TW201202630A - Through-port oxy-fuel burner - Google Patents
Through-port oxy-fuel burner Download PDFInfo
- Publication number
- TW201202630A TW201202630A TW099122558A TW99122558A TW201202630A TW 201202630 A TW201202630 A TW 201202630A TW 099122558 A TW099122558 A TW 099122558A TW 99122558 A TW99122558 A TW 99122558A TW 201202630 A TW201202630 A TW 201202630A
- Authority
- TW
- Taiwan
- Prior art keywords
- oxidant
- conduit
- fuel
- burner
- furnace
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Pre-Mixing And Non-Premixing Gas Burner (AREA)
- Gas Burners (AREA)
Abstract
Description
201202630 • 六、發明說明: 【發明所屬之技術領域】 本發明係關於鬲溫爐(舉例來說,玻璃窯)中使用的氧_ 燃料燃燒器。 【先前技術】 以空氣燃料點燃的蓄熱式玻璃窯乃眾所周知。蓄熱式 玻璃窯具有多重用於產生供玻璃熔融用的燃燒火焰之空氣 燃料蓄熱器埠。各種不同參考資料均述及玻璃熏的基本設 计特徵,舉例來說Wolfgang Trier所著,由k. L. Loewenstein 翻。睪的 Glass Furnaces, Design Construction and201202630 • VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an oxygen-fuel burner for use in a kiln furnace (for example, a glass kiln). [Prior Art] A regenerative glass kiln ignited by air fuel is well known. The regenerative glass kiln has multiple air fuel accumulators for generating a combustion flame for melting the glass. Various reference materials describe the basic design features of glass smoked, for example, by Wolfgang Trier, translated by k. L. Loewenstein. Glass Furnaces, Design Construction and
Operation’’’ Society of Glass Technology,雪非耳,英國, 2000 年,及由 Fay To〇ley 所著(編輯)的“The η 扣 db〇〇k Glass Manufacture“,第 3 版第 i 及 2 卷,Ashlee pubUshing 公司(紐約),丨984年,在此以引用方式將其併入本文。 將一或更多蓄熱器埠轉換成氧_燃料點燃可能會要求 將該爐再修整為混合爐,例如美國專利案第6,519,973號所 述的,在此以引用方式將其併入本文。 終止空氣燃料點燃並且將能量輸入替換成氧_燃料點 燃有其挑戰性。因為該爐最初係設計為空氣燃料爐,所以 難以找到適合位置安裝氧-燃料燃燒器。有一個已經用來設 立氧-燃料燃燒器的位置在該蓄熱器埠的埠頸部。 該埠的背部可以被阻斷或設障礙物以侷限或預防熱空 氣從該蓄熱器流入該埠。供該氧-燃料燃燒器設立用的埠頸 3 201202630 部的頂部、底部或側面中可以做一洞孔。接著使該氧-燃料 燃燒器穿過此洞孔並且插入該埠頸部。該氧·燃料燃燒器必 須被設計成將燃料及氧注入該爐子的燃燒空間。這需要哼 燃燒器具有肘管或彎管以改變該燃料及氧化劑的流向。關 於設立穿過該埠頸部的燃燒器的問題為為了維持該埠頸部 的結構完整性用於插入該燃燒器的洞孔尺寸係小的。 當該燃燒器穿過該蓄熱器埠頸部的頂部或底部中的洞 孔設立時,該燃燒器將會具有透過該洞孔輸送該燃料和氧 的大體垂直段及將該燃料及氧注入該玻璃熏的燃燒空間的 大體水平段,以及介於該大體垂直段與該大體水平段之間 的肘管段。當該燃燒器穿過蓄熱器埠頸部的側壁設立時1 該燃燒器可具有二大體水平段及介於該二大體水平段之間 的肘管段。 與氧-燃料燃燒^立於該蓄熱^隼頸部中有關的問 題為該氧·燃料燃燒器必須使該注入喷嘴接近該肘管段,該 財管段必需在接近該注入喷嘴的位置急遽或明顯改變流動 方向。由㈣蓄熱料中的空間限制使得長水平段在該璋 内的注入喷嘴中形成末端會有問題。此外,長水平段在該 注入喷嘴中形成末端的問題是因為必需在該淳的壁中削出 一個大洞’其可能衝擊到圍繞該埠的結構鋼。在接近該注 入喷嘴的位置急遽或明顯改變流動方向造成高壓降,並且 擾亂離開該噴嘴的流動。擾亂造成迅速混合及後續接近該 喷嘴的燃燒,而導致短的火焰。由於喷嘴過熱及,當把該 燃燒器用作穿皡燃燒器時,該蟑頸部中的耐火材料過熱的 201202630 * 關係,並不想要接近該噴嘴的燃燒。 【發明内容】 本發明係關於一種適合利用蓄熱器埠將空氣燃料點燃 轉換成氧-燃料點燃,同時解決前述問題的燃燒器。本發f 也關於具有該燃燒器的爐子及利用該燃燒器加熱爐子的方 法。在蓄熱器修護的期間可使用該方法以延長該爐子的妄 命’及/或提高現有爐子的生產速率。 該燃燒器包含具有外當量直徑,D,的第一冷卻流體外 套、與該第一冷卻流體外套呈固定間隔關係而且大體上同 心地配置於其内的第一氧化劑導管,及燃料導管。 該第-氧化劑導管具有入口、在該第一氧化劑導管的 入口下游的第一部位、在該第一氧化劑導管的第一部位下 游的弯曲部位及在該第一氧化劑導管的弯曲部位下游的第 -一部位。 該彎曲部位具有45。至12〇。的彎角,a,該彎角,&, 可為60。至11〇。。 忒第氧化劑導管的第二部位在出口端形成末端並且 ’、有机動軸及長度,L。該第二部位可具有一圓形截面。 ”該燃料導管具有入口、在該入口下游的第一部位及第 ::位。該燃料導管的第一部位與該第一氡化劑導管的第 P位呈固定間隔關係而且大體上同心地配置於其内。該 燃料導營& ,纖1 ' 4位與s亥氧化劑導管的彎曲部位呈固定間 隔關係而且夫u m , 體上同心地配置於其内。該燃料導管的第二 201202630 部位在出口端形成末端並且具有一流動舳 "丨L動軸。该燃料導管的 第二部位與該第一氧化劑導管的第二部位呈固定間隔關係 而且大體上同心地配置於其内。該燃料導管的第二部位可 具有一圓形截面。 該第一氧化劑導管的第二部&的流動轴可為直的而且 可與該燃㈣管的第二部位的流動軸實質上平行或實質上 重合。 立在該燃料導管的第二部位與該第一氧化劑導管的第二 #位之間形成或界^ —氧化劑通道。該氧化劑通道具有入 口段、尤士士 μ入口敫下游的過渡段及在該該過渡段下游的出 σ段。访、 μ 口奴具有一截面積,Ai,該出口段具有一截面 積,A0。 "於〇.8至7或介於u至7,而且忑介於J 3至5 Μ 一氧化劑導管的第二部位在該氧化劑通道的過2 段"具有—凸狀内表面。 :料導管的第二部位界定一燃料通道,其中該燃靖 通道具有入口 口段、在該入口段下游的過渡段及在該該過2 段下游的出n 奴°該燃料導管的第二部位的入口段具有一 截面積,A « fl ’及該燃料導管的第二部位的出口段具有一奏 面積,Af ,甘七$ °再中可介於1.0至5或介於1.37至5 ° ^ 料導管的第二部位在該氧化劑通道的過渡段可j 有一凹狀外表®。 201202630 =料導官的第二部位可具有在該燃料通道的過渡段 内表面及凸狀内表面,其中該燃料導管的凸狀 表面在該燃料導管的凹狀内表面的下游。 違第-氧化劑導管的第二部位的出口端從該燃料導管 的第一部位突出0.2 cm至3 cm。 2燃燒器可另外包含與該第一氧化劑導管的第二部位 呈固定間隔關係的第二氧化劑導管。 第氧化劑導管可與該第一冷卻流體外套呈固定間 隔關係而且大體上同心地配置於其内。該燃燒器可另外包 含第-冷部流體外套’而且該第二氧化劑導管可與該第二 冷卻流體外套呈固定間隔關係而且大體上同心地配置於其 内。該第二氧化劑導管可具有入口、在該第二氧化劑導管 的入口下游的第-部位、在該第二氧化劑導管的第一部位 下游的彎曲部位及在該第二氧化劑導管的弯曲部位下游的 第二部位。 5玄第二氧化劑導管的彎曲部位具有一彎角,β,該彎角 β在該彎角a的15。範圍以内,而且該第二氧化劑導管的青 曲部位下游的第二部位,該第二氧化劑導管的第二部位在 噴嘴中形成末端並且具有一流動軸,該第二氧化劑導管的 第二部位與該第一氧化劑導管的第二部位呈固定間隔關 係0 該彎角,β寸於該彎角,a,的2〇範圍以内,而且該第 一氧化劑導管的第二部位的流動軸可實質上平行於該第一 氧化劑導管的第二部位的流動軸。 201202630 °亥噴嘴具有—入口及一出口。該第一氧化劑導管的第 二部位的出口端可從該第二氧化劑導管的第二部位的喷嘴 出口犬出0.2 cmi 3 cm。該入口可具有圓形截面及一截面 積,Ani,而且該出口具有非圓形截面及一戴面積,An。,其 中該喷嘴的出口具有15至5的寬高比。可介於125至 5 〇 該第二氧化劑導管的喷嘴可具有一收歛高度及一發散 寬度。 該第二氧化劑導管的喷嘴的圓形截面與非圓形載面之 間具有一凹狀表面轉變。 該爐子包含蓄熱器、爐子燃燒艙及將該蓄熱器連至該 爐子燃燒艙的蓄熱器埠頸部,該蓄熱器埠頸部在該爐子的 壁中界疋埠及一璋開口。該爐子也包含如上述特徵之燃 燒器。該燃燒器穿過該畜熱器槔頸部並且進入該槔,而且 該燃燒器係配置成能透過該埠開口導引燃料及氧化劑並且 進入該爐子。 該爐子也包含配置於該爐子燃燒艙下方並且毗鄰該爐 子燃燒艙的熔融槽盆(melting tank basin)、取玻璃形成成分 引入該嫁融槽盆的填充端及從該溶融槽盆取出玻璃產物的 排放端。該爐子也包含在該爐子之一壁中的排氣埠,其係 用於從該爐子燃燒艙抽出燃燒產物。 有一具體實施例中,該第二氧化劑導管穿過該爐壁在 該埠開口下方的位置,而且被配置成能將氧化劑導入該爐 201202630 子0 該加熱爐子之方法包含:阻斷 轧"丨L至该埠,終止燃 燒流至與該蟑相關聯的空氣燃料辦墙 “、、現益设立上述之燃燒 器使得該燃燒器穿過該蓄熱器埠頸部並且 ^ 退入该i阜,使冷 卻劑通過該第-冷卻流體外套並且,若存在的肖,通過該 第二冷卻流體外套’透過該第—氧化劑導管將第—氧化劑 氣體引入該爐子,及透過該燃料導管將該燃料或另一燃料 引入該爐子,制該第-氧化劑氣體燃燒該燃料或另一燃 料以形成燃燒產物’及透過排氣普你兮诚工w ^ 饼礼s從β亥爐子燃燒艙取出該 燃燒產物。 該方法可包含使空氣以高於5%至低於或等於25%的 量之燃燒經過該燃燒器的該燃料所需的化學計量的空氣°持 續流經該埠。 該方法可另外包含透過第二氧化劑導管將該第一氧化 劑氣體或第二氧化劑氣體導入該爐子以燃燒該燃料或另一 燃料。 【實施方式】 當應用於說明書及申請專利範圍所述之本發明的具體 實施例中的任何特徵時,文中所用的冠詞”―”意指—或更 多。"一 ”的應用不會限制單一特徵的意義,除非明確地指 明此限制。在單數或複數名詞或名詞片語前面的冠詞“該,, 表示特別指定的特徵,並且可依據其應用於其中的上下文 具有單數或複數涵義。該形容詞‘‘任何,,意指不區分任何事 201202630 物的數量中之一、一些或全部。 該片語“至少一部分,,意指“一部分或全部”。 為求簡化及清晰的目的’省略眾所周知的裝置、迴路 及方法的詳細說明以便不致模糊本發明的說明與不必要的 細節。 本發明係關於一種燃燒器。更明確地說本發明係關於 在具有空氣燃料蓄熱器埠的玻璃窯中利用氧-燃料點燃替 代空氣燃料點燃的氧-燃料燃燒器。該燃燒器特別適用於至 少局部將一蓄熱器埤從空氣燃料點燃轉換為氧-燃料點 燃。由於玻璃寞蓄熱器埠的幾何形狀,用於此轉換的燃燒 器需要在接近該注入噴嘴的位置急遽或明顯改變流動= 向。 蚵於相關的畜熱器必須予以修護的情況,該蓄熱器埠 可暫時從空氣燃料點燃轉換為氧-燃料點燃。該蓄熱器埠可 在更永久性的基礎之上轉換為氧·燃料點燃以獲得氧·燃料 益處的優點。可以把數個最接近該玻璃寒的批料末端的埠 轉換為氧-燃料點燃以藉由該等氧-燃料焰改善批料熔融。 現在參照圖形,其中在此數個圖式各處類似的參考編 號表示類似的元件’圖i顯示根據本發明的具體實施例的 燃燒器卜以及圖2顯示—爐子1〇〇的片斷,其包含蓄熱 器皡頸部i 0 5及設立於該蓄熱器崞頸部中的燃燒器3丨〇 1 ‘。'、、 燃燒器1及101包含第一冷卻流體外套丨〇、第一 劑導管20及燃料導管4°。該第-冷卻流體外套10 :有: 外當量直徑’D’就圓形截面的案例而言等於外徑而就非 10 201202630 圓形戴面而言等於該外套外部截面積的2倍除以外周長。 該第-氧化劑導管20與該第一冷卻流體外套1〇呈固定間 隔關係而且大體上同心地配置於其内,而且該燃料導管牝 與該第一氧化㈣f 20 1固定間隔關係而且大體上同心 地配置於其内。大體上同心意指一導管的軸與另一導管的 軸共通或稍微位移至多2 cm。 冷卻流體外套為一外部封套或套管,像是封圍中間空 間的封套,溫度控制流體可透過該中間空間循環。該流冷 流體可為水。冷卻流體外套(例如,水冷式外套)為燃燒器 及燃燒的技藝中眾所周知者。該冷卻流體外套設計的細節 對於本發明並不重要。熟悉此技藝者可從此技藝中習知的 那些輕易選擇及/或修飾適當的冷卻流體外套設計。 5玄第一冷卻流體外套丨〇必需預防該燃燒器過熱。當把 該燃燒器插入一玻璃寞蓄熱器埠時,來自該爐子的熱將輻 射至3玄燃燒器的外表面。當該燃燒器運轉時’ I自該燃燒 器的火焰將輻射回該燃燒器。將水或其他冷卻流體引入該 第冷部流體外套10的入口 L1並且在該第一氧化劑導管 2〇周圍,包括該燃料及氧化劑排放端周圍的區域流動。從 該第一冷卻流體外套10的出口 13抽出該水或其他冷卻流 體。 如文中所用的’導管為任何用於運輸流體的裝置,舉 例來說’輸送管、細管或管道等。該第一冷卻流體外套1 〇、 亥第氧化劑導管20及該燃料導管4〇係由金屬製成,較 不銹鋼。热悉此技藝者可輕易地選擇適用於建構該燃 11 201202630 燒器的材料。 氡化劑導管為預期輪送氧化劑氣體及連 王軋化劑供鹿 源的導管。氧化劑氣體為任何包含多於21 、 姐· w /。氧的氣 體。具有80體積%至1〇〇體精%的氧濃度的工業級氧為: 化劑氣體’因為是來自氮設備的氣態排出&,.所以經2 有60體積%至8〇體積%的氧濃度。氧化劑也可為办?與” 有介於22體積%與28體積%之間或介於28體積: 積%之間的氧濃度的工業或排出流的氧之混合物。該氧: 劑導管可被設計成能利用與工業級的氧相容的材料:輸送 工業級的氧。 月】、 燃料導管為預期輸送燃料的導管。將燃料導管連至你 料供應源。該燃料可為氣態燃料,舉例來說,天缺氣、; :或其他氣態烴類、氣、一氧化碳或其組合。或該燃料? 為液體’舉例來說,1號餾屮 .^ ^ , 现韬出液、2唬餾出燃料油、柴油择 料、生物柴油及其副產物( ⑺如甘油)、煤油、4號燃料油 5號殘餘油、6號殘餘揪斗n ^ 坟餘燃枓油、燃料庫-C型燃料油及其付 •μ通熟悉此技蔽者習知夕札 … &知之物。該液態燃料可藉由普通熟悉 技:者習知的數種裝置之任一者予以原子化。 x 1化劑導管20具有用於接收氧化劑氣體的入 …在該入口 21下游的第-部位23、在該第一部位23 下游的彎曲部位25及在抖 27 _ . '"今曲4位25下游的第二部位 该氧化劑氣體可為工業級的氧。 上游及下游為相對於Operation''' Society of Glass Technology, Snow, Earl, UK, 2000, and "The η buckle db〇〇k Glass Manufacture", edited by Fay To〇ley, 3rd edition, Volumes i and 2 , Ashlee pub Ushing, Inc. (New York), pp. 984, incorporated herein by reference. The conversion of one or more regenerators to oxygen-fuel ignition may require the furnace to be refurbished into a mixing furnace, such as that described in U.S. Patent No. 6,519,973, the disclosure of which is incorporated herein by reference. Terminating air fuel ignition and replacing energy input with oxygen_fuel point combustion is challenging. Because the furnace was originally designed as an air fuel furnace, it was difficult to find a suitable location for the installation of an oxy-fuel burner. There is a neck portion that has been used to set up the oxy-fuel burner at the top of the heat accumulator. The back of the crucible can be blocked or obstructed to limit or prevent hot air from flowing from the accumulator into the crucible. A hole can be made in the top, bottom or side of the 201202630 part for the oxy-fuel burner. The oxy-fuel burner is then passed through the hole and inserted into the neck portion. The oxygen fuel burner must be designed to inject fuel and oxygen into the combustion space of the furnace. This requires that the burner have an elbow or elbow to change the flow of the fuel and oxidant. A problem with establishing a burner through the neck is that the hole size for inserting the burner is small in order to maintain the structural integrity of the neck. When the burner is set up through a hole in the top or bottom of the neck of the heat accumulator, the burner will have a substantially vertical section through which the fuel and oxygen are delivered and inject the fuel and oxygen into the burner. A generally horizontal section of the glass smoked combustion space, and an elbow section between the generally vertical section and the generally horizontal section. When the burner is set up through the side wall of the regenerator jaw neck, the burner may have two generally horizontal sections and an elbow section between the two substantially horizontal sections. A problem associated with oxy-fuel combustion in the neck of the heat storage is that the oxygen fuel burner must bring the injection nozzle close to the elbow section, and the financial section must be sharply or significantly changed near the injection nozzle. Flow direction. The space limitation in (4) the heat storage material causes a problem that the long horizontal section forms an end in the injection nozzle in the crucible. Furthermore, the problem of the long horizontal section forming the end in the injection nozzle is because it is necessary to cut a large hole in the wall of the crucible which may impact the structural steel surrounding the crucible. A sharp or significant change in the direction of flow near the point where the nozzle is injected causes a high pressure drop and disturbs the flow leaving the nozzle. The disturbance causes rapid mixing and subsequent combustion close to the nozzle, resulting in a short flame. Since the nozzle is overheated, when the burner is used as a through-burner, the refractory in the neck is overheated, and it is not desirable to approach the combustion of the nozzle. SUMMARY OF THE INVENTION The present invention is directed to a burner suitable for utilizing a heat accumulator to ignite an air fuel to oxy-fuel ignition while solving the aforementioned problems. The present invention also relates to a furnace having the burner and a method of heating the furnace using the burner. This method can be used during regenerator repair to extend the furnace's life' and/or increase the production rate of existing furnaces. The burner includes a first cooling fluid jacket having an outer equivalent diameter, D, a first oxidant conduit disposed in a fixed spaced relationship with the first cooling fluid jacket and disposed substantially concentrically therein, and a fuel conduit. The first oxidant conduit has an inlet, a first portion downstream of the inlet of the first oxidant conduit, a curved portion downstream of the first portion of the first oxidant conduit, and a first portion downstream of the curved portion of the first oxidant conduit - a part. The curved portion has 45. To 12 baht. The corner, a, the corner, &, can be 60. To 11 baht. . The second portion of the first oxidant conduit forms an end at the outlet end and has an organic moving shaft and length, L. The second portion can have a circular cross section. The fuel conduit has an inlet, a first portion downstream of the inlet, and a::: the first portion of the fuel conduit is in fixed spaced relationship with the P-th position of the first deuterating agent conduit and is substantially concentrically disposed In the fuel guide camp &, the fiber 1 '4 position is fixedly spaced from the curved portion of the sulphide oxidant conduit and is disposed concentrically within the body. The second 201202630 portion of the fuel conduit is The outlet end forms a tip and has a flow port. The second portion of the fuel conduit is in fixed spaced relationship with the second portion of the first oxidant conduit and is disposed substantially concentrically therein. The second portion may have a circular cross section. The flow axis of the second portion & of the first oxidant conduit may be straight and may be substantially parallel or substantially coincident with the flow axis of the second portion of the fuel (four) tube. Forming or defining an oxidant passage between the second portion of the fuel conduit and the second # position of the first oxidant conduit. The oxidant passage has an inlet section, downstream of the U.S. The crossing section and the σ section downstream of the transition section. The interview, the mu of the slave has a cross-sectional area, Ai, and the exit section has a cross-sectional area, A0. "于〇.8 to 7 or between u and 7 And the second portion of the oxidant passage between the third portion of the oxidant passage has a convex inner surface. The second portion of the conduit defines a fuel passage, wherein the combustion The passage has an inlet port section, a transition section downstream of the inlet section, and an outlet section downstream of the second section of the fuel conduit having a cross-sectional area, A « fl ' and the fuel conduit The exit section of the second portion has a singular area, Af, 甘七$°, and may be between 1.0 and 5 or between 1.37 and 5 ° ^. The second portion of the conduit is in the transition section of the oxidant passage. Concave Appearance®. 201202630 = The second portion of the material guide may have a transition surface inner surface and a convex inner surface at the fuel passage, wherein the convex surface of the fuel conduit is downstream of the concave inner surface of the fuel conduit From the fuel outlet of the second end of the second-part of the oxidant conduit The first portion of the tube projects from 0.2 cm to 3 cm. The burner may additionally include a second oxidant conduit in fixed spaced relationship with the second portion of the first oxidant conduit. The first oxidant conduit may be contoured with the first cooling fluid jacket a fixed spacing relationship and disposed substantially concentrically therein. The burner may additionally include a first-cold portion fluid jacket 'and the second oxidant conduit may be in a fixed spaced relationship with the second cooling fluid jacket and configured substantially concentrically The second oxidant conduit may have an inlet, a first portion downstream of the inlet of the second oxidant conduit, a curved portion downstream of the first portion of the second oxidant conduit, and a bend at the second oxidant conduit The second part downstream of the part. The curved portion of the 5th second oxidant conduit has an angle β, which is 15 at the corner a. a second portion of the second oxidant conduit forming a tip in the nozzle and having a flow axis, the second portion of the second oxidant conduit The second portion of the first oxidant conduit is in a fixed interval relationship 0. The angle is within the range of 2, 〇 of the angle, and the flow axis of the second portion of the first oxidant conduit may be substantially parallel to a flow axis of the second portion of the first oxidant conduit. 201202630 ° Hai nozzle has - inlet and one outlet. The outlet end of the second portion of the first oxidant conduit can be 0.2 cmi 3 cm from the nozzle outlet of the second portion of the second oxidant conduit. The inlet may have a circular cross section and a cross section, Ani, and the outlet has a non-circular cross section and a wearing area, An. Wherein the outlet of the nozzle has an aspect ratio of 15 to 5. The nozzle of the second oxidant conduit may have a convergence height and a divergence width of between 125 and 5 。. The nozzle of the second oxidant conduit has a concave surface transition between the circular cross section and the non-circular carrier surface. The furnace includes a heat accumulator, a furnace combustion chamber, and a regenerator crucible that connects the regenerator to the combustion chamber of the furnace, the regenerator neck having an opening in the wall of the furnace. The furnace also contains a burner of the character described above. The burner passes through the mast of the heat gun and enters the crucible, and the burner is configured to direct fuel and oxidant through the crucible opening and into the furnace. The furnace also includes a melting tank basin disposed below the combustion chamber of the furnace and adjacent to the combustion chamber of the furnace, a glass forming component introduced into the filling end of the processing tank, and a glass product removed from the melting tank. Discharge end. The furnace also contains an exhaust gas enthalpy in one of the walls of the furnace for extracting combustion products from the combustion chamber of the furnace. In a specific embodiment, the second oxidant conduit passes through the wall of the furnace below the opening of the crucible and is configured to introduce an oxidant into the furnace 201202630. The method of heating the furnace comprises: blocking the rolling " L to the crucible, terminating the combustion flow to the air fuel wall associated with the crucible, "the burner is set up so that the burner passes through the accumulator neck and retreats into the crucible Cooling agent passes through the first cooling fluid jacket and, if present, passes through the second cooling fluid jacket 'through the first oxidant conduit to introduce the first oxidant gas into the furnace, and through the fuel conduit the fuel or another The fuel is introduced into the furnace, the first oxidant gas is burned to burn the fuel or another fuel to form a combustion product, and the combustion product is taken out from the combustion chamber of the β-furnace through the exhaust gas. A stoichiometric amount of air required to combust the fuel through the burner in an amount greater than 5% to less than or equal to 25% may be included to continuously flow through the crucible. The method may additionally comprise The first oxidant gas or the second oxidant gas is introduced into the furnace through a second oxidant conduit to combust the fuel or another fuel. [Embodiment] When applied to a specific embodiment of the invention described in the specification and the claims The use of the article "-" in the text means - or more. The application of "a" does not limit the meaning of a single feature unless explicitly stated. The article "in the singular or plural noun or noun phrase" means a specially-specified feature and may have a singular or plural meaning depending on the context to which it applies. The adjective ''any, meaning does not distinguish anything 201202630 One, some or all of the number of objects. The phrase "at least a part, means "some or all". Detailed descriptions of well-known devices, circuits, and methods are omitted for the purpose of simplification and clarity so as not to obscure the description and the unnecessary details of the invention. The present invention relates to a burner. More specifically, the present invention relates to an oxy-fuel burner ignited by oxy-fuel ignition of an alternative air fuel in a glass kiln having an air fuel regenerator crucible. The burner is particularly suitable for at least partially converting a regenerator crucible from air fuel ignition to oxy-fuel ignition. Due to the geometry of the glass crucible accumulator crucible, the burner used for this conversion requires a sharp or significant change in flow = direction near the injection nozzle. In the event that the associated heat engine must be repaired, the heat accumulator 暂时 can be temporarily converted from ignited air fuel to oxy-fuel ignited. The heat accumulator can be converted to a more permanent basis to oxidize the fuel to obtain the benefits of oxygen and fuel benefits. Several of the crucibles closest to the end of the glass cold can be converted to oxy-fuel ignition to improve batch melting by the oxygen-fuel flames. Referring now to the drawings in which like reference numerals in the drawings The heat accumulator 皡 neck i 0 5 and a burner 3丨〇1 ' established in the neck of the regenerator. The burners 1 and 101 comprise a first cooling fluid jacket, a first agent conduit 20 and a fuel conduit 4°. The first cooling fluid jacket 10: has: the outer equivalent diameter 'D' is equal to the outer diameter in the case of a circular cross section and is not 10 201202630. The circular wearing surface is equal to 2 times the outer sectional area of the outer casing except for the outer circumference. long. The first oxidant conduit 20 is disposed in a fixed spaced relationship with the first cooling fluid jacket 1 而且 and disposed substantially concentrically therein, and the fuel conduit 牝 is fixedly spaced from the first oxidized (four) f 20 1 and substantially concentrically Configured in it. Substantially concentric means that the axis of one catheter is common or slightly displaced by up to 2 cm from the axis of the other catheter. The cooling fluid jacket is an outer envelope or sleeve, such as an envelope enclosing the intermediate space through which temperature control fluid can circulate. The flow cooling fluid can be water. Cooling fluid jackets (e.g., water-cooled jackets) are well known in the art of burners and combustion. The details of the design of the cooling fluid jacket are not critical to the invention. Those skilled in the art can readily select and/or modify suitable cooling fluid jacket designs from those well known in the art. 5 Xuan first cooling fluid jacket must prevent the burner from overheating. When the burner is inserted into a glass crucible accumulator, heat from the furnace will be radiated to the outer surface of the 3 burner. When the burner is running, the flame from the burner will be radiated back to the burner. Water or other cooling fluid is introduced into the inlet L1 of the first cold portion fluid jacket 10 and flows around the first oxidant conduit 2, including the region around the fuel and oxidant discharge end. The water or other cooling fluid is withdrawn from the outlet 13 of the first cooling fluid jacket 10. As used herein, a catheter is any device used to transport fluids, for example, a delivery tube, tubule or tube. The first cooling fluid jacket 1 , the first oxidant conduit 20 and the fuel conduit 4 are made of metal, which is more stainless steel. It is well known that those skilled in the art can easily select materials suitable for constructing the burning fuel. The sulphide conduit is a conduit intended for the supply of oxidant gas and the singer to the deer. The oxidant gas is any containing more than 21, sister w /. Oxygen gas. The industrial grade oxygen having an oxygen concentration of 80% by volume to 1% by volume is: The chemical gas 'is a gaseous discharge from the nitrogen device&, so there are 60% to 8% by volume of oxygen by 2 concentration. Can oxidants also be used? a mixture of oxygen with an industrial or effluent stream having an oxygen concentration between 22% and 28% by volume or between 28%: 9%. The oxygen: agent conduit can be designed to be utilized and industrially Grade oxygen-compatible material: transports industrial grade oxygen. Month], the fuel conduit is the conduit for the intended delivery of fuel. Connect the fuel conduit to your feed source. The fuel can be a gaseous fuel, for example, a gas shortage. : or other gaseous hydrocarbons, gas, carbon monoxide or a combination thereof. Or the fuel? is a liquid 'for example, No. 1 distillate. ^ ^, now distillate, 2 distillate fuel oil, diesel fuel , biodiesel and its by-products ((7) such as glycerin), kerosene, No. 4 fuel oil No. 5 residual oil, No. 6 residual bucket n ^ grave burning oil, fuel depot - C type fuel oil and its payment It is familiar with the skilled person, and the liquid fuel can be atomized by any of a number of conventional devices known in the art: x 1 chemical conduit 20 has been used for receiving The inlet of the oxidant gas ... at the first portion 23 downstream of the inlet 21, downstream of the first portion 23 The curved portion 25 and the second portion downstream of the 4th 25th position of the current song, the oxidant gas can be industrial grade oxygen. The upstream and downstream are relative to
期的流體流,例如,該燃料或 氣化劑,來界定。上.於@ A 上游鳊相虽於最靠近該入口的末端,在 12 201202630 那裡將流體引入該裝置,及下游端相當於最靠近該出口或 喷嘴端,流體在那裡排出該裝置。 該入口 21可包括快速斷開附件或其他適用於檢查供 給該燃燒器的氧化劑氣體供應的附件。 該第一部位23可具有一圓形截面。該第一部位23也 可具有間隔物以確保該第一氧化劑導管的第一部位與該燃 料導管的第一部位之間的同心性質。 該彎曲部位25具有45。至U0。的彎角,a。該彎角,a, 可為60°至11 〇。。該彎角係定義為該夾角的補償角。該夾 角,其小於1 80。,為定義於導管的第一部位的筆直段與該 導管的第二部位的筆直段之間的角度。關於該第一氧化劑 導管的夾角為定義於該第一氧化劑導管的第一部位的筆直 段與該第一氧化劑導管的第二部位的筆直段之間的角度。 圖1及圖2所示的彎角,a,為關於該第一氧化劑導管的夾 角的補償角。0。的彎角相當於沒有彎曲,亦即直的。丨8〇。 的彎角相當於“U-形,,彎曲。 該彎曲部位25中的彎曲可為平順的,其具有如圖2所 不’或’如圖1所示的半徑,該彎曲部可具有銳角。 該第一氧化劑導管2〇的第二部位27在出口端29形成 末端並且具有一流動軸22及長度,L。該第二部位27可具 有~圓形截面。 流動軸相當於依通過該導管截面的幾何形狀中心的流 動方向的線’其中該等截面位於與該線垂直的平面中。該 4動軸可包括曲線。關於此燃燒器,該流動軸的至少一段 13 201202630 為直線段。 立為了達到此揭示内容的目的,該第一氧化劑導管的第 長又L,相當於介於圖1及圖2所示的彎曲部位與 出口端之間的流動軸的直線段。 該L、料導管4Q具有用於接收燃料的人σ 4 1、在該入 口 41:下游的第一部位43、彎曲部位μ及第二部位π。 ^ 41可包括快速斷開附件或其他適用於檢查供 .給这燃燒器的氧化劑氣體供應的附件。 如圖1及圖2所示’把該燃料導管4〇的第一部位43 配置成與該第-氧化劑導管2〇的第一部位23呈固定間隔 關係而且大體上同心地配置於其内。將該脊曲部位Μ配置 成與該臂曲部^立2 S 3田*** Β日IT- η 呈固疋間隔關係而且大體上同心地配 置於其内。 4 f曲部位45中的f曲可為平.順的,其具有如圖2所 不的半徑’或具有如圖1所示的銳角。該彎曲部位45能與 遠奇曲部位25相容。 該第一氧化劑導管20的第二部位27在出口端29形成 末端並且具有-流動軸22及長度,l。該第二部位π可具 有一圓形截面。 β亥第一 σρ位47在出口端49形成束端並且具有一流動 軸42。把該第二部位47配置成與該第一氧化劑導管汕的 第一指27 固定間隔關係而且大體上同心地配置於其 内。該第二部位47可具有—圓形截面。 、 該燃料導管的第二部位47可與該第一氧化劑導管 14 201202630 - 的第二部位27同中心使得該流動軸42及該流動軸22二者 均為筆直,而且實質上平行或實質上重合。該流動軸42及 流動軸22在圖1中為重合。 該措辭“平行”意指依相同方向延伸,無論何處均等距 離而且不相逢。關於該流動軸22及該流動軸42,實質上 平行意指隔開2 cm的最大間隔距離偏離。 該措辭重合思指佔據相同空間或位置。關於該流動 軸22及該流動軸42,實質上重合意指在2 範圍以内的 重_合。 在該燃料導管40的第二部位47與該第一氧化劑導管 20的第二部位27之間形成或界定_氧化劑通道5〇。該氧 化劑通道50具有入口段5 i、在該入口段5丨下游的過渡段 53及在該該過渡段53下游的出口段55。該入口段51具有 一截面積,A,,該出口段55具有一截面積,A。。在設計氧 化劑氣體流速時把該戴面積,A。設計成能提供約3〇 m/sec 至約150 m/s的氧化劑氣體速度。 〇亥第一氧化劑流動方向在接近該注入喷嘴的位置的急 遽或明顯改變可藉由該第一冷卻流體外套的長度,與外 田量直彳二,D,之間的關係來描述。吾人所欲為將該比例 L/D最大化以使該注入喷嘴處的第一氧化劑速度剖面圖中 的不句勻性最小化,因為速度不均勻性為該注入噴嘴附近 加速嫵料的主因,其可能導致過高的火焰溫度及,因而, 燃燒咨損壞或故障。然而,為了將該燃燒器組件套入玻璃 熏的蓄熱器璋中可取得的有限空間内需要短的長度。估計 15 201202630 以可取得的空間為基礎的最大容許l/d為7.〇。 有一個達到具有短的L/D之可接受的流動分佈的解決 方法為將靜態混合裝置放在該第一氧化劑通道的第二部位 t。靜態混合裝置為放在該流動場中的靜態阻礙物,其能 藉由局部提高奈流混合及擴散,大體上透過靜壓的消散促 f流動重分佈。靜態混合裝置常見的例子為穿孔板;也就 疋說&斷机動截面的板子,該板子包含多數橫越該板子 分佈的小洞,而且該流必須通過該板子。 不幸地,靜壓的消散及紊流混合/擴散的產生二者均為 此案例中所不欲的流動特性。首先,提高該氧化劑流的奈 亂度導致氧化劑與燃料之間更迅速的遇合,其導致該燃燒 器喷嘴附近的過高火焰溫度的問題惡化。其次,靜壓的消 散導致對於該氧化劑較高的供應壓力要求。有一些案例 中,可能無法符合該較高的供應壓力要求,然而在其他案 例中由於必需設立及運轉一或更多氣體壓縮機使其增加相 當大的資本及運作成本來設立。關於此燃燒器的具體實施 例’該燃燒器包含與該第一氧化劑導管呈固定間隔關係的 第二氧化劑導管:〇.^^7 。關於不包括該第二氧化劑導管 的燃燒器的具體實施例: 傾向於使該氧化劑的流動均句分佈且變直,並且預防 該氧化劑與該燃料在該爐子中過早混合而沒有前述不欲的 靜態混合裝置特徵之本燃燒器的特性為減小從該入口段51 16 201202630 此該第一氧化 °為了改善第 口戴面積的比 氧化劑速度, 至該出口段55的氧化劑通道50的截面積。 劑通道的截面積減小係透過該過渡段53達到 一氧化劑流動分佈,吾人所欲為使入口至出 例最大化。然而,對於該出口處的特定第—The fluid flow, for example, the fuel or gasification agent, is defined. Above @A upstream, at the end closest to the inlet, fluid is introduced into the device at 12 201202630, and the downstream end is closest to the outlet or nozzle end where the fluid exits the device. The inlet 21 may include a quick disconnect accessory or other accessory suitable for inspecting the supply of oxidant gas to the burner. The first portion 23 can have a circular cross section. The first portion 23 can also have a spacer to ensure concentric properties between the first portion of the first oxidant conduit and the first portion of the fuel conduit. The curved portion 25 has 45. To U0. The corner, a. The angle, a, can range from 60° to 11 〇. . This angle is defined as the compensation angle of the angle. The angle is less than 180. Is the angle defined between the straight segment defined at the first portion of the catheter and the straight segment of the second portion of the catheter. The angle of the first oxidant conduit is an angle defined between a straight segment defined by the first portion of the first oxidant conduit and a straight segment of the second portion of the first oxidant conduit. The angle shown in Figs. 1 and 2, a, is the compensation angle with respect to the angle of the first oxidant conduit. 0. The angle of the bend is equivalent to no bending, that is, straight.丨8〇. The bend angle corresponds to "U-shape, bend. The bend in the bend portion 25 can be smooth, having a radius as shown in Figure 2 or 'as shown in Figure 1," the bend can have an acute angle. The second portion 27 of the first oxidant conduit 2 is formed at the outlet end 29 and has a flow axis 22 and a length L. The second portion 27 can have a ~ circular cross section. The flow axis corresponds to the cross section through the conduit The geometric direction of the center of the flow direction of the line 'where the sections are in a plane perpendicular to the line. The 4 axis of motion may comprise a curve. With respect to this burner, at least a section of the flow axis 13 201202630 is a straight line segment. For the purposes of this disclosure, the first length and L of the first oxidant conduit correspond to a straight line segment of the flow axis between the curved portion and the outlet end shown in Figures 1 and 2. The L, conduit 4Q Having a person σ 4 1 for receiving fuel, a first portion 43 downstream of the inlet 41, a curved portion μ, and a second portion π. ^ 41 may include a quick disconnect attachment or other suitable for inspection for supply. Oxidizer gas supply As shown in Fig. 1 and Fig. 2, the first portion 43 of the fuel conduit 4 is disposed in a fixed spaced relationship with the first portion 23 of the first oxidant conduit 2A, and is disposed substantially concentrically therein. The ridge portion Μ is disposed in a solid-column relationship with the arm-shaped portion 2S 3 *** IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT IT The f curve may be flat. It has a radius ' as shown in Fig. 2 or has an acute angle as shown in Fig. 1. The curved portion 45 is compatible with the far odd curvature portion 25. The first oxidant conduit 20 The second portion 27 forms a tip at the outlet end 29 and has a -flow axis 22 and a length, 1. The second portion π can have a circular cross section. The β first σρ position 47 forms a beam end at the outlet end 49 and has a The flow shaft 42. The second portion 47 is disposed in a fixed spaced relationship with the first finger 27 of the first oxidant conduit 而且 and is disposed substantially concentrically therein. The second portion 47 can have a circular cross section. The second portion 47 of the fuel conduit can be associated with the first oxidant conduit 14 201202630 - the second portion 27 is concentric such that both the flow axis 42 and the flow axis 22 are straight and substantially parallel or substantially coincident. The flow axis 42 and the flow axis 22 are coincident in Figure 1. The phrase "parallel" means Extending in the same direction, no matter where they are equal and not meeting. Regarding the flow axis 22 and the flow axis 42, substantially parallel means a maximum separation distance deviation of 2 cm. The wording overlaps to occupy the same space or position. With respect to the flow shaft 22 and the flow shaft 42, substantially coincident means a weight ratio within the range of 2. Between the second portion 47 of the fuel conduit 40 and the second portion 27 of the first oxidant conduit 20 Form or define the oxidant channel 5〇. The oxidant passage 50 has an inlet section 5i, a transition section 53 downstream of the inlet section 5丨, and an outlet section 55 downstream of the transition section 53. The inlet section 51 has a cross-sectional area, A, and the outlet section 55 has a cross-sectional area, A. . The area to be worn when designing the oxidant gas flow rate, A. Designed to provide an oxidant gas velocity of from about 3 〇 m/sec to about 150 m/s. The sharp or significant change in the flow direction of the first oxidant near the injection nozzle can be described by the relationship between the length of the first cooling fluid jacket and the amount of the external field. It is desirable for us to maximize the ratio L/D to minimize the uniformity of the first oxidant velocity profile at the injection nozzle, since velocity non-uniformity is the main cause of accelerated picking near the injection nozzle, It may result in excessive flame temperatures and, therefore, damage or malfunction. However, a short length is required in the limited space that can be achieved in order to fit the burner assembly into a glass smoked heat accumulator. Estimate 15 201202630 The maximum allowable l/d based on available space is 7.〇. One solution to achieve an acceptable flow profile with a short L/D is to place a static mixing device in the second portion t of the first oxidant passage. The static mixing device is a static obstruction placed in the flow field that is capable of locally increasing the flow mixing and diffusion of the flow, and is substantially redistributed by the dissipation of static pressure. A common example of a static mixing device is a perforated plate; that is, a plate that breaks the motorized section, the plate containing a plurality of small holes that traverse the plate, and the flow must pass through the plate. Unfortunately, the dissipation of static pressure and the generation of turbulent mixing/diffusion are both undesired flow characteristics in this case. First, increasing the degree of inertness of the oxidant stream results in a more rapid encounter between the oxidant and the fuel, which causes problems with excessive flame temperatures near the burner nozzle to deteriorate. Second, the dissipation of static pressure results in a higher supply pressure requirement for the oxidant. In some cases, this higher supply pressure requirement may not be met, but in other cases it was established because of the need to set up and operate one or more gas compressors to increase considerable capital and operating costs. DETAILED DESCRIPTION OF THE SAME The burner comprises a second oxidant conduit in a fixed spaced relationship to the first oxidant conduit: 〇.^^7. With regard to a specific embodiment of a burner that does not include the second oxidant conduit: it tends to distribute and straighten the flow of the oxidant, and prevent the oxidant from prematurely mixing with the fuel in the furnace without the aforementioned unwanted The characteristics of the present burner of the static mixing device are such that the cross-sectional area of the oxidant passage 50 to the outlet section 55 is reduced from the inlet section 51 16 201202630. The reduced cross-sectional area of the agent passage is through this transition section 53 to achieve an oxidant flow distribution, which we would like to maximize the inlet to the outlet. However, for the specific first of the exit -
A 要提高…必需增加該入口截面積的尺寸。由於該蓄熱 4中可取得的空間有限使得對於此比例上方值的實際極 限為 βη .. 1.3<—^<5 關於此燃燒器, Α。 如圖1、圖2及圖3中放大顯示的,該氧化劑導管 的第一部位27在該氧化劑通道50的過渡段53中可具有一 凸狀内表面。 、 口園1、圖2及圖3中放大顯示的,該燃料導管4〇的 第°卩位4 7在s玄氧化劑通道5 〇的過渡段5 3中可具有一凹 狀外表面。這些凸狀及凹狀曲率有助於使該氧化劑的流動 變直,所以當其接近該出口端29時使其與該第一氧化劑流 的轴22對齊’同時降低擾渦產生及擴散。 忒燃料導管40的第二部位47形成或界定—燃料通道 60°该燃料通道6G具有人口段61、在該人口段61下游的 過渡^又63及在該過渡段63下游的出口段65。該燃料導管 第。卩彳立的入口段具有一截面積,Afi,及該燃料導管的 第#位的出口段具有一截面積,Af〇。 類似於該第一氧化劑導管的第二部位,傾向於使該燃 料的机動變直,並且預防該氧化劑與該燃料在該爐子中的 17 201202630 加速紊IL混合的燃燒器特性為減小從該入口段61至該出 口段65的燃料通道60的截面積。為了改善燃料流動分佈, 吾人所欲為使入口至出口戴面積的比例最大化。然而,對 Λ 於該出口處的特定燃料速度’要提高比例八。必需增加該入 口截面積的尺寸。由於該蓄熱器埠中可取得的空間有限使 得對於此比例上方值的實際極限為〜等於5。關於此燃燒 〇 1.0<-^-<5 1.37<A.<5 器, 或 、。根據預期的點燃速率(亦即, 燃料流動速率),把該截面積,Af。,設計成能提供約.25m/s 至約1 50 m/s的燃料速度。 如圖1及圖2所示,該燃料導管4〇的第二部位47在 該燃料通道60的過渡段中可具有一凹狀内表面及一凸狀 内表面,其中該凸狀内表面在該該燃料導管6〇的凹狀内表 面下游》此幾何形狀有助於有助於該燃料通道内表面處的 流動與該流動軸42再對齊,同時使該燃料流中的擾渴產生 及擴散最小化。藉著使該第一氧化劑及燃料的流動沿著其 分別的轴並且同時使擾满的產生及擴散最小化,當該燃料 及氧化劑排放至該爐子内時這些特性將會降低其混合速 率。如前所述’這對於預防該燃燒器的金屬組件受到短的 氧/燃料焰所引起的高溫損壞很重要。 如圖1及圖2所#’該氧化劑導管2〇的第二部位27 的出口端29從該燃料導管4〇的第二部位47的出口端 18 201202630 大出°亥出口端29可從該出口端49突出0.2 cm至3 em。 X出& 4曰從周圍表面或周圍環境突出或向外延伸。 S玄燃料導管40的出口端49從該氧化劑導管20的出口 端29向内凹以預防該出口端49受到來自該燃燒器的火焰 及°亥玻璃窯的高溫環境的輻射。包括該氧化劑導管出口端 29的氧化劑導管2〇係藉由透過該第一冷卻流體外套1 〇 冷卻流體循環予以冷卻。 · 、 另一方面,該燃料導管40係藉由通過該氧化劑通道的 氧化齊I机動予以冷卻。藉著使該出口端49凹陷,該出口端 49將暴露於較少的熱輻射而且可避免過熱。在該出口端49 太多的案例中,該燃料及氧化劑可能在該燃燒器内反 應由於》亥氧化劑導管的過熱而引起該燃燒器的損壞1 著使該出口端29從該出口端49突出〇2咖至3咖而提 供在屏蔽該出口端4…熱韓射與混合該燃料及 之間的適當平衡。 该燃堤器也可包括氧化劑分級。在本揭示内容上下 令的氧化劑分級意指從該第一氧化劑流留住一部分燃燒 使得其可在該燃料燃燒的後來“階段,,時遞送。如圖1所一 該分級喷管可為放在該蓄熱器蜂中的燃燒器的…不A To increase... it is necessary to increase the size of the inlet cross-sectional area. Since the space available in the heat storage 4 is limited, the actual limit for the value above this ratio is βη .. 1.3<-^<5 About this burner, Α. As shown enlarged in Figures 1, 2 and 3, the first portion 27 of the oxidant conduit can have a convex inner surface in the transition 53 of the oxidant passage 50. As shown enlarged in the mouth, 1, 2 and 3, the first position of the fuel conduit 4 can have a concave outer surface in the transition section 5 of the smear oxidant passage 5 。. These convex and concave curvatures help to straighten the flow of the oxidant so that it aligns with the axis 22 of the first oxidant stream as it approaches the outlet end 29 while reducing the generation and diffusion of the turbulence. The second portion 47 of the helium fuel conduit 40 forms or defines a fuel passage 60. The fuel passage 6G has a population section 61, a transition 63 downstream of the population section 61, and an outlet section 65 downstream of the transition section 63. The fuel conduit is the first. The erected inlet section has a cross-sectional area, Afi, and the outlet section of the #th position of the fuel conduit has a cross-sectional area, Af〇. Similar to the second portion of the first oxidant conduit, tending to straighten the maneuver of the fuel, and preventing the oxidant from mixing with the fuel in the furnace 17 201202630 Accelerating turbulent IL characteristic of the burner is reduced from the inlet The cross-sectional area of the fuel passage 60 from section 61 to the outlet section 65. In order to improve the fuel flow distribution, we want to maximize the proportion of the entrance to the outlet. However, the specific fuel speed at the exit is increased by a factor of eight. It is necessary to increase the size of the inlet cross-sectional area. Due to the limited space available in the regenerator crucible, the practical limit for the value above this ratio is ~ equal to five. About this burning 〇 1.0<-^-<5 1.37<A.<5, , or . The cross-sectional area, Af, is based on the expected ignition rate (i.e., fuel flow rate). Designed to provide fuel velocities from about .25 m/s to about 150 m/s. As shown in FIG. 1 and FIG. 2, the second portion 47 of the fuel conduit 4 can have a concave inner surface and a convex inner surface in the transition portion of the fuel passage 60, wherein the convex inner surface is The geometry of the downstream of the concave inner surface of the fuel conduit 6〇 helps to facilitate realignment of the flow at the inner surface of the fuel passage with the flow shaft 42 while minimizing thirst generation and diffusion in the fuel flow. Chemical. By minimizing the flow of the first oxidant and fuel along their respective axes while simultaneously minimizing the generation and diffusion of the disturbance, these characteristics will reduce the mixing rate as the fuel and oxidant are discharged into the furnace. As previously mentioned, this is important to prevent high temperature damage caused by short metal/fuel flames in the metal components of the burner. As shown in Figures 1 and 2, the outlet end 29 of the second portion 27 of the oxidant conduit 2 is larger from the outlet end 18 201202630 of the second portion 47 of the fuel conduit 4, and the outlet end 29 is accessible from the outlet. End 49 protrudes from 0.2 cm to 3 em. X Out & 4 突出 protrudes or extends outward from the surrounding surface or surrounding environment. The outlet end 49 of the S-fuel conduit 40 is recessed from the outlet end 29 of the oxidant conduit 20 to prevent the outlet end 49 from being exposed to radiation from the burner and the high temperature environment of the glass kiln. The oxidant conduit 2 including the oxidant conduit outlet end 29 is cooled by circulating through the first cooling fluid jacket 1 冷却 cooling fluid. On the other hand, the fuel conduit 40 is cooled by maneuvering through the oxidant passage. By recessing the outlet end 49, the outlet end 49 will be exposed to less heat radiation and overheating can be avoided. In the case where there are too many outlet ends 49, the fuel and oxidant may react within the combustor causing damage to the combustor due to overheating of the oxidizer conduit 1 causing the outlet end 29 to protrude from the outlet end 49. 2 coffee to 3 coffee is provided at the outlet end of the shield 4 ... hot shots and mix the fuel and the proper balance between. The igniter may also include oxidant classification. The grading of the oxidizing agent in the present disclosure means that a portion of the combustion is retained from the first oxidant stream so that it can be delivered at a later stage of the combustion of the fuel. As shown in Figure 1, the grading nozzle can be placed. The burner in the regenerator bee...not
謂的料Μ,及/或如圖2所示,該分級噴管可^在I 畜熱…方的獨立部分,所謂的埠下喷管。據發現氧彳 劑分級能提供調節該爐子中的火焰的手段。 溫 分 度將 級的氧能降低該氧/燃料焰的尖峰溫度 減少高溫?|起該燃燒器損壞的風險, 。降低該尖峰 而且也降低燃 19 201202630 料及氧化劑混合的速率。降低該燃料及氧化劑混合速率將 減緩該燃燒程序,藉以導致較長的火焰,其更適宜。再者, 分級在火焰内創造富含燃料或貧氧燃燒區。該富含燃料區 促成富含碳的固體粒子(油煙)形成,該等富含碳的固體粒 子增進從該火焰至該玻璃熔融物的輻射熱轉移,而且也導 致較低的NOx排放。然而,分級程度有_個實際限制,其 可安全並有效地加以運用。此限制經常藉由該火焰的動量 來設定,當分級的氧量增加時就降低該火焰的動量。若該 火焰的動量太低,該火焰在該爐子中將會變得不穩定而且〆 y能’舉例來說,朝該爐頂向上仰,在該處該火焰可能損 壞該爐頂耐火材料。 ,該分級的氧的配置及取向也會影響來自該燃燒器的火 焰。直接引入該第-氧化劑/燃料喷嘴下方的分級氧化劑具 有適且的特性。舉例來說,引入此位置的分級的氧化劑與 正好在該燃燒器噴嘴下游 貝苒T游的燃枓混合,因而實質上未被煙 道氣稀釋。再者,扃μ 在此位置分級能有效增進該主要燃料器 火焰下方部分的辨焊。产遭A A斗 ·.、、麂。延導致來自該火焰的輻射能優先 下游導向該玻璃位仏 跋塥熔岫物,而非向上朝該爐頂。若是涉及 度加熱該埠,該埠φ八& & + 中刀級噴嘴可能會往下游導向該蜂, 在該處提供表面的對法、人,,— 對抓冷部。也可以,若沒有足夠 能使該燃燒器噴嘴;5疮μ η 士 嘴及噴官同時容納於該埠内,則能 的氧噴嘴設置於別卢A 刀級 J处,舉例來說,在該淳下方但是 玻璃熔融物表面。 疋问於该 包括在該蓄埶士 “'、器埠底下及在該蓄熱器埠中二者的氧化 20 201202630 劑分級給予操作者影響該玻璃熔融物的加熱、該蓄熱器埠 t火材料的過度加熱及污染物排放(如N〇x)的彈性。實驗 在單槔測試爐中進行。實驗結果證實氧化劑分級的量及位 置對於熱傳遞、埠溫及爐頂溫度的實質作用。舉例來說, 圖5指示藉纟80%的槔中氧化劑分級比“沒分級,,及8〇%的 :下分級案例能達到使大許多的熱通量及於該爐底。儘管 ? 一數據提供代表性趨勢,最理想的氧化劑分級量及位置 最好根據特定的爐子幾何形狀及操作條件決定。 如圖2所示,該燃燒器可包括一蜂下氧化劑分級喷管 9〇 ’使其與該第一氧化劑導管20的第二部位27呈固定間 隔關係放置。利用料下氧化劑分級喷管導引在火焰下方 的氧化劑流’該火焰分別從該燃料導管4G及第-氧化劑導 管20引入燃料及氧化劑而產生。 料下氧化劑分級噴f 9G 4有用於接收該第—氧化 劑氣體或第二氧化劑_辦& χ 體的人口 9卜該第—氧化劑氣體及 :第一氧化劑氣體可為來自相同或不同來源的工業級的 ^ 1可包括快速斷開附件或其他適用於檢查供 、·口該槔下氧化劑分級嘴管90的氧化劑氣體供應的附二’、 該槔下氧化劑分級哈黑 套 、、及喷ε 90可能不需要冷卻流體外 以:’下礼化劑分級噴管的氧化劑氣體流動可能足 下氧氧化劑分級噴^噴嘴保持冷卻。被引入該蟫Said material, and / or as shown in Figure 2, the graded nozzle can be in the separate part of the I animal heat, the so-called underarm nozzle. It has been found that sputum grading provides a means of adjusting the flame in the furnace. The temperature division reduces the oxygen level of the oxygen to the peak temperature of the oxygen/fuel flame. |The risk of damage to the burner. This peak is reduced and the rate of mixing of the feedstock and oxidant is also reduced. Reducing the fuel and oxidant mixing rate will slow the combustion process, thereby resulting in a longer flame, which is more desirable. Furthermore, the classification creates a fuel-rich or oxygen-poor combustion zone within the flame. The fuel-rich zone promotes the formation of carbon-rich solids (oily fumes) that promote radiant heat transfer from the flame to the glass melt and also result in lower NOx emissions. However, the degree of grading has a practical limit that can be used safely and effectively. This limit is often set by the momentum of the flame, which decreases the momentum of the flame as the fractionated oxygen increases. If the momentum of the flame is too low, the flame will become unstable in the furnace and 〆 y can, for example, rise up toward the top of the furnace where it may damage the roof refractory. The graded oxygen configuration and orientation also affects the flame from the burner. The graded oxidant introduced directly below the first oxidant/fuel nozzle has suitable characteristics. For example, the graded oxidant introduced at this location is mixed with the combustion of the shellfish just downstream of the burner nozzle and is thus substantially not diluted by the flue gas. Furthermore, 扃μ grading at this location effectively enhances the discriminating of the portion of the primary fuel burner flame. Produced by A A bucket ·.,, 麂. The extension causes the radiant energy from the flame to preferentially be directed downstream to the glass 仏 跋塥 ,, rather than upward toward the top. If it is involved in heating the crucible, the 埠 φ 八 && + mid-scale nozzle may guide the bee downstream, where the surface is provided, the person, and – the cold section. Alternatively, if the burner nozzle is not enough to be accommodated in the crucible, the oxygen nozzle is disposed at the B-stage J, for example, in the Below the surface but the glass melt surface.疋 于 于 于 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 Excessive heating and elasticity of pollutant emissions (eg N〇x). The experiment was carried out in a single-tank test furnace. The experimental results confirmed the substantial effect of the amount and position of the oxidant classification on heat transfer, temperature and roof temperature. Figure 5 indicates that 80% of the sulphur sulphur grading ratio is "not graded, and 8 〇%: the lower grading case can achieve a much larger heat flux and the bottom of the furnace. Although a data provides a representative trend, the optimal oxidizer grading and location is best determined by the particular furnace geometry and operating conditions. As shown in Fig. 2, the burner may include a bee oxidant grading nozzle 9 〇 ' placed in a fixed spaced relationship with the second portion 27 of the first oxidant conduit 20. The oxidant grading nozzle is used to direct the oxidant stream under the flame. The flame is generated by introducing fuel and oxidant from the fuel conduit 4G and the first oxidant conduit 20, respectively. The oxidant grading spray f 9G 4 has a population for receiving the first oxidant gas or the second oxidant, and the first oxidant gas and the first oxidant gas may be industrials from the same or different sources. The level of 1 may include a quick disconnect attachment or other attachment </ RTI> suitable for inspecting the oxidant gas supply to the oxidant grading nozzle tube 90, the underlying oxidizing agent grading, and ε 90 It may not be necessary to cool the fluid outside: 'The oxidant gas flow of the lower grading nozzle may be kept under the oxidizing agent grading nozzle. Was introduced into the 蟫
Ltr 9G的氧化劑氣體—般與被引人該第一 氧化劑導…氧化劑氣體相同,舉例來說,工業級的 21 201202630 乳。然而 .-…片厂刀、趿噴管的氧化 與被引入該第-氧化劑導管 j虱體可 „ 氧化劑氣體不同。 該燃燒益可包括圖1所 口 i所不的埠中氧化劑分 第二氧化劑導管80,該第_ 4 .喷S作為 茨弟一虱化劑導管8〇 劑導管20的第二部位27呈 與》亥第-氧化 至固疋間隔關係放置。利 二氧化劑導管8〇導引在該火焰下方的氧化劑流。。〆 因為該淳中氧化劑分級喷管位於該蓄熱器缚中 其必需冷卻。該第二氧化劑導管8〇彳與該第一冷卻流體 外套1 0或圖1所示的任音笛-、人,、 意第-冷部流體外套70呈固定間 隔關係而且大體上同心地配置於其内。 該燃燒器可另外包含任意的第二冷卻流體外套7〇及 與該任意的第二冷卻流體外# 7G呈固定間隔關係而且大 體上同心地配置於其内的第二氧化劑導管8〇。該第二冷卻 流體外套70彳能必需預防該氧化劑噴管的喷嘴由㈣火 焰及該爐子的輻射加熱而過熱。把水或其他冷卻流體引入 該任意的第二冷卻流體外套70的入口 71並且流到該第二 氣化劑導管80周圍,其包括該氧化劑排放端周圍的區域。 從該任意的第二冷卻流體外套70的出口 73抽出水或其他 冷卻流體。 該第二氧化劑導管80具有用於接收該氧化劑氣體或 第二氧化劑氣體的入口 81、在該入口 81下游的第一部位 83、在該第一部位83下游的彎曲部位85及在該彎曲部位 85下游的第二部位87。該第一氡化劑氣體及該第二氧化劑 氣體可為來自相同或不同來源的工業級的氧。 22 201202630The oxidant gas of Ltr 9G is generally the same as the oxidant gas introduced by the first oxidant, for example, industrial grade 21 201202630 milk. However, the oxidation of the knives and the squirt nozzles may be different from the oxidant gas introduced into the first oxidant conduit. The combustion benefit may include the oxidant in the bismuth of FIG. The catheter 80, the fourth portion of the second portion 27 of the sputum sulphate catheter 8 sputum catheter 20 is placed in a spaced relationship relationship with the dialysis-oxidation to solid sputum. The oxidant stream under the flame is because the oxidant grading nozzle of the crucible is located in the regenerator trap and must be cooled. The second oxidant conduit 8 is coupled to the first cooling fluid jacket 10 or as shown in FIG. Any of the whistle-, human, and Italian-cold fluid jackets 70 are in a fixed spaced relationship and are disposed substantially concentrically therein. The burner may additionally include any second cooling fluid jacket 7 〇 and any The second cooling fluid outer #7G is in a fixed spaced relationship and is substantially concentrically disposed within the second oxidant conduit 8A. The second cooling fluid jacket 70 can prevent the nozzle of the oxidant nozzle from being (four) flame and The radiation of the furnace Heat is too hot. Water or other cooling fluid is introduced into the inlet 71 of the optional second cooling fluid jacket 70 and flows around the second gasifying agent conduit 80, which includes the area around the oxidant discharge end. The outlet 73 of the second cooling fluid jacket 70 draws water or other cooling fluid. The second oxidant conduit 80 has an inlet 81 for receiving the oxidant gas or second oxidant gas, a first portion 83 downstream of the inlet 81, The curved portion 85 downstream of the first portion 83 and the second portion 87 downstream of the curved portion 85. The first sterilizing agent gas and the second oxidant gas may be industrial grade oxygen from the same or different sources. 201202630
έ亥入口 2 1 可 4 -Irr I I 匕括快速斷開附件或其他適用於檢查供 給該燃燒器用的氫仆愈,i _ — .的乳化劑喷管的氧化劑氣體供應的附件。 該第一部位ότ Θ f具有一圓形截面,而且可以特理方式 附接,舉例來說藉由熔接,於該第一氧化劑噴嘴的第一部 位外表面。 言°亥聲曲°P位8 5具有一彎角,β,其中該脊角,β,係於 該f角,a ’的15〇範圍以内。該彎角,β,可為6〇〇至【η。。 忒第一氧化劑導管8〇的第二部位87可相對於該第一氧化 劑導管20的第二部位27向上或向下傾斜。把關於該第二 氧化劑導官80的失角定義為介於該第二氧化劑導管80的 第°卩位8 1的筆直段與該第二氧化劑導管8〇的第二部位 85的筆直段之間。該彎角,β,為關於該第二氧化劑導管 的夾角的補償角。 該第二氧化劑導管80的第二部位87在噴嘴中形成末 鈿並且具有一流動軸82。該第二氧化劑導管的第二部 位87與該第—氧化劑導管2G的第二部位27呈固定間隔關 係。該任意的第二冷卻流體外套7〇及該第二氧化劑導管 8〇可被熔接在一起或當作該燃燒器組件的零件附接。 忒彎角,β,可在該彎角,a,的2。範圍以内。該第二 氧化劑導管8 〇的第二部位8 7的流動軸8 2可實質上平行於 該第,氧化劑導管20的第二部位27的流動軸22。關於該 流動軸82及該流動軸22,實質上平行意指間隔開並且等 距離隔開最大間隔距離的10%範圍以内。 部位27的 如圖1所示’該第一氧化劑導管20的第 23 201202630 出口端29可從該噴嘴的出口 89突出。該出口端29 可從該 出口 89突出〇.2 cm至3 cm。該第二氧化劑導管8〇的嘴嘴 可相對於該第一氧化劑導管20的第二部位27的出口山 2 9 凹陷使該第一冷卻套及/或該第一氧化劑導管2 〇的 位27能屏蔽該喷嘴不受該火焰及/或爐子的賴射。 如圖1及圖4中詳細顯示的,該第二氧化劑導管旳白 第二部位87的喷嘴具有入口 88、過渡段及出口 89。該= 口 88可具有圓形截面及一截面積,Αη;,及該出〇 = 非圓形截面及一截面積,An。。該喷嘴的出口 89可具有1 $ 至5的寬對高(“w”對“『,)比。為了此揭示内容的:的,1在5 該喷嘴的排出面處測量該出口 89的寬高比。寬度 度具有較大的尺寸。 局έ海入口 2 1 可 4 -Irr I I Includes quick disconnect attachments or other accessories for the oxidant gas supply of emulsifier nozzles suitable for checking the hydrogen servant supplied to the burner. The first portion ότ Θ f has a circular cross section and can be attached in a tangential manner, for example by welding, to the outer surface of the first portion of the first oxidant nozzle. The P 声 ° ° P bit 8 5 has a corner, β, wherein the ridge angle, β, is within the 15 〇 range of the f angle, a '. The angle, β, can range from 6 【 to [η. . The second portion 87 of the first oxidant conduit 8A can be inclined upward or downward relative to the second portion 27 of the first oxidant conduit 20. Deviation of the second oxidant guide 80 is defined as being between the straight segment of the first 卩 position 8 1 of the second oxidant conduit 80 and the straight segment of the second portion 85 of the second oxidant conduit 8 〇 . The angle, β, is the compensation angle with respect to the angle of the second oxidant conduit. The second portion 87 of the second oxidant conduit 80 forms a stub in the nozzle and has a flow axis 82. The second portion 87 of the second oxidant conduit is in fixed spaced relationship with the second portion 27 of the first oxidant conduit 2G. The optional second cooling fluid jacket 7 and the second oxidant conduit 8 can be welded together or attached as part of the burner assembly.忒 bend angle, β, can be at the corner, a, 2. Within the scope. The flow axis 82 of the second portion 878 of the second oxidant conduit 8A can be substantially parallel to the flow axis 22 of the second portion 27 of the first, oxidant conduit 20. With respect to the flow axis 82 and the flow axis 22, substantially parallel means spaced apart and equidistant within 10% of the maximum separation distance. The 23rd 201202630 outlet end 29 of the portion 27 of the first oxidant conduit 20 can protrude from the outlet 89 of the nozzle. The outlet end 29 can protrude from the outlet 89 by 2 cm to 3 cm. The nozzle of the second oxidant conduit 8〇 can be recessed relative to the outlet hill 2 of the second portion 27 of the first oxidant conduit 20 to enable the first cooling jacket and/or the first oxidant conduit 2 The nozzle is shielded from the flame and/or the furnace. As shown in detail in Figures 1 and 4, the nozzle of the second oxidant conduit chalking second portion 87 has an inlet 88, a transition section and an outlet 89. The = port 88 can have a circular cross section and a cross-sectional area, Αη;, and the exit pupil = a non-circular cross section and a cross-sectional area, An. . The outlet 89 of the nozzle may have a width to height ("w" to "") ratio of 1 $ to 5. For the purposes of this disclosure, 1 measures the width and height of the outlet 89 at the discharge face of the nozzle. Ratio. Width has a larger size.
An 關於此喷嘴乂可為i.25至5。大於指定下限的面積 比為使該噴嘴出口處的氧化劑流動不均句性最小化所不可 或缺,氧化劑流動不均勻性會 目甲从刀開或逆向流動, 喷嘴腐#、阻塞及過早損壞。 " 馬了避免過兩的第二 乳化劑速度或無法接受的過 _ 大第—氧化劑導管需要小於上 限的面積比》 · 忒喷嘴可具有—收歛高度— ^ ^ ... 及發散寬度。該收歛高度 有助於減小截面積,其為 & 产提古Ε ψ Μ 、‘、'々丨L動分開所必需。該發散寬 度槌问露出的副流的橫寬 β 一 匕3亥第一氧化劑及燃料所 產生火焰更寬。這將提高 ΠΓ ^ ^ ΑΑ ΧΛ. 刀級的虱化劑下方及該火焰 下l·]混5的均勻性。該第二 孔G剛導管80的第二部位87 24 201202630 ' 可在s亥出口 89附近具有一凸狀内表面。該凸狀内表面使該 排出流能迅速且平順轉換成與該主要流動軸82平行的取 向。寬度的發散半角可為5。至15。。 喷嘴通常被稱為“收歛的’’(依流動方向從一寬度到一 較小尺寸縮小)或“發散的,,(依流動方向從一較小尺寸張 大到一較大尺寸)。第拉瓦(de Laval)喷嘴具有一收歛段,接 著一發散段並且經常被叫做收歛-發散喷嘴。 收歛喷嘴使次音速流體加速。若該喷嘴壓力比夠高, 該流動在最窄點(亦即,該喷嘴喉部)處將達到次音速。在 此情況中,該喷嘴係謂之“阻塞’,。 文中所述的噴嘴與該第拉瓦型喷嘴不同。與此喷嘴具 有一發散寬度及一收歛高度對照起來該第拉瓦型喷嘴具有 收歛段接著發散段。 將5玄.燃燒器叹a十成能插入如圖2所示的蓄熱器淳。該 蓄熱器埠頸部内必須切出一個洞孔以提供用於插入該燃燒 器的位置。該洞孔可以切入該埠頸部的頂部、底部(基部) 或側面。較佳地,該洞孔切在該埠頸部的底部。 該燃燒器可透過該埠頸部底部切出的洞孔插入該埠, 較佳如圖2所示呈實質上垂直的取向。該燃燒器可包括把 該燃燒器設置並附接於該埠頸部的安裝板95。該燃燒器將 該燃料及氧化劑氧體以實質上水平平面的方式排放至該爐 子燃燒空間内。 該燃燒器可以各式各樣的方式操作以控制該玻璃槽中 及該蓄熱器皡中的溫度及熱通量分佈。這原則上經由調整 25 201202630 氧的分佈達到 定度的訂製, ’其.策略上的應用提供火焰長度、亮度及穩 而且也可助於該埠表面的冷卻。 該燃燒器可藉著透過該燃料導管4〇引入氣態燃料,透 過該第-氧化劑氣體導管20、埠中氧化劑分級喷管(第二氧 化劑導管80)及埠下氧化劑分級喷管9〇中之二或更多者引 入一或多種氧化劑氣體而運轉。 …本發明也關於—種爐子_,圖2中顯示出其一部分。 傻管根據本發明的該爐子顯示出含有根據目2的燃燒器, 但是根據@ i的燃燒器也可與該爐子連結使用而且熟悉此 技藝者顯然可改編關於根據目i的燃燒器的說明。該爐包 含蓄熱器125、爐子燃燒艙135及將該f熱器125連至該 爐子燃燒搶U5的蓄熱器埠頸部心該f熱器埠頸部ι〇5 在該爐子1〇〇的壁120中界定一埠11〇及一埠開口 115。該 爐子也包含根據上述特性的燃燒器。該燃燒器穿過該蓄熱 器槔頸。卩1G5並且進人該埠丨丨Q,而且把該燃燒器配置成能 將燃料及氧化劑導入該爐子丨〇〇。 该蓄熱器埠頸部1 05包含埠拱頂(頂部)、埠基部(底部) 及側壁,其經常由耐火磚建構而成。該蓄熱器#頸部在蓄 熱益與該爐子的埠開口或埠口之間界定一通道或埠。如文 中所用的,該埠為通道而且與該埠開口有所區分。 蓄熱器為利用蓄熱式熱傳的熱回收裝置而且在此技藝 中眾所周知。蓄熱器的細節可在W〇ifgang Trier所著,由 K. L· L〇ewenstein 翻譯的“⑺⑽ Furnaces, DesignAn About this nozzle 乂 can be i.25 to 5. The area ratio greater than the specified lower limit is indispensable for minimizing the uneven flow of the oxidant at the nozzle outlet. The oxidant flow non-uniformity will flow from the knife or the reverse direction, nozzle rot #, blockage and premature failure . " The horse has avoided the second emulsifier speed or the unacceptable _ large- oxidant conduit needs an area ratio smaller than the upper limit. · The 忒 nozzle can have a convergence height - ^ ^ ... and a divergence width. This convergence height contributes to the reduction of the cross-sectional area, which is necessary for the & production of the ancient Ε 、, ‘, 々丨L movement separation. The divergence width asks for the width of the exposed secondary stream. β 匕 3 第一 The first oxidant and the fuel produce a wider flame. This will increase the uniformity of ΠΓ ^ ^ ΑΑ ΧΛ. under the sizing agent and under the flame. The second portion of the second hole G just 80, 87 24 201202630', may have a convex inner surface near the sig exit 89. The convex inner surface enables the discharge stream to be rapidly and smoothly converted into a direction parallel to the main flow axis 82. The divergence half angle of the width can be 5. To 15. . Nozzles are often referred to as "convergent" (as the flow direction is reduced from a width to a smaller size) or "diverge", (from a smaller dimension to a larger dimension depending on the direction of flow). The de Laval nozzle has a converging section followed by a diverging section and is often referred to as a converging-diverging nozzle. The converging nozzle accelerates the subsonic fluid. If the nozzle pressure ratio is high enough, the flow will reach a subsonic speed at the narrowest point (i.e., the nozzle throat). In this case, the nozzle is referred to as "blocking". The nozzle described herein is different from the lava type nozzle. The nozzle has a divergence width and a convergence height. The lava type nozzle has convergence. The section is followed by the diverging section. The 5 Xuan burner can be inserted into the heat accumulator as shown in Fig. 2. The accumulator must have a hole in the neck to provide a position for inserting the burner. The hole can be cut into the top, bottom (base) or side of the neck. Preferably, the hole is cut at the bottom of the neck. The burner can cut through the bottom of the neck. The aperture is inserted into the crucible, preferably in a substantially vertical orientation as shown in Figure 2. The burner may include a mounting plate 95 that mounts and attaches the burner to the crucible neck. The burner uses the fuel and oxidant The oxygen is discharged into the furnace combustion space in a substantially horizontal plane. The burner can be operated in a variety of ways to control the temperature and heat flux distribution in the glass tank and in the heat accumulator. On the adjustment via 25 201202630 oxygen The distribution reaches a fixed degree of customization, 'its strategic application provides flame length, brightness and stability and can also contribute to the cooling of the crucible surface. The burner can be introduced through the fuel conduit 4 to introduce gaseous fuel through Two or more of the first oxidant gas conduit 20, the oxidant grading nozzle (second oxidant conduit 80), and the underarm oxidant grading nozzle 9 are introduced into one or more oxidant gases to operate. Regarding the furnace _, a part of it is shown in Fig. 2. The silo tube according to the invention shows a burner containing according to item 2, but the burner according to @i can also be used in conjunction with the furnace and is familiar with the art. It is obvious that the description of the burner according to the item i can be adapted. The furnace comprises a heat accumulator 125, a furnace combustion chamber 135 and a regenerator that connects the f-heater 125 to the furnace to burn U5. The neck ι〇5 defines a 埠11〇 and a 埠 opening 115 in the wall 120 of the furnace. The furnace also includes a burner according to the above characteristics. The burner passes through the heat accumulator neck. 1G5 and enter people The 埠丨丨Q, and the burner is configured to introduce fuel and oxidant into the furnace 丨〇〇. The regenerator 埠 neck 105 includes a dome (top), a base (bottom) and a side wall, Often constructed of refractory bricks. The regenerator # neck defines a passage or weir between the heat storage benefit and the opening or opening of the furnace. As used herein, the weir is a passage and has an opening with the opening The heat accumulator is a heat recovery device utilizing regenerative heat transfer and is well known in the art. The details of the heat accumulator can be found in W〇ifgang Trier, translated by K. L. L〇ewenstein, "(7)(10) Furnaces, Design
Construction and Operation55 > Society of Glass Technology . 26 201202630 雪非耳’英國,2000年’及由FayT〇〇ley所著(編輯)的“TheConstruction and Operation55 > Society of Glass Technology . 26 201202630 Xue Fei Er 'British, 2000' and by The FayT〇〇ley (editor)
Handbook of Glass Manufacture“,第 3 版第 1 及 2 卷,AshleeHandbook of Glass Manufacture", 3rd edition, Volumes 1 and 2, Ashlee
Publishing公司(紐約),1984年,中找到。 如文中所用的,蓄熱器埠頸部為任何導管,其用於或 以前用於將燃燒空氣從蓄熱器轉移至爐子中的燃燒空間。 該爐子可包括一燃燒器’該燃燒器包括任何或全部上 述關於該燃燒器的特性。 有一具體實施例中,如圖丨所示,該爐子中可使用一 埠中分級喷管。 有一具體實施例中,如圖2所示,一導管9〇穿過該爐 壁120在該槔開口 115下方的位置並且被配置成能將該氧 化劑導入該爐子内。導管90為埠下氧化劑分級喷管。若從 該喷管垂錢肖上牵引的t道和該埠相交則該導管在該淳 開口“下方,,。垂直地意指全然筆直向上或向.下。 該爐子可同時包括埠中氧化劑分級喷管及埠下氧化劑 分級喷管。 該爐子也包含配置於該爐子燃燒艙下方並與其鄰接的Founded in Publishing Company (New York), 1984. As used herein, the regenerator jaw neck is any conduit that is used or previously used to transfer combustion air from the accumulator to the combustion space in the furnace. The furnace can include a burner that includes any or all of the characteristics described above with respect to the burner. In one embodiment, as shown in Figure ,, a sputum staged nozzle can be used in the furnace. In one embodiment, as shown in Figure 2, a conduit 9 is passed through the furnace wall 120 below the crucible opening 115 and is configured to introduce the oxidant into the furnace. The conduit 90 is a submerged oxidant grading nozzle. If the t-channel drawn from the nozzle is intersected with the raft, the conduit is "below", vertically. It means completely straight up or down. The furnace can include sulphur grading at the same time. a nozzle and a submerged oxidant grading nozzle. The furnace also includes a sub-chamber and is adjacent to the combustion chamber of the furnace.
燒火焰的熱予以熔融。 詠槽盆並且藉由該爐子燃燒艙令的燃 。熔融的玻璃從該填充端流至該排放 丨乍為產物。所取出的熔融玻璃進行成 端並且從該爐子取出作為產物 形操作以使該玻璃化成玻璃板 望產物的形態。 、玻璃纖維、容器或其他希 27 201202630 該爐子也包含在該爐壁中的排氣埠以便從該爐子燃燒 艙取出燃燒產物。燃料及氧化劑經由該蓄熱器埠頸部中的 燃燒器引入該爐子燃燒艙,燃燒形成火焰並且把熱傳遞至 5亥等玻璃形成成分及熔融玻璃。透過該排氣埠從該爐子燃 燒艙移除來自該燃料及氧化劑的反應之燃燒產物。 本發明也關於加熱爐子的方法,舉例來說在蓄熱器修 遵的期間。等爐子經過長時間運轉之後,該f熱器中的熱 傳遞填料或檢驗設備可能被該玻璃寞凝結的揮發物阻塞或 劣化。當為了要修護該蓄熱器而停頓空氣燃料埠時該爐子 仍然必需得加熱。較佳提供足夠的熱以供維持玻璃生產。 一此方法也可用以延長爐子的壽命而不需修護該劣化的 蓄熱器或提高現行爐子的生產速率。 。在修5蒦蓄熱器時加熱爐子的方法中可使用上述燃燒 器’以延長該爐子的壽命而不需修護該蓄熱器及/或提高現 行爐子的生產速率。 /…、爐子的方法包含阻斷空氣流至該埠;終止燃燒流 至與該埠相關聯的空氣燃料燃燒器;設立上述燃燒器使得 該燃燒器穿過該蓄熱器埠頸部並且進入該埠;使冷卻劑通 第冷卻机體外套;透過該第一氧化劑導管將第一氧 化劑轧體引入該爐子;及透過該燃料導管將先前空氣燃料 運轉期間所用的燃料或不同燃料引人該爐子。 ,,§ 也匕έ利用s玄第一氧化劑氣體燃燒所選用的燃 λ、形成燃燒產物;及透過排氣管從該爐子燃燒艙取出該 等燃燒產物。 28 201202630 在蓄熱器修護的期間,必需停止穿過該蓄熱器檢驗設 備組件的部分的空氣使得該劣化的檢驗設備能被移除並且 設立替代檢驗設備。該蓄熱器可為開放箱設計或分成數格 的設計。空氣流動可在該蓄熱器的底部處加以阻斷或阻 擋。適宜地也可在該蓄熱器埠的上游端阻斷或阻擋空氣流 動。 該蓄熱器埠頸部可被切削或修改以提供用於設立該燃 燒器的洞孔。該蓄熱器蟫頸部中的洞孔可以在圖2所示的 蓄立熱器蟑頸部的底部或基部。該洞孔也可切入該蓄熱器痒 頸邛的任意側或該蓄熱器埠頸部的拱頂或頂部。 該燃燒器可被設立成使該燃燒器穿過該蓄熱器埠頸部 進入該埠。該第一氧化劑導管 Ίϊ ^ ^ -s , 幻弟一邛位的出口端離 皁頸邛壁的距離及該燃料導管的 任何崞頸部壁的距離可藉由…位的出口端離 精由°玄女裝板95的位置來設定。 -般冷卻劑,較佳水,會在該燃燒器設立 車頌部内的期間通過該第一冷卻 設立時過熱。 卜娶以預防該燃燒器 劑導管==而第—氧化劑氣體將會透過該第-氧化 子。該燃料可與先二:將會透過該燃料導管導入該爐 的話可使用不同則…4相同,或是必要 =、门燃枓。该燃料可為天然氣。 該方法可另外包含透過 劑氣體或第二氧化劑氣 導管將該第一氧化 ^ 乳化劑軋體引入該爐子。 4方法可另外包含透過該蓄熱丨 ,W入大量空氣。該 29 201202630 空氣可穿過該蓄熱器進來或來自另一來源。如此引入的空 氣具有至少三種有益的作用。首先,其洗淨煙道氣和微粒 再循環的埠,藉此使該埠内的腐蝕及累積的微粒最少化。 其次其給火焰添加動量。最後其能減少流至該燃燒器的氧 化劑’接著降低運轉成本並且減緩該燃燒器喷嘴附近的燃 燒速率。較慢的燃燒速率一般將擴大並且加強火焰的光亮 區’藉以增加輻射熱傳作用。該燃燒器至多25%的化學計 量的氧需求可經由穿過該埠的空氣流動來供應。部分氧需 求係藉由穿過該槔的空氣提供,供流至該燃燒器的燃料完 全燃燒所需的95%至約75%那麼少的化學計量氧化劑可藉 由該第一氧化劑氣體及/或該第二氧化劑氣體來提供。 該蓄熱器可在那時被修護,同時該燃燒器的運轉提供 熱給該爐子並且持續進行玻璃生產。 要不然該爐子可依此模式持續操作而不需修護該蓄熱 器直到該爐子活動結束。 關於該燃燒器的參數範圍的一些限制由蓄熱式玻璃窯 的燃燒器和埠的幾何形狀(亦即,可用空間)考量決定。為 了有助於決定這些範圍的其他限制,依下列實施例所述的 方式應用計算流體動力學(CFD)模型化。 實施例 利用CFD模型化分離並且檢查設計和操作參數對於燃 燒器流體機械和熱現象的影響。圖!中舉例說明的燃燒器 和相關聯的第二氧化劑用作基礎模型化組態。表丨中提供 30 201202630 在致力於模型化的期間產生變化的參數,及其分別的範 圍。注意儘管該分級的氧化劑流量,也就是(第一加第二) 氧化劑流量總共的百分比,不是該燃燒器的設計參數,但 疋文中仍將其包括在内,因為其在此實施例内的變化有助 於進一步強調其他參數的影響。假設該燃料為天然氣,以 其仿製100%甲烷。 為求實用的緣故,僅呈現最顯著的CFD結果。 表1 參數 最小 最大 燃燒器無因次長度,L/D 0.8 2.7 A 第一氧化劑流量截面積比; 1.0 1.9 Ar· 燃料流量截面積比; 1.0 1.9 第二氧化劑導管流量截面積比;心。 1.0 1.55 分級的氧化劑流量(總共氧化劑流量%) 20% 80% 藉由該第一氧化劑和燃料面流量截面積比的最大值進 行燃燒器無因次長度’ L/D,的變化(參見表1)。圖6至9 中總結出結果。 舉例來說’圖6中舉例說明l/D對尖峰火焰溫度的影 響。注意儘管關於該20%分級案例的趨勢顯示當L/D降低 31 201202630 時溫度逐漸且相當小幅提南’但是就80%氧化劑來看當l/D 從2.7降至1.4時關於該80%分級案例的尖峰火焰溫度提高 將近100 K,接著當L/D進一步降至〇·8時下降。因為就介 於0.8至2.7的L/D來看該尖峰火焰溫度提高少於ι〇〇 κ, 而且大於2.7的L/D可能具有又更低的尖峰火焰溫度所 以適合0.8至7的L/D。該燃燒器可在超出〇 8至7的L/D 範圍運轉。 圖7中給予涉及80。/。分級的案例之火焰溫度較緊密的 檢視,1比較L/D等於0.8、U及2 7的火焰溫度分佈。 首先要注意的是全部三個案例的尖峰溫度均發生在相當接 近該燃燒器喷嘴;S而’該尖峰值的偏離可能將該燃燒器 金屬暴露於高溫損壞的情況。再者,就L/D等於i 4及2.7 來看,該火焰溫度最初提高,在離該喷嘴出口將近〇.5爪 的距離達到尖峰值n㈤L/D等於Q 8來看,該尖峰 溫度發生在離該喷嘴出口小於〇2 m的距離,因此進一步 提高該喷嘴過熱的風險。另外也令人感興趣的是關於L/D 等於0·8@案例該火焰溫度在達到尖峰之後立即下限,達 到局部最小值,其比另外兩個案例發生的溫度⑯15〇與 職'間。這些特徵暗示在L/D等於U肖〇_8之間發生 比L/D等於2.7和1.4發生更極端的火焰性質偏移。 關於火焰性質偏移的解釋分別從圖8"〇 該L/D等於i 4和0 s安γ , L | ·'、列的噴嘴出口速度剖面圖來推斷。 特別疋’儘管對於該二案 系例該燃枓/第-氧化劑混合物的路 役基本上維持不變 疋备L/D變化時第二氧化劑的路徑 32 201202630 明顯改變。也就是說,就l/d等於i 4 A玉 來看,該第二氧化 劑途徑基本上平行於該第一氧化劑/姆. …、杆流。然而,當L7D 降至0.8時,該分級的氧化劑流動, , 任該第二氧化劑喷嘴 内沒有充分的發展長度’朝主火向上彎 芩將近4度。這導致 該火焰與第二氧化劑之間的迅速收歛,當其與較大量的第 二氧化劑(全部氧化劑@ 80%當作分級的氧化齊”結合時, 在該燃燒器尖端附近產生加速混合’造成該尖峰溫度位置 更靠近該喷嘴而且隨後的最低溫度變得比其他案例更低。 這些發現的實際作用為當該燃燒器包含第二氧化劑導管 時,L:D的最小值應該大於或等於】4。然而,因為該燃料 /第-氧化劑流的特性不大受到從L/D等於14變成〇 8所 影響’所以當該燃燒器不包含該第二氧化劑導管時,L/D 的最小值應該大於或等於〇 8。 L/D對於火焰長度的影響’在圖9中舉例說明將強 圖6至8所描述的結論。此圖形顯示為何降低導致 該火焰縮短,或許由於該燃燒器和分級喷管噴嘴内的反應 物速度剖面圖的發展不充分而導致加速混合。關於該80% 氧化劑分級的案例L/D介於!.4與G.8之間的火焰縮短效應 寺別猛’、、、而且可再度歸因於前述主要和次要喷嘴流動之間 的迅速收歛。 藉由0.8和1.4的燃燒器無因次長度,L/D,進行該第 氧化劑面積比的變化。據顯示尖峰火焰溫度對於第一氧 化劑面積比敏感。圖1〇顯示關於L/D等於1 4及2〇%和8〇% 33 201202630 氧化劑分級以該尖峰溫度當作八的函數。當該面積比<從The heat of the burning flame is melted. The sump basin and the combustion of the cabin by the furnace. The molten glass flows from the filling end to the discharge 丨乍 as a product. The taken-out molten glass is subjected to the end and taken out from the furnace as a product to operate to form the glass into a glass-like product. , fiberglass, container or other Greek 27 201202630 The furnace also contains an exhaust gas enthalpy in the furnace wall to extract combustion products from the furnace combustion chamber. The fuel and the oxidant are introduced into the combustion chamber of the furnace through a burner in the neck of the heat accumulator, and are burned to form a flame and transfer heat to a glass forming component such as 5 kel and molten glass. The combustion products from the reaction of the fuel and the oxidant are removed from the furnace of the furnace through the exhaust enthalpy. The invention also relates to a method of heating a furnace, for example during the period of regenerator repair. After a long period of operation of the furnace, the heat transfer packing or inspection equipment in the heat exchanger may be blocked or deteriorated by the condensed volatiles of the glass crucible. The furnace still has to be heated when the air fuel enthalpy is stopped in order to repair the heat accumulator. It is preferred to provide sufficient heat for maintaining glass production. One such method can also be used to extend the life of the furnace without repairing the degraded regenerator or increasing the production rate of the current furnace. . The above burners can be used in the method of heating the furnace during the repair of the heat accumulator to extend the life of the furnace without repairing the heat accumulator and/or increasing the production rate of the existing furnace. /... The method of the furnace comprises blocking the flow of air to the crucible; terminating the combustion flow to an air fuel burner associated with the crucible; establishing the burner such that the burner passes through the regenerator to the neck and enters the crucible Passing a coolant to the jacket of the cooling body; introducing the first oxidant rolling body into the furnace through the first oxidant conduit; and introducing the fuel or different fuel used during the operation of the previous air fuel to the furnace through the fuel conduit. , § 匕έ also uses the first oxidant gas to burn the selected combustion λ to form a combustion product; and the combustion products are taken out from the combustion chamber of the furnace through an exhaust pipe. 28 201202630 During the regenerator repair, it is necessary to stop the air passing through the portion of the accumulator inspection device assembly so that the degraded inspection device can be removed and an alternative inspection device can be set up. The heat accumulator can be designed as an open box or as a multiple grid. Air flow can be blocked or blocked at the bottom of the heat accumulator. It is also expedient to block or block the flow of air at the upstream end of the heat accumulator. The regenerator jaw neck can be cut or modified to provide a hole for setting up the burner. The hole in the neck of the heat accumulator may be at the bottom or base of the neck of the heat storage device shown in Fig. 2. The hole can also be cut into either side of the reverberatory itchy neck or the vault or top of the neck of the regenerator. The burner can be set up such that the burner passes through the regenerator jaw neck into the crucible. The first oxidant conduit Ίϊ ^ ^ -s , the distance from the outlet end of the phantom to the wall of the soap neck and the distance from any of the neck walls of the fuel conduit can be separated by the exit end of the position The position of the sneaker board 95 is set. The general coolant, preferably water, will overheat when set up by the first cooling during the setting of the burner. The dioxins prevent the burner conduit == and the first oxidant gas will pass through the first oxidizer. The fuel can be used with the first two: it will be introduced into the furnace through the fuel conduit, and the same can be used for the same ... 4 or necessary =, the door is burned. The fuel can be natural gas. The method may additionally comprise introducing the first oxidizer tempering body into the furnace via a permeate gas or a second oxidant gas conduit. The method 4 may additionally include passing a large amount of air through the heat storage enthalpy. The 29 201202630 Air can pass through the heat accumulator or come from another source. The air thus introduced has at least three beneficial effects. First, it cleans the flue gas and the enthalpy of particulate recirculation, thereby minimizing corrosion and accumulated particulates within the crucible. Second, it adds momentum to the flame. Finally, it reduces the amount of oxidant flowing to the burner' which in turn reduces operating costs and slows down the rate of combustion near the burner nozzle. The slower burning rate will generally expand and enhance the bright area of the flame' to increase the radiant heat transfer. Up to 25% of the stoichiometric oxygen demand of the burner can be supplied via the flow of air through the crucible. Part of the oxygen demand is provided by the air passing through the helium, and from 95% to about 75% of the stoichiometric oxidant required for complete combustion of the fuel to the combustor can be by the first oxidant gas and/or The second oxidant gas is supplied. The heat accumulator can be repaired at that time while the burner operates to provide heat to the furnace and to continue glass production. Otherwise the furnace can be operated continuously in this mode without repairing the regenerator until the furnace activity is over. Some limitations regarding the parameter range of the burner are determined by the geometry of the burner and crucible of the regenerative glass kiln (i.e., available space). To help determine other limitations of these ranges, computational fluid dynamics (CFD) modeling is applied in the manner described in the following examples. EXAMPLES The effects of design and operating parameters on the mechanical and thermal phenomena of the burner fluid were modeled using CFD modeling. Figure! The burner and the associated second oxidant illustrated in the example are used as a base modelling configuration. Provided in the form 30 201202630 Parameters that change during the period of being modeled, and their respective ranges. Note that although the graded oxidant flow rate, which is the total percentage of the (first plus second) oxidant flow, is not a design parameter for the burner, it is still included in the text because of its variation in this embodiment. Helps to further emphasize the impact of other parameters. Assume that the fuel is natural gas, with its imitation of 100% methane. For practical reasons, only the most significant CFD results are presented. Table 1 Parameters Minimum Maximum burner dimensionless length, L/D 0.8 2.7 A First oxidant flow cross-sectional area ratio; 1.0 1.9 Ar· Fuel flow cross-sectional area ratio; 1.0 1.9 Second oxidant conduit flow cross-sectional area ratio; 1.0 1.55 Graded oxidant flow (% of total oxidant flow) 20% 80% The change in burner dimensionless length 'L/D' by the maximum cross-sectional area ratio of the first oxidant and fuel surface (see Table 1) ). The results are summarized in Figures 6 to 9. For example, the effect of l/D on the peak flame temperature is illustrated in Figure 6. Note that although the trend for this 20% grading case shows that the temperature is gradually and fairly small when L/D is reduced by 31 201202630, but for 80% oxidizer, when l/D is reduced from 2.7 to 1.4, the 80% grading case The peak flame temperature increases by nearly 100 K and then decreases as L/D drops further to 〇·8. Since the peak flame temperature rises less than ι〇〇κ for an L/D of 0.8 to 2.7, and the L/D greater than 2.7 may have a lower peak flame temperature, it is suitable for L/D of 0.8 to 7. . The burner can operate in the L/D range beyond 〇 8 to 7. The administration in Figure 7 involves 80. /. The flame temperature of the graded case is closely monitored, 1 comparing the flame temperature distribution with L/D equal to 0.8, U and 27. The first thing to note is that the peak temperatures of all three cases occur fairly close to the burner nozzle; and the deviation of the peak value may expose the burner metal to high temperature damage. Furthermore, as far as L/D is equal to i 4 and 2.7, the flame temperature is initially increased, and the peak temperature is at the point where the distance from the nozzle exit is close to the peak of the claw, n (five) L/D is equal to Q 8 . The distance from the nozzle outlet is less than 〇2 m, thus further increasing the risk of overheating of the nozzle. It is also interesting to note that the L/D is equal to 0·8@ case. The flame temperature reaches the lower limit immediately after reaching the peak, reaching a local minimum, which is 1615 〇 between the other two cases. These characteristics suggest that a more extreme flame property shift occurs when L/D equals U 〇 _8 than L/D equals 2.7 and 1.4. The explanation of the flame property offset is inferred from Fig. 8 " 〇 the L/D is equal to i 4 and 0 s γ, L | · ', the nozzle exit velocity profile of the column. In particular, although the enthalpy of the combustion/first-oxidant mixture remained substantially unchanged for the second case, the path of the second oxidant 32 201202630 was significantly changed when the L/D was changed. That is, as far as l/d is equal to i 4 A jade, the second oxidant route is substantially parallel to the first oxidant/m. However, when L7D drops to 0.8, the graded oxidant flows, and there is not a sufficient development length in the second oxidant nozzle, which is nearly 4 degrees upward toward the main fire. This results in a rapid convergence between the flame and the second oxidant, which, when combined with a larger amount of the second oxidant (all oxidants @80% as a graded oxidization), produces accelerated mixing near the burner tip The peak temperature is located closer to the nozzle and the subsequent minimum temperature becomes lower than in other cases. The practical effect of these findings is that when the burner contains a second oxidant conduit, the minimum value of L:D should be greater than or equal to 4 However, since the characteristics of the fuel/first oxidant stream are not greatly affected by the change from L/D equal to 14 to 〇8, the minimum value of L/D should be greater when the burner does not contain the second oxidant conduit. Or equal to 〇 8. The effect of L/D on the length of the flame' is illustrated in Figure 9 by the conclusions described in Figures 6 to 8. This graph shows why the reduction resulted in a shortening of the flame, perhaps due to the burner and the staged nozzle The development of the reactant velocity profile in the nozzle is insufficient to cause accelerated mixing. The case of the 80% oxidant classification L/D is between the flame retarding effect of .. and G.8. And can be again attributed to the rapid convergence between the aforementioned primary and secondary nozzle flows. The change in the area ratio of the first oxidant is performed by the dimensionless length of the burners of 0.8 and 1.4, L/D. The flame temperature is sensitive to the first oxidant area ratio. Figure 1 〇 shows that L/D is equal to 1 4 and 2〇% and 8〇% 33 201202630 The oxidant classification is a function of the peak temperature as eight. When the area ratio is <
1.9降至1.0時,80%分級發生190 κ的尖峰溫度提高,然 而20%分級發生230 Κ的尖峰溫度提高。關於後面的案例, A s 。從1.3降至1 .〇時該尖峰溫度提高變陡峭。關於圖i i 中L/D等於0.8的案例呈現類似的結果。如圖ι〇,當$降 至低於1.3時該尖峰溫度急遽提高。對於所有案例最高的 A. 尖峰火焰溫度在等於! 0時達到在26〇〇至265〇 K範圍 中的值。 A. 圖12中呈現其他比較關於〜等於1〇和1 9的情況該 8〇°/〇分級案例的火焰溫度分佈的細項。關於二案例的溫度 分佈再度顯示在該燃燒器出口附近的特徵峰值。注意無論When 1.9 is reduced to 1.0, the peak temperature of 190 κ is increased by 80%, but the peak temperature of 230 Κ is increased by 20%. Regarding the later case, A s . When the temperature drops from 1.3 to 1. The peak temperature increases steeply. A similar result is obtained for the case where L/D is equal to 0.8 in Fig. i i . As shown in Figure ι, the peak temperature increases sharply when $ drops below 1.3. For all cases the highest A. The peak flame temperature is equal! At 0, the value in the range of 26〇〇 to 265〇 K is reached. A. The other comparisons show the details of the flame temperature distribution for the 8〇°/〇 classification case for the case of ~ equal to 1〇 and 1 9 in Figure 12. The temperature distribution for the second case again shows the characteristic peak near the burner exit. Pay attention to
A 如何該尖峰的位置都會從Λ。等於丨9時離該燃燒器喷嘴將A How the position of the peak will be from Λ. Equal to 丨9 when leaving the burner nozzle
, A 近0.4 m的距離偏移至\等於1.0離該喷嘴將近0.2 m。因 為其係界定喷嘴過熱的相對風險的尖峰溫度和尖峰位置的, A distance of 0.4 m is offset to \ equal to 1.0 from the nozzle nearly 0.2 m. Because of the peak temperature and peak position of the system that defines the relative risk of nozzle overheating
A 組合’所以結論為應該避免小於1 3的Λ。值。 變化該氧化劑面積比的效應改變火焰性所憑藉的機構 34 201202630 為透過該第一氧化劑出〇迷度剖面圖。也就是說,降低該 Α. 比例Λ。將提咼該燃燒器噴嘴出口處的第一氧化劑流動的分 配不當,藉以產生會提高尖峰火焰溫度且縮短火焰長度的 過度紊亂和剪切力。-個蜊定速度分配不當的量的方式為 算出速度偏差’其係定義為由錢面的平均值所得的局部 速度的標準偏差。依本發ΒΒ & 上 Μ & ♦赞明的方式定義,較高的速度偏差 相當於較大程度的不均勺& .. , _ _ 9性,導致燃料與第一氧化劑之間 所不欲的較高混合速率。主 表2令列舉對應於該第一氧化劑A combination 'so concluded that Λ less than 13 should be avoided. value. The mechanism by which the effect of varying the area ratio of the oxidant changes the flame resistance is disclosed by the method of the first oxidant. In other words, reduce the Α. Improper mismatching of the flow of the first oxidant at the exit of the burner nozzle is provided to create excessive turbulence and shear forces that increase the peak flame temperature and shorten the length of the flame. The way to determine the amount of improperly assigned speed is to calculate the speed deviation' which is defined as the standard deviation of the local velocity obtained from the average of the money surface. According to the definition of the ΒΒ & Μ & ♦ praising, the higher speed deviation is equivalent to a larger degree of unevenness &., _ _ 9 sex, resulting in the fuel and the first oxidant Undesirably high mixing rate. The main table 2 order lists the corresponding first oxidant
A 面積比〜等於1.0、1 3 i··3及1.9 ; L/D等於1.4 ; 20%分級的 正規化成平均截面速度百分比 速度偏差。偏差的大小, 扎τ “面積比〜從i 9降至^時該第一氧化劑不均勻性A area ratio ~ equals 1.0, 1 3 i··3 and 1.9; L/D is equal to 1.4; 20% graded normalized to average section speed percentage speed deviation. The size of the deviation, 扎τ "area ratio ~ from i 9 to ^ when the first oxidant non-uniformity
Ai 變兩倍。再者,與:ζ· 降至1 ·0時相當大幅的提高相比’ 1 ·3時速度偏差相對小量的提高,其 等於或高於1.3的第一氧化劑面積 其顯示當Α。從1.9降至 進—步指示必需維持在 比冶Ο 〇 35 201202630 表2 A 第一氧化劑面積比 速.度偏差(平均速度%) 1.0 21.5 1.3 13.9 1.9 10.7 ^fl 關於該燃料面積比,、,將此參數降至】.9至^ 〇的 範圍像改變該第—氧化劑面積比(至相同範圍)一樣對於尖 峰火焰溫度具有定性上類似的效應。然而,此效應的大小 較小。舉例來說,關於L/D等於0 8,燃料面積比從19降 至1.0使尖峰火焰溫度產生70 κ的提高,而由第一氧化劑 面積比相同的降幅所產生火焰溫度提高為.25〇 κ (參見圖 11)。 比起對於該第一氧化劑面積比的敏感性,該火焰特性 對於燃料噴嘴面積比的較低敏感性可追溯到事實上該燃料 喷嘴出口速度剖面圖並不像該第一氧化劑出口速度剖面圖 一樣對於面積比變化那麼敏感。如表3中的文件附記的, 在燃料面積比Α。等於1 〇和 1.9的噴嘴出口處之燃料速度 偏差小於關於該第一氧化劑的同等值(參見表2)的一半。小 於 ^fi 1 .〇的燃料面積比ΐ並非所欲, 因為其傾向於不穩定的 36 201202630 於或 流動分離效應。因而iCFD模型化為基礎,任何高 等於1 .〇的燃料噴嘴面 ;^ 積比,。,在此發明中均可接受。 然而,在實驗室原型測 R ^ °的期間所做的火焰性質測量及颧 察才日不透過高於丨37的 及觀 中舉例說明的凹狀至凸壯& 卜藉由圆3 許。 狀的輪廓將進-步改善燃燒器效 '- ------__ 表3 ------- 燃料面積比4 速·度偏差(平均速度%) 1.0 — J 9.4 ' 1.9 4.8 — 該第二氧化劑導管的流動截面積比 離開喷嘴的第—氧化劑速度分佈,其接著會同時影響該 燃燒器系統的效能及持久性。關於本發明感興趣的條件了Ai doubles. Furthermore, a significant increase in the speed deviation from ζ·1 to 0·0 is relatively small compared to the increase in the speed deviation of '1·3, which is equal to or higher than the area of the first oxidant of 1.3. From 1.9 to the step-by-step indication must be maintained at the ratio Ο35 201202630 Table 2 A First oxidant area ratio speed. Degree deviation (average speed %) 1.0 21.5 1.3 13.9 1.9 10.7 ^fl About the fuel area ratio, Decreasing this parameter to the range of .9 to ^ 像 has a qualitatively similar effect on the peak flame temperature as changing the first oxidant area ratio (to the same range). However, this effect is small in size. For example, for L/D equal to 0 8, the fuel area ratio is reduced from 19 to 1.0 to produce a 70 κ increase in peak flame temperature, while the flame temperature increase from the first oxidant area ratio is the same as .25 〇 (See Figure 11). The lower sensitivity of the flame characteristic to the fuel nozzle area ratio can be traced back to the fact that the fuel nozzle exit velocity profile is not like the first oxidant outlet velocity profile, as compared to the sensitivity to the first oxidant area ratio. It is as sensitive as the area ratio change. As noted in the document in Table 3, the fuel area ratio Α. The fuel velocity deviation at the nozzle outlet equal to 1 〇 and 1.9 is less than half the equivalent value for the first oxidant (see Table 2). A fuel area ratio smaller than ^fi 1 .〇 is not desirable because it tends to be unstable 36 201202630 or the flow separation effect. Therefore, the iCFD model is based on any fuel nozzle surface height equal to 1. It is acceptable in this invention. However, the measurement of the nature of the flames and the observations made during the laboratory prototype R ^ ° did not pass the concave to the convex and the exemplified by the 丨37 and the observations. The profile will improve the burner efficiency step by step--------__ Table 3 ------- Fuel area ratio 4 speed·degree deviation (average speed %) 1.0 — J 9.4 ' 1.9 4.8 — The flow cross-sectional area of the second oxidant conduit is greater than the first oxidant velocity profile exiting the nozzle, which in turn affects both the performance and durability of the burner system. Conditions of interest for the present invention
Ani 1.0= ^/JO = 1 <ς. , γότλ • CFD槟型化結果證實對於速度分佈的強大 影響。圖13顯示當該面積比,t,降至低於將近1.25的 數,時3玄第-氧化劑的速度偏差將急遽地提高,如該曲線 中提间的斜率所示。儘管此等結果暗示對於燃燒效能的影 37 201202630 響在此範圍内較小,但是該喷嘴出口速度剖面圖在面積比 低於此臨界值時的崩潰導致非常低的出口速度區,該等非 常低的士口速度區傾向不穩定而會導致分離或逆向‘動。 化將提冋喷嘴腐钱及阻塞的風險,而且可能導致需要更頻 繁的維護及較高的故障率。就其本身而論,關於本發明的 第二氧化劑喷嘴的最小可接受面積比I為丨25。 【圖式簡單說明】 圖1顯示具有任意的琿中氧化劑分級喷管的穿淳燃声 器。 “圖2顯示被設立於具有埠下氧化劑分級喷管的爐子的 蓄熱器埠頸部中之穿槔燃燒器。 圖3顯示該第一氧化劑導管與該燃料導管的排放端的 放大示意圖。 圖4顯料下氧化劑分級纟管的排放端的放大 圆。 ’、 圖5為把正規化熱通量當作離測試爐中的㉟燒器嘴嘴 的距離的函數之圖形。 圖6為顯示以尖峰火焰溫度當作無因次喷嘴長度的函 數之模型化結果的圖形。 圖7為顯示以火焰溫度當作離該燃燒器喷嘴出口的距 離的函數之模型化結果的圖形。 圖8a為源於模型化結果的速度大小等高線圖。 38 201202630 圖8b為源於模型化結果的速度大小等高線圖。 圖為顯不以火焰長度當作無因次喷嘴長度的函數之 模型化結果的圖形。 圖10為蔡頁示以溫度當作氧通行面積比的函數之模型 化結果的圖形。 結果的圖形。 圖12為顯示以火焰長度當作離該燃燒器喷嘴出口的 距離的函數之模型化結果的圖形。 圖13為顯示以第二氧化劑速度偏差當作第二氧化劑 通道面積比的函數之模型化結果的圖形。· 【主要元件符號說明】 Afi入口段截面積 Af〇 出口段截面積 Ai入口段截面積 A〇 出口段截面積 Ani入口截面積 Ano 出口截面積 a 彎曲部位的彎角 β 彎曲部位的f角 D 第一冷卻流體外套外當量 直徑 W噴嘴出口寬度 Η 喷嘴出口高度 L 第一冷卻流體外套長度 1 燃燒器 10第一冷卻流體外套 13 第一冷卻流體外套的 出口 11第一冷卻流體外套的入口 20第一氧化劑導管 39 201202630 21 用於接收氧化劑氣體的入 D 22 第二部位流動軸 23 第一部位 25 彎曲部位 27 第二部位 29 第二部位出口 .端 40 燃料導管 41 用於接收燃料的入口 42 第二部位流動軸 43 第一部位 45 彎曲部位 47 第二部位 49 第二部位出口端 50 氧化劑通道 51 入口段 53 過渡段 55 出口段 60 燃料通道 61 入口段 63 過渡段 65 出口段 70 第二冷卻流體外套 71 入口 73 出口 80 第二氧化劑導管 81 入口 82 第二部位流動軸 83 第一部位 85 彎曲部位 87 第二部位 88 喷嘴入口 89 喷嘴出口 90 埠下氧化劑分級喷管 91 入口 95 安裝板 100 爐子 101 燃燒器 105 蓄熱器埠頸部 110 埠 115 埠開口 120 135 爐壁 爐子燃燒艙 125 蓄熱器 40Ani 1.0= ^/JO = 1 <ς. , γότλ • The CFD benification results confirm the strong influence on the velocity distribution. Figure 13 shows that when the area ratio, t, falls below a value of approximately 1.25, the velocity deviation of the 3 Xuan-Oxidant will increase sharply, as indicated by the slope of the rise in the curve. Although these results imply that the effect on combustion performance is small in this range, the collapse of the nozzle exit velocity profile at an area ratio below this threshold results in a very low exit velocity zone, which is very low. The taxi's velocity zone tends to be unstable and can cause separation or reverse motion. This will increase the risk of spoilage and obstruction of the nozzle and may result in more frequent maintenance and higher failure rates. For its part, the minimum acceptable area ratio I for the second oxidant nozzle of the present invention is 丨25. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a penetrating burner having an arbitrary sulphurizing agent grading nozzle. "Figure 2 shows a through-burner that is built into the neck of a regenerator of a furnace with a submerged oxidant grading nozzle. Figure 3 shows an enlarged schematic view of the discharge end of the first oxidant conduit and the fuel conduit. The oxidant is classified as the enlarged circle of the discharge end of the manifold. ' Figure 5 is a graph showing the normalized heat flux as a function of the distance from the nozzle of the 35 burner in the test furnace. Figure 6 shows the peak flame temperature. A graph of the results of the modeling as a function of the dimensionless nozzle length. Figure 7 is a graph showing the results of the modeling of the flame temperature as a function of the distance from the burner nozzle exit. Figure 8a is derived from the modeled results. Fig. 8b is a velocity contour map derived from the modeled results. The graph is a graph showing the results of the modeling of the flame length as a function of the dimensionless nozzle length. A graph showing the results of modeling as a function of temperature as a ratio of oxygen passage area ratio. Figure 12 is a graph showing the length of the flame as the distance from the exit of the burner nozzle. Figure 13 is a graph showing the results of the modeling of the second oxidant velocity deviation as a function of the area ratio of the second oxidant channel. · [Key element symbol description] Afi inlet section cross-sectional area Af〇 exit Section cross-sectional area Ai Inlet section cross-sectional area A 〇 Exit section cross-sectional area Ani inlet cross-sectional area Ano Exit cross-sectional area a Bend angle of the bend portion β F-angle of the bend portion D First cooling fluid jacket outer equivalent diameter W Nozzle outlet width 喷嘴 Nozzle outlet Height L First cooling fluid jacket length 1 Burner 10 First cooling fluid jacket 13 First cooling fluid jacket outlet 11 First cooling fluid jacket inlet 20 First oxidant conduit 39 201202630 21 For receiving oxidant gas into D 22 Second part flow axis 23 First part 25 Bending part 27 Second part 29 Second part exit. End 40 Fuel duct 41 Inlet for receiving fuel 42 Second part Flow axis 43 First part 45 Bending part 47 Second part 49 second portion outlet end 50 oxidant passage 51 inlet section 53 transition section 55 outlet section 60 Feed channel 61 inlet section 63 transition section 65 outlet section 70 second cooling fluid jacket 71 inlet 73 outlet 80 second oxidant conduit 81 inlet 82 second portion flow axis 83 first portion 85 curved portion 87 second portion 88 nozzle inlet 89 nozzle Outlet 90 埠 oxidizer grading nozzle 91 inlet 95 mounting plate 100 furnace 101 burner 105 regenerator 埠 neck 110 埠 115 埠 opening 120 135 furnace fireplace burning chamber 125 regenerator 40
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099122558A TWI416051B (en) | 2010-07-08 | 2010-07-08 | Through-port oxy-fuel burner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099122558A TWI416051B (en) | 2010-07-08 | 2010-07-08 | Through-port oxy-fuel burner |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201202630A true TW201202630A (en) | 2012-01-16 |
TWI416051B TWI416051B (en) | 2013-11-21 |
Family
ID=46756170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099122558A TWI416051B (en) | 2010-07-08 | 2010-07-08 | Through-port oxy-fuel burner |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI416051B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI776333B (en) * | 2019-12-31 | 2022-09-01 | 法國商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Burner for fuel combustion and combustion method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5147438A (en) * | 1991-09-18 | 1992-09-15 | Union Carbide Industrial Gases Technology Corporation | Auxiliary oxygen burners technique in glass melting cross-fired regenerative furnaces |
US5941459A (en) * | 1997-07-01 | 1999-08-24 | Texaco Inc | Fuel injector nozzle with protective refractory insert |
US7143610B2 (en) * | 2001-03-23 | 2006-12-05 | Vitro Global, S.A. | Method and system for feeding and burning a pulverized fuel in a glass melting furnace, and burner for use in the same |
CN100343575C (en) * | 2002-05-15 | 2007-10-17 | 普莱克斯技术有限公司 | Combustion with reduced carbon in the ash |
US6582218B1 (en) * | 2002-06-11 | 2003-06-24 | Air Products And Chemicals, Inc. | Self-cooling oxy-fuel through-port burner for protruding into glass furnace atmosphere |
JP4900762B2 (en) * | 2005-01-19 | 2012-03-21 | 信越化学工業株式会社 | Method for producing porous glass base material and deposition burner |
CN2800078Y (en) * | 2005-06-24 | 2006-07-26 | 北京航天动力研究所 | Vortex combined burner with flammable powder as fuel |
CN201233007Y (en) * | 2007-08-06 | 2009-05-06 | 国际壳牌研究有限公司 | Combustor |
-
2010
- 2010-07-08 TW TW099122558A patent/TWI416051B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI776333B (en) * | 2019-12-31 | 2022-09-01 | 法國商液態空氣喬治斯克勞帝方法研究開發股份有限公司 | Burner for fuel combustion and combustion method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI416051B (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105579776B (en) | With the premix fuel burner for having hole flame holder | |
US9221704B2 (en) | Through-port oxy-fuel burner | |
KR101289836B1 (en) | Immersed burner with regulated flame | |
CN102439363B (en) | Combustion system with precombustor for recycled flue gas | |
EP2329190B1 (en) | Method for generating combustion by means of a burner assembly | |
CN104903647A (en) | Fuel combustion system with a perforated reaction holder | |
JP5074421B2 (en) | System, apparatus and method for flameless combustion without catalyst or high temperature oxidant | |
JP2006105582A (en) | Oxidant injection method | |
TW201221863A (en) | Method for gasification and a gasifier | |
EP2659011B1 (en) | Method for melting a solid charge | |
JP2008151502A (en) | Staged combustion system with ignition-assisted fuel lance | |
TW200925521A (en) | Method, system and apparatus for firing control | |
RU2010104462A (en) | FURNACE AND OXYGEN-BURNING METHOD FOR MELTING GLASS-FORMING MATERIALS | |
TW200914772A (en) | Heater and method of operation | |
JP5449544B2 (en) | Through-port oxy-fuel burner | |
KR20100098632A (en) | Flameless thermal oxidation apparatus and methods | |
EP3152490B1 (en) | Non-symmetrical low nox burner apparatus and method | |
US20100009301A1 (en) | Staged Oxyfuel Combustion Method Using Pre-Heated Reagents | |
TW201202630A (en) | Through-port oxy-fuel burner | |
US20150132703A1 (en) | Double venturi burner | |
US7249946B2 (en) | Thermal generator and combustion method for limiting nitrogen oxides emissions by re-combustion of fumes | |
US20150128647A1 (en) | Glass furnace forehearth heating | |
RU2482390C2 (en) | Method for solid fuel burning and device for its realisation | |
CN102472587B (en) | Method for processing oxidizable materials | |
JP2011021236A (en) | Method of reforming exhaust gas generated from metallurgical furnace |