、Ρ在每個掃也週期中,以感應量最大的一個或數個電極的多階近接資 厂 換算為物件與觸控面板於ζ軸的相對距離。運航相對距離的 變化,可計算出Ζ麵軸趨勢触直移動手勢等資訊。而對座標 與Υ轴相對私’蝴_純射,可自《缝個或數個電極 的座標的重錢為X、γ絲㈣χ軸鶴聰、丫鳩趨勢、Ζ轴移 ^趨勢’則可由不_掃_如胸⑽♦刪χ轴移動趨 、轴移_勢'、移動趨勢後,即可據崎算平斜勢指令、垂直手 勢指令或者三維手勢指令。 圖可知’無論採用全掃描式或者選擇掃指式皆可達到計 13 201203033 算得物件於觸控面板附近之空間中的近接侧,亦即,可取得x u袖 相對座標、移動趨勢、乃至於手勢指令。惟在X轴相對座標、γ軸相對座 *與轴相對座標的取得上,全掃描式的近接偵測解析度可較高。 第4圖係為運用本發明之觸控面板近接偵測裝置,所制出之空間相 對座標’再雌_姆座標計算得鑛雜,再由移_勢觸手勢之 示意圖。對獨的掃描區間的物件移動軌跡34而言,本發明可取得不同的 掃描區間的物件相對座標P卜P7。其中,紐接資料為-階近接資料時, 相對座標P1〜P6僅賊表X、γ健標,麟明斷平面之飾趨勢,進 而判斷出平面的空間鶴手勢,如第4圓的實施例為細。若近接資料為 多階近接資料時,每個相對座標P1〜P6將包含有χ軸、丫軸與z軸的相對 座標並可據以δ十算X軸、γ轴的移動趨勢資訊。因此,將可判斷第4圖 的手勢為三維手勢。 "月參考第5 @,其為本發明之觸控面板三維近接感應伽彳方法流程圖, 一階近接偵測模式之一實施例,包含以下步驟: 步驟110 :開啟電容式觸控面板之一階近接偵測模式。 步驟112 ·依據工作時序’分別偵測物件進入各電極之空間感應區所產 生之感應訊號。 步驟114 .依據工作時序’依據各電極所輸出之感應訊號產生一階近接 資料。 步驟116 .依據各電極之座標及其所對應之一階近接資料計算該物件於 各工作時序之X軸、Υ軸之相對座標。 步驟117 :依據各時序該物件於X轴、γ軸之相對座標變化,計算該物 201203033 件於x軸、γ軸之移動趨勢。 步驟118 :依據X軸、Υ軸移動趨勢,產生一平面手勢指令。 亦即,依照第5圖的步驟,最基本的可以取得X軸、γ軸的相對座標 與移動趨勢,進而可以取得空間中的平面手勢指令。 接著’請參考第6圖’其為本發明之觸控面板三耗接祕侧方法 流程圖,多階近接偵測模式之一實施例’包含以下步驟: 步驟120 :開啟電容式觸控面板之近接偵測模式。 ® 步驟122 .依據工作時序’分別偵測物件進入電極之空間感應區所產生 之感應訊號。 步驟124 .依據工作時序與各電極所輸出之感應訊號產生多階感應資 料。 步驟126 .依據多個工作時序中各電極所對應之多階感應資料,計算該 物件於X軸、γ軸與Ζ轴之移動趨勢。 步驟128 :依據Ζ轴移動趨勢,產生垂直手勢指令。 • 步驟130:依據X軸與Υ軸移動趨勢,產生平面手勢指令。 步驟132:依據χ軸、丫轴與Ζ軸移動趨勢,產生三維手勢指令。 ' 亦即’依照第6圖的步驟,最基本的可以取得X轴、γ軸、ζ軸的移 動趨勢,進而可碌得#直手勢指令、平財勢齡或者如中的三維手 勢指令。 第7圖係為本發明之觸控面板三維近接感顧測方法流程圖,多階近 接須則模式之另-實施例,包含以下步驟: 步驟120 :開啟電容式觸控面板之近接偵測模式 15 201203033 步驟122 ·依據工作時序,分別偵測物件進入電極之空間感應區所產生 之感應訊號。 步驟124 :依據工作時序與各電極所輸出之感應訊號產生多階感應資 料。 步驟125 :依據各電極所對應之多階感應資料,計算該物件於各時序之 X轴、Y軸與Z軸相對空間座標。 步驟127 .依據各時序於X軸、γ軸與z軸之相對空間座標之變化,產生 X、Y軸與Z軸移動趨勢。 步驟128 :依據z軸移動趨勢,產生垂直手勢指令。 步驟130 :依據X軸與γ軸移動趨勢,產生平面手勢指令。 步驟132 :依據X轴、γ轴與z軸移動趨勢,產生三維手勢指令。 亦即,依照第7圖的步驟,最基本的可以取得χ軸、γ軸、z軸的相 對座標以及物件的移動趨勢,進而可以取得垂直手勢指令、平面手勢指令 或者空間中的三維手勢指令。 第8圖係為本發明之觸控面板三維近接感應偵測方法流程圖,選擇近 接偵測模式之一實施例,包含以下步驟·· 步驟140 :開啟電容式觸控面板之選擇近接偵測模式。 步驟142 .依據工作時序,分別伯測物件進入經選擇之電極之空間感應 區所產生之感應訊號。 步驟144:依據工作時序與各經選擇之電極所輸出之感應訊號產生多階 感應資料。 步驟146 :依據多個工作時序中各經選擇之電極所對應之多階感應資 201203033 料,計算該物件於χ軸、γ轴與z轴之移動趨勢。 步驟148 :依據Ζ轴移動趨勢,產生垂直手勢指令。 步驟150 .依據X軸與γ轴移動趨勢,產生平面手勢指令。 步驟152 :依據X軸、γ軸與ζ軸移動趨勢,產生三維手勢指令。 亦即,依照第8圖的步驟,最基本的可以取得X軸、γ軸、ζ軸物件 移動趨勢,進而可以取得垂直手勢指令、平面手勢指令或者空間中的三維 手勢指令。 第9圖係為本發明之觸控面板三維近接感應偵測方法流程圖,選擇近 接偵測模式之另一實施例,包含以下步驟: 步驟140 :開啟電容式觸控面板之選擇近接偵測模式。 步驟142 :依據工作時序’分別偵測物件進入經選擇之電極之空間感應 區所產生之感應訊號。 步驟144:依據工作時序與各經選擇之電極所輸出之感應訊號產生多階 感應資料。 步驟145 :依據各經選擇之電極所對應之多階感應資料,計算該物件於 各時序之X軸、Υ轴與Ζ軸相對空間座標。 步驟147 :依據各時序於X軸、Υ軸與ζ轴之相對空間座標之變化,產生 Χ、γ輛與Ζ軸移動趨勢。 步驟148 :依據Ζ軸移動趨勢’產生垂直手勢指令。 步驟150 :依據X轴與Υ軸移動趨勢,產生平面手勢指令。 步驟152 :依據X軸、Υ軸與Ζ軸移動趨勢,產生三維手勢指令。 亦即,依照第9圖的步驟,最基本的可以取得χ軸、γ軸、ζ軸的相 17 201203033 對座標以及物件的移動趨勢’進而可以取得垂直手勢指令、平面手勢指令 或者空間巾的二維手勢指4^就輸出資料而言,可輸出近接資料、座標資 料、移動趨勢、手勢指令(其一或任意組合)等等。 雖然本發明之較佳實施觸露如上所述,然其並非狀限定本發明, 任何熟習相關技藝者’在不脫離本發明之精神和細内,當可作些許之更 動與潤飾,因此本發明之專娜護範圍須視本制書_之_請專利範圍 所界定者為準》 【圖式簡單說明】 第1A圖係為其為本發明之觸控面板近接侧裝置之功能方塊圖; 第1B @係為其為本發明之魅面板近翻職置之魏方塊圖中選 擇近接偵測模式之示意圖; 第2A圖係為運用本發明觸控面板近接侧裝置中,物件以軌跡泣經 過觸控面板11時之偵測示意圖; 圖係為運用本發明觸控面板近接债測裝置中,物件2以轨跡32 經過觸控面板11時之A-A剖面伽示意圖; 圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11時之B_B勤偵測示意圖; 圖係為運用本發明觸控面板近接伽彳裝置巾,物件2以執跡32 經過觸控面板U _ 時,於時序T1、丁2所輸出之近接資料示意圓; 圓係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11fli + 時,於時序T3、T4所輸出之近接資料示意圖; 圖係為運用本發明觸控面板近接偵測裝置中,物件2以執跡32 201203033 經過觸控面板1彳時,於時序丁5、丁6所輸出之近接資料示意圖; 第2G圖係為第2D圖中,於時序T1所輸出之近接資料詳細内容示意 园 · 圃, 第2H圖係為第2D圖中,於時序T2所輸出之近接資料詳細内容示意 圃, 第2丨圖係為第2E圖中,於時序T3所輸出之近接資料詳細内容示意圖; 第2J圖係為第2E圖中,於時序T4所輸出之近接資料詳細内容示意 圓 · 圃, 第2K圖係為第2F圖中,於時序T5所輸出之近接資料詳細内容示意 圓 · 圆, 第2L圖係為第2F圖中’於時序Τ6所輸出之近接資料詳細内容示意 ΓΞΙ · 圆, 第3A圖係為運用本發明觸控面板近接偵測裝置中,物件以執跡32經 過觸控面板11時之侧示意圖,其為選擇近接制模式下之實施例; 第3B圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 觸控面板^時之A_A剖面侧示意圖; 第3C圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11時之Β·Β__示意圖; 第3D圖係為運用本發鴨控面板近接侧裝置中,物件2以軌跡32 過觸控面板11時,於時序T1、了2所輸出之近接資料示意圖; 第3E圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 、i過觸控面板Μ時,於時序了3、了4所輸出之近接資料示意圖; 201203033 第3F圖係為運用本發明觸控面板近接偵測裝置中,物件2以軌跡32 經過觸控面板11時,於時序T5、T6所輸出之近接資料示意圖; 第3G圖係為第3D圖中,於時序Τ1所輸出之近接資料詳細内容示意 圖; 第3H圖係為第3D圖中’於時序T2所輸出之近接資料詳細内容示意 ita · 圆, 第3I圖係為第3E圖中,於時序丁3所輸出之近接資料詳細内容示意圖; 第3J圓係為第3E圖中,於時序T4所輸出之近接資料詳細内容示意 圖; 第3Κ圖係為第3F圖中,於時序丁5所輸出之近接資料詳細内容示意 圖; 第3L圓係為第3F圖中,於時序丁6所輸出之近接資料詳細内容示意 圖; 第4圖係為運用本發明之觸控面板近接伯測裝置,所偵測出之空間相 對座標,再依據帥相對座標計算得軸趨勢,再由祕趨勢峨手勢之 示意圖; 第5圖係為本發明之觸控面板三維近接感應偵測方法流程圖,一階近 接偵測模式之一實施例; 第6圖係為本發明之觸控面板三維近接感應_方法流程圖,多階近 接偵測模式之一實施例; 第7圖係為本發明之觸控面板三維近接感應铜方法流程圖,多階近 接偵測模式之另一實施例; 20 201203033 第8圖係為本發明之觸控面板三維近接感應偵測方法流程圖,選擇近 接偵測模式之一實施例;及 第9圖係為本發明之觸控面板三維近接感應偵測方法流程圖,選擇近 接偵測模式之另一實施例。 【主要元件符號說明】 1 觸控面板近接偵測裝置 2 物件 11 觸控面板 14 觸控感測電路 16 近接感測電路 18 控制電路 E1-E24 電極 22 控制單元 24 連接板 32'34 軌跡 41、42、 43、44、45、46、47、53、59 感應範圍 D1 距離 P1-P7 相對座標 T1-T6 時序 21The third graph is the detailed content of the proximity data outputted in the third graph, which is output at the timing Τ5; when the timing is Τ5, the multi-step close-in data represented by the electrodes Ε5, Ε10, Ε12, Ε15, Ε17, Ε20, Ε22, Ε24 respectively It is 1, 1, 2, 1, 5, 1, 5, 7. The 3L picture is the detail of the close-up data outputted in the 3F picture at the timing 66. The timing Τ6 o's the multi-order close-up data represented by the electrode Ε24 is 6, respectively. By the magnitude of the inductive amount of the 3G to 3L map, the relative distance of the object on the E-axis can be derived. ', Ρ In each sweep cycle, the multi-step proximity of one or more electrodes with the largest amount of induction is converted into the relative distance between the object and the touch panel on the x-axis. The change of the relative distance of the navigation can calculate the information such as the movement of the face axis and the movement of the gesture. And the coordinate and the Υ axis are relatively private 'butter _ pure shot, can be from the weight of the seam or the number of electrodes is X, γ silk (four) χ axis He Cong, 丫鸠 trend, Ζ axis shift ^ trend can be No _sweep _ such as chest (10) ♦ delete axis movement trend, axis shift _ potential ', after moving trend, you can calculate the slope command, vertical gesture command or three-dimensional gesture command according to the saga. It can be seen that 'whether full scan or swipe type can be used to achieve 13 201203033. The object can be calculated on the near side of the space near the touch panel, that is, the relative coordinates of the xu sleeve, the movement trend, and even the gesture command can be obtained. . However, the full-scan proximity detection resolution can be higher in the X-axis relative coordinate, the γ-axis relative seat * and the relative coordinate of the axis. Fig. 4 is a schematic diagram showing the use of the touch panel proximity detecting device of the present invention to calculate the difference between the coordinates of the coordinates and the coordinates of the moving target. For the object movement trajectory 34 of the unique scanning interval, the present invention can obtain the object relative coordinates P P7 of different scanning intervals. Wherein, when the data of the link is a near-order data, the relative coordinates P1 to P6 are only the thief table X, the gamma mark, and the trend of the lining break plane, thereby determining the plane space crane gesture, as in the fourth circle embodiment fine. If the proximity data is multi-order close-in data, each relative coordinate P1~P6 will contain the relative coordinates of the x-axis, the x-axis and the z-axis, and the movement trend information of the X-axis and the γ-axis can be calculated according to δ10. Therefore, it can be judged that the gesture of Fig. 4 is a three-dimensional gesture. "Monthly reference 5@, which is a flow chart of a three-dimensional proximity sensing gamma method of the touch panel of the present invention, an embodiment of the first-order proximity detection mode, comprising the following steps: Step 110: Turn on the capacitive touch panel First-order proximity detection mode. Step 112: Detecting the sensing signals generated by the objects entering the space sensing area of each electrode according to the working sequence. Step 114. According to the working sequence, the first-order proximity data is generated according to the sensing signals output by the electrodes. Step 116. Calculate the relative coordinates of the X-axis and the Υ-axis of the object at each working sequence according to the coordinates of each electrode and the corresponding one-point proximity data. Step 117: Calculate the movement trend of the object 201203033 on the x-axis and the γ-axis according to the relative coordinates of the object on the X-axis and the γ-axis. Step 118: Generate a plane gesture instruction according to the X axis and the axis movement trend. That is, according to the steps of Fig. 5, the basic coordinates of the X-axis and the γ-axis can be obtained, and the plane gesture command in the space can be obtained. Then, please refer to FIG. 6 , which is a flow chart of the method for the three-side contact side of the touch panel of the present invention. The embodiment of the multi-stage proximity detection mode includes the following steps: Step 120: Turn on the capacitive touch panel Proximity detection mode. ® Step 122. Detect the inductive signal generated by the object entering the space sensing area of the electrode according to the working sequence'. Step 124. Generate multi-level sensing data according to the working sequence and the sensing signals output by the electrodes. Step 126. Calculate the movement trend of the object on the X-axis, the γ-axis, and the Ζ-axis according to the multi-level sensing data corresponding to each electrode in the plurality of working sequences. Step 128: Generate a vertical gesture instruction according to the movement trend of the x-axis. • Step 130: Generate a flat gesture command based on the X-axis and the x-axis movement trend. Step 132: Generate a three-dimensional gesture instruction according to the movement trend of the x-axis, the x-axis and the x-axis. In other words, according to the steps in Fig. 6, the most basic ones can obtain the movement tendency of the X-axis, the γ-axis, and the ζ-axis, and then the #直 gesture command, the flat-aged age, or the three-dimensional gesture command as in the middle can be obtained. 7 is a flow chart of a three-dimensional proximity sensing method of the touch panel of the present invention, and another embodiment of the multi-step proximity mode, comprising the following steps: Step 120: Turning on the proximity detection mode of the capacitive touch panel 15 201203033 Step 122 · According to the working sequence, detect the inductive signal generated by the object entering the space sensing area of the electrode. Step 124: Generate multi-level sensing data according to the working timing and the sensing signals output by the electrodes. Step 125: Calculate the relative space coordinates of the X-axis, the Y-axis and the Z-axis of the object according to the multi-level sensing data corresponding to each electrode. Step 127. According to the change of the relative space coordinates of the X-axis, the γ-axis and the z-axis, the X, Y-axis and Z-axis movement tendency is generated. Step 128: Generate a vertical gesture instruction according to the z-axis movement trend. Step 130: Generate a planar gesture instruction according to the movement trend of the X-axis and the γ-axis. Step 132: Generate a three-dimensional gesture command according to the X-axis, γ-axis, and z-axis movement trends. That is, according to the steps of Fig. 7, the most basic coordinates of the x-axis, the gamma axis, and the z-axis can be obtained, and the moving tendency of the object can be obtained, thereby obtaining a vertical gesture command, a plane gesture command, or a three-dimensional gesture command in space. FIG. 8 is a flow chart of a three-dimensional proximity sensing detection method for a touch panel of the present invention. One embodiment of selecting a proximity detection mode includes the following steps: Step 140: Turn on the capacitive touch panel to select the proximity detection mode. . Step 142. According to the working sequence, respectively, the sensing object generates an inductive signal generated by the spatial sensing area of the selected electrode. Step 144: Generate multi-level sensing data according to the working timing and the sensing signals output by the selected electrodes. Step 146: Calculate the movement tendency of the object on the x-axis, the γ-axis and the z-axis according to the multi-level sensing resource corresponding to each selected electrode in the plurality of working sequences. Step 148: Generate a vertical gesture command according to the trend of the axis movement. Step 150. Generate a planar gesture instruction according to the X-axis and γ-axis movement trends. Step 152: Generate a three-dimensional gesture command according to the X axis, the γ axis, and the ζ axis movement trend. That is, according to the steps of Fig. 8, the most basic can obtain the movement trend of the X-axis, the γ-axis, and the ζ-axis object, and then the vertical gesture command, the plane gesture command, or the three-dimensional gesture command in the space can be obtained. FIG. 9 is a flow chart of a three-dimensional proximity sensing method for a touch panel of the present invention. Another embodiment for selecting a proximity detection mode includes the following steps: Step 140: Turn on the proximity touch detection mode of the capacitive touch panel . Step 142: Detect the sensing signals generated by the object entering the spatial sensing area of the selected electrode according to the working sequence. Step 144: Generate multi-level sensing data according to the working timing and the sensing signals output by the selected electrodes. Step 145: Calculate the relative space coordinates of the X-axis, the Υ-axis and the Ζ-axis of the object according to the multi-level sensing data corresponding to each selected electrode. Step 147: According to the change of the relative space coordinates of the X-axis, the Υ-axis and the ζ-axis, the Χ, γ-vehicle and Ζ-axis movement tendency is generated. Step 148: Generate a vertical gesture command based on the axis movement trend. Step 150: Generate a planar gesture instruction according to the X axis and the x axis moving trend. Step 152: Generate a three-dimensional gesture instruction according to the X axis, the Υ axis and the Ζ axis movement trend. That is, according to the steps of Fig. 9, the most basic one can obtain the phase of the x-axis, the γ-axis, and the x-axis. 201203033 The movement trend of the coordinates and the object', and then the vertical gesture command, the plane gesture command or the space towel can be obtained. The dimension gesture refers to 4^ in terms of output data, and can output near data, coordinate data, moving trend, gesture instruction (one or any combination), and the like. Although the preferred embodiment of the present invention is described above, it is not intended to limit the present invention, and the skilled artisan can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of the special protection shall be subject to the definition of the patent _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1B @ is a schematic diagram for selecting a proximity detection mode in the Wei block diagram of the charm panel of the present invention; FIG. 2A is a schematic view of the proximity side device of the touch panel of the present invention, A schematic diagram of the detection of the control panel 11; the figure is a schematic diagram of the AA profile of the object 2 with the track 32 passing through the touch panel 11 in the touch panel proximity sensing device of the present invention; In the proximity detecting device of the panel, the B_B is detected by the object 2 when the track 32 passes through the touch panel 11; the figure is that the touch panel of the present invention is used to connect the gamma device towel, and the object 2 is used to trace 32 through the touch panel. U _, at The proximity data outputted by the sequence T1 and the D2 is shown as a circle; the circle is the proximity detection device of the touch panel of the present invention, and the object 2 is outputted at the timings T3 and T4 when the track 32 passes through the touch panel 11fli + The schematic diagram is a schematic diagram of the proximity data outputted by the object 2 in the proximity detection device of the touch panel of the present invention, when the object 2 is traversed 32 201203033 through the touch panel; In the 2D diagram, the details of the proximity data outputted at the timing T1 are shown in the second diagram, and the 2H diagram is the 2D diagram. The details of the proximity data outputted at the timing T2 are shown in the second diagram. 2E is a schematic diagram showing the details of the proximity data outputted at the timing T3; the 2J diagram is the 2E diagram, the details of the proximity data outputted at the timing T4 are circular 圃, and the 2K diagram is the 2F In the figure, the details of the proximity data outputted at the timing T5 are shown as a circle and a circle, and the 2L diagram is a detailed description of the details of the proximity data outputted at the timing Τ6 in the 2Fth diagram, and the 3A diagram is the application of the text. Invention touch panel near In the detecting device, the object is a schematic view of the side of the tracking panel 11 when it passes through the touch panel 11, which is an embodiment in the selection of the proximity mode; and FIG. 3B is the object 2 of the touch panel proximity detecting device of the present invention. A schematic view of the A_A cross-section of the touch panel of the touch panel 32; FIG. 3C is a schematic diagram of the Β·Β__ when the object 2 passes the touch panel 11 with the track 32 in the touch panel proximity detecting device of the present invention; The 3D image is a schematic diagram of the proximity data outputted at the timings T1 and 2 when the object 2 passes the touch panel 11 with the track 32 passing through the touch panel 11 in the near side device of the hair control panel; the 3E image is the touch using the present invention. In the proximity detection device of the panel, when the object 2 passes the track 32 and the i passes through the touch panel, the data of the proximity data outputted by the sequence 3 and 4 is output; 201203033 3F is the proximity detection of the touch panel of the present invention. In the device, when the object 2 passes the touch panel 11 through the track 32, the short-circuit data is outputted at the timings T5 and T6; the 3G image is the detailed content diagram of the proximity data outputted in the sequence Τ1 in the 3D image; 3H picture is in the 3D picture' The details of the proximity data outputted by the timing T2 indicate ita · circle, and the 3I figure is the detailed content diagram of the proximity data outputted in the 3E picture at the timing D3; the 3J circle is the 3E picture at the timing T4 The detailed content of the short-circuit data output is shown in the figure 3F, and the detailed content of the proximity data outputted in the sequence of the 3F is shown in the 3F figure; the 3L circle is the 3F picture, and the output of the sequence D6 is closely connected. The detailed description of the data; FIG. 4 is a schematic diagram of the touch panel with the touch panel of the present invention, the space detected relative to the coordinates, and then the axis trend is calculated according to the handsome relative coordinates, and then the gesture of the secret trend is used; 5 is a flow chart of a three-dimensional proximity sensing detection method for a touch panel of the present invention, one embodiment of a first-order proximity detection mode; and FIG. 6 is a flow chart of a three-dimensional proximity sensing method of the touch panel of the present invention. One embodiment of a multi-stage proximity detection mode; FIG. 7 is a flow chart of a method for three-dimensional proximity sensing copper of a touch panel of the present invention, and another embodiment of a multi-stage proximity detection mode; 20 201203033 The flow chart of the three-dimensional proximity sensing detection method of the touch panel of the present invention is an embodiment of the proximity detection mode; and the figure 9 is a flow chart of the three-dimensional proximity sensing detection method of the touch panel of the present invention. Another embodiment of the detection mode. [Main component symbol description] 1 touch panel proximity detecting device 2 object 11 touch panel 14 touch sensing circuit 16 proximity sensing circuit 18 control circuit E1-E24 electrode 22 control unit 24 connecting plate 32'34 track 41, 42, 43, 44, 45, 46, 47, 53, 59 Sensing range D1 Distance P1-P7 Relative coordinate T1-T6 Timing 21

Claims (1)

201203033 七、申請專利範圍·· 1. 一種觸控面板近接偵測裝置,包含: —電容式觸控面板’具有位於同一平面之複數個電極’該些電極 彼此絕緣並各自對應於一座標,該些電極用以偵測一物件之接近而產 生一感應訊號,並偵測該物件之觸碰而產生一觸碰訊號;及 一控制單元,連接該電容式觸控面板並具有一近接偵測模式與一 觸碰偵測模式,當執行該近接偵測模式時,依據該感應訊號產生一近 接資料,當執行該觸碰偵測模式時,依據該觸碰訊號計算該物件之至 少一座標資料。 2. 如請求項1所述之裝置,其中該控制單元依據不同時序之該些電極對應 之該些近接資料計算該物件之一 X轴座標、一 Y轴座標。 3. 如請求項1所述之裝置,其中該控制單元依據不同時序之該些電極對應 之該些近接資料計算該物件之一 X轴座標、一 Y轴座標、一 Z軸座標。 4. 如請求項.1所述之裝置,其中該控制單元依據不同時序之該些電極對應 之該些近接資料計算該物件之一 X轴移動趨勢、一 Y軸移動趨勢。 5. 如請求項1所述之裝置,其中該控制單元依據不同時序之該些電極對應 之該些近接資料計算該物件之一 X轴移動趨勢、一 Y軸移動趨勢與一 Z軸移動趨勢。 6. 如請求項5所述之裝置’其中該Z軸移動趨勢包含一移動方向與一移動 角度。 7.如請求項5所述之裝置’其中該控制單元依據該X轴移動趨勢與該Y 轴移動趨勢產生一平面近接手勢;該控制單元依據該控制單元依據該Z 22 201203033 軸移動趨勢產生-垂直近接手勢;該控制單元依據該控制單元依據該χ 軸移動趨勢、該γ軸移動趨勢與該ζ軸移動趨勢產生一三維近接手勢。 8·如請求項1所述之裝置,其中該控制單元包含: 一近接偵測電路,用以接收該感應訊號並產生該近接資料; 一觸控偵測電路,用以接收該觸碰訊號並計算該觸碰座標;及 一控制電路,耦接於該近接偵測電路與該觸控偵測電路,用以控 制該近接偵測電路執行該近接偵測模式與控制該觸控偵測電路執行該 觸控偵測模式,並將該近接資料與該觸碰座標傳輸出去。 9_如請求項1所述之裝置,其中該控制單元係包含一選擇近接侧模式與 -觸碰個模式’錄行鄉擇近接_赋時,域闕擇之該些 電極所產生之域應訊缝生該近接諸,當執行朗碰侧模式 時,依據該觸碰訊號產生該觸碰座標。 1〇. —種觸控面板近接偵測方法,運用於具有複數個電極之一觸控面板該 些電極彼此絕緣且對應於一座標,用以偵測一物件之接近而產生一感 應訊號且偵測該物件之觸碰而產生一觸碰訊號,該方法包含以下步驟: 提供該觸控面板一近接偵測模式; 執行該近接偵測模式; 依據-工作時序’侧—物件進人該些電極之雜感應區所產生 之該感應訊號; 依據該工作時序與該電極所輸出之該感應訊號,產生一近接資 料;及 依據不同之批作時序、該電極之該座標與該電極崎應之該近 23 201203033 接資料,計算該物件之一X軸移動趨勢、一丫轴移動趨勢與一Z轴移動 趨勢。 1_如請求項10所述之方法,更包含以下步驟: 依據該近接f顯職之歡該鋪,計算触狀一 X抽座 標、一Y軸座標、一z軸座標;及 輸出該x軸座標、該Y軸座標與該z轴座標。 12. 如請求項10所述之方法,更包含以下步驟: 依據該x轴移動趨勢與該Y軸移動趨勢,產生-平面手勢指令; 13. 如請求項10所述之方法,更包含以下步驟: 依據該Z軸移動趨勢,產生一垂直手勢指令。 14. 如請求項10所述之方法,更包含以下步驟· 依據該)(婦_勢、該Y軸移_勢與該故軸趨勢產生一三 維手勢指令。 15·如請求項1Q所述之方法,其中該Z轴移動趨勢包含—移動方向與一移 動角度。 笟如請求項10所述之方法,其中計算該物件之該2轴移動趨勢之步驟, 係包含以下步驟: 依據該工作時序,比較該些電極所對應之該些近接資料,以該些 電極所輸出之-最大感應量計算一 z轴相對空間座標;及 依序取得該Z軸相對空間座標,計算該球移動趨勢。 月求項10所狀n纟巾χ ____ Y _ 移動趨勢之步驟,係包含以下步驟: 24 201203033 依據該些電極中輸出一最大感應量之至少一個該電極所對應之該 座標,計算該物件於該工作時序中所對應之一X轴座標與一γ轴座標; 及 依據該X座標與該Y轴座標之變化,計算該X軸移動趨勢與該γ轴移 動趨勢。 18. —種觸控面板近接偵測方法,運用於具有複數個電極之一觸控面板,該 些電極彼此絕緣且對應於一座標,用以偵測一物件之接近而產生一感 應訊號且偵測該物件之觸碰而產生一觸碰訊號,該方法包含以下步驟: 提供該觸控面板一近接偵測模式; 執行該近接偵測模式; 依據一工作時序,偵測一物件進入該些電極之空間感應區所產生 之該些感應訊號; 依據該工作時序與該感應訊號,依序產生一近接資料; 依據不同之該工作時序、該電極之該座標與該電極所對應之該近 接資料’計算該物件之一X轴座標、一γ轴座標、一z轴座標;及 輸出該X轴座標、該Y轴座標與該z轴座標。. 19. 一種觸控面板近接偵測裝置,包含: 一電容式觸控面板,具有位於同一平面之複數個電極,該些電極彼 此絕緣並各自對應於一座標,該些電極用以偵測一物件之接近而產生一 感應訊號’並偵測該物件之觸碰而產生一觸碰訊號;及 一控制單元,連接該電容式觸控面板並具有一近接偵測模式與一觸 碰偵測模式,當執行該近接偵測模式時,依據該感應訊號產生一 Z轴近 25 201203033 接資料,當執行該觸碰偵測模式時,依據該觸碰訊號計算該物件之至少 一座標資料。 20. 如請求項19所述之裝置’其中該控制單元依據不同時序之該些電極對 應之該Z轴近接資料計算該物件一 Z轴座標。 21. 如請求項19所述之裝置,其中該控制單元依據不同時序之該些電極對 應之該Z軸近接資料計算該物件之一 Z軸移動趨勢。 22. 如請求項21所述之裝置,其中該Z軸移動趨勢包含一移動方向與一移 動角度。 23. 如請求項21所述之裝置,其中該控制單元依據該Z轴移動趨勢產生一 垂直近接手勢。 24. 如請求項19所述之裝置,其中該控制單元係包含一選擇近接偵測模式 與一觸碰偵測模式’當執行該選擇近接偵測模式時,依據經選擇之該 些電極所產生之該感應訊號產生該Z軸近接資料;當執行該觸碰偵測 模式時,依據該觸碰訊號產生該觸碰座標。201203033 VII. Patent Application Range·· 1. A touch panel proximity detecting device, comprising: a capacitive touch panel having a plurality of electrodes located on the same plane. The electrodes are insulated from each other and respectively correspond to a target. The electrodes are configured to detect an proximity of an object to generate an inductive signal, and detect a touch of the object to generate a touch signal; and a control unit connected to the capacitive touch panel and have a proximity detection mode And a touch detection mode, when the proximity detection mode is executed, generating a proximity data according to the sensing signal, and when performing the touch detection mode, calculating at least one of the object data of the object according to the touch signal. 2. The device of claim 1, wherein the control unit calculates one of the X-axis coordinates and a Y-axis coordinate of the object according to the proximity data of the electrodes at different timings. 3. The device of claim 1, wherein the control unit calculates one of the X-axis coordinates, a Y-axis coordinate, and a Z-axis coordinate of the object according to the proximity data of the electrodes at different timings. 4. The device of claim 1, wherein the control unit calculates an X-axis movement trend and a Y-axis movement tendency of the object according to the proximity data corresponding to the electrodes at different timings. 5. The device of claim 1, wherein the control unit calculates an X-axis movement trend, a Y-axis movement tendency, and a Z-axis movement tendency of the object according to the proximity data corresponding to the electrodes at different timings. 6. The device of claim 5 wherein the Z-axis movement trend comprises a direction of movement and a movement angle. 7. The device of claim 5, wherein the control unit generates a planar proximity gesture according to the X-axis movement trend and the Y-axis movement tendency; the control unit generates according to the Z 22 201203033 axis movement tendency according to the control unit - a vertical proximity gesture; the control unit generates a three-dimensional proximity gesture according to the movement trend of the yaw axis, the gamma axis movement trend, and the yaw axis movement tendency according to the control unit. The device of claim 1, wherein the control unit comprises: a proximity detecting circuit for receiving the sensing signal and generating the proximity data; and a touch detection circuit for receiving the touch signal and Calculating the touch coordinate; and a control circuit coupled to the proximity detection circuit and the touch detection circuit for controlling the proximity detection circuit to perform the proximity detection mode and controlling the touch detection circuit to execute The touch detection mode transmits the proximity data and the touch coordinates. The apparatus of claim 1, wherein the control unit comprises a selection of a proximity mode and a touch mode, and the domain is selected by the electrodes. The proximity is connected, and when the touch side mode is executed, the touch coordinates are generated according to the touch signal. 1 〇. A touch panel proximity detection method is applied to a touch panel having a plurality of electrodes. The electrodes are insulated from each other and correspond to a target, and are used to detect the proximity of an object to generate an inductive signal and detect Measuring a touch of the object to generate a touch signal, the method comprising the steps of: providing a proximity detection mode of the touch panel; performing the proximity detection mode; and entering the electrodes according to the - working timing 'side The sensing signal generated by the impurity sensing area generates a proximity data according to the working timing and the sensing signal output by the electrode; and according to different batch timings, the coordinate of the electrode and the electrode should be Nearly 23 201203033 Receive data, calculate the X-axis movement trend, one axis movement trend and one Z-axis movement trend of the object. 1) The method of claim 10, further comprising the steps of: calculating a touch-X-coupling coordinate, a Y-axis coordinate, a z-axis coordinate, and outputting the x-axis according to the proximity device The coordinates, the Y-axis coordinates, and the z-axis coordinates. 12. The method of claim 10, further comprising the steps of: generating a -plane gesture instruction according to the x-axis movement trend and the Y-axis movement trend; 13. the method of claim 10, further comprising the following steps : Generates a vertical gesture command based on the Z-axis movement trend. 14. The method of claim 10, further comprising the step of: generating a three-dimensional gesture command according to the trend, the Y-axis shift, and the trend of the axis. 15. The claim 1Q The method, wherein the Z-axis movement trend comprises: a moving direction and a moving angle. The method of claim 10, wherein the step of calculating the 2-axis movement tendency of the object comprises the following steps: Comparing the proximity data corresponding to the electrodes, calculating a z-axis relative space coordinate by using the maximum sensing quantity output by the electrodes; and sequentially obtaining the Z-axis relative space coordinates to calculate the ball movement trend. The step of moving the trend of the item 10 includes the following steps: 24 201203033 Calculating the object according to the coordinates corresponding to at least one of the electrodes that output a maximum amount of inductance in the electrodes One of the X-axis coordinates and a γ-axis coordinate corresponding to the timing; and the X-axis movement tendency and the γ-axis movement tendency are calculated according to the change of the X coordinate and the Y-axis coordinate. 18. A touch panel The proximity detection method is applied to a touch panel having a plurality of electrodes, and the electrodes are insulated from each other and correspond to a label for detecting an approach of an object to generate an inductive signal and detecting the touch of the object. Generating a touch signal, the method comprising the steps of: providing a proximity detection mode of the touch panel; performing the proximity detection mode; detecting an object entering the space sensing area of the electrodes according to a working sequence The sensing signals are generated according to the working timing and the sensing signal, and a proximity data is sequentially generated; and the X-axis of the object is calculated according to the working timing, the coordinate of the electrode and the proximity data corresponding to the electrode a coordinate, a γ-axis coordinate, a z-axis coordinate; and outputting the X-axis coordinate, the Y-axis coordinate and the z-axis coordinate. 19. A touch panel proximity detecting device, comprising: a capacitive touch panel, Having a plurality of electrodes on the same plane, the electrodes are insulated from each other and respectively correspond to a target, and the electrodes are used to detect the proximity of an object to generate an inductive signal And detecting a touch of the object to generate a touch signal; and a control unit connecting the capacitive touch panel and having a proximity detection mode and a touch detection mode when performing the proximity detection mode According to the sensing signal, a Z-axis is generated for approximately 25 201203033. When the touch detection mode is executed, at least one of the objects of the object is calculated according to the touch signal. 20. The device according to claim 19. The control unit calculates the Z-axis coordinate of the object according to the Z-axis proximity data corresponding to the electrodes of different timings. 21. The device of claim 19, wherein the control unit corresponds to the electrodes according to different timings. The Z-axis proximity data calculates a Z-axis movement trend of the object. 22. The device of claim 21, wherein the Z-axis movement trend comprises a direction of movement and a movement angle. 23. The device of claim 21, wherein the control unit generates a vertical proximity gesture in accordance with the Z-axis movement trend. 24. The device of claim 19, wherein the control unit comprises a select proximity detection mode and a touch detection mode, when the selected proximity detection mode is executed, according to the selected electrodes. The sensing signal generates the Z-axis proximity data; when the touch detection mode is executed, the touch coordinate is generated according to the touch signal.
TW99121895A 2010-07-02 2010-07-02 Device and method for detecting proximity and touch behavior of a touch panel TW201203033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121895A TW201203033A (en) 2010-07-02 2010-07-02 Device and method for detecting proximity and touch behavior of a touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121895A TW201203033A (en) 2010-07-02 2010-07-02 Device and method for detecting proximity and touch behavior of a touch panel

Publications (1)

Publication Number Publication Date
TW201203033A true TW201203033A (en) 2012-01-16

Family

ID=46756301

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121895A TW201203033A (en) 2010-07-02 2010-07-02 Device and method for detecting proximity and touch behavior of a touch panel

Country Status (1)

Country Link
TW (1) TW201203033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499026B (en) * 2012-06-06 2015-09-01 Innocom Tech Shenzhen Co Ltd Capacitive touch panel and electronic device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499026B (en) * 2012-06-06 2015-09-01 Innocom Tech Shenzhen Co Ltd Capacitive touch panel and electronic device thereof

Similar Documents

Publication Publication Date Title
US9448645B2 (en) Digitizer using multiple stylus sensing techniques
KR101811636B1 (en) Display apparatus and Method for displaying object thereof
US9122345B2 (en) Method of determining touch gesture and touch control system
US20120188181A1 (en) Touch screen apparatus detecting touch pressure and electronic apparatus having the same
KR20160144968A (en) Projected capacitive touch with force detection
CN103616972B (en) Touch screen control method and terminal device
TW201137708A (en) Imaging device based touch system
KR101484916B1 (en) A digitizer improving the accuracy in positioning
CN103902129B (en) Capacitance plate multiple point touching pressure detection method
JP6005563B2 (en) Touch panel device and control method
US20190034072A1 (en) Electronic device, method and system for detecting fingers and non-transitory computer-readable medium
CN105210013B (en) Via the system and method for the input unit noise reduction for touching buffer
US20120013556A1 (en) Gesture detecting method based on proximity-sensing
US20170177109A1 (en) Detecting hover distance with a capacitive sensor
EP2977862B1 (en) Information processing device and information processing method
TWI436259B (en) Device and method for detecting proximity and touch behavior of a capacitive touch panel
TW201203033A (en) Device and method for detecting proximity and touch behavior of a touch panel
KR101598807B1 (en) Method and digitizer for measuring slope of a pen
TWI452509B (en) 3D sensing method and system of touch panel
CN104375697A (en) Mobile device
JP2013246822A (en) Method and system for clicking and localizing movement objet
TWI498793B (en) Optical touch system and control method
TWI419011B (en) Method and system for tracking touch point
TWI408594B (en) Device and method for detecting object proximity and touch behavior using capacitive touch panel
TWI389022B (en) Touch detection method and capacitive-type touch control system