TW201200630A - Corrosion protection with Al/Zn-based coatings - Google Patents

Corrosion protection with Al/Zn-based coatings Download PDF

Info

Publication number
TW201200630A
TW201200630A TW99121206A TW99121206A TW201200630A TW 201200630 A TW201200630 A TW 201200630A TW 99121206 A TW99121206 A TW 99121206A TW 99121206 A TW99121206 A TW 99121206A TW 201200630 A TW201200630 A TW 201200630A
Authority
TW
Taiwan
Prior art keywords
coating
alloy
ribbon
inter
phase
Prior art date
Application number
TW99121206A
Other languages
Chinese (zh)
Other versions
TWI527932B (en
Inventor
Qiyang Liu
Aaron Kiffer Neufeld
David James Nolan
Wayne Renshaw
Bryan Andrew Shedden
Ross Mcdowall Smith
Joe Williams
Original Assignee
Bluescope Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluescope Steel Ltd filed Critical Bluescope Steel Ltd
Priority to TW099121206A priority Critical patent/TWI527932B/en
Publication of TW201200630A publication Critical patent/TW201200630A/en
Application granted granted Critical
Publication of TWI527932B publication Critical patent/TWI527932B/en

Links

Abstract

Red rust staining of Al/Zn coated steel strip in ''acid rain'' or ''polluted'' environments can be minimised by forming the coating as an Al-Zn-Si-Mg alloy coating with an OT: SDAS ratio greater than a value of 0.5: 1, where OT is the overlay thickness on a surface of the strip and SDAS is the measure of the secondary dendrite arm spacing for the Al-rich alpha phase dendrites in the coating. Red rust staining in ''acid rain'' or ''polluted'' environments and corrosion at cut edges in marine environments can be minimised in Al-Zn-Si-Mg alloy coatings on steel strip by selection of the composition (principally Mg and Si) and solidification control (principally by cooling rate) and forming Mg2Si phase particles of a particular morphology in interdendritic channels.

Description

201200630 六、發明說明: 【韻^明所屬之_我1彳标領】 發明領域 本發明大體而言係有關於產品之生產,該產品具有一 含有鋁與鋅作為合金主要成分之具合金塗覆物(在下文中 被稱為經Al/Zn為主之合金塗覆的產品”)。 術語“經Al/Zn為主之合金塗覆的產品,,於此係被理解 為包括呈帶狀物、管狀物、及結構區段形式的產品當作範 例,該等產品具有具A1/Zn為主之合金的塗覆物在該等產品 表面的至少一部分上。 雖決不排外,本發明更特別係有關於呈金屬 ,諸如鋼, 帶狀物形式且具有·皿瞒主之合金塗覆物在該帶狀物 之至少-表面上的經Al/Zn為主之合金塗覆的產品,以及由 經Al/Zn為主之合金塗覆的帶狀物製得之產品。 該經A1/Zn為主之合金塗覆的金屬帶狀物可為因防 護、美學或其他理由亦塗財無機及/或有機化合物的帶狀物。 雖決不排外,本發明更特別係有關於經Al/Zn為主之合 金塗覆的鋼帶狀物,其具有之塗覆物所具之合金具_Ζη 以外的呈不只痕量之其他不只—個元素,諸如叫及&。 雖決不排外,本發明更特別係有關於經廳為主之合 :鋼帶狀物,其具有之塗覆物所具之含有岣細 她為主之合金有純V、上達5%之&、上達1〇%之 及剩餘的Zn及少量的其他元素,就每個其他元素 係㈣咖,其中所有百分比係為重量百分比意 3 201200630 是,除非另有明確提及,所有論及的元素百分比在本說明 書中係論及重量百分比。 ί:先前技術3 發明背景 薄(即,2-100 μπι厚)的Al/Zn為主之合金塗覆物通常係 形成在鋼帶狀物的數個表面上以提供對抗腐蝕之防護。 該Al/Zn為主之合金塗覆物大體而言,但未排外,係為 所具之合金具元素A1與Zn以及Mg、Si、Fe、Mn、Ni、Sn 及呈少量之諸如V、Sr、Ca、Sb之其他元素中一或更多者的 塗覆物。 該Al/Zn為主之合金塗覆物大體而言,但未排外,係藉 由使帶狀物通過一具熔融合金之浴槽來熱浸塗覆帶狀物而 形成在鋼帶狀物上。該鋼帶狀物典型,但未必然排外’係 在浸泡之前被加熱以促使合金結合至帶狀物。該合金隨後 固化於該帶狀物上且在帶狀物從熔融浴槽露出時形成一經 固化的合金塗覆物。 該Al/Zn為主之合金塗覆物典型具有一微結構顯著地 係由呈枝蔓體形式之富有A1之α相及位於該等枝蔓體之間 區域之富有Zn之共熔相混合物構成。當熔融塗覆物的固^匕 速率係適當地被控制(例如,如US專利3,782,909中所述 併入於此以作交互參照),該富有A1之α相固化為充分細敏 的枝蔓體以讓其在枝蔓體間區域中界定出一 連續通道網 絡,而該富有Zn之共熔相混合物係固化於此枝蔓體間區威中° 這些塗覆物之性能係有賴於下列組合:(a)鋼基底之# ⑧ 201200630 牲防護’最初靠富有Zn之枝蔓體間共熔相混合物、以及(b) 障壁防護’靠支援性之富有A1ia相枝蔓體。該富有Zn之枝 蔓體間相混合物優先受腐蝕以提供對鋼基材之犧牲防護,而 在某些環境中’一旦該富有Zn之枝蔓體間相混合物已被耗 竭’該富有A1之α相亦會繼續對該鋼基材提供適當位準的犧 牲防護和障壁防護。 然而’有許多情況是該富有Α1之α相枝蔓體所給予的障 壁防護與犧牲防護位準並不足夠,而該經塗覆鋼帶狀物之 性能可能受損。三種此類地區係如下。 1. 在“酸雨”或含有高濃度之氮氧化物與硫氧化物的 “經污染”環境中。 2. 海洋環境中塗漆膜下方。 3. 在切割邊緣或其他金屬性塗覆物已被損害而使鋼基 材暴露於海洋環境中的地區處。 當作範例而言,申請人已發現到當鋼帶狀物上的Al/Zn 為主之合金塗覆物係特別薄(即,塗覆物具有總塗覆物質量 為每平方公尺塗覆物少於2〇〇克,典型少於15〇克;其等於 當有相等塗覆物厚度於兩表面時,鋼帶狀物之各表面上每 平方公尺塗覆物少於1〇〇克,典型少於75克),微結構在塗 覆物以典型從11。(:/8至1〇〇。(:/8之標準冷卻速率形成時,傾 向於為從鋼帶狀物延伸至塗覆物表面之更為柱狀或竹子的 結構。此微結構包含(a)富有八丨之响枝蔓體與⑻形成為一 系列從鋼帶狀物直接延伸至塗覆物表面之分離柱狀通道的 富有Zn之共熔相混合物。 5 201200630 申請人亦已發現到當具有此類有柱狀微結構之薄 Al/Zn為主之合金塗覆物的鋼帶狀物被暴露於通常被描述 為“酸雨”環境之低pH環境,或暴露於通常被描述為“經污 染”環境之具有南濃度之二氧化硫與氮氧化物的環境時,該 富有Zn之枝蔓體間共炫相混合物係迅速地被侵触,且從鋼 帶狀物直接延伸至塗覆物表面之此相混合物之柱狀通道充 當至鋼帶狀物的直接腐姓路徑。在有這樣的從塗覆物表面 至鋼帶狀物之直接腐蝕路徑的地方,該鋼帶狀物係可能受 腐蝕且腐蚀產物(鐵的氧化物)會自由地遷移至塗覆物表面 並發展出一已知為“紅色銹潰”之外貌。紅色銹潰劣化經塗 覆之鋼產品的美學外貌且會減少產品性能。例如,紅色銹 潰會減低被使用作為屋面材料之經塗覆之鋼產品的熱效率。 申請人亦已發現到在薄Al/Zn為主之塗覆物被刮損、破裂 或其他手段損害而顯露出鋼帶狀物並暴露於”酸雨”環境或 經污染ί哀境的地方’紅色錄潰甚至會在柱狀或竹子結構不 存在下出現。 亦已知的是,在‘‘酸雨”環境或“經污染”環境中’富有 Α1之α相不能犧牲地防護鋼帶狀物。 “酸雨”環境於此係被理解為雨及/或形成於經塗覆之鋼 帶狀物上的凝聚物具有pH少於5,6的環境。當作範例而言, “經污染環境”會被典型地,但決不排外,界定為IS09223中 的P2或P3類別。 亦當作範例而言,在富有八1之〇[相枝蔓體正規地被認為 對鋼基材提供良好犧牲防護的海洋環境中,此能力係被施 201200630 加在金屬性經塗覆鋼帶狀物之上的塗漆膜下之微環境中的 變化削弱。 以上說明擬不被看作承認為澳洲或其他地方之通常一 般知識。 【發明内容】 發明概要 申請人已發現到經Al/Zn為主之合金塗覆的鋼帶狀物 在“酸雨”或“經污染”環境中的紅色銹潰能藉由將塗覆物形 成為Al-Zn-Si-Mg合金塗覆物並確保塗覆物之OT:SDAS比 大於0.5:1之值來預防或最小化,其中OT係為帶狀物表面上 之覆蓋厚度,而SDAS係為塗覆物中富有A1之a相枝蔓體之 二級枝蔓體臂間隔的量度。 術語“覆蓋厚度”於此係被理解為意指減去塗覆物介金 屬合金層厚度之帶狀物上塗覆物的總厚度,其中該介金屬 合金層係為塗覆物施加至帶狀物時藉熔融塗覆物與鋼基材 之間的反應而形成之緊鄰於鋼基材的Al-Fe-Si-Zn四元介金 屬相層。 依據本發明,係提供有一種用於在典型為鋼之金屬之 帶狀物上形成適於當作範例之“酸雨”或“經污染”環境的具 抗腐蝕Al-Zn-Si-Mg合金之塗覆物的方法,其包含: (a) 使金屬帶狀物通過一具Al-Zn-Si-Mg合金之熔融浴 槽,並在該帶狀物之一或兩表面上形成具合金之塗覆物, (b) 固化該帶狀物上的塗覆物而形成一經固化的塗覆 物,該經固化的塗覆物具有一微結構包含具富有A1之α相的 7 201200630 枝蔓體及具富有Zn之共熔相混合物的枝蔓體間通道,延伸 自該金屬帶狀物,且有Mgji相粒子在該等枝蔓體間通道中, 且該方法包含控制步驟⑷及(b)並形成〇T:SDAS比大於 0.5:1之經固化的塗覆物,其中〇τ係為覆蓋厚度,而sdas 係為塗覆物之富有A1之α相枝蔓體的二級枝蔓體臂間隔。 術浯“富有Zn之共溶相混合物”於此係被理解為意指共 熔反應產物之混合物,且該混合物含有富有211之|3相及 Mg:Zn化合物相,例如,MgZn2。 依據本發明,亦提供有一種金屬帶狀物,該帶狀物之 一或兩表面上有適於當作範例之“酸雨”或“經污染”環境的 具Al-Zn-Si-Mg合金之塗覆物,該塗覆物包含一微結構,該 微結構包含具富有A1之α相的枝蔓體及具富有zn之共熔相 混合物的枝蔓體間通道延伸自金屬帶狀物,且有Mg2Si相粒 子在該等枝蔓體間通道中,且該塗覆物具有〇T:SDAS比大 於0.5:1 ’其中OT係為覆蓋厚度,而SDAS係為塗覆物之富 有A1之α相枝蔓體之二級枝蔓體臂間隔。 要注意的是’在塗覆物位於帶狀物兩表面上處,每一 表面上的覆蓋厚度可視經塗覆帶狀物的要求而不同或相 同。無論如何,本發明要求兩表面各者上之塗覆物的 OT:SDAS 比大於 0.5:1。 該OT:SDAS比可大於1:1。 該OT:SDAS比可大於2:1。 該塗覆物可為一薄塗覆物。 在此内文中,在金屬,諸如鋼,帶狀物上的“薄”塗覆 201200630 物於此係被理解為意指在帶狀物兩表面上具有總塗覆物質 量為每平方公尺塗覆物少於200克的塗覆物,其等於鋼帶狀 物之一表面上每平方公尺塗覆物少於1〇〇克,而實例可能並 非總是如此。 塗覆物之覆蓋厚度可大於3 μηι 〇 塗覆物之覆蓋厚度可少於20 μπι。 塗覆物之覆蓋厚度可少於3〇μηι。 塗覆物之覆蓋厚度可為5-20 μπι。 該Al-Zn-Si-Mg合金可含有20-95%之Α卜上達5%之Si、 上達10%之Mg以及剩餘的Zn及少量的其他元素,就每個其 他元素典型係少於0.5%。 該Al-Zn-Si-Mg合金可含有40-65%之A1。 該Al-Zn-Si-Mg合金可含有45-60%之A卜 該Al-Zn-Si-Mg合金可含有35-50%之Zn。 該Al-Zn-Si-Mg合金可含有39-48%之Zn。 該Al-Zn-Si-Mg合金可含有1-3%之Si。 該Al-Zn-Si-Mg合金可含有 1.3-2.5%之Si。 該Al-Zn-Si-Mg合金可含有少於5%之Mg。 該Al-Zn-Si-Mg合金可含有少於3%之Mg。 該Al-Zn-Si-Mg合金可含有不只1%之Mg。 該Al-Zn-Si-Mg合金可含有 1.2-2.8%之Mg。 該Al-Zn-Si-Mg合金可含有 1.5-2.5%之Mg。 該Al-Zn-Si-Mg合金可含有 1.7-2.3%之Mg。 該金屬帶狀物可為鋼帶狀物。 201200630 此外或在上述〇T:SDAS比不能維持及塗覆物具有 OT:SDAS比少於0.5:1的事件中,申請人亦已發現到“酸雨” 或“經污染”環境中的紅色銹潰以及還有海洋環境中切割邊 緣處的腐姓能藉由塗覆物合金組成物(首要地為厘§與si)的 選擇以及塗覆物微結構的控制而在鋼帶狀物上的薄 Al-Zn-Si-Mg合金塗覆物中被預防或最小化。 上述組成物選擇以及微結構控制係特別有用於薄塗覆 物及/或OT:SDAS比少於〇.5:1之塗覆物,但並不受限於這些 塗覆物’而亦適用於厚塗覆物及/或〇T:SDAS比大於〇 5:1之 塗覆物β 申請人亦已發現到海洋環境中經塗覆鋼帶狀物切割邊 緣處的腐蝕及“酸雨”或“經污染,,環境中的紅色銹潰可在敏 感的Al/Zn為主之塗覆物中消除或最小化,其藉由: 1. 阻擋沿富有Zn之枝蔓體間通道至鋼帶狀物的腐 餘,及/或 2. 使富有八1之〇1相活躍於這些環境中致使其可犧牲地 防護鋼帶狀物。 一般而言’在兩事例中,依據本發明’係提供有一金屬帶 狀物’該帶狀物之一或兩表面上有適於當作範例之“酸雨” 或“經污染”環境的具Al-Zn-Si-Mg合金之塗覆物,該塗覆物 包含一微結構’該微結構包含具富有A1之α相的枝蔓體以及 具富有Zn之共熔相混合物的枝蔓體間通道延伸自金屬帶狀 物,且有Mg2Si相粒子在該等枝蔓體間通道中。 術語“粒子”於此在Mg2Si相之上下文中係被理解為指 201200630 出微結構中此相析出物的物理形式。於此要理解的是,‘‘粒 子”是於塗覆物固化期間從溶液經由析出形成且並非特定 特別添加至組成物。 1.阻擋 依據本發明,係提供有一種用於在典型為鋼之金屬之 帶狀物上形成適於當作範例之“酸雨,,或“經污染,,環境的具 抗腐姓Al-Zn-Si-Mg合金之塗覆物的方法,其包含: (a) 使金屬帶狀物通過一具Al-Zn-Si-Mg合金之炫融浴 槽’並在該帶狀物之一或兩表面上形成具合金之塗覆物, (b) 固化該帶狀物上的塗覆物而形成一經固化的塗覆 物’該經固化的塗覆物具有一微結構包含具富有Alia相的 枝蔓體及具富有Zn之共熔相混合物的枝蔓體間通道,延伸 自該金屬帶狀物’且有Mg2Si相在該等枝蔓體間通道中, 且該方法包含選擇Mg與Si濃度及控制步驟(b)中的冷卻速 率以在經固化的塗覆物中之枝蔓體間通道中形成阻擋沿枝 蔓體間通道腐蝕的Mg2Si相粒子。 當作解釋而言,在有枝蔓體結構的Al/Zn為主之塗覆物 中,Si係以片狀樣形態之粒子存在,且雖然其未受腐蝕, 但其並未充滿枝蔓體間通道及阻擋枝蔓體間通道免於受到 至鋼帶狀物的枝蔓體間腐蝕。申請人已發現到添加至含有 Si之Al/Zn為主之塗覆物的Mg可與Si組合而在富有A1之a相 枝蔓體臂之間的枝蔓體間通道中形成具有恰當大小及形態 來阻擋可能另外為至鋼帶狀物之直接腐餘途徑者的Mg2Si 相粒子且有助於隔離下伏的鋼基材陰極。恰當大小及形態 S- 11 201200630 之粒子係藉控制塗覆物之固化,,冷卻速率,來形成。 特別地,中請人已發現到塗覆物固化期間的冷卻速率 «應維持少於17〇 — 4_5CT,其中CR係為以。c/秒表示之△ 卻速率,而or係為崎米絲之帶狀物絲切塗覆物厚度。 經恰當定大小之Mg2Si相粒子的形態當以平面影像觀 硯時可被描述為呈“中國字紋”形式,而#以3維影像觀視時 可被描述為呈花瓣形式。當作範例之形態係顯示於第_ 及第13圖,且進一步討論於下。201200630 VI. INSTRUCTIONS: [Yun Yi Ming belongs to the _ I 1 彳 mark] FIELD OF THE INVENTION The present invention generally relates to the production of a product having an alloy coating containing aluminum and zinc as main components of the alloy. (hereinafter referred to as A/Zn-based alloy coated product). The term "Al/Zn-based alloy coated product, which is understood to include ribbon, tubular As an example, products in the form of articles and structural segments having a coating of an A1/Zn based alloy on at least a portion of the surface of the products. Although not exclusively exclusive, the present invention is more particularly directed to Al/Zn based on at least the surface of the alloy in the form of a metal, such as steel, ribbon, and having an alloy coating. Alloy coated products, as well as products made from ribbons coated with Al/Zn based alloys. The metal ribbon coated with the A1/Zn-based alloy may be a ribbon coated with inorganic and/or organic compounds for protection, aesthetics or other reasons. Although not exclusively excluded, the present invention more particularly relates to a steel strip coated with an Al/Zn-based alloy, which has a coating other than _Ζη which is not only a trace amount but not only - an element, such as called & Although not exclusive, the present invention is more particularly related to the main hall of the hall: steel strip, which has a coating containing fine enamel, the main alloy of which has a pure V, up to 5% &;, up to 1%% and the remaining Zn and a small amount of other elements, for each other element (4) coffee, all percentages are weight percentage meaning 3 201200630 Yes, unless otherwise explicitly mentioned, all elements discussed Percentages are in this specification and weight percentages. ί: Prior Art 3 Background of the Invention Thin (i.e., 2-100 μπ thick) Al/Zn-based alloy coatings are typically formed on several surfaces of a steel strip to provide protection against corrosion. The Al/Zn-based alloy coating is generally, but not exclusive, the alloy elements A1 and Zn and Mg, Si, Fe, Mn, Ni, Sn and a small amount such as V, Sr. a coating of one or more of the other elements of Ca, Sb. The Al/Zn based alloy coating is generally, but not exclusive, formed on the steel strip by hot dip coating the ribbon through a bath of molten alloy. The steel strip is typically, but not necessarily excluded, heated prior to soaking to promote alloy bonding to the ribbon. The alloy then cures to the ribbon and forms a cured alloy coating as the ribbon emerges from the molten bath. The Al/Zn based alloy coating typically has a microstructure consisting essentially of a mixture of alpha-rich alpha phases in the form of dendrites and Zn-rich eutectic phases in the region between the dendrimers. When the rate of solidification of the molten coating is suitably controlled (for example, as incorporated herein by reference in U.S. Patent No. 3,782,909), the alpha-rich alpha phase solidifies into a sufficiently finely dendritic body. Let it define a continuous channel network in the inter-branched region, and the Zn-rich eutectic phase mixture solidifies in the inter-branched zone. The performance of these coatings depends on the following combinations: (a) Steel Base # 8 201200630 The protection of 'Essence of Zn-rich eutectic mixture, and (b) barrier protection' is supported by the rich A1ia vines. The Zn-rich inter-branched interphase mixture is preferentially corroded to provide sacrificial protection against the steel substrate, and in some environments 'once the Zn-rich inter-branched phase mixture has been depleted' Will continue to provide proper level of sacrificial protection and barrier protection for the steel substrate. However, there are many cases where the barrier protection and sacrificial protection levels imparted by the alpha-rich vines are not sufficient, and the properties of the coated steel ribbon may be impaired. Three such areas are as follows. 1. In “acid rain” or “contaminated” environments containing high concentrations of nitrogen oxides and sulfur oxides. 2. Under the paint film in the marine environment. 3. At areas where the cutting edge or other metallic coating has been damaged to expose the steel substrate to the marine environment. As an example, Applicants have discovered that Al/Zn based alloy coatings on steel strips are particularly thin (i.e., coatings have a total coating mass of coated per square meter). Less than 2 grams, typically less than 15 grams; it is equal to less than 1 gram per square meter of coating on each surface of the steel strip when there is an equal coating thickness on both surfaces Typically less than 75 grams), the microstructure is typically at 11 in the coating. (: / 8 to 1 〇〇. (: / 8 standard cooling rate is formed, tends to be more columnar or bamboo structure extending from the steel strip to the surface of the coating. This microstructure contains (a a rich Zn-rich eutectic mixture formed by a series of octagonal vines and (8) formed as a series of separate columnar channels extending directly from the steel strip to the surface of the coating. 5 201200630 Applicants have also discovered that Such steel ribbons with thin Al/Zn-based alloy coatings with columnar microstructures are exposed to low pH environments commonly described as "acid rain" environments, or exposed to what is commonly described as "contaminated "In the environment of a concentration of sulfur dioxide and nitrogen oxides in the south, the Zn-rich inter-dark phase mixture is rapidly invaded, and the mixture is directly extended from the steel strip to the surface of the coating. The columnar channel acts as a direct path to the steel strip. Where such a direct corrosion path from the surface of the coating to the steel strip is present, the strip may be corroded and corroded ( Iron oxide) will migrate freely to the coating The surface of the object develops a profile known as "red rust." The red rust collapses the aesthetic appearance of the coated steel product and reduces product performance. For example, red rust can reduce the use of roofing materials. Thermal efficiency of coated steel products. Applicants have also discovered that thin Al/Zn based coatings are scratched, cracked or otherwise damaged to reveal steel strips and exposed to "acid rain" environments or The place where the pollution ί ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' A protective steel strip. An "acid rain" environment is understood herein as rain and/or an agglomerate formed on a coated steel strip having an environment having a pH of less than 5, 6. As an example "Contaminated environment" will be typical, but never exclusive, defined as the P2 or P3 category in IS09223. Also as an example, after the rich eighty-one [phased vines are regularly considered to be steel-based In a marine environment that provides good sacrificial protection, this The ability is impaired by the change in the microenvironment under the paint film applied to the metallic coated steel strips. The above description is not to be considered as a general general knowledge of recognition in Australia or elsewhere. SUMMARY OF THE INVENTION Applicants have discovered that red rust collapse in an "acid rain" or "contaminated" environment of a steel strip coated with an Al/Zn based alloy can be formed into an Al by coating -Zn-Si-Mg alloy coating and ensuring that the OT:SDAS ratio of the coating is prevented or minimized by a value greater than 0.5:1, where OT is the coating thickness on the surface of the ribbon and SDAS is coated The measure of the secondary branching arm spacing of the A1 a-branched vines in the covering. The term "coverage thickness" is understood herein to mean a strip-on-coat coating that is subtracted from the thickness of the coating-intermetallic alloy layer. The total thickness of the intermetallic alloy layer is the Al-Fe-Si-Zn formed adjacent to the steel substrate by the reaction between the molten coating and the steel substrate when the coating is applied to the ribbon. Quaternary metal phase layer. According to the present invention, there is provided a corrosion-resistant Al-Zn-Si-Mg alloy for forming an "acid rain" or "contaminated" environment suitable for use as an exemplary metal strip of steel. A method of coating comprising: (a) passing a metal ribbon through a molten bath of an Al-Zn-Si-Mg alloy and forming an alloy coating on one or both surfaces of the ribbon (b) curing the coating on the ribbon to form a cured coating having a microstructure comprising 7 201200630 dendrites having an alpha phase rich in A1 and having a rich An inter-branched channel of Zn eutectic phase mixture extending from the metal ribbon and having Mgji phase particles in the inter-branched inter-body channels, and the method comprising controlling steps (4) and (b) and forming 〇T: The SDAS ratio is greater than 0.5:1 cured coating, where 〇τ is the cover thickness and sdas is the secondary dendrite arm spacing of the A1-rich alpha vines of the coating. The "rich Zn-rich co-soluble phase mixture" is understood herein to mean a mixture of eutectic reaction products, and the mixture contains a 211-rich phase 3 and a Mg:Zn compound phase, for example, MgZn2. According to the present invention, there is also provided a metal ribbon having Al-Zn-Si-Mg alloy on one or both surfaces of which is suitable for use as an exemplary "acid rain" or "contaminated" environment. a coating comprising a microstructure comprising a dendritic body having an alpha phase rich in A1 and an intervening channel having a mixture of zn rich eutectic phases extending from the metal ribbon and having Mg2Si The phase particles are in the inter-branched inter-body channels, and the coating has a 〇T:SDAS ratio greater than 0.5:1 'where the OT system is the cover thickness, and the SDAS system is the A1-rich alpha-phase vine body of the coating. The secondary branches are separated by arms. It is to be noted that 'where the coating is on both surfaces of the ribbon, the thickness of the cover on each surface may be different or the same depending on the requirements of the coated ribbon. In any event, the present invention requires that the OT:SDAS ratio of the coating on each of the two surfaces is greater than 0.5:1. The OT:SDAS ratio can be greater than 1:1. The OT:SDAS ratio can be greater than 2:1. The coating can be a thin coating. In this context, a "thin" coating 201200630 on a metal, such as steel, ribbon is understood herein to mean having a total coating mass on both surfaces of the ribbon that is coated per square meter. A coating having a coating of less than 200 grams is equal to less than 1 gram per square meter of coating on one surface of the steel ribbon, although instances may not always be the case. The coating may have a cover thickness of more than 3 μηι 〇 and the coating may have a cover thickness of less than 20 μm. The coating may have a cover thickness of less than 3 〇μηι. The coating may have a cover thickness of 5-20 μm. The Al-Zn-Si-Mg alloy may contain 20-95% of Si, up to 5% Si, up to 10% of Mg, and the remaining Zn and a small amount of other elements, typically less than 0.5% for each of the other elements. . The Al-Zn-Si-Mg alloy may contain 40-65% of A1. The Al-Zn-Si-Mg alloy may contain 45-60% of A. The Al-Zn-Si-Mg alloy may contain 35-50% of Zn. The Al-Zn-Si-Mg alloy may contain 39-48% of Zn. The Al-Zn-Si-Mg alloy may contain 1-3% Si. The Al-Zn-Si-Mg alloy may contain 1.3 to 2.5% of Si. The Al-Zn-Si-Mg alloy may contain less than 5% of Mg. The Al-Zn-Si-Mg alloy may contain less than 3% of Mg. The Al-Zn-Si-Mg alloy may contain not only 1% of Mg. The Al-Zn-Si-Mg alloy may contain 1.2 to 2.8% of Mg. The Al-Zn-Si-Mg alloy may contain 1.5 to 2.5% of Mg. The Al-Zn-Si-Mg alloy may contain 1.7 to 2.3% of Mg. The metal strip can be a steel strip. 201200630 In addition or in the above event that the 〇T:SDAS ratio cannot be maintained and the coating has an OT:SDAS ratio of less than 0.5:1, the applicant has also discovered red rust in the “acid rain” or “contaminated” environment. And also the rot at the cutting edge in the marine environment can be thinned on the steel strip by the choice of coating alloy composition (primarily PCT and si) and the control of the coating microstructure The -Zn-Si-Mg alloy coating is prevented or minimized. The above composition selection and microstructure control system are particularly useful for thin coatings and/or coatings having an OT:SDAS ratio of less than 〇5:1, but are not limited to these coatings' and are also suitable for Thick coatings and/or coatings with a T:SDAS ratio greater than 〇5:1 Applicants have also discovered corrosion and “acid rain” or “jing” at the edge of the coated steel strip in the marine environment. Contamination, red rust in the environment can be eliminated or minimized in sensitive Al/Zn-based coatings by: 1. Blocking rot along the Zn-rich inter-branched channel to the steel strip I, and/or 2. to make the rich phase 1 1 active in these environments so that it can be sacrificed to protect the steel strip. Generally speaking, in both cases, according to the invention, a metal strip is provided. a coating of Al-Zn-Si-Mg alloy on one or both of the strips suitable for use as an exemplary "acid rain" or "contaminated" environment, the coating comprising a micro Structure 'The microstructure comprises a dendritic body having an alpha phase rich in A1 and an inter-body channel extending from a mixture of eutectic phases rich in Zn extending from the metal strip And the Mg2Si phase particles are in the inter-branched inter-body channels. The term "particles" as used herein in the context of the Mg2Si phase is understood to mean the physical form of the phase precipitates in the microstructure of 201200630. It is understood that ''particles' are formed from the solution via precipitation during solidification of the coating and are not specifically added to the composition. 1. Blocking According to the present invention, there is provided an anti-corrosion Al-Zn for forming an acid rain, or a "contaminated, environmentally friendly" type on a ribbon of a metal, typically a steel. a method of coating a Si-Mg alloy, comprising: (a) passing a metal ribbon through a smelting bath of an Al-Zn-Si-Mg alloy and on one or both surfaces of the ribbon Forming an alloyed coating thereon, (b) curing the coating on the ribbon to form a cured coating. The cured coating has a microstructure comprising a dendritic body having an Alia-rich phase And an inter-branched channel having a Zn-rich eutectic phase mixture extending from the metal ribbon and having a Mg2Si phase in the inter-branched channel, and the method comprises selecting a Mg and Si concentration and controlling the step (b) The cooling rate in the formation of Mg2Si phase particles that block corrosion along the inter-branched channels in the inter-branched channels in the cured coating. As an explanation, in the Al/Zn-based coating with a dendritic structure, Si is present in the form of flaky particles, and although it is not corroded, it is not filled with inter-plant channels. And blocking the inter-branched inter-body channel from the inter-corrosion of the branches of the steel strip. Applicants have discovered that Mg added to the Al/Zn-based coating containing Si can be combined with Si to form the appropriate size and morphology in the inter-branched inter-channel between the A-rich a-branched arms. The Mg2Si phase particles, which may otherwise be the direct septic route to the steel strip, are blocked and help to isolate the underlying steel substrate cathode. Appropriate size and morphology The particles of S- 11 201200630 are formed by controlling the curing of the coating and the cooling rate. In particular, the applicant has found that the cooling rate during the curing of the coating «should be maintained less than 17 〇 - 4_5 CT, where the CR system is. c/sec represents the Δ rate, and or is the strip thickness of the strip of S. The morphology of properly sized Mg2Si phase particles can be described as "Chinese character pattern" when viewed as a planar image, while ## can be described as a petal form when viewed in a 3D image. The morphology as an example is shown in Figures _ and 13 and is discussed further below.

MgsSi粒子之瓣可具有厚度少於8μιη。The petals of the MgsSi particles may have a thickness of less than 8 μm.

MgaSi相粒子之瓣可具有厚度少於5 μηι。The flap of the MgaSi phase particles can have a thickness of less than 5 μηι.

MgzSi相粒子之瓣可具有厚度在〇 5_2 5 μιη的範圍中。 Mg遭度可被選擇為大於0.5%。低於此濃度,Mg2Si相 粗子會不足以充滿並阻擋枝蔓體間通道。The lobes of the MgzSi phase particles may have a thickness in the range of 〇 5_2 5 μηη. The degree of Mg can be selected to be greater than 0.5%. Below this concentration, the Mg2Si phase coarse will not be sufficient to fill and block the inter-plant channel.

Mg濃度可被選擇為少於3%。高於此濃度,對阻擂枝蔓 體間腐蝕無效之具方塊型形態之大Mg2Si粒子會形成。 特別地,Al-Zn-Si-Mg合金可含有不只1%之Mg。 就有Si濃度從0.5至2%的塗覆物而言,相較於其他含Si 相’枝蔓體間Mg2Si相之體積分率可大於50%。 相較於其他含Si相,枝蔓體間Mg2Si相之體積分率可大 於 80%。 位於塗覆物覆蓋厚度下方三分之二中的枝蔓體間 Mg2Si相之比例可大於塗覆物中Mg2Si相總體積分率的 70%,以為了提供良好的枝蔓體間通道的阻擋。 被Mg2Si相“阻擋”之枝蔓體間通道的比例可大於通道 ⑧ 12 201200630 總數之60%,典型大於70%。 之適用所 蔓體結構 申請人亦已發現到本發明可能的改良型防護 跨越的微結構範圍係從〇T:SDAS比為0.5:1之粗枝 至OT: SD AS比為6:1之細枝蔓體結構。 —般沿這些途徑的腐蝕以及特別在“酸雨,,或“經污巧 環境中經由這些途徑的紅色銹潰因此被阻滞。 在Al/Zn合金塗覆物中,沿枝蔓體間通道的腐蝕亦 減低通道大小而受限,減低通道大小係為於固化期間増力 冷卻速率從而減低塗覆物之SDAS的結果,如Us專利 3,782,909中所述。然而’雖然此可減緩塗覆物的表面腐蝕 (如時常由質量損失測試所測定者)’其限制了富有鋅之相曰 合物對鋼基材提供犧牲防護的可用性。因而,鋼基材的腐 蝕更容易出現。 2· α相之活化 依據本發明,係提供有一種用於在典型為鋼之金屬之 帶狀物上形成適於當作範例之“酸雨”或“經污染”環境的具 抗腐蝕Al-Zn-Si-Mg合金之塗覆物的方法’其包含: (a) 使金屬帶狀物通過一具Al-Zn-Si-Mg合金之炫融浴 槽’並在該帶狀物之一或兩表面上形成具合金之塗覆物, (b) 固化該帶狀物上的塗覆物而形成一經固化的塗覆 物,該經固化的塗覆物具有一微結構包含具富有Α1<α相的 枝曼體及具富有Ζη之共溶相混合物的枝蔓體間通道,延伸 自該金屬帶狀物,且有Mg2Si相在該等枝蔓體間通道中, 且該方法包含選擇Mg與Si濃度及控制步驟(b)中的冷卻迷 13 201200630 率以在經固化的塗覆物中之枝蔓體間通道中形成具有活化 富有A1之α相以提供犧牲防護之大小範圍、形態及空間分布 的Mg2Si相粒子。 特別地,申請人已發現到M g2 S i相本身是反應性的且會 容易受腐蝕。然而,申請人亦已發現到使Mg2Si相純化、促 成通道阻擋及促使並增強富有A1之α相在鋼帶狀物犧牲防 護中活化的條件。 特別地,申請人已發現到添加適當的Mg與Si濃度至 Al/Zn為主之合金塗覆物組成物及選擇冷卻速率以在鋼帶 狀物上固化具合金組成物之塗覆物會導致厘幻&相之形成 在枝蔓體間通道中有適當的分散及位置以活化富有Α12α 相來提供某些海洋和“酸雨,,及“經污染”環境中鋼的犧牲防護。 富有A1之α相的活化促成較細枝蔓體結構的應用而無繼 起之切割邊緣或鋼基材已暴露之其他區域處犧牲防護能力 的損失。The Mg concentration can be selected to be less than 3%. Above this concentration, large Mg2Si particles having a square shape which is ineffective in resisting corrosion between lychee and vines are formed. In particular, the Al-Zn-Si-Mg alloy may contain not only 1% of Mg. In the case of a coating having a Si concentration of from 0.5 to 2%, the volume fraction of the Mg2Si phase between the other Si-containing phases may be greater than 50%. The volume fraction of the Mg2Si phase between the branches can be greater than 80% compared to other Si-containing phases. The proportion of the Mg2Si phase between the branches of the coating in the lower two thirds of the thickness of the coating can be greater than 70% of the total integral of the Mg2Si phase in the coating in order to provide a good barrier to the inter-body passage. The proportion of inter-plant channels that are "blocked" by the Mg2Si phase may be greater than 60% of the total number of channels 8 12 201200630, typically greater than 70%. Applicants for the vine structure have also found that the possible improved protection span of the present invention ranges from 〇T:SDAS ratio of 0.5:1 to OT: SD AS ratio of 6:1. Branch body structure. Corrosion along these pathways is generally retarded, especially in "acid rain," or "red rust through these pathways in a foul environment." In Al/Zn alloy coatings, corrosion along the inter-branched channels is also limited by reducing the size of the channels. The reduction in channel size is the result of the cooling rate during the curing to reduce the SDAS of the coating, as described in US Patent 3,782,909. Said in the middle. However, although this can slow the surface corrosion of the coating (as often measured by mass loss testing), it limits the availability of zinc-rich phase compounds to provide sacrificial protection to steel substrates. Thus, corrosion of the steel substrate is more likely to occur. 2. Activation of the alpha phase In accordance with the present invention, there is provided an anti-corrosive Al-Zn for forming an "acid rain" or "contaminated" environment suitable for use as an exemplary metal strip on steel. a method of coating a coating of Si-Mg alloy, which comprises: (a) passing a metal ribbon through a dazzling bath of an Al-Zn-Si-Mg alloy and on one or both surfaces of the ribbon Forming an alloyed coating thereon, (b) curing the coating on the ribbon to form a cured coating having a microstructure comprising a Α1 < alpha phase An inter-plant channel extending from a mixture of eutectic phases rich in Ζη, extending from the metal ribbon, and having a Mg2Si phase in the inter-plant channel, and the method includes selecting Mg and Si concentration and controlling Cooling fan 13 201200630 in step (b) to form Mg2Si phase particles having a size range, morphology and spatial distribution that activates the alpha phase rich in A1 to provide sacrificial protection in the interbranched channels in the cured coating. . In particular, Applicants have discovered that the Mg2Si phase itself is reactive and susceptible to corrosion. However, Applicants have also discovered conditions for purifying the Mg2Si phase, promoting channel blockage, and promoting and enhancing the activation of the alpha-rich alpha phase in the sacrificial protection of the steel ribbon. In particular, Applicants have discovered that the addition of a suitable Mg and Si concentration to an Al/Zn based alloy coating composition and the selection of a cooling rate to cure the coating with an alloy composition on the steel strip results in The formation of the illusion & phase has a proper dispersion and position in the inter-plant channel to activate the Α12α phase to provide sacrificial protection for certain oceans and “acid rain,” and “contaminated” environments. The activation of the phase contributes to the application of the finer vine structure without the loss of sacrificial protection at the cutting edge or other areas where the steel substrate has been exposed.

Mg與Si濃度及冷卻速率之選擇係與“阻擋,,標題下這些 參數之說明一致。The choice of Mg and Si concentration and cooling rate is consistent with the "blocking," description of these parameters under the heading.

具體而言,就冷卻速率而言,申請人已發現到塗覆物 固化期間之冷卻速率CR應維持少於17〇 _ 4 5CT,其中CR 係為以c/秒表不之冷卻速率,而為以微米表示之帶狀 物表面上的塗覆物厚度。 就組成物而言,當作範例而論,在“酸雨,,或“經污染” %境及“酸性”微ί哀境中,Mg濃度可大於0.5% 以供形成In particular, in terms of cooling rate, Applicants have discovered that the cooling rate CR during curing of the coating should be maintained at less than 17 〇 _ 45 CT, where CR is a cooling rate in c/second, but Micron indicates the thickness of the coating on the surface of the ribbon. As far as the composition is concerned, as an example, in the "acid rain," or "contaminated" % and "acidic" micro-grief, the Mg concentration can be greater than 0.5% for formation.

Mg2Si。 ⑧ 14 201200630Mg2Si. 8 14 201200630

Mg濃度可大於1%以確保α相之有效活化。The Mg concentration can be greater than 1% to ensure efficient activation of the alpha phase.

Mg濃度可少於3%。在較高濃度下,粗的、廣泛散布的 初級Mg2Si相會形成,而不能提供均勻活化的富有A1之α相。 特別地,Al-Zn-Si-Mg合金可含有不只1%之Mg。 申請人亦已發現到本發明可能的改良型犧牲防護之適 用所跨越的微結構範圍係從OT:SDAS比為0.5:1之粗枝蔓體 結構至〇T:SDAS比為6:1之細枝蔓體結構。 申請人亦已發現到根據本發明製造且隨後塗漆之經 Al-Zn-Si-Mg合金塗覆的帶狀物顯現出更窄且均勻腐蝕前 緣的發展作為富有A1之α相活化及海洋環境中邊緣過切位 準減低的結果。 根據本發明製造的樣品在申請人所進行的實驗工作 中,相較於傳統Al/Zn塗覆物,顯現出減低速率的“邊緣潛 變”或自切割邊緣“過切”。 改良型性能已顯現出適用於一定範圍的塗覆物結構及 一定範圍的塗漆膜。 圖式簡單說明 本發明係參照所伴隨的圖式作進一步描述,其中: 第1圖係為在海洋環境中測試樣品上根據本發明之具 Al-Zn-Si-Mg合金塗覆物之實例之邊緣過切及Mg濃度的圖表; 第2至4圖係為測試板相片及腐蝕前緣影像,其等驗證 出根據本發明之具Al-Zn-Si-Mg合金塗覆物之實例在海洋 環境中的改良型性能; 第5圖係為經實驗加速之測試板相片,其等顯現出根據 15 201200630 本七月之金屬性經塗覆鋼帶狀物之改良型表面風化及改良 型犧牲防護; 第6至11圖係為測試板之相片,其等驗證出根據本發明 之具Al-Zn-Si-Mg合金塗覆物在鋼帶狀物上之實酸雨,, 或“經污染”環境中的改良型性能; 第12圖係為根據本發明之Al-Zn-Si-Mg合金塗覆物之 掃描電子顯微鏡影像的平面視圖,其例*出影像中所顯現 微結構中MgsSi相粒子的形態;及 第13圖係為第12圖之A1Zn Si Mg合金塗覆物中Mg2Si 相粒子形態的網絡3維影像。 t實施方式;j 根據本發明之經A1_Zn_Si_Mg合金塗覆鋼帶狀物之實 例的改良型腐蝕性能已被申請人驗證於暴露在一定範圍之 實際“酸雨”、“經污染”及海洋環境位址的測試樣品上。 5亥等測試樣品包括申請人所發展以提供塗覆物腐蝕訊 息的測試板。 第1至5圖及表1與表2驗證了根據本發明生產之具 Al-Zn-Si-Mg合金塗覆物在鋼帶狀物上之實例在海洋環境 中的改良型性能。 海洋環境中的性能係藉按AS/NZS 1580.457.1.1996附 錄B為C 2至C 5之IS Ο評等之位址處的戶外暴露測試及藉實 驗循環腐蝕測試(CCT)來評估。 表1呈現之資料顯現出根據本發明針對一定範圍金屬 性塗覆物質量之經Al-Zn-Si-Mg塗覆之鋼測試板之實例就 ⑧ 16 201200630 嚴苛海洋環境中之沖擊暴露在經塗漆邊緣過切位準上的改 良型性能(單位:mm)。該表亦包括傳統經Al/Zn為主之合金 塗覆的測試板的比較資料。 塗覆物質量 邊緣過切_ 傳統Al/Zn塗覆物 邊緣過切-本發明Al/Zn塗覆物 150g/m2 12 5 100g/m2 20 8 75g/m2 21 9 50g/m2 66 10 明顯得自於表1的是,根據本發明之經Al-Zn-Si-Mg塗 覆之鋼測試板較傳統經Al/Zn為主之合金塗覆的測試板有 顯著較少的邊緣過切。 表2呈現之進一步資料顯現出根據本發明針對一定範 圍之塗漆類型之經Al-Zn-Si-Mg塗覆之經塗漆鋼測試板之 實例就嚴苛海洋環境中之沖擊暴露在過切位準上的改良型 性能(單位:mm)。該表亦包括傳統經Al/Zn為主之合金塗覆 的測試板的比較資料。 塗漆類型 塗覆物質量 邊緣過切-傳統Al/Zn塗覆物 邊緣過切-本發明Al/Zn塗覆物 聚酯 150g/m2 9 3.5 聚酯 100g/m2 15 5 水為主 150g/m2 8 3.2 水為主 100g/m2 22 4.5 “無 Cr” 150g/m2 22 6 明顯得自於表2的是,根據本發明之經Al-Zn-Si-Mg塗 覆之經塗漆鋼測試板較傳統經A1 /Ζη為主之合金塗覆的經 £ 17 201200630 塗漆測試板有顯著較少的邊緣過切。 第2至4圖中的測試板相片及腐姓前緣影像進一井^彳j八 出根據本發明之具Al-Zn-Si-Mg塗覆物之實例在海洋产产 中的改良型性能。第2圖顯現出根據本發明之經氟碳塗泰兄The Mg concentration can be less than 3%. At higher concentrations, a coarse, widely dispersed primary Mg2Si phase will form, but will not provide a uniformly activated alpha-rich alpha phase. In particular, the Al-Zn-Si-Mg alloy may contain not only 1% of Mg. Applicants have also discovered that the application of the possible improved sacrificial protection of the present invention spans a range of microstructures ranging from OT:SDAS ratio of 0.5:1 dendritic structure to 〇T:SDAS ratio of 6:1 branches Body structure. Applicants have also discovered that ribbons coated with Al-Zn-Si-Mg alloys made in accordance with the present invention and subsequently painted exhibit a narrower and more uniform corrosion front as an A1-rich alpha phase activation and ocean The result of a marginal overcut in the environment. Samples made in accordance with the present invention exhibited a reduced rate "edge creep" or "overcut" from the cut edge as compared to conventional Al/Zn coatings in the experimental work performed by the Applicant. The improved properties have been shown to be suitable for a range of coating structures and a range of paint films. BRIEF DESCRIPTION OF THE DRAWINGS The invention is further described with reference to the accompanying drawings in which: FIG. 1 is an example of an Al-Zn-Si-Mg alloy coating according to the present invention on a test sample in a marine environment. a graph of edge overcutting and Mg concentration; Figures 2 to 4 are test plate photographs and corrosion front image, which verify the example of the Al-Zn-Si-Mg alloy coating according to the present invention in the marine environment Improved performance in the middle; Figure 5 is an experimentally accelerated test plate photograph showing improved surface weathering and improved sacrificial protection according to the metallic rubber coated steel strip of July 201200630; Figures 6 to 11 are photographs of the test panels, which verify that the Al-Zn-Si-Mg alloy coating according to the present invention is in a solid acid rain on a steel strip, or in a "contaminated" environment. Figure 12 is a plan view of a scanning electron microscope image of an Al-Zn-Si-Mg alloy coating according to the present invention, which is an example of the morphology of MgsSi phase particles in the microstructures revealed in the image. And Fig. 13 is the Mg2Si in the A1Zn Si Mg alloy coating of Fig. 12. A 3D image of a network of phase particles. t embodiment; j improved corrosion performance of an example of a steel strip coated with an A1_Zn_Si_Mg alloy according to the present invention has been verified by the applicant for exposure to a range of actual "acid rain", "contaminated" and marine environmental sites On the test sample. Test samples such as 5 hai include test panels developed by the applicant to provide coating corrosion information. Figures 1 to 5 and Tables 1 and 2 verify the improved performance of an example of an Al-Zn-Si-Mg alloy coating produced on a steel strip produced in accordance with the present invention in a marine environment. Performance in the marine environment is assessed by an outdoor exposure test at the address of the IS/NZS 1580.457.1.1996 Appendix B for the IS Ο rating of C 2 to C 5 and by a laboratory cyclic corrosion test (CCT). The data presented in Table 1 shows an example of an Al-Zn-Si-Mg coated steel test panel for a range of metallic coating qualities in accordance with the present invention. 8 16 201200630 Impact exposure in harsh marine environments Improved performance (unit: mm) on the overcut level of the painted edge. The table also includes comparative data for traditional Al/Zn based alloy coated test panels. Oversize of the coating mass edge _ traditional Al / Zn coating edge overcut - the present invention Al / Zn coating 150g / m2 12 5 100g / m2 20 8 75g / m2 21 9 50g / m2 66 10 Obviously In Table 1, the Al-Zn-Si-Mg coated steel test panels according to the present invention have significantly less edge overcuts than conventional Al/Zn based alloy coated test panels. Further information presented in Table 2 reveals an example of an Al-Zn-Si-Mg coated painted steel test panel for a range of paint types in accordance with the present invention for exposure to overcutting in harsh marine environments. Improved performance at the level (unit: mm). The table also includes comparative data for traditional Al/Zn-based alloy coated test panels. Paint type coating quality edge overcutting - traditional Al/Zn coating edge overcutting - Al/Zn coating polyester 150g/m2 of the invention 15 3.5 polyester 100g/m2 15 5 water mainly 150g/m2 8 3.2 Water-based 100g/m2 22 4.5 “Cr-free” 150g/m2 22 6 Obviously from Table 2, the coated steel test plate coated with Al-Zn-Si-Mg according to the present invention is more The £17 201200630 painted test panels coated with conventional A1/Ζη based alloys have significantly less edge overcuts. The test plate photographs and the front image of the burnt edge in Figures 2 to 4 are incorporated into a well. The improved performance of the example of the Al-Zn-Si-Mg coating according to the present invention in marine production. Figure 2 shows the fluorocarbon coated Thai brother according to the present invention.

Al-Zn-Si-Mg塗覆物就嚴苛海洋環境中未沖擊暴露之^ 型腐触性能。第3圖係為傳統A1/Zn塗覆物在海二二境 漆下有廣大錢前緣的實例。第4圖係為根據本^明^The Al-Zn-Si-Mg coating is a non-impact exposed corrosion resistance in a harsh marine environment. Figure 3 is an example of a traditional A1/Zn coating with a large money front under Sea Two. Figure 4 is based on this ^^

Al-Zn-Si-Mg塗覆物在海洋環境中塗漆下有較窄且更 腐姓前緣的實例。 =句 第5圖中的測試板相片驗證出根據本發明之具 WZnlMg塗覆物之實例在加速測試條件下的改良型腐 齡能。特別地,第5圖顯現出,相較於傳統Al/Zn塗覆物, 根據本㈣之A1_Zn_Si_Mg塗覆物有粗或細結構在鹽霧循 環腐敍及測試中的改良型表面風化及改良型犧牲防護。 第6至11圖驗證出當根據本發明生產時,經 Aim-Mg塗覆之鋼測試板在“酸雨’’或“經污染”環境中的 改良隸月b。相片顯現出在傳統經AI心為主之合金塗覆的 鋼測試板上有紅色錄潰,而在根據本發明製造之經 π Si Mg塗覆之鋼測試板上沒有紅色鎮潰。第9圖與第7 圖之比較顯現出隨時間推移利益係被保留 。特別地,第6圖 見出暴路於嚴苛酉曼雨,’環境達6個月的傳統經八心為主 ,覆之鋼τ狀物(總塗覆物質量為每平方公尺塗覆物係励 )上有』色銹潰。第7圖顯現出暴露於嚴苛“酸雨,,環境達6 月的根據本發明之A1_Zn_si_Mg塗覆物⑽塗覆物質量為 18 201200630 每平方公尺塗覆物係100克)上沒有紅色銹潰。第8圖顯現出 暴露於嚴苛“酸雨”環境達18個月的傳統經A1/Zn為主塗覆 之鋼帶狀物(總塗覆物質量為每平方公尺塗覆物係i 0 0克)上 有紅色銹潰。第9圖顯現出暴露於嚴苛“酸雨,,環境達18個月 的根據本發明之Al-Zn-Si-Mg塗覆物(總塗覆物質量為每平 方公尺塗覆物係1〇〇克)上沒有紅色銹潰。第1〇圖顯現出暴 露於嚴苛“酸雨”環境達4個月的有柱狀結構之傳統經A1/Zn 為主塗覆之鋼帶狀物(總塗覆物質量為每平方公尺塗覆物 係50克)上有紅色銹潰。第u圖顯現出暴露於嚴苛“酸雨”環 i見達4個月的有柱狀結構之根據本發明之A1_Zn Si_Mg塗覆 物(總塗覆物質量為每平方公尺塗覆物係5〇克)上沒有紅色 銹潰。 隶後,申凊人在根據本發明之具Al_Zn_Si_Mg塗覆物之 實例的微結構分析中發現到該微結構包括具特別形態的 Mg2Sl相粒子位在具富有八1之〇[相的枝蔓體之間的具富有Zn 之共熔相混合物的枝蔓體間通道中,且此形態在改良塗覆 物的抗腐蝕性上係為重要的,如以上討論者。申請人發現 到Mg2Sl相粒子的大小及分布亦為促進根據本發明之 Al-Zn-Si-Mg塗覆物改良型腐蝕性能的重要因子。申請人亦 發現到藉由選擇塗覆物組成物及控制塗覆物固化期間的冷 卻速率,MgzSi相粒子令人滿意的形態、大小及分布係為可 能的。 第12及13圖例示出以上討論之Mg2Si相粒子形態之一 實例。 19 201200630 在第12圖之平面影像中,較暗的區域係為富有八丨之〇1 相枝曼體’明亮區域係為具富有Zn之共熔相混合物的枝蔓體 間通道’及部分充滿該等通道的“中國字紋” Mg2Si相粒子。 在第13圖之3維影像中,Mg2si “瓣,,係以紅色顏色顯 示’而其他相包括:Si(綠色)、MgZn2(藍色)及富有A1之α 相(暗色基質)。 可對上述本發明作許多修改而不背離本發明之精神及 範嗜。 【圖式簡單說明】 第1圖係根據本發明之經塗漆金屬性經塗覆鋼帶狀物 就嚴苛海洋環境中之沖擊暴露在邊緣過切位準上的減低。 第2圖係根據本發明之經氟碳塗漆之金屬性經塗覆鋼 帶狀物就嚴苛海洋環境中之沖擊暴露之改良型腐餘性能。 第3圖係傳統Al/Zn塗覆物在海洋環境中塗漆下有廣大 腐触前緣的實例。 第4圖係根據本發明之金屬性經塗覆鋼帶狀物在海洋 環境中塗漆下有較窄且均勻腐蝕前緣的實例。 第5圖係具有非常細枝蔓體結構之Al/Zn塗覆物相較於 傳統結構(B vs A)在鹽噴霧測試中有改良型表面風化但犠 牲防護位準減低。根據本發明之金屬性經塗覆鋼帶狀物相 較於有粗或細結構的Al/Zn塗覆物(C及D vs A及B)在鹽喷霧 測試中有改良型表面風化及改良型犠牲防護。 第6圖係暴露於嚴苛“酸雨”環境達6個月的傳統經 Al/Zn為主塗覆之鋼帶狀物(總塗覆物質量為每平方公尺塗 ⑧ 20 201200630 覆物係100克)上有紅色銹潰。 本發明 第7圖係暴露於嚴苛“酸雨,,環境達6個月的根據 之Al/Zn金屬性經塗覆鋼帶狀物(總塗覆質量為每平方八尺 塗覆物係100克)上沒有紅色銹潰。 第8圖係暴露於嚴苛“酸雨”環境達18個月的傳統細 Al/Zn為主塗覆之鋼帶狀物(總塗覆質量為每平方公尺塗覆 物係100克)上有紅色銹漬。 第9圖係暴露於嚴苛“酸雨,,環境達18個月的根據本發 明之Al/Zn金屬性經塗覆鋼帶狀物(總塗覆質量為每平方公 尺塗覆物係100克)上沒有紅色銹潰。 第10圖係暴露於嚴苛“酸雨,,環境達4個月的有柱狀結 構之傳統經A1 / Ζ η為主塗覆之鋼帶狀物(總塗覆質量為每平 方公尺塗覆物係50克)上有紅色銹潰。 第11圖係暴露於嚴苛“酸雨,,環境達4個月的有柱狀結 構之根據本發明之Al/Zn金屬性經塗覆鋼帶狀物(總塗覆質 量為每平方公尺塗覆物係5〇克)上沒有紅色銹潰。 第12圖係SEM平面視圖。 第13圖係藉相繼EPMA製圖之Mg2Si粒子(呈紅色)之網 絡3D形態。 【主要元件符號說明】 (無) 21Al-Zn-Si-Mg coatings have examples of narrower and more aggressive fronts under paint in marine environments. The sentence of the test panel in Fig. 5 verifies the improved ageing ability of the example of the WZnlMg coating according to the present invention under accelerated test conditions. In particular, Figure 5 shows that compared to the conventional Al/Zn coating, the A1_Zn_Si_Mg coating according to the present (4) has a modified surface weathering and improved type in the salt spray cycle rot and test. Sacrifice protection. Figures 6 through 11 verify that the Aim-Mg coated steel test panels were modified in an "acid rain" or "contaminated" environment when produced in accordance with the present invention. The photographs appear in the traditional AI heart. The main alloy coated steel test panel was red-crushed, while the π Si Mg coated steel test panel made according to the present invention did not have red smash. The comparison between Figure 9 and Figure 7 shows The interest system was retained over time. In particular, Figure 6 shows the violent road in the harshness of the rain, 'the environment is up to 6 months of the traditional eight-hearted, covered steel tau (total coating material The amount of coating per square meter of coating is rusted. Figure 7 shows the quality of the coating of A1_Zn_si_Mg coating (10) according to the invention exposed to severe "acid rain, environment up to June. There is no red rust on the 18 201200630 coating system per square meter. Figure 8 shows a conventional A1/Zn-coated steel strip exposed to a harsh "acid rain" environment for 18 months (total coating mass per square meter of coating system i 0 0 There is a red rust on the gram. Figure 9 shows the Al-Zn-Si-Mg coating according to the invention exposed to severe "acid rain, environment for 18 months (the total coating mass is 1 per square meter of coating system) There is no red rust on the gram. The first 显现 diagram shows a traditional A1/Zn coated steel strip with a columnar structure exposed to a harsh “acid rain” environment for 4 months (total coating) The coating quality is 50 grams per square meter of coating system) with red rust. Figure u shows a columnar structure exposed to a severe "acid rain" ring for 4 months according to the invention. There is no red rust on the A1_Zn Si_Mg coating (the total coating mass is 5 gram per square meter of coating system). After that, the applicant has a micro-example of the Al_Zn_Si_Mg coating according to the present invention. In the structural analysis, it was found that the microstructure includes a special morphology of the Mg2Sl phase particles in the inter-body channel with a Zn-rich eutectic phase mixture between the branches of the phase. It is important to improve the corrosion resistance of the coating, as discussed above. Applicants have found that the Mg2Sl phase particles are large. And distribution is also an important factor in promoting the improved corrosion performance of the Al-Zn-Si-Mg coating according to the present invention. Applicants have also discovered that by selecting the coating composition and controlling the cooling rate during curing of the coating The satisfactory morphology, size and distribution of MgzSi phase particles are possible. Figures 12 and 13 show an example of the morphology of the Mg2Si phase particles discussed above. 19 201200630 In the planar image of Fig. 12, the darker The region is rich in gossip. The 1 bright body is the inter-bulk channel with a mixture of Zn-rich eutectic phases and the "Chinese-grain" Mg2Si phase particles filled with these channels. In the 3D image of Fig. 13, the Mg2si "valve, which is shown in red color" and the other phases include: Si (green), MgZn2 (blue), and alpha phase (a dark matrix) rich in A1. Many modifications may be made to the invention described above without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the reduction of the impact of exposure to a marginal overcut level in a severe marine environment in accordance with the coated metallic coated steel strip of the present invention. Figure 2 is a modified septic performance of a fluorocarbon coated metallic coated steel strip in accordance with the present invention for impact exposure in severe marine environments. Figure 3 is an example of a conventional Al/Zn coating having a broad set of corrosion contact fronts in a marine environment. Figure 4 is an illustration of a narrow and uniform corrosion front of a metallic coated steel strip in accordance with the present invention in a marine environment. Figure 5 shows an Al/Zn coating with a very fine dendritic structure with improved surface weathering in the salt spray test compared to the conventional structure (B vs A) but with reduced levels of protection. The metal coated steel strip according to the present invention has improved surface weathering and improvement in the salt spray test compared to the Al/Zn coating (C and D vs A and B) having coarse or fine structure. Type of protection. Figure 6 is a conventional Al/Zn-coated steel strip exposed to a harsh "acid rain" environment for 6 months (total coating mass per square meter coated 8 20 201200630 covering system 100 There is a red rust on the gram. Figure 7 of the present invention is an Al/Zn metallic coated steel strip exposed to severe "acid rain, environment for 6 months (total coating quality is 100 grams per square foot of coating system) There is no red rust on the top. Figure 8 is a traditional thin Al/Zn-coated steel strip exposed to a harsh "acid rain" environment for 18 months (the total coating quality is coated per square meter). 100 grams of the system has red rust stains. Figure 9 is an Al/Zn metallic coated steel strip according to the invention exposed to severe "acid rain, environment for 18 months (total coating quality) There is no red rust on the coating system per square meter of 100 grams). Figure 10 is a steel strip that is exposed to severe "acid rain, a typical columnar structure with an environment of 4 months, with A1 / Ζ η as the main coating (the total coating quality is coated per square meter). 50 grams of the system has a red rust. Figure 11 is an Al/Zn metallic coated steel ribbon according to the present invention exposed to a harsh "acid rain" environment having a columnar structure for 4 months. (The total coating quality is 5 gram per square meter of coating) There is no red rust on the rust. Figure 12 is a SEM plan view. Figure 13 is a network 3D form of Mg2Si particles (in red) successively patterned by EPMA. [Main component symbol description] (none) 21

Claims (1)

201200630 七、申請專利範圍: L 一種用於在典型為鋼之金屬帶狀物上形成適於用於如 ^雨或經污染,’環境的具抗腐姓Al-Zn-Si-Mg合金之 塗覆物的方法,其包含: (a) 使金屬帶狀物通過一具A1_Zn_Si_Mg合金之熔 融浴槽’並在該帶狀物之一或兩表面上形成合金之塗覆物, (b) 固化該帶狀物上的塗覆物而形成一經固化的塗 覆物’該經固化的塗覆物具有一微結構包含具富有A1 之ot相的枝蔓體及具富有Zn之共熔相混合物的枝蔓體間 通道’延伸自該金屬帶狀物,且有Mg2Si相粒子在該等 枝蔓體間通道中, 真該方法包含控制步驟⑻及(b)並形成〇T:SDAS比大於 〇 5:1之經固化的塗覆物’其中〇Τ係為覆蓋厚度,而 S〇AS係為塗覆物之富有A1之α相枝蔓體的二級枝蔓體 臂間隔。 2如申請專利範圍第1項之方法’其中該OT:SDAS比大於 1:1 0 〆種金屬帶狀物,其具有適於用於如“酸雨”或“經污染” 環境的具A1-Zn-Si-Mg合金之塗覆物在該帶狀物之一或 兩表面上,該塗覆物包含一微結構,該微結構包含具富 有A1之相的枝蔓體及具富有Zn之共熔相混合物的枝蔓 體間通道延伸自金屬帶狀物,且有MgaSi相粒子在該等 枝蔓體間通道中’且該塗覆物具有OT:SDAS比大於 〇5:1,其中OT係為覆蓋厚度’而SDAS係為塗覆物之富 ⑧ 22 201200630 有A1之α相枝蔓體的二級枝蔓體臂間隔。 4. 如申請專利範圍第3項之經塗覆之金屬帶狀物,其中該 OT:SDAS 比大於 1:1 〇 5. 如申請專利範圍第3項或第4項之經塗覆之金屬帶狀 物’其中該塗覆物在該帶狀物之兩表面上具有總塗覆物 質量為每平方公尺塗覆物少於2〇〇克,其等於當該帶狀 物僅被塗覆一表面及該塗覆物厚度在兩表面上係為相 同時,鋼帶狀物之一表面上每平方公尺塗覆物少於1〇〇克。 6·如申請專利範圍第3-5項中任一項之經塗覆之金屬帶狀 物’其中該塗覆物之覆蓋厚度大於3 μπι。 7.如申請專利範圍第3-5項中任一項之經塗覆之金屬帶狀 物’其中該塗覆物中之富有Α1之α相枝蔓體的SDAS係大 於3μιη,但小於2〇μηι。 8·如申請專利範圍第3-7項中任一項之經塗覆之金屬帶狀 物’其中該Al-Zn-Si-Mg合金含有20-95%之Α卜上達5% 之Si、上達1〇%之Mg及剩餘的Zn和少量的其他元素,就 每個其他元素典型係少於0.5%。 9·如申請專利範圍第3-8項中任一項之經塗覆之金屬帶狀 物’其中該金屬帶狀物係為鋼帶狀物。 10. —種用於在典型為鋼之金屬之帶狀物上形成適於用於 如“酸雨”或“經污染”環境的具抗腐蝕Al-Zn-Si-Mg合金 之塗覆物的方法,其包含: 0)使金屬帶狀物通過一具A1_Zn_Si_Mg合金之熔 融浴槽,並在該帶狀物之一或兩表面上形成合金之塗覆物, 23 201200630 (b)固化該帶狀物上的塗覆物而形成一經固化的塗 覆物,該經固化的塗覆物具有一微結構包含具富有A1 之α相的枝蔓體及具富有Zn之共熔相混合物的枝蔓體間 通道延伸自該金屬帶狀物,且有Mg2Si相在該經固化的 塗覆物中之枝蔓體間通道中, 且該方法包含選擇Mg與Si濃度及控制步驟(b)中的冷卻 速率以在該等枝蔓體間通道中形成Mg2Si相粒子。 11.如申請專利範圍第1〇項之方法,其包含選擇Mg濃度為 大於0.5%。 12_如申請專利範圍第10項或第η項之方法,其包含選擇 Mg》辰度為大於1%。 13. 如申請專利範圍第10_12項中任一項之方法,其包含選 擇Mg濃度為少於3%。 14. 如申請專利範圍第1 〇_ 13項中任一項之方法,其中選擇 Mg與Si濃度及控制步驟(b)中的冷卻速率之步驟係在該 等枝蔓體間通道中形成具有恰當大小及形態以阻擋沿 該等枝蔓體間通道腐蝕的Mg2Si相粒子。 15. 如申請專利範圍第14項之方法,其中在該等枝蔓體間通 道中之Mgji相粒子的形態當以平面影像觀視時係呈 “中國字紋”形式,而當以3維影像觀視時係呈花瓣形式。 16. 如申請專利範圍第15項之方法,其中該等瓣具有厚度少 於 5 μιη。 17. 如申請專利範圍第15項之方法,其中該等瓣具有厚度在 〇·5-2·5 μιη的範圍中。 201200630 18. 如申請專利範圍第ι〇-14項中任一項之方法,其中選擇 Mg與Si濃度及控制步驟(b)中的冷卻速率以在該等枝蔓 體間通道中形成MgsSi相粒子之步驟係在經固化的塗覆 物中的枝蔓體間通道中形成具有活化富有Α12α相以提 供犧牲防護之大小範圍及空間分布的Mg2Syg粒子。 19. 如申請專利範圍第1 〇-18項中任一項之方法,其中塗覆 物固化期間的冷卻速率CR係少於170 - 4.5CT,其中CR 係為以。C/秒表示之冷卻速率,而CT係為以微米表示之 帶狀物表面上的塗覆物厚度。 20. —種金屬帶狀物,其具有適於用於如“酸雨,,或“經污染” 環境的具Al-Zn-Si-Mg合金之塗覆物在該帶狀物之一或 兩表面上,該塗覆物包含一微結構,該微結構包含具富 有A1之α相的枝蔓體及具富有Zn之共熔相混合物的枝蔓 體間通道延伸自金屬帶狀物,且有Mg2Si相粒子在該等 枝蔓體間通道中。 21. 如申請專利範圍第20項之經塗覆之金屬帶狀物,其中該 Al-Zn-Si-Mg合金含有20-95%之A1、上達5%之Si、上達 10%之Mg及剩餘的Zn和少量的其他元素,就每個其他元 素典型係少於0.5%。 22. 如申請專利範圍第21項之經塗覆之金屬帶狀物,其中 Mg濃度大於0.5%。 23. 如申請專利範圍第21項之經塗覆之金屬帶狀物,其中 Mg濃度大於1%。 24. 如申請專利範圍第21項之經塗覆之金屬帶狀物,其中 25 201200630 Mg濃度少於3%。 25. 如申請專利範圍第21-24項中任一項之經塗覆之金屬帶 狀物,其中,就有Si濃度從0.5至2%的塗覆物而言,相 較於其他含Si相,枝蔓體間Mg2Si相的體積分率係大於 50%。 26. 如申請專利範圍第21-25項中任一項之經塗覆之金屬帶 狀物,其中相較於其他含Si相,枝蔓體間Mg2Si相的體 積分率係大於80%。 27. 如申請專利範圍第21-26項中任一項之經塗覆之金屬帶 狀物,其中塗覆物中Mg2Si相之總體積分率中大於70% 係位於塗覆物覆蓋厚度下方三分之二中。 28. 如申請專利範圍第21-27項中任一項之經塗覆之金屬帶 狀物,其中大於60%之枝蔓體間通道係被Mg2Si相粒子 “阻擋”。 ⑧ 26201200630 VII. Patent application scope: L A coating for forming an anti-corrosion Al-Zn-Si-Mg alloy suitable for use in a metal strip, typically steel, suitable for use in environments such as rain or pollution. A method of coating comprising: (a) passing a metal strip through a molten bath of an A1_Zn_Si_Mg alloy and forming an alloy coating on one or both surfaces of the strip, (b) curing the strip a coating on the article to form a cured coating. The cured coating has a microstructure comprising a dendritic body having an ot phase rich in A1 and a dendritic body having a mixture of Zn-rich eutectic phases The channel 'extends from the metal ribbon and has Mg2Si phase particles in the inter-branched inter-body channels, and the method comprises the control steps (8) and (b) and forms a cured 〇T: SDAS ratio greater than 〇5:1 The coating 'where the tether is the cover thickness, and the S〇AS is the secondary dendritic arm spacing of the A1 alpha-branched body of the coating. [2] The method of claim 1, wherein the OT: SDAS ratio is greater than 1:1 0 of a metal ribbon having an A1-Zn suitable for use in an "acid rain" or "contaminated" environment. a coating of -Si-Mg alloy on one or both surfaces of the ribbon, the coating comprising a microstructure comprising a dendritic body having an A1 rich phase and a eutectic phase rich in Zn The inter-branched channel of the mixture extends from the metal ribbon and there are MgaSi phase particles in the inter-branched channel 'and the coating has an OT: SDAS ratio greater than 〇5:1, wherein the OT system is the cover thickness' The SDAS system is a coating of 8 22 201200630 with a secondary branching arm of A1 alpha vines. 4. A coated metal strip as claimed in claim 3, wherein the OT:SDAS ratio is greater than 1:1 〇5. The coated metal strip of claim 3 or 4 Where the coating has a total coating mass on both surfaces of the ribbon of less than 2 gram per square meter of coating, which is equal to when the ribbon is coated only When the surface and the thickness of the coating are the same on both surfaces, the coating on one surface of the steel strip has less than 1 gram per square meter of coating. The coated metal strip of any one of claims 3-5, wherein the coating has a cover thickness greater than 3 μm. 7. The coated metal strip of any one of claims 3-5, wherein the SDAS of the alpha-rich vines in the coating is greater than 3 μιη, but less than 2 μηηι . 8. The coated metal strip of any one of claims 3-7, wherein the Al-Zn-Si-Mg alloy contains 20-95% of the 5% Si, up to 1% of Mg and the remaining Zn and a small amount of other elements are typically less than 0.5% for each of the other elements. 9. The coated metal strip of any one of claims 3-8, wherein the metal strip is a steel strip. 10. A method for forming a coating of a corrosion-resistant Al-Zn-Si-Mg alloy suitable for use in an environment such as an "acid rain" or "contaminated" environment on a strip of metal, typically steel. , comprising: 0) passing a metal strip through a molten bath of an A1_Zn_Si_Mg alloy and forming an alloy coating on one or both surfaces of the strip, 23 201200630 (b) curing the strip The coating forms a cured coating having a microstructure comprising a dendritic body having an alpha phase rich in A1 and an intervening channel extending from a mixture of Zn-rich eutectic phases extending from a metal ribbon having a Mg2Si phase in the inter-branched channel of the cured coating, and the method comprising selecting a concentration of Mg and Si and controlling a cooling rate in step (b) to effect the branches Mg2Si phase particles are formed in the interbody passage. 11. The method of claim 1, wherein the method comprises selecting a Mg concentration of greater than 0.5%. 12_ The method of claim 10 or n, which comprises selecting Mg to be greater than 1%. 13. The method of any one of claims 10 to 12, which comprises selecting a Mg concentration of less than 3%. 14. The method of any one of claims 1 to 13, wherein the steps of selecting the concentration of Mg and Si and the cooling rate in the controlling step (b) are formed to have an appropriate size in the inter-branched channels And morphology to block Mg2Si phase particles that are corroded along the channels of the branches. 15. The method of claim 14, wherein the morphology of the Mgji phase particles in the inter-branched channel is in the form of a "Chinese character" when viewed in a planar image, and in the form of a 3-dimensional image The time is in the form of a petal. 16. The method of claim 15, wherein the petals have a thickness of less than 5 μιη. 17. The method of claim 15, wherein the lobes have a thickness in the range of 〇·5-2·5 μηη. The method of any one of claims ι〇-14, wherein the concentration of Mg and Si is selected and the cooling rate in step (b) is controlled to form MgsSi phase particles in the inter-branched channels. The step is to form Mg2Syg particles having a size range and spatial distribution that activates the Α12α-rich phase to provide sacrificial protection in the interbranched channels in the cured coating. 19. The method of any one of claims 1 to 18, wherein the cooling rate CR during curing of the coating is less than 170 - 4.5 CT, wherein CR is . C/sec represents the cooling rate, while CT is the thickness of the coating on the surface of the ribbon expressed in microns. 20. A metal ribbon having a coating of Al-Zn-Si-Mg alloy suitable for use in an "acid rain," or "contaminated" environment on one or both surfaces of the ribbon The coating comprises a microstructure comprising a dendritic body having an alpha phase rich in A1 and an intermetallic channel extending from a mixture of Zn-rich eutectic phases extending from the metal ribbon and having Mg2Si phase particles In the inter-branched channel. 21. The coated metal ribbon of claim 20, wherein the Al-Zn-Si-Mg alloy contains 20-95% of A1 and up to 5%. Si, up to 10% of Mg and the remaining Zn and a small amount of other elements are typically less than 0.5% for each of the other elements. 22. The coated metal ribbon of claim 21, wherein Mg The concentration is greater than 0.5% 23. The coated metal ribbon of claim 21, wherein the Mg concentration is greater than 1%. 24. The coated metal ribbon according to claim 21 of the patent application, Wherein 25 201200630 Mg concentration is less than 3%. 25. The coated metal strip as claimed in any one of claims 21-24 Among them, in the case of a coating having a Si concentration of 0.5 to 2%, the volume fraction of the Mg2Si phase between the branches is greater than 50% compared to the other Si-containing phases. The coated metal ribbon of any of the 25 items, wherein the volume fraction of the Mg2Si phase between the branches is greater than 80% compared to the other Si-containing phases. 27. See Patent Application No. 21-26 A coated metal ribbon according to any one of the preceding claims, wherein greater than 70% of the total integral ratio of the Mg2Si phase in the coating is within two-thirds of the thickness of the coating cover. The coated metal ribbon of any of clauses 21-27, wherein greater than 60% of the inter-branched inter-body channels are "blocked" by the Mg2Si phase particles. 8 26
TW099121206A 2010-06-29 2010-06-29 Corrosion protection with al/zn-based coatings TWI527932B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099121206A TWI527932B (en) 2010-06-29 2010-06-29 Corrosion protection with al/zn-based coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099121206A TWI527932B (en) 2010-06-29 2010-06-29 Corrosion protection with al/zn-based coatings

Publications (2)

Publication Number Publication Date
TW201200630A true TW201200630A (en) 2012-01-01
TWI527932B TWI527932B (en) 2016-04-01

Family

ID=46755479

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099121206A TWI527932B (en) 2010-06-29 2010-06-29 Corrosion protection with al/zn-based coatings

Country Status (1)

Country Link
TW (1) TWI527932B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825475B (en) * 2021-09-07 2023-12-11 日商日本製鐵股份有限公司 Hot plated steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825475B (en) * 2021-09-07 2023-12-11 日商日本製鐵股份有限公司 Hot plated steel

Also Published As

Publication number Publication date
TWI527932B (en) 2016-04-01

Similar Documents

Publication Publication Date Title
AU2023208091B2 (en) Corrosion protection with AL/ZN-based coatings
US8962153B2 (en) Hot-dip Zn—Al alloy coated steel sheet and producing method therefor
JP4637978B2 (en) Corrosion-resistant paint and corrosion-resistant steel material coated with the same
CA3216734A1 (en) Plated steel
TW201200630A (en) Corrosion protection with Al/Zn-based coatings
KR20160071918A (en) Coating composition, and method for coating of steel using the same, and coating steel coated coating composition
AU2019204599B2 (en) Corrosion protection with al/zn-based coatings
AU2015213419B2 (en) Corrosion protection with al/zn-based coatings
JP5101250B2 (en) Resin coated steel sheet
KR20140066020A (en) Hot-dip aluminium-magnesium-silicon based alloy coated steel sheet with excellent sacrificial protection and method of maunfacturing the same
JP2012251247A (en) Method for producing resin-coated steel sheet
WO2021250973A1 (en) Hot-dipped zn–al–mg-based plated steel