TW201201035A - Two-dimensional hydraulic sediment transport simulation calculation method and computer program product - Google Patents

Two-dimensional hydraulic sediment transport simulation calculation method and computer program product Download PDF

Info

Publication number
TW201201035A
TW201201035A TW99120613A TW99120613A TW201201035A TW 201201035 A TW201201035 A TW 201201035A TW 99120613 A TW99120613 A TW 99120613A TW 99120613 A TW99120613 A TW 99120613A TW 201201035 A TW201201035 A TW 201201035A
Authority
TW
Taiwan
Prior art keywords
flux
simulation
numerical
calculation
dimensional
Prior art date
Application number
TW99120613A
Other languages
Chinese (zh)
Inventor
Wen-Da Guo
jin-song Lai
Guo-Feng Lin
Yi-Ji Tan
wen-yi Zhang
Long-Zheng Lin
He-Zheng Lian
Xiang-Kuan Zhang
Jian-Wei Liu
Original Assignee
jin-song Lai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by jin-song Lai filed Critical jin-song Lai
Priority to TW99120613A priority Critical patent/TW201201035A/en
Publication of TW201201035A publication Critical patent/TW201201035A/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A two-dimensional hydraulic sediment transport simulation calculation method adopts finite volume method to perform numerical discreteness of a governing equation, which is applied to the unstructured grid to allow hydraulic simulation calculation of irregular river boundary and hydraulic structure in the river. Using finite-volume multi-stage schemes (abbreviated as FMUSTA) for the numerical flux estimation can inhibit numerical oscillation and increase the stability of numerical calculation, and can perform hydraulic simulation of sub/supercritical flow conditions. Using explicit time integration method can perform hydraulic simulation of fixed/variable flow. Using surface gradient method for the treatment of bed slope source term allows dry/wet hydraulic simulation under irregular landform. The FMUSTA calculates inviscid numerical flux to have the relative error reduced, and operation time of the processor is substantially shortened. All in all, it completes simulating two-dimensional hydraulic calculation in the most efficient way, and further simulates the phenomena of sediment transport.

Description

201201035 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種數值模擬演算方法,特別是指一 種二維水理與輸砂之模擬演算方法。 【先前技術】 河川河口等淺水(指深寬比小者)環境之水理現象的研究 ,對於國土保護及污染防治深具重要性。水理現象即指水 體當中水的流速與水位等變化現象,一般可利用一維模式 Φ 、二維模式或三維模式進行模擬。針對深寬比很小的沖積 性河川,其深度方向變化遠小於橫向變化,可採用水平二 維模式進行模擬。 近年來,於有限體積法(finite volume method,簡稱 FVM)之數值離散架構下,利用計算空氣動力學中之特徵逆 風守恆算則,已有許多成功的應用案例使用於明渠水力學 中水平二維流場之數值模擬。特徵逆風守恆算則係將傳統 之流速逆風改成按特徵逆風引入適當性耗散,根據解的無 φ 振盪要求,自動調整耗散強度,以便在計算不連續解時, 既可防止數值非物理性的振盪又可提高精度。這些案例例 如 Zhao 等 1996 年在” Journal of Hydraulic Engineering”期 刊發表的 “Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling”,當中採用近似黎曼解子 (approximate Riemann solver),包括:Osher、Roe 與 FVS(flux vector splitting)三種算則,以求解二維淺水波方程 式;Brufau 與 Garcia-Navarro 於 2000 年在 International 201201035201201035 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a numerical simulation calculation method, and in particular to a two-dimensional simulation method for water treatment and sand transport. [Prior Art] The study of the watery phenomena of the shallow water (referred to as the aspect ratio) in the river estuary is of great importance for the protection of land and pollution. The water phenomenon refers to the change of the water flow rate and the water level in the water. It can be simulated in the one-dimensional mode Φ, two-dimensional mode or three-dimensional mode. For alluvial rivers with a small aspect ratio, the depth direction changes much less than the lateral variation, and can be simulated in horizontal two-dimensional mode. In recent years, under the numerical discrete structure of the finite volume method (FVM), using the characteristics of the aerodynamics in the anti-wind conservation calculation, many successful application cases have been used in the open channel hydraulics. Numerical simulation of the flow field. The characteristic upwind conservation algorithm changes the traditional flow rate upwind into appropriate dissipative according to the characteristic upwind, and automatically adjusts the dissipative intensity according to the φ-free oscillation requirement of the solution, so as to prevent the numerical non-physical when calculating the discontinuous solution. Sexual oscillations can increase accuracy. These cases include, for example, "Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling" published by Zhao et al. in the Journal of Hydraulic Engineering in 1996, using approximate Riemann solvers, including: Osher, Roe, and FVS (flux vector splitting) three kinds of calculations to solve the two-dimensional shallow water wave equation; Brufau and Garcia-Navarro in 2000 at International 201201035

Journal for Numerical Methods in Fluids 期刊發表的”2-dimensional dam break flow simulation ”,以 Roe 算則為基 礎,採用坡度限制方法(slope-limiter approach)進行二維潰 壩試驗之模擬應用;Macchione與Morelli於2003年在 Journal of Hydraulic Engineering 中發表的’’Practical aspects in comparing shock-capturing schemes for dambreak problems”比較與探討許多不同之一階與二階算則之精度差 異,結果顯示,對於具有不規則底床坡度以及底床阻力之 淺水流場模擬時,一階與二階算則之精度差異不大;Wang 等在 2003 年 “ 2-dimensional free surface flow in branch channels by a finite-volume TVD scheme”一文中採用通量限 制方法(flux-limiter approach),運用Roe算則模擬二維潰壩 水流經過分支渠道之問題。 本案申請人Lai團隊曰前發展出逆風通量分裂式有限體 積算則(upstream flux-splitting finite volume scheme,簡稱 UFF),進行二維淺水流場之數值模擬,並將模擬結果與 Osher、Roe以及HLL算則進行探討與比較,結果顯示UFF 算則之數值精度與數值效能,均略優於其它三者。 由文獻回顧中可發現,特徵逆風守恆算則配合有限體 積法皆能成功地應用於求解淺水波方程式,並且對於具有 不連續水流現象之震波(shock wave)極具解析能力,且不會 產生非物理性之數值震盪現象。 然而,這些算則大都針對具有規則定底床坡度下之淺 水流場模擬。對於具有不規則且複雜地形下之淺水流場模 201201035 擬時必須對源項特別處理,方可避免由於通量梯度與源 項之不守恆所帶來之誤差。 本案申請人Lai團隊在2005年12月出刊的台灣水利第 53卷第4期「逆風通量分裂式有限體積算則於基隆河圓山 段之水流模擬」—文中,是卩卿算則為基礎,採用水面 坡降法(SUrface gfadient method,簡稱SGM)進一步進行源 項之數值處理,其首先时限體積法it行控财程式之離 ^化,得到有限體積之運算方程式;接著,將求解數值通 畺之問《I轉換成元素與元素交界面上垂直方向的一維黎 曼問題來處理’並進行數值通量之估算;辅以採用讀方 法進行底床源項之處理,將控制方程&中原本慣用之水深 資料建構,改採用水位來處理,成功改善逆風通量分裂式 有限體積算則之源項處理能力。 【發明内容】 因此本發明之目的,即在提供一種採用有限體積多 步階算則(Finite-Volume Multi-Stage Schemes,簡稱 FMUSTA)進行數值通量估算的二維水理輸砂模擬演算方法 ,FMUSTA算則可更降低相對誤差,且計算效率更高。 本發明之另一目標在於提供一種電腦程式產品,内儲 二維水理輸砂模擬演算之系統程式,當電腦載入該程式並 執行後,可完成本發明二維水理輸砂模擬演算方法。 於是,本發明二維水理輸砂模擬演算方法,利用一電 子裝置的處理器讀取程式碼而執行,包含以下步驟: (a)計算相鄰元素介面之一階對流數值通量,其中應 201201035 Z FMUSTA算則,先將用來估算相鄰元素垂直邊界之非黏 性通量的局部-維黎曼式轉換為局部座標系統,並將演算 :為㈣與校正兩部分,預測部分先獲得通過元素介面二 分之-的左元素初始向量、右元素初始向量作為預測通量 再配口寸恆公式估算下一時刻的元素介面二分之—的左 元素物理向量、右元素物理向量作為校正通量’即為該-階對流數值通量; (b )將相鄰元素介面一階對流數值通量擴展為二階精 度; (c)計算相鄰元素介面之擴散數值通量; (d )進行元素中心的源項計算; (e )求解出元素中心的水深、流速以及泥砂懸浮質濃 度; (f)利用一河床載沈滓輸送公式計算泥砂河床載; (g )求解底床高程;及 (h)輸出模擬結果。 較佳地,該步驟(a )是使用局部拉克斯弗里特列赫 (local Lax-Fdeddchs)數值通量函數式以獲得通過元素介面 二分之一的預測通量。 較佳地’該步驟(a)包括以下子步驟: (al )藉由局部座標系統下的水深與流速,獲得一重力 波波速之初始最大值; (a2 )藉由局部座標系統下的物理向量與通量,以及步 驟(al)求出的重力波波速初始最大值,搭配一可蘭數值穩 201201035 定條件係數,求解通過元素介面的預測通量; 、(a3)藉由守恆公式以及該步驟(〇求出的預測通量 ’求解下一時刻的物理向量; U4)利用該下一時刻的物理向量,獲得一重力波波速 之最大值;及 (a5 )藉由該步驟(a3 )求出的下一時刻物理向量以及 步驟U4)求出的重力波波速最大值,獲得該校正通量。 較佳地,本發明還包含步驟(a)之前的前置處理步驟 φ ,包含接收地形資料、生成模擬演算範圍内的計算網格, 及接收模擬演算所需的相關設定,包括以下至少一:曼寧 阻力係數、模擬演算時間或次數、數值模擬時距、乾溼處 理參數、泥砂懸浮質擴散相關參數、紊流運動黏滯係數、 四種不同河床載沈滓輸送公式之選項、流量、水位以及流 速之初始條件及邊界條件。 較佳地,該前置處理步驟所接收的相關設定還包括接 收水流與泥砂之入流與出流條件,且步驟(e )還求解出泥 φ 砂懸浮質濃度。 較佳地,本發明還包含一在步驟(h)之前或之後進行 的步驟(i),將模擬結果與額外進行調查所獲得的實測資料 進行比較,若吻合則結束,若不吻合,則重新接收模擬演 算所需的相關設定。 本發明之功效由上述所呈現之數值通量函數式可發現 ,相較於常被使用之Roe算則,FMUSTA算則精確度更高 ,且算術運算子、關係運算子、運算元及運算式皆少於R〇e 201201035 算則,可節省許多計算時間。因此,於撰寫計算程式方面 ,也相當簡單,故值得推廣。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 本發明二維水理輸砂模擬演算方法之較佳實施例是以 一套系統程式實現’使用C++語法開發,使用的開發技術 包含有視窗程式設計(Windows Programming)與電腦圖學 (Computer Graphics )以及電腦輔助幾何設計(computer Aided Geometry Design)等,並且整合水理模擬程式來當作 模擬核心。該系統程式可預先紀錄於一電腦程式產品,當 一電子裝置的處理器讀取程式碼並執行,可完成本發明二 維水理輸砂模擬演算方法。 參閱圖1,本實施例之二維水理輸砂模擬演算方法包含 以下步驟: 步驟S11—接收資料。本系統可匯入真實地形高程資料 例如航照圖等地形高程資料,以在後續步驟中製作計算 網格,結合水理輸砂模擬演算程式來完成數值模擬的工作 〇 步驟S12—生成模擬演算範圍内的計算網格。本系統主 去依據匯入之資料生成網格,並提供二維幾何設計功能, *中包括各種模式切換,以讓使用者在系統中做到點、線 等的新增、選取、編輯屬性與刪除等動作。本系統 201201035 還提供針對結構化網格做平滑化處理之功能,系統接收使 用者輸入的平滑化處理指令、接收使用者設定的平滑化處 理之疊代次數以及平滑化參數,接著便對被選取的所有結 構化網格區塊重新產生平滑化之内部網格資料,並進行平 滑化處理。 此外,本系統還提供計算網格外圍邊界與網格元素之 選取功能,及、網格重新細緻化重製功能。#關網格重新細 緻化重製,例如欲針對橋墩沖刷狀況做更精細的模擬分析 Φ 可選取橋壞附近區域的計算網格元素以相連關係做分類 ,劃分出數個網格元素分割區,然後對每個網格元素分割 區做細緻化設定,其設定方式詳述如下(針對每個網格元 素分割區): 接收使用者在分割區域内決定的一個新控制點的 指令、決定一條特徵線段(至少需要2個控制點)的指令 ,接下來對該線段做均勻布點動作,產生細緻化特徵點, 如此一條特徵線段之設定便完成。 • 二、詢問是否要繼續決定額外的細緻化特徵線,若使 用者選擇繼續’便繼續讓使用者決定新的特徵線段,若使 用者選擇不繼續,便結束此分割區域的特徵線段設定,並 繼續對下一個分割區域做細緻化設定。當所有網格元素分 割區之細緻化設定都完成後,系統便開始對每各分割區做 内部網格重製作業,並將重製結果如圖2所示以預覽的方 式顯示給使用者,詢問使用者是否接受此網格重製的結果 ’若同意則將計算網格空間置換為新的重製後網格結果; 201201035 若不同意,則恢復原始的計算網格空間資料。 步驟S13 —接收模擬演算所需要的相關設定,包括曼寧 阻力係數、模擬演算時間或次數、數值模擬時距、乾溼處 理參數、泥砂懸浮質擴散相關參數、紊流運動黏滯係數、 四種不同河床載沈滓輸送公式之選項,以水理模擬來說, 本步驟應接收流量、水位以及流速之初始條件及邊界條件 •’以輸砂模擬來說’本步驟應接收水流與泥砂之入流與出 流條件。換言之,若此步驟輸入水理條件及泥砂的入流/出 流條件,最後就可以得到水理及輸砂模擬結果;若只輸入 水理條件’最後只得到水理模擬結果;若同時輸入水理條 件及泥砂入流/出流條件,最後得到水理及輸砂模擬結果。 當網格完成且條件設定完畢’接下來則執行圖3所示 之模擬演算流程。 在說明實際演算流程之前,以下先簡要說明本發明的 理論推導部分》本發明使用有限體積法進行控制方程式之 數值離散;首先,為求解河川淺水中泥砂懸浮質傳輸之水 理現象,結合二維淺水波方程式及泥砂懸浮質傳輸方程式 ,並寫成以下之向量守恆型式: (式1) + j.9 c〇nv - ^Fdiff BG diff 七 dx ~dy~ 其中, 10 201201035The "2-dimensional dam break flow simulation" published in the journal Journal for Numerical Methods in Fluids, based on the Roe algorithm, uses the slope-limiter approach for the simulation application of the two-dimensional dam test; Macchione and Morelli The ''Practical aspects in comparing shock-capturing schemes for dambreak problems' published in the Journal of Hydraulic Engineering in 2003 compared and explored the difference in precision between many different first-order and second-order algorithms. The results show that for irregular bed slopes And the accuracy of the first-order and second-order calculations is not much different when the shallow-water flow field simulation of the bed resistance is used; Wang et al. used the "2-dimensional free surface flow in branch channels by a finite-volume TVD scheme" in 2003. The flux-limiter approach uses the Roe algorithm to simulate the problem of two-dimensional dam flow passing through the branch channel. The applicant Lai team developed the upwind flux-splitting finite (upstream flux-splitting finite) Volume scheme, referred to as UFF), for two-dimensional shallow water Numerical simulation of the field, and the simulation results are compared and compared with Osher, Roe and HLL calculations. The results show that the numerical precision and numerical performance of the UFF algorithm are slightly better than the other three. The anti-wind conservation algorithm can be successfully applied to solve the shallow water wave equation with the finite volume method, and it has great analytical ability for the shock wave with discontinuous water flow phenomenon, and does not produce non-physical numerical oscillation phenomenon. Most of these calculations are for the simulation of shallow water flow field with regular bed bottom slope. For shallow water flow field model 201201035 with irregular and complex terrain, the source term must be specially treated to avoid flux gradient and The error caused by the non-conservation of the source item. The applicant's Lai team published in December 2005, Taiwan Water Conservancy, Volume 53, No. 4, "The anti-wind flux splitting finite volume algorithm is in the water flow of the Keelung River round mountain section. Simulation"—in the text, based on the Qi Qing calculation, the value of the source term is further extended by the SURface gfadient method (SGM). First, the time-limited volume method is used to control the financial program, and the finite volume equation is obtained. Then, the numerical problem is solved. The I-transformation is a one-dimensional Riemann problem in the vertical direction of the interface between elements and elements. To deal with 'and estimate the numerical flux; supplemented by the use of reading method for the bed source item processing, the water depth data originally used in the control equation & the original water depth data construction, changed to use water level to deal with, successfully improve the upwind flux split type Source processing capability for finite volume calculations. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a two-dimensional water transport simulation simulation method for numerical flux estimation using Finite Volume-Volume Multi-Stage Schemes (FMUSTA). The FMUSTA algorithm can reduce the relative error and the calculation efficiency is higher. Another object of the present invention is to provide a computer program product, a system program for storing a two-dimensional water sand transport simulation calculation, and when the computer is loaded into the program and executed, the two-dimensional water transport sand simulation calculation method of the present invention can be completed. . Therefore, the two-dimensional hydraulic sand transport simulation calculation method of the present invention is executed by using a processor of an electronic device to read the code, and comprises the following steps: (a) calculating a first-order convection numerical flux of the adjacent element interface, wherein 201201035 Z FMUSTA algorithm, first converts the local-Villemanian equation used to estimate the non-viscous flux of the vertical boundary of adjacent elements into a local coordinate system, and calculates the two parts: (4) and the correction part. The left element physical vector and the right element physical vector are used as the correction flux by the left element initial vector of the element interface and the right element initial vector as the predictive flux re-matching constant formula to estimate the element interface of the next moment. 'is the numerical fluence of the convection; (b) expands the first-order convection numerical flux of the adjacent element interface to the second-order precision; (c) calculates the diffusion numerical flux of the adjacent element interface; (d) performs the element center (e) Solving the water depth, flow velocity, and sediment concentration of the sediment in the center of the element; (f) Calculating the silt bed load using a riverbed sediment transport formula; (g) Solving the bed Cheng; and (h) outputting the simulation results. Preferably, step (a) is to use a local Lax-Fdeddchs numerical flux function to obtain a predicted flux through one-half of the element interface. Preferably, the step (a) comprises the following substeps: (al) obtaining an initial maximum value of the gravity wave velocity by the water depth and the flow velocity under the local coordinate system; (a2) the physical vector by the local coordinate system And the flux, and the initial maximum value of the gravity wave velocity obtained by the step (al), with a Koran numerical stability 201201035 conditional coefficient, to solve the predicted flux through the element interface; (a3) by the conservation formula and the step (〇The predicted flux is calculated to solve the physical vector at the next moment; U4) using the physical vector at the next moment to obtain the maximum value of the gravity wave velocity; and (a5) is obtained by the step (a3) The next time physical vector and the maximum value of the gravity wave velocity obtained in step U4) are obtained. Preferably, the present invention further includes a pre-processing step φ before step (a), including receiving terrain data, generating a calculation grid within the simulation calculation range, and receiving relevant settings required for the simulation calculation, including at least one of the following: Manning drag coefficient, simulation calculus time or number, numerical simulation time interval, dry and wet processing parameters, sediment-diffusion diffusion related parameters, turbulent motion viscous coefficient, options for four different riverbed sedimentation transport formulas, flow rate, water level And the initial conditions and boundary conditions of the flow rate. Preferably, the relevant settings received by the pre-processing step further comprise receiving inflow and outflow conditions of the water flow and the mud sand, and step (e) also solving the sludge mass concentration of the mud φ sand. Preferably, the present invention further comprises a step (i) performed before or after the step (h), comparing the simulation result with the actual measured data obtained by the additional investigation, and if the coincidence is completed, if not, the Receive the relevant settings required for the simulation calculation. The efficacy of the present invention can be found from the numerical flux function presented above, and the FMUSTA algorithm is more accurate than the Roe algorithm that is often used, and the arithmetic operators, relational operators, operands, and expressions are more accurate. All are less than R〇e 201201035, which saves a lot of calculation time. Therefore, it is quite simple to write a calculation program, so it is worth promoting. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The preferred embodiment of the two-dimensional hydraulic sand transport simulation calculation method of the present invention is implemented by a system program using 'C++ syntax, and the development technology used includes Windows Programming and Computer Graphics. And computer Aided Geometry Design, etc., and integrate the hydraulic simulation program as the simulation core. The system program can be pre-recorded in a computer program product. When the processor of an electronic device reads the code and executes it, the two-dimensional water transport sand simulation calculation method of the present invention can be completed. Referring to Fig. 1, the two-dimensional hydraulic sand transport simulation calculation method of the embodiment comprises the following steps: Step S11 - receiving data. The system can import real terrain elevation data such as aerial photographs and other terrain elevation data to make a calculation grid in the subsequent steps, and combine the hydrological sand transport simulation calculation program to complete the numerical simulation work. Step S12—Generate the simulation calculation range The calculation grid inside. The system mainly generates grid according to the imported data, and provides two-dimensional geometric design function, * includes various mode switching, so that the user can add, select, edit attributes and points of points, lines, etc. in the system. Delete and other actions. The system 2010201035 also provides a function for smoothing the structured grid. The system receives the smoothing processing instruction input by the user, receives the iteration number set by the user and smoothing the parameter, and then selects the smoothing parameter. All structured grid blocks regenerate smoothed internal mesh data and smooth it. In addition, the system also provides the function of selecting the peripheral boundary of the grid and the selection of the grid elements, and the re-refinement of the grid. #关网 re-refinement re-creation, for example, to make a more detailed simulation analysis for the scouring condition of the pier Φ. The calculation grid elements in the vicinity of the bridge can be selected to be classified by the connection relationship, and several grid element divisions are divided. Then, each mesh element partition is set in detail, and the setting method is as follows (for each grid element partition): receiving a command of a new control point determined by the user in the divided area, determining a feature The instruction of the line segment (at least 2 control points is required), and then the line segment is uniformly distributed to generate detailed feature points, and the setting of such a feature line segment is completed. • 2. Ask if you want to continue to decide on additional detailed feature lines. If the user chooses to continue, the user will continue to let the user decide the new feature line segment. If the user chooses not to continue, the feature line segment setting of the segmentation area ends. Continue to make detailed settings for the next segmentation area. When the detailed settings of all the grid element partitions are completed, the system starts the internal mesh re-creation operation for each partition, and displays the re-made results as a preview to the user as shown in FIG. Ask the user whether to accept the result of this grid re-creation. If you agree, replace the calculated grid space with the new reworked grid result; 201201035 If you do not agree, restore the original calculated grid space data. Step S13—Receiving relevant settings required for simulation calculation, including Manning resistance coefficient, simulation calculation time or number of times, numerical simulation time interval, dry and wet processing parameters, sediment-diffusion diffusion related parameters, turbulent motion viscosity coefficient, and four types The choice of different riverbed sediment transport formulas, in the case of hydraulic simulation, this step should receive the initial conditions and boundary conditions of flow, water level and flow rate. • 'In the case of sand transport simulation', this step should receive the inflow of water and mud sand. With outflow conditions. In other words, if the water conditions and the inflow/outflow conditions of the silt are input in this step, the water and sand transport simulation results can be obtained at the end; if only the water conditions are input, only the hydrological simulation results are obtained; Conditions and mud sand inflow/outflow conditions, and finally the results of water and sand transport simulation. When the grid is completed and the conditions are set, the simulation flow shown in Figure 3 is executed. Before explaining the actual calculation flow, the following is a brief description of the theoretical derivation part of the present invention. The present invention uses the finite volume method to perform numerical dispersion of the control equation. First, in order to solve the hydrological phenomenon of sediment transport in the shallow water of the river, combined with two-dimensional The shallow water wave equation and the silt suspension mass transfer equation are written as the following vector conservation type: (Formula 1) + j.9 c〇nv - ^Fdiff BG diff Seven dx ~dy~ where, 10 201201035

•/Γ hu " Q- hu ;F = hu2+〇.5gh2 hv Iconv huv hC _ huC G conv hv Ί huv 如2+0.5政•/Γ hu " Q- hu ;F = hu2+〇.5gh2 hv Iconv huv hC _ huC G conv hv Ί huv as 2+0.5 zhen

hvC ' 0 ' ' 0 ' P Ά ' G<Mff = P hT. P • 1 υχ^ψ j^d(hQ ;s= 8h{S(>y~sfy) -%~qsd 0hvC ' 0 ' ' 0 ' P Ά ' G<Mff = P hT. P • 1 υχ^ψ j^d(hQ ;s= 8h{S(>y~sfy) -%~qsd 0

、中 Q為守值物理向量;f ,g八b丨 之對流(_性)通量向量;‘,^分別^別為^方向 (黏性)通量向量;s為源項,1包含擴散 :懸-载源…水深;…分別為…方向之水深平均 '•速為重力加速度;〜=_</如,\=_3〜/办與L,〜分 別為名X’ 3;方向之底床坡度與摩擦坡度;4為底床高程; I、&與&為水平紊流應力;p為流體密度;匚為水深平均 泥砂懸浮質濃度;A及A為擴散係數;‘為底床亂流剪力作 用產生河床質向上之通量;“為懸浮質向下沉降至河床面 之通量。摩擦坡度可表示如下: (式2) S{x=^^u2+f_ . ^ = v《annV“2 +v2 式中,為曼寧粗輪係數。另外,根據Boussinesq之 11 201201035 渴流黏滯概念’可將资流應力寫成分子黏滯項的形式,則Γ 、^與L表示如下: λ, Q is the prune physics vector; f, g 八 丨 convection (_ sex) flux vector; ', ^ respectively ^ is the ^ direction (viscous) flux vector; s is the source term, 1 contains the diffusion : Suspension - load source ... water depth; ... respectively for the direction of the water depth average '• speed for gravity acceleration; ~=_</such as, \=_3 ~ / do and L, ~ respectively named X' 3; the bottom of the direction Bed slope and friction gradient; 4 is bed height; I, && is horizontal turbulent stress; p is fluid density; 匚 is water depth average silt suspension concentration; A and A are diffusion coefficients; The turbulent shear force produces the flux of the riverbed upwards; "the flux that sinks down to the bed surface for the suspended matter. The friction gradient can be expressed as follows: (Formula 2) S{x=^^u2+f_ . ^ = v In the "annV" 2 + v2 formula, it is the Manning coarse wheel coefficient. In addition, according to Boussinesq's 11 201201035 thirst viscous concept, the flow stress can be written in the form of a component viscous term, then Γ , ^ and L are expressed as follows: λ

B(hu) η/. λ/.-,Τ-ν: ?-~ί~ ^(hv). ~βΓ]'B(hu) η/. λ/.-,Τ-ν: ?-~ί~ ^(hv). ~βΓ]'

(式3) 式中’ Α為㈣運動黏滯係數,可以經驗公式^"㈣估算之 ;其中’ —_係數,採用〇.4…為剪 力速度;Tbx=PghSfiM τ分別為χ”方向之底床剪應力。 擴散係數,可以公戎n _ n „ . ^ A式估异之,其中的σ為紊流(Formula 3) where ' is (4) the viscous coefficient of motion, which can be estimated by the empirical formula ^"(4); where '-_ coefficient, using 〇.4... is the shear velocity; Tbx=PghSfiM τ is χ" Bottom bed shear stress. Diffusion coefficient, can be public 戎 n _ n „ . ^ A type of estimation, where σ is turbulent

Prandtl-Schmidt係數,需控制在〇 5至j 〇之間。 接著,使用元素中心式之有限體積法,進行控制方程 式之數值離散化。假設物理向量Q之各變量即為控制體面 積幾何中心點(形心)之各物理變量。對模擬演算域内之任一 控制體Ω,進行控制方程式積分,並使用散度定理將物理通 量的面積分化為沿其周邊界之線積分:The Prandtl-Schmidt coefficient needs to be controlled between 〇 5 and j 〇. Next, the numerical dispersion of the governing equation is performed using the finite volume method of the element center type. It is assumed that each variable of the physical vector Q is a physical variable that controls the geometric center point (centroid) of the volume area. For any control body Ω in the simulation calculus domain, the control equation is integrated, and the divergence theorem is used to differentiate the area of the physical flux into a line integral along its perimeter boundary:

3Q dt dW +3Q dt dW +

ilSdw (式4)ilSdw (style 4)

式中,dW為控制體面積之微變量· E - (F,G) - (Fe(jnv - ,GeDnv - Gjjjf )為文,^> 平面之通量向量;扣為於 制體Ω之周邊界;π為垂直於邊界3Q向外為正之單位向量. dZ為控制體邊長之微變量。根據元素中心式之變量假設, 12 201201035 以及控制方程式之旋轉不變性,式4玎進一步離散為有限 體積之基本運算代數方程式: ^ + TEWF(Q)Lffl= S (式 5) 式中’ A為控制體之面積;Μ為控制體之周邊界總數; L為控制體第w邊之長度;0為向量η與X軸之夾角(從X 軸以逆時鐘方向算起);代表於X ’ ^座 ^系統中的物理向量Q通過座標旋轉變換得到於r,y新座 才7K系統下之轉換物理向量Q,其中新座標系統即為垂直邊界 ^座^票系統’代表速度分量分別為垂直和平行邊界方向; 為原項的積分型式;M^wcose+vsine和v》=vcos(9-Msin0分別為新座 取尔、、死下Γ,歹方向之流速;F沿) = Fe()nv(⑦-F础柯)為轉置後之 垂直邊界通量;Τ⑹和τπγ分別為轉置矩陣與逆轉置矩陣’ 疋義如下: '1 0 0 0' 'l 0 0 0— Τ(6>) = 0 COS0 sin0 0 0 COS0 -sin0 0 0 ~sin0 cos^ 0 ,i (β)- 0 sin0 COS0 0 _0 0 0 1 0 0 0 1 (式6) 式5 號左邊第 中,等號左邊第一項代表尚未離散之時間項,等 二項代表空間離散項’等號右邊代表非齊次源項 13 201201035 。本實施例在後續步驟S6採用預測與校正Muscx (monotonic upstream schemes for conservation laws)方法,长 解式5,獲得空間與時間均為二階精度之算則: , wr喝-是名聊心(_+畔(式7a) A·,; Στ(0)"^ν(〇)^+Σ WFdiff (Q)r+s _m=l m=t n+1/2 (式 7b) 式中,和y·分別表示λ,y方向之離散化空間指標; a,,為元素α ))之面積;ql代表第《時刻元素0·,乃之物理向 量。式7說明:首先將在;c,y座標系統下之物理向量q經 轉置矩陣變為在新座標系統下之物理向量$,利用^計算 F(G);接著乘上元素邊長與逆轉置矩陣變為原座標系統下之 垂直通量,並將元素各邊之垂直通量總和,再加上源項處 理’可得到最後之數值解。 式7中的空間離散項,包含對流數值通量(夺)與擴 散數值通量Fditf (5),在步驟S2中,即進行相鄰元素介面之 階對流數值通量之估算’包含圖4所示的子步驟S21§25 至於擴散數值通量方面’採用常用之中央差分求解, 將在步驟S4中進行。通過元素介面之Fdiff (G)為: 14 201201035Where dW is the microvariable of the control body area · E - (F, G) - (Fe(jnv - , GeDnv - Gjjjf ) is the flux vector of the text, ^>plane; the buckle is around the body Ω π is a unit vector that is positive to the outside of the boundary 3Q. dZ is the microvariable of the length of the control body. According to the assumption of the variable of the element center, 12 201201035 and the rotation invariance of the governing equation, the equation 4玎 is further discretized into a finite volume. The basic algebraic equation of operation: ^ + TEWF(Q)Lffl= S (Formula 5) where 'A is the area of the control body; Μ is the total number of perimeter boundaries of the control body; L is the length of the wth side of the control body; The angle between the vector η and the X axis (calculated from the X axis in the counterclockwise direction); the physical vector Q in the X '^^^ system is transformed by the coordinate rotation to obtain the conversion physics vector under the 7K system in the new block of r, y Q, where the new coordinate system is the vertical boundary ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The new seat is taken, the dead squat, the flow velocity in the 歹 direction; F along) = Fe()nv(7-F For the vertical boundary flux after transposition; Τ(6) and τπγ are the transposed matrix and the inverse transposed matrix respectively 疋 as follows: '1 0 0 0' 'l 0 0 0 — Τ(6>) = 0 COS0 sin0 0 0 COS0 -sin0 0 0 ~sin0 cos^ 0 ,i (β)- 0 sin0 COS0 0 _0 0 0 1 0 0 0 1 (Formula 6) On the left side of Equation 5, the first term on the left side of the equal sign represents the time that has not been separated. Item, etc. The two terms represent the spatial discrete term 'the right side of the equal sign represents the non-homogeneous source term 13 201201035. This embodiment uses the method of predicting and correcting the Muscx (monotonic upstream schemes for conservation laws) in the subsequent step S6, and obtains the long solution The space and time are the second-order precision calculations: , wr drink - is the name of the heart (_ + side (style 7a) A ·,; Σ τ (0) " ^ ν (〇) ^ + Σ WFdiff (Q) r +s _m=lm=t n+1/2 (Equation 7b) where y· represents the discretized spatial index of the λ, y direction, respectively; a, is the area of the element α)); ql represents the moment The element 0·, is the physical vector. Equation 7: First, the physical vector q under the ;c,y coordinate system is transformed into the physical vector $ under the new coordinate system via the transposed matrix, and F(G) is calculated by ^; then the element length and reversal are multiplied. The matrix is changed to the vertical flux under the original coordinate system, and the sum of the vertical fluxes of the sides of the element, plus the source term processing, gives the final numerical solution. The spatial discrete term in Equation 7 includes the convective numerical flux (strand) and the diffusion numerical flux Fditf (5). In step S2, the estimation of the order convection numerical flux of the adjacent element interface is included. Sub-step S21 § 25 is shown as for the diffusion numerical flux aspect 'using the commonly used central difference solution, which will be performed in step S4. The Fdiff (G) through the element interface is: 14 201201035

Fdi«(Q) = 2/4 0 3(/zWj)Fdi«(Q) = 2/4 0 3(/zWj)

9(¾ & dp M 〇R D ^(hQ • X~W (式8) 為 其中’速度與泥砂懸浮質濃度之梯度導數項可表示 (式9) (式 10) jOO _[(^),>ιι7· ~ ](y,.,.|/2,j+l ~ ^,+1/2.7-1) ~[(·),-.-1/2,j+i ~ ~p, ί( ^+1./ ~ (*)|,;](-^|+1/2./+1 -文丨+丨…-丨)- [(·),+丨/2,j+l - (·)ι·+ι/2,)-丨](又Hl.j -',) (^•+1,;· - yij)(xMi2,j+\~^i+mj-i)-(yMi2j+i - yi+in,j-i)^Mj~^i.j) 式中’括號内的物理量•可為;1Μί、/jVy或是。 回到步驟S2 ,在對流數值通量uu)之估算方面,由於 在計算域中的每一個元素之物理向量值都可能有不一樣的 值,因此可能造成在元素與元素間之交界面時並不連續。 由於此不連續,在估算各元素之邊界上非黏性通量時,可 將此問通轉換成元素與元素交界面上垂直方向的局部一維 黎曼問題來處理: M」列U] 93c < ο > ο (式 11) 式中χ為原點在元素某—邊界之中點且垂直向外為正之 座標軸(如圖5所示);F_(夺)為一從i軸原點垂直向外之通 量,稱為=非黏性通量向量。式11之初始條件定義為: 在无<〇時f寺心仏,其中屯和仏分別為在元 素與兀素交界面LR之左邊與右邊之物理向量,左邊元素為 正在計算之元素,右邊元素則為相鄰之元素。某—變量(純 15 201201035 量或是向量)其下標L、及即可代表該左邊元素L和右邊元 素及之變#值。假設$在? = G時為已知值,因此解初始值 之黎曼問題’即可求在r=0+時垂直邊界之非黏性通量。 本發明之特徵在於應用FMUSTA算則(Finite volume multi-stage scheme)於(式11),將其轉換為以下的局部座標 系統’―而本實施例的步驟S21即計算以下的(式12 S+&wS)i dt dd :〇, Q(rf,〇) = 〇T = QL d<0 [q:0) = qr J>0 (式 12) 式中7為相對於X之空間變數;Γ代表相對於£的時間 變數,變數下標〇與i分別代表相對於元素L與R :㈤及 Q,則分別為元素介面1/2的左元素〇與右元素i的初始向 量’如圖6所示。 演算分為預測與校正兩部分。本實施例步驟S21及SU 即執打預測部分,其使用lGeal Lax Fdeddehs數值通量函數 式以獲得通過元素介面1/2的預測通量: (式13) 式中’ CFL為可蘭數值穩定條件係數(c〇urant_ Friedrichs-Lewy stability coefficient) ; ^ t Λ ^ ^ it ^ ^ 始最大值’可表示如下,在步驟S21中求出,接著在步驟 S22中,帶回式13而求出通過元素介面的預測通量。 max (〇) 〇 (式 14) 接著,在步驟S23藉由守恆公式,以及初始預測通量 16 201201035 可獲得下—時刻的物理向量: (式 15a) (式 15b)9(3⁄4 & dp M 〇RD ^(hQ • X~W (Equation 8) is where the gradient derivative term of the velocity and sediment concentration can be expressed (Equation 9) (Formula 10) jOO _[(^), >ιι7· ~ ](y,.,.|/2,j+l ~ ^,+1/2.7-1) ~[(·),-.-1/2,j+i ~ ~p, ί ( ^+1./ ~ (*)|,;](-^|+1/2./+1 -文丨+丨...-丨)-[(·),+丨/2,j+l - (·) ι·+ι/2,)-丨] (also Hl.j -',) (^•+1,;· - yij)(xMi2,j+\~^i+mj-i)-(yMi2j +i - yi+in,ji)^Mj~^ij) where the physical quantity in the brackets can be; 1Μί, /jVy or . Back to step S2, in the estimation of the convective numerical flux uu), The physical vector values of each element in the computational domain may have different values, and thus may be discontinuous when the interface between elements and elements. Because of this discontinuity, when estimating the non-viscous flux at the boundary of each element, this problem can be transformed into a local one-dimensional Riemann problem in the vertical direction of the element-to-element interface: M" column U] 93c < ο > ο (Expression 11) where χ is the origin of the element in a certain boundary - and the vertical outward is a positive coordinate axis (as shown in Figure 5); F_ (received) is a vertical from the i-axis origin The outward flux is called the = non-viscous flux vector. The initial condition of Equation 11 is defined as: In the absence of <〇, the temple is 仏, where 屯 and 仏 are the physical vectors to the left and right of the element 兀 interface LR, the left element is the element being calculated, the right Elements are adjacent elements. A variable (pure 15 201201035 quantity or vector) whose subscript L, and can represent the left element L and the right element and the variable # value. Suppose $ is in? = G is a known value, so the Riemann problem of the initial value can be solved to find the non-viscous flux of the vertical boundary at r=0+. The present invention is characterized in that a Finite volume multi-stage scheme is applied to (Formula 11) and converted into the following partial coordinate system'-- and step S21 of the present embodiment calculates the following (Formula 12 S+) &wS)i dt dd :〇, Q(rf,〇) = 〇T = QL d<0 [q:0) = qr J>0 (Expression 12) where 7 is a spatial variable relative to X; Representing the time variable relative to £, the subscripts and i of the variables represent the initial vector of the left element 〇 and the right element i of the element interface 1/2, respectively, relative to the elements L and R: (f) and Q, respectively. Shown. The calculation is divided into two parts: prediction and correction. Step S21 and SU of this embodiment perform the prediction part, which uses the lGeal Lax Fdeddehs numerical flux function formula to obtain the predicted flux through the element interface 1/2: (Expression 13) where CFL is a kolan numerical stability condition Coefficient (c〇urant_Friedrichs-Lewy stability coefficient); ^ t Λ ^ ^ it ^ ^ The initial maximum value can be expressed as follows in step S21, and then in step S22, the pass element 13 is taken back to find the pass element The predicted flux of the interface. Max (〇) 〇 (Expression 14) Next, in step S23, the physical vector of the next-time is obtained by the conservation formula and the initial prediction flux 16 201201035: (Equation 15a) (Equation 15b)

其中’私”與^0分別代表元素介面1/2的左元素〇與右 元素1的第(1)時刻物理向量。最後’在步驟S24及S25中 進行校正部分的通量估算: (式 16) 式中為重力波波速之第(1)時刻最大值,可顯示為Wherein 'private' and ^0 respectively represent the left element 〇 of the element interface 1/2 and the (1)th time physical vector of the right element 1. Finally, the flux estimation of the correction part is performed in steps S24 and S25: In the formula, the maximum value of the (1) time of the gravity wave velocity can be displayed as

(式 17) 鲁 式16中的校正步通量即為對流數值通量,(Equation 17) The corrected step flux in Lu 16 is the convective numerical flux.

LuSWr)。 接著’在步驟S3中將一階數值通量擴展為二階精度。 二階數值通量之計算基於MUSCL方法,假定物理變量 在控制體元素内呈線性分布,根據變量坡度(變量差)作加權 線性插值,即可得到元素交界面兩侧鄰近之物理量,稱為 變量之建構。為了與有限體積離散一致,採用守恆變量, 可將元素邊界面0 + 1/2,))之左、右邊物理量建構如下: 17 201201035 1/2,; (式 18a) (式 18b) 见⑻=W)(Q,_+u 式中,觅丨/2,;和纪丨/2,;分別代表元素邊界面(ι·+1/2, y·)之左 邊與右邊物理量;Δυ =4;(Δ,.+1/2;,Δ,·_Ι/2;)為元素(/,乃之雙參數坡 度限制子函數,為了避免插值過程中坡度過大,使得數值 解可能存在振盪,故需加以限制坡度: ij [sgn(A-+l^2 )+sgn(A(i_^2;· )]τ |Δ<'+1/2.; ΊΔ«'-1/2,;| |^i+l/2,)| + Ai-l/2.J + f (式 19) 式中’ Δ.+1〜=Qi+1J -CM口 ΔΜ〜_ =Q,.广QMJ為變量差(坡度); sgn代表正負號函數,f為一個微小正數。接著,可將元素 邊,丨面(ί+ι/2,))之左、右邊物理f 〇 u入 FMUSTA數值通量計算式,所獲的之數值通量,即具有二 階準確度。 、备對流數值通量在步驟S2、S3中計算完成,擴散數值 、在步驟S4中计算完成,且藉由遞迴演算針對相鄰元素 面白處理凡畢之後,即進入步驟S5進行底坡源項的處理 〇 π本實施例採用水位減去元素邊界面處的水底高程,即 可待到界面左、右兩側之水深: 18 201201035 hLn.jLuSWr). Next, the first-order numerical flux is expanded to the second-order precision in step S3. The calculation of the second-order numerical flux is based on the MUSCL method. It is assumed that the physical variables are linearly distributed within the control body element, and the weighted linear interpolation is performed according to the slope of the variable (variable difference) to obtain the physical quantity adjacent to both sides of the interface of the element, which is called the variable. Construction. In order to be consistent with the finite volume discretization, the conservation variables can be used to construct the left and right physical quantities of the element boundary surface 0 + 1/2,)) as follows: 17 201201035 1/2,; (Equation 18a) (Equation 18b) See (8)= W) (Q, _+u where 觅丨/2,; and 丨/2,; represent the left and right physical quantities of the element boundary surface (ι·+1/2, y·); Δυ =4; (Δ,.+1/2;,Δ,·_Ι/2;) is an element (/, is a two-parameter slope limit subfunction. In order to avoid excessive slope during interpolation, the numerical solution may oscillate, so it needs to be Limit slope: ij [sgn(A-+l^2 )+sgn(A(i_^2;· )]τ |Δ<'+1/2.;ΊΔ«'-1/2,;| |^i +l/2,)| + Ai-l/2.J + f (Equation 19) where Δ.+1~=Qi+1J -CM port ΔΜ~_ =Q,. Wide QMJ is the variable difference (slope) Sgn represents the sign function, f is a small positive number. Then, the left and right physical f 〇u of the element side, 丨 (ί+ι/2,) can be entered into the FMUSTA numerical flux calculation formula. The numerical flux has a second-order accuracy. The convective numerical flux is calculated in steps S2 and S3, the diffusion value is calculated in step S4, and After the recursive calculation for the adjacent element surface treatment, the process proceeds to step S5 to perform the processing of the source item of the bottom slope. 〇 π This embodiment uses the water level minus the bottom elevation at the element boundary surface to wait for the interface left and right. Water depth on both sides: 18 201201035 hLn.j

VI ϊ+1/2,7 — ^fei+l/2,> J ^1+1/2,> = 7i+l/2,; ^ Zbi (式 20) 式中,仏〜和心心分別代表元素邊界面“+1/2,刀之左、 右兩側之水位’可由⑽式建構獲得;代表元素邊界面 G+1/2,力之水底高程;吣~與仏…代表元素邊界面乃 之左、右兩側之水深^最後’可直接使用散度定理進行二 項之數值離散: ' (式 2la) ’J h-w2m;c4)(yi-y3) + —~ Ί. i i,j (式 21c) 四個節點(依逆時 式中’下標1 ~4分別代表元素α))之 鐘方向編號)。 素中也計算完畢,即可在步驟S6中帶回式7求解元 素中:的,、流速tt、v以及泥砂懸浮質濃度。 t戀在步驟…將進行底床沖_算。-般 此求解沈淳連續方程載與懸浮載運移所造成,因 化,其方程式可表示如下:/7川中結構物周圍的床形變 (式 22) 19 201201035 其中,义為沈渾孔隙率;^泥砂密度 河床載沈渾輸送率方向之河床載沈料送率方向之 述如下 (一)沙莫夫公式: 本實施例在步驟S7中藉由㈣s6所獲得的水深與流 \、’代入以下四種河床载沈渾輸送公式其中—種,以進 沈,宰輸送率的计算,獲得泥砂河床載,其演算公式分別敛 (式 23) 其中%為河床載沈滓輸送率;&為經驗係數;乃沈滓中 值粒裎;7為平均流速;R為泥砂起動速度,可表示為:VI ϊ+1/2,7 — ^fei+l/2,> J ^1+1/2,> = 7i+l/2,; ^ Zbi (Formula 20) where 仏~ and heart are respectively The boundary surface of the representative element "+1/2, the water level on the left and right sides of the knife" can be obtained by the construction of (10); the boundary surface of the element is G+1/2, the elevation of the bottom of the force; 吣~ and 仏... represent the boundary surface of the element The depth of the left and right sides of the water ^ final 'can directly use the divergence theorem to perform the numerical dispersion of the two terms: ' (Formula 2la) 'J h-w2m; c4)(yi-y3) + —~ Ί. ii, j (Eq. 21c) Four nodes (in the inverse time formula, 'subscripts 1 to 4 respectively represent the element α)) clock direction number). After the calculation is completed, the element can be solved in step S6. In the middle, the flow rate tt, v and the sediment concentration of the mud sand. T love in the step... will carry out the bed bed _ calculation. - This is the solution caused by the continuous equation and the suspended carrier transport, the equation can be It is expressed as follows: /7 Bed deformation around the structure in Sichuan (Equation 22) 19 201201035 Where, the meaning is the porosity of the sedimentation; ^ The density of the sedimentation rate of the riverbed in the direction of the sedimentation rate of the riverbed sedimentation rate is as follows (1) Shamov Formula: In step S7, the water depth and flow obtained by (4) s6 are substituted into the following four types of riverbed sediment transport formulas, and the sedimentation rate is calculated by the calculation of the sedimentation rate and the sedimentation rate. The calculation formula is respectively converged (Equation 23), where % is the transport rate of riverbed sedimentation; & is the empirical coefficient; it is the median granule of sedimentation; 7 is the average flow velocity; R is the starting velocity of muddy sand, which can be expressed as:

Ur =1.34 rs-r 'γ 吵 φ。143 (式 24) 式中h與y分別為泥砂與水之比重。 (二)Meyer-Peter&Muller(簡稱,MPM)公式 qb =8(-) 05[j/w/ -0.047(^ - /)D](21zZ)Ur = 1.34 rs-r 'γ noisy φ. 143 (Expression 24) where h and y are the specific gravity of mud and water, respectively. (2) Meyer-Peter & Muller (MPM) formula qb = 8 (-) 05 [j / w / -0.047 (^ - /) D] (21zZ)

Y (式 25) (三)van Rijn 公式: qb=〇.〇53^s/Y-\)gDl5^t 其中ϋ為運動黏滞係數;£>.與Γ*分別定義如下 (式 26) υ pghSf ~0.05(ys-y)p 0.05(~y)D ] (式 27) 20 201201035 (四)楊氏公式:Y (Equation 25) (3) van Rijn Formula: qb=〇.〇53^s/Y-\)gDl5^t where ϋ is the motion viscous coefficient; £>. and Γ* are defined as follows (Equation 26) υ pghSf ~0.05(ys-y)p 0.05(~y)D ] (Equation 27) 20 201201035 (4) Young's formula:

wD U log ¢6 = 5.435 -0.286 log(—)0.457 log(-) v w + [1.799-0.409log(—)-0.3141og(^)]log[^--r V W W vv J V ^o) 其中w為沈滓沉降速度;c/·為摩擦速度;匕為臨 界起動速度。wD U log ¢6 = 5.435 -0.286 log(-)0.457 log(-) vw + [1.799-0.409log(-)-0.3141og(^)]log[^--r VWW vv JV ^o) where w is Settlement velocity; c/· is the friction speed; 匕 is the critical starting speed.

定義Re* =ί/*Ζ)/υ為沈滓雷諾數,則臨界起動速度可表示 如下:By defining Re* = ί/*Ζ)/υ as the Reynolds number, the critical starting speed can be expressed as follows:

Uc 2.05 (70 幺 Re.) (式 29a)Uc 2.05 (70 幺 Re.) (Equation 29a)

UU

2.5 log(Ret )-0.06 + 0.66 (1.2 < Re, < 70) (式 29b) 另外,沈滓沉降速度可表示為: VV=2i6(Z7Z)gV (D<01mm) (式 30a) 1(13.95 吾)2+1·〇9〇^Ι 72.5 log(Ret )-0.06 + 0.66 (1.2 < Re, < 70) (Equation 29b) In addition, the sedimentation velocity can be expressed as: VV = 2i6 (Z7Z) gV (D < 01mm) (Equation 30a) 1 (13.95 I) 2+1·〇9〇^Ι 7

)沙-13.95 上 D (式 30b) 21 201201035 (式 30c) 同樣以有限體積法為基礎,進行數值離散: (式 31) 接著,使用散度定理:) sand-13.95 upper D (form 30b) 21 201201035 (formula 30c) The numerical dispersion is also based on the finite volume method: (Equation 31) Next, the divergence theorem is used:

由 & : 1 A M (式 32) 式中,《通過⑽邊界元素之河床載沈津輸送率可 選用不同之輸砂公式。 、在步驟S7中計算出河床載沈滓輸送率之後,步驟別 將河床載沈滓輸送率與泥砂懸浮載(也就是步驟%計算出 的泥:少懸浮質濃度C)帶回式32求解底床高程變化。最後 ,’確6忍疋素演算是否完成,若未完成則再次執行步驟S2〜S8 h 1有元素廣算70成,然後確認執行次數是否達預設 尚未達預設讀,料讀對每個元素反覆執行 … /8’m寅算次數達預設次數,則得到模擬結果。 參閱圓1,當執行上述步驟而完成模擬,在步驟 針對模擬結果進行輸出。本實施例在此步驟是藉由呼 Η繪圖軟體,將模擬結果主要以圖形方式呈現,並標示水 位、水深、今 速、泥9懸浮質濃度以及床形變化等數值解 接著,少 步驟S15將模擬結果與實測資料進行比較, 22 0 201201035 驗證系統的精確性及合理性;該實測資料是指額外進行現 場量測或蒐集前人文獻既有的水理及泥砂資料。若模擬結 果與實測資料相吻合,則結束流程;若不相吻合,則回到 步驟S12,重新生成網格、重新設定資料,或者只重新設定 資料’再執行模擬演算。前述步驟S15並非必要,也可以 在步驟S14完成後即結束流程。 紅上所述,本發明採用有限體積法進行控制方程式之 數值離散,可適用於非結構性網格,有利於不規則河川邊 界以及河川中含有水工結構物,如防砂壩(圖7)、攔河堰⑽ 8)、魚道(圖7與圖8)、橋墩(圖9)、丁壩(圖1〇)等之水理與 輸砂模擬演算;當中採用總變量消減的方式,可抑制數值 振盪’並增加數值演算之穩定性,可適用於河川流況為超 亞臨界流之混合水理流況,以及跨臨界流之不連續水理現 象(如斜震波、潰壩震波);當中採用顯式時間積分法,因 此可進行定/變量流之水理模擬;當中採用fmusta算則進 行數值通量估算,有利於不規則地形下之乾/濕水理模擬; 最重要的是,本發明採用FMUSTA計算非黏性數值通量, 相較於Roe等方法,不但相對誤差減小,也就是精確度提 南,且由於FMUSTA的算數運算子、關係運算子、運算元 及運算式皆少於Roe,處理器執行運算的時間也確實縮短, 整體而言’可利用最有效率的方式完成模冑二維水理及輸 砂的演算,故確實能達成本發明之目的。 准以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明中請專利 23 201201035 範圍及發明說明内容所作之簡單的等效變化與修娜,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是-流帛圖’ 1¾明本發明二維水理輸砂模擬演算 方法之較佳實施例的流程圖; 圖2疋系統對每個分割區做内部網格重製作業的結果 的舉例示意圖; 圖3是圖1中主要模擬計算程式的流程圖; 圖4是圖3中,步驟S2的詳細子步驟流程圖; 圖5是有限體積法之數值離散架構示意圖; 圖6是FMUSTA算則的基本架構示意圖; 圖7是北勢溪防砂壩包含魚道之流場模擬結果示意圖 9 圖8疋桶頭攔河堰包含魚道系統之流速等值分布模擬 結果示意圖; 圖9是基隆河圓山段河道中橋墩附近流場之模擬結果 示意圖;及 圖1〇是基隆河水尾灣彎道内布設丁壩河段之底床沖淤 演變模擬結果示意圖。 201201035 【主要元件符號說明】 S11-S15.步驟 S21-S25·步驟 S 2 - S 8 · · · ·步驟From & : 1 A M (Formula 32), “The transport rate of the riverbed through the (10) boundary element can be selected from different sand transport formulas. After calculating the sediment carrying rate of the riverbed in step S7, the step of carrying the sediment carrying rate of the riverbed and the silt suspension loading (that is, the mud calculated in step %: the concentration of suspended matter C) is brought back to the bottom of the solution. Bed elevation changes. Finally, 'Yes 6 is not completed, if it is not completed, then step S2~S8 h 1 will be completed with 70% of the elements, and then confirm whether the number of executions reaches the preset has not reached the preset reading. The element is executed repeatedly... /8'm is counted up to the preset number of times, and the simulation result is obtained. Refer to circle 1. When the above steps are performed to complete the simulation, the output is output for the simulation results. In this embodiment, the simulation result is mainly presented in a graphical manner by snoring the drawing software, and numerical solutions such as water level, water depth, current speed, mud 9 suspension concentration and bed shape change are followed, and step S15 is less. The simulation results are compared with the measured data. 22 0 201201035 Verify the accuracy and rationality of the system; the measured data refers to additional on-site measurement or collection of existing hydraulic and silt data from previous literature. If the simulation result matches the measured data, the process ends; if it does not match, return to step S12, regenerate the grid, reset the data, or simply reset the data and perform the simulation calculation. The foregoing step S15 is not essential, and the flow may be ended after the completion of step S14. As described above, the present invention uses the finite volume method to perform numerical dispersion of the governing equations, and is applicable to non-structural grids, which facilitates irregular river boundaries and contains hydraulic structures in rivers, such as sand control dams (Fig. 7), Dam and river transport (10) 8), fish pass (Fig. 7 and Fig. 8), pier (Fig. 9), spur (Fig. 1), etc., and the simulation of water and sediment transport; the total variable reduction method can suppress numerical oscillation 'And increase the stability of the numerical calculation, can be applied to the mixed flow conditions of the river flow condition super-subcritical flow, and the discontinuous hydrological phenomenon of the transcritical flow (such as the oblique shock wave, the dam break wave); Time integration method, so the hydraulic simulation of constant/variable flow can be carried out; the numerical flux estimation is carried out by using fmusta algorithm, which is beneficial to dry/wet water simulation under irregular terrain; most importantly, the invention adopts FMUSTA calculates the non-viscous numerical flux. Compared with Roe and other methods, the relative error is reduced, that is, the precision is increased, and the arithmetic operator, relational operator, operand and arithmetic expression of FMUSTA are less than Roe. , Time processor to perform operations also is shortened, the whole 'may use the most effective manner a two-dimensional molded helmet water treatment and sand transport calculations, it can really achieve the object of the present invention. The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent change of the scope of the patent 23 201201035 and the description of the invention. And Senna, are still within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of a preferred embodiment of a two-dimensional hydraulic sand transport simulation calculation method of the present invention; FIG. 2 shows an internal grid weight for each partition. FIG. 3 is a flow chart of the main simulation calculation program in FIG. 1; FIG. 4 is a detailed sub-step flow chart of step S2 in FIG. 3; FIG. 5 is a schematic diagram of a numerical discrete architecture of the finite volume method; Figure 6 is a schematic diagram of the basic structure of the FMUSTA algorithm; Figure 7 is a schematic diagram of the simulation results of the flow field of the Beishuixi sand control dam containing the fish pass. Figure 8 is a schematic diagram showing the simulation results of the flow rate equivalent distribution of the fish channel system. Schematic diagram of the simulation results of the flow field near the bridge pier in the round mountain section of the Keelung River; and Fig. 1 is a schematic diagram showing the simulation results of the bed bed scouring and silting evolution of the Dingba River section in the Shuiweiwan curve of the Keelung River. 201201035 [Explanation of main component symbols] S11-S15. Procedure S21-S25·Step S 2 - S 8 · · · · Step

2525

Claims (1)

201201035 七、申請專利範圍·· 1. 一種二維水理輸砂模擬演算方法,利用一電子裝置的處 理器讀取程式碼而執行,包含以下. (a)計算相鄰元素介面之—階對流數值通量,其中 先將用來估算相鄰元素垂直邊界之非黏性通量的局部一 維黎曼式轉換為局部座標系統,並將演算分為預測與校 正兩部I,預測部分先獲得通過元素介面二分之—的左 %素初始向量、右元素初始向量作為預測通量,再配人 =式:算下-時刻的元素介面二分之一的左元素: 流數:通量素物理向量作為校正通量,即為該-階對 精度⑴將相鄰元素介面一階對流數值通量擴展為二階 ⑴計算相鄰元素介面之擴散數值通量; (d )進行元素中心的源項計算; 漠度⑴切出元素中㈣水深、流速以及泥砂懸浮質 = 沈:輸送公式計算泥砂河床載; (h )輪出模擬結果。 I π:利::第1項所述一輸砂模擬演算 赫數值通量足使用局雜克斯-弗里特列 通量。㈣式以獲得通過元素介面二分之一的預測 26 201201035 3.依據申請專利範圍第1項所述之二維水理輸砂模擬演算 方法,其中,該步驟(a )包括以下子步驟: (a 1 )藉由局部座標系統下的水深與流速,獲得— 重力波波速之初始最大值; (a2)藉由局部座標系統下的物理向量與通量,以 及步驟(al)求出的重力波波速初始最大值,搭配一可 蘭數值穩定條件係數,求解通過元素介面的預測通量; (a3 )藉由守恆公式以及該步驟(a2 )求出的預測 φ 通量,求解下一時刻的物理向量; (a4 )利用該下一時刻的物理向量,獲得一重力波 波速之最大值;.及 (a5 )藉由該步驟(a3 )求出的下一時刻物理向量 以及步驟(a4 )求出的重力波波速最大值,獲得該校正 通量。201201035 VII. Scope of Application for Patent·· 1. A two-dimensional simulation method for water transport sand transport, which is executed by a processor reading an electronic device, including the following. (a) Calculating the eccentricity of the adjacent element interface Numerical flux, in which the local one-dimensional Riemannian transformation used to estimate the non-viscous flux of the vertical boundary of adjacent elements is first converted into a local coordinate system, and the calculation is divided into two parts: prediction and correction. The prediction part is obtained first. The left-prime initial vector and the right-element initial vector of the element interface are used as the predictive flux, and then the ==: the left element of the element interface of the time-time is calculated: the number of streams: flux physics The vector is used as the correction flux, that is, the -order pair precision (1) expands the first-order convection numerical flux of the adjacent element interface to the second order (1) calculates the diffusion numerical flux of the adjacent element interface; (d) performs the source term calculation of the element center Moisture (1) Cut out the elements (4) Water depth, flow rate and silt suspended matter = Shen: The transport formula calculates the silt bed load; (h) The simulation results are taken out. I π: 利:: A sand transport simulation calculation as described in item 1. The Her-value flux is sufficient to use the bureaux-Freit column flux. (4) to obtain a prediction through one-half of the element interface. 201201035 3. According to the method of claim 2, the two-dimensional hydraulic sand transport simulation calculation method, wherein the step (a) comprises the following sub-steps: a 1) obtaining the initial maximum value of the gravity wave velocity by the water depth and the flow velocity under the local coordinate system; (a2) the gravity wave obtained by the physical vector and flux under the local coordinate system and the step (al) The initial maximum value of the wave velocity is matched with a Coulomb numerical stability condition coefficient to solve the predicted flux through the element interface; (a3) Solving the physics at the next moment by the conservation formula and the predicted φ flux obtained in the step (a2) a vector; (a4) using the physical vector of the next moment to obtain a maximum value of the gravity wave velocity; and (a5) obtaining the next-time physical vector obtained by the step (a3) and the step (a4) The maximum value of the gravity wave velocity is obtained by obtaining the corrected flux. 依據申請專利範圍第i至3項中任一項所述之二維水理 輸砂模擬演算方法,還包含步驟(a)之前的前置處理步 驟,包含接收地形資料、生成模擬演算範圍内的計算網 格,及接收模擬演算所需的相關設定,包括以下至少一 :曼寧阻力係數、模擬演算時間或次數、數值模擬時距 '乾渔處理參數、泥砂懸浮質擴散相關參數、紊流運動 黏滯係數、四種不同河床載沈滓輸送公式之選項、流量 、水位以及流速之初始條件及邊界條件。 依據申請專利範圍第4項所述之二維水理輸砂模擬演算 方法’其中’該前置處理步驟所接收的相關設定還包括 27 201201035 接收水流與泥砂之入流與出流條件,且步驟(〇還求解 出泥砂懸洋質濃度’且步驟⑴與步驟( 泥砂傳輸所引起的河川底床高程變化。 轉出 6.依據中請專利範圍第4項所述之二維水理輸砂模擬演算 方法’還包含一在步驟(h)之前或之後進行的步驟 ’將模擬結果與額外進行調查所獲得的㈣資料進行比 較’若吻合則結束’若不吻合’則重新接收模擬演算所 需的相關設定。 7·種電腦程式產品,内儲二維水理輸砂模擬演算之系統 程式*電腦載入該程式並執行後,可完成申請專利範 圍第1至6項中任—項所述之方法。The two-dimensional hydraulic sand transport simulation calculation method according to any one of the claims of the invention, further comprising the pre-processing step before the step (a), comprising receiving the topographic data and generating the simulation calculation range Calculate the grid and the relevant settings required to receive the simulation calculus, including at least one of the following: Manning drag coefficient, simulation calculus time or number, numerical simulation time interval 'dry fish processing parameters, mud sand suspended matter diffusion related parameters, turbulent motion Viscosity coefficient, options for four different riverbed sediment transport formulas, initial conditions and boundary conditions for flow, water level and flow rate. The two-dimensional hydraulic sand transport simulation calculation method described in item 4 of the scope of the patent application 'in which the relevant settings received by the pre-processing step further includes 27 201201035 receiving water flow and mud sand inflow and outflow conditions, and the steps ( 〇 also solves the sediment concentration of the muddy sand and the steps (1) and steps (the elevation of the river bed caused by the muddy sand transfer. Transfer 6. The two-dimensional hydraulic sand transport simulation calculation according to the fourth paragraph of the patent scope The method 'also includes a step performed before or after step (h) 'Comparing the simulation results with the data obtained by the additional investigations. 'If the agreement is the same, the end is 'if it does not match', then the relevant requirements for the simulation calculation are re-received. 7. 7. Computer program product, system program for storing 2D water sand transport simulation calculus * After loading the program and executing it, you can complete the method described in item 1 to 6 of the patent application scope. . 2828
TW99120613A 2010-06-24 2010-06-24 Two-dimensional hydraulic sediment transport simulation calculation method and computer program product TW201201035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99120613A TW201201035A (en) 2010-06-24 2010-06-24 Two-dimensional hydraulic sediment transport simulation calculation method and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99120613A TW201201035A (en) 2010-06-24 2010-06-24 Two-dimensional hydraulic sediment transport simulation calculation method and computer program product

Publications (1)

Publication Number Publication Date
TW201201035A true TW201201035A (en) 2012-01-01

Family

ID=46755639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99120613A TW201201035A (en) 2010-06-24 2010-06-24 Two-dimensional hydraulic sediment transport simulation calculation method and computer program product

Country Status (1)

Country Link
TW (1) TW201201035A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI566106B (en) * 2015-12-08 2017-01-11 黃良雄 Simulation method of piping prevention
CN109101732A (en) * 2018-08-15 2018-12-28 四川大学 Based on features of terrain boundary line without distributary road two dimensional structured grids subdivision method
CN109885931A (en) * 2019-02-18 2019-06-14 中国水利水电科学研究院 A kind of general Flow of River method for numerical simulation considering branch of a river point area
CN112257313A (en) * 2020-10-21 2021-01-22 西安理工大学 Pollutant transport high-resolution numerical simulation method based on GPU acceleration

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI566106B (en) * 2015-12-08 2017-01-11 黃良雄 Simulation method of piping prevention
CN109101732A (en) * 2018-08-15 2018-12-28 四川大学 Based on features of terrain boundary line without distributary road two dimensional structured grids subdivision method
CN109101732B (en) * 2018-08-15 2021-05-04 四川大学 Classification-free river channel two-dimensional structure grid subdivision method based on topographic feature boundary line
CN109885931A (en) * 2019-02-18 2019-06-14 中国水利水电科学研究院 A kind of general Flow of River method for numerical simulation considering branch of a river point area
CN109885931B (en) * 2019-02-18 2019-09-27 中国水利水电科学研究院 A kind of general Flow of River method for numerical simulation considering branch of a river point area
CN112257313A (en) * 2020-10-21 2021-01-22 西安理工大学 Pollutant transport high-resolution numerical simulation method based on GPU acceleration
CN112257313B (en) * 2020-10-21 2024-05-14 西安理工大学 GPU acceleration-based high-resolution numerical simulation method for pollutant transportation

Similar Documents

Publication Publication Date Title
Vacondio et al. SPH modeling of shallow flow with open boundaries for practical flood simulation
Vacondio et al. Shallow water SPH for flooding with dynamic particle coalescing and splitting
Hou et al. A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography
So et al. Anti-diffusion interface sharpening technique for two-phase compressible flow simulations
Nguyen et al. Isogeometric analysis for unsaturated flow problems
Abbassi et al. Shock capturing with entropy-based artificial viscosity for staggered grid discontinuous spectral element method
Bazyar et al. Transient seepage analysis in zoned anisotropic soils based on the scaled boundary finite‐element method
Nangia et al. A moving control volume approach to computing hydrodynamic forces and torques on immersed bodies
Gagarina et al. Variational space–time (dis) continuous Galerkin method for nonlinear free surface water waves
Zhang et al. A third-order gas-kinetic CPR method for the Euler and Navier–Stokes equations on triangular meshes
Juez et al. An efficient GPU implementation for a faster simulation of unsteady bed-load transport
Perne et al. Calculating transport of water from a conduit to the porous matrix by boundary distributed source method
Sun et al. Optimal control of water flooding reservoir using proper orthogonal decomposition
TW201201035A (en) Two-dimensional hydraulic sediment transport simulation calculation method and computer program product
Liang A simplified adaptive Cartesian grid system for solving the 2D shallow water equations
Fambri et al. An efficient semi‐implicit method for three‐dimensional non‐hydrostatic flows in compliant arterial vessels
Hague et al. A multiple flux boundary element method applied to the description of surface water waves
Shao et al. A consistent second‐order hydrodynamic model in the time domain for floating structures with large horizontal motions
Michel et al. A meshfree generalized finite difference method for solution mining processes
Sun et al. Numerical simulation of free surface fluid flows through porous media by using the explicit MPS method
Nguyen et al. A discontinuous Galerkin front tracking method for two-phase flows with surface tension
Rapaka et al. An immersed boundary method for direct and large eddy simulation of stratified flows in complex geometry
Becker et al. An OpenMI module for the groundwater flow simulation programme Feflow
Chen et al. Towards high-accuracy deep learning inference of compressible turbulent flows over aerofoils
Ginting et al. Artificial viscosity technique: A Riemann-solver-free method for 2D urban flood modelling on complex topography