TW201200905A - Biaxial scanning mirror for image forming apparatus - Google Patents

Biaxial scanning mirror for image forming apparatus Download PDF

Info

Publication number
TW201200905A
TW201200905A TW99121530A TW99121530A TW201200905A TW 201200905 A TW201200905 A TW 201200905A TW 99121530 A TW99121530 A TW 99121530A TW 99121530 A TW99121530 A TW 99121530A TW 201200905 A TW201200905 A TW 201200905A
Authority
TW
Taiwan
Prior art keywords
axis
unit
mirror
wafer
rotating
Prior art date
Application number
TW99121530A
Other languages
Chinese (zh)
Inventor
Hung-Yi Lin
Original Assignee
Touch Micro System Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Touch Micro System Tech filed Critical Touch Micro System Tech
Priority to TW99121530A priority Critical patent/TW201200905A/en
Publication of TW201200905A publication Critical patent/TW201200905A/en

Links

Landscapes

  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A biaxial scanning mirror for an image forming apparatus is disclosed in the present invention. The mirror includes a first wafer, a second wafer, and a spacer. The first wafer includes a mirror unit, a rectangular rotating unit, a permanent magnet, and a magnetically permeable layer. The second wafer has at least two cores each surrounded by a planar coil applied with an AC current for switching magnetic polarization of the cores such that the cores are attracted to or repelled from the rotating unit alternatively, thereby driving the rotating unit to rotate.

Description

201200905 六、發明說明: 【發明所屬之技術領域】 本發明係有關用於成像裝置的雙轴掃描鏡,尤指一種 相對於二軸做磁性轉動或相對於一轴做磁性轉動而相對於 另一轴做電性轉動的雙轴掃瞄鏡。 【先前技術】 微機電系統(micro-electro-mechanical system, MEMS) 製程所製成的微鏡(micro mirror)廣泛使用於光束掃描裝 置,如微投影機中的掃描鏡,其傳統上是由高速轉動的靜 電力所驅動。 圖1A繪示美國第6,817,725號專利,揭示組合於裝置 内的微鏡單元100,如光學開關。微鏡單元1〇〇包含具有 上表面(設有鏡表面,未圖示)的鏡形成部11〇、内框12〇和 外框120(部份未圖示)’各自形成有梳狀電極。鏡形成部 11〇具有彼此相對的端,一對梳狀電極110a與11〇b分別 形成於這些端上。内框120中,一對梳狀電極12〇a和12〇b 向内延伸’與梳狀電極ll〇a和11〇b相對應。一對梳狀電 極120c和120d向外延伸。外框12〇中,一對梳狀電極12〇a 和120b向内延伸,與梳狀電極⑽和12〇M目對應。鏡形 成部110和内框120藉由一對扭桿14〇相互連接。内框12〇 和外框120藉由一對扭桿15〇相互連接。扭桿14〇提供轉 軸,使鏡形成部no相對於内框120轉動。扭桿15〇為内 201200905 框120提供轉轴,同時連結鏡形成部ιι〇,使 框120轉動。 ' 基於上述的配置,當未施加電壓時,微鏡單元1〇〇中 二對梳狀電極(如梳狀電極11()&和12Ga)緊密相對以產生靜 電力,其位置配置如圖1B所示,其中一電極位置較低, 另-電極則位置較高。當施加電壓時,如圖lc,梳狀電極 ll〇a靠向梳狀電極i2〇a ,藉此轉動鏡形成部11〇。尤其當 梳狀電極110a施以正電荷而梳狀電極12〇a施以負電荷 時,如圖1A,鏡形成部朝方向M1轉動,同時扭轉扭 桿140。另一方面,當梳狀電極12〇c施以正電荷而梳狀電 極120a施以負電荷時,内框12〇朝方向M2轉動,同時扭 轉扭桿150。 傳統的微鏡單元1〇〇可由絕緣體矽(Silicon on Insulator,SOI)晶圓來製成,其在矽晶層之間夾有絕緣層。 然而,根據上述傳統製成方法,晶圓厚度取決於微鏡單元 100的厚度。更具體地說’微鏡單元1〇〇的厚度與用來形 成微鏡單元的晶圓相同。因此’傳統方法所使用的晶圓材 料厚度必須和製成的微鏡單元100相同。換言之,如微鏡 單元100是薄的’則必須使用相同薄度的晶圓。例舉製成 具有尺寸約為100至725μηι鏡表面的微鏡單元100來說 明。有鑒於包含鏡形成部110和内框120之移動部件的質 量、移動部件的移動量、足以達成移動部件移動量的梳狀 電極尺寸等’遂需要相當厚度的移動部件或微鏡單元 100,其預定厚度約100至200μιη。因此,為製成此等厚度 201200905 的微鏡單元100,需使用厚度亦為100至200μιη的晶圓。 根據傳統方法,製成薄微鏡單元100需使用相同薄度 的晶圓。意即晶圓直徑越大則越難處理。舉例來說,微鏡 單元100將由厚度200μιη、直徑為6吋的SOI晶圓來製成。 晶圓在製程過程中容易破裂。此外,晶圓表面尺寸的限制 會使微鏡陣列晶片的製成受限。尤其當微鏡陣列晶片藉由 在單一基板上的陣列圖樣形成數個微鏡單元來製成時,陣 列尺寸將受到限制。 由於兩組梳狀電極(如電極120c和120a)安裝在基板的 不同層,並非共面,因此其兩組電極之間的精確橫向準直 相當困難。如此會導致非線性且不穩定的行為。再者,梳 狀電極提供的驅動力有限,而電極所需用來驅動鏡的電力 相當大。 請參照圖2A。為克服上述缺點,遂使用磁鐵210來取 代梳狀電極,以提供驅動力來轉動雙軸鏡組合200。在雙 軸鏡組合200(在具有相同磁化方向的底部磁鐵210b之上) 的兩側設置具有相同磁化方向(magnetization direction)的 雙邊磁鐵210a。然而,雙邊磁鐵210a相當佔空間,使得 結構過大。除此之外,在不劇增磁鐵體積的情況下,磁場 很難增強。 為縮減整體尺寸,遂揭示另一具有分別設於雙軸鏡組 合220之上下方的二磁鐵230a與230b的結構,如圖2B 所示。然而,由於磁鐵230a與230b需容納雙軸鏡組合220 來轉動,此結構的整體尺寸仍過大。 201200905 組合=決;強大_的小尺寸雙軸鏡 【發明内容】 乂八本案之目的為提供一種用於成像裝置的雙軸掃描鏡, L 3第晶圓、第二晶圓和隔片。第一晶圓包括相對於第 二軸轉,的鏡單元,以反射光束;形成於鏡單元周圍的矩 ^轉動單元,以繞著與第一軸垂直的第二軸來轉動鏡單 凡’其中轉動單元具有與第二轴正交的兩垂直側面,以及 與第二軸平行的兩平行側面;固定於兩垂直侧面中央的永 久磁鐵’以及形成於轉動單元兩垂直側面下的磁性穿透 層,以將永久磁鐵產生的磁場自轉動單元的中央擴展至垂 ,側面的兩端。至少具有兩鐵心的第二晶圓,設置於轉動 單元垂直側面的兩端下,圍繞著通有AC電流的平面線 圈’以切換鐵心的磁極化(magnetic p〇larizati〇n),使鐵心 與轉動單元交替吸引或排斥,因而驅動轉動單元相對於第 二軸轉動。形成於第一晶圓和第二晶圓之間的隔片,用來 分隔第一晶圓和第二晶圓。 根據本案構想,磁性穿透層包括鐵(Fe)、鎳(Ni)、鋅 (Zn)、錳(Μη)、或鎂(Mg)。 根據本案構想,雙軸掃描鏡進一步包括梳狀致動器 (comb drive actuator)來驅動鏡單元。 掩據本案構想,鏡單元由轉動單元繞著第二軸的轉動 201200905 所驅動。 根據本案構想,鏡單元繞著第一軸的共振頻率 (resonant frequency)高於轉動單元繞著第二轴的頻率。 根據本案構想,鐵心與第一晶圓和第二晶圓垂直。 根據本案構想,平面線圈由微機電系統(MEMS)製程所 形成。 根據本案構想,雙轴掃描鏡進一步包括形成於第二晶 圓上的止塊,以防止永久磁鐵碰撞第二晶圓。 根據本案構想,轉動單元施加60Hz頻率的鋸齒波形 信號。 根據本案構想,其中鏡單元施加大於18 KHz頻率的 正弦信號(sinusoidal signal)。 根據本案構想,其中鏡單元係靜電觸發,轉動單元為 磁性觸發。 根據本案構想,鏡單元和轉動單元均為磁性觸發。201200905 VI. Description of the Invention: [Technical Field] The present invention relates to a dual-axis scanning mirror for an imaging device, and more particularly to magnetic rotation relative to two axes or magnetic rotation relative to one axis relative to another The shaft is a biaxial scanning mirror that electrically rotates. [Prior Art] Micro mirrors made by micro-electro-mechanical system (MEMS) processes are widely used in beam scanning devices, such as scanning mirrors in micro-projectors, which are conventionally driven by high speed. Driven by the rotating electrostatic force. Figure 1A shows a U.S. Patent No. 6,817,725, which discloses a micromirror unit 100, such as an optical switch, incorporated in a device. The micromirror unit 1A includes a mirror-forming portion 11A having an upper surface (provided with a mirror surface, not shown), an inner frame 12A and an outer frame 120 (partially not shown) each having a comb-shaped electrode formed thereon. The mirror forming portion 11'' has opposite ends, and a pair of comb electrodes 110a and 11b are formed on these ends, respectively. In the inner frame 120, a pair of comb electrodes 12a and 12b extend inwardly to correspond to the comb electrodes 11a and 11b. A pair of comb electrodes 120c and 120d extend outward. In the outer frame 12A, a pair of comb electrodes 12a and 120b extend inwardly, corresponding to the comb electrodes (10) and 12M. The mirror portion 110 and the inner frame 120 are connected to each other by a pair of torsion bars 14A. The inner frame 12A and the outer frame 120 are connected to each other by a pair of torsion bars 15A. The torsion bar 14A provides a rotating shaft to rotate the mirror forming portion no with respect to the inner frame 120. The torsion bar 15 is provided with a rotating shaft for the inside of the 201200905 frame 120, and the mirror forming portion ιι is coupled to rotate the frame 120. Based on the above configuration, when no voltage is applied, two pairs of comb electrodes (such as comb electrodes 11() & and 12Ga) in the micromirror unit 1 are closely opposed to generate an electrostatic force, and their positional configuration is as shown in FIG. 1B. As shown, one of the electrodes has a lower position and the other electrode has a higher position. When a voltage is applied, as shown in Fig. 1c, the comb electrode ll 〇 a abuts against the comb electrode i2 〇 a, thereby rotating the mirror forming portion 11 〇. Particularly when the comb electrode 110a is applied with a positive charge and the comb electrode 12a is subjected to a negative charge, as shown in Fig. 1A, the mirror forming portion is rotated in the direction M1 while twisting the torsion bar 140. On the other hand, when the comb electrode 12〇c applies a positive electric charge and the comb-shaped electrode 120a applies a negative electric charge, the inner frame 12 turns in the direction M2 while twisting the torsion bar 150. The conventional micromirror unit 1 can be made of a silicon-on-insulator (SOI) wafer with an insulating layer interposed between the twin layers. However, according to the above conventional fabrication method, the wafer thickness depends on the thickness of the micromirror unit 100. More specifically, the thickness of the micromirror unit 1 is the same as that of the wafer used to form the micromirror unit. Therefore, the thickness of the wafer material used in the conventional method must be the same as that of the fabricated micromirror unit 100. In other words, if the micromirror unit 100 is thin, then a wafer of the same thinness must be used. The micromirror unit 100 having a mirror surface having a size of about 100 to 725 μm is exemplified. In view of the mass of the moving member including the mirror forming portion 110 and the inner frame 120, the amount of movement of the moving member, the size of the comb electrode sufficient to achieve the amount of movement of the moving member, etc., a moving member or micromirror unit 100 requiring a considerable thickness is required. The predetermined thickness is about 100 to 200 μm. Therefore, in order to fabricate the micromirror unit 100 of the thickness 201200905, a wafer having a thickness of 100 to 200 μm is also required. According to the conventional method, the thin micromirror unit 100 is required to use the same thinness of the wafer. This means that the larger the wafer diameter, the harder it is to handle. For example, the micromirror unit 100 will be fabricated from an SOI wafer having a thickness of 200 μm and a diameter of 6 Å. The wafer is easily broken during the manufacturing process. In addition, the limitation of wafer surface size limits the fabrication of micromirror array wafers. Especially when the micromirror array wafer is fabricated by forming a plurality of micromirror units in an array pattern on a single substrate, the array size will be limited. Since the two sets of comb electrodes (e.g., electrodes 120c and 120a) are mounted on different layers of the substrate, not coplanar, precise lateral alignment between the two sets of electrodes is quite difficult. This can lead to non-linear and unstable behavior. Furthermore, the comb electrodes provide a limited driving force, and the power required to drive the mirror is quite large. Please refer to FIG. 2A. To overcome the above disadvantages, the magnet 210 is used to replace the comb electrode to provide a driving force to rotate the biaxial mirror assembly 200. Bilateral magnets 210a having the same magnetization direction are disposed on both sides of the biaxial mirror assembly 200 (above the bottom magnet 210b having the same magnetization direction). However, the bilateral magnet 210a is quite space-consuming, making the structure too large. In addition, the magnetic field is difficult to enhance without increasing the volume of the magnet. To reduce the overall size, another structure having two magnets 230a and 230b disposed above and below the biaxial mirror assembly 220 is disclosed, as shown in Fig. 2B. However, since the magnets 230a and 230b are required to accommodate the biaxial mirror assembly 220 for rotation, the overall size of the structure is still too large. 201200905 Combination=Development; Powerful_Small Size Dual-Axis Mirror [Description] The purpose of the present invention is to provide a dual-axis scanning mirror for an imaging device, L3 wafer, second wafer and spacer. The first wafer includes a mirror unit that rotates relative to the second axis to reflect the light beam; a moment rotating unit formed around the mirror unit to rotate the mirror around the second axis perpendicular to the first axis The rotating unit has two vertical sides orthogonal to the second axis, and two parallel sides parallel to the second axis; a permanent magnet fixed to the center of the two vertical sides; and a magnetic penetrating layer formed under the two vertical sides of the rotating unit, The magnetic field generated by the permanent magnet is extended from the center of the rotating unit to the ends of the side, the side. a second wafer having at least two cores disposed at both ends of the vertical side of the rotating unit and surrounding the planar coil with an AC current to switch the magnetic polarization of the core to rotate the core and rotate The units are alternately attracted or repelled, thereby driving the rotating unit to rotate relative to the second axis. a spacer formed between the first wafer and the second wafer for separating the first wafer and the second wafer. According to the present concept, the magnetically permeable layer includes iron (Fe), nickel (Ni), zinc (Zn), manganese (Mn), or magnesium (Mg). According to the present concept, the dual axis scanning mirror further includes a comb drive actuator to drive the mirror unit. According to the concept of the present invention, the mirror unit is driven by the rotation of the rotating unit about the second axis 201200905. According to the present invention, the resonant frequency of the mirror unit about the first axis is higher than the frequency of the rotating unit about the second axis. According to the present concept, the core is perpendicular to the first wafer and the second wafer. According to the present concept, the planar coil is formed by a microelectromechanical system (MEMS) process. According to the present invention, the dual axis scanning mirror further includes a stop formed on the second crystal to prevent the permanent magnet from colliding with the second wafer. According to the present concept, the rotating unit applies a sawtooth waveform signal of a frequency of 60 Hz. According to the present invention, the mirror unit applies a sinusoidal signal having a frequency greater than 18 KHz. According to the concept of the present invention, the mirror unit is electrostatically triggered and the rotating unit is magnetically triggered. According to the concept of the present invention, both the mirror unit and the rotating unit are magnetically triggered.

【實施方式】 體現本發明特徵與優點的兩個實施例將在後段的說明 中詳細敘述。本發明能夠在不同的態樣上具有各種的變 化,皆不脫離本發明的範圍,且其中的說明及圖式在本質 上當作說明之用,而非用以限制本發明。 圖3至圖5繪示本發明之一實施例。雙轴掃描鏡300 具有第二晶圓302、隔片304和第一晶圓306。第二晶圓 201200905 302 和第一晶圓 306 皆為微機電系統 (Micro-Electro-Mechanical Systems, MEMS)製程所形成的 的矽晶圓。第一晶圓306具有相對於第一轴線XI轉動的 鏡單元36卜以反射光束。第一轴心364沿著第一軸線XI 形成,以達成鏡單元361的轉動。在本發明中,第一轴心 364係由梳狀致動器(comb drive actuator)363所驅動。第一 晶圓306亦具有轉動單元362,形成於鏡單元361的周圍, 以相對於第二軸線X2 (與第一轴線XI垂直)來轉動鏡單 元361。同樣地’第二軸心365沿著第二軸線X2連接至轉 動單元362’而達成鏡單元361相對於第二轴線χ2的轉動。 梳狀致動器363可由其他驅動裝置來取代。舉例來 說,鏡單元361繞第一軸心364轉動,轉動單元362繞第 二軸心365轉動,兩個轉動呈現共振。也就是說鏡單元361 由轉動單元362繞第二軸心365的轉動所致動。 圖4係沿著圖3中剖面線A A’之剖面圖,清楚繪示各 個元件。隔片304形成於第二晶圓302和第一晶圓306之 間,以分隔第二晶圓302和第一晶圓306,同時可固定兩 者間的距離。 圖4繪示本發明雙軸掃描鏡300的内部結構。第一晶圓 3〇6具有形成於轉動單元362之下磁性穿透層3622。磁性 穿透層 3622 由鐵(Fe)、鎳(Ni)、鋅(Zn)、錳(Μη)、鎂(Mg) 或其混合物所製成’本實施例中的材料是鐵和鎳(以下簡稱 為Fe/Ni)的混和物。磁性穿透層3622藉由將Fe/Ni塗在轉 動單元362的後側部分(與第二軸心365連接處)所形成。 201200905 第一晶圓306具有固定於磁性穿透層3622之下的永久 磁鐵3624。永久磁鐵3624組裝在磁性穿透層3622的中 央’可防止轉動單元362過度增大永久磁鐵3624的慣量 (moment of inertia)。永久磁鐵3624可提供磁性穿透層3622 磁場’磁性穿透層3 622將磁場延伸至其兩側,如圖4所示。 第一晶圓302具有兩個由平面線圈3024所圍繞的鐵心 3022。鐵心3022與第二軸線Χ2(第二軸心365)垂.直。平面 • 線圈3024設置於永久磁鐵3624的相反側。平面線圈3024 的線圈數量越多’其產生的磁場越強。本實施例中,平面 線圈3024在單層的線圈數量為24,兩層中的線圈數量可 為48。鐵心3022正好可裝入第二晶圓302上的空腔(未圖 示)。空腔可藉由沉積、微影姓刻(photolithography)或儀刻 來形成。 永久磁鐵3624的兩個磁極(N和S)分別面向二個鐵心 3022。永久磁鐵3624和鐵心3022之間形成氣隙(air gap)。 對平面線圈3024施以AC電流,以切換鐵心3022的磁極 鲁 化(magnetic polarization),使得鐵心3〇22與轉動單元362 交替吸引或排斥,因而驅動轉動單元362相對於第二轴線 X2轉動。平面線圈3024由MEMS製程所形成。 兩個下止塊3026各自形成於第二晶圓302上的兩凹部 3065(圖4及圖5僅圖示其中之一),防止永久磁鐵3624碰 撞第二晶圓302,以保護雙軸掃描鏡300免受碰撞損害。 兩個上止塊3023形成於鐵心3022上。上止塊3023的作用 為防止永久磁鐵3624碰撞鐵心3022。如圖5所示,當轉 201200905 動單疋362運作時’下止塊3026和上止塊3023始作用。 鏡單元361繞第一軸心364的頻率通常高於轉動單元 362繞第二軸心365的頻率。實際上,鐵心3022的數量不 限於二。在轉動單元362單侧多於二個以上的鐵心可用來 使轉動單元362轉動。 在本發明中,對轉動單元362施以頻率60Hz的鋸齒 波形信號,以驅動轉動單元362繞第二轴線X2轉動,鏡 單元361因而繞第二軸線χ2轉動。藉由梳狀致動器363 對鏡單元361施以頻率大於18ΚΗζ的正弦信號(sinusoidal signal)’來驅動鏡單元361繞第一轴線XI轉動。另一方面, 當未使用梳狀致動器時,頻率大於18KHz的正弦信號可藉 由平面線圈3067來施於鏡單元3061。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明。反之,任何所屬技術領域中具有通常知識者,在 不脫離本發明之精神和範圍内,當可作些許之更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 【圖式簡單說明】 圖1A繪示習知技藝之微鏡(micro mirror)。 圖1B和1C繪示如圖1A的習知技藝細部結構的機構。 圖2Α和2Β繪示另一習知技藝之雙軸掃描鏡。 201200905 圖3繪示本發明之雙轴掃描鏡。 圖4繪示沿著圖3中剖面線AA’之雙軸掃描鏡剖面圖。 圖5繪示轉動單元相對於轴線轉動。[Embodiment] Two embodiments embodying the features and advantages of the present invention will be described in detail in the following description. The present invention is capable of various modifications in the various aspects of the invention and the invention is not intended to limit the invention. 3 through 5 illustrate an embodiment of the present invention. The dual axis scanning mirror 300 has a second wafer 302, a spacer 304, and a first wafer 306. The second wafer 201200905 302 and the first wafer 306 are both germanium wafers formed by a Micro-Electro-Mechanical Systems (MEMS) process. The first wafer 306 has a mirror unit 36 that rotates relative to the first axis XI to reflect the beam. The first axis 364 is formed along the first axis XI to achieve rotation of the mirror unit 361. In the present invention, the first axis 364 is driven by a comb drive actuator 363. The first wafer 306 also has a rotating unit 362 formed around the mirror unit 361 to rotate the mirror unit 361 with respect to the second axis X2 (perpendicular to the first axis XI). Similarly, the second axis 365 is coupled to the rotating unit 362' along the second axis X2 to achieve rotation of the mirror unit 361 with respect to the second axis χ2. The comb actuator 363 can be replaced by other drive means. For example, the mirror unit 361 rotates about the first axis 364, and the rotating unit 362 rotates about the second axis 365, and the two rotations resonate. That is to say, the mirror unit 361 is actuated by the rotation of the rotating unit 362 about the second axis 365. Fig. 4 is a cross-sectional view taken along line A A' of Fig. 3, clearly showing each element. A spacer 304 is formed between the second wafer 302 and the first wafer 306 to separate the second wafer 302 from the first wafer 306 while fixing the distance between the two. FIG. 4 illustrates the internal structure of the dual axis scanning mirror 300 of the present invention. The first wafer 3〇6 has a magnetically permeable layer 3622 formed under the rotating unit 362. The magnetic penetrating layer 3622 is made of iron (Fe), nickel (Ni), zinc (Zn), manganese (Mn), magnesium (Mg) or a mixture thereof. The material in this embodiment is iron and nickel (hereinafter referred to as A mixture of Fe/Ni). The magnetic transmissive layer 3622 is formed by applying Fe/Ni to the rear side portion of the rotary unit 362 (connected to the second axial center 365). 201200905 The first wafer 306 has a permanent magnet 3624 that is secured beneath the magnetically permeable layer 3622. The assembly of the permanent magnet 3624 in the center of the magnetically permeable layer 3622 prevents the rotating unit 362 from excessively increasing the moment of inertia of the permanent magnet 3624. The permanent magnet 3624 can provide a magnetically permeable layer 3622. The magnetic field 'magnetically permeable layer 3 622 extends the magnetic field to its sides, as shown in FIG. The first wafer 302 has two cores 3022 surrounded by planar coils 3024. The core 3022 is perpendicular to the second axis Χ2 (second axis 365). Plane • The coil 3024 is disposed on the opposite side of the permanent magnet 3624. The greater the number of coils of the planar coil 3024, the stronger the magnetic field it produces. In this embodiment, the number of coils of the planar coil 3024 in a single layer is 24, and the number of coils in the two layers may be 48. The core 3022 can fit into a cavity (not shown) on the second wafer 302. The cavity can be formed by deposition, photolithography or lithography. The two magnetic poles (N and S) of the permanent magnet 3624 face the two cores 3022, respectively. An air gap is formed between the permanent magnet 3624 and the core 3022. The planar coil 3024 is subjected to an AC current to switch the magnetic polarization of the core 3022 such that the core 3 22 and the rotating unit 362 alternately attract or repel, thereby driving the rotating unit 362 to rotate relative to the second axis X2. The planar coil 3024 is formed by a MEMS process. The two lower stoppers 3026 are respectively formed on the two recesses 3065 on the second wafer 302 (only one of which is illustrated in FIGS. 4 and 5), and the permanent magnets 3624 are prevented from colliding with the second wafer 302 to protect the dual-axis scanning mirror. 300 is protected from collision damage. Two upper stoppers 3023 are formed on the core 3022. The function of the upper stopper 3023 is to prevent the permanent magnet 3624 from colliding with the core 3022. As shown in Fig. 5, when the 201200905 is operated, the lower stop block 3026 and the upper stop block 3023 are activated. The frequency of the mirror unit 361 about the first axis 364 is generally higher than the frequency of the rotating unit 362 about the second axis 365. In fact, the number of cores 3022 is not limited to two. More than two cores on one side of the rotating unit 362 can be used to rotate the rotating unit 362. In the present invention, the rotational unit 362 is subjected to a sawtooth waveform signal having a frequency of 60 Hz to drive the rotary unit 362 to rotate about the second axis X2, and the mirror unit 361 thus rotates about the second axis χ2. The mirror unit 361 is applied with a sinusoidal signal having a frequency greater than 18 藉 by the comb actuator 363 to drive the mirror unit 361 to rotate about the first axis XI. On the other hand, when the comb actuator is not used, a sinusoidal signal having a frequency greater than 18 kHz can be applied to the mirror unit 3061 by the planar coil 3067. Although the invention has been disclosed above by way of example, it is not intended to limit the invention. To the contrary, the scope of the invention is defined by the scope of the appended claims. quasi. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A illustrates a micro mirror of the prior art. 1B and 1C illustrate the mechanism of the prior art detail structure of Fig. 1A. 2A and 2B illustrate another conventional biaxial scanning mirror. 201200905 Figure 3 illustrates a dual axis scanning mirror of the present invention. 4 is a cross-sectional view of the dual-axis scanning mirror taken along line AA' of FIG. 3. Figure 5 illustrates the rotation of the rotating unit relative to the axis.

【主要元件符號說明】 100 微鏡單元 300 雙軸掃描鏡 110 鏡形成部 302 第二晶圓 110a 梳狀電極 3022 鐵心 110b 梳狀電極 3023 上止塊 120 内框、外框 3024 平面線圈 120a 梳狀電極 3026 下止塊 120b 梳狀電極 304 隔片 120c 梳狀電極 306 第一晶圓 120d 梳狀電極 3065 凹部 140 扭桿 361 鏡單元 150 扭桿 362 轉動單元 200 雙袖鏡組合 3622 磁性穿透層 210 磁鐵 3624 永久磁鐵 210a 雙邊磁鐵 363 梳狀致動器 210b 底部磁鐵 364 第一軸心 220 雙軸鏡組合 365 第二軸心 230a 磁鐵 230b 磁鐵 11[Description of main component symbols] 100 micromirror unit 300 biaxial scanning mirror 110 mirror forming portion 302 second wafer 110a comb electrode 3022 core 110b comb electrode 3023 top block 120 inner frame, outer frame 3024 planar coil 120a comb Electrode 3026 Lower stop block 120b Comb electrode 304 Spacer 120c Comb electrode 306 First wafer 120d Comb electrode 3065 Recession 140 Torsion bar 361 Mirror unit 150 Torsion bar 362 Rotating unit 200 Double sleeve assembly 3622 Magnetic penetrating layer 210 Magnet 3624 Permanent magnet 210a Bilateral magnet 363 Comb actuator 210b Bottom magnet 364 First axis 220 Biaxial mirror assembly 365 Second axis 230a Magnet 230b Magnet 11

Claims (1)

201200905 七、申請專利範圍: 1. 一㈣於成像裝置的雙㈣描鏡,包括: 第一晶圓,包括: 相對於第:軸轉動的鏡單元,以反射光束; 形成於鏡單元周圍的矩形轉動單元,以繞著與第 一轴垂直的第二軸來轉動鏡單元’其中轉動單 元具有與第二軸正交的兩垂直侧面,以及與第二 轴平行的兩平行側面; — 固定於兩垂直側面中央的永久磁鐵;以及 形成於轉動單元兩垂直侧面下的磁性穿透層,以將 永久磁鐵產生的磁場自轉動單元的中央擴展至垂 直側面的兩端; 至少具有兩鐵心的第二晶圓,設置於轉動單元垂直側 面的兩端下’圍繞著通有AC電流的平面線圈,以 切換鐵〜的磁極化(magnetic p〇larizati〇n),使鐵心 與轉動單兀交替吸引或排斥,因而驅動轉動單元相 對於第二軸轉動;以及 形成於第一晶圓和第二晶圓之間的隔片,以分隔第一 晶圓和第二晶圓。 2. 根據申請專利範圍第1項的雙轴掃描鏡,其中磁性穿 透層包括鐵(Fe)、鎳(Ni)、鋅(Zn)、錳(Μη)、或鎂(Mg)。 3. 根據申請專利範圍第1項的雙轴掃描鏡,進一步包括 梳狀致動器(comb drive actuator)來驅動鏡單元。 4. 根據申請專利範圍第1項的雙軸掃描鏡,其中鏡單元 12 201200905 5. 由轉動單it繞著第二轴的轉動所驅動。 率 ΓίΓ= 圍第1項的熟掃描鏡,其中鏡單元 ΐ者第一轴的共振頻率高於轉動單it繞著第二軸的頻 6. ί據t請專利制第1項的雙_描鏡,其中鐵心與 第晶圓和第二晶圓垂直。201200905 VII. Patent application scope: 1. One (4) double (four) mirroring of the imaging device, comprising: a first wafer comprising: a mirror unit rotating relative to the first axis to reflect the light beam; a rectangle formed around the mirror unit Rotating the unit to rotate the mirror unit about a second axis perpendicular to the first axis. The rotating unit has two vertical sides orthogonal to the second axis and two parallel sides parallel to the second axis; — fixed to two a permanent magnet in the center of the vertical side; and a magnetically penetrating layer formed under the two vertical sides of the rotating unit to extend the magnetic field generated by the permanent magnet from the center of the rotating unit to both ends of the vertical side; the second crystal having at least two cores a circle disposed at both ends of the vertical side of the rotating unit to surround a planar coil having an AC current to switch the magnetic polarization of the iron to cause the core and the rotating single pole to alternately attract or repel, Thus driving the rotating unit to rotate relative to the second axis; and a spacer formed between the first wafer and the second wafer to separate the first wafer and the second crystal circle. 2. The biaxial scanning mirror according to claim 1, wherein the magnetic permeation layer comprises iron (Fe), nickel (Ni), zinc (Zn), manganese (Mn), or magnesium (Mg). 3. The dual-axis scanning mirror according to claim 1 of the patent application, further comprising a comb drive to drive the mirror unit. 4. A two-axis scanning mirror according to claim 1 of the scope of the patent application, wherein the mirror unit 12 201200905 5. is driven by the rotation of the rotating single unit about the second axis. Rate ΓίΓ= The cooked scanning mirror of the first item, wherein the resonant frequency of the first axis of the mirror unit is higher than the frequency of the rotating single it around the second axis. 6. According to t, please select the double item of the first item of the patent system. a mirror in which the core is perpendicular to the first wafer and the second wafer. 7. =申請專利範圍第!項的雙轴掃描鏡,其中平面線 圈由微機電系統製程所形成。 8. 根據申請專利範圍第i項的雙轴掃描鏡進一步包括 形成於第二晶圓上的止塊,以防止永久磁鐵碰撞第二 晶圓。 9. 根據申請專利範圍第i項的雙轴掃描鏡,其中轉動單 元施加60Hz頻率的鋸齒波形信號。 10. 根據申請專利範圍第!項的雙軸掃描鏡,其中鏡單元 施加大於18 KHz頻率的正弦信號。 根據申請專利範圍第1項的雙軸掃描鏡,其中鏡單元 係靜電觸發’轉動單元為磁性觸發。 2·根據申请專利範圍第1項的雙軸掃描鏡,其中鏡單元 和轉動單元均為磁性觸發。 137. = Apply for patent coverage! A dual-axis scanning mirror in which a planar coil is formed by a MEMS process. 8. The dual axis scanning mirror according to item i of the patent application further includes a stopper formed on the second wafer to prevent the permanent magnet from colliding with the second wafer. 9. A dual-axis scanning mirror according to the scope of claim i, wherein the rotating unit applies a sawtooth waveform signal having a frequency of 60 Hz. 10. According to the scope of the patent application! A dual-axis scanning mirror in which the mirror unit applies a sinusoidal signal with a frequency greater than 18 KHz. According to the dual-axis scanning mirror of claim 1, wherein the mirror unit is electrostatically triggered, the rotating unit is magnetically triggered. 2. According to the dual-axis scanning mirror of claim 1, wherein the mirror unit and the rotating unit are both magnetically triggered. 13
TW99121530A 2010-06-30 2010-06-30 Biaxial scanning mirror for image forming apparatus TW201200905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121530A TW201200905A (en) 2010-06-30 2010-06-30 Biaxial scanning mirror for image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121530A TW201200905A (en) 2010-06-30 2010-06-30 Biaxial scanning mirror for image forming apparatus

Publications (1)

Publication Number Publication Date
TW201200905A true TW201200905A (en) 2012-01-01

Family

ID=46755583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121530A TW201200905A (en) 2010-06-30 2010-06-30 Biaxial scanning mirror for image forming apparatus

Country Status (1)

Country Link
TW (1) TW201200905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977786A (en) * 2014-04-02 2015-10-14 财团法人工业技术研究院 Lissajous double-axis scanning element and scanning frequency generating method thereof
TWI509343B (en) * 2012-10-17 2015-11-21 Ind Tech Res Inst Lissajous dual-axial scan element and scan frequency generation method thereof
CN110505370A (en) * 2018-05-16 2019-11-26 宁波舜宇光电信息有限公司 Light steering assembly and its manufacturing method and periscopic camera module, periscopic array mould group and electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509343B (en) * 2012-10-17 2015-11-21 Ind Tech Res Inst Lissajous dual-axial scan element and scan frequency generation method thereof
CN104977786A (en) * 2014-04-02 2015-10-14 财团法人工业技术研究院 Lissajous double-axis scanning element and scanning frequency generating method thereof
US9563055B2 (en) 2014-04-02 2017-02-07 Industrial Technology Research Institute Lissajous dual-axial scan component and scan frequency generation method thereof
CN104977786B (en) * 2014-04-02 2017-04-12 财团法人工业技术研究院 Lissajous double-axis scanning element and scanning frequency generating method thereof
CN110505370A (en) * 2018-05-16 2019-11-26 宁波舜宇光电信息有限公司 Light steering assembly and its manufacturing method and periscopic camera module, periscopic array mould group and electronic equipment
CN110505370B (en) * 2018-05-16 2024-05-14 宁波舜宇光电信息有限公司 Light steering assembly, manufacturing method thereof, periscope type camera module, periscope type array module and electronic equipment

Similar Documents

Publication Publication Date Title
US8456724B2 (en) Biaxial scanning mirror for image forming apparatus
JP6349229B2 (en) Biaxial optical deflector and manufacturing method thereof
US20030137711A1 (en) Rocking member apparatus
US7570406B2 (en) Actuator, optical scanner, and image forming apparatus
CN103064182B (en) Image forming apparatus
JP5720673B2 (en) Magnetic force type driving device, optical scanning device, and image display device
US7697181B2 (en) Actuator, optical scanner and image forming apparatus
US8508098B2 (en) Gimbaled scanning micro-mirror actuation scheme and architecture
JP2004037987A (en) Optical deflector and its manufacturing method
KR20080077580A (en) Oscillator device, method of driving the same, optical deflector and image display device using the same
TW201200905A (en) Biaxial scanning mirror for image forming apparatus
JP2004297923A (en) Planar electromagnetic actuator
JP2000171481A (en) Comb structure, actuator and inertia sensor
FR2828000A1 (en) Microdriver magnetic drive, e.g. for microswitch having fixed/ moving sections and moving magnet attachment zones raising moving magnet attachment zones raising moving magnet when attraction zone active
JP3917445B2 (en) Planar actuator
JP2009109778A (en) Mirror device
CN108351509A (en) Micro-mechanical component and method for adjusting adjustable component
JP4144840B2 (en) Oscillator device, optical deflector, and optical apparatus using optical deflector
JP3848249B2 (en) Oscillator device
US8305671B2 (en) Biaxial scanning mirror for image forming apparatus and method for operating the same
KR101511145B1 (en) Electromagnetic actuator
JP2006154315A (en) Electrostatic comb-shaped swinging body device and manufacturing method thereof
JP3677604B2 (en) Magnetic actuator
JP2006072251A (en) Planar type actuator
TW201200906A (en) Biaxial scanning mirror for image forming apparatus and method for operating the same