TW201200851A - Object reflection spectrum estimation method - Google Patents

Object reflection spectrum estimation method Download PDF

Info

Publication number
TW201200851A
TW201200851A TW99121167A TW99121167A TW201200851A TW 201200851 A TW201200851 A TW 201200851A TW 99121167 A TW99121167 A TW 99121167A TW 99121167 A TW99121167 A TW 99121167A TW 201200851 A TW201200851 A TW 201200851A
Authority
TW
Taiwan
Prior art keywords
color
image
data
reflection spectrum
light source
Prior art date
Application number
TW99121167A
Other languages
Chinese (zh)
Other versions
TWI410614B (en
Inventor
Tzern-Ru Chou
Yi-Te Lu
Original Assignee
Univ Nat Taiwan Normal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Normal filed Critical Univ Nat Taiwan Normal
Priority to TW99121167A priority Critical patent/TWI410614B/en
Publication of TW201200851A publication Critical patent/TW201200851A/en
Application granted granted Critical
Publication of TWI410614B publication Critical patent/TWI410614B/en

Links

Landscapes

  • Color Image Communication Systems (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Image Processing (AREA)

Abstract

The invention provides an object reflection spectrum estimation method for use in digital image processing, comprising inputting data relating to light source frequency spectrums, color-matching, image colors to a data processing device for estimating a plurality of substrate reflection spectrums accordingly; inputting an image data to the processing device for allowing data of the image color to be retrieved; selecting a corresponding substrate reflection spectrum among a plurality of reflection spectrums according to a preset light source such that the reflection spectrum of the image can be estimated in view of the data of the image color. The invention employs light sources, human eyes and objects for the estimation of reflection spectrums and can be applied to image processing for computer animation or digital synthesizing to improve quality and efficiency.

Description

201200851 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種物體反射譜估計方法,詳而言之, 係關於一種涉及光源、人眼和物體三者之物體反射譜估計 方法。 【先前技術】 隨著電腦技術進步’數位科技亦快速蓬勃發展,尤以 影像合成為多媒體業未來的一大趨勢。 影像合成技術是將兩張不同的影像切割後進行重疊 合成,通常會使用交界處漸變技術或計算補償的方式來解 決影像合成的邊界問題。在兩張影像的光源條件差異不大 時,這樣的合成方法是可行的,然而,兩組於不同光源環 境下所拍攝的影像,在合成時會於邊界產生不真實感,這 是因為物體將光源反射或透射至人眼的感色錐狀細胞,因 而相同物體在光源條件不同下所拍攝到的影像色彩會不 同。 為解決影像合成的不真實感,對於熟悉彩色影像處理 領域中的人士而言,較常使用白平衡技術或其他色彩調整 技術來處理。過去常見的白平衡處理法包含灰界理論演算 法(Gray World Theory,GWT)、最大 RGB 值演算法(Maximal RGB Value,GAM) ’其他色彩調整技術例如主成分分析估 計法、多次回歸分析模擬法等。 另外,合成影像欲使觀賞者同意並接受其真實感,必 須針對透視和觀點、尺寸關係、鏡頭(lens)、色彩與對比、 111659 4 201200851 顆粒、邊緣和邊緣品質、 ’然而,這樣的修改過程 亮光和陰影、反射、材質和底片 手作圖和圖樣等要素來仔細修正 相當費時且繁瑣。 因此 如何提供 法,能夠應用於如色溫調彩學㈣像色料計方 以#、"專色溫合成等影像處理用,201200851 VI. Description of the Invention: [Technical Field] The present invention relates to an object reflection spectrum estimation method, and more particularly to an object reflection spectrum estimation method involving a light source, a human eye, and an object. [Prior Art] With the advancement of computer technology, digital technology has also developed rapidly, especially with image synthesis as a major trend in the future of the multimedia industry. Image compositing is the process of splicing two different images and superimposing them. Usually, the boundary grading technique or computational compensation is used to solve the boundary problem of image synthesis. This method of synthesis is feasible when the light source conditions of the two images are not much different. However, the images taken by the two groups in different light source environments will produce unreality at the boundary during the synthesis, because the object will The light source reflects or transmits to the color-sensitive cone-shaped cells of the human eye, and thus the color of the image captured by the same object under different light source conditions may be different. In order to solve the unreality of image synthesis, it is more commonly used by people familiar with the field of color image processing to use white balance technology or other color adjustment techniques. The common white balance processing method in the past includes Gray World Theory (GWT) and Maximal RGB Value (GAM). Other color adjustment techniques such as principal component analysis and estimation, multiple regression analysis Law and so on. In addition, synthetic images intended to allow viewers to agree and accept their realism must be directed to perspective and perspective, dimensional relationships, lenses, colors and contrasts, 111659 4 201200851 grain, edge and edge quality, 'however, such a modification process Careful correction of highlights and shadows, reflections, materials, and hand-drawn graphics and drawings is time consuming and cumbersome. Therefore, how to provide the method can be applied to image processing such as color temperature modulation (4) color material metering, #, " spot color temperature synthesis, etc.

加影像處理:經驗法則為主的影像調色技術’進而增 【發明内容】 為解決先前技術的種種問韻 射譜估計方法,可簡易並快迷’:進物體反 其影像品質。 Μ付録製,進而提高 理,之物體反射譜估計方法,係應用於數位影像處 以II反射4估計方法包括以下步驟:⑴對資料處理 二置輸入複數個光源頻譜資料、複數個配色#料、複數個 j色彩資料;(2)令該#料處理裝置依據該複數個光源頻 譜=料、該複數個配色資料、該複數個影像色彩資料,以 預疋A式估算出複數個基底反射譜;(3)對該資料處理裝置 輪入一衫像並擷取該影像的色彩資料;以及(4)令該資料處 里裝·置依據該影像的色彩資料及該複數個基底反射譜,估 計出該物體之反射譜。 於—實施形態中,前述步驟(4)復包括步驟(4_1}令該資 料處理裝置依據一預定的光源從該複數個基底反射譜中選 擇相對應的基底反射譜;以及步驟(4-2)令該資料處理裝置 依據該影像的色彩資料及對應該預定的光源的基底反射 5 111659 201200851 譜,估計出該物體的反射譜。 於前述實施形態中復包括步驟(4_3)令該資料處理裝 置依據该景彡像的反射譜以該預定公式估算該影像的色彩 值;以及步驟(4-4)令該資料處理裝置依據該預定的光源的 色溫資料’將該影像的色彩值轉換成該影像的三色色彩值。 相較於習知技術,本發明先建立一個基底反射譜的模 型,以於執行影像處理時,依據該影像的色彩資料或其他 相關資料,配合該基底反射譜模型而進行反射譜的估計, 此外本發明應用於數位影像後製時,得以提升效率及品 質。 【實施方式】 以下藉由特定的實施形態說明本發明,熟悉此技術之 人士』由本說明書所揭示之内容輕易地了解本發明之其他 優..與功效’亦可藉由其他不同的具體實施態樣加以施行 或應用。 、、首先,須s兒明的是,人眼之可以能感知色彩,是由於 $源、物體反射、以及眼睛三者配合而共同達成的,因此, =已知光源和眼睛兩個參數,則可推得物體的反射光即 物體的影像。 十第1A圖係顯示本發明之物體反射譜估計方法之基本 /成程圖。 位於步驟S11巾’對例如為個人電腦、筆記型電腦、數 =機,智慧型手機等資料處理裝置輸入複數個光源頻譜 ;、複數個配色資料及複數個影像色彩資料。詳言之, 6 111659 201200851 複數個光源頻譜資料為光源各波長的能量分佈,複數個配 色資料為人眼錐狀細胞的感光量化程度,複數個影像色彩 資料則為物體所能反射的所有顏色。接著進至步驟S12。 於步驟S12中,令資料處理裝置依據所述之複數個光 源頻譜資料、複數個配色資料及複數個影像色彩資料,利 用預疋公式估异出极數個基底反射譜,俾建立一個物體的 基底反射譜模型。接著進至步驟S13。 鲁 於步驟S13中,令資料處理裝置輸入一影像並擷取該 影像的色彩資料。該影像的色彩資料係為該影像的R、〇、 B分量’即影像的〜、Cc、Ce。接著進至步驟si4。 於步驟S14中,令資料處理裝置依據該影像的色彩資 料及該複數個基底反射譜,估計出該影像之反射譜。換言 之,即將影像的色彩資料輸入至透過所述步驟S11至S12 所建立的基底反射譜模型中,即可取得該影像的反射譜。 較佳者,於步驟S14中,復包括如第1B圖所示之步 φ 驟 S141 〜S142。 於步驟S141中,令資料處理裝置依據一預定的光源 從該複數個基底反射譜中選擇相對應的基底反射譜。詳言 之,於所述預先建立的基底反射譜模型中並沒有限定所使 用的光源,因而當估算該影像的反射譜時需要選擇與一預 定的光源相對應的基底反射譜,通常為拍攝該影像時的光 源,進而估計該物體於該預定的光源下的反射譜。接著進 至步驟S142。 於步驟S142中,令資料處理裝置依據該影像的色彩 7 111659 201200851 資料及對應該預定的光源的基底反射譜,估計出該影像的 反射譜。須說明的是,藉由基底反射譜模型所獲得之反射 ’係為光譜反射率(Spectral renectance),即每單位波長 的反射率’其中,反射率為入射光與經物體反射之反射光 的比值。 更佳者’本發明之物體的反射譜估計方法復包括如第 1C圖所示之步驟S143〜S144。 於步驟S143中,令資料處理裝置依據該影像的反射 譜以該預定公式估算該影像的色彩值,即將反射譜換算為 色彩值。接著進至步驟S144。 於步驟S144中,依據該預定光源的色溫資料,將該 影像的色彩值轉換為該影像的三色色彩值,即將該色彩值 經由線性矩陣轉換成以RGB三色色彩空間所定義的RGB 值。 由前述配合第1A至第1C圖之流程步驟可知,在基 於光源、影像色彩、配色資料建立起基底反射譜模螌後’ 僅需輸入一影像的色彩資料,即可配合該基底反射譜模塑 估计出該影像的反射譜。因此,透過本發明之物體反射譜 估计方法之實施’除了快速估算出影像的反射譜之外,更 可選擇不同光源來估計在不同光源下的物體反射譜,進而 提升影像處理的效率及品質。 以下係以數學公式表達本發明之基本概念與原理’下 列公式涉及不同色彩空間的轉換,本文僅例示性說明,並 非用以限制本發明之權利範圍。 8 111659 201200851 前述步驟S12所使用的預定公式為三刺激值 (tristimulus values)公式結合色彩混色原理,該三刺激值公 式為.Adding image processing: the image coloring technique based on the rule of thumb is further increased. [Summary of the Invention] In order to solve the various methods of estimating the spectrum of the prior art, it is easy and quick to change the image quality. Μ 录制 录制 , , , , 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 物体 II II II II II II II II II II II II II II II II II II II a color data; (2) causing the #material processing device to estimate a plurality of base reflection spectra according to the plurality of light source spectrum=material, the plurality of color matching materials, and the plurality of image color data; 3) wheeling a shirt image to the data processing device and capturing the color data of the image; and (4) causing the data to be loaded and placed according to the color data of the image and the plurality of base reflection spectra, and estimating The reflection spectrum of the object. In the embodiment, the step (4) further includes a step (4_1) for causing the data processing device to select a corresponding base reflection spectrum from the plurality of base reflection spectra according to a predetermined light source; and step (4-2) Having the data processing device estimate the reflection spectrum of the object according to the color data of the image and the base reflection corresponding to the predetermined light source. In the foregoing embodiment, the step (4_3) is further included to make the data processing device The reflection spectrum of the scene image estimates the color value of the image by the predetermined formula; and the step (4-4) causes the data processing device to convert the color value of the image into the image according to the color temperature data of the predetermined light source. The three-color color value. Compared with the prior art, the present invention first establishes a model of the base reflection spectrum for performing image processing, and according to the color data or other related data of the image, the base reflection spectrum model is used for reflection. The estimation of the spectrum, in addition to the application of the present invention to digital image post-production, can improve efficiency and quality. [Embodiment] The following is a specific implementation form Illustrating the present invention, those skilled in the art can easily understand that other advantages and functions of the present invention can be implemented or applied by other different embodiments. It is obvious that the human eye can perceive color, which is achieved by the combination of $source, object reflection, and eye. Therefore, = two parameters of known light source and eye can be used to derive the object. The reflected light is the image of the object. The tenth 1A diagram shows the basic/scheduled diagram of the method for estimating the reflection spectrum of the object of the present invention. The step S11 is located in the step S11, for example, a personal computer, a notebook computer, a digital computer, a smart phone. The data processing device inputs a plurality of light source spectra; a plurality of color matching materials and a plurality of image color data. In detail, 6 111659 201200851 a plurality of light source spectral data is an energy distribution of each wavelength of the light source, and the plurality of color matching materials are human eye cones. The degree of sensitization of the cells, and the plurality of image color data are all colors that the object can reflect. Then, the process proceeds to step S12. And the data processing device estimates the number of base reflection spectra of the different poles according to the plurality of source spectrum data, the plurality of color matching materials, and the plurality of image color data, and establishes a base reflection spectrum model of the object. Then, the process proceeds to step S13. In step S13, the data processing device inputs an image and captures the color data of the image. The color data of the image is the R, 〇, and B components of the image. Cc, Ce. Then proceed to step si4. In step S14, the data processing device estimates the reflection spectrum of the image according to the color data of the image and the plurality of base reflection spectra. In other words, the color data of the image is input to The reflection spectrum of the image can be obtained by the base reflection spectrum model established in the steps S11 to S12. Preferably, in step S14, steps φ S141 to S142 as shown in Fig. 1B are repeated. In step S141, the data processing device selects a corresponding base reflection spectrum from the plurality of base reflection spectra according to a predetermined light source. In detail, the light source used is not limited in the pre-established base reflection spectrum model, so when estimating the reflection spectrum of the image, it is necessary to select a base reflection spectrum corresponding to a predetermined light source, usually for shooting. The light source at the time of the image, and further the reflection spectrum of the object under the predetermined light source. Then, it proceeds to step S142. In step S142, the data processing device is configured to estimate the reflection spectrum of the image according to the color of the image and the base reflection spectrum of the light source corresponding to the predetermined source. It should be noted that the reflection obtained by the base reflection spectrum model is Spectral renectance, that is, the reflectance per unit wavelength, where the reflectance is the ratio of the incident light to the reflected light reflected by the object. . More preferably, the reflection spectrum estimation method of the object of the present invention includes steps S143 to S144 as shown in Fig. 1C. In step S143, the data processing device causes the data processing device to estimate the color value of the image according to the reflection spectrum of the image, that is, convert the reflection spectrum into a color value. Then it proceeds to step S144. In step S144, the color value of the image is converted into a three-color color value of the image according to the color temperature data of the predetermined light source, that is, the color value is converted into an RGB value defined by the RGB three-color color space via a linear matrix. It can be seen from the foregoing steps of the first embodiment to the first embodiment of FIG. 1C that after the base reflection spectrum model is established based on the light source, the image color, and the color matching data, only the color data of an image needs to be input, and the base reflection spectrum molding can be matched. The reflection spectrum of the image is estimated. Therefore, in addition to rapidly estimating the reflection spectrum of the image through the reflection spectrum estimation method of the object of the present invention, different light sources can be selected to estimate the reflection spectrum of the object under different light sources, thereby improving the efficiency and quality of the image processing. In the following, the basic concepts and principles of the present invention are expressed by mathematical formulas. The following formulas relate to the conversion of different color spaces, which are merely illustrative and are not intended to limit the scope of the invention. 8 111659 201200851 The predetermined formula used in the foregoing step S12 is a tristimulus values formula combined with a color mixing principle, and the tristimulus value formula is.

X = kjRW-PW-x(A)dA Y = kjR(A).P⑷X = kjRW-PW-x(A)dA Y = kjR(A).P(4)

Z = kjR(A)p(^)z(A)dA , 100 ~ \?{λ)·γ(λ)άλ …⑴ 其中,R(;L)為物體反射譜,ρμ)為光源的頻譜,I·、f、 [為人眼配色函數,yt作為正規化。 另外,於色彩混色法理論中,假設以R、G、B三原 色作為模擬反射譜的基底時,其模擬函數分別為&⑷、,bW、 φ 〜⑷,則物體的最佳化反射譜為: R0(乂) = cR .rR(/l)+cG .rG(/l)+cB .rj/i·) _ Pixel r,g,b ^B=_25Γ" ...(2) 其中,c〆cc、cs分別為R、G、B分量值加成係數。 結合前述公式(1)和公式(2)可得到:Z = kjR(A)p(^)z(A)dA , 100 ~ \?{λ)·γ(λ)άλ (1) where R(;L) is the object reflection spectrum, ρμ) is the spectrum of the light source, I·, f, [for the human eye color matching function, yt as a normalization. In addition, in the color mixing method theory, when the three primary colors of R, G, and B are used as the base of the simulated reflection spectrum, the simulation functions are & (4), bW, and φ to (4), respectively, and the optimized reflection spectrum of the object is : R0(乂) = cR .rR(/l)+cG .rG(/l)+cB .rj/i·) _ Pixel r,g,b ^B=_25Γ" (2) where c 〆cc and cs are the R, G, and B component value addition coefficients, respectively. Combined with the above formula (1) and formula (2), we can get:

X = k J(cR · rR⑷ + cG · rG ⑷ + cB . rB⑷).P(A). x(A)cU 9 111659 201200851 Y - k ί (cr · rR ⑷ + cG · rG ⑷+cB · rB⑷).P(A).只乂知乂 Z = k I(cr .rR W+cc .rc(A)+cB. rB(;l)). p⑷·办如 ...(3-1) 由公式(3-1)可知,輸入光源頻譜資料p(/i)、人眼配色 函數iΪ5和影像色彩資料,包括色彩值χ、γ、z及色 彩資料4、Cc、〜,可估算出物體的基底反射譜〜⑷、以α)、 必)。 〇 於本實施形態中,本發明係應用於數位影像處理,配 合人眼配色函數,將光源頻譜資料限制於可見光的範圍, 即波長介於38〇nm至780nm之間,且加入光源的色溫(c〇1〇r temperature)參數t,因此公式(3-1)成為 780X = k J(cR · rR(4) + cG · rG (4) + cB . rB(4)).P(A). x(A)cU 9 111659 201200851 Y - k ί (cr · rR (4) + cG · rG (4)+cB · rB(4) ).P(A). Only know that Z = k I(cr .rR W+cc .rc(A)+cB. rB(;l)). p(4)·do as...(3-1) Equation (3-1) shows that the input source spectrum data p(/i), the human eye color matching function iΪ5, and the image color data, including the color values χ, γ, z, and color data 4, Cc, ~, can estimate the object Base reflection spectrum ~ (4), with α), must). In the present embodiment, the present invention is applied to digital image processing, and the human eye color matching function is used to limit the spectrum data of the light source to the range of visible light, that is, the wavelength is between 38 〇 nm and 780 nm, and the color temperature of the light source is added ( C〇1〇r temperature) parameter t, so formula (3-1) becomes 780

Xt ck, Jr〇(又)·ρ丨⑷·X(ja 380 780 =kt i (c r · rR ⑷+CG · rG ⑷+ cB . rB ⑷).pt ⑷·办如 380 780Xt ck, Jr〇 (again)·ρ丨(4)·X(ja 380 780 =kt i (c r · rR (4)+CG · rG (4)+ cB . rB (4)).pt (4)·do as 380 780

Y = kjR〇(A)Pt(^).xdA 380 780 -kt J(cR rR(;l)+CG .rG⑷+CR.rB(又))·ρ丨⑷.y(乂沁乂 380 780Y = kjR〇(A)Pt(^).xdA 380 780 -kt J(cR rR(;l)+CG .rG(4)+CR.rB(again))·ρ丨(4).y(乂沁乂 380 780

z = kjR〇W.Pt(;l).icU 380 780 -kt J(cR .rR(/l)+cG -rG(A)+cB -rB(A)).以乂). 380 ...(3-2) 因此,由公式(3-2)可知,輸入可見光頻譜分佈、人眼 配色函數、物體所能反射的所有顏色,即影像色彩資料, 可建立起一個基底反射譜資料庫。 Π1659 10 201200851 接著,輸入一張影像的、Cc、Cfl,並依據該影像拍攝 時的光源’從該基底反射譜資料庫中選擇對應該光源的基 底反射譜hW、4⑷、⑷’配合其、Cc、Cfl ’透過公式(2) 可算出物體的物體反射譜R。⑷。 再者,可利用公式(1)將物體的反射譜R。⑷換算為三刺 激值X、γ、Z。其次,三刺激值可藉由色彩空間轉換公式 (4)再轉換成RGB值,z = kjR〇W.Pt(;l).icU 380 780 -kt J(cR .rR(/l)+cG -rG(A)+cB -rB(A)).乂乂). 380 ... (3-2) Therefore, from equation (3-2), the input spectrum of the visible light, the color matching function of the human eye, and all the colors that the object can reflect, that is, the image color data, can establish a base reflection spectrum database. Π1659 10 201200851 Next, input a Cc, Cfl of an image, and select a base reflection spectrum hW, 4(4), (4)' corresponding to the light source from the base reflection spectrum database according to the light source at the time of the image capture, Cc , Cfl 'The object reflection spectrum R of the object can be calculated by the formula (2). (4). Furthermore, the reflection spectrum R of the object can be obtained by the formula (1). (4) Converted to three spikes X, γ, Z. Second, the tristimulus values can be converted to RGB values by the color space conversion formula (4).

•X; 'R' Y, = [M]t G B …⑷ 其中,t表示光源的色溫,因為色彩空間轉換公式中 的矩陣Μ跟所選擇的參考白點有關,因而在色溫不同的光 源下會有不同的轉換矩陣。 具體貫施時’本發明使用Munsell Color Science• X; 'R' Y, = [M]t GB ... (4) where t is the color temperature of the source, because the matrix 色彩 in the color space conversion formula is related to the selected reference white point, so it will be under a light source with a different color temperature There are different conversion matrices. Concretely, the invention uses Munsell Color Science

Laboratory所實驗之各項光源頻譜資料(Daylight series光 源)’以及由國際照明委貝會(International Commission on φ Illumination, CIE)於1931年根據混色原理所進行之配色實 驗,即將人眼對光的反應量化係得到配色函數(Color Matching Function),並自製平均分佈的影像色彩資料,作 為計算RGB三色基底反射譜之依據。 根據前述之公式(1)和公式(2),可推導出物體反射譜 與色彩三刺激值之關係公式(3-2),等號左邊的XYZ值可 藉由色彩空間轉換公式(4)轉換成RGB值。因此將色溫r的 光源頻譜資料分佈Ρ,⑷、人眼配色函數5、ί、〗以及影像色 彩資料代入公式(3-2),將可反推求出未知的RGB三色基 11 111659 201200851 底反射譜&⑷、,bW、〜⑷,再以此三色基底反射譜估計出物 體反射譜。 請參閱第2A至2K圖,其係色溫4000K至9000K的 光源頻譜資料分佈圖。首先,從全波段光譜中選擇可見光 範圍,如Daylight series光源從4000K開始每隔500K直 至9000K共11組的光源頻譜資料,如第2A至2K圖所示, 光源所發出的光譜組成以能量來表示,代表光源發出不同 波長的韓射功率的分佈。人眼配色函數則如第3 A至3C圖 所示,分別為人眼配色函數Xy、Z。The light source spectrum data (Daylight series light source) experimented by the Laboratory and the color matching experiment conducted by the International Commission on φ Illumination (CIE) in 1931 according to the principle of color mixing, the response of the human eye to light The quantization system obtains the Color Matching Function and self-produces the image data of the average distribution as the basis for calculating the reflection spectrum of the RGB three-color substrate. According to the above formula (1) and formula (2), the relationship between the object reflection spectrum and the color tristimulus value can be derived (3-2), and the XYZ value on the left side of the equal sign can be converted by the color space conversion formula (4). Into RGB values. Therefore, the spectrum data distribution of the color temperature r is Ρ, (4), the human eye color matching function 5, ί, 〗, and the image color data are substituted into the formula (3-2), and the unknown RGB trichromatic base can be inversely derived. 11 111659 201200851 The reflection spectrum & (4), bW, ~ (4), and then the three-color base reflection spectrum is used to estimate the object reflection spectrum. Please refer to Figures 2A to 2K for a spectrum data distribution diagram of the light source with a color temperature of 4000K to 9000K. First, select the visible range from the full-band spectrum. For example, the Daylight series source starts from 4000K every 10K to 9000K for a total of 11 sets of source spectrum data. As shown in Figures 2A to 2K, the spectral composition of the light source is expressed by energy. , representing the distribution of the Korean laser power of different wavelengths. The human eye color matching function is shown in Figures 3A to 3C, which are the human eye color matching functions Xy and Z, respectively.

依照前述之公式(3-2),輸入R、(}、b各從〇至255 互相組合的影像色彩資料’根據色溫ί的不同,配合第2 圖所示之11組色溫4000Κ至9000Κ的光源頻譜資料,將 可反推求出如第4 Α至4Κ圖所示之11組的RGB三色基底 反射譜〜⑷、"。⑶、〜⑷。接著’依據數位影像拍攝時的光源 選用相對應的RGB三色基底反射譜,即可計算出數位影像 的在該光源下的物體反射譜。 I 此外,苐5 A至5K圖則顯示同一輸入影像在不同色溫 下的光源之物體反射譜,亦即從4000K、4500K、5000K、 5500K、…9000K共11组之物體反射譜,其中,該輸入影 像的色彩資料〜〜、〜分別為R:140, G:90, B:70。由第5 圖中可知,當色溫越高時,物體反射譜的圖形會向短波長的 方向偏移’在5OOnm處的反射率會下降,代表高色溫原始 影像色彩的物體反射5普,對於短波長的能量反射率會提升。 因此,對於數位影像而言,當得到該影像的影像色彩 111659 12 201200851 資料和拍攝時的光源後,配上不同色溫的光源頻譜資料即 可進行影像的色溫調整,使得該影像呈現在不同光源下的 調整結果。 最後執行驗證程序,預先將白平衡模式設定為曰光 5200K,並使用光譜儀(JETI spectroradiometers specbos)記 錄拍攝時的色溫。接著,拍攝兩張實拍影像A、B,其色 溫分別是5400K和5760K,將實拍影像B轉換色溫至5400K 與實拍影像A相同,轉換後的影像稱為影像B2,最後計 *算其樣本色與估計色的色差,樣本色和估計色的最大色差 值為4.14,平均色差值則為2.54。因此,經過驗證程序可 證明,將本發明所提供之物體反射譜估計方法應用於物體 映像的色溫調整,其所調整後的影像情況與真實拍攝情況 相差不多,故,使用本發明之物體反射譜估計方法所進行 之數位影像的色溫調整,具有良好的效果。 是故,本發明以三刺激值公式和色彩混色法為理論基 _ 礎,且基於人眼、光源和物體三者的關係,在人眼與光源 參數已知的情況下可估計出物體的反射譜。換言之,利用 三刺激值公式和色彩混色法、人眼配色函數、光源頻譜分 佈和影像色彩資料(包括色彩資料和色彩值)先建構出一個 基底反射譜模型,於已知一影像的色彩資料時,配合前述 基底反射譜模型並令光源為拍攝時的光源或另一預定光 源,得以估計出物體在某光源下的反射譜。 綜上所述,應用本發明之物體反射譜估計方法,能估 計物體於原始拍攝光源下的反射譜,亦可賦予不同色溫的 13 111659 201200851 光源以估計改變光源後的物體反射譜,再者,經由實驗證 明,改變光源(即為調整光源的色溫)後所得到的影像與實 際於該變光源下所拍攝的影像,其色差不大。因此,將本 發明之物體反射譜估計方法應用於數位影像如影像合成、 影像處理、虛擬實境等,可縮短其作業時程、增進工作效 率和提升内容品質,對於電腦動晝、影視内容等領域具有 進一步的良好功效。 上述實施態樣僅例示性說明本發明之原理及功效,而 非用於限制本發明。任何熟習此項技術之人士均可在不違 背本發明之精神及範疇下,對上述實施形態進行修飾與改 變。因此,本發明之權利保護範圍,應如後述之申請專利 範圍所列。 【圖式簡單說明】 第1A圖係顯示本發明之物體反射譜估計方法之流程 圓; 第1B圖係顯示本發明之物體反射譜估計方法之較具 體實施形態之流程圖; 第1C圖係顯示本發明之物體反射譜估計方法之一實 施形態之流程圖; 第2A至2K圖係顯示應用本發明之物體反射譜估計 方法之具體實施時色溫4000K至9000K的光源頻譜資料分 佈圖; 第3A至3C圖係分別顯示本發明之物體反射譜估計 方法所使用之人眼配色函數^5 ; 14 111659 201200851 第4A至4K圖係分別顯示本發明之物體反射譜估計 方法之具體實施時色溫4000Κ至9000Κ的RGB三色基底 反射譜〜⑻、以)、〜⑷;以及 第5A至5K圖係顯示應本發明之物體反射譜估計方 法之具體實施時在色溫4000K至9000K的光源下之物體反 射譜。 【主要元件符號說明】 S11〜S14 步驟 S141〜S144 步驟According to the above formula (3-2), input R, (}, b each image color data from 〇 to 255 combined with each other according to the color temperature ί, with the 11 sets of color temperature of 4000 Κ to 9000 色 shown in Figure 2 The spectrum data will be inversely derived from the 11 sets of RGB three-color base reflection spectra shown in Figures 4 to 4, ~(4), "(3), ~(4). Then, the light source selection phase based on digital image shooting. Corresponding RGB three-color base reflection spectrum, the object reflection spectrum of the digital image under the light source can be calculated. I In addition, the 苐5 A to 5K map shows the object reflection spectrum of the light source of the same input image at different color temperatures, That is, from the 4000K, 4500K, 5000K, 5500K, ... 9000K a total of 11 groups of object reflection spectrum, wherein the input image color data ~ ~, ~ are respectively R: 140, G: 90, B: 70. by the 5th As can be seen, when the color temperature is higher, the pattern of the object's reflection spectrum will shift toward the direction of short wavelengths. The reflectance at 5OOnm will decrease, and the object representing the color temperature of the original image will reflect 5 pixels for short wavelength energy. The reflectivity will increase. Therefore, for digital images In other words, when the image color of the image is 111659 12 201200851 and the light source at the time of shooting, the color spectrum of the light source with different color temperatures can be adjusted to adjust the color temperature of the image, so that the image is adjusted under different light sources. To verify the program, set the white balance mode to Dawn 5200K in advance, and use the spectrometer (JETI spectroradiometers specbos) to record the color temperature during shooting. Then, take two real shot images A and B, the color temperature is 5400K and 5760K respectively. The image B is converted to a color temperature of 5400K, which is the same as the real shot image A. The converted image is called image B2, and finally the color difference between the sample color and the estimated color is calculated. The maximum color difference between the sample color and the estimated color is 4.14. The color difference value is 2.54. Therefore, the verification procedure can prove that the object reflection spectrum estimation method provided by the present invention is applied to the color temperature adjustment of the object image, and the adjusted image condition is similar to the real shooting situation. The color temperature adjustment of the digital image performed by the object reflection spectrum estimation method of the present invention has a good effect Therefore, the present invention is based on the tristimulus value formula and the color mixture method, and based on the relationship between the human eye, the light source and the object, the object can be estimated under the condition that the human eye and the light source parameters are known. Reflective spectrum. In other words, using a tristimulus value formula and color mixing method, human eye color matching function, source spectral distribution and image color data (including color data and color values) to construct a base reflection spectrum model, which is known for an image. In the color data, the reflection spectrum of the object under a certain light source can be estimated by matching the aforementioned base reflection spectrum model and making the light source a light source or another predetermined light source at the time of shooting. In summary, the object reflection spectrum estimation method of the present invention can estimate the reflection spectrum of the object under the original shooting light source, and can also assign the 13 111659 201200851 light source with different color temperatures to estimate the reflection spectrum of the object after changing the light source. It has been experimentally proved that the image obtained by changing the light source (that is, adjusting the color temperature of the light source) has a small color difference from the image captured under the variable light source. Therefore, the object reflection spectrum estimation method of the present invention is applied to digital images such as image synthesis, image processing, virtual reality, etc., which can shorten the operation time, improve work efficiency and improve content quality, for computer animation, video content, etc. The field has further good results. The above-described embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Modifications and changes may be made to the above-described embodiments without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the scope of the patent application to be described later. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a flow chart showing a method for estimating an object reflection spectrum of the present invention; FIG. 1B is a flow chart showing a more specific embodiment of an object reflection spectrum estimation method of the present invention; The flow chart of one embodiment of the object reflection spectrum estimation method of the present invention; the 2A to 2K diagrams show the spectrum data distribution map of the light source with the color temperature of 4000K to 9000K in the specific implementation method of the object reflection spectrum estimation method of the present invention; The 3C diagram shows the human eye color matching function used in the object reflection spectrum estimation method of the present invention, respectively; 14 111659 201200851 The 4A to 4K diagrams respectively show the color temperature of 4000 Κ to 9000 具体 in the specific implementation of the object reflection spectrum estimation method of the present invention. The RGB three-color base reflection spectrums ~(8), 、, 〜4(4); and the 5A to 5K diagrams show the object reflection spectrum under the light source of the color temperature of 4000K to 9000K in the specific implementation of the object reflection spectrum estimation method of the present invention. [Main component symbol description] S11~S14 Steps S141~S144 Steps

15 11165915 111659

Claims (1)

201200851 七、申請專利範圍·· 1· 一種物體反射譜估許 ,,^- ,,係應用於數位影像處理,該 物體反射譜估計方法包括以下步驟: a ⑴對胃料處理裝置輪人複触光源頻譜資料 數個配色資料及複數個影像色彩資料; (2)令該資料處理裝置依據該複數個 Γ該㈣個配色資該複數個影像色織料,^ 疋公式估算出複數個基底反射譜; ()對4資料處理裝置輸人—影像並_取該影像 的色彩資料;以及 ▲⑷令该資料處理裝置依據該影像的色彩資料及 »亥複數個基底反射譜,估計出該物體之反射譜。 2. 如申請專㈣圍第丨項所述之物體反射譜料方法,其 中,該預定公式為三刺激值公式。 3. 如申請專利範圍第丨項所述之物體反射譜估計方法,其 中,該影像色彩資料包括色彩資料及色彩值。 4·如申請專利範圍第丨項所述之物體反射譜估計方法其 中,該色彩資料為該影像的色彩分量資料。 5·如申請專利範圍第1項所述之物體反射譜估計方法,其 中’步驟(4)復包括以下步驟: (4-1)令該資料處理裝置依據一預定的光源從該複 數個基底反射譜中選擇相對應的基底反射譜;以及 (4-2)令該資料處理裝置依據該影像的色彩資料及 對應該預定的光源的基底反射譜,估計出該影像的反射 16 111659 201200851 譜。 如申明專利I巳圍第5項所述之物體反射譜估計方法,其 中’該預定的光源為該影像的拍攝光源。 ’ ’如申请專利&圍第5項所述之物體反射譜估計方法,其 中’步興(4)復包括以下步驟: (4-3)令該資料處理襄置依_影像的反射譜以該 預定公式估算該影像的色彩值;以及 H (4-4)令該資料處理裝置依據該預定的光源的色溫 資料,將該影像的色彩值轉換為該影像的三色色彩值。 •如申凊專利範圍第7項所述之物體反射譜估計方法,其 中,該影像的色彩值為三刺激值。 9.如申請專利範圍第7項所述之物體反射譜估計方法,其 中,該三色色彩值為RGB值。201200851 VII. Patent application scope ··· An object reflection spectrum estimation, ^- , is applied to digital image processing. The object reflection spectrum estimation method includes the following steps: a (1) Touching the stomach material processing device a plurality of color matching data and a plurality of image color data of the light source spectrum data; (2) causing the data processing device to estimate a plurality of base reflection spectra according to the plurality of (four) color matching materials and the plurality of image color woven materials () for 4 data processing devices to input the image - and to take the color data of the image; and ▲ (4) to enable the data processing device to estimate the reflection of the object based on the color data of the image and the number of base reflection spectra Spectrum. 2. For the method of applying the object reflection spectrum according to the item (4), the predetermined formula is the formula of the tristimulus value. 3. The method for estimating an object reflectance spectrum according to the scope of the patent application, wherein the image color data comprises color data and color values. 4. The method of estimating an object reflectance spectrum according to the scope of claim 2, wherein the color data is color component data of the image. 5. The object reflection spectrum estimation method according to claim 1, wherein the step (4) further comprises the following steps: (4-1) causing the data processing device to reflect from the plurality of substrates according to a predetermined light source. Selecting a corresponding base reflection spectrum from the spectrum; and (4-2) causing the data processing device to estimate the reflection of the image according to the color data of the image and the base reflection spectrum of the corresponding light source. A method for estimating an object reflection spectrum according to claim 5, wherein the predetermined light source is a photographing light source of the image. The method of estimating the reflection spectrum of an object as described in claim 5, wherein the step (4) complex comprises the following steps: (4-3) the data processing device is configured to reflect the reflection spectrum of the image. The predetermined formula estimates a color value of the image; and H (4-4) causes the data processing device to convert the color value of the image to a three-color color value of the image according to the color temperature data of the predetermined light source. The object reflection spectrum estimation method according to claim 7, wherein the color value of the image is a tristimulus value. 9. The object reflection spectrum estimation method according to claim 7, wherein the three color color values are RGB values. 17 11165917 111659
TW99121167A 2010-06-29 2010-06-29 Object reflection spectrum estimation method TWI410614B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121167A TWI410614B (en) 2010-06-29 2010-06-29 Object reflection spectrum estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121167A TWI410614B (en) 2010-06-29 2010-06-29 Object reflection spectrum estimation method

Publications (2)

Publication Number Publication Date
TW201200851A true TW201200851A (en) 2012-01-01
TWI410614B TWI410614B (en) 2013-10-01

Family

ID=46755566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121167A TWI410614B (en) 2010-06-29 2010-06-29 Object reflection spectrum estimation method

Country Status (1)

Country Link
TW (1) TWI410614B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221959A (en) * 1990-03-16 1993-06-22 Olympus Optical Co., Ltd. Color discrimination data input apparatus
US7417735B2 (en) * 2004-09-27 2008-08-26 Idc, Llc Systems and methods for measuring color and contrast in specular reflective devices
TW200816829A (en) * 2006-09-29 2008-04-01 Univ Nat Taiwan Normal Image color balancing method based on multiple reference colors
TWI403177B (en) * 2008-05-21 2013-07-21 Univ Nat Taiwan Normal Control system and method for adjusting color temperature of high dynamic range images

Also Published As

Publication number Publication date
TWI410614B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
Akkaynak et al. Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration
JP5883949B2 (en) Spectral synthesis for image capture device processing.
Chi et al. Multi-spectral imaging by optimized wide band illumination
US8879849B2 (en) System and method for digital image signal compression using intrinsic images
Law et al. Perceptually based appearance modification for compliant appearance editing
Marszalec et al. Some aspects of RGB vision and its applications in industry
Koskinen et al. Reverse imaging pipeline for raw RGB image augmentation
Shrestha et al. LED based multispectral film scanner for accurate color imaging
Fredembach et al. The bright-chromagenic algorithm for illuminant estimation
Quintero et al. Color rendering map: a graphical metric for assessment of illumination
Darling et al. Real-time multispectral rendering with complex illumination
Drew et al. Multispectral processing without spectra
TW201200851A (en) Object reflection spectrum estimation method
CN115900951A (en) Method for calculating color gamut coverage rate of multi-primary color display system
Guarnera et al. Spectral upsampling approaches for RGB illumination
Guarnera et al. Turning a Digital Camera into an Absolute 2D Tele‐Colorimeter
Graham et al. Global nonlinear compression of natural luminances in painted art
Castro et al. Extended framework for Multispectral RTI
Duchêne et al. Mixed illumination analysis in single image for interactive color grading
Nieves et al. Unsupervised illuminant estimation from natural scenes: an RGB digital camera suffices
Shrestha et al. Computational color constancy using chromagenic filters in color filter arrays
TW202112125A (en) Frequency spectrum photography system with multi-angle mobile electronic device and image displaying method characterized by allowing the user to freely rotate and adjust the image of the printed matter on the display unit of the mobile electronic device
Tominaga et al. Appearance reconstruction of fluorescent objects based on reference geometric factors
Amiri Novel Approaches to the Spectral and Colorimetric Color Reproduction
Normand et al. Automated digital camera sensor characterization

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees