TW201200594A - Novel immunotherapy against several tumors including gastrointestinal and gastric cancer - Google Patents

Novel immunotherapy against several tumors including gastrointestinal and gastric cancer Download PDF

Info

Publication number
TW201200594A
TW201200594A TW100109429A TW100109429A TW201200594A TW 201200594 A TW201200594 A TW 201200594A TW 100109429 A TW100109429 A TW 100109429A TW 100109429 A TW100109429 A TW 100109429A TW 201200594 A TW201200594 A TW 201200594A
Authority
TW
Taiwan
Prior art keywords
peptide
cell
cancer
quot
cells
Prior art date
Application number
TW100109429A
Other languages
Chinese (zh)
Other versions
TWI486445B (en
Inventor
Jens Fritsche
Toni Weinschenk
Steffen Walter
Peter Lewandrowski
Harpreet Singh
Original Assignee
Immatics Biotechnologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immatics Biotechnologies Gmbh filed Critical Immatics Biotechnologies Gmbh
Publication of TW201200594A publication Critical patent/TW201200594A/en
Application granted granted Critical
Publication of TWI486445B publication Critical patent/TWI486445B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
    • A61K2039/585Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation wherein the target is cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Analytical Chemistry (AREA)

Abstract

The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to 95 novel peptide sequences and their variants derived from HLA class I molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.

Description

201200594 六、發明說明: 【發明所屬之技術領域】 本發明涉及用於免疫治療方法的肽、核酸和細胞。特別 是,本發明涉及癌症的免疫療法。本發明還涉及單獨使用 或與其他腫瘤相關肽(激抗腫瘤免疫反應疫苗複合物的活 性藥物成分)合使用的腫瘤相關細胞毒性T辅助細胞(ctl) 肽表位。本發明涉及3 3種新型肽序列及其變體,它們源自 可用於引發抗腫瘤免疫反應的疫苗組合物中的人腫瘤 HLA-I類分子。 【先前技術】 胃癌是惡性細胞在胃壁形成的一種疾病。胃癌可發展於 胃部的任何一部分,可能擴散到整個胃部以及其他器官; 尤其是食道、肺和肝臟。胃癌是全球第四最常見的癌症, 2002年有93萬確診病例。胃癌具有高死亡率(每年〜8〇 萬)使之成為全球僅次於肺癌導致癌症死亡的第二大最 常見原因。此病較常見於男性’更常見於亞洲國家和發展 中國豕。(http://www.who.int/mediacentre/factsheets/fs297/ en/.) 在美國’胃癌約占每年所有新發癌症病例的2%(255〇〇 例)’但在其他國家更常見。在韓國,胃癌是位於第一位 的癌種,占惡性腫瘤的20.8%。在日本,胃癌仍是男性最 常見的癌症❶在美國’每年約有8000名男性和i3000女 性被診斷患有胃癌。大部分為7〇歲以上。 月癌疋全球第四大常見癌症,僅次於肺癌、乳腺 154845.doc 201200594 癌、結腸癌和直腸癌。此外,胃癌仍是第二大最常見 癌症死因。據美國癌症協會估計,2007年有一百萬新發 病例’其中近7〇%發生在發展中國家,大約80萬例死亡 (http://www.cancer.org/downloads/STT/Global_Facts_and201200594 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the invention relates to immunotherapy for cancer. The present invention also relates to a tumor-associated cytotoxic T helper cell (ctl) peptide epitope for use alone or in combination with other tumor-associated peptides (active pharmaceutical ingredients of the anti-tumor immune response vaccine complex). The present invention relates to 33 novel peptide sequences and variants thereof derived from human tumor HLA class I molecules useful in vaccine compositions useful for eliciting an anti-tumor immune response. [Prior Art] Gastric cancer is a disease in which malignant cells form in the stomach wall. Gastric cancer can develop in any part of the stomach and may spread throughout the stomach and other organs; especially the esophagus, lungs and liver. Gastric cancer is the fourth most common cancer in the world. In 2002, there were 930,000 confirmed cases. The high mortality rate of gastric cancer (~80 million per year) makes it the second most common cause of cancer deaths in the world after lung cancer. The disease is more common in men's more common in Asian countries and in developing China. (http://www.who.int/mediacentre/factsheets/fs297/en/.) In the United States, gastric cancer accounts for approximately 2% (255 cases) of all new cancer cases each year, but is more common in other countries. In South Korea, gastric cancer is the first cancer, accounting for 20.8% of malignant tumors. In Japan, gastric cancer remains the most common cancer in men. In the United States, approximately 8,000 men and i3000 women are diagnosed with stomach cancer each year. Most are 7 years old or older. Lunar cancer is the fourth most common cancer in the world, second only to lung cancer, breast 154845.doc 201200594 Cancer, colon cancer and rectal cancer. In addition, gastric cancer remains the second most common cause of cancer death. According to the American Cancer Society, there were one million new cases in 2007, nearly 7% of which occurred in developing countries, and about 800,000 deaths (http://www.cancer.org/downloads/STT/Global_Facts_and

Figure s_2007_rev2.pdf.) 此疾病的全球發病率中存在巨大的地域差異。該疾病的 發病率在亞洲和南美洲部分地區最高,在北美最低。根據 記錄,該疾病的死亡率在智利、日本、南美和前蘇聯最 馬。 除了日本通常進行早期檢測外(在韓國以有限的方式進 行),世界大部分地區均不進行篩查,因此,胃癌在得到 確診時通常已為晚期。因而,胃癌仍然對醫療保健專業人 士帶來重大挑戰。胃癌的危險因素為幽門螺桿菌(h. pylori)感染、吸煙、攝入高量鹽分、以及其他飲食因素。 少數胃癌(1%至3%)與胃癌遺傳易感性症候群相關。在彌 漫型胃癌常染色體顯性遺傳易感性家族中,大約25%發生 匕—基因突變。這-亞群胃癌被稱為遺傳性彌漫性 胃癌。這可能有益於提供遺傳諮詢,並考慮在種系截斷 的年輕無症狀攜帶者中進行預防性胃切除術 月2由3層組織組成.枯膜(最内)層、肌(中間)層和聚膜 (最外)層。胃癌首先發生於粘膜層内壁,隨著生長而擴散 至外層#四種^準治療方法可治療胃癌。胃癌治療方法 包括手術、化療、放療或放化療。手術是胃癌的主要治療 方法手㈣目的是進行完全切除,並使切緣為陰性(R0 I54845.doc 201200594 切除)。但是,大約有50%局部胃癌不能進行R〇切除。Ri 切除表示在顯微鏡下可發現殘留癌細胞(切緣陽性),尺2切 除表示有肉眼可見的殘留癌細胞,但疾病未有遠處轉移。 患者結果取決於診斷時發現的最初期別(nccn腫瘤學臨 床實踐指南τΜ)。 對於π期疾病的患者,治療性手術切除後的5年生存率 為30-50% ’ Π期患者為1〇_25%。這些患者有局部及全身復 發的可能性極高。80-90%的胃癌患者均會發生轉移,在較 早期別得到確診的患者中6個月生存率為65%,而在較晚 期確診的患者中不到丨5〇/〇。 因此’仍然需要對以下癌症患者實施安全有效、並且在 不使用化療藥物或可能導致嚴重副作用的藥物即可提升患 者福祉的新型治療方案:胃癌、攝護腺(上皮)癌、口腔 癌、口腔鱗狀細胞癌(0SCC)、急性髓性白血病(AML)、幽 門螺旋桿菌引起的malt淋巴瘤、結腸(上皮)癌/結直腸 癌、膠質母細胞瘤、非小細胞肺癌(NSCLC)、宮頸(上皮) 癌、人乳腺癌、攝護腺癌、結腸癌、胰腺癌、胰腺導管腺 癌、卵巢癌、肝細胞癌、肝癌、不同表型的腦腫瘤、急性 淋巴細胞白血病(all)等白血病、肺癌、尤因氏肉瘤、子 宮内膜癌、頭頸部鱗狀細胞癌、喉上皮癌、食管癌、口腔 (上皮)癌、膀胱癌、卵巢(上皮)癌、腎細胞癌、非典型腦 膜瘤、乳頭狀甲狀腺癌、腦腫瘤、涎腺導管癌、宮頭癌、 結外型T/NK細胞淋巴瘤、非霍奇金淋巴瘤、肺癌和乳腺 癌等惡性實體瘤、以及其他腫瘤。 I54845.doc 201200594 本發明採用刺激免疫系統的肽以一種無創方式充當抗腫 瘤製劑^ 【發明内容】 是否能刺激免疫反應取決於是否存在被宿主免疫系統視 為異物的抗原。發現腫瘤相關抗原的存在增加了運用宿主 免疫系統干預腫瘤生長的可能性。對於癌症免疫療法,目 前正在探索各種利用免疫系統的體液和細胞免疫作用的機 制。 細胞免疫反應的特定元素能特異性地識別和破壞腫瘤細 胞。從腫瘤浸潤細胞群或外周血中分離出的細胞毒性丁_細 胞(CTL)表明’這些細胞在癌症的天然免疫防紫中發揮了 重要作用。特別是CD8陽性T細胞(TCD8+)在這種反應中發 揮重要作用’ TCD8能識別通常8至1 〇個源自蛋白或位於 細胞質的缺損核糖體產物(DRIP)的氨基酸殘基的主要組織 相容性複合體(MHC)所載的肽中所含的j類分子。人MHC 分子也稱為人白細胞-抗原(hla)。 MHC分子有兩類:大部分有細胞核的細胞上都可發現的 MHC-I類分子。MHC分子分別由—條〇1重鏈和β_2_微球蛋白 (MHC-Ι類受體)或《和0鏈(MHC_n類受體)組成。其三位構 造形成一個結合槽,用於與肽進行非共價相互作用。mhc I類分子提呈主要為内源性的蛋白、DRIPS和較大肽裂解生 成的狀。MHC Π類分子主要發現于專業抗原提呈細胞 (C)上並且主要提呈在内吞作用過程中由A?。佔據並 且隨後被加卫的外源性或跨膜蛋白的肽。肽和mhc ι類分 154845.doc 201200594 子的複合體由負載相應TCR(T細胞受體)的CD8陽性細胞 毒性T淋巴細胞進行識別,而肽和MHCII類分子的複合體 由負載相應TCR的CD4陽性輔助T細胞進行識別。本領域 已熟知TCR、肽和MHC由此按1:1:1的化學計算量而存在。 對於觸發(引發)細胞免疫反應的狀’它必須與MHC分子 結合。這一過程依賴於MHC分子的等位基因以及肽氨基酸 序列的特異性多態性^ MHC-Ι類-結合肽的長度通常為2 個氨基酸殘基’並且在其與MHC分子相應結合溝槽相互作 用的序列中通常包含兩個保守殘基(「錨」)^這樣,每個 MHC的等位基因都有「結合基序」,從而確定哪些肽能與 結合溝槽特異性結合。 在MHC-Ι類依賴性免疫反應中,肽不僅能與腫瘤細胞表 達的某些MHC-Ι類分子結合,而且它們還必須能被τ細胞 特異性T細胞受體(Tcr)識別。 腫瘤特異性細胞毒性T淋巴細胞所識別的抗原,即它們 的表位’可以是源自所有蛋白類型的分子,如酶、受體、 轉錄因數4,它們在相應腫瘤的細胞中被表達,並且與同 源未變的細胞相比,其表達上調。 目前將腫瘤相關肽分類為以下主要幾組: a)癌-睾丸抗原:T細胞能夠識別的最先確認的TAA屬於這 一類抗原’由於其成員表達于組織學相異的人腫瘤中、正 常組織中、僅在睾丸的精母細胞/精原細胞中、偶爾在胎 盤中’因此’它最初被稱為癌-睾丸(CT)抗原。由於睾丸 細胞不表達HLA I類和π類分子,所以,在正常組織中, 154845.doc 201200594 這些抗原不能被τ細胞識別,因此在免疫學上可考慮為具 有腫瘤特異性。CT抗原大家熟知的例子是河遍家族成員 或 NY-ESO-1。 b) 分化抗原:腫瘤和正常組織(腫瘤源自該組織)都含有 TAA ’大多數TAA發現于黑色素瘤和正常黑&素細胞中。 孑^此類黑色素細胞譜系相關蛋白參與黑色素的生物合 、成,因此這些蛋白不具有腫瘤特異性,但是仍然被廣泛用 於癌症的免疫治療。例子包括,但不僅限於,黑色素瘤的 酪氨酸酶和Melan-A/MART-1或攝護腺癌的psA。 c) 過量表達的TAA :在組織學相異的腫瘤中以及許多正常 組織中都檢測到了基因編碼被廣泛表達的TAA,一般表達 水準較低《有可能許多由正常組織加工和潛在提呈的表位 低於T細胞識別的閾值水準,而它們在腫瘤細胞中的過量 表達能夠通過打破先前確立的耐受性而引發抗癌反應。這 類TAA的典型例子為Her-2/neu、生存素、端粒酶或WT1。 d) 腫瘤特異性抗原:這些獨特的TAA產生于正常基因(如 鈣-catenin、CDK4等)的突變。這些分子變化中有一些與致 ‘瘤性轉化和/或進展相關。腫瘤特異性抗原一般可在不對 正Φ组織帶來自體免疫反應風險的情況下誘導很強的免疫 反應。另一方面,這些TAA在多數情況下只與其上確認了 有TAA的確切腫瘤相關,並且通常在許多個體腫瘤之間並 不都共用TAA。 e) 由異常翻譯後修飾產生的TAA :此類TAA可能由腫瘤中 既不具有特異性也不過量表達的蛋白產生,但其仍然具有 154845.doc 201200594 腫瘤相關性(該相關性由主要對腫瘤具有活性的翻譯後加 工所致)。此類TAA產生於變糠基化模式的改變,導致腫 瘤產生針對MUC 1的新型表位或在降解過程中導致諸如蛋 白拼接的事件’這可能具有也可能不具有腫瘤特異性。 f)腫瘤病毒蛋白:這些TTA是病毒蛋白,可在致癌過程中 發揮關鍵作用,並且由於它們是外源蛋白(非人源蛋白), 所以能夠激發τ細胞反應。這類蛋白的例子有人乳頭狀瘤 1 6型病毒蛋白、E6和E7,它們在宮頸癌中表達。 對於被細胞毒性T淋巴細胞識別為腫瘤特異性抗原或相 關性抗原以及用於治療的蛋白質,必須具備特殊的條件。 該抗原應主要由腫瘤細胞表達,而不由正常健康組織表 達,或表達數量相對較少。更為適宜的情況是,該相應抗 原不僅出現於一種腫瘤中,而且濃度(即每個細胞的相應 肽拷貝數目)尚。腫瘤特異性抗原和腫瘤相關抗原往往是 源自直接參與因細胞週期控制或凋亡抑制中的一項功能而 發生的正常細胞向腫瘤細胞轉化的蛋白。另外,這些直接 導致轉化事件的蛋白的下游靶標可能會被上調,因此可能 與腫瘤間接相關。這些腫瘤間接相關抗原也可能是預防接 種方法的輕標(Singh-Jasuja H·,Emmerich N. P.,Figure s_2007_rev2.pdf.) There is a huge geographical difference in the global incidence of this disease. The incidence of the disease is highest in parts of Asia and South America and lowest in North America. According to records, the mortality rate of the disease is the highest in Chile, Japan, South America and the former Soviet Union. Except for early detection in Japan (a limited method in Korea), screening is not performed in most parts of the world, so gastric cancer is usually advanced in the diagnosis. As a result, stomach cancer still poses significant challenges for healthcare professionals. The risk factors for gastric cancer are Helicobacter pylori infection, smoking, high intake of salt, and other dietary factors. A small number of gastric cancers (1% to 3%) are associated with genetic susceptibility syndromes in gastric cancer. In the family of autosomal dominant susceptibility to diffuse gastric cancer, approximately 25% of baboon-gene mutations occur. This subgroup of gastric cancer is called hereditary diffuse gastric cancer. This may be beneficial in providing genetic counseling and considering prophylactic gastrectomy in young, asymptomatic carriers with truncated truncation. Month 2 consists of 3 layers of tissue. The membrane (inner) layer, the muscle (intermediate) layer and the poly Membrane (outermost) layer. Gastric cancer first occurs in the inner wall of the mucosa, and spreads to the outer layer with growth. The four kinds of quasi-therapeutic methods can treat gastric cancer. The treatment of gastric cancer includes surgery, chemotherapy, radiotherapy or radiotherapy and chemotherapy. Surgery is the main treatment for gastric cancer. The purpose of the hand (4) is to perform a complete resection and make the margin negative (R0 I54845.doc 201200594 resection). However, approximately 50% of local gastric cancers are unable to undergo R〇 resection. Ri resection indicates that residual cancer cells can be found under the microscope (positive margin of resection), and ruler 2 excision indicates residual cancer cells visible to the naked eye, but the disease has not metastasized. Patient outcomes depend on the initial stage of diagnosis (nccn Oncology Practice Guide τΜ). For patients with π-stage disease, the 5-year survival rate after therapeutic surgical resection is 30-50% ‘P) patients are 1〇_25%. These patients are highly likely to have local and systemic recurrences. Metastasis occurs in 80-90% of patients with gastric cancer, and the 6-month survival rate is 65% in patients who are not diagnosed earlier, and less than 〇5〇/〇 in patients diagnosed later. Therefore, there is still a need for a new treatment regimen that promotes the well-being of patients who are safe and effective, and who do not use chemotherapy drugs or may cause serious side effects: gastric cancer, prostate (epithelial) cancer, oral cancer, oral scales Cell carcinoma (0SCC), acute myeloid leukemia (AML), Helicobacter pylori-induced malt lymphoma, colon (epithelial) carcinoma/colorectal cancer, glioblastoma, non-small cell lung cancer (NSCLC), cervix (epithelial) Cancer, human breast cancer, prostate cancer, colon cancer, pancreatic cancer, pancreatic ductal adenocarcinoma, ovarian cancer, hepatocellular carcinoma, liver cancer, brain tumors of different phenotypes, acute lymphoblastic leukemia (all), leukemia, lung cancer , Ewing's sarcoma, endometrial cancer, head and neck squamous cell carcinoma, laryngeal epithelial cancer, esophageal cancer, oral (epithelial) cancer, bladder cancer, ovarian (epithelial) cancer, renal cell carcinoma, atypical meningioma, nipple Malignant solid tumors such as thyroid carcinoma, brain tumor, ductal carcinoma of the parotid gland, papillary carcinoma, extranodal T/NK cell lymphoma, non-Hodgkin's lymphoma, lung cancer and breast cancer, And other tumors. I54845.doc 201200594 The present invention employs a peptide stimulating the immune system to act as an anti-tumor preparation in a non-invasive manner. [Explanation] Whether or not the immune response can be stimulated depends on the presence or absence of an antigen considered to be a foreign body by the host immune system. The presence of tumor-associated antigens was found to increase the likelihood of using the host immune system to interfere with tumor growth. For cancer immunotherapy, various mechanisms for utilizing the humoral and cellular immunity of the immune system are currently being explored. Specific elements of cellular immune responses specifically recognize and destroy tumor cells. Cytotoxic D-cells (CTLs) isolated from tumor infiltrating cell populations or peripheral blood indicate that these cells play an important role in the natural immune defense of cancer. In particular, CD8-positive T cells (TCD8+) play an important role in this response. TCD8 recognizes major histocompatibility of amino acid residues from 8 to 1 源自-derived proteins or cytoplasmic defective ribosome products (DRIP). A class J molecule contained in a peptide contained in a sex complex (MHC). Human MHC molecules are also known as human leukocyte-antigen (hla). There are two types of MHC molecules: MHC-I molecules that are found on most cells with nuclei. The MHC molecules are composed of a -1 重 1 heavy chain and a β 2 -microglobulin (MHC-steroid receptor) or "and a 0 chain (MHC_n receptor). Its three-position structure forms a binding groove for non-covalent interaction with the peptide. Mhc class I molecules are mainly produced by endogenous proteins, DRIPS and larger peptides. MHC steroids are mainly found on professional antigen presenting cells (C) and are mainly presented by A? during endocytosis. A peptide that occupies and is subsequently protected by an exogenous or transmembrane protein. The complex of peptide and mhc ι 154845.doc 201200594 is recognized by CD8-positive cytotoxic T lymphocytes loaded with the corresponding TCR (T cell receptor), while the complex of peptide and MHC class II molecules is loaded with CD4 of the corresponding TCR. Positive helper T cells were identified. It is well known in the art that TCR, peptide and MHC are thus present in stoichiometric amounts of 1:1:1. For the trigger (priming) cellular immune response, it must bind to the MHC molecule. This process relies on the allele of the MHC molecule and the specific polymorphism of the peptide amino acid sequence. The MHC-steroid-binding peptide is usually 2 amino acid residues in length and binds to each other in the groove corresponding to the MHC molecule. The sequence of action typically contains two conserved residues ("anchor"). Thus, each MHC allele has a "binding motif" to determine which peptides specifically bind to the binding groove. In MHC-steroid-dependent immune responses, peptides not only bind to certain MHC-steroidal molecules expressed by tumor cells, but they must also be recognized by the tau cell-specific T cell receptor (Tcr). The antigens recognized by tumor-specific cytotoxic T lymphocytes, ie their epitopes' may be molecules derived from all protein types, such as enzymes, receptors, transcription factors 4, which are expressed in cells of the corresponding tumor, and Its expression is up-regulated compared to homologous cells. Tumor-associated peptides are currently classified into the following major groups: a) Cancer-testis antigen: The first confirmed TAA that T cells can recognize belongs to this class of antigens' because their members are expressed in histologically different human tumors, normal tissues. Medium, only in testicular spermatocytes/spermatogonia, occasionally in the placenta 'so' it was originally called the cancer-testis (CT) antigen. Since testicular cells do not express HLA class I and π-type molecules, in normal tissues, 154845.doc 201200594 These antigens are not recognized by tau cells and are therefore immunologically considered to be tumor specific. A well-known example of a CT antigen is a member of the River Family or NY-ESO-1. b) Differentiation antigens: Tumors and normal tissues (from which the tumor originates) contain TAA. Most TAAs are found in melanoma and normal black & primordial cells. These melanocyte lineage-associated proteins are involved in the biosynthesis of melanin, so these proteins are not tumor-specific, but are still widely used in cancer immunotherapy. Examples include, but are not limited to, melanoma tyrosinase and Melan-A/MART-1 or psA of prostate cancer. c) Over-expressed TAA: TAAs with widely expressed genes are detected in histologically distinct tumors as well as in many normal tissues, with generally low expression levels. "Maybe many tables processed and potentially presented by normal tissues." The level is below the threshold level of T cell recognition, and their overexpression in tumor cells can trigger an anti-cancer response by breaking previously established tolerance. Typical examples of such TAAs are Her-2/neu, survivin, telomerase or WT1. d) Tumor-specific antigens: These unique TAAs are produced by mutations in normal genes (such as calcium-catenin, CDK4, etc.). Some of these molecular changes are associated with 'tumor transformation and/or progression. Tumor-specific antigens generally induce a strong immune response in the absence of a risk of a positive Φ tissue with an immune response. On the other hand, these TAAs are in most cases only associated with the exact tumor in which TAA has been identified, and usually do not share TAA between many individual tumors. e) TAA produced by abnormal post-translational modification: such TAA may be produced by a protein that is neither specific nor overexpressed in the tumor, but it still has a tumor correlation of 154845.doc 201200594 (this correlation is mainly due to tumor Due to active post-translational processing). Such TAA results from a change in the thiolation pattern, resulting in a tumor producing a novel epitope against MUC 1 or causing events such as protein splicing during degradation' which may or may not have tumor specificity. f) Tumor virus proteins: These TTAs are viral proteins that play a key role in carcinogenesis and, because they are foreign proteins (non-human proteins), are capable of eliciting a tau cell response. Examples of such proteins are human papillomavirus type VI, E6 and E7, which are expressed in cervical cancer. Special conditions must be established for proteins that are recognized as cytotoxic T lymphocytes as tumor-specific antigens or related antigens and for treatment. The antigen should be expressed primarily by tumor cells, not by normal healthy tissues, or by a relatively small number of expressions. More suitably, the corresponding antigen not only appears in one tumor, but also in concentration (i.e., the number of corresponding peptide copies per cell). Tumor-specific antigens and tumor-associated antigens are often proteins derived from the direct conversion of normal cells to tumor cells that occur as a function of cell cycle control or apoptosis inhibition. In addition, these downstream targets of proteins that directly cause transformation events may be up-regulated and may therefore be indirectly related to tumors. These tumor indirect related antigens may also be a light standard for preventing inoculation methods (Singh-Jasuja H., Emmerich N. P.,

Rammensee H. G·,Cancer Immunol. Immunother. 2004 Mar; 453(3):187-95)。在這兩種情況中,至關重要的是,都要 存在杬原氨基酸序列的表位,所以這種來自腫瘤相關抗原 的肽(「免疫原性肽」)可導致體外或體内τ細胞反應。 基本上’任何能與MHC分子結合的肽都可能充當一個τ I54845.doc 201200594 細胞表位。誘導體外或體内τ細胞反應的前提是存在具有 相應TCR的Τ細胞並. 不存在對該特定表位的免疫耐受 性。 因此TAA疋開發腫瘤疫苗的起點。識別和表徵的 方法基於對患者或健康受試纟加的使用情況’或基於 腫瘤與正常組織肽之間差別轉錄特性或差別表達模式的產 生。 然而’對腫瘤組織或人腫瘤細胞株中過量表達或選擇性 表達的基因的識別並不提供在免疫療法中使用這些基因所 轉錄抗原的準確資訊。這是因為,有著相應τ細胞 必須要存在而且對這個特定表位的免疫对受性必須不存在 或為最低水準,因必匕’這些抗原的表位只有一部分適合這 種應用。因此’只選擇那些蛋自過量表達或選擇性表達的 肽並且這些肽疋與可找到對抗性功能性τ細胞的MHC分 子結合在一起被提呈,這一點非常重要。這種功能性丁細 胞被定義為在以特異性抗原刺激後能夠克隆地擴展並能夠 執行效應子功能(「效應子T細胞」)的丁細胞。 輔助T細胞在編排抗腫瘤免疫的CTL效應子功能中發揮 著重要作用。觸發TH1細胞反應的輔助τ細胞表位支援cD8 1¾性殺傷T細胞的效應子功能,其中包括直接作用於腫瘤 細胞的細胞毒性功能(該類腫瘤細胞表面顯示有腫瘤相關 肽/MHC複合體)。這樣’單獨形式的或與其他腫瘤相關肽 形成組合物的腫瘤相關T輔助細胞肽表位可作為刺激抗腫 瘤免疫反應疫苗組合物的活性藥物成分。 I54845.doc 201200594 【實施方式】 除非另有說明’否則本文使用的所有術語定義如下。本 文所用「肽」這一術語’系指一系列氨基酸殘基,通常以 α-氨基酸與相鄰氨基酸的羰基團之間的肽鍵相互連接。這 些肽的長度優選為9個氨基酸,但至短可為8個氨基酸長 度至長可為1〇、11、12、13或14個氨基酸長度》 本文使用的術語「寡肽」是指—系列氨基酸殘基,通常 以α-氨基酸與相鄰氨基酸的羰基團之間的肽鍵相互連接。 寡肽的長度對於本發明來說並不十分關鍵,只要在寡肽中 保持正確的表位即可。通常,寡肽長度約小於3〇個氨基酸 殘基,約長於14個氨基酸。 「多肽」這一術語是指一系列氨基酸殘基,通常以心氨 基酸與相鄰氨基酸的羰基團之間的肽鍵相互連接。多肽的 長度對於本發明來說並不十分關鍵,只要保持正確的表位 即可。與術語肽或寡肽相對,「多肽」這一術語是指包含 多於約30個氨基酸殘基的分子。 一種肽、募肽、蛋白質或編碼該分子的核苷酸如果能誘 導免疫反應,則具有「免疫原性」(因此是本發明中的一 種「免疫原」)。在本發明的情況下,免疫原性的更具體 定義是誘導Τ細胞反應的能力。因此,「免疫原」是一種能 夠誘導免疫反應的分子,並且在本發明的情況下,是一種 能誘導Τ細胞反應的分子。 τ細胞「表位」要求的是一種結合至MHCI類受體上的短 肽,從而形成一種三元複合體(^111(:1類〇1鏈、P_2_微球蛋白 154845.doc -12- 201200594 和狀)’其可由載有以相應親和力結合至MHC/肽複合體的 匹配丁細胞受體的一種T細胞進行識別。結合至MHCI類分 子的狀的典型長度為8-14個氨基酸,最典型為9個氨基酸 長度。 在人類中,有三種編碼MHCI類分子的不同基因位點(人 MHC分子也是指定的人白細胞抗原(HLA)) : HLA-A、 HLA-B 和 JJLA-C。HLA-A*01、HLA-A*02 和 HLA-A*024 是可從這些基因位點表達的不同MHCI類等位元基因的實 例0 表1 ·· HLA-A*024和最常見HLA*A〇2402血清類型的表達 頻率F °頻率根據^^”丨等人(M〇ri et ai. i〇17_27)使用的 Hardy-Weinberg公式F = 1_(1_Gf)2改編,從美國人群範圍 内的单體型頻率中推導出。有關詳細資訊,請參閱Rammensee H. G., Cancer Immunol. Immunother. 2004 Mar; 453(3): 187-95). In both cases, it is essential that the epitope of the amino acid sequence is present, so that the peptide derived from the tumor-associated antigen ("immunogenic peptide") can cause a tau cell reaction in vitro or in vivo. . Essentially any peptide that binds to an MHC molecule may act as a τ I54845.doc 201200594 cell epitope. The premise of inducing a tau cell response in vitro or in vivo is the presence of sputum cells with corresponding TCR and no immunological tolerance to this particular epitope. Therefore TAA疋 develops the starting point of tumor vaccines. Methods of identification and characterization are based on the use of patients or healthy subjects or based on differential transcriptional or differential expression patterns between tumors and normal tissue peptides. However, the identification of genes that are overexpressed or selectively expressed in tumor tissues or human tumor cell lines does not provide accurate information on the use of antigens transcribed by these genes in immunotherapy. This is because there is a corresponding tau cell that must exist and the immune pairing for this particular epitope must be absent or at a minimum, since only a portion of the epitopes of these antigens are suitable for this application. Therefore, it is very important to select only those peptides from which the eggs are overexpressed or selectively expressed and these peptides are combined with MHC molecules which can find antagonistic functional tau cells. This functional butyl cell is defined as a butyl cell that is capable of clonal expansion and is capable of performing effector functions ("effector T cells") after stimulation with a specific antigen. Helper T cells play an important role in the organization of CTL effector functions against tumor immunity. The helper tau cell epitope that triggers the TH1 cell response supports the effector functions of cD8 13⁄4 sex killer T cells, including cytotoxic functions that act directly on tumor cells (the tumor cell surface shows tumor-associated peptide/MHC complexes). Such tumor-associated T helper peptide epitopes, either alone or in combination with other tumor associated peptides, can serve as active pharmaceutical ingredients for stimulating an anti-tumor immune response vaccine composition. I54845.doc 201200594 [Embodiment] Unless otherwise stated, all terms used herein are defined as follows. As used herein, the term "peptide" refers to a series of amino acid residues, typically linked to each other by a peptide bond between an alpha-amino acid and a carbonyl group of an adjacent amino acid. These peptides are preferably 9 amino acids in length, but may be as long as 8 amino acids in length to be 1, 11, 12, 13 or 14 amino acids in length. The term "oligopeptide" as used herein refers to a series of amino acids. The residue is typically linked to each other by a peptide bond between the alpha-amino acid and the carbonyl group of an adjacent amino acid. The length of the oligopeptide is not critical to the invention as long as the correct epitope is maintained in the oligopeptide. Typically, the oligopeptide is less than about 3 amino acid residues in length, and is about 14 amino acids long. The term "polypeptide" refers to a series of amino acid residues, usually linked by a peptide bond between a heart amino acid and a carbonyl group of an adjacent amino acid. The length of the polypeptide is not critical to the invention as long as the correct epitope is maintained. In contrast to the term peptide or oligopeptide, the term "polypeptide" refers to a molecule comprising more than about 30 amino acid residues. A peptide, a peptide, a protein or a nucleotide encoding the molecule has "immunogenicity" (and thus an "immunogen" in the present invention) if it can induce an immune response. In the context of the present invention, a more specific definition of immunogenicity is the ability to induce a sputum cell response. Therefore, an "immunogen" is a molecule capable of inducing an immune response, and in the case of the present invention, a molecule capable of inducing a sputum cell reaction. The "epitope" of tau cells requires a short peptide that binds to MHC class I receptors to form a ternary complex (^111 (: class 1 〇1 chain, P_2_microglobulin 154845.doc -12-) 201200594 and its shape] can be recognized by a T cell carrying a matched buty cell receptor that binds to the MHC/peptide complex with corresponding affinity. The typical length of the molecule bound to the MHC class I molecule is 8-14 amino acids, the most Typically 9 amino acids in length. In humans, there are three different gene loci that encode MHC class I molecules (human MHC molecules are also designated human leukocyte antigens (HLA)): HLA-A, HLA-B, and JJLA-C. HLA -A*01, HLA-A*02 and HLA-A*024 are examples of different MHC class I alleles that can be expressed from these loci. Table 1 · HLA-A*024 and the most common HLA*A 〇2402 Serum type expression frequency F ° frequency according to the Hardy-Weinberg formula F = 1_(1_Gf)2 used by ^^"丨 et al. (M〇ri et ai. i〇17_27), from the US population Derived from the body frequency. For more information, please refer to

Chanock等人的文獻(Chanock et al. 1211-23)。 全球企清型HLA*24和A*24〇2的表達頻率 等位基因 人群 根據等位元基因頻率算得的顯型 A*24 菲律賓人 65% A*24 俄羅斯涅涅茨人 61% A*2402 曰本人 59% A*24 馬來西亞人 58% A*2402 菲律賓人 54% A*24 印度人 47% A*24 韓國人 40% A*24 斯里蘭卡人 37% 154845.doc 13 201200594 A*24 中國人 32% A*2402 印度人 29% A*24 澳大利亞西部人 22% A*24 美國人 22% A*24 俄羅斯薩馬拉人 20% A*24 南美人 20% A*24 歐洲人 18% 本文提到的DNA序列既包括單鏈DNA也包括雙鏈DNA。 因此,除非本文另有所指,否則具體的序列是該序列的單 鏈DNA、該序列與其互補序列的雙工(雙鏈DNA)以及該序 列的互補序列。「編碼區」這一術語是指在基因的天然基 因組環境中天然或正常編碼該基因的表達產物的那部分基 因,即,體内編碼該基因的天然表達產物的區域。 編碼區可來自非突變(「正常」)基因、突變基因或異常 基因,甚至還可以來自DNA序列,完全可在實驗室中使用 本領域熟知的DNA合成方法合成。 術語「核苷酸序列」系指去氧核苷酸的雜聚物。 編碼特定肽、寡肽或多肽的核苷酸序列可為天然核苷酸 序列,也可為合成核苷酸序列。一般來說,編碼肽、多肽 以及本發明蛋白的DNA片段由cDNA片段和短寡核苷酸銜 接物,或一系列寡核苷酸組成,以提供一種合成基因,該 基因能夠在包含源自微生物或病毒操縱子的調節元素的重 組轉錄單元中被表達。 「表達產物」這一術語是指多肽或蛋白,它是基因和遺 154845.doc 14 ⑧ 201200594 傳碼退化並因而編碼同樣的氨基酸所造成的任何核酸序列 編碼同等物的翻譯產物。 「片斷」這一術語,當指的是一種編碼序列時,表示包 含非完整編碼區的DNA的-部分,其表達產物與完整編碼 £表達產物基本上具有相同的生物學功能或活性。 「DNA片段」這一術語是指一種DNA聚合物,以單獨的 片段形式或一種較大DNA結構的組分形式存在,它們從至 少分離過一次的DNA中以基本純淨的形式獲得,即不含污 染性内源性材料,並且獲得的數量或濃度能夠使用標準生 化方法,例如使用克隆載體,進行識別、操縱和回收該片 段及其組分核苷酸序列。此等片段以開放閱讀框架(未被 内部未翻譯序列打斷)或内含子(通常提呈于真核基因中)的 形式存在。未翻譯DNA序列可能存在於開放閱讀框架的下 游’在那裏其不會干預編碼區的操縱或表達。 「引物」這一術語表示一種短核酸序列,其可與一個 DNA鏈配對,並在DNA聚合酶開始合成去氧核糖核酸鏈之 處提供一個游離的3’-〇H末端。 啟動子」這一術語表示參與RNA聚合酶的結合從而啟 動轉錄的DNA區域。 術語「分離」表示一種物質從其原來的環境(例如,如 果是天然發生的則是天然環境)中被移走。例如,活體動 物中的天然核苷酸或多肽不是分離的,但是,從天然系統 ·=或所有共存物質中为離出來的核皆酸或多狀是分離 的°此類多核苷酸可能是載體的一部分和/或此類多核苦 154845.doc -15- 201200594 酸和多肽可能是—種組合物的—部分,並且由於該載體或 組合物不是其天然環境的—部分,因此它㈣是分離的。 本發明中彼露的多核苦酸和重組或免疫原性多肽也可能 以,、.屯化」的形式存在。術語「純化」並非要求絕對的純 度;它只是-個相對的定義,可以包括高度純化或部分純 化的製Μ相關領域技術人員能理解這些術語。例如,各 個從已用傳統方法純化為具有電泳同質性的①财庫十分 離出的各種克隆物。明確考慮到將起始材料或天然物質純 化至少一個數量級,優選為兩或三個數量級,更優選為四 或五個數量級。此外,明確考慮到所述多肽的純度優選為 99.999%’或至少為99·99%或99 9%; #而適宜為以重量計 99%或更高。 根據本發明公開的核酸和多肽表達產物,以及包含此類 核酸和/或多肽的表達載體可能以「濃縮的形式」存在。 本文使用的術語「濃縮」是指材料的濃度至少是其自然濃 度的大約2、5、10、100或1000倍’有優勢的是,按重量 計為0·01 %,優選為至少〇· 1 %。也明確考慮到,按重量計 約為0.5%、1%、5%、10%和20。/。的濃縮製劑。序列、構 型 '載體、克隆物以及包含本發明的其他材料可有優勢地 以濃縮或分離的形式存在。 「活性片段」這一術語是指產生免疫反應的片段(即具 有免疫原性活性)’不論是單獨或可選地與合適的佐劑一 起給予一種動物,比如哺乳動物,例如兔子或小鼠,也包 括人;這種免疫反應採用的形式是在接受動物(如:人)體 154845.doc 201200594 内刺激τ細胞反應。或者,「活性片段」也可用於誘導體 外Τ細胞反應。 本文使用的「部分」(p〇rti〇n)、「節段」(segment)、 「片段」(fragment)這幾個術語,當與多肽相關地使用時 是指殘基的連續序列,比如氨基酸殘基,其序列形成一個 . 較大序列的子集。例如,如果一個多肽以任一種肽鏈内切 ' 肽酶(如胰蛋白酶或糜蛋白酶)進行處理,則該處理獲得的 寡肽會代表起始多肽的部分、節段或片段。這表示,任何 此類片段必定包含與SEQ ID ΝΟ:1至33序列基本相同(如果 不是完全相同)的一個節段、片段或部分作為其氨基酸序 列的一部分,其對應於SEQ m NO: 1至33的天然蛋白或 「親本」蛋白。當與多核苷酸相關地使用時,這些術語系 才曰用任何共同核酸内切酶處理所述多核苷酸產生的產物。 根據本發明,術語「等同度百分比」或「等同百分 比」’如果指的是序列,則表示在待對比序列(「被對比 序列」)與所述序列或權利要求的序列(r參考序列」)對準 » 〜後將被對比序列與所述序列或權利要求的序列進行比 、 較。然後根據下列公式計算等同度百分比: 等同度百分比=1〇〇 KC/R)] 其中c是參考序列與被對比序列之間對準長度上參考序列 與被對比序列之間的差異數量,其中 (0參考序列中每個域基或氨基酸序列在被對比序列中沒有 對應的對準域基或氨基酸; (11)參考序列中每個空隙,以及 154845.doc 201200594 (ni)參考序列中每個對準域基或氨基酸與被比對比序列中 對準域基或氨基酸不同,即構成一個差異;並且R是參考 序列與被對比序列對準長度上在參考序列中產生任何空隙 也計算為一個域基或氨基酸的參考序列中的域基或氨基酸 數目。 如果「被對比序列」和「參考序列」之間存在的一個對 準按上述計算的等同度百分比大致等於或大於指定的最低 等同度百分比’則被對比序列與參考序列具有指定的最低 等同度百分比,雖然可能存在按本文上述計算的等同度百 分比低於指定等同度百分比的對準。 如果無另有說明’那麼本文公開的原始肽可以通過在肽 鍵内的不同(可能為選擇性)位點上取代一個或多個殘基而 被修飾。此取代可能是保守性的,例如,其中一個氨基酸 被具有類似結構和特點的另一個氨基酸所取代,比如其中 一個疏水性氨基酸被另一個疏水性氨基酸取代。更保守的 取代是具有相同或類似的大小和化學性質的氨基酸間的取 代’例如’亮氨酸被異亮氨酸取代。在天然同源蛋白質家 族序列變異的研究中,某些氨基酸的取代往往比其他氨基 酸更具有耐受性,這些氨基酸往往表現出與原氨基酸的大 小、電荷、極性和疏水性之間的相似性相關,這是確定 「保守取代」的基礎。 在本文中’保守取代定義為在以下五種基團之一的内部 進行交換.基團1 -小脂肪族、非極性或略具極性的殘基 (Ala,Ser·,Thr,Pro, Gly);基團2_極性、帶負電荷的殘基及 I54845.doc -18- 201200594 其醯胺(Asp,Asn,Glu,Gin);基團3-極性、帶正電荷的殘 基(His,Arg,Lys);基團4-大脂肪族非極性殘基(Met,Leu, ne,Val,Cys)以及基圑5-大芳香殘基(Phe, Tyr,Trp)。 較不保寸的取代可能涉及一個氨基酸被另一個具有類似 特點但在大小上有所不同的氨基酸所取代,如··丙氨酸被 異焭氨酸殘基取代。高度不保守的取代可能涉及一個酸性 氨基酸被另一個具有極性或甚至具有鹼性性質的氨基酸所 取代。然而,這種「激進」取代不能認為是無效的而不予 考慮,因為化學作用是不完全可預測的,激進的取代可能 會帶來其簡單化學原理中無法預見的偶然效果。 當然’這種取代可能涉及普通L_氨基酸之外的其他結 構。因此,D-氨基酸可能被本發明的抗原肽中常見的卜氨 基酸取代,也仍在本公開的範圍之内,此外,具有非標準 R基團的氨基酸(即’除了天然蛋白的2〇個常見氨基酸之外 的R基團)也可以用於取代之目的,以生產根據本發明的 免疫原和免疫原性多肽。 如果在一個以上位置上的取代發現導致肽的抗原活性基 本上等於或大於以下定義值,則對這些取代的組合進行測 忒,以確定組合的取代是否產生對肽抗原性的疊加或協同 效應。肽内被同時取代的位置最多不能超過4個。 術5吾「T細胞反應」是指由一種肽在體外或體内誘導的 放應子功此的特異性擴散和啟動。對於MHCI類限制性 CTL,效應子功能可能為溶解肽脈衝的、肽前體脈衝的或 天然肽提呈的靶細胞、分泌細胞因數,優選為肽誘導的干 154845.doc 19 201200594 擾素-γ、TNF-α或IL-2,分泌效應分子、優選為肽或脫顆 粒作用誘導的顆粒酶或穿孔素。 優選情況是,當SEQ ID NO·· 1至33任何序列的肽特異性 CTL相比于取代肽受到檢測時,如果取代肽在相對於背景 肽溶解度增加達到最大值的一半,則該肽濃度不超過約j mM ’優選為不超過約1 μΜ,更優選為不超過約1 nM,再 優選為不超過約100 pM’最優選為不超過約1〇 pm。也優 選為’取代肽被一個以上的CTL識別,最少為2個,更優 選為3個。 因此,本發明所述的表位可能與天然腫瘤相關表位或腫 瘤特異性表位相同,也可能包括來自參考肽的不超過4個 殘基的不同肽’只要它們有基本相同的抗原活性即可。 免疫治療方法 是否能刺激免疫反應取決於是否存在被宿主免疫系統視 為異物的抗原。發現腫瘤相關抗原的提呈增加了運用宿主 免疫系統干預腫瘤生長的可能性。對於癌症免疫療法,目 剛正在探索控制免疫系統中的體液和細胞免疫的各種機 制。 細胞免疫反應的特定元素能特異性地識別和破壞腫瘤細 胞。從腫瘤浸潤細胞群或外周血中分離出的細胞毒性τ-細 月b (CTL)表明,這些細胞在癌症的天然免疫防禦中發揮了 重要作用。㈣是CD8陽性T細胞在這種反應中發揮重要 作用,他能制通常8至12個源自蛋自或位於細胞質的缺 損核糖體產物(DRIP)的教基酸殘基的主要組織相容性複合 154845.doc 201200594 體_c)所載的肽中所含的i類分子。人MHC分子也稱為 人白細胞-抗原(HLA)。 MHC-Ι類分子,在細胞核提呈因主要内源性、細胞質或 細胞核蛋白質、則PS和較大肽蛋白裂解產生的狀的細 胞上都此發現此類分子。然、而,源自内體結構或外源性來 源的肽也經常在MHCM類分子上發現m分子㈣ 典提呈方式在文獻中被稱為交又提呈。 對於被細胞毒性T淋巴細胞識別為腫瘤特異性抗原或相 關性抗原以及歸治㈣蛋自質,必須具備特殊的條件。 該抗原應主要由腫瘤細胞表達,而正常健康組織根本不表 達或表達數量較少。更為適宜的情況是,該相應抗原不僅 出現於一種腫瘤中,而且濃度(即每個細胞的相應肽拷貝 數目)高。腫瘤特異性抗原和腫瘤相關抗原通常是源於由 於細胞週期調控或凋亡等功能在正常細胞轉化為腫瘤細胞 令直接受累的蛋白。另外,這些直接導致轉化的蛋白的下 游靶標也可能會被上調,因此間接與腫瘤相關。這些間接 腫瘤相關抗原也可能是預防接種方法的靶標。至關重要的 是,在這兩種情況中,都存在抗原氨基醆序列的表位,所 以這種來自腫瘤相關抗原的肽(「免疫原性肽」)可導致體 外或體内T細胞反應。 基本上,任何能與MHC分子結合的肽都可能充當一個τ 細胞表位。誘導體外或體内T細胞反應的前提是存在具有 相應TCR的T細胞並且不存在對該特定表位的免疫耐受 性0 154845.doc -21 - 201200594 因此TAA疋開發腫瘤疫苗的起點◊識別和表徵taa的 方法基於對患者或健康受試者CTL的使用情況,或基於腫 瘤與正*組織狀之間差別轉錄特性或差別表達模式的產生 (Lemmel et al. 450-54;Weinschenk et al. 5818-27)。 然而,對腫瘤組織或人腫瘤細胞株中過量表達或選擇性 表達的基因的識別並不提供在免疫療法中使用這些基因所 轉錄抗原的準確資訊。這是因為,有著相應tCr的τ細胞 必須要存在而且對這個特定表位的免疫耐受性必須不存在 或為最低水準,因此,這些抗原的表位只有一部分適合這 種應用。因此,只選擇那些蛋白過量表達或選擇性表達的 狀’並且這些肽是與可找到對抗性功能性T細胞的MHC分 子結合在一起被提呈’這一點非常重要。這種功能性T細 胞被疋義為在以特異性抗原刺激後能夠克隆地擴展並能夠 執行效應子功能(「效應子T細胞」)的T細胞。 輔助T細胞在編排抗腫瘤免疫的ctl效應子功能中發揮 著重要作用。觸發TH!細胞反應的輔助τ細胞表位支援CD8 陽性殺傷T細胞的效應子功能,其中包括直接作用於腫瘤 細胞的細胞毒性功能(該類腫瘤細胞表面顯示有腫瘤相關 肽/MHC複合體)。這樣,腫瘤相關τ輔助細胞表位單獨使 用或與其他腫瘤相關肽結合使用可作為刺激抗腫瘤免疫反 應的疫苗化合物的活性藥物成分。 由於CD8及CD4依賴型反應共同和協同促進抗腫瘤作 用’因此,CD8陽性CTL(MHC-I分子)或CD4陽性CTL (MHC-II類分子)對腫瘤相關抗原的識別和鑒定對開發腫瘤 154845.doc •22· 201200594 疫苗非常重要。因此’提出含有與任—類mhc複合體結合 的肽組合物是本發明的—個目標。 考慮到治療癌症相關的嚴重副作用和費用,迫切需要更 ㈣㈣和斷方法。因此’通常有必要確定代表癌症生 :標諸物的其他因數,尤其是胃'癌。此外,通常有必要確 定可用於治療癌症的因數,尤其是胃癌。 此外S沒有確疋的治療設計,可用於根治性攝護腺切 除術後生化性復發的胃癌患者,復發通常是由原發部位殘 留的腫瘤出現局部晚期腫瘤生長所致。需要會降低發病率 且療效與現有治療方法相當的新型治療方法。 本發明提出了有利於治療胃癌以及其他過量表達本發明 肽的腫瘤的肽。這些肽由質譜分析法直接顯示出,而由 HLA刀子自然提呈于人原發性胃癌樣本中(請參見實施例^ 和圖1)。 衍生肽源基因在胃癌、腎細胞癌' 結腸癌、非小細胞肺 癌、腺癌、攝護腺癌、良性腫瘤和惡性黑色素瘤中與正常 組織相比顯示出高度過量表達(請參見實施例2和圖2),這 表明這些肽與腫瘤關聯程度高,即這些肽大量提呈於腫瘤 組織’而不提呈于正常組織。 HLA結合肽能夠被免疫系統識別’特別是τ淋巴細胞/τ 細胞。Τ細胞可破壞提呈被識別HLA/肽複合體的細胞(如: 提呈衍生肽的胃癌細胞)。 本發明的所有肽已被證明具有刺激T細胞反應的能力(參 見實施例3和圖3)。因此,該等肽可用于在患者中產生免 154845.doc -23- 201200594 疫反應’從而此夠毁滅腫瘤細胞。患者的免疫反應能夠通 過直接給予患者所述肽或前體物質(如,加長肽、蛋白或 編碼這些肽的核酸),較理想是與加強免疫原性的製劑相 結合,而進行誘導。源自該治療性疫苗的免疫反應預期能 夠高度特異性地對抗腫瘤細胞’因為本發明的目標肽在正 常組織上提呈的複製數目較少,防止患者發生對抗正常細 胞的不良自體免疫反應的風險。 藥品組合物包括游離形式或以一種藥用鹽形式存在的 肽。此處使用的「藥用鹽」系指所公開的肽的一種衍生 物,其中該肽由制酸或藥劑的域鹽進行改性。例如,酸性 鹽採用自由基(通常其中藥物的中性形式具有一種中性_NH2 基團)通過與合適酸發生反應而制得。適合製備酸鹽的酸 包括有機酸,如:乙酸、丙酸、羥基酸、丙酮酸、草酸、 蘋果酸、丙二酸、丁二酸、馬來酸、富馬酸、酒石酸、檸 檬酸、笨曱酸酸、肉桂酸、扁桃酸、甲磺酸、曱磺酸、苯 磺酸、水楊酸等等、以及無機酸,如:鹽酸、氣漠酸、硫 酸、硝酸和構酸等。相反,可在一種狀上提呈的酸性基團 的域鹽製劑使用藥用域基進行製備,如氫氧化納、氮氧化 狎、氫氧化錢、氫氧化弼、三甲胺等等。 在特別優選的實施例中,藥物組合物包括乙酸(醋酸鹽) 或鹽酸(氣化物)形式的肽。 本發明的肽除了用於治療癌症,也可用於診斷。由於肽 由,瘦Μ產生,並且已確定這些肽在正常組織中不存 在,因此這些肽可用於診斷癌症是否存在。 I54845.doc -24· 201200594 ,.用气切片中3_要㈣肽,可有助於病理師 症。用抗體、質譜或其他本領域内已知的方法檢測竿此狀 可使病理師判斷該組織為惡性的、炎症還是_般病變:狀 基團的提呈使得能對病變組織進行分類或進一步分成子 類0 對病變標本中肽的檢測使得能對免疫系統治療方法的利 皿進行判if ’特另|J X如果Τ_淋巴細月包已知或預言十與作用機 制有關。MHC表達的缺失是一種機制,充分說明了哪些受 感染的惡性細胞逃避了免疫監視。因此,肽的提呈表明, 分析過的細胞並沒有利用這種機制。 肽了用於为析淋巴細胞對肽的反應(如τ細胞反應),或 抗體對肽或MHC分子絡合的肽發生的反應。這些淋巴細胞 反應可以作為預後指標,決定是否採取進一步的治療。這 些反應也可以用作免疫療法中的替代指標,旨在以不同方 式誘導淋巴細胞反應,如接種蛋白疫苗、核酸、自體材 料 '淋巴細胞過繼轉移。基因治療中,淋巴細胞對肽發生 的反應可以在副作用的評估中考慮。淋巴細胞反應監測也 °丁能成為移植療法隨訪檢查中的一種有價值的工具,如, 用於檢測移植物抗宿主和宿主抗移植物疾病。 狀可用于生成和開發出針對MHC/肽複合體的特定抗 體。這些抗體可用於治療,將毒素或放射性物質把向病變 組織。這些抗體的另一用途是為了成像之目的(如ρΕΤ)將 放射性核素靶向病變組織。這可有助於檢測小轉移灶或確 疋病變組織的大小和準確位置。 154845.doc -25· 201200594 此外,可用這些TUMAP在活檢樣本的基礎上驗證病理 師對癌症的診斷。 表2顯示了根據本發明的肽、它們各自的SEQ ID NO、 以及可能產生這些肽的源蛋白。所有肽均與HLA A*024等 位基因結合。 表2 :本發明中的肽Chanock et al. (Chanock et al. 1211-23). The global expression of HLA*24 and A*24〇2 expression frequency allele population based on the allele frequency phenotype A*24 Filipino 65% A*24 Russian Nenets 61% A*2402曰 59% A*24 Malaysian 58% A*2402 Filipino 54% A*24 Indian 47% A*24 Korean 40% A*24 Sri Lankan 37% 154845.doc 13 201200594 A*24 Chinese 32 % A*2402 Indian 29% A*24 Western Australian 22% A*24 American 22% A*24 Russian Samara 20% A*24 South American 20% A*24 European 18% The DNA sequence includes both single-stranded DNA and double-stranded DNA. Thus, unless otherwise indicated herein, a particular sequence is the single stranded DNA of the sequence, the duplex (double stranded DNA) of the sequence and its complement, and the complement of the sequence. The term "coding region" refers to the portion of the gene that naturally or normally encodes the expression product of the gene in the natural genomic environment of the gene, i.e., the region in vivo encoding the native expression product of the gene. The coding region can be derived from a non-mutated ("normal") gene, a mutated gene or an aberrant gene, and even from a DNA sequence, and can be synthesized in the laboratory using DNA synthesis methods well known in the art. The term "nucleotide sequence" refers to a heteropolymer of deoxynucleotides. The nucleotide sequence encoding a particular peptide, oligopeptide or polypeptide may be a natural nucleotide sequence or a synthetic nucleotide sequence. In general, a DNA fragment encoding a peptide, a polypeptide, and a protein of the present invention consists of a cDNA fragment and a short oligonucleotide adaptor, or a series of oligonucleotides to provide a synthetic gene capable of containing the derived microorganism. Or a recombinant transcription unit of a regulatory element of a viral operon is expressed. The term "expression product" refers to a polypeptide or protein which is a translation product of a nucleic acid sequence encoding an equivalent of a gene and a 154845.doc 14 8 201200594 code-degraded and thus encoding the same amino acid. The term "fragment", when referring to a coding sequence, refers to a portion of a DNA comprising a non-intact coding region, the expression product of which has substantially the same biological function or activity as the entire encoded expression product. The term "DNA fragment" refers to a DNA polymer that exists as a separate fragment or as a component of a larger DNA structure that is obtained in substantially pure form from at least one DNA that has been isolated, ie, free of Contaminating endogenous materials, and the amount or concentration obtained can be used to identify, manipulate, and recover the fragment and its component nucleotide sequences using standard biochemical methods, such as the use of cloning vectors. Such fragments exist in the form of an open reading frame (not interrupted by an internal untranslated sequence) or an intron (usually presented in a eukaryotic gene). Untranslated DNA sequences may be present in the downstream of the open reading frame where they do not interfere with manipulation or expression of the coding region. The term "primer" refers to a short nucleic acid sequence that is paired with a DNA strand and provides a free 3'-〇H terminus at the point where the DNA polymerase begins to synthesize the DNA strand. The term "promoter" refers to a region of DNA that is involved in the binding of RNA polymerase to initiate transcription. The term "isolated" means that a substance is removed from its original environment (for example, if it is naturally occurring, it is a natural environment). For example, a natural nucleotide or polypeptide in a living animal is not isolated, but the isolated nucleic acid or polymorphism from the natural system = or all coexisting substances is isolated. Such a polynucleotide may be a vector. A portion of and/or such a multi-nuclear 154845.doc -15-201200594 acid and polypeptide may be part of a composition, and since the vector or composition is not part of its natural environment, it is (iv) separated. . The polynucleic acid and recombinant or immunogenic polypeptides disclosed herein may also exist in the form of . The term "purification" does not require absolute purity; it is only a relative definition and can be understood by those skilled in the art of highly purified or partially purified art. For example, each of the various clones that have been purified from the 1st treasury that has been purified by conventional methods to have electrophoretic homogeneity. It is explicitly contemplated to purify the starting material or natural material by at least one order of magnitude, preferably two or three orders of magnitude, more preferably four or five orders of magnitude. Further, it is expressly contemplated that the purity of the polypeptide is preferably 99.999%' or at least 99.99% or 99 9%; and is suitably 99% by weight or more. Nucleic acid and polypeptide expression products according to the present invention, as well as expression vectors comprising such nucleic acids and/or polypeptides, may exist in "concentrated form." The term "concentrated" as used herein means that the concentration of the material is at least about 2, 5, 10, 100 or 1000 times its natural concentration. It is advantageous to be 0. 01% by weight, preferably at least 〇·1. %. It is also explicitly considered to be about 0.5%, 1%, 5%, 10% and 20 by weight. /. Concentrated preparation. Sequences, Configurations 'Vectors, clones, and other materials comprising the invention may be advantageously present in concentrated or isolated form. The term "active fragment" refers to a fragment that produces an immune response (ie, has immunogenic activity)' whether administered alone or alternatively with a suitable adjuvant, such as a mammal, such as a rabbit or mouse. Also included is human; this immune response takes the form of stimulating a tau cell response in an animal (eg, human) body 154845.doc 201200594. Alternatively, an "active fragment" can also be used to induce an in vitro sputum cell response. As used herein, the terms "p", "segment", "fragment" and "fragment", when used in connection with a polypeptide, refer to a contiguous sequence of residues, such as amino acids. A residue whose sequence forms a subset of a larger sequence. For example, if a polypeptide is treated with either peptide endo-peptidase (e.g., trypsin or chymotrypsin), the oligopeptide obtained by the treatment will represent a portion, segment or fragment of the starting polypeptide. This means that any such fragment must contain a segment, fragment or portion that is substantially identical (if not identical) to the sequence of SEQ ID ΝΟ: 1 to 33 as part of its amino acid sequence, which corresponds to SEQ m NO: 1 to 33 natural protein or "parent" protein. When used in connection with a polynucleotide, these terms are used to treat the product produced by the polynucleotide with any common endonuclease. According to the present invention, the term "percentage of equivalence" or "equivalent percentage", if it refers to a sequence, means a sequence to be compared ("converted sequence") and a sequence of the sequence or claim (r reference sequence). Alignment » will be compared to the sequence of the sequence or claim by comparison. Then calculate the percentage of equivalence according to the following formula: Equivalent percentage = 1 〇〇 KC / R)] where c is the number of differences between the reference sequence and the sequence being compared between the reference sequence and the sequence being compared, where Each domain or amino acid sequence in the reference sequence has no corresponding alignment domain or amino acid in the sequence being compared; (11) each gap in the reference sequence, and each pair in the reference sequence of 154845.doc 201200594 (ni) The quasi-domain or amino acid differs from the aligned domain or amino acid in the compared sequence, ie, constitutes a difference; and R is the reference sequence and the length of the aligned sequence to generate any gap in the reference sequence is also calculated as a domain Or the number of domain or amino acid in the reference sequence of the amino acid. If an alignment between the "converted sequence" and the "reference sequence" is equal to or greater than the specified minimum equivalence percentage as described above, then The compared sequence and the reference sequence have a specified minimum percentage of equivalence, although there may be a percentage of equivalence calculated as described herein above Alignment below a specified percentage of equivalence. If not otherwise stated, then the original peptides disclosed herein can be modified by substituting one or more residues at different (possibly selective) sites within the peptide bond. This substitution may be conservative, for example, where one amino acid is replaced by another amino acid having a similar structure and character, such as one of the hydrophobic amino acids being replaced by another hydrophobic amino acid. The more conservative substitutions are the same or similar. Size- and chemical-acid substitutions between amino acids, such as 'leucine, are replaced by isoleucine. In the study of sequence variations in natural homologous protein families, substitution of certain amino acids is often more tolerant than other amino acids. Amino acids often exhibit a correlation with the similarity between the size, charge, polarity and hydrophobicity of the original amino acid, which is the basis for determining "conservative substitutions." In this context, 'conservative substitutions' are defined as one of the following five groups. Internal exchange. Group 1 - small aliphatic, non-polar or slightly polar residues (Ala, Ser·, Thr, Pro, Gly); group 2_polar, negatively charged residue and I54845.doc -18- 201200594 its indoleamine (Asp, Asn, Glu, Gin); group 3-polar, positively charged residue (His , Arg, Lys); group 4-large aliphatic non-polar residue (Met, Leu, ne, Val, Cys) and 5-quinone aromatic residue (Phe, Tyr, Trp). Substitution may involve the replacement of one amino acid by another amino acid that has similar characteristics but differs in size, such as alanine substituted with an isoleucine residue. Highly unconservative substitutions may involve an acidic amino acid being Substituted by an amino acid that is polar or even basic. However, this "radical" substitution cannot be considered invalid and is not considered because the chemical action is not completely predictable, and radical substitution may bring it Unexpected accidental effects in simple chemical principles. Of course, this substitution may involve other structures than ordinary L_amino acids. Therefore, D-amino acids may be substituted by the amino acids commonly found in the antigenic peptides of the present invention, and are still within the scope of the present disclosure, in addition, amino acids having non-standard R groups (ie, 'two common ones except for natural proteins' R groups other than amino acids can also be used for the purpose of substitution to produce immunogens and immunogenic polypeptides according to the invention. If substitutions at more than one position are found to result in the antigenic activity of the peptide being substantially equal to or greater than the values defined below, the combination of these substitutions is tested to determine if the combined substitution results in a superposition or synergistic effect on the antigenicity of the peptide. The position in the peptide that is simultaneously substituted may not exceed four at most. The "T cell response" refers to the specific diffusion and initiation of the PF function induced by a peptide in vitro or in vivo. For MHC class I-restricted CTLs, the effector function may be a target cell that lyses peptide pulsed, peptide precursor pulsed or native peptide, secretes cytokine, preferably peptide-induced stem 154845.doc 19 201200594 Interferon-γ TNF-α or IL-2, a secretory effector molecule, preferably a peptide or a granzyme or perforin induced by degranulation. Preferably, when the peptide-specific CTL of any of SEQ ID NOs. 1 to 33 is detected compared to the substituted peptide, if the solubility of the substituted peptide reaches a maximum of half relative to the background peptide, the peptide concentration is not More than about j mM ' is preferably no more than about 1 μΜ, more preferably no more than about 1 nM, still more preferably no more than about 100 pM', and most preferably no more than about 1 μm. It is also preferred that the 'substituent peptide is recognized by more than one CTL, at least two, more preferably three. Thus, an epitope described herein may be identical to a natural tumor-associated epitope or a tumor-specific epitope, and may also include different peptides of no more than 4 residues from a reference peptide as long as they have substantially the same antigenic activity, ie can. Whether the immunotherapy method stimulates the immune response depends on the presence or absence of an antigen that is considered a foreign body by the host immune system. The discovery of tumor-associated antigens has increased the likelihood of using the host immune system to interfere with tumor growth. For cancer immunotherapy, various mechanisms for controlling humoral and cellular immunity in the immune system are being explored. Specific elements of cellular immune responses specifically recognize and destroy tumor cells. The cytotoxic τ-fine moon b (CTL) isolated from tumor infiltrating cell populations or peripheral blood suggests that these cells play an important role in the natural immune defense of cancer. (d) CD8-positive T cells play an important role in this reaction, and they can produce the major histocompatibility of 8 to 12 basal acid residues derived from the ribosome-deficient ribosomal product (DRIP). Compound 154845.doc 201200594 The class i molecule contained in the peptide contained in the body_c). Human MHC molecules are also known as human leukocyte-antigen (HLA). MHC-steroidal molecules are found in the nucleus presenting cells that are produced by cleavage of major endogenous, cytoplasmic or nuclear proteins, and PS and larger peptide proteins. However, peptides derived from endosomal structures or exogenous sources often also find m molecules on MHCM-like molecules. (IV) The mode of presentation is referred to in the literature as cross-presentation. Special conditions must be met for the recognition of cytotoxic T lymphocytes as tumor-specific antigens or related antigens and for the treatment of (iv) egg self-quality. The antigen should be expressed primarily by tumor cells, whereas normal healthy tissues do not express or express a small amount at all. More suitably, the corresponding antigen not only appears in one tumor, but also at a high concentration (i.e., the number of corresponding peptide copies per cell). Tumor-specific antigens and tumor-associated antigens are usually proteins that are directly involved in the transformation of normal cells into tumor cells due to functions such as cell cycle regulation or apoptosis. In addition, these downstream targets that directly cause transformation may also be up-regulated and therefore indirectly related to the tumor. These indirect tumor-associated antigens may also be targets for vaccination methods. It is essential that in both cases an epitope of the aminoguanidine sequence of the antigen is present, such a peptide derived from a tumor-associated antigen ("immunogenic peptide") can cause a T cell response in vitro or in vivo. Basically, any peptide that binds to an MHC molecule may act as a tau cell epitope. The premise of inducing T cell responses in vitro or in vivo is the presence of T cells with the corresponding TCR and the absence of immunological tolerance to this particular epitope. 0 154845.doc -21 - 201200594 Therefore TAA疋 develops the starting point for the identification of tumor vaccines and The method of characterizing taa is based on the use of CTLs in patients or healthy subjects, or on the generation of differential transcriptional or differential expression patterns between tumors and positive*s (Lemmel et al. 450-54; Weinschenk et al. 5818). -27). However, the recognition of genes that are overexpressed or selectively expressed in tumor tissues or human tumor cell lines does not provide accurate information on the use of antigens transcribed by these genes in immunotherapy. This is because tau cells with corresponding tCr must be present and the immune tolerance to this particular epitope must be absent or at a minimum, so only a subset of the epitopes of these antigens are suitable for this application. Therefore, it is important to select only those proteins that are overexpressed or selectively expressed and that these peptides are presented in conjunction with MHC molecules that can find antagonistic functional T cells. This functional T cell is derogated as a T cell that can be cloned and expanded to be able to perform effector functions ("effector T cells") after stimulation with a specific antigen. Helper T cells play an important role in the organization of the ctl effector function of anti-tumor immunity. The helper t cell epitope that triggers the TH! cell response supports the effector function of CD8-positive killer T cells, including the cytotoxic function that directly acts on tumor cells (the tumor cell surface shows tumor-associated peptide/MHC complexes). Thus, tumor-associated tau helper epitopes alone or in combination with other tumor-associated peptides can be used as active pharmaceutical ingredients for vaccine compounds that stimulate anti-tumor immune responses. Because CD8 and CD4-dependent responses work together and synergistically to promote anti-tumor effects', CD8-positive CTLs (MHC-I molecules) or CD4-positive CTLs (MHC-II molecules) recognize and identify tumor-associated antigens for the development of tumors 154,845. Doc •22· 201200594 The vaccine is very important. Therefore, it has been proposed to formulate a peptide composition containing a complex with any of the mhc complexes. Considering the serious side effects and costs associated with the treatment of cancer, there is an urgent need for more (4) (4) and methods. Therefore, it is often necessary to identify other factors that represent cancer: other factors, especially stomach cancer. In addition, it is often necessary to determine the factors that can be used to treat cancer, especially gastric cancer. In addition, S has no definitive treatment design and can be used in patients with gastric cancer who have biochemical recurrence after radical prostatectomy. The recurrence is usually caused by local advanced tumor growth in the tumor remaining in the primary site. There is a need for new treatments that reduce morbidity and have comparable efficacy to existing treatments. The present invention proposes peptides which are advantageous for the treatment of gastric cancer and other tumors which overexpress the peptide of the present invention. These peptides are directly shown by mass spectrometry and are naturally presented by human HLA knives in human primary gastric cancer samples (see Example ^ and Figure 1). Derived peptide-derived genes show high overexpression compared to normal tissues in gastric cancer, renal cell carcinoma 'colon cancer, non-small cell lung cancer, adenocarcinoma, prostate cancer, benign tumors, and malignant melanoma (see Example 2). And Figure 2), which indicates that these peptides are highly associated with tumors, ie, these peptides are abundantly present in tumor tissues' without being presented to normal tissues. HLA-binding peptides are recognized by the immune system, particularly tau lymphocytes/tau cells. The sputum cells can destroy cells that present the recognized HLA/peptide complex (eg, gastric cancer cells that present the derived peptide). All of the peptides of the invention have been shown to have the ability to stimulate T cell responses (see Example 3 and Figure 3). Thus, the peptides can be used to produce a 154845.doc -23-201200594 epidemic response in a patient' thus sufficient to destroy tumor cells. The patient's immune response can be induced by directly administering to the patient the peptide or precursor material (e.g., lengthening the peptide, protein, or nucleic acid encoding the peptide), preferably in combination with an immunogenic formulation. The immune response derived from the therapeutic vaccine is expected to be highly specific against tumor cells' because the target peptide of the present invention has a small number of copies presented on normal tissues, preventing the patient from developing a poor autoimmune response against normal cells. risk. Pharmaceutical compositions include peptides in free form or in the form of a pharmaceutically acceptable salt. As used herein, "pharmaceutically acceptable salt" refers to a derivative of the disclosed peptide wherein the peptide is modified by the acid salt or the domain salt of the agent. For example, an acid salt is prepared by reacting with a suitable acid using a free radical (usually where the neutral form of the drug has a neutral _NH2 group). Acids suitable for the preparation of acid salts include organic acids such as acetic acid, propionic acid, hydroxy acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, and stupid Capric acid, cinnamic acid, mandelic acid, methanesulfonic acid, sulfonic acid, benzenesulfonic acid, salicylic acid, etc., and inorganic acids such as hydrochloric acid, gas desert acid, sulfuric acid, nitric acid and acid. In contrast, domain salt formulations which can be presented in a form of acidic groups are prepared using pharmaceutically acceptable domains such as sodium hydroxide, guanidinium oxyhydroxide, hydrazine hydroxide, cesium hydroxide, trimethylamine and the like. In a particularly preferred embodiment, the pharmaceutical composition comprises a peptide in the form of acetic acid (acetate) or hydrochloric acid (vapor). The peptides of the invention can also be used for diagnosis in addition to being used to treat cancer. Since peptides are produced by lean, and it has been determined that these peptides do not exist in normal tissues, these peptides can be used to diagnose the presence or absence of cancer. I54845.doc -24· 201200594 ,. The use of 3_to (four) peptide in gas slices can help pathologists. Detection of this condition by antibodies, mass spectrometry, or other methods known in the art can allow the pathologist to determine whether the tissue is malignant, inflammatory, or sedative: the presentation of a squamous group enables classification or further division of the diseased tissue Subclass 0 Detection of peptides in diseased specimens allows for the identification of immune system treatments. 'Specially|JX if Τ_lymphatic sac is known or predicted to be related to the mechanism of action. Deletion of MHC expression is a mechanism that fully demonstrates which infected malignant cells evade immune surveillance. Therefore, the presentation of peptides indicates that the analyzed cells did not utilize this mechanism. The peptide is used to react a lymphocyte to a peptide (e.g., a tau cell reaction), or a reaction of an antibody to a peptide complexed with a peptide or an MHC molecule. These lymphocyte responses can be used as prognostic indicators to determine whether further treatment is needed. These responses can also be used as surrogate markers in immunotherapy to induce lymphocyte responses in different ways, such as inoculation of protein vaccines, nucleic acids, and autologous material 'lymphocyte adoptive transfer. In gene therapy, the response of lymphocytes to peptides can be considered in the assessment of side effects. Lymphocyte response monitoring is also a valuable tool in follow-up examination of transplant therapy, for example, for the detection of graft versus host and host versus graft disease. The form can be used to generate and develop specific antibodies against MHC/peptide complexes. These antibodies can be used to treat toxins or radioactive materials to the diseased tissue. Another use of these antibodies is to target radionuclides to diseased tissue for imaging purposes (e.g., ρΕΤ). This can help detect small metastases or confirm the size and exact location of the diseased tissue. 154845.doc -25· 201200594 In addition, these TUMAPs can be used to validate the pathologist's diagnosis of cancer based on biopsy samples. Table 2 shows the peptides according to the invention, their respective SEQ ID NOs, and the source proteins from which these peptides may be produced. All peptides bind to the HLA A*024 allele. Table 2: Peptides in the present invention

SE〇 ID NO: 肽代碼 序列 源蛋白 1 CDC2-001 LYQILQGIVF CDK1 2 ASPM-002 SYNPLWLRI ASPM 3 UCHL5-001 NYLPFIMEL UCHL5 4 MET-006 SYIDVLPEF MET 5 PROM 1-001 SYIIDPLNL PROM1 6 MMP11-001 VWSDVTPLTF MMP 11 7 MST1R-001 NYLLYVSNF MST1R 8 NFYB-001 VYTTSYQQI NFYB 9 SMC4-001 HYKPTPLYF SMC4 10 UQCRB-001 YYNAAGFNKL UQCRB 11 PPAP2C-001 AYLVYTDRL PPAP2C 12 AVL9-001 FYISPVNKL AVL9 13 NUF2-001 VYGIRLEHF NUF2 14 ABL1-001 TYGNLLDYL ABL1 15 MUC6-001 NYEETFPHI MUC6 16 ASPM-001 RYLWATVTI ASPM 17 EPHA2-005 VYFSKSEQL EPHA2 18 MMP3-001 VFIFKGNQF MMP3 19 NUF2-002 RFLSGIINF NUF2 20 PLK4-001 QYASRFVQL PLK4 21 ATAD2-002 KYLTVKDYL ATAD2 22 COL12A1-001 VYNPTPNSL COL12A1 23 COL6A3-001 SYLQAANAL COL6A3 24 FANCI-001 FYQPKIQQF FANCI 154845.doc -26- 201200594SE〇ID NO: Peptide code sequence Source protein 1 CDC2-001 LYQILQGIVF CDK1 2 ASPM-002 SYNPLWLRI ASPM 3 UCHL5-001 NYLPFIMEL UCHL5 4 MET-006 SYIDVLPEF MET 5 PROM 1-001 SYIIDPLNL PROM1 6 MMP11-001 VWSDVTPLTF MMP 11 7 MST1R -001 NYLLYVSNF MST1R 8 NFYB-001 VYTTSYQQI NFYB 9 SMC4-001 HYKPTPLYF SMC4 10 UQCRB-001 YYNAAGFNKL UQCRB 11 PPAP2C-001 AYLVYTDRL PPAP2C 12 AVL9-001 FYISPVNKL AVL9 13 NUF2-001 VYGIRLEHF NUF2 14 ABL1-001 TYGNLLDYL ABL1 15 MUC6-001 NYEETFPHI MUC6 16 ASPM-001 RYLWATVTI ASPM 17 EPHA2-005 VYFSKSEQL EPHA2 18 MMP3-001 VFIFKGNQF MMP3 19 NUF2-002 RFLSGIINF NUF2 20 PLK4-001 QYASRFVQL PLK4 21 ATAD2-002 KYLTVKDYL ATAD2 22 COL12A1-001 VYNPTPNSL COL12A1 23 COL6A3-001 SYLQAANAL COL6A3 24 FANCI-001 FYQPKIQQF FANCI 154845.doc -26- 201200594

25 RPS11-001 YYKNIGLGF RPS11 26 ATAD2-001 AYAIIKEEL ATAD2 27 ATAD2-003 LYPEVFEKF ATAD2 28 HSP90B1-001 KYNDTFWKEF HSP90B1 29 SIAH2-001 VFDTAIAHLF SIAH2 30 SLC6A6-001 VYPNWAIGL SLC6A6 31 IQGAP3-001 VYKVVGNLL IQGAP3 32 ERBB3-001 VYIEKNDKL ERBB3 33 KIF2C-001 IYNGKLFDLL KIF2C 本發明其他關注的HLA A*02肽:25 RPS11-001 YYKNIGLGF RPS11 26 ATAD2-001 AYAIIKEEL ATAD2 27 ATAD2-003 LYPEVFEKF ATAD2 28 HSP90B1-001 KYNDTFWKEF HSP90B1 29 SIAH2-001 VFDTAIAHLF SIAH2 30 SLC6A6-001 VYPNWAIGL SLC6A6 31 IQGAP3-001 VYKVVGNLL IQGAP3 32 ERBB3-001 VYIEKNDKL ERBB3 33 KIF2C -001 IYNGKLFDLL KIF2C Other HLA A*02 peptides of interest in the present invention:

SE〇 ID NO: 肽代碼 序列 源蛋白 34 CCDC88A- 001 QYIDKLNEL CCDC88A 35 CCNB1-003 MYMTVSIIDRF CCNB1 36 CCND2-001 RYLPQCSYF CCND2 37 CCNE2-001 IYAPKLQEF CCNE2 38 CEA-010 IYPDASLLI CEACAM1, CEACAM5, CEACAM6 39 CLCN3-001 VYLLNSTTL CLCN3 40 DNAJC10-001 IYLEVIHNL DNAJC 10 41 DNAJC10-002 AYPTVKFYF 42 EIF2S3-001 IFSKIVSLF EIF2S3, LOC255308 43 EIF3L-001 YYYVGFAYL EIF3L, LOC340947 44 EPPK1-001 RYLEGTSCI EPPK1 45 ERBB2-001 TYLPTNASLSF ERBB2 46 GPR39-001 SYATLLHVL GPR39 47 ITGB4-001 DYTIGFGKF ITGB4 48 LCN2-001 SYNVTSVLF LCN2 49 SDHC-001 SYLELVKSL LOC642502, SDHC 154845.doc • 11 - 201200594 50 PBK-001 SYQKVIELF PBK 51 POLD3-001 LYLENIDEF POLD3 52 PSMD14-001 VYISSLALL PSMD14 53 PTK2-001 RYLPKGFLNQF PTK2 54 RPS11-001 YYKNIGLGF RPS11 55 TSPAN1-002 VYTTMAEHF TSPAN 1 56 ZNF598-001 DYAYLREHF ZNF598 57 ADAM 10-001 LYIQTDHLFF ADAM 10 58 MMP12-001 TYKYVDINTF MMP 12 59 RRM2-001 YFISHVLAF RRM2 60 TMPRSS4-001 VYTKVSAYL TMPRSS4 61 TSPAN8-001 VYKETCISF TSPAN8 在本發明之另一實施例中,揭示針對胃癌之HLA A*02 結合肽。對於A*02及/或A*24陽性人群,所揭示之肽之混 合物可用於治療胃癌。較佳為2至20種肽之混合物以及2、 3、4、5、6、7、8、9、10、11、12、13、14、15、16、 17、18、19及20種肽之混合物。 SEQ ID NO: 肽代碼 序列 源蛋白 62 DI02-001 ALYDSVILL DI02 63 IGF2BP3-001 KIQEILTQV IGF2BP3 64 LMNB1-001 LADETLLKV LMNB1 65 WNT5A-001 AMSSKFFLV WNT5A 66 FAP-003 YVYQNNIYL FAP 67 COPG-OOl VLEDLEVTV COPG, COPG2, TSGA13 68 COL6A3-002 FLLDGSANV COL6A3 69 COL6A3-003 NLLDLDYEL COL6A3 70 COL6A3-004 FLIDSSEGV COL6A3 71 PSMC2-001 ALDEGDIAL PSMC2 72 UBE2S-001 ALNEEAGRLLL UBE2S 73 KIF11-001 ILSPTVVSI KIF 11 154845.doc -28 - ⑧ 201200594SE〇ID NO: Peptide code sequence source protein 34 CCDC88A- 001 QYIDKLNEL CCDC88A 35 CCNB1-003 MYMTVSIIDRF CCNB1 36 CCND2-001 RYLPQCSYF CCND2 37 CCNE2-001 IYAPKLQEF CCNE2 38 CEA-010 IYPDASLLI CEACAM1, CEACAM5, CEACAM6 39 CLCN3-001 VYLLNSTTL CLCN3 40 DNAJC10-001 IYLEVIHNL DNAJC 10 41 DNAJC10-002 AYPTVKFYF 42 EIF2S3-001 IFSKIVSLF EIF2S3, LOC255308 43 EIF3L-001 YYYVGFAYL EIF3L, LOC340947 44 EPPK1-001 RYLEGTSCI EPPK1 45 ERBB2-001 TYLPTNASLSF ERBB2 46 GPR39-001 SYATLLHVL GPR39 47 ITGB4-001 DYTIGFGKF ITGB4 48 LCN2-001 SYNVTSVLF LCN2 49 SDHC-001 SYLELVKSL LOC642502, SDHC 154845.doc • 11 - 201200594 50 PBK-001 SYQKVIELF PBK 51 POLD3-001 LYLENIDEF POLD3 52 PSMD14-001 VYISSLALL PSMD14 53 PTK2-001 RYLPKGFLNQF PTK2 54 RPS11- 001 YYKNIGLGF RPS11 55 TSPAN1-002 VYTTMAEHF TSPAN 1 56 ZNF598-001 DYAYLREHF ZNF598 57 ADAM 10-001 LYIQTDHLFF ADAM 10 58 MMP12-001 TYKYVDINTF MMP 12 59 RRM2-001 YFISHVLAF RRM2 60 TMPRSS4-001 VYTKVSAYL TMPRSS4 61 TSPAN8-001 VYKETCISF TSPAN8 The invention In another embodiment, an HLA A*02 binding peptide directed against gastric cancer is disclosed. For A*02 and/or A*24 positive populations, a mixture of the disclosed peptides can be used to treat gastric cancer. Preferably 2 to 20 peptides and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 peptides a mixture. SEQ ID NO: Peptide code sequence source protein 62 DI02-001 ALYDSVILL DI02 63 IGF2BP3-001 KIQEILTQV IGF2BP3 64 LMNB1-001 LADETLLKV LMNB1 65 WNT5A-001 AMSSKFFLV WNT5A 66 FAP-003 YVYQNNIYL FAP 67 COPG-OOl VLEDLEVTV COPG, COPG2, TSGA13 68 COL6A3-002 FLLDGSANV COL6A3 69 COL6A3-003 NLLDLDYEL COL6A3 70 COL6A3-004 FLIDSSEGV COL6A3 71 PSMC2-001 ALDEGDIAL PSMC2 72 UBE2S-001 ALNEEAGRLLL UBE2S 73 KIF11-001 ILSPTVVSI KIF 11 154845.doc -28 - 8 201200594

74 ADAM8-001 KLLTEVHAA ADAM8 75 CCNB1-001 ALVQDLAKA CCNB1 76 CDC6-001 ILQDRLNQV CDC6 77 F2R-001 TLDPRSFLL F2R 78 OLFM4-001 TLDDLLLYI OLFM4 79 THY1-001 SLLAQNTSWLL THY1 80 CEP250-001 SLAEVNTQL CEP250 81 HIF1A-001 ALDGFVMVL HIF1A 82 KRAS-001 GVDDAFYTL KRAS 83 MET-001 YVDPVITSI MET 84 NCAPG-001 YLLSYIQSI NCAPG 85 NCAPG-002 QIDDVTIKI NCAPG 86 TOP-004 YLYGQTTTYL TOP2A 87 TOP-005 KLDETGNSL TOP2A 88 LAMC2-002 RLDDLKMTV LAMC2 89 AHR-001 LTDEILTYV AHR 90 CCNB1-002 ILIDWLVQV CCNB1 91 CEACAM6- VLYGPDVPTI CEACAM6 001 92 COPB1-001 SIFGEDALANV COPB1 93 HMMR-001 KLLEYIEEI HMMR 94 TPX2-001 KILEDVVGV TPX2 95 KIFDEILVNA TOP2A, TOP-001 TOP2B 細胞分裂週期2蛋白(CDC2) 絲胺酸/蘇胺酸激酶CDC2亦被稱為Cdkl(細胞週期蛋白 依賴性激酶1),其在細胞週期控制中發揮關鍵作用。已知 其為G2至Μ轉換之主要調節子。在間期結束時,其與A型 細胞週期蛋白結合。在核膜破裂後,A型細胞週期蛋白被 細胞週期蛋白B替代,細胞週期蛋白B與Cdc2 —起形成有 絲分裂促進因子(MPF)。MPF對驅動細胞完成有絲分裂至 154845.doc -29- 201200594 關重要。74 ADAM8-001 KLLTEVHAA ADAM8 75 CCNB1-001 ALVQDLAKA CCNB1 76 CDC6-001 ILQDRLNQV CDC6 77 F2R-001 TLDPRSFLL F2R 78 OLFM4-001 TLDDLLLYI OLFM4 79 THY1-001 SLLAQNTSWLL THY1 80 CEP250-001 SLAEVNTQL CEP250 81 HIF1A-001 ALDGFVMVL HIF1A 82 KRAS -001 GVDDAFYTL KRAS 83 MET-001 YVDPVITSI MET 84 NCAPG-001 YLLSYIQSI NCAPG 85 NCAPG-002 QIDDVTIKI NCAPG 86 TOP-004 YLYGQTTTYL TOP2A 87 TOP-005 KLDETGNSL TOP2A 88 LAMC2-002 RLDDLKMTV LAMC2 89 AHR-001 LTDEILTYV AHR 90 CCNB1-002 ILIDWLVQV CCNB1 91 CEACAM6- VLYGPDVPTI CEACAM6 001 92 COPB1-001 SIFGEDALANV COPB1 93 HMMR-001 KLLEYIEEI HMMR 94 TPX2-001 KILEDVVGV TPX2 95 KIFDEILVNA TOP2A, TOP-001 TOP2B Cell division cycle 2 protein (CDC2) Serine/threonine kinase CDC2 is also known as Cdk1 (cyclin-dependent kinase 1), which plays a key role in cell cycle control. It is known to be the major regulator of G2 to Μ conversion. At the end of the interval, it binds to type A cyclins. After nuclear membrane rupture, type A cyclins are replaced by cyclin B, which forms a mitotic promoting factor (MPF) with Cdc2. MPF is important for driving cells to complete mitosis to 154845.doc -29- 201200594.

Cdc2在有絲分裂中之功能並非多餘,且無法由其他 cdk(諸如Cdk2、Cdk4及Cdk6)之活性來補償。相反地亦 有報告指出Cdc2在細胞週期之其他階段(諸如〇 1 _s轉換)中 發揮作用,且其能夠取代「間期Cdk」。因此,Cdc2被認為 是唯一必需的細胞週期Cdk » 在若干種癌症中發現,Cdc2過度表現常與不良預後相 關°该等癌症為攝護腺癌、口腔癌、口腔鱗狀細胞癌 (OSCC)、急性髓性白血病(AML)(Qian等人)、幽門螺旋桿 菌引起之MALT淋巴瘤(Banerjee等人,217-25)及結腸癌 (Yasui等人,36-41^在胃癌中’已報導有過量表現及/或 活性增強’且可能發揮致病作用。Cdc2及其他Cdk之抑制 劑亦被考慮用作癌症療法之候選藥物(Shapir〇 177〇_83)。 異常紡鐘狀小頭畸形相關蛋白(ASPM) 異常紡錘狀小頭畸形相關蛋白(ASPM)為果绳異常紡錘 (asp)之人類直系同源基因,其參與神經生成之調節,且突 變會導致體染色體隱性原發性小頭畸形^ ASPM在有絲分 裂期間位於紡錘體兩極。ASPM過量表現被建議可作為膠 質母細胞瘤之標記及潛在之治療標靶。siRNA介導之阻斷 基因表現可抑制腫瘤細胞增殖及神經幹細胞增殖。Aspm 過量表現亦可預測肝細胞癌之侵襲性/轉移可能性增加、 腫瘤早期復發及不良預後。ASPM在永生細胞及非小細胞 肺癌組織中表現上調(Jung, Choi,及Kim 703-13)。 基質金屬蛋白酶3(MMP3) 154845.doc -3〇- ⑧ 201200594 MMP3亦被稱為明膠酶原或基質分解素1,其為降解細胞 外基質(ECM)組分(諸如纖維連接蛋白、層黏連蛋白、彈性 蛋白,蛋白多糖核心蛋白及膠原非螺旋區)之内肽酶。 MMP對於需要ECM重新排列之若干種生理過程非常重要, 該等生理過程諸如胚胎發育、組織重構、血管形成、哺乳 乳腺復舊及傷口癒合過程中之細胞遷移。MMP3亦在血小 板聚集中發揮作用。涉及河^11>3表現及分泌增強之病理病 狀包括自體免疫性炎症性病狀及癌症。 MMP3在某些腫瘤中過量表現,且在上皮間質轉化 (EMT)中發揮作用。其亦可能參與致癌之早期步驟,觸發 基因外變化而導致產生惡性表型(Lochter等人,180_93)。 與表現量相關之MMP3啟動子中的多態性顯示對某些癌症 之風險及預後有影響’如食管腺癌(Bradbury等人,793_ 98)及口腔鱗狀細胞癌(Vairaktaris等人,4〇951〇〇 乂 等 人,430-35)。在MMP3及MMP7血清含量升高之幽門螺旋 桿菌陽性胃癌患者顯示較高之淋巴結侵襲以及較短之生存 期。在一組74例胃癌患者中,27%的病例有MMp3表現 (Murray 等人,791-97)。 c-Met c-Met介導肝細胞生長因子(HGF)/分散因子之潛在致癌 活性,包括促進細胞生長、運動、存活、細胞外基質溶解 及血苔生成。HGF之結合可活化下游信號傳導事件,包括 Ras、磷脂醯肌醇3’_激酶、磷脂酶及絲裂原活化蛋白激 S# 相關路徑(Dong 專人,5911-18 ; Furge 等人,10722-27 ; 154845.doc 201200594The function of Cdc2 in mitosis is not superfluous and cannot be compensated for by the activity of other cdk such as Cdk2, Cdk4 and Cdk6. Conversely, it has also been reported that Cdc2 plays a role in other phases of the cell cycle, such as 〇 1 _s conversion, and it can replace “interphase Cdk”. Therefore, Cdc2 is considered to be the only essential cell cycle Cdk » In several cancers, Cdc2 overexpression is often associated with poor prognosis. These cancers are prostate cancer, oral cancer, oral squamous cell carcinoma (OSCC), Acute myeloid leukemia (AML) (Qian et al.), MALT lymphoma caused by Helicobacter pylori (Banerjee et al., 217-25), and colon cancer (Yasui et al., 36-41^ in gastric cancer have been reported to be overdose) Increased performance and/or activity' and may play a role in pathogenesis. Inhibitors of Cdc2 and other Cdk are also considered candidates for cancer therapy (Shapir〇177〇_83). Abnormal Spindle Microcephaly Related Proteins ( ASPM) Abnormal spindle-shaped microcephaly-associated protein (ASPM) is a human orthologous gene of the fruit spindle abnormal spindle (asp), which is involved in the regulation of neuronal production, and the mutation causes the chromosome to be recessive primary microcephaly^ ASPM is located at both ends of the spindle during mitosis. ASPM overexpression is suggested as a marker for glioblastoma and a potential therapeutic target. siRNA-mediated blockade of gene expression inhibits tumor cell proliferation and nerves Cell proliferation. Aspm overexpression can also predict increased aggressiveness/metastasis of hepatocellular carcinoma, early tumor recurrence, and poor prognosis. ASPM is up-regulated in both immortalized and non-small cell lung cancer tissues (Jung, Choi, and Kim 703- 13). Matrix metalloproteinase 3 (MMP3) 154845.doc -3〇- 8 201200594 MMP3 is also known as gelatinase or matrix degrading factor 1, which is a component of degrading extracellular matrix (ECM) (such as fibronectin, Endopeptidases of laminin, elastin, proteogical core protein, and collagen non-helical regions. MMPs are important for several physiological processes that require ECM rearrangement, such as embryonic development, tissue remodeling, and blood vessels. Cell migration during formation, lactation, and wound healing. MMP3 also plays a role in platelet aggregation. Pathological conditions involving enhanced expression and secretion of the river ^11>3 include autoimmune inflammatory conditions and cancer. Excessive manifestations in certain tumors and play a role in epithelial-mesenchymal transition (EMT). They may also be involved in early steps of carcinogenesis, triggering extragenic It leads to a malignant phenotype (Lochter et al., 180_93). Polymorphisms in the MMP3 promoter associated with performance indicate an impact on the risk and prognosis of certain cancers, such as esophageal adenocarcinoma (Bradbury et al., 793_) 98) and oral squamous cell carcinoma (Vairaktaris et al., 4〇951〇〇乂 et al., 430-35). Patients with Helicobacter pylori-positive gastric cancer with elevated serum levels of MMP3 and MMP7 showed higher lymph node invasion and Short life span. Of a group of 74 patients with gastric cancer, 27% had MMp3 performance (Murray et al., 791-97). c-Met c-Met mediates the potential carcinogenic activity of hepatocyte growth factor (HGF)/dispersion factors, including promoting cell growth, exercise, survival, extracellular matrix lysis, and blood moss production. Binding of HGF activates downstream signaling events, including Ras, phospholipid creatinine 3'-kinase, phospholipase, and mitogen-activated protein-excited S#-related pathways (Dong, 5911-18; Furge et al., 10722-27) ; 154845.doc 201200594

Furge,Zhang,及 Vande Woude 5582-89 ; Montesano 等人, 355-65 ; Naldini等人,501-04 ; Ponzetto等人,4600-08)。 c-Met主要在上皮細胞中表現。c-Met(亦在非上皮細胞惡性 組織中)之致癌性活化可由擴增/過量表現、活化突變、獲 得HGF/c-Met自分泌環或組成性磷酸化引起(Di Renzo等 人,147-54 ; Ferracini等人,739-49 ; Fischer等人,733-39 ; Koochekpour 等人,5391-98 ; Li 等人,8125-35 ; Maulik等人,41-59 ; Qian等人,589-96 ; Ramirez等人, 635-44; Tuck等人,225-32)(Nakaigawa等人,3699-705)。 在HGF過量表現之轉殖基因小鼠中之c-Met組成性活化會 促進廣泛之腫瘤形成(Takayama等人,701-06 ; Wang等 人,1023-34^ MET靜默化會抑制腫瘤生長及轉移(Corso 等人,684-93)。MET之擴增與人類胃癌進展相關(Lin等 人,5680-89)(Yokozaki,Yasui,及 Tahara 49-95)。 泛素羧基末端水解酶L5(UCHL5) UCHL5亦被稱為泛素C-末端水解酶(UCH37)或INO80R, 其為與蛋白酶體相關之脫泛素酶。其藉由使C-端Cys76與 Lys48之間的異肽鍵裂解而使蛋白連接之聚泛素鏈與遠端 分開(Nishio等人,855-60)。在細胞核中,UCHL5與Ino80 染色質重構複合體結合。當與蛋白酶體結合後,其被活 化,且可能參與轉錄調節或DNA修復,其被建議由Ino80 及蛋白酶體介導。 泛素特異性蛋白酶(如UCHL5)參與諸如細胞週期進展之 控制、分化、DNA複製及修復、轉錄、蛋白質品質控制、 154845.doc -32- ⑧ 201200594 免疫反應及細胞凋亡的若干過程^ UCHL5可能促進惡性轉 化。已顯示其在人類子宮頸癌組織中之活性與相鄰正常組 織相比上調。其能夠去泛素化,藉此使TGF-β受體及其下 游調節因子Smad穩定,並藉此增強TGF-β信號傳導。儘管 TGF-β彳§號傳導具有雙重功能且在癌症早期及開始前亦可 作為腫瘤抑制因子,TGF-β信號傳導增強在癌症進展晚期 可作為腫瘤啟動子(Bierie及Moses 29-40 ; Horton等人, 138-43 ; Wicks等人,8080-84 ; Wicks等人,761-63)。 巨噬細胞刺激蛋白受體(MST1R) MST1R(別名R〇N)受體為細胞表面受體酪胺酸激酶Met 家族之一員,且主要在上皮細胞及巨噬細胞上表現。 MST1R可對其配位體反應而誘導細胞遷移、侵襲、增殖及 存活。在活體外以及動物模型體内已顯示其致癌性質,且 通吊在人類癌症中下調(Dussault及Bellon,2009)。臨床研 究已顯示,MST1R過量表現與不良預後及轉移相關。 MST1R在胃癌組織及相應副腫瘤組織中顯著表現,但在正 常月黏膜中觀察不到(Zhou等人,236-40)。阻斷]VIST1R在 攝護腺癌細胞中表現可使活體外内皮細胞趨化作用降低, 且使在活體内原位移植至攝護腺後之腫瘤生長及微血管密 度降低。與對照細胞相比,在高度致瘤性結腸癌細胞株 中’ siRNA介導之MST1R表現阻斷會使增殖降低。 驅動蛋白樣蛋白質(KIF2C) KIF2C為一種在紡錘體形成期間調節適當動粒_微管連接 之微管解聚酶。其對後期染色體分離為重要的,且可能需 154845.doc •33· 201200594 要其來協調姊妹著絲粒分離。在大部分實體腫瘤中觀察到 干擾動粒處之微管連接會導致染色體錯誤分離及非整倍性 (Maney 等人,67-131 ; Moore及 Wordeman 537-46)。KIF2C 在乳癌細胞(Shimo等人,62-70)、結腸癌、結直腸癌及胃 癌(Nakamura等人,543-49)中過量表現。與模擬轉染細胞 相比,穩定表現KIF2C之胃癌細胞株(AZ521)顯示增殖及轉 移增加。KIF2C在胃癌中之表現升高可能與淋巴侵襲、淋 巴結轉移及不良預後相關。用針對KIF2C之小干擾RNA治 療乳癌細胞可抑制乳癌細胞生長。 染色體結構維持蛋白4(SMC4) SMC蛋白為在高層次染色體組織及動力學方面發揮作用 之染色體ATP酶。SMC4為凝聚蛋白複合體之核心組分,其 在染色質凝聚中發揮作用,且亦與細胞核仁分離、DNA修 復及染色質支架之維持相關。已知SMC4基因在正常攝護 腺及唾液腺中高度表現,在結腸、胰臟及腸中表現極弱, 且在其他組織中完全不表現。在許多癌細胞株及癌症樣本 中觀察到高RNA表現量,包括乳癌、攝護腺癌、結腸癌及 胰臟癌(Egland等人,5929-34)。Furge, Zhang, and Vande Woude 5582-89; Montesano et al., 355-65; Naldini et al., 501-04; Ponzetto et al., 4600-08). c-Met is mainly expressed in epithelial cells. The oncogenic activation of c-Met (also in non-epithelial malignant tissue) can be caused by amplification/overexpression, activating mutations, obtaining HGF/c-Met autocrine loops or constitutive phosphorylation (Di Renzo et al., 147- 54; Ferracini et al, 739-49; Fischer et al, 733-39; Koochekpour et al, 5391-98; Li et al, 8125-35; Maulik et al, 41-59; Qian et al, 589-96; Ramirez et al., 635-44; Tuck et al., 225-32) (Nakaigawa et al., 3699-705). C-Met constitutive activation in transgenic mice with excessive HGF expression promotes extensive tumor formation (Takayama et al., 701-06; Wang et al., 1023-34^ MET silencing inhibits tumor growth and metastasis (Corso et al., 684-93). Amplification of MET is associated with progression of human gastric cancer (Lin et al., 5680-89) (Yokozaki, Yasui, and Tahara 49-95). Ubiquitin carboxy terminal hydrolase L5 (UCHL5) UCHL5, also known as ubiquitin C-terminal hydrolase (UCH37) or INO80R, is a proteasome-associated deubiquitinase that cleaves an isopeptide bond between C-terminal Cys76 and Lys48. The linked polyubiquitin chain is separated from the distal end (Nishio et al., 855-60). In the nucleus, UCHL5 binds to the Ino80 chromatin remodeling complex. When bound to the proteasome, it is activated and may be involved in transcription. Regulation or DNA repair, which is suggested to be mediated by Ino80 and proteasome. Ubiquitin-specific proteases (such as UCHL5) are involved in such factors as cell cycle progression control, differentiation, DNA replication and repair, transcription, protein quality control, 154845.doc - 32- 8 201200594 Immune Response and Apoptosis Several processes ^ UCHL5 may promote malignant transformation. It has been shown to be up-regulated in human cervical cancer tissue compared to adjacent normal tissues. It can be deubiquitinated, thereby making TGF-β receptor and its downstream regulatory factors Smad is stable and thereby enhances TGF-β signaling. Although TGF-β彳§ conduction has dual functions and acts as a tumor suppressor early and early in cancer, enhanced TGF-β signaling can be used in advanced cancer progression. Tumor promoters (Bierie and Moses 29-40; Horton et al., 138-43; Wicks et al., 8080-84; Wicks et al., 761-63). Macrophage stimulating protein receptor (MST1R) MST1R (alias R 〇N) The receptor is a member of the cell surface receptor tyrosine kinase Met family and is mainly expressed on epithelial cells and macrophages. MST1R can induce cell migration, invasion, proliferation and survival by reacting with its ligand. It has been shown to be carcinogenic in vitro and in animal models and is downregulated in human cancers (Dussault and Bellon, 2009). Clinical studies have shown that MST1R overexpression is associated with poor prognosis and metastasis. MST1R Significant manifestations in gastric cancer tissues and corresponding paraneoplastic tissues, but not observed in normal monthly mucosa (Zhou et al., 236-40). Blocking] VIST1R in prostate cancer cells can induce endothelial cell chemotaxis in vitro The effect is reduced, and tumor growth and microvessel density are reduced after orthotopic transplantation into the prostate. Blocking of siRNA-mediated MST1R expression in highly tumorigenic colon cancer cell lines resulted in reduced proliferation compared to control cells. Kinesin-like protein (KIF2C) KIF2C is a microtubule depolymerase that regulates proper kinetochore-microtubule junctions during spindle formation. It is important for late chromosome segregation and may require 154845.doc •33· 201200594 to coordinate sister centromere separation. Microtubule junctions that interfere with kinetochore in many solid tumors can lead to chromosomal mis-segregation and aneuploidy (Maney et al., 67-131; Moore and Wordeman 537-46). KIF2C is overexpressed in breast cancer cells (Shimo et al., 62-70), colon cancer, colorectal cancer, and gastric cancer (Nakamura et al., 543-49). The gastric cancer cell line (AZ521) stably expressing KIF2C showed an increase in proliferation and migration compared to the mock-transfected cells. Increased expression of KIF2C in gastric cancer may be associated with lymphatic invasion, lymph node metastasis, and poor prognosis. Treatment of breast cancer cells with small interfering RNA against KIF2C inhibits the growth of breast cancer cells. Chromosome Structure Maintenance Protein 4 (SMC4) The SMC protein is a chromosomal ATPase that functions in high-level chromosome organization and kinetics. SMC4 is a core component of the agglomerated protein complex, which plays a role in chromatin condensation and is also involved in the separation of nucleoli, DNA repair, and maintenance of chromatin scaffolds. The SMC4 gene is known to be highly expressed in normal prostate and salivary glands, is extremely weak in the colon, pancreas, and intestine, and does not manifest at all in other tissues. High RNA expression was observed in many cancer cell lines and cancer samples, including breast cancer, prostate cancer, colon cancer, and pancreatic cancer (Egland et al., 5929-34).

Ephrin A型受體 2(EPAH2)Ephrin A receptor 2 (EPAH2)

Eph受體為受體酪胺酸激酶(RTK)之獨特家族,其在正常 胚胎形成過程中,在胚胎模式建立、神經元靶向作用及血 管發育中發揮關鍵作用。利用其配位體(ephrin-Al)刺激 EphA2會導致Eph A2自填酸化,其可逆轉致癌性轉化。Eph 受體及其配位體ephrin常在多種癌症中過量表現。EphA2 154845.doc .34- 201200594 常在侵襲性腫瘤細胞中過量表現且在功能上發生改變,且 被認為其係藉由增強細胞-細胞外基質之黏附、錨定依賴 性生長及血管生成來促進腫瘤生長。胃癌中顯示EphA2及 EphrinA-Ι之過量表現,其與腫瘤侵襲之深度、腫瘤淋巴 結轉移(TNM)分期、淋巴結轉移及不良預後相關(Yuan等 人,2410-17)。 ATAD2 ATAD2(亦被稱為ANCCA)為AAA+ ATP酶家族蛋白之新 成員。其增強雄激素受體(AR)及雌激素受體(ER)之轉錄活 性,分別引起包括IGF1R、IRS-2、SGK1及存活素(AR)以 及細胞週期蛋白Dl、c-myc及E2F1(ER)之基因轉錄。其亦 增強c-Myc之轉錄活性。 ATAD2表現在諸如乳癌、攝護腺癌及骨肉瘤之若干人類 腫瘤中較高。其表現與不良預後相關。 AVL9 出人意料地發現該蛋白為源蛋白,且關於AVL9蛋白及 相應基因之功能的資料很少且非常有限。 膠原蛋白α-Ι(ΧΙΙ)鏈蛋白(Co丨12A1) 膠原蛋白α-Ι(ΧΙΙ)鏈為一種蛋白質,其在人類係由 COL12A1基因編碼。該基因編碼XII型膠原蛋白之α鏈, XII型膠原蛋白為FACIT(不連續三股螺旋之原纖維相關膠 原蛋白)膠原蛋白家族之一員。XII型膠原蛋白被發現與I型 膠原蛋白結合之同源三聚體,此結合被認為可修飾膠原蛋 白I原纖維與周圍基質之間的相互作用。已鑑別出可編碼 154845.doc •35· 201200594 不同同功異型物之替代性拼接轉錄變異體。 膝原蛋白a-3(VI)鏈蛋白(COL6A3) COL6A3編碼α-3键’即VI型膠原蛋白之三個α鍵之一。 已顯示該蛋白質結構域與細胞外基質蛋白相結合,該相互 作用說明此膠原蛋白在組織基質組分中之重要性β在印巢 癌細胞中,經由膠原蛋白…之過量表現來重構細胞外基質 有助於順鉑抗性。膠原蛋白V】之存在與腫瘤等級相關,其 為一種卵巢癌的預後因素(Sherman-Baust等人,377-86)。 COL6A3在結直腸腫瘤(smith等人,1452-64)、唾液腺癌 (Leivo等人,104-13)中過量表現且在胃癌(Yang等人, 103 3-40)中差異性表現。c〇L6 A3已確定為具有腫瘤特異 性拼接變異體之七個基因之一。已證實之腫瘤特異性拼接 變化具高度一致性,因此能夠明確區分正常樣品與癌症樣 品,且在一些情況下甚至能夠區分不同腫瘤分期(Th〇rsen 等人,1214-24)。 範可尼(Fanconi)貧血互補群I(FANCI) FANCI蛋白反應DNA損傷而定位至染色質且參與DNA修 復(Sm〇gorzewska等人,289_3〇1)。FANCw因突變會導致 範可尼貧血,其係一種以細胞遺傳不穩定性、對交聯 劑過敏、染色體斷裂增加及DNA修復缺陷為特徵之隱性遺 傳異質性疾病。FANCI之替代性拼接形成兩種編碼不同同 功異型物之轉錄變異體。 熱休克蛋白90 kDap成員1(HSP90B1) HSP90(亦被稱為葡萄糖調節蛋白94,Grp94)成員i為一 154845.doc -36- 201200594 種人類伴侣蛋白。其參與er相關之過程:轉譯、蛋白質品 質控制及ER相關之降解(EraD)、ER壓力感知以及ER中約 結合/ 釣滯留(Christianson 等人,272-82 ; Fu 及 Lee 741· 44)。HSP90含有ER保留型蛋白典型之KDEL序列,但其亦 出現在腫瘤細胞表面上(Altmeyer等人,340-49)以及細胞 外。已知HSP自壞死(而非細胞凋亡)細胞以及受各種刺激 (如熱休克及氧化壓力)壓力之細胞中釋放,且可出現在循 環中(Basu 等人,1539-46 ; Tsan 及 Gao 274-79)。在細胞 外’ HSP90調節(主要為刺激)免疫反應且參與抗原提呈。 在細胞表面上’其可充當病原體進入及/或信號傳導之受 體(Cabanes等人,2827-38)。在腫瘤特異性細胞表面表現 或釋放之情況下’其可誘導抗腫瘤免疫性(zheng等人, 6731-35)。在預防性與治療性方案中,基於hSP9〇之疫苗 均已顯示針對癌症及傳染性疾病之免疫(綜述於(B〇lhassani 及 Rafati Π85-99 ; Castelli 等人,227-33 ; Murshid, Gong,及 Calderwood 1019-30)中)。 然而’ HSP90亦可視為腫瘤療法之標靶,因為丨)其與腫 瘤進展相關且亦在照射或化學療法治療後引起對細胞凋亡 之抗性,以及2)其在許多腫瘤中過量表現,包括、骨肉 瘤(Guo 等人 ’ 62-67)、乳癌(H〇d〇r〇va 等人,31_35)。 HSP90之過量表現與Gc之侵襲性行為及不良預後相關 (Wang,Wang,及 Ying 35-41 ; Zheng 等人,1042-49)。 HSP90在GC中之下調可引起癌細胞凋亡(处⑶,Liu,及Lan el096)。 154845.doc -37- 201200594The Eph receptor is a unique family of receptor tyrosine kinases (RTKs) that play a key role in embryonic pattern establishment, neuronal targeting, and vascular development during normal embryogenesis. Stimulation of EphA2 with its ligand (ephrin-Al) results in Eph A2 self-priming acidification, which reverses oncogenic transformation. The Eph receptor and its ligand ephrin are often overexpressed in a variety of cancers. EphA2 154845.doc .34- 201200594 is often overexpressed and functionally altered in invasive tumor cells and is thought to be promoted by enhancing cell-extracellular matrix adhesion, anchorage-dependent growth, and angiogenesis. Tumor growth. Excessive expression of EphA2 and EphrinA-Ι is shown in gastric cancer, which is associated with tumor invasion depth, tumor lymph node metastasis (TNM) stage, lymph node metastasis, and poor prognosis (Yuan et al., 2410-17). ATAD2 ATAD2 (also known as ANCCA) is a new member of the AAA+ ATPase family of proteins. It enhances the transcriptional activities of androgen receptor (AR) and estrogen receptor (ER), including IGF1R, IRS-2, SGK1 and survivin (AR) and cyclin D1, c-myc and E2F1 (ER, respectively). ) Gene transcription. It also enhances the transcriptional activity of c-Myc. ATAD2 is shown to be higher in several human tumors such as breast cancer, prostate cancer and osteosarcoma. Its performance is associated with poor prognosis. AVL9 unexpectedly found this protein to be a source protein, and there is little and very limited information on the function of the AVL9 protein and its corresponding genes. Collagen alpha-Ι (ΧΙΙ) chain protein (Co丨12A1) The collagen alpha-Ι (ΧΙΙ) chain is a protein encoded by the COL12A1 gene in humans. This gene encodes the alpha chain of type XII collagen, which is a member of the collagen family of FACIT (a fibril-associated collagen protein of discrete triple helix). XII type collagen was found to bind to type I collagen homologous trimers, and this binding was thought to modify the interaction between collagen I fibrils and the surrounding matrix. It has been identified that it can be encoded 154845.doc •35· 201200594 Alternative mosaic transcript variants of different isoforms. Ketogenin a-3(VI) chain protein (COL6A3) COL6A3 encodes one of the three alpha bonds of alpha-3 bond, the type VI collagen. This protein domain has been shown to bind to extracellular matrix proteins, which indicates the importance of this collagen in tissue matrix components. Beta is embedded in cancer cells, and is reconstituted outside the cell via excess expression of collagen. The matrix contributes to cisplatin resistance. The presence of collagen V is associated with tumor grade, a prognostic factor for ovarian cancer (Sherman-Baust et al, 377-86). COL6A3 is overexpressed in colorectal tumors (smith et al, 1452-64), salivary gland cancer (Leivo et al, 104-13) and is differentially expressed in gastric cancer (Yang et al, 103 3-40). c〇L6 A3 has been identified as one of the seven genes with tumor-specific splicing variants. Tumor-specific splicing changes have been demonstrated to be highly consistent, so that normal samples and cancer samples can be clearly distinguished and, in some cases, even different tumor stages can be distinguished (Th〇rsen et al., 1214-24). Fanconi Anemia Complement I (FANCI) FANCI protein is mapped to chromatin and participates in DNA repair in response to DNA damage (Sm〇gorzewska et al., 289_3〇1). FANCw causes mutations in Fanconi due to mutations, a recessive genetic heterogeneity characterized by cytogenetic instability, allergic to cross-linking agents, increased chromosome breaks, and defects in DNA repair. Alternative splicing of FANCI forms two transcript variants encoding different isoforms. Heat shock protein 90 kDap member 1 (HSP90B1) HSP90 (also known as glucose regulatory protein 94, Grp94) member i is a 154845.doc -36-201200594 human chaperone protein. It participates in er-related processes: translation, protein quality control and ER-related degradation (EraD), ER stress perception, and ER binding/fishing retention (Christianson et al., 272-82; Fu and Lee 741·44). HSP90 contains the KDEL sequence typical of ER-retained proteins, but it also appears on the surface of tumor cells (Altmeyer et al., 340-49) as well as extracellular. HSP is known to be released from necrotic (but not apoptotic) cells and cells under pressure from various stimuli such as heat shock and oxidative stress, and can occur in the circulation (Basu et al., 1539-46; Tsan and Gao 274). -79). In vitro, HSP90 regulates (primarily stimulates) the immune response and participates in antigen presentation. On the cell surface, it acts as a receptor for pathogen entry and/or signaling (Cabanes et al., 2827-38). It can induce anti-tumor immunity in the presence or release of tumor-specific cell surface (Zheng et al., 6731-35). In both prophylactic and therapeutic regimens, hSP9-based vaccines have been shown to be immune to cancer and infectious diseases (reviewed in (B〇lhassani and Rafati Π85-99; Castelli et al., 227-33; Murshid, Gong, And Calderwood 1019-30)). However, 'HSP90 can also be considered as a target for tumor therapy because it is associated with tumor progression and also causes resistance to apoptosis after irradiation or chemotherapy, and 2) it is overexpressed in many tumors, including Osteosarcoma (Guo et al '62-67), breast cancer (H〇d〇r〇va et al, 31_35). Excessive performance of HSP90 is associated with aggressive behavior and poor prognosis of Gc (Wang, Wang, and Ying 35-41; Zheng et al., 1042-49). Down-regulation of HSP90 in the GC can cause apoptosis in cancer cells (at (3), Liu, and Lan el096). 154845.doc -37- 201200594

Muc 6 MUC6在黏液細胞t表現。其主要功能被認為係在於保 護易受傷害之上皮表面免受不斷曝露於多種内源性腐蝕劑 或蛋白水解劑之破壞性作用(T〇ribara等人,1 997)。MUC6 亦可在上皮器官形成中發揮作用(Reid及Harris,1999)。發 現MUC6在正常胃黏臈中表現。其在一些癌症中過量表 現,如腸腺瘤及腸癌、肺癌(Hamamoto等人’ 891-96)、会士 直腸息肉(Bartman等人,210-18)及乳癌(pereira等人,21〇_ 13)’而未在各別正常組織中表現。由於muc6在黏液癌中 之高表現率,其被建議可作為癌症擴散之屏障,而導致使 其生物學行為之侵襲性降低(Matsukita等人,26-36)。 MUC6在胃癌中之表現低於在腺瘤或正常黏膜中,且與腫 瘤大小、侵襲深度、淋巴管及靜脈侵襲、淋巴結轉移及 UICC分期呈負相關。MUC6t調可促進胃上皮細胞之惡性 轉化,且成為胃癌生長、侵襲、轉移及分化之分子基礎 (Zheng等人,817-23)。亦有證據顯示,幽門螺旋桿菌感染 (胃癌主因之一)與MUC6表現降低相關(Kang等人,29_35 ; Wang及 Fang 425-3 1)。 動粒蛋白Nuf2 NUF2(CDCA-1)基因編碼與酵母Nuf2高度相似之蛋白 質,該蛋白質為與著絲粒相關之保守蛋白複合物之組分。 在減數分裂前期,當著絲粒與紡錘極體斷開連接時,酵母 Nuf2自著絲粒中消失,且在染色體分離中發揮調節作用。 研究顯示存活素及hNuf2 csiRNA暫時阻斷其mRNA表現, • 38 - 154845.docMuc 6 MUC6 is expressed in mucus cells. Its primary function is believed to protect the vulnerable epithelial surface from the devastating effects of continuous exposure to a variety of endogenous corrosives or proteolytic agents (T〇ribara et al., 1 997). MUC6 also plays a role in epithelial organ formation (Reid and Harris, 1999). It was found that MUC6 behaves in normal gastric adhesion. It is overexpressed in some cancers, such as intestinal adenoma and intestinal cancer, lung cancer (Hamamoto et al '891-96), reclamation polyps (Bartman et al, 210-18) and breast cancer (pereira et al, 21〇_ 13) 'Not in the normal organization. Due to the high rate of expression of muc6 in mucinous carcinoma, it has been suggested as a barrier to cancer spread, leading to a decrease in the aggressiveness of its biological behavior (Matsukita et al., 26-36). The performance of MUC6 in gastric cancer is lower than that in adenoma or normal mucosa, and is negatively correlated with tumor size, depth of invasion, lymphatic and venous invasion, lymph node metastasis and UICC staging. MUC6t modulation promotes the malignant transformation of gastric epithelial cells and becomes the molecular basis for growth, invasion, metastasis and differentiation of gastric cancer (Zheng et al., 817-23). There is also evidence that H. pylori infection (one of the main causes of gastric cancer) is associated with decreased MUC6 performance (Kang et al., 29_35; Wang and Fang 425-3 1). The kineoglobulin Nuf2 NUF2 (CDCA-1) gene encodes a protein that is highly similar to yeast Nuf2, a component of a conserved protein complex associated with centromeres. In the pre-meiosis stage, when the centromere is disconnected from the spindle body, the yeast Nuf2 disappears from the centromere and plays a regulatory role in chromosome segregation. Studies have shown that survivin and hNuf2 csiRNA temporarily block their mRNA expression, • 38 - 154845.doc

201200594 而經由阻滯有絲分裂分別引起多核化和細胞死亡(Nguyen 等人,394-403)。Nuf2及Heel為在外板中穩定微管正端結 合位點組織所需,其為動粒處雙軸取向所需之持續極向力 所需要者(DeLuca等人,519-31)。 研究發現Nuf2蛋白質在NSCLC(與不良預後相 關)(Hayama等人,10339-48)及子宮頸癌(Martin等人,333_ 59)中過量表現。在手術切除之胃癌組織(彌漫型,6 ;腸 型,4)中’兩種NUF2變異體上調。此研究中偵測到之替 代性拼接變異體被建議可能適用作抗癌療法之診斷標記物 及/或新賴標乾(Ohnuma等人,57-68)。 siRNA介導之對NUF2之表現阻斷被發現可抑制NScLc、 卵巢癌、子宮頸癌、胃癌、結直腸癌及神經膠質瘤中細胞 增殖及誘導其甲細胞;周亡(Kaneko等人,1235-40)。 脂質鱗酸酯瑞酸水解酶2(PPAP2C) 罐脂酸磷酸酶(PAP)將磷脂酸轉化成二醯基甘油,且在 甘油脂質重新合成中以及在磷脂酶D介導之受體活化信號 轉導中發揮作用。已報導其有三種編碼不同同功異型物之 替代性拼接轉錄變異體。??八1>2(:;在經轉型之初代成人間 質幹細胞(MSC)及許多人類癌症中上調。其可能為細胞增 殖增加所需。PPAP2C(而非催化無活性突變體)之過量表現 會導致過早進入S期,伴隨早熟細胞週期蛋白a積聚。阻斷 其基因表現可經由延遲進入S期來降低細胞增殖(Fianagan 等人,249-60)。 40S核糖趙蛋白sil為一種蛋白質(Rpsii) I54845.doc •39- 201200594 核糖體係由一個小的40S次單元及一個大的60S次單元所 組成。該等次單元總共由4種RNA及約80種結構不同之蛋 白質構成。RPS11基因編碼作為40S次單元組分之核糖體蛋 白。RPS11係屬於已發現可用於篩檢糞便RNA為主之標記 物以診斷結直腸癌之6種基因之一。其特別是在源自癌症 患者之糞便結腸細胞中所發現(Yajima等人,1029-37)。 E3泛素蛋白連接酶七缺失(absentia)同源物2(SIAH2) SIAH2為E3泛素連接酶。其受質為β-連環蛋白、TRAF2 及DCC(結直腸癌中缺失)(Habelhah等人,5756-65 ; Hu及 Fearon 724-32 ; Nakayama,Qi,及 Ronai 443-51)。SIAH2 亦導致核蛋白repp86降解,因而造成由此蛋白質過量表現 誘導之有絲分裂阻滯消除(Szczepanowski等人,485-90)。 SIAH2具有經由至少兩個路徑之腫瘤以及轉移促進性質(請 見Nakayama,Qi,及Ronai 443-51):首先,其在缺氧反應 路徑中引起蛋白質之泛素化及降解,由此增強缺氧誘導性 因子(HIF)之轉錄活性(Nakayama,Qi,及 Ronai 443-51)(Calzado等人,85-91)。其次,其抑制Ras/ERK信號傳 導之特異性抑制劑Sprouty2。SI AH2活性可能經由其對Ras 信號傳導之正面影響而與胰臟腫瘤之發展相關(Nakayama, Qi,及 Ronai 443-51)。 雖然SIAH2在癌症中之作用尚存部分爭議,但一些報告 顯示低含量SIAH2與不良預後或治療反應相關 (Confalonieri等人,2959-68)(Jansen等人,263-71),其他 報告顯示其具有致瘤功能(Frasor等人,13153-57)。SIAH2 154845.doc •40· 201200594 抑制已視為抗癌治療,因為其已顯示可抑制黑素瘤小鼠模 型中之異種移植物生長(Qi等人,16713-18 ; Shah等人, 799-808)及抑制移植至裸小鼠中之人類肺癌細胞株生長 (Ahmed等人,1606-29)。 鈉及氣依賴性牛磺酸轉運體(SLC6A6) SLC6A6為一種鈉及氯依賴性牛磺酸轉運體(TauT)(Han 等人,2006)。牛磺酸轉運體剔除(taut-/-)小鼠由於缺乏牛 磺酸而罹患慢性肝病,其可能涉及線粒體功能障礙 (Warskulat等人,2006)。SLC6A6之表現受p53腫瘤抑制基 因壓制,且由諸如WT1、c-Jun及c-Myb之原癌基因反活 化。SLC6A6之過量表現保護腎細胞免受順鉑誘發之腎毒 性影響(Han等人,2006 ; Han及Chesney,2009)。在人類腸 上皮Caco-2細胞中,SLC6A6imRNA表現由腫瘤壞死因子 a(TNF-a)上調。 泛醇-細胞色素c還原酶結合蛋白(UQCRB) 由UQCRB基因編碼之蛋白質為泛醇-細胞色素c氧化還原 酶複合物之一部分。其與泛醌結合且參與電子傳遞。此基 因之突變與線粒體複合物III缺乏相關。已有記載X染色體 上有假基因。 UQCRB基因可能為胰臟導管腺癌中之一種潛在癌基因 或腫瘤抑制基因(Harada等人,13-24)。已發現其在肝細胞 癌中過量表現(Jia等人,1 133-39)。 人類表皮生長因子受體3(ERBB3) ERBB3編碼受體酪胺酸激酶表皮生長因子受體(EGFR)家 154845.doc -41 - 201200594 族之一員。其由神經調節蛋白、其他ERBB受體及非ERBB 受體以及其他激酶活化,且以新穎機制活化。在下游,其 主要與磷酸肌醇3-激酶/AKT存活/促有絲分裂路徑相互作 用,且亦與 GRB、SHC、SRC、ABL、rasGAP、SYK及轉 錄調節因子EBP1相互作用(Sithanandam及Anderson 413-48)。已在許多癌症(包括胃癌)中發現ERBB3過量表現,在 此其可能發揮關鍵致病作用且負面影響預後(Kobayashi等 人,1294-301)(Slesak 等人,2727-32)。(Zhang 等人, 2112-18)發現ERBB3過量表現在彌漫型胃癌(26.2%)中比腸 型胃癌(5.0%)中頻繁。在兩種類型中,過量表現均與不良 預後相關。在癌症療法中靶向ERBB3之方法包括針對細胞 外域之RNA適體(Chen等人,9226-31)、利用合成轉錄因子 阻斷其基因表現(Lund等人,9082-91)、如維生素E異構體 γ-二烯生育醇之小分子抑制劑(gamant及§ylvester 563-74)、miRNA(Scott 等人,1479-86)及 siRNA(Sithanandam 等 人,1847-59)。201200594 causes multinucleation and cell death via blockade of mitosis, respectively (Nguyen et al., 394-403). Nuf2 and Heel are required to stabilize the microtubule positive-end binding site in the outer plate, which is required for the continuous polar force required for biaxial orientation at the kinetochore (DeLuca et al., 519-31). The study found that Nuf2 protein is overexpressed in NSCLC (associated with poor prognosis) (Hayama et al., 10339-48) and cervical cancer (Martin et al., 333_59). In the surgically resected gastric cancer tissue (diffuse type, 6; intestinal type, 4), the two NUF2 variants were up-regulated. Alternative splicing variants detected in this study have been suggested to be useful as diagnostic markers for anticancer therapy and/or new lysate (Ohnuma et al., 57-68). siRNA-mediated blockade of NUF2 has been found to inhibit cell proliferation and induce N-cells in NSCLc, ovarian, cervical, gastric, colorectal, and gliomas; weekly death (Kaneko et al., 1235- 40). Lipid sulphate reductase 2 (PPAP2C) canola acid phosphatase (PAP) converts phosphatidic acid to dimercaptoglycerol, and in the re-synthesis of glycerol lipids and in phospholipase D-mediated receptor activation The guide plays a role. It has been reported that it has three alternative splicing transcript variants encoding different isoforms. ? ?八1>2(:; is upregulated in transformed primary adult mesenchymal stem cells (MSC) and many human cancers. It may be required for increased cell proliferation. Excessive performance of PPAP2C (but not catalytically inactive mutants) leads to Premature entry into S phase, accompanied by accumulation of premature cyclin a. Blocking its gene expression can reduce cell proliferation by delaying entry into S phase (Fianagan et al., 249-60). 40S ribose Zhao protein sil is a protein (Rpsii) I54845.doc •39- 201200594 The ribose system consists of a small 40S subunit and a large 60S subunit. The subunits are composed of 4 RNAs and about 80 different structural proteins. The RPS11 gene is encoded as 40S. Subunit component ribosomal protein. RPS11 is one of the six genes that have been found to be useful for screening fecal RNA-based markers for the diagnosis of colorectal cancer, especially in fecal colon cells derived from cancer patients. Found (Yajima et al., 1029-37). E3 ubiquitin ligase seven absttia homolog 2 (SIAH2) SIAH2 is E3 ubiquitin ligase. Its receptor is β-catenin, TRAF2 and DCC. (knot Deletion in rectal cancer) (Habelhah et al., 5756-65; Hu and Fearon 724-32; Nakayama, Qi, and Ronai 443-51). SIAH2 also causes degradation of nuclear protein repp86, resulting in mitosis induced by excessive protein expression. Block elimination (Szczepanowski et al., 485-90). SIAH2 has tumor and metastasis-promoting properties via at least two pathways (see Nakayama, Qi, and Ronai 443-51): first, it causes in the hypoxic response pathway The ubiquitination and degradation of proteins enhances the transcriptional activity of hypoxia-inducible factor (HIF) (Nakayama, Qi, and Ronai 443-51) (Calzado et al., 85-91). Second, it inhibits Ras/ERK. Sprouty2, a specific inhibitor of signaling. SI AH2 activity may be associated with the development of pancreatic tumors via its positive effects on Ras signaling (Nakayama, Qi, and Ronai 443-51). Although SIAH2 plays a role in cancer. Partial controversy, but some reports indicate that low levels of SIAH2 are associated with poor prognosis or treatment response (Confalonieri et al., 2959-68) (Jansen et al., 263-71), and other reports have shown tumorigenic function (Frasor et al) , 13153-57). SIAH2 154845.doc •40· 201200594 Inhibition has been considered an anti-cancer treatment because it has been shown to inhibit xenograft growth in a melanoma mouse model (Qi et al., 16713-18; Shah Et al., 799-808) and inhibition of growth of human lung cancer cell lines transplanted into nude mice (Ahmed et al., 1606-29). Sodium and Gas Dependent Taurine Transporter (SLC6A6) SLC6A6 is a sodium and chlorine dependent taurine transporter (TauT) (Han et al., 2006). Taurine transporter knockout (taut-/-) mice suffer from chronic liver disease due to the lack of taurine, which may be involved in mitochondrial dysfunction (Warskulat et al., 2006). The expression of SLC6A6 is suppressed by the p53 tumor suppressor gene and is deactivated by protooncogenes such as WT1, c-Jun and c-Myb. Excessive expression of SLC6A6 protects kidney cells from cisplatin-induced nephrotoxicity (Han et al, 2006; Han and Chesney, 2009). In human intestinal epithelial Caco-2 cells, SLC6A6imRNA is up-regulated by tumor necrosis factor a (TNF-a). Ubiquinol-cytochrome c reductase binding protein (UQCRB) The protein encoded by the UQCRB gene is part of the Ubiquinol-cytochrome c oxidoreductase complex. It combines with ubiquinone and participates in electron transfer. Mutations in this gene are associated with a lack of mitochondrial complex III. It has been documented that there are pseudogenes on the X chromosome. The UQCRB gene may be a potential oncogene or tumor suppressor gene in pancreatic ductal adenocarcinoma (Harada et al., 13-24). It has been found to be overexpressed in hepatocellular carcinoma (Jia et al., 1 133-39). Human epidermal growth factor receptor 3 (ERBB3) ERBB3 encodes a receptor for tyrosine kinase epidermal growth factor receptor (EGFR) home 154845.doc -41 - 201200594 One of the members. It is activated by neuregulin, other ERBB receptors and non-ERBB receptors as well as other kinases and is activated by novel mechanisms. Downstream, it interacts primarily with the phosphoinositide 3-kinase/AKT survival/mitogenic pathway and also interacts with GRB, SHC, SRC, ABL, rasGAP, SYK and the transcriptional regulator EBP1 (Sithanandam and Anderson 413-48) ). Overexpression of ERBB3 has been found in many cancers, including gastric cancer, where it may play a key pathogenic role and negatively affect prognosis (Kobayashi et al, 1294-301) (Slesak et al, 2727-32). (Zhang et al., 2112-18) found that ERBB3 overexpression was more frequent in diffuse gastric cancer (26.2%) than in intestinal type gastric cancer (5.0%). In both types, overexpression was associated with poor prognosis. Methods for targeting ERBB3 in cancer therapy include RNA aptamers directed against the extracellular domain (Chen et al., 9226-31), blocking their gene expression using synthetic transcription factors (Lund et al., 9082-91), such as vitamin E Small molecule inhibitors of the gamma-diene tocopherols (gamant and §ylvester 563-74), miRNA (Scott et al., 1479-86) and siRNA (Sithanandam et al., 1847-59).

Prominin l(Proml) 功能:Prominin-1亦被稱為CD133,其確定為對CD34+ 造企祖細胞具有特異性之分子(Yin等人,1997),且證明其 為各種組織之正常幹細胞及癌症幹細胞(CSC)之標記物。 它主要位於質膜之突出部位,且可能參與膜拓撲學之組織 或維持質膜之脂質組成。被稱為AC133-2且缺乏具有27個 胺基酸之小外顯子的prominind拼接異構體被認為可代表 更佳之幹細胞標記物(Mizrak等人,2008 ; Bidlingmaier等 154845.doc ^ ⑧ 201200594 人,2008)。 只有較少百分比之腫瘤細胞通常呈prominin-1陽性,如 同可預期的CSC標記物。視腫瘤類型而定,每個腫瘤塊之 陽性細胞數目達到1%至15%,且大部分在2%左右。Prominin l (Proml) Function: Prominin-1, also known as CD133, is identified as a molecule specific for CD34+ progenitor cells (Yin et al., 1997) and has been shown to be normal stem cells and cancer stem cells of various tissues. (CSC) marker. It is mainly located in the prominent part of the plasma membrane and may be involved in the organization of the membrane topology or maintain the lipid composition of the plasma membrane. The prominind splicing isomer, known as AC133-2 and lacking a small exon with 27 amino acids, is believed to represent a better stem cell marker (Mizrak et al., 2008; Bidlingmaier et al. 154845.doc ^ 8 201200594 , 2008). Only a small percentage of tumor cells are usually positive for prominin-1, as can be expected with CSC markers. Depending on the type of tumor, the number of positive cells per tumor block is between 1% and 15%, and most is around 2%.

Prominin-Ι與腫瘤形成、血管生成及化學抗性相關(Zhu 等人,2009a)(Bruno 等人,2006 ; Hilbe 等人,2004) (Bertolini等人,2009)。然而,由於prominin-Ι陽性細胞可 能被NK細胞(Castriconi等人,2007 ; Pietra等人,2009)及 細胞毒性T細胞(Brown等人,2009)殺死,所以其可能被免 疫系統侵入。 雖然在許多癌症實體已證明prominin-1陽性細胞在功能 上為CSC,且表現常與不良預後相關,但其仍有爭議。一 些報告指出,其不一定或不足以用來確定CSC(Cheng等 人,2009 ; Wu及 Wu, 2009) 〇 也許 prominin-1 與諸如 CD44 之其他分子之組合,或甚至與諸如proml(+)、CD34(+)、 CD44(+)、CD3 8(-)、CD24(-)之多重組合可充當較佳CSC標 記物(Zhu等人,2009b ; Fulda 及 Pervaiz,2010) ° 在彌漫型GC中,基於電子雜交分析推測有PROM1表現 (Katoh 及 Katoh, 2007),且(Smith等人,2008)報導與正常 胃組織蛋白質含量相比在GC中過量表現。然而,(Boegl及 Prinz, 2009)報導prominin-Ι表現在GC中降低,尤其在後 期,並主張prominin-1表現與血管生成相關(在後期亦降 低),而與腫瘤生長無關。一項使用GC細胞株之研究 (Takaishi等人,2009)認為CD44為GC之一個CSC標記物, 154845.doc -43- 201200594 而prominin-l則不是。 基質金屬蛋白酶ll(MMPll) 如同其他MMP,MMP11亦為在需要組織重構之過程(諸 如發育、創傷癒合及瘢痕形成)中發揮作用之内肽酶。其 亦可藉由降低脂肪細胞分化而負調節脂肪恆定。與其他 MMP相對比,其不能裂解除了膠原蛋白…以外之典型細胞 外基質分子。然而’已確定ΜΜΡ11之其他受質,諸如α2_ 巨球蛋白、某些絲胺酸蛋白酶抑制劑(serpin)(包括α1抗胰 蛋白酶)、胰島素樣生長因子結合蛋白1及層黏連蛋白受 體。在癌症中,MMP 11主要在腫瘤組織周圍之基質細胞中 表現。已在許多腫瘤實體中已證明。ΜΜΡ11被認為在大多 數侵襲性人類癌瘤之基質中過量表現,但在肉瘤及其他非 上皮腫瘤中很少表現。在大多數但非所有情況下,ΜΜΡ11 在與腫瘤直接相鄰之基質細胞中表現,而腫瘤細胞本身、 正常組織及腫瘤遠處之基質細胞呈陰性。較高之MMP 11含 量與惡性表型/較高侵襲性及不良預後相關。然而,在乳 頭狀甲狀腺癌中,ΜΜΡ11表現與侵襲性特徵負相關。 MMP 11於腫瘤組織以及胃癌患者之血清令被發現,且其表 現與轉移相關(Yang等人)。此外,(Deng等人,274-81)研 究顯示’ MMP11在胃癌腫瘤細胞株及原發性腫瘤中高度表 現’其不僅僅在基質中表現的情形與在其他癌症類型之表 現情形相反,且其似乎增強腫瘤細胞增殖。 核轉錄因子Y次單元P(NFYB) NFYB亦被稱為CBF-B或CBF-A,其為除了 NFYA及 154845.doc ⑧ 201200594 NFYC外異三聚體基礎轉錄因子NF-Υ(亦被稱為CCAAT結 合因子或CBF)之部分,該NF-Y與許多基因啟動子及強化 子中之CCAAT基元(或被稱為Y盒之反向基元ATTGG)結 合。NF-Υ標靶基因包含MHCII類基因、PDGFP受體、若干 熱休克蛋白、錯配修復基因hMLHl及拓撲異構酶ΙΙα。 NFYB並非傳統的致癌基因,然而其功能可能促進腫瘤 形成。首先,許多諸如細胞週期蛋白A、細胞週期蛋白 B1、極光激酶A及cdkl之細胞週期基因均為NF-Υ之標靶。 細胞於G2/M期之阻滯無需功能性NFYB。(Park等人)研究 顯示,結直腸腺癌中細胞週期蛋白B2及其他細胞週期相關 基因之上調係由NF-Υ之活性造成。其次,NF-Υ之活性阻 礙細胞凋亡。缺乏NF-Υ之細胞由於p53活化及啟動子中含 CCAAT盒之抗細胞凋亡基因(諸如Bcl-2)轉錄下降而凋亡 (Benatti等人,1415-28)。第三,其致瘤性在與其他轉錄因 子組合時獲得增強。舉例而言,突變的p53與NF-Υ及p300 蛋白結合可增加NF-Υ誘導之細胞週期基因之表現。 ABL1 蛋白酪胺酸激酶c-Abl在細胞核與細胞質室之間穿梭。 細胞核c-Abl參與細胞生長抑制及細胞凋亡,而細胞質c-Abl可能在肌動蛋白動力學、形態形成及由如生長因子及 整合素配位體之細胞外刺激物所誘導之信號傳導中發揮作 用。據報導,細胞質c-Abl可促進有絲分裂發生。 c-Abl蛋白之活性經由其SH3域負調節,且SH3域缺失會 使ABL1成為致癌基因。在慢性骨髓性白血病(CML)中,該 154845.doc -45- 201200594 基因藉由22號染色體上之BCR(斷裂點簇區)内之移位而活 化。由此導致的融合蛋白BCR-ABL位於細胞液中且使細胞 增殖而不受細胞激素調節(Zhao等人)。在實體腫瘤中c-Abl 活性亦上調,如在乳癌及NSCLC。過量表現並不足夠且組 成性激酶活性需要蛋白磷酸化。在乳癌細胞中,c-Abl磷 酸化由細胞質膜酪胺酸激酶(包括SFK、EGFR家族成員及 IGF-1受體)誘導。在實體腫瘤中尚未偵測到ABL融合蛋白 (Lin及Arlinghaus, 2008)。ABL顯示在胃癌中表現且與微血 管相關,此表示其可能在血管生成中發揮作用。值得注意 的是,幽門螺旋桿菌細胞毒素相關基因A(CagA)可使c-Abl 活化,因此使EGFR磷酸化,藉此阻斷EGFR内吞作用 (Bauer,Bartfeld,及Meyer 1 56-69)。若干赂胺酸激酶抑制 劑在一定程度上對Abl具有特異性。伊馬替尼(Imatinib) (Gleevec)被用作CML之一線療法,且因為其亦靶向KIT, 其亦經許可用於晚期胃腸道間質腫瘤(GIST)患者(Pytel等 人,66-76)(Croom及Perry,2003)。用於癌症療法之其他抑 制劑為達沙替尼(Dasatinib)及尼洛替尼(Nilotinib)(Pytel等 人,66-76)(Deremer,Ustun,及Natarajan 1956-75)。Prominin-Ι is associated with tumor formation, angiogenesis, and chemoresistance (Zhu et al, 2009a) (Bruno et al, 2006; Hilbe et al, 2004) (Bertolini et al, 2009). However, since prominin-Ι positive cells may be killed by NK cells (Castriconi et al., 2007; Pietra et al., 2009) and cytotoxic T cells (Brown et al., 2009), they may be invaded by the immune system. Although prominin-1 positive cells have been shown to be functionally CSC in many cancer entities and their performance is often associated with poor prognosis, it remains controversial. Some reports indicate that it is not necessarily or insufficient to determine CSC (Cheng et al., 2009; Wu and Wu, 2009), perhaps a combination of prominin-1 with other molecules such as CD44, or even with proml(+), Multiple combinations of CD34(+), CD44(+), CD3 8(-), CD24(-) can serve as preferred CSC markers (Zhu et al., 2009b; Fulda and Pervaiz, 2010) ° in diffuse GC, The presence of PROM1 was presumed based on electronic hybridization analysis (Katoh and Katoh, 2007), and (Smith et al., 2008) reported overexpression in GC compared to normal gastric tissue protein content. However, (Boegl and Prinz, 2009) reported that prominin-Ι expression was reduced in the GC, especially in the later stages, and that prominin-1 expression was associated with angiogenesis (and decreased in the later stages), but not with tumor growth. A study using GC cell lines (Takaishi et al., 2009) concluded that CD44 is a CSC marker for GC, 154845.doc -43-201200594 and prominin-l is not. Matrix Metalloproteinase 11 (MMP11) Like other MMPs, MMP11 is also an endopeptidase that plays a role in tissue remodeling processes such as development, wound healing and scar formation. It also negatively regulates fat by reducing fat cell differentiation. In contrast to other MMPs, it does not cleave typical extracellular matrix molecules other than collagen. However, other receptors for ΜΜΡ11 have been identified, such as α2_ macroglobulin, certain serpin inhibitors (including α1 antitrypsin), insulin-like growth factor binding protein 1 and laminin receptors. In cancer, MMP 11 is predominantly expressed in stromal cells surrounding tumor tissue. It has been demonstrated in many tumor entities. ΜΜΡ11 is thought to be overexpressed in the matrix of most invasive human carcinomas, but rarely in sarcomas and other non-epithelial tumors. In most, but not all cases, ΜΜΡ11 is expressed in stromal cells directly adjacent to the tumor, while the tumor cells themselves, normal tissues, and stromal cells distant from the tumor are negative. Higher MMP 11 levels are associated with a malignant phenotype/higher invasiveness and poor prognosis. However, in papillary thyroid cancer, ΜΜΡ11 performance is inversely associated with aggressive characteristics. MMP 11 was found in tumor tissues as well as in gastric cancer patients, and its expression was associated with metastasis (Yang et al.). Furthermore, (Deng et al., 274-81) studies have shown that 'MMP11 is highly expressed in gastric cancer cell lines and primary tumors', which is not only expressed in the matrix, but is contrary to the performance of other cancer types, and It seems to enhance tumor cell proliferation. Nuclear transcription factor Y-subunit P (NFYB) NFYB is also known as CBF-B or CBF-A, which is a NFYC exo-trimer based transcription factor NF-Υ (also known as NFYA and 154845.doc 8 201200594 NFYC) Part of the CCAAT binding factor or CBF), which binds to the CCAAT motif in many gene promoters and enhancers (or the reverse motif ATTGG called the Y cassette). The NF-Υ target gene includes an MHC class II gene, a PDGFP receptor, several heat shock proteins, a mismatch repair gene hMLH1, and a topoisomerase ΙΙα. NFYB is not a traditional oncogene, but its function may promote tumor formation. First, many cell cycle genes such as cyclin A, cyclin B1, Aurora kinase A, and cdkl are targets of NF-Υ. The blockade of cells in the G2/M phase does not require functional NFYB. (Park et al.) Studies have shown that cyclin B2 and other cell cycle-associated genes are upregulated by NF-Υ activity in colorectal adenocarcinoma. Second, the activity of NF-Υ inhibits apoptosis. Cells lacking NF-Υ are apoptotic due to p53 activation and decreased transcription of anti-apoptotic genes (such as Bcl-2) containing the CCAAT box in the promoter (Benatti et al., 1415-28). Third, its tumorigenicity is enhanced when combined with other transcription factors. For example, binding of mutated p53 to NF-Υ and p300 proteins increases the expression of NF-Υ-induced cell cycle genes. The ABL1 protein tyrosine kinase c-Abl shuttles between the nucleus and the cytoplasmic compartment. Nuclear c-Abl is involved in cell growth inhibition and apoptosis, while cytoplasmic c-Abl may be involved in actin dynamics, morphogenesis, and signaling induced by extracellular stimuli such as growth factors and integrin ligands. Play a role. It has been reported that cytoplasmic c-Abl promotes mitogenesis. The activity of the c-Abl protein is negatively regulated via its SH3 domain, and deletion of the SH3 domain causes ABL1 to become an oncogene. In chronic myelogenous leukemia (CML), the 154845.doc -45-201200594 gene is activated by displacement within the BCR (crack point cluster) on chromosome 22. The resulting fusion protein BCR-ABL is located in the cytosol and allows the cells to proliferate without cytokine regulation (Zhao et al.). c-Abl activity is also up-regulated in solid tumors, as in breast cancer and NSCLC. Excessive performance is not sufficient and protein kinase activity requires protein phosphorylation. In breast cancer cells, c-Abl phosphorylation is induced by cytoplasmic membrane tyrosine kinases, including SFK, EGFR family members, and IGF-1 receptors. ABL fusion proteins have not been detected in solid tumors (Lin and Arlinghaus, 2008). ABL is shown to be expressed in gastric cancer and is associated with microvasculature, suggesting that it may play a role in angiogenesis. Notably, H. pylori cytotoxin associated gene A (CagA) activates c-Abl, thereby phosphorylating EGFR, thereby blocking EGFR endocytosis (Bauer, Bartfeld, and Meyer 1 56-69). Several statin kinase inhibitors are somewhat specific for Abl. Imatinib (Gleevec) is used as a line therapy for CML and because it also targets KIT, it is also licensed for patients with advanced gastrointestinal stromal tumors (GIST) (Pytel et al., 66-76). (Croom and Perry, 2003). Other inhibitors for cancer therapy are Dasatinib and Nilotinib (Pytel et al., 66-76) (Deremer, Ustun, and Natarajan 1956-75).

Polo 樣激酶 4(Plk4)Polo-like kinase 4 (Plk4)

Polo激酶家族成員(Plkl至Plk4)在細胞分裂過程中非常 重要,其調節有絲分裂過程中之若干步驟。Plk4為中心體 形成及複製之組織者(Rodrigues-Martins等人,1046-50)。 雖然Plkl為明確之致癌基因,但Plk4在癌症中之功能尚不 明確。Plk4下調以及過量表現與人類、小鼠及蒼蠅之癌症 154845.doc -46- ^ ⑧ 201200594 相關(Cunha-Ferreira等人,43-49)。舉例而言,在結直腸 癌中,發現Plk4過量表現,但一小部分患者顯示強烈Plk4 下調(Macmillan等人,729-40)。此現象可由以下事實說 明:Plk4之過量表現與缺乏均會導致異常中心體形成,因 而導致異常中心體數目及結構,該等異常中心體數目及結 構常在腫瘤細胞中偵測到且會促進有絲分裂畸變,引起染 色體誤離及非整倍體(Peel等人,834-43)。(Kuriyama等 人,2014-23)。(Korzeniewski等人,6668-75)。 含IQ基元之GTP酶活化蛋白3(IQGAP3) IQGAP參與細胞信號傳導路徑以及細胞骨架構造及細胞 黏附。其具有序列與RasGAP相似之結構域,因此可與小 GTP酶結合。然而,儘管其具有如此名稱,但其中無一者 具有GTP酶活化活性。對於IQGAP1及IQGAP2,已顯示其 甚至可穩定Racl及Cdc42之GTP結合狀態,且顯示IQGAP3 可穩定經活化之Ras(Nojima等人,971-78 ; White, Brown,及Sacks 1817-24)。經由其IQ域,其與鈣/鈣調蛋 白結合,並經由鈣調節蛋白同源域與肌動蛋白絲結合 (White, Brown,及 Sacks 1817-24)。(Wang 等人,567-77) 研究指出IQGAP3在大腦中表現,在大腦中其與wit肌動蛋 白絲以及Racl及Cdc42結合。其積聚於轴突之遠端區域, 並促進Racl/Ccd42依賴性軸突生長。IQGAP與癌症相關。 IQGAP1被視為致癌基因。其增強若干癌症相關路徑,如 MAP激酶、β-連環蛋白及VEGF介導之信號傳導,且在許 多腫瘤中過量表現。IQGAP2似乎發揮腫瘤抑制因子之功 154845.doc -47- 201200594 能,且發現其在預後不良之胃癌中減少(White, Brown,及 Sacks 1817-24)。關於IQGAP3,可獲得之資訊極少。 (Skawran等人,505-16)發現其為在肝細胞癌中顯著上調之 基因之一。兩項研究指出IQGAP3在小鼠小腸、結腸及肝 中增殖之(Ki67 + )細胞中特異性表現(Nojima等人,971-78)(Kunimoto等人,621-31)。 含捲曲螺旋域88a(CCDC88A) CCDC88A為在纖維母細胞中之肌動蛋白組織及Akt依賴 性細胞運動中發揮作用之肌動蛋白結合Akt受質。 CCDC88A/Akt路徑在VEGF介導之新生後血管生成中亦為 必需。 CCDC88A亦在多種人類惡性組織中高度表現,包括乳 癌、結腸癌、肺癌及子宮頸癌。其在伴有Akt信號傳導路 徑異常活化之腫瘤進展中發揮重要作用。 細胞週期蛋白Bl(CCNBl) CCNB 1在有絲分裂之G2/M期經誘導,且與細胞週期蛋 白依賴性激酶l(Cdkl)/Cdc2 —起形成促有絲分裂因子 (MPF)。已在多種癌症中發現其過量表現,且通常與不良 預後相關,例如乳癌(Aaltonen等人,2009 ; Agarwal等 人,2009 ; Suzuki等人,2007)、神經管胚細胞瘤(de等 人,2008)、NSCLC(Cooper 等人,2009)、子宮頸癌(Zhao 等人,2006)及其他癌症。其被發現可預測患有12種不同 類型癌症患者之短間隔疾病復發的11基因標籤中所包括之 基因之一。未發現關於胃癌之特定資訊。 154845.doc -48 · ⑧ 201200594 細胞週期蛋白D2(CCND2) 類似於其他D型細胞週期蛋白(D1及D3),CCND2結合並 活化細胞週期蛋白依賴性激酶4(Cdk4)或Cdk6。此活性為 G1/S轉換所需。CCND2被發現在許多腫瘤中過量表現,包 括睾丸腫瘤及卵巢腫瘤(Sicinski等人,1996)、惡性血液病 (Hoglund等人,1996 ; Gesk等人,2006)及胃癌,其可能 由幽門螺旋桿菌感染所致,且與不良預後相關(Yu等人, 2003) 。(Yu 等人 ’ 2001)(Oshimo 等人,2003)(Takano 等 人,1999)(Takano等人,2000)。 細胞週期蛋白E2(CCNE2) 類似於另一 E型細胞週期蛋白CCNE1,CCNE2結合並活 化Cdk2。此活性在G1/S期轉換時達到峰值《在健康條件 下,CCNE2在靜止細胞中偵測不到,且僅可在活躍分裂組 織中發現(Payton及Coats,2002)。其通常在癌症中異常表 現,例如乳癌(Desmedt等人,2006 ; Ghayad等人,2009 ; Payton等人,2002 ; Sieuwerts等人,2006)及轉移性攝護腺 癌(Wu等人,2009),且與不良預後相關。 癌胚胎發生抗原相關細胞黏附分子1、5及6(CEACAM 1、 5及6) CEACAM為介導細胞-細胞相互作用並活化整合素信號 傳導路徑之膜錨定醣蛋白(Chan及Stanners, 2007)。其亦可 作為諸如大腸桿菌之病原體的受體(Berger等人, 2004) (Hauck等人,2006),並可參與免疫調節(Shao等人, 2006)° 154845.doc -49- 201200594 CEACAM5及CEACAM6具有促癌形成功能。其抑制失巢 凋亡(Ordonez 等人,2000)、促進轉移(Marshall,2003 ; Ordonez等人,2000)且破壞細胞極化及組織構造(Chan及 Stanners, 2007)。CEACAM1在癌症中之作用尚不明確。其 可能為早期腫瘤抑制因子,且促進後期轉移形成、腫瘤免 疫逃逸及血管生成(Hokari等人,2007 ; Liu等人,2007 ; Moh及Shen,2009)。其功能作用視其同功異型物而定,因 為CEACAM1出現在11個拼接變異體中,該等拼接變異體 之比率決定信號傳導結果(Gray-Owen及Blumberg,2006 ; Leung 等人,2006 ; Neumaier 等人,1993 ; Nittka 等人, 2008)。拼接變異體之比率在癌症中可產生變化(Gaur等 人,2008)。 CEACAM5或CEACAM6或兩者在多達70%之所有人類腫 瘤中過量表現,其通常與不良預後相關(Chan及Stanners, 2007 ; Chevinsky, 1991)。血清CEACAM5為已確定之結腸 及直腸癌之臨床標記物,其高含量表示預後不良或復發 (Chevinsky, 1991 ; Goldstein 及 Mitchell, 2005)。其亦被認 為是其他實體(包括胃癌)之標記物,然而,預測預後的能 力有限(Victorzon等人,1995)。CEACAM1在癌症中可上 調或下調,視癌症實體而定(Kinugasa等人,1998)(Dango 等人,2008)(Simeone 等人,2007)。(Han 等人,2008)在 9 種胃癌細胞株中發現含量豐富之CEACAM5及CEACAM6, 但未偵測到CEACAM1。相比之下,來自222名患者之原發 性腫瘤樣品之分析顯示CEACAM1之細胞質或細胞膜染 154845.doc •50· 201200594 色。膜結合形式與血管生成增強有關(Zhou等人,2009)。 (Kinugasa等人,1998)之研究亦顯示其在胃腺癌中上調》 在一些腫瘤中,CEACAM1在腫瘤細胞中下調,其導致 VEGF上調,且VEGF或低氧條件可誘導CEACAM1在相鄰 内皮中表現。因此,針對CEACAM1之單株抗體可阻斷 VEGF誘導之内皮管形成(Oliveira-Ferrer等人,2004; Tilki 等人,2006 ; Ergun等人,2000)。 特別地,CEACAM5已藉由尤其是疫苗接種方法測試是 否可作為抗癌藥物之標靶。該等研究顯示,CEACAM5可 為細胞免疫反應之標粗(Cloosen等人,2007 ; Marshall, 2003)。關於CEACAM5之T細胞抗原決定基之概述提供於 (Sarobe 等人,2004)中0 氣離子通道3(CLCN3) CLCN3為可經體積閘控且有助於調節性體積減小(RVD) 之C1通道,該調節性體積減小係作為在如細胞週期或低滲 透之條件的情況下對細胞體積增加發生反應。然而,此論 點尚有爭議(Wang等人,2004),且在細胞凋亡過程中活化 之體積減小通道不同於CLCN3(Okada等人,2006)。 CLCN3之表現在細胞週期過程中改變,其在S期達到峰 值(Wang等人,2004)。CLCN3電流在CLCN3上調之實體 (諸如神經膠質瘤)中之癌症相關過程中可能非常重要:腫 瘤細胞需要處置增生性體積增加、遭遇低滲透條件,例如 在瘤周水腫中(Ernest等人,2005 ; Olsen等人,2003 ; Sonth+eimer,2008) ° 154845.doc -51 - 201200594 此外,有報告指出CLCN3可藉由增加晚期内吞室之酸化 來增強依託泊^(etoposide)抗性(Weylandt等人,2007)。 siRNA介導之CLCN3表現阻斷可使活體外鼻咽癌細胞轉 移降低(Mao等人,2008)。 DNAJC10 DNAJC10為超分子ER相關降解(ERAD)複合物之一員, 其識別並展開摺疊異常之蛋白以使其有效逆移位(Ushioda 等人,2008)。該蛋白質顯示在肝細胞癌中升高(Cunnea等 人,2007)。以siRNA在神經外胚層腫瘤細胞中阻斷 DNAJC 1 0表現可增加對化學治療藥物芬維A胺(fenretinide) 之細胞〉周亡反應(Corazzari等人,2007)。已顯示ERdj5可 藉由下調未摺疊蛋白反應(UPR)來降低神經母細胞瘤細胞 存活(Thomas及 Spyrou,2009)。 真核轉譯起始因子2次單元3Y(EIF2S3) EIF2S3為將起始甲硫胺醯基tRNA募集至40S核糖體次單 元之蛋白複合物(EIF2)之最大次單元(Clemens,1997)。下 調EIF活性之激酶(諸如RNA依賴性蛋白激酶;PKR)之作用 可為促細胞凋亡及腫瘤抑制(Mounir等人,2009)。在胃癌 中,有報告指出磷酸化及未磷酸化之EIF2之含量較高,且 觀察到重新分佈至細胞核。此反調節表示eIF2a與胃腸癌 相關(Lobo等人,2000)。 真核轉譯起始因子3次單元L(EIF3L) EIF3L為EIF3之10至13個次單元之一,其與小核糖體次 單元相關。EIF3在預防大核糖體次單元過早結合中發揮作 154845.doc -52- ⑤ 201200594 用。EIF3L為5個已報導為並非EIF3形成所必需之次單元之 一(Masutani等人,20〇7)。由反義文庫篩檢結果表明,下 調EIF3L可增強5-氟尿喊咬(5-fluorouracil)在肝細胞癌細胞 中之抗腫瘤形成活性(Doh,2008)。 表皮斑蛋白(Epiplakin)l(EPPKl) EPPK1為大部分功能未知之斑蛋白(plakin)家族基因。已 知斑蛋白基因在細胞骨架絲互連及將其錨定於質膜締合黏 附連接方面發揮功能(Yoshida等人,2008)。 G蛋白偶合受體39(GPR39)Members of the Polo kinase family (Plkl to Plk4) are important in cell division, which regulates several steps in the process of mitosis. Plk4 is the organizer of the formation and replication of centrosomes (Rodrigues-Martins et al., 1046-50). Although Plkl is a well-defined oncogene, the function of Plk4 in cancer is not yet clear. Down-regulation of Plk4 and overexpression are associated with cancer in humans, mice and flies 154845.doc -46-^ 8 201200594 (Cunha-Ferreira et al., 43-49). For example, in colorectal cancer, Plk4 was found to be overexpressed, but a small percentage of patients showed a strong down-regulation of Plk4 (Macmillan et al., 729-40). This phenomenon can be explained by the fact that excessive expression and deficiency of Plk4 leads to the formation of abnormal centrosomes, thus resulting in the number and structure of abnormal centrosomes, which are often detected in tumor cells and promote mitosis. Distortion, causing chromosome segregation and aneuploidy (Peel et al., 834-43). (Kuriyama et al., 2014-23). (Korzeniewski et al., 6668-75). IQ-containing GTPase-activating protein 3 (IQGAP3) IQGAP is involved in cell signaling pathways as well as cytoskeletal structure and cell adhesion. It has a domain similar in sequence to RasGAP and thus binds to a small GTPase. However, although they have such a name, none of them has GTPase activating activity. For IQGAP1 and IQGAP2, it has been shown that it even stabilizes the GTP binding status of Racl and Cdc42, and shows that IQGAP3 stabilizes activated Ras (Nojima et al., 971-78; White, Brown, and Sacks 1817-24). Through its IQ domain, it binds to calcium/calcium-regulated proteins and binds to actin filaments via a calcium regulatory protein homology domain (White, Brown, and Sacks 1817-24). (Wang et al., 567-77) Studies have shown that IQGAP3 is expressed in the brain and binds to wit actin filaments and Racl and Cdc42 in the brain. It accumulates in the distal region of the axon and promotes Racl/Ccd42-dependent axon growth. IQGAP is associated with cancer. IQGAP1 is considered an oncogene. It enhances several cancer-related pathways such as MAP kinase, β-catenin and VEGF-mediated signaling, and is overexpressed in many tumors. IQGAP2 appears to play a role in tumor suppressor 154845.doc -47- 201200594 and was found to be reduced in poor prognosis of gastric cancer (White, Brown, and Sacks 1817-24). Little information is available about IQGAP3. (Skawran et al., 505-16) was found to be one of the genes that are significantly up-regulated in hepatocellular carcinoma. Two studies indicated that IQGAP3 is specifically expressed in proliferating (Ki67 + ) cells in the small intestine, colon and liver of mice (Nojima et al., 971-78) (Kunimoto et al., 621-31). The coiled-coil domain 88a (CCDC88A) CCDC88A is an actin-binding Akt receptor that functions in actin tissue and Akt-dependent cell movement in fibroblasts. The CCDC88A/Akt pathway is also required for VEGF-mediated neovascularization. CCDC88A is also highly expressed in a variety of human malignant tissues, including breast cancer, colon cancer, lung cancer and cervical cancer. It plays an important role in the progression of tumors with abnormal activation of the Akt signaling pathway. Cyclin B1 (CCNB1) CCNB 1 is induced in the G2/M phase of mitosis and forms a mitogenic factor (MPF) together with the cell cycle protein-dependent kinase 1 (Cdkl)/Cdc2. Overexpression has been found in a variety of cancers and is often associated with poor prognosis, such as breast cancer (Aaltonen et al, 2009; Agarwal et al, 2009; Suzuki et al, 2007), blastocytoma (de et al, 2008). ), NSCLC (Cooper et al, 2009), cervical cancer (Zhao et al, 2006) and other cancers. It was found to predict one of the genes included in the 11 gene signature for short-spatial disease recurrence in 12 different types of cancer patients. No specific information about gastric cancer was found. 154845.doc -48 · 8 201200594 Cyclin D2 (CCND2) Similar to other D-type cyclins (D1 and D3), CCND2 binds to and activates cyclin-dependent kinase 4 (Cdk4) or Cdk6. This activity is required for G1/S conversion. CCND2 has been found to be overexpressed in many tumors, including testicular and ovarian tumors (Sicinski et al., 1996), hematologic malignancies (Hoglund et al., 1996; Gesk et al., 2006), and gastric cancer, which may be infected by H. pylori. Caused by, and associated with poor prognosis (Yu et al, 2003). (Yu et al. 2001) (Oshimo et al., 2003) (Takano et al., 1999) (Takano et al., 2000). Cyclin E2 (CCNE2) is similar to another E-type cyclin CCNE1, which binds to and activates Cdk2. This activity peaks during the G1/S phase transition. Under healthy conditions, CCNE2 is not detected in resting cells and can only be found in active dividing tissues (Payton and Coats, 2002). It is usually abnormal in cancer, such as breast cancer (Desmedt et al, 2006; Ghayad et al, 2009; Payton et al, 2002; Sieuwerts et al, 2006) and metastatic prostate cancer (Wu et al, 2009), And related to poor prognosis. Cancer Embryonic Antigen-Related Cell Adhesion Molecules 1, 5 and 6 (CEACAM 1, 5 and 6) CEACAM is a membrane-anchored glycoprotein that mediates cell-cell interactions and activates the integrin signaling pathway (Chan and Stanners, 2007) . It can also act as a receptor for pathogens such as E. coli (Berger et al., 2004) (Hauck et al., 2006) and can participate in immunomodulation (Shao et al., 2006) ° 154845.doc -49- 201200594 CEACAM5 and CEACAM6 Has a cancer-promoting function. It inhibits anoikis apoptosis (Ordonez et al., 2000), promotes metastasis (Marshall, 2003; Ordonez et al., 2000) and disrupts cell polarization and tissue architecture (Chan and Stanners, 2007). The role of CEACAM1 in cancer is unclear. It may be an early tumor suppressor and promotes late metastasis formation, tumor immune escape and angiogenesis (Hokari et al, 2007; Liu et al, 2007; Moh and Shen, 2009). Its functional role depends on its isoforms, as CEACAM1 appears in 11 splicing variants, and the ratio of these splicing variants determines signal transduction results (Gray-Owen and Blumberg, 2006; Leung et al., 2006; Neumaier Et al., 1993; Nittka et al., 2008). The ratio of splicing variants can vary in cancer (Gaur et al., 2008). CEACAM5 or CEACAM6 or both are overexpressed in up to 70% of all human tumors, which are often associated with poor prognosis (Chan and Stanners, 2007; Chevinsky, 1991). Serum CEACAM5 is a clinical marker of established colon and rectal cancer, with high levels indicating poor prognosis or recurrence (Chevinsky, 1991; Goldstein and Mitchell, 2005). It is also considered to be a marker for other entities, including gastric cancer, however, the ability to predict prognosis is limited (Victorzon et al., 1995). CEACAM1 can be up-regulated or down-regulated in cancer, depending on the cancer entity (Kinugasa et al., 1998) (Dango et al., 2008) (Simeone et al., 2007). (Han et al., 2008) found abundant CEACAM5 and CEACAM6 in 9 gastric cancer cell lines, but no CEACAM1 was detected. In contrast, analysis of primary tumor samples from 222 patients showed cytoplasmic or cell membrane staining of CEACAM1 154845.doc •50·201200594 color. Membrane-bound forms are associated with enhanced angiogenesis (Zhou et al., 2009). (Kinugasa et al., 1998) also showed up-regulation in gastric adenocarcinoma. In some tumors, CEACAM1 is down-regulated in tumor cells, which leads to up-regulation of VEGF, and VEGF or hypoxic conditions induce CEACAM1 to be expressed in adjacent endothelium. . Thus, monoclonal antibodies against CEACAM1 block VEGF-induced endothelial tube formation (Oliveira-Ferrer et al., 2004; Tilki et al., 2006; Ergun et al., 2000). In particular, CEACAM5 has been tested as a target for anticancer drugs by, inter alia, vaccination methods. These studies have shown that CEACAM5 can be the standard for cellular immune responses (Cloosen et al., 2007; Marshall, 2003). A summary of the T cell epitopes of CEACAM5 is provided in (Sarobe et al., 2004). 0 Gas Channel 3 (CLCN3) CLCN3 is a C1 channel that can be volume-controlled and contributes to Regulatory Volume Reduction (RVD). This regulatory volume reduction is responsive to an increase in cell volume under conditions such as cell cycle or low permeation. However, this argument is still controversial (Wang et al., 2004) and the volume-reducing channel activated during apoptosis is different from CLCN3 (Okada et al., 2006). The performance of CLCN3 changes during the cell cycle, which peaks in the S phase (Wang et al., 2004). CLCN3 currents may be important in cancer-related processes in entities where CLCN3 is up-regulated, such as gliomas: tumor cells need to be treated with increased proliferative volume and encounter low-permeability conditions, such as in peritumoral edema (Ernest et al., 2005; Olsen et al., 2003; Sonth+eimer, 2008) ° 154845.doc -51 - 201200594 In addition, it has been reported that CLCN3 enhances etoposide resistance by increasing acidification of the late endocytic compartment (Weylandt et al. , 2007). siRNA-mediated blockade of CLCN3 expression can reduce the migration of nasopharyngeal carcinoma cells in vitro (Mao et al., 2008). DNAJC10 DNAJC10 is a member of the supramolecular ER-associated degradation (ERAD) complex that recognizes and unfolds proteins that are abnormally folded for efficient reverse translocation (Ushioda et al., 2008). This protein is shown to be elevated in hepatocellular carcinoma (Cunnea et al., 2007). Blocking DNAJC10 expression in ectodermal tumor cells with siRNA increased the cell death response to the chemotherapeutic drug fenretinide (Corazzari et al., 2007). ERdj5 has been shown to reduce neuroblastoma cell survival by down-regulating unfolded protein response (UPR) (Thomas and Spyrou, 2009). Eukaryotic translation initiation factor 2 subunit 3Y (EIF2S3) EIF2S3 is the largest subunit of the protein complex (EIF2) that recruits the starting methionine tRNA to the 40S ribosomal subunit (Clemens, 1997). The role of kinases that down-regulate EIF activity, such as RNA-dependent protein kinases (PKR), may be pro-apoptosis and tumor suppression (Mounir et al., 2009). In gastric cancer, it has been reported that the content of phosphorylated and unphosphorylated EIF2 is high, and redistribution to the nucleus is observed. This counter-regulation indicates that eIF2a is associated with gastrointestinal cancer (Lobo et al., 2000). Eukaryotic translation initiation factor 3 subunits L (EIF3L) EIF3L is one of 10 to 13 subunits of EIF3, which is associated with small ribosome subunits. EIF3 plays a role in preventing premature binding of large ribosomal subunits 154845.doc -52- 5 201200594. EIF3L is one of five subunits that have been reported to be not necessary for EIF3 formation (Masutani et al., 20〇7). Screening from antisense libraries indicated that down-regulation of EIF3L enhanced the anti-tumor activity of 5-fluorouracil in hepatocellular carcinoma cells (Doh, 2008). Epiplakin 1 (EPPK1) EPPK1 is the most plakin family gene of unknown function. The plaque gene has been shown to function in the cytoskeletal silk interconnection and anchoring it to the plasma membrane association adhesion junction (Yoshida et al., 2008). G protein coupled receptor 39 (GPR39)

GPR39為被認為參與胃腸功能及代謝功能之Gq蛋白偶合 受體(Yamamoto等人,2009)。其信號傳導活化cAMP及血 清反應元件(Holst等人,2004)。GPR39之内源性配位體可 能為鋅(Chen及Zhao, 2007)。GPR39為一種新賴的細胞死 亡抑制因子,其可能代表參與包括細胞凋亡及内質網壓力 之過程(如癌症)之治療標靶(Dittmer等人,2008)。GPR39 被發現在人類胎兒腎臟HFK與胚基增濃幹狀韋爾姆斯氏瘤 (blastema-enriched stem-like wilms' tumor)異種移植之微陣 列(Metsuyanim等人,2009)以及抗多種細胞死亡刺激劑之 海馬細胞株(Dittmer等人,2008)中上調。 ERBB2/HER2/NEU ERBB2為受體酪胺酸激酶EGFR家族之一員。尚不知其 配位體,但其為HER家族其他成員之較佳雜二聚搭配物 (Olayioye,2001)。在惡性腫瘤中,HER2可作為致癌基 因,主要係因為該基因之高量擴增可誘導細胞膜中之蛋白 154845.doc -53- 201200594 質過量表現及隨後獲得對惡性細胞有利之性質(Slamon等 人,1 989)。在一定百分比之許多癌症中觀察到其過量表 現,包括胃癌。在大多數情況下,其與不良預後相關 (Song等人,2010)(Yonemura等人,1991)(Uchino 等人, 1993)(Mizutani等人,1993)。 ERBB2為單株抗體曲妥珠單抗(trastuzumab)(以Herceptin 之名銷售)之標靶,其已被建議與化學療法組合作為HER2 陽性晚期胃癌患者之治療選擇(Meza-Junco等人,2009 ; Van Cutsem等人,2009)。另一單株抗體帕妥珠單抗 (Pertuzumab)處於晚期臨床試驗中,該單株抗體抑制HER2 與HER3受體之二聚(Kristjansdottir及Dizon,2010)。HER2 及HER3在兩種組織類型胃癌(腸型及彌漫型)中之選擇性過 量表現與不良預後高度相關(Zhang等人,2009)。 P-4 整合素(ITGB4) 整合素介導細胞黏附以及由外向内及由内向外之信號轉 導。整合素β-4次單元與α-6次單元雜二聚。所得整合素可 促進細胞内角蛋白細胞骨架與基底膜之間的半橋粒形成 (Giancotti, 2007)。整合素β-4在癌症中具有雙重功能,一 方面其可介導穩定黏附,且另一方面介導促侵襲性信號傳 導(包括Ras/Erk及ΡΙ3Κ信號傳導)及血管生成(Giancotti, 2007 ; Raymond等人,2007)。其在許多腫瘤以及血管生成 内皮細胞中過量表現,通常與進展及轉移有關。β-4整合 素在胃癌中表現量高,尤其在基質侵襲細胞中(Giancotti, 2007 ; Tani等人,1996)。然而,其在未分化類型胃癌中隨 154845.doc -54- 201200594 著腫瘤侵襲加深而下調,此可能歸因於逐步的上皮-間質 轉化,因為β-4整合素為上皮整合素(Yanchenko等人, 2009) ° 脂質運載蛋白(LCN2) LCN2或嗜中性白血球明膠酶相關脂質運載蛋白(NGAL) 為以單體、均二聚體形式或以二硫鍵連接之與MMP9之雜 二聚體形式存在的鐵調節蛋白(Coles等人,1999 ; Kjeldsen等人,1993)。其表現在若干癌症中增加,在一些 情況下與進展相關。在機制上,其可穩定MMP9並改變E I弓黏附蛋白介導之細胞-細胞黏附,因而增加侵襲。MMP-9與LCN2之複合物與胃癌之較差存活相關(Kubben等人, 2007)(Hu等人,2009)。雖然已在人類之各種腫瘤中觀察 到明確的促腫瘤作用,但一些研究證明,LCN2可抑制促 贅生因子HIF-Ια、FA激酶磷酸化以及VEGF合成,因此表 示在替代條件下,LCN2在例如結腸、卵巢及胰臟之瘤形 成中亦反常地具有抗腫瘤及抗轉移作用。(Bolignano等 人,2009 ; Tong等人,2008)。在ras活化之癌症中,除抑 制腫瘤轉移以外,LCN2亦可用於抑制腫瘤血管生成 (Venkatesha等人,2006)。 丁二酸去氫酶複合物次單元C(SDHC) SDHC為丁二酸去氫酶(線粒體複合物II)之4個核編碼次 單元之一,其將電子自丁二酸轉移至泛醌,藉此產生反丁 烯二酸酯基及泛醇。丁二酸去氫酶缺乏可引起GIST (McWhinney等人,2007)。家族性胃腸基質腫瘤可能由次 154845.doc -55- 201200594 單元基因SDHB、SDHC及SDHD突變所致,且與胃腸腫瘤 相關之腹部副神經節瘤可能僅由SDHC突變所致(Pasini等 人,2008)。在轉殖基因小鼠中,突變SDHC蛋白會產生氧 化壓力,且可促進核DNA損傷、突變誘發及最終腫瘤形成 (Ishii等人,2005)。丁二酸去氫酶被視為腫瘤抑制因子 (Baysal,2003 ; Gottlieb及 Tomlinson,2005)。此酶複合物 之含量降低可導致腫瘤形成(Eng等人,2003)。 PDZ結合激酶(PBK) PBK為MEK3/6相關MAPKK,其活化p38 MAP激酶,例 如在生長因子受體下游者(Abe等人,2000 ; Ayllon及 O'connor,2007)。JNK 可為二級標靶(Oh等人,2007)。由 於在成人中PBK在睾丸中表現(參見下文),所以推測其在 精子形成中發揮功能(Abe等人’ 2000 ; Zhao等人, 2001)。除此之外,其可促進腫瘤細胞增殖及細胞凋亡抗 性:其在有絲分裂過程中經磷酸化及活化,此為紡錘體形 成及細胞質分裂所必需(Gaudet等人,2000 ; Matsumoto等 人,2004 ; Park等人,2009)(Abe等人,2007)。其他促生 長功能及抗細胞凋亡功能包括下調p53及組蛋白磷酸化 (Park 等人,2006 ; Zykova 等人,2006)(Nandi 等人, 2007)。PBK已歸類為癌症睾丸抗原(Abe等人,2000 ; Park等人,2006)且發現其在許多癌症中過量表現。 聚合酶(DNA指導)δ3輔助次單元(POLD3) DNA聚合酶δ複合物參與DNA複製及修復。其由增殖細 胞核抗原(PCNA)、多次單元複製因子C及4次單元聚合酶 154845.doc -56- 201200594 複合物(POLDl、POLD2、POLD3 及 POLD4)組成(Liu 及 Warbrick,2006)。POLD3在DNA複製延長期期間ρ〇1 δ解離-結合循環過程中的PCNA有效再循環中發揮關鍵作用 (Masuda et al., 2007) 0 蛋白酶體(前體、巨蛋白因子)26S次單元非ATP酶14 (PSMD14) PSMD14為26S蛋白酶體之組分。其屬於19S複合物(19S 帽;PA700),負責蛋白酶體降解過程中之受質去泛素化 (Spataro等人,1997)。哺乳動物細胞中之PSMD14過量表 現會影響細胞增殖及對細胞毒性藥物(如長春鹼 (vinblastine)、順翻(cisplatin)及小紅每(doxorubicin))之反 應(Spataro 等人,2002)。HeLa 細胞中 siRNA 對 PSMD14 之 抑制可導致細胞生存力降低及多泛素化蛋白質含量增加 (Gallery等人,2007)。siRNA下調PSMD14對細胞生存力具 有相當大之影響,導致細胞阻滯在G0-G1期,最終老化 (Byrne等人,2010)。 蛋白酶體(前體、巨蛋白因子)26S次單元非ATP酶2 (PSMC2) PSMC2為26S蛋白酶體系統之一部分。其為具有伴侣樣 活性之ATP酶之三A家族的一員。此次單元已顯示與若干 基礎轉錄因子相互作用,因此除參與蛋白酶體功能以外, 此次單元還參與轉錄調節。已顯示骨骼肌中之26S蛋白酶 體系統可由TNF-α活化(Tan等人,2006) »在生殖系中帶有 B型肝炎調節基因HBx且形成HCC之HBx轉殖基因小鼠中, 154845.doc -57- 201200594 PSMC2及其他蛋白酶體次單元在腫瘤組織中上調(Cui等 人,2006)。19S複合物之ATP酶次單元PSMC2之mRNA含 量在癌症惡病質中增加(Combaret等人,1999)。 蛋白酪胺酸激酶2(PTK2) ΡΤΚ2為一種非受體酪胺酸激酶,其調節整合素信號傳 導且可促進腫瘤生長、進展及轉移((Giaginis等人, 2009) ; (Hauck 等人,2002) ; (Zhao及 Guan,2009))。PTK2 被建議為癌發生及癌進展之標記物(Su等人,2002 ; Theocharis等人,2009; Jan等人,2009)。過量表現及/或 活性增加發生在多種人類癌症中,包括胃癌。PTK2亦轉 導胃泌素受體下游之信號,此有助於胃癌細胞增殖(Li等 人’ 2008b)。8%胃癌顯示帶有艾伯斯坦-巴爾病毒 (Epstein-Barr virus ; EBV)。感染EBV之人類胃癌細胞株亞 株呈現PTK2磷酸化增加(Kassis等人,2002)。胃上皮細胞 中之PTK2酪胺酸磷酸化程度由cagA陽性幽門螺旋桿菌產 物降低。 四跨膜蛋白l(TSPANl)及四跨膜蛋白8(TSPAN8) TSPAN1及TSPAN8屬於四跨膜蛋白家族,該等蛋白質之 特徵在於四個跨膜結構域以及細胞内N端及C端,且其在 包括細胞黏附、運動、活化及腫瘤侵袋之多個過程中發揮 作用。其通常在細胞表面與其他蛋白質(諸如整合素)一起 形成大分子複合物(Tarrant等人,2003 ; Serru等人, 2000)。TSP AN 1之功能尚未獲知’且可能包括在分泌中發 揮作用(Scholz等人,2009)。TSPAN1在若干癌症中過量表 154845.doc 58- 201200594 現,且通常與分期、進展及更糟臨床結果相關。值得注意 地,有報告指出其在86例胃癌之56.98%中過量表現,且過 量表現與臨床分期、浸潤及淋巴結狀態正相關,而與存活 率及腫瘤分化等級負相關(Chen等人,2008)。亦有報告指 出TSPAN8為許多類型腫瘤中之轉移相關基因(PMID : 16467180)。在胃腸癌中,TSPAN8表現與不良預後相關 (PMID : 16849554)。 鋅指蛋白598(ZNF598) ZNF598為一種功能未知之辞指蛋白。 解整合素樣金屬蛋白酶l〇(ADAM10) ADAM10在血管生成、發育及腫瘤形成中發揮作用。其 在胃癌中過量表現。針對ADAM-10之選擇性ADAM抑制劑 正在進行癌症治療之臨床試驗(PMID : 19408347)。 基質金屬蛋白酶12(MMP12) MMP12為一種鋅内肽酶,其降解彈性蛋白以及許多其他 基質蛋白及非基質蛋白,且參與巨噬細胞遷移及血管生成 抑制(Chakraborti 等人,2003 ; Chandler 等人,1996 ; Sang, 1998)。其亦在組織破壞之病理過程,如哮喘、肺氣 腫及慢性阻塞性肺病(COPD)、類風濕性關節炎及腫瘤生 長中發揮作用(Cataldo等人,2003 ; Wallace等人,2008) » MMP12抑制劑被討論為可用於治療該等病狀之藥劑(churg 等人,2007 ; Norman, 2009)。MMP12通常在癌症中過量 表現,其在癌症中之功能不明確。雖然其可能參與基質溶 解,並因此參與轉移,但其亦可經由產生對血管生成產生 154845.doc •59· 201200594 負面影響之血管生長抑素來抑制腫瘤生長。有報告指出 GC之MMP12表現增強,且顯示其為有利的:其與微血管 密度、VEGF、踵瘤分化等級、血管侵襲、淋巴結轉移及 復發負相關。MMP12過量表現之患者證實存活率顯著較佳 (Cheng 等人,2010 ; Zhang 等人 ’ 2007b ; Zhang 等人, 2007a)。 核糖核苷酸還原酶M2(RRM2) RRM2為自核糖核苷酸產生去氧核糖核苷酸之核糖核苷 酸還原酶的兩種次單元之一。已在包括胃癌之腫瘤中觀察 到RRM2過量表現,且該過量表現增強轉移可能性 (PMID : 18941749)(PMID : 19250552)。siRNA 對 RRM2 之 表現阻斷可減緩各種物種(小鼠、大鼠、猴子)中腫瘤之生 長(PMID : 17929316 ; PMID : 17404105)。 跨膜蛋白酶絲胺酸4(TMPRSS4) TMPRSS4為在細胞表面發現之II型跨膜絲胺酸蛋白酶, 其在若干癌症組織中高度表現,包括胰臟癌、結腸癌及胃 癌。TMPRSS4在癌症中之生物功能尚未獲知。TMPRSS4 具有4種拼接變異體(Scott等人,2001 ; Sawasaki等人, 2004)。在卵巢癌中之表現與分期相關(Sawasaki等人, 2004)。TMPRSS4在肺癌組織中大大升高,且在肺癌及結 腸癌細胞株中藉由小干擾RNA治療之TMPRSS4之siRNA表 現阻斷與降低細胞侵襲及細胞基質黏附以及調節細胞增殖 相關(Jung等人,2008)。 去碘酶碘甲狀腺胺酸II型(DI02) 154845.doc •60- 201200594 DI02將激素原甲狀腺素(T4)轉化成具生物活性之3,3',5-三碘甲腺原胺酸(T3)。其在曱狀腺中高度表現,且發現其 表現及/或活性在曱狀腺癌中反調節(de Souza Meyer等 人,2005)(Arnaldi等人,2005)。然而,其亦在其他組織中 被發現,諸如正常肺及肺癌(Wawrzynska等人,2003)以及 腦腫瘤(Murakami等人,2000)。 胰島素樣生長因子2mRNA結合蛋白3(IGF2BP3) IGF2BP3主要存在於細胞核中,其在細胞核中結合 IGF2mRNA並阻礙其轉譯。其在胚胎形成中發揮作用且在 成人組織中下調。在腫瘤細胞中其可上調,因而被視為癌 胚蛋白(Liao等人,2005)。在包括胃癌之許多癌症中,發 現其過量表現,其與不良預後相關(Jeng等人,2009)(Jiang 等人,2006)。IGF2BP3來源之肽在癌症疫苗接種研究中被 測試(Kono等人,2009)。 核織層蛋白Bl(LMNBl) 核纖層蛋白B 1為核纖層基質蛋白且與核穩定性、染色質 結構及基因表現有關。在細胞凋亡早期,核纖層蛋白降解 (Neamati 等人,1995)(Sato 等人,2008b ; Sato 等人, 2008a ; Sato等人,2009)。LMNB 1在基本上所有正常體細 胞中有一定程度表現,且初步研究表示其可能在一些癌症 (包括胃癌)之發病過程中降低。在其他癌症中,諸如肝細 胞癌,發現LMNB 1上調且與腫瘤分期 '大小及結數目正相 關(Lim等人,2002)。GPR39 is a Gq protein-coupled receptor that is thought to be involved in gastrointestinal and metabolic functions (Yamamoto et al., 2009). Its signaling activates cAMP and serum response elements (Holst et al., 2004). The endogenous ligand of GPR39 may be zinc (Chen and Zhao, 2007). GPR39 is a novel cell death inhibitor that may represent therapeutic targets involved in processes including apoptosis and endoplasmic reticulum stress (eg, cancer) (Dittmer et al., 2008). GPR39 was found in human fetal kidney HFK and blastema-enriched stem-like wilms' tumor xenograft microarrays (Metsuyanim et al., 2009) and anti-multiple cell death stimuli The hippocampus cell line (Dittmer et al., 2008) was up-regulated. ERBB2/HER2/NEU ERBB2 is a member of the receptor tyrosine kinase EGFR family. The ligand is not known, but it is a preferred heterodimeric conjugate of other members of the HER family (Olayioye, 2001). In malignant tumors, HER2 can be used as an oncogene, mainly because the high amount of amplification of this gene can induce the protein in the cell membrane 154845.doc -53 - 201200594 quality overexpression and subsequently obtain favorable properties for malignant cells (Slamon et al. , 1 989). Excessive manifestations were observed in a certain percentage of many cancers, including gastric cancer. In most cases, it is associated with poor prognosis (Song et al., 2010) (Yonemura et al., 1991) (Uchino et al., 1993) (Mizutani et al., 1993). ERBB2 is a target of the monoclonal antibody trastuzumab (sold under the name Herceptin), which has been suggested to be combined with chemotherapy as a treatment option for patients with HER2-positive advanced gastric cancer (Meza-Junco et al., 2009; Van Cutsem et al., 2009). Another monoclonal antibody, pertuzumab, is in advanced clinical trials that inhibit the dimerization of HER2 and HER3 receptors (Kristjansdottir and Dizon, 2010). The selective overexpression of HER2 and HER3 in two tissue types of gastric cancer (intestinal and diffuse) is highly correlated with poor prognosis (Zhang et al., 2009). P-4 Integrin (ITGB4) Integrin mediates cell adhesion and signal transduction from the outside to the inside and from the inside to the outside. Integrin β-4 subunit and α-6 subunit heterodimerization. The resulting integrin promotes hemidesmosome formation between the cytokeratin cytoskeleton and the basement membrane (Giancotti, 2007). Integrin beta-4 has dual functions in cancer, on the one hand, it mediates stable adhesion, and on the other hand mediates pro-invasive signaling (including Ras/Erk and ΡΙ3Κ signaling) and angiogenesis (Giancotti, 2007; Raymond et al., 2007). It is overexpressed in many tumors as well as angiogenic endothelial cells, usually associated with progression and metastasis. Beta-4 integrin is highly expressed in gastric cancer, especially in stromal invasive cells (Giancotti, 2007; Tani et al., 1996). However, it is down-regulated in the undifferentiated type of gastric cancer with the deepening of tumor invasion by 154845.doc -54-201200594, which may be attributed to the gradual epithelial-mesenchymal transition because β-4 integrin is epithelial integrin (Yanchenko et al. Human, 2009) ° Lipocalin (LCN2) LCN2 or neutrophil gelatinase-associated lipocalin (NGAL) is a heterodimer with MMP9 linked in monomeric, homodimeric or disulfide-bonded A form of iron regulatory protein (Coles et al., 1999; Kjeldsen et al., 1993). Its performance is increased in several cancers and in some cases is related to progression. In mechanism, it stabilizes MMP9 and alters E-bone adhesion protein-mediated cell-cell adhesion, thereby increasing invasion. The complex of MMP-9 and LCN2 is associated with poor survival of gastric cancer (Kubben et al, 2007) (Hu et al, 2009). Although a clear tumor-promoting effect has been observed in various human tumors, some studies have shown that LCN2 inhibits the proliferative factors HIF-Ια, FA kinase phosphorylation, and VEGF synthesis, thus indicating that under alternative conditions, LCN2 is for example It also has anti-tumor and anti-metastasis effects in the formation of tumors of the colon, ovary and pancreas. (Bolignano et al., 2009; Tong et al., 2008). In ras-activated cancer, in addition to inhibiting tumor metastasis, LCN2 can also be used to inhibit tumor angiogenesis (Venkatesha et al., 2006). Succinic acid dehydrogenase complex subunit C (SDHC) SDHC is one of the four nuclear coded subunits of succinate dehydrogenase (mitochondrial complex II), which transfers electrons from succinic acid to ubiquinone. Thereby, a fumarate group and panthenol are produced. The lack of succinate dehydrogenase can cause GIST (McWhinney et al., 2007). Familial gastrointestinal stromal tumors may be caused by mutations in the 154845.doc -55-201200594 unit genes SDHB, SDHC, and SDHD, and abdominal paraganglioma associated with gastrointestinal tumors may be caused only by SDHC mutations (Pasini et al., 2008). ). In transgenic mice, mutated SDHC proteins produce oxidative stress and promote nuclear DNA damage, mutation induction, and eventual tumor formation (Ishii et al., 2005). Succinic acid dehydrogenase is considered a tumor suppressor (Baysal, 2003; Gottlieb and Tomlinson, 2005). A decrease in the amount of this enzyme complex can result in tumor formation (Eng et al., 2003). PDZ-binding kinase (PBK) PBK is a MEK3/6-associated MAPKK that activates p38 MAP kinase, for example, in the downstream of growth factor receptors (Abe et al., 2000; Ayllon and O'connor, 2007). JNK can be a secondary target (Oh et al., 2007). Since PBK is expressed in testis in adults (see below), it is presumed to function in spermatogenesis (Abe et al. '2000; Zhao et al., 2001). In addition, it promotes tumor cell proliferation and apoptosis resistance: it is phosphorylated and activated during mitosis, which is required for spindle formation and cytokinesis (Gaudet et al., 2000; Matsumoto et al. 2004; Park et al., 2009) (Abe et al., 2007). Other pro- and anti-apoptotic functions include down-regulation of p53 and histone phosphorylation (Park et al., 2006; Zykova et al., 2006) (Nandi et al., 2007). PBK has been classified as a cancer testis antigen (Abe et al, 2000; Park et al, 2006) and has been found to be overexpressed in many cancers. Polymerase (DNA-directed) δ3 Auxiliary Subunit (POLD3) DNA polymerase δ complex is involved in DNA replication and repair. It consists of proliferating cell nuclear antigen (PCNA), multiple unit replication factor C, and a 4-unit polymerase 154845.doc -56-201200594 complex (POLDl, POLD2, POLD3, and POLD4) (Liu and Warbrick, 2006). POLD3 plays a key role in the efficient recycling of PCNA during the ρ〇1 δ dissociation-binding cycle during extended DNA replication (Masuda et al., 2007). 0 Proteasome (precursor, megalin factor) 26S subunit non-ATP Enzyme 14 (PSMD14) PSMD14 is a component of the 26S proteasome. It belongs to the 19S complex (19S cap; PA700) and is responsible for deubiquitination during proteasomal degradation (Spataro et al., 1997). Excessive expression of PSMD14 in mammalian cells affects cell proliferation and responses to cytotoxic drugs such as vinblastine, cisplatin, and doxorubicin (Spataro et al., 2002). Inhibition of PSMD14 by siRNA in HeLa cells leads to decreased cell viability and increased polyubiquitinated protein content (Gallery et al., 2007). Down-regulation of PSMD14 by siRNA has a considerable effect on cell viability, leading to cell arrest in G0-G1 phase and eventual aging (Byrne et al., 2010). Proteasome (precursor, megalin factor) 26S subunit non-ATPase 2 (PSMC2) PSMC2 is part of the 26S proteasome system. It is a member of the three A family of ATPases with partner-like activity. This unit has been shown to interact with several basic transcription factors, so this unit is involved in transcriptional regulation in addition to its involvement in proteasome function. It has been shown that the 26S proteasome system in skeletal muscle can be activated by TNF-[alpha] (Tan et al., 2006) » HBx transgenic mice bearing the hepatitis B regulatory gene HBx in the germline and forming HCC, 154845.doc -57- 201200594 PSMC2 and other proteasome subunits are up-regulated in tumor tissues (Cui et al., 2006). The mRNA content of the ATPase subunit PSMC2 of the 19S complex is increased in cancer cachexia (Combaret et al., 1999). Protein tyrosine kinase 2 (PTK2) ΡΤΚ2 is a non-receptor tyrosine kinase that regulates integrin signaling and promotes tumor growth, progression, and metastasis (Giaginis et al., 2009); (Hauck et al., 2002). ) (Zhao and Guan, 2009)). PTK2 is suggested as a marker of carcinogenesis and cancer progression (Su et al, 2002; Theocharis et al, 2009; Jan et al, 2009). Excessive performance and/or increased activity occurs in a variety of human cancers, including gastric cancer. PTK2 also signals downstream of the gastrin receptor, which contributes to the proliferation of gastric cancer cells (Li et al. 2008b). 8% of gastric cancers showed Epstein-Barr virus (EBV). Subpopulations of human gastric cancer cell lines infected with EBV exhibit increased phosphorylation of PTK2 (Kassis et al., 2002). The degree of PTK2 tyrosine phosphorylation in gastric epithelial cells is reduced by cagA-positive H. pylori products. Four transmembrane protein 1 (TSPAN1) and four transmembrane protein 8 (TSPAN8) TSPAN1 and TSPAN8 belong to the four transmembrane protein family, which are characterized by four transmembrane domains and intracellular N-terminal and C-terminal, and It plays a role in many processes including cell adhesion, movement, activation, and tumor invasion. It typically forms macromolecular complexes with other proteins, such as integrins, on the cell surface (Tarrant et al., 2003; Serru et al., 2000). The function of TSP AN 1 is not known to be 'and may include a role in secretion (Scholz et al., 2009). TSPAN1 is over-expressed in several cancers, 154845.doc 58-201200594, and is usually associated with staging, progression, and worse clinical outcomes. Notably, there are reports that it is overexpressed in 56.98% of 86 cases of gastric cancer, and the excess performance is positively correlated with clinical stage, infiltration, and lymph node status, but negatively correlated with survival rate and tumor differentiation level (Chen et al., 2008). . There are also reports that TSPAN8 is a metastasis-associated gene in many types of tumors (PMID: 16467180). In gastrointestinal cancer, TSPAN8 performance is associated with poor prognosis (PMID: 16849554). Zinc finger protein 598 (ZNF598) ZNF598 is a protein of unknown function. Integrin-like metalloproteinase (ADAM10) ADAM10 plays a role in angiogenesis, development, and tumor formation. It is excessive in gastric cancer. A selective ADAM inhibitor against ADAM-10 is undergoing clinical trials for cancer treatment (PMID: 19408347). Matrix Metalloproteinase 12 (MMP12) MMP12 is a zinc endopeptidase that degrades elastin and many other matrix and non-matrix proteins and is involved in macrophage migration and angiogenesis inhibition (Chakraborti et al., 2003; Chandler et al. 1996; Sang, 1998). It also plays a role in the pathological processes of tissue destruction, such as asthma, emphysema and chronic obstructive pulmonary disease (COPD), rheumatoid arthritis and tumor growth (Cataldo et al., 2003; Wallace et al., 2008) » MMP12 Inhibitors are discussed as agents useful in the treatment of such conditions (churg et al, 2007; Norman, 2009). MMP12 is usually overexpressed in cancer and its function in cancer is not clear. Although it may be involved in matrix solubilization and is therefore involved in metastasis, it may also inhibit tumor growth via the production of angiostatin, which negatively affects angiogenesis, 154845.doc •59·201200594. It has been reported that the expression of MMP12 in GC is enhanced and shown to be beneficial: it is inversely associated with microvessel density, VEGF, grade of tumor differentiation, vascular invasion, lymph node metastasis, and recurrence. Patients with excessive MMP12 demonstrated significantly better survival (Cheng et al, 2010; Zhang et al. '2007b; Zhang et al, 2007a). Ribonucleotide reductase M2 (RRM2) RRM2 is one of two subunits of ribonucleoside reductase that produces deoxyribonucleotides from ribonucleotides. Excessive expression of RRM2 has been observed in tumors including gastric cancer, and this excess performance enhances the likelihood of metastasis (PMID: 18941749) (PMID: 19250552). Blockade of RRM2 by siRNA slows tumor growth in various species (mouse, rat, monkey) (PMID: 17929316; PMID: 17404105). Transmembrane protease serine 4 (TMPRSS4) TMPRSS4 is a type II transmembrane serine protease found on the cell surface that is highly expressed in several cancer tissues, including pancreatic cancer, colon cancer, and gastric cancer. The biological function of TMPRSS4 in cancer has not been known. TMPRSS4 has four splicing variants (Scott et al., 2001; Sawasaki et al., 2004). Performance in ovarian cancer is associated with staging (Sawasaki et al., 2004). TMPRSS4 is greatly elevated in lung cancer tissues, and siRNA expression of TMPRSS4 treated with small interfering RNA in lung cancer and colon cancer cell lines is associated with decreased cell invasion and cell matrix adhesion and regulation of cell proliferation (Jung et al., 2008). ). Deiodinated iodine thyroxine type II (DI02) 154845.doc •60- 201200594 DI02 converts the prohormone thyroxine (T4) into a biologically active 3,3',5-triiodothyronine (T3) ). It is highly expressed in the sacral gland and its performance and/or activity is found to be counter-regulated in squamous adenocarcinoma (de Souza Meyer et al., 2005) (Arnaldi et al., 2005). However, it has also been found in other tissues such as normal lung and lung cancer (Wawrzynska et al., 2003) and brain tumors (Murakami et al., 2000). Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) IGF2BP3 is mainly present in the nucleus, which binds to IGF2 mRNA in the nucleus and hinders its translation. It plays a role in embryogenesis and is downregulated in adult tissues. It is up-regulated in tumor cells and is therefore considered a carcinoembryonic protein (Liao et al., 2005). In many cancers including gastric cancer, excessive performance is found, which is associated with poor prognosis (Jeng et al., 2009) (Jiang et al., 2006). Peptides derived from IGF2BP3 were tested in cancer vaccination studies (Kono et al., 2009). Nuclear plaque protein B1 (LMNB1) Lamin layer B 1 is a nuclear layer matrix protein and is involved in nuclear stability, chromatin structure and gene expression. In the early stages of apoptosis, lamin degradation (Neamati et al., 1995) (Sato et al., 2008b; Sato et al., 2008a; Sato et al., 2009). LMNB 1 has a degree of performance in essentially all normal somatic cells, and preliminary studies indicate that it may be reduced during the onset of some cancers, including gastric cancer. In other cancers, such as hepatocellular carcinoma, LMNB 1 was found to be up-regulated and positively correlated with tumor stage 'size and number of knots (Lim et al., 2002).

無翅型MMTV整合位點家族成員5A 154845.doc •61 · 201200594 WNT5 A為參與發育過程及腫瘤形成之分泌信號傳導蛋 白。典型WNT5A信號傳導經由捲曲(Frizzled)及 LRP5/LRP6受體使幹/祖細胞得以維持,而非典型WNT5A 信號傳導經由捲曲及ROR2/PTK/RYK受體控制例如腫瘤-基 質界面處組織極性、細胞黏附或移動,藉此導致侵襲 (Katoh及Katoh,2007)。在一些癌症中其可為腫瘤抑制因 子,但其在包括胃癌之其他癌症中上調,在胃癌中其促進 進展及轉移且導致不良預後(Li等人,2010)(Yamamoto等 人,2009) (Kurayoshi等人,2006)。 纖維母細胞活化蛋白a(FAP) FAP為一種整合膜明膠酶。其推定的絲胺酸蛋白酶活性 可在控制發育、組織修復及上皮癌發生過程中之纖維母細 胞生長或上皮-間質相互作用中發揮作用(Scanlan等人, 1994)。FAP經由細胞黏附及轉移過程以及ECM組分快速降 解而在癌症生長、轉移及血管生成中具有潛在作用。其存 在於侵襲ECM之腫瘤細胞上、反應性癌症相關纖維母細胞 中及參與血管生成之内皮細胞中,但不存在於無活性之相 同類型細胞中。(Dolznig等人,2005 ; Kennedy等人, 2009 ; Rettig等人,1993 ; Rettig等人,1994 ; Scanlan等 人,1994 ; Zhang等人,2010)。已在胃癌細胞及相關基質 纖維母細胞中發現FAP表現(Zhi等人,2010)(Chen等人, 2006)(Mori等人,2004 ; Okada等人,2003)。在一小鼠模 型中,FAP表現細胞顯示為非多餘之腫瘤微環境免疫抑制 組分(Kraman等人,2010)。在腫瘤接種之一小鼠模型中, I54845.doc -62- ⑧ 201200594 FAP成功地用於作為CD8+及CD4+ T細胞反應之標靶 (Loeffler等人,2006 ; Wen等人,2010)(Lee等人,2005) (Fassnacht等人,2005)。 外被體蛋白複合物次單元Y(COPG); 外被體蛋白複合物次單元Y2(COPG2); 外被體蛋白複合物次單元pi(COPBl) C0PG、COPG2及C0PB1為與非網格蛋白被膜囊結合之 外被體複合物(亦稱為外被蛋白複合物1 ; C0PI)之次單 元。C0PI被膜囊介導自高爾基體(Golgi)返回ER之逆行轉 運及高爾基體内之轉運(Watson等人,2004)。其亦可能參 與順行轉運(Nickel等人,1998)。逆行運輸尤其調節EGFR 之EGF依賴性核轉運,其中EGFR結合於COPG( Wang等 人,2010)。COPG被發現在肺癌細胞及肺癌相關微血管内 皮細胞中過量表現(Park等人,2008)。 普遍表現之COPG2之序列與GOPG具有80% —致性 (Blagitko等人,1999)。COPG2可替代功能上可能是多餘 的GOPG形成COPI樣複合物(Futatsumori等人,2000)。 由在囊腫性纖維化跨膜傳導調節因子(CFTR)表現細胞株 中阻斷COPB1表現可推測外被體複合物有參與CRTR向質 膜之運輸(Denning等人,1992)(Bannykh等人,2000)。 泛素結合酶E2S(UBE2S) UBE2S為促後期複合物(APC)之辅助因子,促後期複合 物為一種E3泛素連接酶,其藉由靶向細胞週期調節因子來 調節有絲分裂結束及Gl » UBE2S在受質經其他組分預泛素 154845.doc -63- 201200594 化後延長泛素鏈(Wu等人,2010)。UBE2S亦靶向VHL蛋白 以降解蛋白酶體,進而穩定HIF-lct(Lim等人,2008),且 可能支持增殖、上皮-間質轉化及轉移(Chen等人, 2009) (Jung等人,2006)。UBE2S在若干癌症實體中過量表 現。 驅動蛋白家族成員ll(KIFll) KIF 11為組裝兩極有絲分裂紡錘體所需。已發現其在若 干癌症中上調,通常與臨床病理學參數相關(Liu等人, 2010) (Peyre等人,2010)。KIF11之小分子抑制劑,如研發 作為潛在抗癌藥物之S-三苯曱基-L-半胱胺酸(STLC),在 有絲分裂中阻滯細胞並促進癌細胞凋亡(Tsui等人, 2009)(Wiltshire等人,2010)(Ding等人,2010)。在臨床 上,KIF 11抑制劑僅顯示不太高的活性(Kaan等人,20 1 0 ; Tunquist 等人,2010 ; Wiltshire 等人,2010 ; Zhang及 Xu, 2008)。 解整合素樣金屬蛋白酶結構域8(ADAM8)Wingless MMTV integration site family member 5A 154845.doc •61 · 201200594 WNT5 A is a secretory signaling protein involved in developmental processes and tumor formation. Typical WNT5A signaling enables stem/progenitor cells to be maintained via Frizzled and LRP5/LRP6 receptors, whereas non-typical WNT5A signaling is controlled via coiling and ROR2/PTK/RYK receptors such as tissue polarity at the tumor-matrix interface, cells Adhere or move, thereby causing invasion (Katoh and Katoh, 2007). It may be a tumor suppressor in some cancers, but it is up-regulated in other cancers including gastric cancer, which promotes progression and metastasis in gastric cancer and leads to poor prognosis (Li et al., 2010) (Yamamoto et al., 2009) (Kurayoshi Et al., 2006). Fibroblast Activated Protein a (FAP) FAP is an integral membrane gelatinase. Its putative serine protease activity plays a role in controlling fibroblast growth or epithelial-mesenchymal interaction during development, tissue repair, and epithelial carcinogenesis (Scanlan et al., 1994). FAP has a potential role in cancer growth, metastasis, and angiogenesis via cell adhesion and metastasis processes and rapid degradation of ECM components. It is present in tumor cells that invade ECM, in reactive cancer-associated fibroblasts, and in endothelial cells involved in angiogenesis, but not in cells of the same type that are inactive. (Dolznig et al., 2005; Kennedy et al., 2009; Rettig et al., 1993; Rettig et al., 1994; Scanlan et al., 1994; Zhang et al., 2010). FAP expression has been found in gastric cancer cells and related matrix fibroblasts (Zhi et al, 2010) (Chen et al, 2006) (Mori et al, 2004; Okada et al, 2003). In a mouse model, FAP-expressing cells showed non-excessive tumor microenvironment immunosuppressive components (Kraman et al., 2010). In a mouse model of tumor vaccination, I54845.doc -62-8 201200594 FAP was successfully used as a target for CD8+ and CD4+ T cell responses (Loeffler et al., 2006; Wen et al., 2010) (Lee et al. , 2005) (Fassnacht et al., 2005). Exosome protein complex subunit Y (COPG); exosome protein complex subunit Y2 (COPG2); exosome protein complex subunit pi (COPBl) C0PG, COPG2 and COPB1 are non-caurnin envelope The capsule binds to the subunit of the foreign body complex (also known as coat protein complex 1; C0PI). The C0PI is mediated by the capsular sac from the retrograde transport of the ER from the Golgi and transport in the Golgi (Watson et al., 2004). It may also be involved in antegrade transport (Nickel et al., 1998). Retrograde transport specifically regulates EGF-dependent nuclear transport of EGFR, which binds to COPG (Wang et al., 2010). COPG was found to be overexpressed in lung cancer cells and lung cancer-associated microvascular endothelial cells (Park et al., 2008). The generally expressed sequence of COPG2 is 80% identical to GOPG (Blagitko et al., 1999). COPG2 may replace a functionally undesirable GOPG to form a COPI-like complex (Futatsumori et al., 2000). Blocking of COPD1 expression in a cell line of cystic fibrosis transmembrane conductance regulator (CFTR) suggests that the exosome complex is involved in the transport of CRTR to the plasma membrane (Denning et al., 1992) (Bannykh et al., 2000). ). Ubiquitin-binding enzyme E2S (UBE2S) UBE2S is a cofactor for the late-stage complex (APC). The late-promoting complex is an E3 ubiquitin ligase that regulates the end of mitosis by targeting cell cycle regulators and Gl » UBE2S The ubiquitin chain was extended after the receptor was ubiquitinated by other components 154845.doc -63-201200594 (Wu et al., 2010). UBE2S also targets VHL proteins to degrade proteasomes, thereby stabilizing HIF-lct (Lim et al., 2008) and may support proliferation, epithelial-mesenchymal transition and metastasis (Chen et al., 2009) (Jung et al., 2006). . UBE2S is overexpressed in several cancer entities. Kinesin family member ll (KIFll) KIF 11 is required for assembly of a bipolar mitotic spindle. It has been found to be up-regulated in several cancers and is often associated with clinical pathology parameters (Liu et al., 2010) (Peyre et al., 2010). Small molecule inhibitors of KIF11, such as S-triphenylmethyl-L-cysteine (STLC), which is a potential anticancer drug, blocks cells in mitosis and promotes cancer cell apoptosis (Tsui et al., 2009) (Wiltshire et al., 2010) (Ding et al., 2010). Clinically, KIF 11 inhibitors only show less activity (Kaan et al., 20 1 0; Tunquist et al., 2010; Wiltshire et al., 2010; Zhang and Xu, 2008). Integrin-like metalloproteinase domain 8 (ADAM8)

ADAM8最初被認為是免疫特異性ADAM,但後來發現其 亦存在於其他細胞類型中,通常是在涉及炎症及ECM重構 之病狀,包括癌症及呼吸道疾病,如哮喘(Koller等人, 2009)。許多ADAM物質,包括ADAM8,在人類惡性腫瘤 中表現,在該等惡性腫瘤中其參與調節生長因子活性及整 合素功能,藉此促進細胞生長及侵襲,不過此等現象之確 切機制目前尚不清楚(Mochizuki及Okada 2007)。在小鼠胃 腫瘤中,ADAM8及其他ADAM增加,其可能係由於EGFR 154845.doc -64- ⑧ 201200594 信號傳導增強(Oshima等人,2011)。 細胞分裂週期6同源物(釀酒酵母菌)(CDC6) CDC6為起始DNA複製所必需。其在G1期間位於細胞核 中,但在S期開始時移位至細胞質中。CDC6亦經由與ATR 相互作用來調節複製檢查點活化(Yoshida等人,2010)。 CDC6反調節可導致編碼3種重要腫瘤抑制基因(pl6INK4a 及p 1 5INK4b,兩者均為視網膜胚細胞瘤路徑活化劑;以及 ARF,其為p53活化劑)之INK4/ARF基因座不活化 (Gonzalez等人,2006)。siRNA對CDC6之表現阻斷可防止 增殖並促進細胞凋亡(Lau等人,2006)。CDC6在包括胃癌 之癌症中上調(Nakamura等人,2007)(Tsukamoto等人, 2008) 〇 F2R凝血因子11(凝血酶)受體(F2R) F2R亦被稱為蛋白酶活化受體(PAR1),為一種G蛋白偶 合受體。PARI、PAR2及PAR4之信號可調節鈣釋放或有絲 分裂原活化蛋白激酶活化,且造成血小板凝集、血管舒 張、細胞增殖、細胞激素釋放及炎症(Oikonomopoulou等 人,2010)。F2R被認為參與内皮細胞增殖及腫瘤細胞增殖 以及血管生成,且在許多類型之侵襲性及轉移性腫瘤中過 量表現。其表現量直接與癌症之侵襲程度相關(Garcia_ Lopez等人,2010)(Lurje等人,2010)。在胃癌細胞中, F2R活化可引發促進腫瘤細胞生長及侵襲之一系列反應, 例如NF-κΒ、EGFR及肌腱蛋白C(TN-C)過量表現(Fujimoto 等人,2010)。因此,發現胃癌中之F2R表現與壁侵襲厚 154845.doc 65· 201200594 度、腹膜播散及不良預後相關(Fujimoto等人,2008)。已 描述識別凝血酶受體N端内之抗原決定基(SFLLRNPN)之小 鼠單株抗人類PAR1抗體(ATAP-2)以及PAR1促效肽 TFLLRNPNDK(Hollenberg 及 Compton 2002 ; Mari 等人, 1996 ; Xu等人,1995)。 嗅介蛋白4(OLFM4) 功能在很大程度上未知之OLFM4在發炎結腸上皮細胞及 許多人類腫瘤類型中過量表現,尤其為消化系統腫瘤 (Koshida等人,2007)。OLFM4為人類腸中幹細胞之穩固標 記物且標記結腸直腸癌細胞之子集(van der Flier等人, 2009)。OLFM4抑制促細胞凋亡蛋白GRIM-19(Zhang等 人,2004)(Huang等人,2010),調節細胞週期並促進癌細 胞增殖中之S期轉換。此外,OLFM4與癌症黏附及轉移相 關(Yu等人,2011b)。OLFM4在鼠類攝護腺腫瘤細胞中之 加強過量表現導致在同源宿主中更快形成腫瘤(Zhang等 人,2004)。OLFM4被發現在GC中過量表現(Aung等人, 2006)。對OLFM4表現之抑制可在胃癌細胞中在存在細胞 毒性劑之情況下誘導細胞凋亡(Kim等人,20 10)。此外, 手術前GC患者之血清OLFM4濃度與健康供體相比增加 (Oue等人,2009)。OLFM4確定為視黃酸(RA)及脫曱基劑 5-氮雜-2'-去氧胞核之新穎標靶基因。此兩種試劑經證明 可有效治療某些骨體性白血病患者(Liu等人,201 0)。ADAM8 was originally thought to be immune-specific ADAM, but it was later found to be present in other cell types, usually in conditions involving inflammation and ECM remodeling, including cancer and respiratory diseases such as asthma (Koller et al., 2009). . Many ADAM substances, including ADAM8, are expressed in human malignancies, in which they are involved in regulating growth factor activity and integrin function, thereby promoting cell growth and invasion, but the exact mechanism of these phenomena is still unclear. (Mochizuki and Okada 2007). In mouse gastric tumors, ADAM8 and other ADAMs are increased, possibly due to enhanced signaling by EGFR 154845.doc -64-8 201200594 (Oshima et al., 2011). Cell division cycle 6 homolog (Saccharomyces cerevisiae) (CDC6) CDC6 is required for initiation of DNA replication. It is located in the nucleus during G1 but shifts to the cytoplasm at the beginning of the S phase. CDC6 also regulates replication checkpoint activation via interaction with ATR (Yoshida et al., 2010). CDC6 counter-regulation can result in the inactivation of the three major tumor suppressor genes (pl6INK4a and p1 5INK4b, both of which are retinoblastoma pathway activators; and ARF, which is a p53 activator) (Gonzalez) Et al., 2006). Blockade of siRNA expression of CDC6 prevents proliferation and promotes apoptosis (Lau et al., 2006). CDC6 is upregulated in cancers including gastric cancer (Nakamura et al., 2007) (Tsukamoto et al., 2008) 〇F2R coagulation factor 11 (thrombin) receptor (F2R) F2R is also known as protease activated receptor (PAR1). A G protein coupled receptor. Signaling of PARI, PAR2, and PAR4 regulates calcium release or activation of mitogen-activated protein kinases and causes platelet aggregation, vasodilation, cell proliferation, cytokine release, and inflammation (Oikonomopoulou et al., 2010). F2R is thought to be involved in endothelial cell proliferation and tumor cell proliferation and angiogenesis, and is overexpressed in many types of invasive and metastatic tumors. Its performance is directly related to the degree of cancer invasion (Garcia_Lopez et al., 2010) (Lurje et al., 2010). In gastric cancer cells, F2R activation triggers a series of responses that promote tumor cell growth and invasion, such as NF-κΒ, EGFR, and tendin protein C (TN-C) overexpression (Fujimoto et al., 2010). Therefore, F2R expression in gastric cancer was found to be associated with wall invasion 154845.doc 65·201200594 degrees, peritoneal dissemination, and poor prognosis (Fujimoto et al., 2008). Mouse monoclonal anti-human PAR1 antibody (ATAP-2) and PAR1 agonist peptide TFLLRNPNDK, which recognize the epitope in the N-terminus of the thrombin receptor, have been described (Hollenberg and Compton 2002; Mari et al., 1996; Et al., 1995). The olfactory protein 4 (OLFM4) function is largely unknown in OLFM4 in inflamed colonic epithelial cells and in many human tumor types, especially in digestive system tumors (Koshida et al., 2007). OLFM4 is a robust marker of stem cells in the human gut and is labeled as a subset of colorectal cancer cells (van der Flier et al., 2009). OLFM4 inhibits the pro-apoptotic protein GRIM-19 (Zhang et al., 2004) (Huang et al., 2010), modulating the cell cycle and promoting S phase transition in cancer cell proliferation. In addition, OLFM4 is associated with cancer adhesion and metastasis (Yu et al., 2011b). Enhanced overexpression of OLFM4 in murine prostate tumor cells results in faster tumor formation in homologous hosts (Zhang et al, 2004). OLFM4 was found to be overexpressed in the GC (Aung et al., 2006). Inhibition of OLFM4 expression induces apoptosis in gastric cancer cells in the presence of cytotoxic agents (Kim et al., 20 10). In addition, serum OLFM4 concentrations in patients with pre-operative GC increased compared to healthy donors (Oue et al., 2009). OLFM4 was identified as a novel target gene for retinoic acid (RA) and a depurinating base 5-aza-2'-deoxynucleotide. These two agents have been shown to be effective in treating certain patients with osteomyelitis (Liu et al., 201 0).

Thy-Ι細胞表面抗原(THY1)Thy-Ι cell surface antigen (THY1)

Thy-1 (CD90)為在包括T細胞、神經元 '内皮細胞及纖維 I54845.doc 66· 201200594 母細胞之許多細胞類型上發現的GPI錨定醣蛋白。Thy-1參 與包括黏附、神經再生、腫瘤生長、腫瘤抑制、遷移、細 胞死亡及T細胞活化之過程。(Rege及Hagood 2006b ; Rege 及 Hagood 2006a)(Jurisic等人,2010)。Thy-1似乎為成人血 管生成之標記物,但並非胚胎血管生成之標記物(Lee等 人,1998)。此外,其被視為各種幹細胞(間質幹細胞、肝 臟幹細胞(「卵形細胞」)(Masson等人,2006)、角質細胞 幹細胞(Nakamura等人,2006)及造血幹細胞(Yamazaki等 人,2009))之標記物。Thy-Ι在若干癌症中上調,包括胃癌 及GIST,因此建議Thy-Ι可作為該等癌症之標記物(Yang及 Chung 2008 ; Zhang 等人,2010)(0ikonomou 等人, 2007)。 中心體蛋白250 kDa(CEP250)Thy-1 (CD90) is a GPI-anchored glycoprotein found on many cell types including T cells, neuronal 'endothelial cells, and fibroblasts I54845.doc 66·201200594. Thy-1 involves processes including adhesion, nerve regeneration, tumor growth, tumor suppression, migration, cell death, and T cell activation. (Rege and Hagood 2006b; Rege and Hagood 2006a) (Jurisic et al., 2010). Thy-1 appears to be a marker of adult angiogenesis, but is not a marker of embryonic angiogenesis (Lee et al., 1998). In addition, it is considered as various stem cells (mesenchymal stem cells, liver stem cells ("oval cells") (Masson et al., 2006), keratinocyte stem cells (Nakamura et al., 2006), and hematopoietic stem cells (Yamazaki et al., 2009). ) the marker. Thy-Ι is up-regulated in several cancers, including gastric cancer and GIST, and it is therefore suggested that Thy-Ι can be used as a marker for such cancers (Yang and Chung 2008; Zhang et al., 2010) (0ikonomou et al., 2007). Center protein 250 kDa (CEP250)

Cep250在微管組織中心内聚中發揮作用(Mayor等人, 2000)。其亦被稱為中心體Nek2相關蛋白或C-Napl,此係 因為其與絲胺酸/蘇胺酸激酶Nek2共定位且為絲胺酸/蘇胺 酸激酶Nek2之受質。Nek2激酶及其受質調節中心體之間 的連接(Bahmanyar等人,2008)。在有絲分裂開始時,當 中心體分離以形成兩極紡錘體時,C-Napl被磷酸化且隨後 自中心體解離。活體外實驗顯示,Cep250之過量表現會損 傷中心體處之微管組織(Mayor等人,2002)。 低氧誘導因子Ια次單元(鹼性螺旋-環-螺旋轉錄因子) (HIF1A) HIF1A為低氧誘導因子(HIF)之氧敏感性次單元,該低氧 154845.doc •67- 201200594 誘導因子為一種在常在腫瘤中發現之低氧條件下具有活性 之轉錄因子。其介導超過60種與存活、葡萄糖代謝、侵 襲、轉移及血管生成相關之基因(例如VEGF)的轉錄。 HIF1在許多癌症中過量表現’其通常與不良預後相關,且 被視為藥理學處理之關注標乾(Griffiths等人,2005 .Cep250 plays a role in the cohesion of microtubule tissue centers (Mayor et al., 2000). It is also known as the centrosome Nek2-related protein or C-Napl because it colocalizes with the serine/threonine kinase Nek2 and is a substrate for the serine/threonine kinase Nek2. The junction between Nek2 kinase and its receptor regulatory center (Bahmanyar et al., 2008). At the onset of mitosis, when the centrosome separates to form a bipolar spindle, C-Napl is phosphorylated and subsequently dissociated from the centrosome. In vitro experiments have shown that excessive performance of Cep250 can damage microtubule tissue at the center of the body (Mayor et al., 2002). Hypoxia-inducible factor Ια subunit (basic helix-loop-helix transcription factor) (HIF1A) HIF1A is an oxygen-sensitive subunit of hypoxia-inducible factor (HIF), the hypoxia 154845.doc •67-201200594 induction factor is A transcription factor that is active under hypoxic conditions often found in tumors. It mediates the transcription of more than 60 genes associated with survival, glucose metabolism, invasion, metastasis, and angiogenesis, such as VEGF. HIF1 is overexpressed in many cancers', which are often associated with poor prognosis and are considered to be the focus of pharmacological treatment (Griffiths et al., 2005).

Quintero等人,2004 ; Stoeltzing等人,2004)(Zhong等人, 1999)。 在胃癌中,HIF1A促進血管生成(Nam等人,2011),且 與腫瘤大小、較低分化、腫瘤分期、較短存活(Qiu等人, 2011)及轉移(Wang 等人,2010)相關(Han 等人,2006; Kim 等人’ 2009 ; Oh等人,2008 ; Ru等人,2007)。其亦被認 為經由抑制藥物誘導之細胞凋亡而導致對化學治療藥物 (諸如5-FU)之抗性且降低細胞内藥物積聚(Nakamura等 人,2009)(Liu等人,2008)。HIF-lot-抑制劑2-甲氧基-雌二 醇可顯者降低胃癌細胞之轉移性(Rohwer等人,2009)。 v-Ki-ras2克里斯汀大鼠肉瘤病毒致癌基因同源物(KRAS) KRAS為小GTP酶超家族之一員,且為參與可能致癌之 許多信號轉導路徑(諸如MAPK及AKT介導之路徑)之早期 步驟的原致癌基因。單一胺基酸取代會活化突變,因而產 生在各種包括胃癌之惡性腫瘤中發揮關鍵作用之轉化蛋白 (Capel la等人,1991)。KRAS之致癌突變在胃癌中不常 見。在胃癌子集中,KRAS基因座擴增,因而導致KRAs蛋 白過量表現。因此,基因擴增可能為胃癌中KRAS過度活 化之分子基礎(Mita等人,2009)。突變的KRAS對偶基因可 154845.doc -68- 201200594 促進低氧驅動之VEGF誘導(Kikuchi等人,2009 ; Zeng等 人,2010)。亦可在癌症患者之血清或血漿中偵測到突變 的KRAS,因此建議其可作為易獲得之腫瘤標記物 (Sorenson, 2000)。肽KRAS-001僅源自於兩種拼接變異體 中一種-NP_004976(188個胺基酸),而不來自拼接變異體 NP_203524(189個胺基酸)。該等拼接變異體之不同處在於 其最後一個外顯子,其係KRAS 001的定位處。 非SMC凝聚蛋白I複合物次單元G(NCAPG) NCAPG為凝聚蛋白I複合物之一部分,該複合物由染色 體結構維持(SMC)蛋白及非SMC蛋白構成,且調節有絲分 裂過程中之染色體凝聚及分離(Seipold等人,2009)。在許 多腫瘤中發現NCAPG過量表現,包括鼻咽癌(Li等人, 2010)、肝細胞癌(Satow等人,2010)及黑素瘤(Ryu等人, 2007)。在正常組織中,NCAPG顯示在睾丸中之表現最 高。其被建議為癌症中可能的增殖標記物及潛在預後指示 劑(Jager 等人,2000)。 拓撲異構酶(DNA)IIa(TOP2A)及拓撲異構酶(DNA)Iip (TOP2B) TOP2A&TOP2B編碼DNA拓撲異構酶之高度同源性同功 異型物,DNA拓撲異構酶在轉錄過程中控制並改變DNA之 拓撲狀態,且參與染色體凝聚、染色分體分離、複製及轉 錄。拓撲異構酶為諸如蒽環素(anthracyclin)之若干抗癌藥 物之標靶,且多種突變與抗藥性相關(Kellner等人, 2002)(Jarvinen及 Liu,2006) ° TOP2A(而非 TOP2B)為細胞 154845.doc -69- 201200594 增殖所必需。其位於與HER2致癌基因相鄰處,且在大多 數HER2擴增型乳房腫瘤以及無HER2擴增之乳房腫瘤 (Jarvinen及Liu,2003)及許多其他腫瘤實體中擴增。在胃癌 子集中,亦發現TOP2A擴增及過量表現,其通常與HER2 一起發生(Varis等人,2002)(Liang等人,2008)。 層黏連蛋白Y2(LAMC2) 層黏連蛋白為基底膜之主要非膠原組分。其參與細胞黏 附、分化、遷移、信號傳導及轉移。γ2鏈與α3及β3鏈一起 構成層黏連蛋白5。LAMC2可促進活體内人類癌細胞侵襲 性生長。其在人類癌症侵襲前高度表現,且其表現與不良 預後相關(Tsubota等人,2010)。ΜΜΡ-2產生之層黏連蛋白 5裂解產物能夠活化EGFR信號傳導且促進細胞運動 (Schenk等人,2003)。在胃癌中,LAMC2可由EGFR家族 成員或Wnt5a誘導,且其侵襲性活性視LAMC2而定 (Tsubota等人,2010)(Yamamoto等人,2009)。 芳基烴受體(AHR) AHR結合平面芳族烴,諸如T.CDD(2,3,7,8-四氣二苯并-對二氧雜環己烯),且介導包括外來生物代謝酶(諸如細胞 色素P450酶)之基因轉錄》其亦在細胞週期進程中發揮作 用(Barhoover等人,2010)。AhR被認為與二氧雜環己稀之 促腫瘤活性部分相關,因為其具有促增生及抗細胞凋亡功 能,且可導致細胞-細胞接觸反調節、去分化及運動增強 (Watabe 等人,2010)(Dietrich 及 Kaina 2010)(Marlowe 等 人,2008)。AHR表現可由 TGF-β下調(Dohr及 Abel 1997 ; I54845.doc ·70· _ 201200594Quintero et al., 2004; Stoeltzing et al., 2004) (Zhong et al., 1999). In gastric cancer, HIF1A promotes angiogenesis (Nam et al., 2011) and is associated with tumor size, lower differentiation, tumor stage, shorter survival (Qiu et al., 2011) and metastasis (Wang et al., 2010) (Han Et al., 2006; Kim et al. '2009; Oh et al., 2008; Ru et al., 2007). It is also thought to cause resistance to chemotherapeutic drugs (such as 5-FU) and reduce intracellular drug accumulation via inhibition of drug-induced apoptosis (Nakamura et al., 2009) (Liu et al., 2008). The HIF-lot-inhibitor 2-methoxy-estradiol significantly reduces the metastasis of gastric cancer cells (Rohwer et al., 2009). v-Ki-ras2 Kristin rat sarcoma virus oncogene homolog (KRAS) KRAS is a member of the small GTPase superfamily and is involved in many signal transduction pathways (such as MAPK and AKT-mediated pathways) that may be carcinogenic ) The early steps of the original oncogene. Substitution of a single amino acid activates the mutation, thereby producing a transforming protein that plays a key role in various malignancies including gastric cancer (Capel la et al., 1991). Carcinogenic mutations in KRAS are not common in gastric cancer. In the gastric cancer subset, the KRAS locus is amplified, resulting in excessive expression of KRAs. Therefore, gene amplification may be the molecular basis for KRAS overactivation in gastric cancer (Mita et al., 2009). The mutated KRAS dual gene can be 154845.doc-68-201200594 to promote hypoxia-driven VEGF induction (Kikuchi et al, 2009; Zeng et al, 2010). Mutant KRAS can also be detected in serum or plasma of cancer patients and is therefore recommended as a readily available tumor marker (Sorenson, 2000). The peptide KRAS-001 was derived only from one of the two splicing variants - NP_004976 (188 amino acids) and not from the splicing variant NP_203524 (189 amino acids). The difference between these splicing variants lies in their last exon, which is the location of KRAS 001. Non-SMC agglutinin I complex subunit G (NCAPG) NCAPG is a part of the agglomerated protein I complex, which is composed of chromosome structure maintenance (SMC) protein and non-SMC protein, and regulates chromosome condensation and separation during mitosis. (Seipold et al., 2009). Overexpression of NCAPG has been found in many tumors, including nasopharyngeal carcinoma (Li et al, 2010), hepatocellular carcinoma (Satow et al, 2010), and melanoma (Ryu et al, 2007). In normal tissues, NCAPG shows the highest performance in the testes. It has been suggested as a possible proliferative marker and potential prognostic indicator in cancer (Jager et al., 2000). Topoisomerase (DNA) IIa (TOP2A) and topoisomerase (DNA) Iip (TOP2B) TOP2A & TOP2B encodes a highly homologous isoform of DNA topoisomerase, DNA topoisomerase in the transcription process Control and change the topological state of DNA, and participate in chromosome coagulation, stain separation, replication and transcription. Topoisomerases are targets for several anticancer drugs such as anthracyclin, and multiple mutations are associated with drug resistance (Kellner et al., 2002) (Jarvinen and Liu, 2006) ° TOP2A (not TOP2B) Cell 154845.doc -69- 201200594 Required for proliferation. It is located adjacent to the HER2 oncogene and is amplified in most HER2 amplified breast tumors and breast tumors without HER2 amplification (Jarvinen and Liu, 2003) and many other tumor entities. In the gastric cancer subset, TOP2A amplification and overexpression are also found, which usually occurs with HER2 (Varis et al., 2002) (Liang et al., 2008). Laminin Y2 (LAMC2) laminin is the major non-collagen component of the basement membrane. It is involved in cell adhesion, differentiation, migration, signaling, and metastasis. The γ2 chain together with the α3 and β3 chains constitutes laminin 5. LAMC2 promotes invasive growth of human cancer cells in vivo. It is highly expressed before human cancer invasion and its performance is associated with poor prognosis (Tsubota et al., 2010). The laminin 5 lysate produced by ΜΜΡ-2 is capable of activating EGFR signaling and promoting cell movement (Schenk et al., 2003). In gastric cancer, LAMC2 can be induced by EGFR family members or Wnt5a, and its invasive activity depends on LAMC2 (Tsubota et al., 2010) (Yamamoto et al., 2009). Aryl hydrocarbon acceptor (AHR) AHR binds to planar aromatic hydrocarbons such as T.CDD (2,3,7,8-tetrasodibenzo-p-dioxine) and mediates exogenous biological metabolism Gene transcription of enzymes (such as cytochrome P450 enzymes) also plays a role in cell cycle progression (Barhoover et al., 2010). AhR is thought to be partially involved in the pro-tumor activity of dioxetine because it has pro-proliferative and anti-apoptotic functions and can lead to cell-cell contact counter-regulation, dedifferentiation and motor enhancement (Watabe et al., 2010). (Dietrich and Kaina 2010) (Marlowe et al., 2008). AHR performance can be down-regulated by TGF-β (Dohr and Abel 1997; I54845.doc ·70· _ 201200594

Wolff等人,2001),並由Wnt或β-連環蛋白信號傳導誘導 (Chesire等人,2004)。在包括胃癌之許多癌症中發現AHR 過量表現,在該等癌症中AHR與頻繁的CYP1A1表現相關 (Ma等人,2006)。胃癌中AHR之表現及核移位比正常組織 中高,且其表現在癌發生過程中逐漸增加(Peng等人, 2009a)。AhR路徑活化可能經由c-Jun依賴性誘導MMP-9來 增強胃癌細胞侵襲性(Peng等人,2009b)。在小鼠模型中, 芳基烴受體之組成性活性突變體(CA-AhR)之表現導致胃腫 瘤生成,其與死亡率增加相關(Andersson等人,2002 ; Kuznetsov等人,2005)。AhR在癌症中之功能似乎不明 確,因為一些研究亦指出其具有腫瘤抑制活性 (Gluschnaider等人,2010)(Fan等人,2010)。 玻尿酸介導之運動受體(RHAMM)(HMMR) HMMR可存在於細胞表面上,其在細胞表面上結合玻尿 酸(HA)並與HA受體CD44相互作用。此相互作用在如細胞 運動、創傷瘡合及侵襲之過程中發揮作用(Gares及 Pilarski,2000)。在細胞内,HMMR與細胞骨架、微管、中 心體及有絲分裂紡錘體相關,並在控制有絲分裂紡錘體完 整性方面發揮作用。HMMR在若干癌症組織中過量表現 (Sohr及Engeland,2008)。HA被推測可保護癌細胞免受免 疫攻擊。轉移性患者中血清HA通常會增加(Delpech等人, 1997)。HMMR被認定為AML及CLL中有前景之腫瘤相關抗 原及可能預後因子。源自於HMMR之肽已用於抗白血病疫 苗中。HMMR-001之活體外免疫原性亦被測試,但非用於 154845.doc 71 201200594 疫苗接種(Tzankov 等人,2011)(Greiner 等人,2010 ; Schmitt 等人,2008 ; Tabarkiewicz及 Giannopoulos,2010) (Greiner等人,2005)。亦在若干其他癌症中發現HMMR過 量表現,其通常與不良預後相關。HMMR亦在胃癌中過量 表現,其通常與CD44 —起,且推測其促進侵襲及轉移(Li 等人 ’ 1999)(Li等人,2000a)(Li 等人,2000b)。 TPX2微管相關同源物(有爪蟾蜍)(τρχ2) TPRX2為在細胞週期之s、G(2)及Μ期表現且被視為是增 殖標s己物之增殖相關蛋白(Cordes等人,2010)。 正常微管核化需要TPRX2,例如用於組裝有絲分裂紡錘 體。TPX2募集並活化極光激酶A(Bird及Hyman, 2008 ; Moss等人’ 2009)。利用Polo樣激酶1使τρχ2填酸化可增加 其活化極光激酶A之能力(Eckerdt等人,2009)。TPX2在許 多腫瘤類型中過量表現,且常與極光激酶_A 一起共同過量 表現(Asteriti等人,2010)。已發現之TPX2過量表現實例 (常與不良預後或後期相關)為腦膜瘤(Stuart等人,2010)、 肺癌(Kadara 等人,2009)(Lin 等人,2006 ; Ma 等人, 2006)(Manda 等人 ’ 1999)及肝細胞癌(shigeishi 等人, 2009b)(Satow等人,2010)(Wang等人,2003)。 因此’本發明係關於一種肽,其包含選自SEQ ID NO: 1 至SEQ ID NO: 95之群之序列’或其與SEQ ID NO: 1至SEQ ID NO: 95具有至少80%同源性之變異體,或其誘導τ細胞 與該肽交叉反應之變異體,其中該肽不為全長多肽。 本發明另外關於一種肽,其包含選自SEQ ID NO: 1至 154845.doc -72- ⑧ 201200594 SEQ ID NO: 95之群之序列,或其與SEQ ID NO: 1至SEQ ID NO: 95具有至少80%同源性之變異體,其中該肽或變異 體具有8至100個、較佳8至3 0個且最佳8至14個胺基酸之總 長度。 本發明另外關於先前描述之肽,該肽能夠結合I類或II類 人類主要組織相容性複合物(human major histocompatibility complex ; MHC)之分子。 本發明另外關於先前描述之肽,其中該肽由或基本上由 SEQ ID No. 1至SEQ ID No. 95之胺基酸序列組成。 本發明進一步涉及先前所述肽,其中該肽被修飾和/或 包含非肽鍵。 本發明進一步涉及先前所述肽,其中該肽為融合蛋白, 特別是含HLA-DR抗原相關不變鏈(Π )的N-端氨基酸。 本發明進一步涉及一種核酸,其編碼先前所述肽,前提 是該肽並非完整的人蛋白。 本發明進一步涉及一種先前所述的核酸,為DNA、 cDNA、PNA、CAN、RNA,也可能為其組合物。 本發明進一步涉及一種能表達先前所述核酸的表達載 體。 本發明進一步涉及供藥物中使用的一種先前所述肽、一 種先前所述核酸或一種先前所述表達載體。 本發明進一步涉及含前述核酸或前述表達載體的一種宿 主細胞。 本發明進一步涉及為一種抗原提呈細胞的所述宿主細 154845.doc -73- 201200594 胞。 本發明進一步涉及所述宿主細胞,其中抗原提呈細胞為 樹突狀細胞。 本發明進一步涉及一種配製一種所述肽的方法,該方法 包括培養所述宿主細胞和從宿主細胞或其培養基中分離 肽。 本發明進一步涉及一種體外製備啟動的細胞毒性τ淋巴 細胞(CTL)的方法’該方法包括將CTL與載有抗原的人I或 II類MHC分子進行體外連接’這些分子在合適的抗原提呈 細胞表面表達足夠的一段時間從而以抗原特異性方式啟動 CTL,其中所述抗原為任何一種所述肽。 本發明進一步涉及所述方法’其中抗原通過與足夠量的 含抗原提成細胞的抗原結合被載入表達於合適抗原提呈細 胞表面的I或Π類MHC分子。 本發明進一步涉及所述方法,其中該抗原提呈細胞包括 一個表達載體,該載體有能力表達含化卩ID NO 1至SEQ ID NO 33的肽或所述變體氨基酸序列。 本發明進一步涉及以所述方法製備的啟動細胞毒性T淋 巴細胞(CTL),該淋巴細胞有選擇性地識別一種細胞,該 細胞異常表達含一種所述氨基酸序列的多肽。 本發明進一步涉及一種殺傷患者靶細胞的方法,其中患 者的靶細胞異常表達含所述任何氨基酸序列的多肽,該方 法包括給予患者上述有效量的毒性T淋巴細胞(CTL)。 本發明進一步涉及任何所述肽、所述一種核酸、所述一 154845.doc - 74 - ⑧ 201200594 種表達載體、所述一種細胞、所述一種作為藥劑或製造藥 劑的啟動細胞毒性τ淋巴細胞的用途。 本發明進一步涉及一種所述使用方法,其中藥劑為一種 疫苗。 本發明進一步涉及一種所述使用方法,其中藥劑為具有 抗癌活性。 本發明進一步涉及一種所述用途,其中所述癌細胞為胃 癌細胞、胃腸道癌細胞、結直腸癌細胞、胰腺癌細胞、肺 癌細胞或腎癌細胞。 本發明進一步涉及可用作胃癌預後的特殊標誌物蛋白。 此外,本發明涉及這些供癌症治療使用的新靶點。 如本文所提供,文獻中已描述與正常胃及其他活組織 (例如肝、腎、心臟)相比,由ABL1、ADAM10、AHR、 CCND2 、 CDC6 、 CDK1 、 CEACAM1 、 CEACAM5 、 CEACAM6、CEACAM6、COL6A3、EIF2S3、LOC255308、 EPHA2、ERBB2、ERBB3、F2R、FAP、HMMR、 HSP90B1、IGF2BP3、ITGB4、KIF2C、KRAS、LAMC2、 LCN2、MET、MMP11、MMP12、MMP3、MST1R、 NUF2、OLFM4、PROM1、RRM2、THY1、TMPRSS4、 TOP2A、TSPAN1、WNT5A、HIF1A及 PTK2編碼之蛋白質 在胃癌中過量表現。 由 ABL1、ADAM10、ADAM8、AHR、ASPM、ATAD2、 CCDC88A、CCNB1、CCND2、CCNE2、CDC6、CDK1、 CEACAM1 、 CEACAM5 、 CEACAM6 、 CEACAM6 、 I54845.doc -75· 201200594 CLCN3 、 COL6A3 、 EPHA2 、 ERBB2 、 ERBB3 、 F2R 、 FAP、HIF1A、HMMR、HSP90B1、IGF2BP3、IQGAP3、 ITGB4、KIF11、KIF2C、KRAS、LAMC2、LCN2、MET、 MMP11、MMP3、MST1R、MUC6、NCAPG、NFYB、 NUF2、OLFM4、PBK、PLK4、PPAP2C、PROM1、 PTK2、RRM2、SIAH2、THY1 、TOP2A、TPX2、 TSPAN1、TSPAN8、UBE2S、UCHL5 及 WNT5A編碼之蛋 白質顯示在腫瘤形成中具有重要作用,此係因為其參與惡 性轉化、細胞生長、增殖、血管生成或侵襲正常組織。同 樣地,對於由 DNAJC10、EIF2S3、EIF3L、POLD3、 PSMC2、PSMD14及TMPRSS4編碼之蛋白質,亦有關於癌 症相關功能之證據。 由 PROM1、WNT5A、SMC4、PPAP2C、GPR38、 OLFM4及THY1編碼之蛋白質顯示在幹細胞及/或癌症幹細 胞中高度表現及/或發揮重要作用。PROM1被認為可作為 胃癌幹細胞之標記物,不過資料尚存爭議。癌症幹細胞為 具有維持腫瘤生長所需之自我更新潛能之腫瘤細胞亞群。 該等細胞駐留在特殊且高度組織化結構,即所謂維持癌症 幹細胞之自我更新潛能所需之癌症幹細胞龕中。 蛋白質 AHR、ASPM、ATAD2、CCNB1、CCND2、 CCNE2 、CDK1(CDC2) 、CEACAM1 、CEACAM5 、 CEACAM6、CEACAM6、COL6A3、EPHA2、ERBB2、 ERBB3、F2R、FAP、HIF1A、HMMR、HSP90B1、 IGF2BP3、ITGB4、KIF11、KIF2C、KRAS、LAMC2、 • 76- 154845.doc 201200594 LCN2、LMNB1、MET、MMP11、MMP3、MST1R、 MUC6、NCAPG、NUF2、OLFM4、PBK、PPAP2C、 PROM1、PTK2、TMPRSS4、TPX2、TSPAN1 及 WNT5A在 腫瘤中之過量表現顯示與患者之晚期疾病階段及不良預後 相關。 因此,本發明提出了識別動物的方法,優選為可能有胃 癌的人類。在一實施方案中,該可能性確定為80%至 100%。一種此類方法包括確定來自受試動物腫瘤樣本中 的蛋白 MST1R、UCHL5、SMC4、NFYB、PPAP2C、 AVL9、UQCRB和MUC6中至少一種蛋白的水準。在一實施 方案中,樣本通過根治性手術獲得。在另一實施方案中, 樣本通過針刺活檢獲得。 當 MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB或MUC6測定的水準相對於同一標本的良性上皮細 胞中的測定水準上調20%或以上時,則該受試動物被確定 為可能有胃癌。 由 MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB和MUC6組成的基團的更多不同蛋白上調,則受 試動物有較高可能性確認為有胃癌。 在一實施方案中,MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB或MUC6水準在原位測定》在另 一實施方案中,MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB或MUC6水準在體外測定。在另 一實施方案中,MST1R、UCHL5、SMC4、NFYB、 I54845.doc -77- 201200594 PPAP2C、AVL9、UQCRB或MUC6水準在體内測定。在一 優選實施方案中,MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB或MUC6水準採用鐳射捕獲顯微 鏡結合免疫印跡法測定。 在一優選實施方案中,MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB 或 MUC6 水準採用 MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB或MUC6的特定抗體測定。在一優選實施方案中, MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB或MUC6水準以含引物的PCR方法測定,其中引 物為編碼 MST1R、UCHL5、SMC4、NFYB、PPAP2C、 AVL9、UQCRB或MUC6的mRNA的特定引物。在另一優選 實施方案中,MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB或MUC6水準以含引物的核苷酸 探針測定,其中探針為編碼 MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB 或 MUC6 的 mRNA 的特定 探針。在一此類實施方案中,MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB 或 MUC6 水準使用 Northern印跡法測定。在另一實施方案中,MST1R、 UCHL5、SMC4、NFYB、PPAP2C、AVL9、UQCRB 或 MUC6水準使用核糖核酸酶保護法測定。在其他實施方案 中,如酶聯免疫吸附法(ELISA)、放射性免疫測定(RIA)以 及Western印跡法等免疫學測試可能用於檢測體液樣本(如 血液、血清、痰液、尿液或腹腔液)中的MST1R、 154845.doc -78· ⑧ 201200594 UCHL5、SMC4、NFYB、PPAP2C、AVL9、UQCRB 和 MUC6多肽。檢體、組織樣本和細胞樣本(如卵巢、淋巴 結、卵巢表面上皮細胞碎屑、肺檢體,肝檢體、以及任何 含有細胞的液體樣本(如腹腔液、痰液和胸腔積液)均可通 過分解和/或溶解組織或細胞樣本以及使用免疫法(如: ELIS A、RIA或Western印跡法)檢測多肽而進行測試。此 類細胞或組織樣本也可使用基於核酸的方法分析,例如, 反轉錄聚合酶鏈反應(RT-PCR)擴增,Northern雜交,或槽 或點印跡法。為了可看到腫瘤細胞在組織樣本中的分佈, 可能分別使用保存樣本組織結構的診斷測試(例如,免疫 組織化學染色、RNA原位雜交或原位RT-PCR技術)來檢測 胃癌標誌物多肽或mRNA。對於腫瘤的體内定位,可能使 用影像學檢查,如磁共振成像(MRI),向受試者導入一種 與 MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB或MUC6多肽(尤其是局限於細胞表面的多肽)特異 性結合的抗體,其中所述抗體共價結合或以其他方式耦合 到順磁示蹤劑(或其他合適的可檢測基元,這取決於所使 用的影像技術);另外,未標記的腫瘤標誌物特異性抗體 的位置可使用與可檢測到的基元耦合的二抗檢測。 此外,本發明進一步提出了組成MST1R、UCHL5、 SMC4、NFYB、PPAP2C、AVL9、UQCRB 或 MUC6 多狀、 及其片段(包括功能性、蛋白裂解性和抗原性片段)的嵌合/ 融合蛋白/肽。 雜合分子的融合夥伴或片段提供了刺激CD4+ T細胞的適 154845.doc -79- 201200594 當表位。CD4+刺激表位為本領域所熟知、並包括破傷風類 毒素中確定的表位。在進一步優選的實施方案中,所述肽 為融合蛋白,尤其包含HLA-DR抗原相關不變鏈(Ii)的N-端 氨基酸。在一實施方案中,本發明的肽為一蛋白片段和另 一多肽部分(如果人體多肽部分含有一個多個發明的氨基 酸序列)的一種截短型人蛋白或融合蛋白。 本發明還包括 MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB 或 MUC6多肽的抗體,MST1R、 UCHL5、SMC4、NFYB、PPAP2C、AVL9、UQCRB 或 MUC6多肽組成的嵌合/融合蛋白的抗體,以及MST1R、 UCHL5、SMC4、NFYB、PPAP2C、AVL9、UQCRB 或 MUC6多肽片段(包括蛋白裂解性和抗原性片段)的抗體以 及組成這些片段的嵌合/融合蛋白/肽的抗體。此外,針對 癌症、特別是針對胃癌預後的這些抗體的使用方法也是本 發明的一部分。 本發明的抗體可為多克隆抗體、單克隆抗體和/或嵌合 抗體。產生本發明單克隆抗體的永生細胞株也是本發明的 一部分。 本領域的普通技術人會明白,在某些情況下,作為腫瘤 標誌物基因的 MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB或MUC6較高表達提示患有胃癌 的受試者預後較差。例如,MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB 或 MUC6較高水準的表達 可能提示腫瘤體積相對較大、腫瘤負荷較高(例如,更多 154845.doc -80 - 201200594 轉移)、或者腫瘤表型惡性程度相對較高。 由 MST1R、UCHL5、SMC4、NFYB、PPAP2C、 AVL9、UQCRB或MUC6組成基團的不同蛋白過量表達越 高,預後越差。 本發明的診斷和預後方法涉及使用已知的方法,例如: 基於抗體的方法,以檢測 MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB和 MUC6 多肽,以及核酸 雜交和/或基於擴增的方法來檢測 MST1R、UCHL5、 SMC4、NFYB、PPAP2C、AVL9、UQCRB 和 MUC6 的 mRNA 〇 此外,由於腫瘤細胞快速破壞往往導致自身抗體產生, 本發明的胃癌腫瘤標誌物可用於血清學檢測(例如,受試 者血清的ELISA測試),以檢測受試者中抗MST1R、 UCHL5、SMC4 ' NFYB、PPAP2C、AVL9、UQCRB 或 MUC6 的自身抗體。MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB和MUC6多肽特異性抗體的水準 比對照樣本至少約高3倍(優選為至少5倍或7倍,最優選為 至少10倍或20倍),該水準提示有胃癌。 細胞表面局部、細胞内、和分泌的MST1R、UCHL5、 SMC4、NFYB、PPAP2C、AVL9、UQCRB和 MUC6 多肽都 可能用於活檢分析,例如,組織或細胞樣本(包括諸如從 腹腔液中獲得的液體樣本)以確定含有胃癌細胞的組織或 細胞檢體。檢體可作為完整的組織或整個細胞樣本進行分 析,組織或細胞樣本也可能按特定類型診斷測試所需被分 154845.doc -81 - 201200594 解和/或溶解。例如,檢體或樣本可能對MST1R、UCHL5、 SMC4、NFYB、PPAP2C、AVL9、UQCRB和 MUC6 多肽或 mRNA水準進行整個組織或整個細胞分析,方法為原位 法、免疫組織化學法、原位雜交mRNA法或原位RT-PCR。 技術人員知道如何處理組織或細胞進行多肽或mRNA水準 進行分析,使用方法為免疫方法(如ELISA、免疫印跡或等 效方法),或使用基於核酸的分析方法(如RT-PCR、 Northern雜交或槽或斑點印跡法)分析mRNA水準。 測量 MST1R、UCHL5 ' SMC4、NFYB、PPAP2C、 AVL9、UQCRB和MUC6表達水準的套件。 本發明提出了檢測作為受試者胃癌標誌物基因的 MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB和MUC6表達水準升高所用的套件。一種檢測胃癌 標誌物多肽的套件優選包含一種特異性結合選定的胃癌標 誌物多肽的抗體。一種檢測胃癌標誌物mRNA的套件最好 包含可特異性與 MST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB和 MUC6 mRNA雜交的一個或多 個核酸(例如,一個或多寡核苷酸引物或探針、DNA探 針、RNA探針、或產生RNA的探針範本)。 特別地,基於抗體的套件可用於檢測是否提呈、和/或 測量與抗體或其免疫反應性片段特異性結合的MST1R、 UCHL5、SMC4、NFYB、PPAP2C、AVL9、UQCRB 和 MUC6。該套件可包含與抗原反應的抗體以及檢測含抗原 的抗體的反應。該套件可為ELISA試劑盒,可包含對照 154845.doc -82 - ⑧ 201200594 (例如,指定量的特定胃癌標誌物多肽)、一抗和二抗(適當 時)、任何其他上文所述必需的試劑,如:可檢測基元、 酶底物和有色試劑。另外,診斷套件可為一般由本文所述 的成分和試劑組成的試劑盒。 基於核酸的套件可用於通過檢測和/或測量樣本中(如組 織或細胞檢體)中的BMST1R、UCHL5、SMC4、NFYB、 PPAP2C、AVL9、UQCRB 和 MUC6 的 mRNA,而檢測和/或 測量出 MST1R、UCHL5、SMC4、NFYB、PPAP2C、 AVL9、UQCRB和MUC6的表達水準。例如,檢測MST1R、 UCHL5、SMC4、NFYB、PPAP2C、AVL9、UQCRB 和 MUC6表達升高的RT-PCR套件優選為包含足夠的寡核苷 酸引物以將胃癌mRNA反轉錄為cDNA以及對胃癌標誌物 cDNA進行PCR擴增,還優選為包含對照 PCR範本分 子和引物以對量化進行適當的陰性和陽性對照以及内部對 照。本領域的普通技術人會明白如何選擇合適的引物以進 行反轉錄和PCR反應,以及合適的對照反應。該指導可 發現於,例如,F. Ausubel等所著的《Current Protocols in Molecular Biology》,New York,N.Y.,1997。RT-PCR的許 多突變體為本領域熟知。可將免疫毒素靶向傳遞至 MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB和MUC6,作為胃癌防治的治療性靶點。例如:一 種特異性結合細胞表面局限性MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB和 MUC6 多肽的抗體分子 可與放射性同位素或其他有毒化合物共價結合。給予受試 154845.doc 83· 201200594 者抗體共軛物以便該抗體與其同源胃癌多肽的結合導致治 療性化合物向胃癌細胞乾向傳遞,從而治療卵巢癌。 治療成分可以是毒素、放射性同位素、藥物、化學物質 或蛋白質(參見’例如,Bera et al.「Pharmacokinetics and antitumor activity of a bivalent disulfide-stabilized Fv immunotoxin with improved antigen binding to erbB2」Wolff et al., 2001), and induced by Wnt or β-catenin signaling (Chesire et al., 2004). AHR overexpression is found in many cancers including gastric cancer, in which AHR is associated with frequent CYP1A1 performance (Ma et al, 2006). The expression and nuclear translocation of AHR in gastric cancer is higher than in normal tissues, and its expression gradually increases during carcinogenesis (Peng et al., 2009a). AhR pathway activation may enhance gastric cancer cell invasiveness by c-Jun-dependent induction of MMP-9 (Peng et al, 2009b). In a mouse model, the expression of a constitutively active mutant of aryl hydrocarbon receptor (CA-AhR) leads to gastric tumorigenesis, which is associated with increased mortality (Andersson et al., 2002; Kuznetsov et al., 2005). The function of AhR in cancer appears to be unclear, as some studies have also indicated that it has tumor suppressor activity (Gluschnaider et al., 2010) (Fan et al., 2010). Hyaluronic Acid Mediated Exercise Receptor (RHAMM) (HMMR) HMMR can be present on the cell surface, which binds to hyaluronic acid (HA) on the cell surface and interacts with the HA receptor CD44. This interaction plays a role in processes such as cell movement, traumatic soreness and invasion (Gares and Pilarski, 2000). Within the cell, HMMR is associated with the cytoskeleton, microtubules, central body, and mitotic spindle and plays a role in controlling the integrity of the mitotic spindle. HMMR is overexpressed in several cancer tissues (Sohr and Engeland, 2008). HA is presumed to protect cancer cells from immune attacks. Serum HA is usually increased in metastatic patients (Delpech et al., 1997). HMMR has been identified as a promising tumor-associated antigen and a prognostic factor in AML and CLL. Peptides derived from HMMR have been used in anti-leukemia vaccines. In vitro immunogenicity of HMMR-001 was also tested but not for vaccination with 154845.doc 71 201200594 (Tzankov et al., 2011) (Greiner et al., 2010; Schmitt et al., 2008; Tabarkiewicz and Giannopoulos, 2010). (Greiner et al., 2005). HMMR overexpression is also found in several other cancers, which are often associated with poor prognosis. HMMR is also overexpressed in gastric cancer, which is usually associated with CD44 and is presumed to promote invasion and metastasis (Li et al. 1999) (Li et al., 2000a) (Li et al., 2000b). TPX2 microtubule-associated homolog (with Xenopus laevis) (τρχ2) TPRX2 is a proliferation-associated protein expressed in the s, G(2), and sputum phases of the cell cycle and considered to be a proliferative target (Cordes et al. 2010). Normal microtubule nucleation requires TPRX2, for example for assembly of a mitotic spindle. TPX2 recruits and activates Aurora kinase A (Bird and Hyman, 2008; Moss et al. 2009). The acidification of τρχ2 with Polo-like kinase 1 increases its ability to activate Aurora kinase A (Eckerdt et al., 2009). TPX2 is overexpressed in many tumor types and is often co-expressed with Aurora kinase _A (Asteriti et al., 2010). Examples of overexpression of TPX2 that have been found (often associated with poor prognosis or later) are meningioma (Stuart et al., 2010), lung cancer (Kadara et al., 2009) (Lin et al., 2006; Ma et al., 2006) (Manda Et al '1999) and hepatocellular carcinoma (shigeishi et al, 2009b) (Satow et al, 2010) (Wang et al, 2003). Thus the invention relates to a peptide comprising a sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 95 or having at least 80% homology to SEQ ID NO: 1 to SEQ ID NO: 95 A variant, or a variant thereof that induces a cross-reaction of a tau cell with the peptide, wherein the peptide is not a full length polypeptide. The invention further relates to a peptide comprising a sequence selected from the group consisting of SEQ ID NO: 1 to 154845. doc - 72-8 201200594 SEQ ID NO: 95, or having SEQ ID NO: 1 to SEQ ID NO: 95 A variant of at least 80% homology, wherein the peptide or variant has a total length of from 8 to 100, preferably from 8 to 30, and most preferably from 8 to 14 amino acids. The invention further relates to the previously described peptides which are capable of binding to a class I or a class II human major histocompatibility complex (MHC) molecule. The invention further relates to the previously described peptide, wherein the peptide consists or consists essentially of the amino acid sequence of SEQ ID No. 1 to SEQ ID No. 95. The invention further relates to a peptide as described above, wherein the peptide is modified and/or comprises a non-peptide bond. The invention further relates to a peptide as described above, wherein the peptide is a fusion protein, in particular an N-terminal amino acid comprising an HLA-DR antigen-associated invariant chain (Π). The invention further relates to a nucleic acid encoding a peptide as described above, provided that the peptide is not a complete human protein. The invention further relates to a nucleic acid as previously described which is DNA, cDNA, PNA, CAN, RNA, and possibly a combination thereof. The invention further relates to an expression vector capable of expressing a nucleic acid as previously described. The invention further relates to a previously described peptide, a previously described nucleic acid or a previously described expression vector for use in a medicament. The invention further relates to a host cell comprising the aforementioned nucleic acid or the aforementioned expression vector. The invention further relates to said host fine 154845.doc-73-201200594 cells which are antigen presenting cells. The invention further relates to said host cell, wherein the antigen presenting cell is a dendritic cell. The invention further relates to a method of formulating a peptide comprising culturing the host cell and isolating the peptide from the host cell or a culture medium thereof. The invention further relates to a method for the preparation of activated cytotoxic tau lymphocytes (CTL) in vitro. The method comprises in vitro linking a CTL to a human I or a class II MHC molecule carrying an antigen. These molecules are in a suitable antigen presenting cell. The surface is expressed for a sufficient period of time to initiate CTL in an antigen-specific manner, wherein the antigen is any one of the peptides. The invention further relates to the method wherein the antigen is loaded into an I or steroid MHC molecule expressed on the surface of a suitable antigen presenting cell by binding to a sufficient amount of antigen containing the antigen-presenting cell. The invention further relates to the method, wherein the antigen presenting cell comprises an expression vector which is capable of expressing a peptide comprising hydrazine ID NO 1 to SEQ ID NO 33 or the variant amino acid sequence. The invention further relates to a cytotoxic T lymphocyte (CTL) prepared by the method, which selectively recognizes a cell which aberrantly expresses a polypeptide comprising one of said amino acid sequences. The invention further relates to a method of killing a target cell of a patient, wherein the target cell of the patient aberrantly expresses a polypeptide comprising any of the amino acid sequences, the method comprising administering to the patient an effective amount of the above-described toxic T lymphocytes (CTL). The invention further relates to any of said peptides, said one nucleic acid, said 154845.doc - 74 - 8 201200594 expression vectors, said one cell, said one acting as a medicament or a pharmaceutical agent for initiating cytotoxic tau lymphocytes use. The invention further relates to a method of use wherein the medicament is a vaccine. The invention further relates to a method of use wherein the agent has anticancer activity. The invention further relates to the use, wherein the cancer cell is a gastric cancer cell, a gastrointestinal cancer cell, a colorectal cancer cell, a pancreatic cancer cell, a lung cancer cell or a renal cancer cell. The invention further relates to a particular marker protein useful as a prognosis for gastric cancer. Furthermore, the invention relates to these new targets for the treatment of cancer. As provided herein, the literature has described ABL1, ADAM10, AHR, CCND2, CDC6, CDK1, CEACAM1, CEACAM5, CEACAM6, CEACAM6, COL6A3, compared to normal stomach and other living tissues (eg liver, kidney, heart). EIF2S3, LOC255308, EPHA2, ERBB2, ERBB3, F2R, FAP, HMMR, HSP90B1, IGF2BP3, ITGB4, KIF2C, KRAS, LAMC2, LCN2, MET, MMP11, MMP12, MMP3, MST1R, NUF2, OLFM4, PROM1, RRM2, THY1 Proteins encoded by TMPRSS4, TOP2A, TSPAN1, WNT5A, HIF1A and PTK2 are overexpressed in gastric cancer. From ABL1, ADAM10, ADAM8, AHR, ASPM, ATAD2, CCDC88A, CCNB1, CCND2, CCNE2, CDC6, CDK1, CEACAM1, CEACAM5, CEACAM6, CEACAM6, I54845.doc -75· 201200594 CLCN3, COL6A3, EPHA2, ERBB2, ERBB3, F2R, FAP, HIF1A, HMMR, HSP90B1, IGF2BP3, IQGAP3, ITGB4, KIF11, KIF2C, KRAS, LAMC2, LCN2, MET, MMP11, MMP3, MST1R, MUC6, NCAPG, NFYB, NUF2, OLFM4, PBK, PLK4, PPAP2C, Proteins encoded by PROM1, PTK2, RRM2, SIAH2, THY1, TOP2A, TPX2, TSPAN1, TSPAN8, UBE2S, UCHL5, and WNT5A have been shown to play an important role in tumor formation because they are involved in malignant transformation, cell growth, proliferation, and angiogenesis. Or invade normal tissues. Similarly, for proteins encoded by DNAJC10, EIF2S3, EIF3L, POLD3, PSMC2, PSMD14, and TMPRSS4, there is also evidence for cancer-related functions. Proteins encoded by PROM1, WNT5A, SMC4, PPAP2C, GPR38, OLFM4, and THY1 are shown to be highly expressed and/or play an important role in stem cells and/or cancer stem cells. PROM1 is considered to be a marker for gastric cancer stem cells, but the data is still controversial. Cancer stem cells are a subset of tumor cells that have the self-renewal potential needed to maintain tumor growth. These cells reside in a special and highly organized structure, the so-called cancer stem cell sputum required to maintain the self-renewal potential of cancer stem cells. Proteins AHR, ASPM, ATAD2, CCNB1, CCND2, CCNE2, CDK1 (CDC2), CEACAM1, CEACAM5, CEACAM6, CEACAM6, COL6A3, EPHA2, ERBB2, ERBB3, F2R, FAP, HIF1A, HMMR, HSP90B1, IGF2BP3, ITGB4, KIF11, KIF2C, KRAS, LAMC2, • 76-154845.doc 201200594 LCN2, LMNB1, MET, MMP11, MMP3, MST1R, MUC6, NCAPG, NUF2, OLFM4, PBK, PPAP2C, PROM1, PTK2, TMPRSS4, TPX2, TSPAN1 and WNT5A in tumor Excessive performance in the show is associated with advanced disease stages and poor prognosis in patients. Accordingly, the present invention proposes a method of identifying an animal, preferably a human who may have gastric cancer. In one embodiment, the likelihood is determined to be 80% to 100%. One such method comprises determining the level of at least one of the proteins MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 from a tumor sample of a subject animal. In one embodiment, the sample is obtained by radical surgery. In another embodiment, the sample is obtained by needle biopsy. When the level of measurement by MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 is increased by 20% or more relative to the level of measurement in benign epithelial cells of the same specimen, the test animal is determined to have gastric cancer. The more different proteins of the group consisting of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 are up-regulated, and the test animals have a higher probability of being confirmed as having gastric cancer. In one embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, or MUC6 levels are determined in situ. In another embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, or MUC6 levels In vitro assay. In another embodiment, the MST1R, UCHL5, SMC4, NFYB, I54845.doc-77-201200594 PPAP2C, AVL9, UQCRB or MUC6 levels are determined in vivo. In a preferred embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 levels are determined by laser capture microscopy combined with immunoblotting. In a preferred embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 levels are determined using specific antibodies to MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6. In a preferred embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 levels are determined by a primer-containing PCR method in which the primers encode MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6. Specific primers for mRNA. In another preferred embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 levels are determined by primer-containing nucleotide probes, wherein the probes encode MST1R, UCHL5, SMC4, NFYB, PPAP2C, Specific probe for mRNA for AVL9, UQCRB or MUC6. In one such embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 levels are determined using Northern blotting. In another embodiment, the MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 levels are determined using a ribonuclease protection assay. In other embodiments, immunological tests such as enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and Western blotting may be used to detect body fluid samples (eg, blood, serum, sputum, urine, or peritoneal fluid). MST1R, 154845.doc -78· 8 201200594 UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 polypeptides. Samples, tissue samples, and cell samples (eg, ovary, lymph nodes, ovarian surface epithelial cell debris, lung samples, liver samples, and any liquid samples containing cells (eg, peritoneal fluid, sputum, and pleural effusion) Testing by decomposing and/or dissolving tissue or cell samples and detecting the polypeptide using immunoassays (eg, ELIS A, RIA, or Western blotting). Such cells or tissue samples can also be analyzed using nucleic acid-based methods, eg, Transcriptional polymerase chain reaction (RT-PCR) amplification, Northern hybridization, or trough or dot blotting. In order to see the distribution of tumor cells in tissue samples, diagnostic tests that preserve the tissue structure of the sample may be used separately (eg, immunization) Histochemical staining, RNA in situ hybridization, or in situ RT-PCR techniques are used to detect gastric cancer marker polypeptides or mRNA. For in vivo localization of tumors, imaging studies, such as magnetic resonance imaging (MRI), may be used Introduce a specific binding to MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 polypeptides (especially peptides restricted to the cell surface) An antibody, wherein the antibody is covalently bound or otherwise coupled to a paramagnetic tracer (or other suitable detectable motif, depending on the imaging technique used); in addition, unlabeled tumor marker specificity The position of the antibody can be detected using a secondary antibody coupled to a detectable motif. Furthermore, the present invention further provides for the composition of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 polymorphism, and fragments thereof (including functions) Chimeric/fusion proteins/peptides of sexual, proteolytic and antigenic fragments. Fusion partners or fragments of hybrid molecules provide suitable stimulating CD4+ T cells. 154845.doc -79-201200594 when epitope. CD4+ stimulating epitope It is well known in the art and includes epitopes identified in tetanus toxoid. In a further preferred embodiment, the peptide is a fusion protein, in particular comprising an N-terminal amino acid of the HLA-DR antigen-associated invariant chain (Ii) In one embodiment, the peptide of the invention is a truncated version of a protein fragment and another polypeptide portion (if the human polypeptide portion contains a plurality of inventive amino acid sequences) Protein or fusion protein. The invention also includes an antibody to MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 polypeptide, chimeric/fusion of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 polypeptides. Antibodies to proteins, as well as antibodies to MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 polypeptide fragments (including proteolytic and antigenic fragments) and antibodies to the chimeric/fusion proteins/peptides of these fragments. Furthermore, the use of these antibodies against cancer, particularly against the prognosis of gastric cancer, is also part of the present invention. The antibody of the present invention may be a polyclonal antibody, a monoclonal antibody, and/or a chimeric antibody. An immortalized cell line that produces a monoclonal antibody of the invention is also part of the invention. One of ordinary skill in the art will appreciate that, in some instances, higher expression of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, or MUC6 as a tumor marker gene suggests that subjects with gastric cancer have a poor prognosis. For example, higher levels of expression of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, or MUC6 may indicate a relatively large tumor volume and a higher tumor burden (eg, more 154845.doc -80 - 201200594 metastasis), or The degree of malignancy of the tumor is relatively high. The higher the overexpression of different proteins consisting of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6, the worse the prognosis. The diagnostic and prognostic methods of the invention involve the use of known methods, for example: antibody-based methods to detect MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 polypeptides, as well as nucleic acid hybridization and/or amplification-based Methods for detecting mRNAs of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 In addition, since rapid destruction of tumor cells often leads to autoantibody production, the gastric cancer tumor markers of the present invention can be used for serological detection (for example, An ELISA test of the tester's serum) to detect autoantibodies against MST1R, UCHL5, SMC4 'NFYB, PPAP2C, AVL9, UQCRB or MUC6 in the subject. The levels of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 polypeptide-specific antibodies are at least about 3 times higher (preferably at least 5 or 7 times, most preferably at least 10 or 20 times), compared to the control sample, This level suggests gastric cancer. Local, intracellular, and secreted MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, and MUC6 polypeptides may be used for biopsy analysis, eg, tissue or cell samples (including, for example, liquid samples obtained from peritoneal fluid) To determine a tissue or cell sample containing gastric cancer cells. The specimen can be analyzed as a complete tissue or whole cell sample, and the tissue or cell sample may also be classified and/or dissolved according to the type of diagnostic test required. For example, a sample or sample may be analyzed for whole tissue or whole cells of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, and MUC6 polypeptides or mRNA levels by in situ, immunohistochemistry, in situ hybridization of mRNA. Method or in situ RT-PCR. The skilled person knows how to handle tissue or cell analysis for peptide or mRNA levels, using immunological methods (such as ELISA, immunoblotting or equivalent methods), or using nucleic acid-based assays (such as RT-PCR, Northern hybridization or troughing). Or dot blotting) analysis of mRNA levels. Kit for measuring expression levels of MST1R, UCHL5 'SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6. The present invention proposes a kit for detecting an increase in the expression levels of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 as a gastric cancer marker gene in a subject. A kit for detecting a gastric cancer marker polypeptide preferably comprises an antibody that specifically binds to a selected gastric cancer marker polypeptide. A kit for detecting gastric cancer marker mRNA preferably comprises one or more nucleic acids that specifically hybridize to MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 mRNA (eg, one or more oligonucleotide primers or probes) Needles, DNA probes, RNA probes, or probe templates for RNA production). In particular, antibody-based kits can be used to detect the presentation, and/or measurement of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 that specifically bind to antibodies or immunoreactive fragments thereof. The kit can include an antibody that reacts with an antigen and a reaction that detects an antigen-containing antibody. The kit can be an ELISA kit and can contain a control 154845.doc -82 - 8 201200594 (eg, a specified amount of a particular gastric cancer marker polypeptide), a primary antibody and a secondary antibody (where appropriate), any other necessary as described above. Reagents such as: detectable elements, enzyme substrates, and colored reagents. Additionally, the diagnostic kit can be a kit that generally consists of the components and reagents described herein. A nucleic acid-based kit can be used to detect and/or measure MST1R by detecting and/or measuring mRNAs of BMST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, and MUC6 in a sample (eg, tissue or cell). Expression levels of UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6. For example, an RT-PCR kit for detecting increased expression of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, and MUC6 preferably comprises sufficient oligonucleotide primers to reverse transcribe gastric cancer mRNA into cDNA and cDNA for gastric cancer markers PCR amplification is also performed, preferably also containing control PCR template molecules and primers to quantify appropriate negative and positive controls as well as internal controls. One of ordinary skill in the art will understand how to select suitable primers for reverse transcription and PCR reactions, as well as suitable control reactions. This guidance can be found, for example, in "Current Protocols in Molecular Biology" by F. Ausubel et al., New York, N.Y., 1997. Many mutants of RT-PCR are well known in the art. The immunotoxin can be targeted to MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 as therapeutic targets for gastric cancer prevention and treatment. For example, an antibody molecule that specifically binds to cell surface-restricted MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB, and MUC6 polypeptides can be covalently bound to a radioisotope or other toxic compound. Administration of the antibody 154845.doc 83·201200594 The antibody conjugate is such that binding of the antibody to its cognate gastric cancer polypeptide results in the dry delivery of the therapeutic compound to the gastric cancer cell, thereby treating ovarian cancer. The therapeutic component can be a toxin, a radioisotope, a drug, a chemical or a protein (see, for example, Bera et al. "Pharmacokinetics and antitumor activity of a bivalent disulfide-stabilized Fv immunotoxin with improved antigen binding to erbB2"

Cancer Res.59:4018-4022(1999))·例如,該抗體可鏈結或 共價結合至一種細菌毒素(如:白喉毒素、綠膿桿菌外毒 素A、霍亂毒素)或植物毒素(如蓖麻毒素),以將毒素靶 向傳遞至表達MST1R、UCHL5 ' SMC4、NFYB、PPAP2C、 AVL9、UQCRB和MUC6的細胞。這種免疫毒素可被傳遞至 細胞,並且一旦與細胞表面局限性胃癌標誌物多肽結合, 共軛至胃癌標誌物特異性抗體的毒素將被傳遞至該細胞。 此外,對於任何含有特定配體(例如:與細胞表面局限 f生蛋白結合的配體)的任何MST1R、UCiiL5、SMC4、 NFYB、PPamc、AVL9、UQCRB* Muc6 多肽該配體均 可取代抗體以將毒性化合物把向作用於胃癌細胞,如上文 所述。 本,中術語「抗體」為廣義上的定義,既包括多克隆也 。括單克隆抗體。除了完整的免疫球蛋白分子,「抗體」 這一術語還包括這些免疫球蛋白分子和人源化免疫球蛋白 分子的片段或聚合物,只要它們表現出本文所述的任何期 望屬性(例如’胃癌標諸物多肽的特異性結合、將毒素傳 遞給胃癌標諸物基因表達水準增加時的胃癌細胞和/或胃 154845.doc -84- 201200594 癌標誌、物多肽的活性)。 只要有可能,本發明的抗體可從商業來源購買。本發明 的抗體也可能使用已知的方法制得。技術人員會瞭解全長 胃癌標誌物多肽或其片段可用千创I 士 & n。^ 门t又』用卞i備本發明的抗體。用於 產生本發明抗體的多肽可部分戋全 I刀為王4地由天然源經純化而 得’也可利用重組DNA技術生產。例如,編碼MST1R、 UCHL5、SMC4、NFYB、ppAp2c、飢9、uqcrb 和 MUC6多肽的eDNA或其中-個片段,可在原核細胞中 (如:細菌)或真核細胞(如:酵母、昆蟲或哺乳動物細胞) 中表達,之後,可純化重組蛋白,並用於產生一種特異性 結合用於產生該抗體的胃癌標誌物多肽的單克隆或多克隆 抗體製劑。 本領域的技術人員會明白’兩種或兩種以上不同集合的 單克隆抗體或多克隆抗體能最大限度地增加獲得一種含預 期用途所需的特異性和親和力(例如,ELISA法、免疫組 織化學、體内成像、免疫毒素療法)的抗體的可能性。根 據抗體的用途,用已知的方法對其期望活性進行測試(例 如,ELISA法、免疫組織化學、免疫治療等;要獲取產 生和測試抗體的進一步指導,請參閱,例如,Harlow andCancer Res. 59:4018-4022 (1999)) · For example, the antibody may be linked or covalently bound to a bacterial toxin (eg, diphtheria toxin, Pseudomonas aeruginosa exotoxin A, cholera toxin) or a plant toxin (eg 蓖Toxin) to target the delivery of toxins to cells expressing MST1R, UCHL5 'SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6. This immunotoxin can be delivered to the cell, and once bound to a cell surface localized gastric cancer marker polypeptide, a toxin conjugated to a gastric cancer marker-specific antibody will be delivered to the cell. Furthermore, for any MST1R, UCiiL5, SMC4, NFYB, PPamc, AVL9, UQCRB* Muc6 polypeptide containing a specific ligand (eg, a ligand that binds to a cell surface-deficient f-protein), the ligand can be substituted for the antibody to Toxic compounds act on gastric cancer cells as described above. The term "antibody" in this context is defined broadly and includes both polyclonal and polyclonal. Includes monoclonal antibodies. In addition to intact immunoglobulin molecules, the term "antibody" also includes fragments or polymers of these immunoglobulin molecules and humanized immunoglobulin molecules, as long as they exhibit any of the desired properties described herein (eg, 'gastric cancer Specific binding of the polypeptides, transfer of the toxin to gastric cancer cells and/or gastric 154845.doc-84-201200594 cancer marker, activity of the polypeptide when the expression level of the gastric cancer marker gene is increased. Whenever possible, the antibodies of the invention can be purchased from commercial sources. The antibodies of the invention may also be prepared using known methods. The skilled person will know that the full-length gastric cancer marker polypeptide or fragment thereof can be obtained from Thousands of I & N. ^ The door t is further prepared by using the antibody of the present invention. The polypeptide used to produce the antibody of the present invention can be partially purified from a natural source, and can also be produced by recombinant DNA techniques. For example, eDNA or one of the fragments encoding the MST1R, UCHL5, SMC4, NFYB, ppAp2c, hunger 9, uqcrb and MUC6 polypeptides can be in prokaryotic cells (eg bacteria) or eukaryotic cells (eg yeast, insect or lactation) Expression in animal cells), after which the recombinant protein can be purified and used to produce a monoclonal or polyclonal antibody preparation that specifically binds to a gastric cancer marker polypeptide used to produce the antibody. Those skilled in the art will appreciate that 'two or more different sets of monoclonal or polyclonal antibodies maximize the specificity and affinity required to achieve a desired use (eg, ELISA, immunohistochemistry) , the possibility of antibodies in vivo imaging, immunotoxin therapy). Depending on the use of the antibody, its desired activity is tested by known methods (e.g., ELISA, immunohistochemistry, immunotherapy, etc.; for further guidance on the production and testing of antibodies, see, for example, Harlow and

Lane, Antibodies:A Laboratory Manual, Cold Spring HarborLane, Antibodies:A Laboratory Manual, Cold Spring Harbor

Laboratory Press, Cold Spring Harbor,N.Y.,1988)。例如, 該抗體可用ELISA法、免疫印跡法、免疫組織化學染色 福馬林固定的胃癌樣本或冰;東的組織切片進行檢測。在初 次體外表徵後,用於治療或體内診斷用途的抗體根據已知 154845.doc -85- 201200594 的臨床測試方法進行檢測β 此處使用的術語「單克隆抗體」系指從大量同質抗體中 獲得的一種抗體’即,由相同的抗體組成的抗體群,但可 能少量提呈的自然突變除外^此處所述的單克隆抗體具體 包括「嵌合」抗體,其中一部分重鏈和/或輕鏈與從特定 物種中獲得的抗體或屬於特定抗體類型和分類型抗體的相 應序列相同(同質)’同時,剩餘鏈與從其他物種中獲得的 抗體或屬於特定抗體類型和子類型抗體的相應序列以及這 些抗體的片段相同(同質),只要他們表現出預期的拮抗活 性(美國4816567號專利)。 本發明的單克隆抗體可能使用雜交瘤方法制得。在雜交 瘤方法中,老鼠或其他適當的宿主動物,通常用免疫製劑 以引發產生或能產生將特異性結合至免疫製劑的抗體。或 者,淋巴細胞可在體外進行免疫。 單克隆抗體也可由DNA重組方法制得,如:美國 4816567號專利所述。編碼本發明單克隆抗體的DNA可很 容易地使用傳統程序進行分離和測序(例如:通過使用能 與編碼鼠抗體重鏈和輕鏈的基因特異性結合的寡核皆酸探 針)。 體外方法也適用於製備單價抗體。抗體消化以產生抗體 的片段’尤其是Fab片段’可以通過使用本領域已知的常 規技術完成。例如’可以通過使用木瓜蛋白酶完成消化。 木瓜蛋白酶消化的例子在1994年12月22日公佈的W0 94/29348和美國4342566號專利中有描述。抗體的木瓜蛋 -86 - 154845.doc ⑧ 201200594 白酶消化通常產生兩種相同的抗原結合性片段,稱為㈣ 片奴(每個片段都有一個抗原結合點)和殘餘Fe片段。胃蛋 白酶處理產生一個片段,它有兩個抗原結合位點,並仍具 有交聯抗原的能力。 抗體片段,不論其是否附著於其他序列,均可包括特定 區域或特定氨基酸殘基的插入、刪除、替換、或其他選擇 性修飾,但前提是,片段的活性與非修飾的抗體或抗體片 k相比Λ有顯著的改變或損害。這些修飾可提供一些額外 的屬性,如:刪除/添加可與二硫鍵結合的氨基酸,以增 加其生物哥命、改變其分泌特性等。在任何情況下,抗體 片段必須擁有生物活性的特性,如:結合活性、調節結合 域的結合力等。抗體的功能性或活性區域可通過蛋白特定 區域的基因突變、隨後表達和測試所表達的多肽進行確 定。這些方法為本行業技術人員所熟知,可包括編碼抗體 片段的核酸的特定位點基因突變。 本發明的抗體可進一步包括人源化抗體或人抗體。非人 (如:鼠)抗體的人源化形式為嵌合抗體免疫球蛋白、免疫 球蛋白鍵或其片段(如:Fv、Fab、Fab,或抗體的其他抗原 結合序列)’其中包含從非人免疫球蛋白中獲得的最小序 列。人源化抗體包括人免疫球蛋白(受體抗體),其中來自 党體互補決定區(CDR)的殘基被來自非人物種(供體抗 體)(如具有與其特異性、親和力和能力的小鼠、大鼠或兔 子)CDR的殘基取代。在某些情況下,人類免疫球蛋白的 Fv框架(FR)殘基被相應的非人殘基取代。人源化抗體可 154845.doc •87· 201200594 能遺勺 :匕既非受體抗體、也非輸入cDR或框架序列中發現 、戔土 般來說,人源化抗體將包括幾乎所有的至少一 吊為一個可變域,其中,全部或幾乎全部的CDR區 域句對應於非人免疫球蛋白的區域並且全部或幾乎全部的 °°域句為人免疫球蛋白相同序列的區域。理想情況是, 人源化抗體還將包括至少免疫球蛋白恒定區(Fc)的一部 刀通常疋人免疫球蛋白的恒定區的一部分。 人源化非人抗體的方法為本行業所熟知。一般來說人 源化抗體具·有一個或多個從非人源頭引入的氨基酸殘基。 這些非人氨基酸殘基往往被稱為「輸入」殘基,通常從 輸入」可變域中獲得。人源化基本上可以通過將齧齒動 物CDR或CDR序列取代為相應的人抗體序列而完成。因 此’這種「人源化」抗體為嵌合抗體(美國16567號專 利),其中大大少於完整的人可變域被來自於非人物種的 相應序列取代。在實踐中,人源化抗體通常為人抗體,其 中有些CDR殘基以及可能的一些1?11殘基被來自齧齒動物抗 體中的類似位點的殘基取代。 可使用免疫後在内源性免疫球蛋白產生缺失時能產生完 整人抗體的轉基因動物(如:小鼠)。例如,它被描述為, 嵌合和種系突變小鼠中的抗體重鏈連接區域基因的純合性 缺失導致内源性抗體生成的完全抑制。在此種系變種小鼠 中人種系免疫球蛋白基因陣列的轉移在抗原挑戰後將導致 人抗體的生成。人抗體也可在噬菌體展示庫中產生。 本發明的抗體優選為通過藥用載體的形式給予受試者。 I54845.doc • 88 - 201200594 。藥用 。溶液 通常,在製劑中使用適量的藥用鹽,以使製劑等滲 載體的例子包括生理鹽水、林格氏液和葡萄糖溶液 的pH值優選為約5至8 ’更優選為約7至75。此外,載體還 包括緩釋製劑’如·’含有抗體的固體疏水性聚合物半透性 基質,其中基質為有形物品形式,如· ^ ^ . k八如.溥膜、脂質體或微 粒。本行業的技術人員熟知,茸此甚μ a Λ ^ 只元、力 呆些載體可能為更優選,取 決於例如’抗體的給藥途徑和濃度。 該抗體可通過注射(如:靜脈内、腹腔内、皮下、肌肉 内)或通過輸注等其他方法給予受試者、患者或細胞,確 保其以有效的形式傳輸到血液中。這些抗體也可以通過瘤 内或瘤周途徑給予’從而發揮局部和全身的治療作用。局 部或靜脈注射為優選。 抗體給藥的有效劑量和時間表可根據經驗確定,並且作 出此類決定屬本行業的技術範圍内。本行業的技術人員會 明白’必須給予的抗體劑量根據以下因素會有所不同,例 如.接嗳抗體的受試者、給藥途徑、使用的抗體以及其他 正在使用的藥物的特定類型。單獨使用的抗體的通常日劑 量可能為約1 pg/kg至最多100 mg/kg體重或更多’這取決 於上述因素。給予抗體治療胃癌後,治療抗體的療效可通 過技術人員熟知的不同方法評估。例如:接受治療的受試 者胃癌的大小、數量和/或分佈可使用標準腫瘤成像技術 進打監測。因治療而給予的抗體與不給予抗體時的病程相 比,可阻止腫瘤生長、導致腫瘤縮小、和/或阻止新腫瘤 的發展’這樣的抗體是一種有效治療胃癌的抗體。 154845.doc -89- 201200594 因為蛋白質 ABLl、ADAM10、AHR、CCND2、CDC6、 CDK1、CEACAM1、CEACAM5、CEACAM6、CEACAM6、 COL6A3、EIF2S3、LOC255308、EPHA2、ERBB2、 ERBB3、F2R、FAP、HMMR、HSP90B1、IGF2BP3、 ITGB4、KIF2C、KRAS、LAMC2、LCN2、MET、 MMP11、MMP12、MMP3、MST1R、NUF2、0LFM4、 PR0M1、RRM2、THY1、TMPRSS4、TOP2A、TSPAN1、 WNT5A、HIF1A及PTK2顯示與正常組織相比在胃癌組織 之至少一個子集中高度表現,所以抑制其表現或活性可併 入用於治療或預防胃癌之任何治療策略中。 反義治療的原理是基於這樣的假設:基因表達的序列特 異性抑制(通過轉錄或翻譯)可能是通過基因組DNA或 mRNA與互補反義種類之間的雜交而實現。這種雜交核 酸雙工的形成干擾目標腫瘤抗原編碼基因組DNA的轉錄, 或目標腫瘤抗原mRNA的加工/運輸/翻譯和/或穩定性。 反義核酸可用各種方法傳遞。例如,反義寡核苷酸或反 義RNA可以讓腫瘤細胞吸收的方式直接給予(例如,通過 靜脈注射)受試者。另外,編碼反義RNA(或RNA片段)的病 毒或質粒載體可導入體内細胞。還可通過有義序列誘發反 義效果;然而,表型變化的程度大不相同。通過有效的反 義治療誘導的表型變化可根據,例如,靶mRNA水準、靶 蛋白水準、和/或靶蛋白活性水準的變化進行評估。 在一個具體的實施例中,可通過直接向受試者給予反義 胃癌標誌物RNA而實現反義基因治療抑制胃癌標誌物的功 154845.doc •90· 201200594 能。腫瘤標誌物反義RNA可通過任何標準技術製造和分 離,但最容易的製造方法是在控制高效啟動子(例如,T7 啟動子)的情況下使用腫瘤標誌物反義cDNA經體外轉錄制 得。腫瘤標誌物反義RNA給到細胞可通過下文所述的核酸 直接給藥方法中的任何一種進行。 使用基因治療方法抑制MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB 或 MUC6 的可選策略涉及 抗-MST1R、UCHL5、SMC4、NFYB、PPAP2C、AVL9、 UQCRB 或 MUC6 抗體或抗-MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB 或 MUC6抗體一部分的細 胞内表達。例如,編碼特異性結合至MST1R、UCHL5、 SMC4、NFYB、PPAP2C、AVL9、UQCRB 或 MUC6 多肽和 抑制其生物活性的單克隆抗體的基因(或基因片段)其特異 性(例如:組織特異性或腫瘤特異性)基因調節序列在核酸 表達載體内被置於轉錄控制之下。然後,載體給予受試 者,以便被胃癌細胞或其他細胞吸收,之後,這些細胞分 泌抗-MST1R、UCHL5、SMC4、NFYB、PPAP2C、 AVL9、UQCRB 或 MUC6抗體而且阻滯 MST1R、UCHL5、 SMC4、NFYB、PPAP2C、AVL9、UQCRB和 MUC6 多狀的 生物活性。優選情況是,MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB和 MUC6 出現於胃癌細胞 的細胞外表面。 在上述的方法中,其中包括將外源性DNA給入受試者的 細胞並被其吸收(即,(即,基因轉導或轉染),本發明的核 154845.doc -91 201200594 酸可為裸露DNA形式或核酸可位於載體中將核酸傳遞至細 胞以抑制胃癌標誌物蛋白的表達。該載體可以是一種市售 的製劑,如腺病毒載體(量子生物技術公司,Laval, Quebec, Canada)。核酸或載體可通過多種機制傳遞至細胞 中。例如,可使用市售的脂質體,如:LIPOFECTIN、 LIPOFECTAMINE(GIBCO-25 BRL 公司,Gaithersburg, Md.)、SUPERFECT(Qiagen 公司,Hilden,Germany)和 TRANSFECTAM(Promega Biotec公司,Madison,Wis.)以及 根據本領域標準程序開發的其他脂質體,通過這些脂質體 傳遞。此外,本發明的核酸或載體可通過體内電穿孔傳 遞,該技術可從Genetronics公司(San Diego,Calif.)獲得, 以及通過 SONOPORATION機(ImaRx制藥公司,Tucson, Arizona)的方式傳遞。 例如,載體可通過病毒系統(如可包裹重組逆轉錄病毒 基因組的逆轉錄病毒載體系統)傳遞。重組逆轉錄病毒可 用於感染,從而傳遞至抑制MST1R、UCHL5、SMC4、 NFYB、PPAP2C、AVL9、UQCRB 或 MUC6表達的受感染細 胞反義核酸。當然,將改變的核酸準確地導入至哺乳動物 細胞細胞内並不限於使用逆轉錄病毒載體。對於這以程序 有廣泛的其他技術可供使用,包括使用腺病毒載體、腺相 關病毒(AAV)載體、慢病毒載體、假型逆轉錄病毒載體。 也可使用物理轉導技術,如脂質體傳遞和受體介導的及其 它内吞作用機制。本發明可與這些技術或其他常用基因轉 移方法中的任何方法配合使用。 154845.doc -92· ⑧ 201200594 該抗體也可用於體内診斷實驗。一般來說,抗體用放射 性核素標記(如:lnln、99Tc、14C、134、3H、32 p 咬 35 S) ’從而可免疫閃爍掃描法使膣瘤局限化。在一實施方案 中’其中的抗體或片段與兩個或兩個以上MST1R、 UCHL5、SMC4、NFYB、PPAP2C、AVL9、UQCRB 和 MUC6靶標的細胞外域結合,並且親和力值(Kd)低於1χΐ〇 μΜ。 診斷用抗體可通過各種影像學方法使用適合檢測的探針 進行標記。探針檢測方法包括但不限於,螢光、光、共聚 焦和電鏡方法;磁共振成像和光譜學技術;透視、電腦斷 層掃描和正電子發射斷層掃描。合適的探針包括但不限 於’螢光素、羅丹明、曙紅及其它榮光團、放射性同位 素、黃金、釓和其他稀土、順磁鐵、氟_18和其他正電子 發射放射性核素。此外’探針可能是雙功能或多功能的, 並且用一種以上的上述方法可進行檢測。這些抗體可用所 述的探針直接或間接進行標記。抗體探針的連接包括探 針的共價連接、將探針融合入抗體、以及螯合化合物的共 價連接從而結合探針、以及其他本行業熟知的方法。對於 免疫組織化學方法,疾病組織樣本可能是新鮮或冷减或可 能包埋於石躐中以及用福馬林等防腐劑固$。固定或包埋 的切片包括與標記一抗和二抗接觸的樣本,其中該抗體用 於原位檢測 MST1R、UCHL5、SMC4、ΝΡΥΒ、PPAP2C、 AVL9、UQCRB和MUC6蛋白的表達。 口此本發明提供一種狀,其包含選自SEQ m闕:工至 154845.doc -93- 201200594 SEQ ID NO: 95之群之序列’或其與SEQ ID NO: 1至SEQ ID NO: 95具有85%、較佳90%且更佳96%同源性之變異 體’或其誘導T細胞與該肽交又反應之變異體。 本發明所述的肽具有與主要組織相容性複合體(mhc)i 類分子結合的能力。 在本發明中,「同源性」一詞系指兩個氨基酸序列之間 的同一度’如肽或多肽序列。前文所述的「同源」是通過 將理想條件下調整的兩個序列與待比較序列進行比對後確 定的。此處,待比較序列可能在兩個序列的最佳對準中有 增加或刪除(例如’空隙等)。此類序列同源性可通過使用 ClustalW等演算法創建一個排列而進行計算。也可用使用 一般序列分析軟體,更具體地說,是Vect〇r NTI、 GENETYX或由公共資料庫提供的分析工具。 本領域技術人員能評估特定肽變體誘導的T細胞是否可 與該肽本身發生交又反應(Fong et al. 8809-14) ; (Appay et al. 1805-14; Colombetti et al. 2730-38; Zaremba et al. 4570-77)。 發明人用給定氨基酸序列的「變體」表示,一個或多個 氨基酸殘基等的側鏈通過被另一個天然氨基酸殘基的側鏈 或其他側鍵取代而發生改變’這樣,這種肽仍然能夠以含 有給定氨基酸序列SEQ ID NO: 1至33的肽大致同樣的方式 與HLA分子結合。例如,一種肽可能被修飾以便至少維持 (如果不提升的話)其能與HLA-A或-DR等合適MHC分子的 結合槽相互作用和結合,以及至少維持(如果不提升的話) I54845.doc • 94- 201200594 其能與啟動CTL的TCR結合。 隨後’ il些CTL可與細胞和殺傷細胞發生交又反應,這 些細胞表達多狀(其中包含本發明中定義的同源肽的天然 氨基酸序列)。正如科學文獻(Rammensee,Bachmann,andLaboratory Press, Cold Spring Harbor, N.Y., 1988). For example, the antibody can be detected by ELISA, immunoblotting, immunohistochemical staining of a formalin-fixed gastric cancer sample or ice; After initial in vitro characterization, antibodies for therapeutic or in vivo diagnostic use are tested according to the known clinical test method of 154845.doc -85-201200594. The term "monoclonal antibody" as used herein refers to a large number of homogeneous antibodies. An antibody obtained 'that is, a population of antibodies consisting of the same antibody, except for natural mutations that may be presented in small amounts. The monoclonal antibodies described herein specifically include "chimeric" antibodies, some of which are heavy and/or light. A strand is identical (homogenous) to an antibody obtained from a particular species or to a corresponding antibody of a particular antibody type and type of antibody', while the remaining strand is associated with an antibody obtained from another species or a corresponding sequence of antibodies belonging to a particular antibody type and subtype and Fragments of these antibodies are identical (homogeneous) as long as they exhibit the expected antagonistic activity (US Pat. No. 4,816,567). The monoclonal antibodies of the invention may be made using the hybridoma method. In the hybridoma method, a mouse or other appropriate host animal, usually with an immunological preparation, elicits the production or production of an antibody that will specifically bind to the immunological preparation. Alternatively, lymphocytes can be immunized in vitro. Monoclonal antibodies can also be made by recombinant DNA methods, as described in U.S. Patent No. 4,816,567. The DNA encoding the monoclonal antibody of the present invention can be easily isolated and sequenced using conventional procedures (e.g., by using an oligonucleotide probe that specifically binds to a gene encoding a heavy chain and a light chain of a murine antibody). In vitro methods are also suitable for the preparation of monovalent antibodies. Fragments of antibodies to produce antibodies, particularly Fab fragments, can be accomplished using conventional techniques known in the art. For example, digestion can be accomplished by using papain. Examples of papain digestion are described in WO 94/29348 and U.S. Patent 4,342,566, issued December 22, 1994. The papaya egg of the antibody -86 - 154845.doc 8 201200594 White enzyme digestion usually produces two identical antigen-binding fragments, called (iv) slice slaves (each fragment has an antigen binding site) and residual Fe fragments. Pepsin treatment produces a fragment that has two antigen-binding sites and still has the ability to cross-link antigen. An antibody fragment, whether or not it is attached to another sequence, may include insertion, deletion, substitution, or other selective modification of a particular region or particular amino acid residue, provided that the activity of the fragment is unmodified or antibody sheet k Significant changes or damage compared to cockroaches. These modifications provide additional properties such as deletion/addition of amino acids that bind to disulfide bonds to increase their biological life and alter their secretory properties. In any case, the antibody fragment must possess biologically active properties such as binding activity, binding of the binding domain, and the like. The functional or active region of an antibody can be determined by gene mutations in a particular region of the protein, subsequent expression and testing of the expressed polypeptide. These methods are well known to those skilled in the art and may include mutations at specific site genes of nucleic acids encoding antibody fragments. The antibody of the present invention may further comprise a humanized antibody or a human antibody. Humanized forms of non-human (eg, murine) antibodies are chimeric antibody immunoglobulins, immunoglobulin bonds or fragments thereof (eg, Fv, Fab, Fab, or other antigen-binding sequences of antibodies) The smallest sequence obtained in human immunoglobulin. Humanized antibodies include human immunoglobulins (receptor antibodies) in which residues from the complementarity determining regions (CDRs) of the genus are derived from non-human species (donor antibodies) (eg, having a small specificity, affinity, and ability) The residues of the CDRs of the murine, rat or rabbit) are substituted. In some cases, the Fv framework (FR) residues of human immunoglobulins are replaced by corresponding non-human residues. Humanized antibody can be 154845.doc •87· 201200594 can be used as a spoon: not a receptor antibody, nor is it found in cDR or framework sequences, as well as earthworms, humanized antibodies will include almost all of at least one Hanging is a variable domain in which all or nearly all of the CDR region sentences correspond to regions of non-human immunoglobulin and all or nearly all of the regions are regions of the same sequence of human immunoglobulins. Ideally, the humanized antibody will also include at least a portion of the immunoglobulin constant region (Fc) that is normally part of the constant region of the human immunoglobulin. Methods for humanizing non-human antibodies are well known in the art. Generally, humanized antibodies have one or more amino acid residues introduced from a non-human source. These non-human amino acid residues are often referred to as "input" residues and are usually obtained from the input "variable domain". Humanization can be accomplished essentially by replacing the rodent CDR or CDR sequences with the corresponding human antibody sequences. Thus, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 16,567), in which much less than the intact human variable domain is replaced by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some 1-11 residues are substituted with residues from analogous sites in rodent antibodies. A transgenic animal (e.g., a mouse) capable of producing a complete human antibody when the endogenous immunoglobulin is deleted after immunization can be used. For example, it is described that homozygous deletion of the antibody heavy chain joining region gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. The transfer of the human germline immunoglobulin gene array in such a mutant mouse will result in the production of human antibodies following antigen challenge. Human antibodies can also be produced in phage display libraries. The antibody of the present invention is preferably administered to a subject in the form of a pharmaceutically acceptable carrier. I54845.doc • 88 - 201200594. Medicinal. Solution Generally, an appropriate amount of a pharmaceutically acceptable salt is used in the preparation such that the pH of the physiologically saline, Ringer's solution and the glucose solution of the preparation is preferably from about 5 to 8', more preferably from about 7 to about 75. Further, the carrier further comprises a sustained release preparation' such as a solid hydrophobic polymer semipermeable matrix containing an antibody, wherein the matrix is in the form of a tangible article such as a ruthenium film, a liposome or a microparticle. It is well known to those skilled in the art that it may be more preferred to use only a small amount of the carrier, depending on, for example, the route of administration and concentration of the antibody. The antibody can be administered to a subject, patient or cell by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular) or by other means such as infusion to ensure that it is delivered to the blood in an effective form. These antibodies can also be administered by intratumoral or peritumoral routes to exert a local and systemic therapeutic effect. Local or intravenous injection is preferred. The effective dosage and schedule of antibody administration can be determined empirically and it is within the skill of the art to make such determinations. Those skilled in the art will appreciate that the amount of antibody that must be administered will vary depending on factors such as the subject of the antibody, the route of administration, the antibody used, and the particular type of drug being used. The usual daily dose of the antibody used alone may range from about 1 pg/kg to at most 100 mg/kg body weight or more' depending on the above factors. After administration of an antibody to treat gastric cancer, the efficacy of the therapeutic antibody can be assessed by various methods well known to the skilled artisan. For example, the size, number, and/or distribution of gastric cancer in a subject undergoing treatment can be monitored using standard tumor imaging techniques. An antibody administered for treatment can prevent tumor growth, cause tumor shrinkage, and/or prevent the development of new tumors as compared with the course of administration of the antibody. Such an antibody is an antibody effective for treating gastric cancer. 154845.doc -89- 201200594 Because of proteins ABL1, ADAM10, AHR, CCND2, CDC6, CDK1, CEACAM1, CEACAM5, CEACAM6, CEACAM6, COL6A3, EIF2S3, LOC255308, EPHA2, ERBB2, ERBB3, F2R, FAP, HMMR, HSP90B1, IGF2BP3 , ITGB4, KIF2C, KRAS, LAMC2, LCN2, MET, MMP11, MMP12, MMP3, MST1R, NUF2, 0LFM4, PR0M1, RRM2, THY1, TMPRSS4, TOP2A, TSPAN1, WNT5A, HIF1A, and PTK2 show gastric cancer compared with normal tissues At least one subset of the tissue is highly expressed, so inhibition of its performance or activity can be incorporated into any therapeutic strategy for treating or preventing gastric cancer. The principle of antisense therapy is based on the hypothesis that sequence specific inhibition of gene expression (by transcription or translation) may be achieved by hybridization between genomic DNA or mRNA and complementary antisense species. This hybridization of nucleic acid duplex interferes with the transcription of the target tumor antigen encoding genomic DNA, or the processing/transportation/translation and/or stability of the target tumor antigen mRNA. Antisense nucleic acids can be delivered in a variety of ways. For example, an antisense oligonucleotide or antisense RNA can be administered directly (e. g., by intravenous injection) to a subject in a manner that allows tumor cells to be taken up. Alternatively, a viral or plasmid vector encoding an antisense RNA (or RNA fragment) can be introduced into cells in vivo. Antisense effects can also be induced by sense sequences; however, the extent of phenotypic changes varies widely. Phenotypic changes induced by effective antisense therapy can be assessed based on, for example, changes in target mRNA levels, target protein levels, and/or target protein activity levels. In a specific embodiment, the antisense gene therapy can inhibit the function of gastric cancer markers by directly administering an antisense gastric cancer marker RNA to a subject. 154845.doc • 90· 201200594 Yes. Tumor marker antisense RNA can be made and isolated by any standard technique, but the easiest method of manufacture is to use in vitro transcription of tumor marker antisense cDNA using a highly efficient promoter (e. g., a T7 promoter). The administration of the tumor marker antisense RNA to the cells can be carried out by any of the methods of direct administration of the nucleic acids described below. Alternative strategies for inhibition of MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 using gene therapy include anti-MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 antibodies or anti-MST1R, UCHL5, Intracellular expression of a portion of SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 antibodies. For example, a gene (or gene fragment) encoding a monoclonal antibody that specifically binds to a MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 polypeptide and inhibits its biological activity is specific (eg, tissue specific or tumor) The specificity gene regulatory sequences are placed under transcriptional control within the nucleic acid expression vector. The vector is then administered to the subject for absorption by gastric cancer cells or other cells, which then secrete anti-MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB or MUC6 antibodies and block MST1R, UCHL5, SMC4, NFYB , PPAP2C, AVL9, UQCRB and MUC6 polymorphic biological activity. Preferably, MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 are present on the extracellular surface of gastric cancer cells. In the above method, which comprises administering and absorbing exogenous DNA into the cells of the subject (ie, (ie, transduction or transfection), the core of the invention 154845.doc-91 201200594 acid The naked DNA form or nucleic acid can be delivered to the cell in a vector to inhibit expression of a gastric cancer marker protein. The vector can be a commercially available preparation, such as an adenoviral vector (Quantum Biotech, Laval, Quebec, Canada). The nucleic acid or vector can be delivered to the cell by a variety of mechanisms. For example, commercially available liposomes such as: LIPOFECTIN, LIPOFECTAMINE (GIBCO-25 BRL, Gaithersburg, Md.), SUPERFECT (Qiagen, Hilden, Germany) can be used. And TRANSFECTAM (Promega Biotec, Madison, Wis.) and other liposomes developed according to standard procedures in the art, delivered by these liposomes. Furthermore, the nucleic acids or vectors of the invention can be delivered by electroporation in vivo, which can be Genetronics (San Diego, Calif.) was acquired and delivered by the SONOPORATION machine (ImaRx Pharmaceuticals, Tucson, Arizona). For example, the vector can be delivered by a viral system, such as a retroviral vector system that can coat the recombinant retroviral genome. The recombinant retrovirus can be used for infection, thereby transmitting to inhibit MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB. Or an infected cell antisense nucleic acid expressed by MUC6. Of course, the accurate introduction of the altered nucleic acid into mammalian cell cells is not limited to the use of retroviral vectors. There are a wide variety of other techniques available for this procedure, including Adenoviral vectors, adeno-associated virus (AAV) vectors, lentiviral vectors, pseudotyped retroviral vectors. Physical transduction techniques such as liposome delivery and receptor mediated and other endocytic mechanisms can also be used. It can be used in combination with any of these techniques or other commonly used gene transfer methods. 154845.doc -92· 8 201200594 This antibody can also be used in in vivo diagnostic assays. In general, antibodies are labeled with radionuclides (eg, lnln, 99Tc, 14C, 134, 3H, 32 p bite 35 S) 'This allows immunosplitting scanning to localize tumors. In the embodiment, the antibody or fragment binds to the extracellular domain of two or more MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 targets, and the affinity value (Kd) is less than 1 μμ. Diagnostic antibodies can be labeled by a variety of imaging methods using probes suitable for detection. Probe detection methods include, but are not limited to, fluorescence, light, co-focus, and electron microscopy methods; magnetic resonance imaging and spectroscopy techniques; fluoroscopy, computed tomography, and positron emission tomography. Suitable probes include, but are not limited to, 'luciferin, rhodamine, eosin, and other glory groups, radioisotopes, gold, barium, and other rare earths, paramagnetic, fluorine- 18, and other positron-emitting radionuclides. Furthermore, the probes may be dual or multifunctional and can be detected by more than one of the above methods. These antibodies can be labeled directly or indirectly with the probes described. Attachment of antibody probes includes covalent attachment of probes, fusion of probes into antibodies, and covalent attachment of chelating compounds to bind probes, as well as other methods well known in the art. For immunohistochemical methods, disease tissue samples may be fresh or cold-reduced or may be embedded in sarcophagus and preservatives such as formalin. The fixed or embedded sections include samples that are contacted with a labeled primary antibody and a secondary antibody, wherein the antibody is used to detect the expression of MST1R, UCHL5, SMC4, sputum, PPAP2C, AVL9, UQCRB, and MUC6 proteins in situ. The present invention provides a form comprising a sequence selected from the group consisting of SEQ m阙: 154845.doc-93-201200594 SEQ ID NO: 95 or having SEQ ID NO: 1 to SEQ ID NO: 95 A variant of 85%, preferably 90% and more preferably 96% homology, or a variant thereof which induces T cell to react with the peptide. The peptides of the present invention have the ability to bind to major histocompatibility complex (mhc) class I molecules. In the present invention, the term "homology" refers to the degree of identity between two amino acid sequences, such as a peptide or polypeptide sequence. The "homologous" as described above is determined by comparing two sequences adjusted under ideal conditions with the sequences to be compared. Here, the sequence to be compared may be added or deleted (e.g., 'void, etc.) in the optimal alignment of the two sequences. Such sequence homology can be calculated by creating an arrangement using an algorithm such as ClustalW. General sequence analysis software can also be used, more specifically Vect〇r NTI, GENETYX or analysis tools provided by public databases. One skilled in the art will be able to assess whether a particular peptide variant-induced T cell can interact with the peptide itself (Fong et al. 8809-14); (Appay et al. 1805-14; Colombetti et al. 2730-38 Zaremba et al. 4570-77). The "variant" of a given amino acid sequence by the inventors indicates that the side chain of one or more amino acid residues or the like is altered by being substituted by a side chain or other side bond of another natural amino acid residue. Thus, such a peptide It is still possible to bind to the HLA molecule in substantially the same manner as the peptide containing the given amino acid sequence of SEQ ID NOS: 1 to 33. For example, a peptide may be modified to at least maintain (if not elevated) its ability to interact and bind to binding pockets of suitable MHC molecules such as HLA-A or -DR, and at least maintain (if not elevated) I54845.doc • 94- 201200594 It can be combined with the TCR that starts the CTL. These CTLs can then react with cells and killer cells, which express polymorphism (which contains the natural amino acid sequence of the homologous peptides defined in the present invention). As in the scientific literature (Rammensee, Bachmann, and

Stevanovic)和資料庫(Rammensee et al. 213-19)中所述, HLA-A結合狀的某些位點通常為錫定殘基,可形成一種與 HL A結合槽的結合模序相稱的核心序列,其定義由構成結 合槽的多肽鏈的極性、電物理、疏水性和空間特性確定。 因此,本領域技術人員能夠通過保持已知的錨殘基來修飾 SEQ ID No: 1至95所示之氨基酸序列,並且能確定這些變 體是否保持與MHC-I或II類分子結合的能力。本發明的變 體保持與啟動CTL的TCR結合的能力,隨後,這些CTL可 與表達一種包含本發明定義的同源肽的天然氨基酸序列的 多肽的細胞發生交又反應並殺死該等細胞。 这些基本不與T細胞受體互動的氨基酸殘基可通過取代 另一個幾乎不影響T細胞反應並不妨礙與相關MHC結合的 氨基酸而得到修飾。因此,除了特定限制性條件外,本發 明的肽可能為任何包括給定氨基酸序列或部分或其變體的 肽(發明人所用的這個術語包括寡肽或多肽)。 154845.doc 95· 201200594 表3 :根據SEQ ID ΝΟ:1至33的肽變體和基序As described in Stevanovic and the database (Rammensee et al. 213-19), certain sites of the HLA-A binding are usually tin residues, which form a core commensurate with the binding motif of the HL A binding groove. A sequence whose definition is determined by the polarity, electrophysical, hydrophobic and spatial properties of the polypeptide chains that make up the binding groove. Thus, one skilled in the art will be able to modify the amino acid sequences set forth in SEQ ID Nos: 1 to 95 by maintaining known anchor residues and to determine whether these variants retain the ability to bind to MHC class I or class II molecules. The variants of the invention retain the ability to bind to the TCR that initiates the CTL, which in turn can react with cells that express a polypeptide comprising a native amino acid sequence of a homologous peptide as defined herein and kill the cells. These amino acid residues that do not substantially interact with the T cell receptor can be modified by substituting another amino acid that hardly affects the T cell response and does not interfere with binding to the relevant MHC. Thus, in addition to particular limiting conditions, the peptides of the present invention may be any peptide comprising a given amino acid sequence or portion or variant thereof (the term used by the inventors includes oligopeptides or polypeptides). 154845.doc 95· 201200594 Table 3: Peptide variants and motifs according to SEQ ID ΝΟ: 1 to 33

位置 1 2 3 4 5 6 7 8 9 10 CDC2-001 肽代碼 L Y Q I L Q G I V F SEQ ID 1 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 ASPM-002 肽代碼 S Y N P L W L R I SEQ ID 2 變體 F L F F L F F 位置 1 2 3 4 5 6 7 8 9 UCHL5-001 肽代碼 N Y L P F I Μ Ε L SEQ ID 3 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 MET-006 肽代碼 S Y I D V L Ρ Ε F SEQ ID 4 變體 F L I F F F I 位置 1 2 3 4 5 6 7 8 9 PROM-001 肽代碼 S Y I I D P L Ν L SE〇 ID 5 變體 F F 154845.doc -96- ⑧ 201200594Position 1 2 3 4 5 6 7 8 9 10 CDC2-001 Peptide code LYQILQGIVF SEQ ID 1 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 ASPM-002 Peptide code SYNPLWLRI SEQ ID 2 Variant FLFFLFF Position 1 2 3 4 5 6 7 8 9 UCHL5-001 Peptide code NYLPFI Μ Ε L SEQ ID 3 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 MET-006 Peptide code SYIDVL Ρ F SEQ ID 4 Variant FLIFFFI Position 1 2 3 4 5 6 7 8 9 PROM-001 Peptide code SYIIDPL Ν L SE〇ID 5 Variant FF 154845.doc -96- 8 201200594

I F F F I 位置 1 2 3 4 5 6 7 8 9 10 MMPl 1-001 肽代碼 V W S D V Τ Ρ L Τ F SEQ ID 6 變體 Υ F L I Υ L Υ I F L F I 位置 1 2 3 4 5 6 7 8 9 MST1R-001 肽代碼 N Υ L L Υ V S Ν F SEQ ID 7 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 NFYB-001 肽代碼 V Υ Τ Τ S Υ Q Q I SEQ ID 8 變體 F L F F L F F 位置 1 2 3 4 5 6 7 8 9 SMC4-001 肽代碼 Η Υ Κ Ρ Τ Ρ L Υ F SEQ ID 9 變體 F L I F L F I 154845.doc -97- 201200594IFFFI position 1 2 3 4 5 6 7 8 9 10 MMPl 1-001 Peptide code VWSDV Τ Ρ L Τ F SEQ ID 6 Variant Υ FLI Υ L Υ IFLFI Position 1 2 3 4 5 6 7 8 9 MST1R-001 Peptide code N Υ LL Υ VS Ν F SEQ ID 7 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 NFYB-001 Peptide code V Υ Τ Τ S Υ QQI SEQ ID 8 Variant FLFFLFF Position 1 2 3 4 5 6 7 8 9 SMC4-001 Peptide Code Υ Κ Ρ Ρ Τ Ρ L Υ F SEQ ID 9 Variant FLIFLFI 154845.doc -97- 201200594

位置 1 2 3 4 5 6 7 8 9 10 UQCRB-001 肽代碼 Y Y N A A G F N K L SEQ ID 10 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 PPAP2C-001 肽代碼 A Y L V Y T D R L SEQ ID 11 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 AVL9-001 肽代碼 F Y I S P V N K L SEQ ID 12 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 NUF2-001 肽代碼 V Y G I R L E H F SEQ ID 13 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 ABL1-001 肽代碼 T Y G N L L D Y L SEQ ID 14 變體 F F I F F 154845.doc -98- 201200594Position 1 2 3 4 5 6 7 8 9 10 UQCRB-001 Peptide code YYNAAGFNKL SEQ ID 10 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 PPAP2C-001 Peptide code AYLVYTDRL SEQ ID 11 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 AVL9-001 Peptide code FYISPVNKL SEQ ID 12 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 NUF2-001 Peptide code VYGIRLEHF SEQ ID 13 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 ABL1 -001 Peptide code TYNNLLDYL SEQ ID 14 Variant FFIFF 154845.doc -98- 201200594

F I 位置 1 2 3 4 5 6 7 8 9 MUC-006 肽代碼 N Y E E T F P Η I SEQ ID 15 變體 F F L F F F L 位置 1 2 3 4 5 6 7 8 9 ASPM-001 肽代碼 R Y L W A T V Τ I SEQ ID 16 變體 F F L F F F L 位置 1 2 3 4 5 6 7 8 9 EPHA2-005 肽代碼 V Y F S K S E Q L SEQ ID 17 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 MMP3-001 肽代碼 V F I F K G N Q F SE〇 ID 18 變體 Y L I Y L Y I 位置 1 2 3 4 5 6 7 8 9 NUF2-002 肽代碼 R F L S G I I N F SEQ ID 19 變體 Y L I 154845.doc -99· 201200594FI position 1 2 3 4 5 6 7 8 9 MUC-006 Peptide code NYEETFP Η I SEQ ID 15 Variant FFLFFFL Position 1 2 3 4 5 6 7 8 9 ASPM-001 Peptide code RYLWATV Τ I SEQ ID 16 Variant FFLFFFL position 1 2 3 4 5 6 7 8 9 EPHA2-005 Peptide code VYFSKSEQL SEQ ID 17 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 MMP3-001 Peptide code VFIFKGNQF SE〇ID 18 Variant YLIYLYI Position 1 2 3 4 5 6 7 8 9 NUF2-002 Peptide code RFLSGIINF SEQ ID 19 Variant YLI 154845.doc -99· 201200594

Y L Y I 位置 1 2 3 4 5 6 7 8 9 PLK4-001 肽代碼 Q Y A S R F V Q L SEQ ID 20 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 ATAD2-002 肽代碼 K Y L T V K D Y L SEQ ID 21 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 COL 12A1-001 肽代碼 V Y N P T P N S L SEQ ID 22 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 COL6A3-001 肽代碼 S Y L Q A A N A L SEQ ID 23 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 FANCI-001 肽代碼 F Y Q P K I Q Q F SEQ ID 24 變體 F L 154845.doc •100- ⑧ 201200594YLYI position 1 2 3 4 5 6 7 8 9 PLK4-001 peptide code QYASRFVQL SEQ ID 20 variant FFIFFFI position 1 2 3 4 5 6 7 8 9 ATAD2-002 peptide code KYLTVKDYL SEQ ID 21 variant FFIFFFI position 1 2 3 4 5 6 7 8 9 COL 12A1-001 Peptide code VYNPTPNSL SEQ ID 22 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 COL6A3-001 Peptide code SYLQAANAL SEQ ID 23 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 FANCI-001 Peptide Code FYQPKIQQF SEQ ID 24 Variant FL 154845.doc •100- 8 201200594

I F L F I 位置 1 2 3 4 5 6 7 8 9 RSPl 1-001 肽代碼 Y Y K N I G L G F SEQ ID 25 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 ATAD2-001 肽代碼 A Y A I I K E E L SEQ ID 26 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 ATAD2-003 肽代碼 L Y P E V F E K F SEQ ID 27 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 10 HSP90B1-001 肽代碼 K Y N D T F W K E F SEQ ID 28 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 10 SIAH2-001 肽代碼 V F D T A I A H L F SEQ ID 29 變體 Y 154845.doc -101 - 201200594IFLFI position 1 2 3 4 5 6 7 8 9 RSPl 1-001 Peptide code YYKNIGLGF SEQ ID 25 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 ATAD2-001 Peptide code AYAIIKEEL SEQ ID 26 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 ATAD2-003 Peptide code LYPEVFEKF SEQ ID 27 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 10 HSP90B1-001 Peptide code KYNDTFWKEF SEQ ID 28 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 10 SIAH2-001 Peptide code VFDTAIAHLF SEQ ID 29 Variant Y 154845.doc -101 - 201200594

L I Y L Y I 位置 1 2 3 4 5 6 7 8 9 SLC6A6-001 肽代碼 V Y P N W A I G L SEQ ID 30 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 IQGAP3-001 肽代碼 V Y K V V G N L L SEQ ID 31 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 ERBB3-001 肽代碼 V Y I E K N D K L SEQ ID 32 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 10 KIF2C-001 肽代碼 I Y N G K L F D L L SEQ ID 33 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 10 CDC2-001 肽代碼 L Y Q I L Q G I V F I54845.doc -102- 201200594 SEQ ID 1 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 ASPM-002 肽代碼 S Y N P L W L R I SEQ ID 2 變體 F L F F L F F 位置 1 2 3 4 5 6 7 8 9 UCHL5-001 肽代碼 N Y L P F I Μ Ε L SEQ ID 3 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 MET-006 肽代碼 S Y I D V L Ρ Ε F SEQ ID 4 變體 F L I F F F I 位置 1 2 3 4 5 6 7 8 9 PROM-001 狀代碼 S Y I I D P L Ν L SEQ ID 5 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 10 154845.doc -103- 201200594LIYLYI position 1 2 3 4 5 6 7 8 9 SLC6A6-001 peptide code VYPNWAIGL SEQ ID 30 variant FFIFFFI position 1 2 3 4 5 6 7 8 9 IQGAP3-001 peptide code VYKVVGNLL SEQ ID 31 variant FFIFFFI position 1 2 3 4 5 6 7 8 9 ERBB3-001 Peptide code VYIEKNDKL SEQ ID 32 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 10 KIF2C-001 Peptide code IYNGKLFDLL SEQ ID 33 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 10 CDC2-001 Peptide code LYQILQGIVF I54845.doc -102- 201200594 SEQ ID 1 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 ASPM-002 Peptide code SYNPLWLRI SEQ ID 2 Variant FL FFLFF position 1 2 3 4 5 6 7 8 9 UCHL5-001 Peptide code NYLPFI Μ Ε L SEQ ID 3 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 MET-006 Peptide code SYIDVL Ρ Ε F SEQ ID 4 Variant FLIFFFI position 1 2 3 4 5 6 7 8 9 PROM-001 Shape code SYIIDPL Ν L SEQ ID 5 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 10 154845.doc -103- 201200594

MMPl 1-001 肽代碼 V W S D V Τ Ρ L Τ F SEQ ID 6 變體 Υ F L I Υ L Υ I F L F I 位置 1 2 3 4 5 6 7 8 9 MST1R-001 肽代碼 N Υ L L Υ V S Ν F SEQ ID 7 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 NFYB-001 肽代碼 V Υ Τ Τ S Υ Q Q I SEQ ID 8 變體 F L F F L F F 位置 1 2 3 4 5 6 7 8 9 SMC4-001 肽代碼 Η Υ Κ Ρ Τ Ρ L Υ F SEQ ID 9 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 1 0 UQCRB-001 肽代碼 Υ Υ Ν A A G F Ν Κ L SEQ ID 10 變體 F 154845.doc •104- ⑧ 201200594MMPl 1-001 Peptide code VWSDV Τ Ρ L Τ F SEQ ID 6 Variant Υ FLI Υ L Υ IFLFI Position 1 2 3 4 5 6 7 8 9 MST1R-001 Peptide code N Υ LL Υ VS Ν F SEQ ID 7 Variant FLIFLFI position 1 2 3 4 5 6 7 8 9 NFYB-001 Peptide code V Υ Τ Τ S Υ QQI SEQ ID 8 Variant FLFFLFF Position 1 2 3 4 5 6 7 8 9 SMC4-001 Peptide code Η Κ Κ Ρ Τ Ρ L Υ F SEQ ID 9 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 1 0 UQCRB-001 Peptide Code Υ Υ Ν AAGF Ν Κ L SEQ ID 10 Variant F 154845.doc •104- 8 201200594

F I F F F I 位置 1 2 3 4 5 6 7 8 9 PPAP2C-001 肽代碼 A Y L V Y T D R L SEQ ID 11 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 AVL9-001 肽代碼 F Y I S P V N K L SEQ ID 12 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 NUF2-001 肽代碼 V Y G I R L E Η F SEQ ID 13 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 ABL1-001 肽代碼 T Y G N L L D Υ L SEQ ID 14 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 MUC-006 肽代碼 N Y E E T F P Η I 154845.doc •105- 201200594 SEQ ID 15 變體 F F L F F F L 位置 1 2 3 4 5 6 7 8 9 ASPM-001 肽代碼 R Y L W A T V T I SEQ ID 16 變體 F F L F F F L 位置 1 2 3 4 5 6 7 8 9 EPHA2-005 狀代碼 V Y F S K S E Q L SEQ ID 17 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 MMP3-001 狀代碼 V F I F K G N Q F SEQ ID 18 變體 Y L I Y L Y I 位置 1 2 3 4 5 6 7 8 9 NUF2-002 肽代碼 R F L S G I I N F SEQ ID 19 變體 Y L I Y L Y I 位置 1 2 3 4 5 6 7 8 9 154845.doc •106- ⑧ 201200594FIFFFI position 1 2 3 4 5 6 7 8 9 PPAP2C-001 Peptide code AYLVYTDRL SEQ ID 11 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 AVL9-001 Peptide code FYISPVNKL SEQ ID 12 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 NUF2-001 Peptide code VYGIRLE Η F SEQ ID 13 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 ABL1-001 Peptide code TYGNLLD Υ L SEQ ID 14 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 MUC-006 Peptide code NYEETFP Η I 154845.doc •105- 201200594 SEQ ID 15 Variant FFLFFFL Position 1 2 3 4 5 6 7 8 9 ASPM-001 Peptide code RYLWATVTI SEQ ID 16 Variant FF LFFFL position 1 2 3 4 5 6 7 8 9 EPHA2-005 Shape code VYFSKSEQL SEQ ID 17 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 MMP3-001 Shape code VFIFKGNQF SEQ ID 18 Variant YLIYLYI Position 1 2 3 4 5 6 7 8 9 NUF2-002 Peptide code RFLSGIINF SEQ ID 19 Variant YLIYLYI Position 1 2 3 4 5 6 7 8 9 154845.doc •106- 8 201200594

PLK4-001 肽代碼 Q Y A S R F V Q L SEQ ID 20 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 ATAD2-002 肽代碼 K Y L T V K D Y L SEQ ID 21 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 COL12A1-001 肽代碼 V Y N P T P N S L SEQ ID 22 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 COL6A3-001 肽代碼 S Y L Q A A N A L SEQ ID 23 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 FANCI-001 肽代碼 F Y Q P K I Q Q F SEQ ID 24 變體 F L I F L F I 154845.doc -107- 201200594PLK4-001 Peptide code QYASRFVQL SEQ ID 20 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 ATAD2-002 Peptide code KYLTVKDYL SEQ ID 21 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 COL12A1-001 Peptide code VYNPTPNSL SEQ ID 22 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 COL6A3-001 Peptide Code SYLQAANAL SEQ ID 23 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 FANCI-001 Peptide Code FYQPKIQQF SEQ ID 24 Variant FLIFLFI 154845.doc -107- 201200594

位置 1 2 3 4 5 6 7 8 9 RSPl 1-001 肽代碼 Y Y K N I G L G F SEQ ID 25 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 ATAD2-001 肽代碼 A Y A I I K E E L SEQ ID 26 變體 F F I F F F I 位置 1 2 3 4 5 6 7 8 9 ATAD2-003 肽代碼 L Y P E V F E K F SEQ ID 27 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 1 0 HSP90B1-001 肽代碼 K Y N D T F W K E F SEQ ID 28 變體 F L I F L F I 位置 1 2 3 4 5 6 7 8 9 1 0 SIAH2-001 肽代碼 V F D T A I A H L F SEQ ID 29 變體 Y L I 154845.doc -108- ⑧ 201200594Position 1 2 3 4 5 6 7 8 9 RSPl 1-001 Peptide code YYKNIGLGF SEQ ID 25 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 ATAD2-001 Peptide code AYAIIKEEL SEQ ID 26 Variant FFIFFFI Position 1 2 3 4 5 6 7 8 9 ATAD2-003 Peptide code LYPEVFEKF SEQ ID 27 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 1 0 HSP90B1-001 Peptide code KYNDTFWKEF SEQ ID 28 Variant FLIFLFI Position 1 2 3 4 5 6 7 8 9 1 0 SIAH2-001 Peptide code VFDTAIAHLF SEQ ID 29 Variant YLI 154845.doc -108- 8 201200594

SLC6A6-001 SEQ ID 30 ^-- Y L ^----- Y I '-- 位置 1 2 3 4 5 6 7 8 9 V Y P N W A I G L 變體 F F I F F F I IQGAP3-001 — 付f 1 2 3 4 5 6 7 8 9 肽代碼 V Y K V V Γτ N L L SEQ ID 31 變體 F — F I — F F F I ERBB3-001 SEQ ID 32 位置 1 2 3 4 5 6 7 8 9 狀代竭 V Y I E K Ν D K L 變體 Π F ----- F I — F F F I 位置 1 2 3 4 5 6 7 8 9 1 0 KIF2C-001 肽代碼 I Y N G K L F D L L SEQ ID 33 變體 F 〜 I — F F F 較長的肽也可能適合。MHCI類表位(通常長度為8至11 個氨基酸)也可能由肽從較县从队+ — a ^ 較長的肽或包含實際表位的蛋白 154845.doc -109. 201200594 中加工而產生^兩側有實際表位的殘基優選為在加工過程 中幾乎不影響暴露實際表位所需蛋白裂解的殘基。 因此’本發明還提出了 MHCI類表位的肽和變體,其中 所述肽或抗體的總長度為8至100個、優選為8至30個、最 優選為8至14個(即8、9' 10、11、12、13、14個)氧基酸。 當然,本發明的肽或變體能與人主要組織相容性複合體 (MHC)I或II類分子結合。肽或變體與mHc複合體的結合可 用本領域内的已知方法進行測試。 在本發明的一個特別優選實施例中,肽系由或基本系由 根據SEQ ID ΝΟ:1至SEQ ID NO: 95的氨基酸組成。 「基本由…構成」系指本發明的肽,除了根據SEq id ΝΟ:1至SEQ ID NO:95中的任一序列或其變體構成外,還 含有位於其他N和/或C端延伸處的氨基酸,而它們不一定 能形成作為MHC分子表位的肽。 但這些延伸區域對有效將本發明中的肽引進細胞具有重 要作用。在本發明的一實施例中,肽為融合蛋白,含來自 NCBI、GenBank登錄號χ〇〇497的HLA-DR抗原相關不變 鏈(p33 ’以下稱為「Π」)的8〇個N_端氨基酸等。 此外’該肽或變體可進一步修飾以提高穩定性和/或與 MHC分子結合’從而引發更強的免疫反應。肽序列的該類 優化方法是本領域内所熟知的,包括,例如,反式肽鍵和 非肽鍵的引入。 在反式肽鍵氨基酸中,肽卜CO-NH -)並未連接其殘基, 但是其肽鍵是反向的^這種逆向反向模擬肽(retr〇_invers〇 I54845.doc •110· ⑧ 201200594 peptidomimetics)可通過本領域已知的方法製備,例如:SLC6A6-001 SEQ ID 30 ^-- YL ^----- YI '-- Position 1 2 3 4 5 6 7 8 9 VYPNWAIGL Variant FFIFFFI IQGAP3-001 — pay f 1 2 3 4 5 6 7 8 9 Peptide Code VYKVV Γτ NLL SEQ ID 31 Variant F — FI — FFFI ERBB3-001 SEQ ID 32 Position 1 2 3 4 5 6 7 8 9 Exhaustion VYIEK Ν DKL Variant Π F ----- FI — FFFI Position 1 2 3 4 5 6 7 8 9 1 0 KIF2C-001 Peptide code IYNGKLFDLL SEQ ID 33 Variant F 〜 I — FFF Longer peptides may also be suitable. MHC class I epitopes (usually 8 to 11 amino acids in length) may also be produced by peptides from a county with a longer peptide or a protein containing the actual epitope 154845.doc -109. 201200594 The residue having an actual epitope on both sides is preferably a residue which does not affect the proteolytic cleavage required to expose the actual epitope during processing. Thus, the present invention also proposes peptides and variants of MHC class I epitopes, wherein the total length of the peptide or antibody is from 8 to 100, preferably from 8 to 30, most preferably from 8 to 14 (ie 8, 9' 10, 11, 12, 13, 14) oxyacids. Of course, the peptides or variants of the invention bind to human major histocompatibility complex (MHC) class I or class II molecules. Binding of the peptide or variant to the mHc complex can be tested by methods known in the art. In a particularly preferred embodiment of the invention, the peptide consists of or consists essentially of the amino acids according to SEQ ID ΝΟ:1 to SEQ ID NO:95. "Consisting essentially of" means a peptide of the present invention, in addition to being constituted according to any of SEq id 1:1 to SEQ ID NO: 95 or a variant thereof, and also located at other N- and/or C-terminal extensions. Amino acids, and they do not necessarily form peptides that are epitopes of MHC molecules. However, these extension regions have an important effect on the efficient introduction of the peptide of the present invention into cells. In one embodiment of the present invention, the peptide is a fusion protein comprising 8 N N_ from the HBI-DR antigen-associated invariant chain (p33 'hereinafter referred to as "Π") from NCBI, GenBank Accession No. 497. Amino acid and the like. Furthermore, the peptide or variant may be further modified to increase stability and/or bind to the MHC molecule to elicit a stronger immune response. Such optimization methods for peptide sequences are well known in the art and include, for example, the introduction of trans-peptide bonds and non-peptide bonds. In the trans-peptide-bonded amino acid, the peptide CO-NH-) is not linked to its residue, but its peptide bond is reversed. This reverse-reverse mimetic peptide (retr〇_invers〇I54845.doc •110· 8 201200594 peptidomimetics) can be prepared by methods known in the art, for example:

Meziere等在《免疫學雜誌》((1997)J· Immun〇i. 159, 3230- 3237)中所述的方法,以引用的方式併入本文。這種方法 涉及製備包含骨架(而並非側鏈)改變的模擬肽。^^“^等 人(1997年)的研究顯示,這些類比肽有利於mhc的結合和 輔助性T細胞的反應。以NH-CO鍵替代CO-NH肽鍵的逆向 反向肽大大地提高了抗水解性能。 非肽鍵為 _CH2-NH、-CH2S-、-CH2CH2-、_CH=CH-、 _ COCH2-、-CH(OH)CH2-和-CH2SO-等。美國 4897445 號專 利提出了多肽鏈中非肽鍵(-CHz-NH)的非固相合成法,該 方法涉及按標準程序合成的多肽以及通過氨基醛和一種 含NaCNBH3的氨基酸相互作用而合成的非肽鍵。 含上述序列的肽可與其氨基和/或敌基末端的其他化學 基團進行合成’從而提高肽的穩定性、生物利用度、和/ 或親和力等。例如’苄氧羰基、丹醯基等疏水基團或叔丁 氧羰基團可加入肽的氨基末端。同樣,乙醯基或9苗曱氧 数基可能位於肽的氨基末端。此外,疏水基團、叔丁氧幾 基團或氨基團都可能被加入肽的羧基末端。 另外,本發明中的所有肽都可能經合成而改變其空間構 型。例如,可能使用這些肽的一個或多個氨基酸殘基的右 旋體,通常不是其左旋體。更進—步地,本發明中肽的至 少一個氨基酸殘基可被熟知的一個非天然氨基酸殘基取 代。諸如此類的改變可能有助於增加本發明肽的穩定性、 生物利用度和/或結合作用。 154845.doc 201200594 同樣’本發明中的肽或變體可在合成肽之前或之後通過 特異氧基酸的反應而進行化學修飾。此類修飾的實施例為 本領域所熟知,例如,在R. Lundblad所著的《Chemical Reagents for Pr〇tein Modification》(3rd ed. CRC Press, 2005)中有概述’以參考文獻的方式併入本文。雖然氨基 西文的化學修飾方法無限制,但其包括(但不限於)通過以下 方法修飾:醯基化、脒基化、賴氨酸吡哆基化、還原烷基 化、以2,4,6-三硝基苯磺酸(TNBS)三硝基苯基化氨基團、 通過將半胱氨酸過甲酸氧化為磺基丙氨酸而對羧基團和疏 基進行氨基修飾、形成易變衍生物、與其他酼基化合物形 成混合二硫化合物、與馬來醯亞胺反應,與碘乙酸或碘乙 醯胺羧曱基化、在鹼性pH值下與氰酸鹽甲氨酿化。在這方 面’技術人員參考了《Current Protocols In Protein Science》 (Eds. Coligan et al.(J〇hn Wiley & Sons NY 1995-2000))中 第1 5章所述的在蛋白質化學修飾相關的廣泛方法。 簡S之’修饰蛋白質的精氨醯殘基等往往基於於鄰二獄 基化合物(如苯曱醯甲醛、2,3-丁二酮以及1,2-烯巳二酮)的 反應而形成加合物。另一個實施例是丙酮醛與精氨酸殘基 的反應。半胱氨酸可在賴氨酸和組氨酸等親核位點不作隨 同修飾的情況下就得到修飾。因此,有大量試劑可進行半 胱氨酸的修飾。Sigma-Aldrich(http://www.sigma-aldrich.com)等 公司的網站含有具體試劑的資訊。 蛋白質中二硫鍵的選擇性還原也很普遍。二硫鍵可在生 物制藥熱處理中形成和氧化。 154845.doc 112 201200594 伍德沃德氏試劑K可用於修飾特定的谷氨酸殘基β N-(3- 一 f氨基丙基)-Ν’-乙基-碳二亞胺可用于形成賴氨酸殘基 和谷氨酸殘基的分子内交聯。 例如:焦碳酸二乙酯是修飾蛋白質組氨酸殘基的試劑。 組氨酸也可使用4-羥基-2-壬烯醛進行修飾。 賴氨酸殘基與其他醺_氨基團的反應,例如,有利於肽 結合到蛋白/肽的表面或交聯處。賴氨酸聚是多(乙烯)乙二 醇的附著點,也是蛋白質糖基化的主要修飾位點。 蛋白質的蛋氨酸殘基可通過碘乙醯胺、溴乙胺、氣胺τ 等被修飾。 四硝基曱烷和Ν-乙醯基咪唑可用於酪氨酸殘基的修飾。 經二酪氨酸形成的交聯可通過過氧化氫/銅離子完成β 對色氨酸修飾的最近研究中使用了 Ν_溴代琥珀醯亞胺、 2-羥基-5-硝基苄溴或3-溴-3-甲基-2-(2-硝苯巯基)_3Η-吲哚 (BPNS-糞臭素)。 §蛋白與戊一酸·、聚乙二醇二丙烯酸酯和甲酸的交聯用 於配製水凝膠時,治療性蛋白和含聚乙二醇的肽的成功修 飾往往可延長迴圈半衰期。針對免疫治療的變態反應原化 學修飾往往通過氰酸鉀的氨基曱醯化實現。 一種肽或變體’其中肽被修飾或含非肽鍵,優選為本發 明的實施例。一般來說,肽和變體(至少含氨基酸殘基之 間的肽聯接)可使用Lu等人(1981年)以及此處列出的參考文 獻所彼露的固相肽合成Fmoc-聚醯胺模式進行合成。努甲 氧羰基(Fmoc)團對N-氨基提供臨時保護。使用N,N_二甲 154845.doc •113· 201200594 基曱醯胺中的20%二甲基呱啶中對這種域高度敏感的保護 基團進行重複分裂。由於它們的丁基醚(在絲氨酸蘇氨酸 和酷·氨酸的情況下)、丁基酯(在谷氨酸和天門冬氨酸的情 況下)、叔丁氧羰基衍生物(在賴氨酸和組氨酸的情況下)、 三苯甲基衍生物(在半胱氨酸的情況下)及4-曱氧基-2,3,6- 三甲基苯續醢基衍生物(在精氨酸的情況下),側鏈功能可 能會受到保護。只要榖氨醯胺和天冬醯胺為C-末端殘基, 側鍵氨基功能保護所使用的是由4,4’-二甲氧基二苯基團。 固相支撐基於聚二曱基丙烯醯胺聚合物,其由三個單體二 曱基丙稀醢胺(骨架單體)、雙丙烯醯乙稀二胺(交聯劑)和 N-丙烯醯肌胺酸甲酯(功能劑)構成。使用的狀_樹脂聯劑為 酸敏感的4-羥曱基苯氧乙酸衍生物。所有的氨基酸衍生物 均作為其預製對稱酸酐衍生物加入,但是天冬酿胺和縠氨 酿胺除外’它們使用被逆轉的N,N_二環己基碳二亞胺 經基苯並三唑介導的耦合程序而加入。所有的耦合和脫保 5蒦反應用Bp二酮、確基苯續酸或is〇tjn測試程序監測。合 成完成後’用濃度為95%含50%清道夫混合物的三氟醋 酸’從伴隨去除侧鏈保護基團的樹脂支承物中裂解肽。常 用的清道夫混合物包括乙二硫醇、苯酚、苯甲醚和水,準 確的選擇依據合成肽的氨基酸組成。此外,固相和液相方 法結合使用對狀進行合成是可能的(例如,請參閱 Bruckdorfer等人。 三氟乙酸用真空中蒸發、隨後用承載粗肽的二乙基乙醚 滴定進行去除。用簡單萃取程序(水相凍幹後,該程序制 154845.doc -114- 201200594 得不含清道夫混合物的肽)清除任何存在的清道夫混合 物。狀合成》式劑般可從Calbiochem-Novabiochem(英國) 公司(NG7 2QJ,英國)獲得。 純化可通過以下技術的任何一種或組合方法進行,如: 再結晶法、體積排阻色譜法、離子交換色譜法、疏水作用 色譜法以及(通常)反相高效液相色譜法(如使用乙腈/水梯 度分離)。 肽分析可使用以下方法進行:薄層色譜法、電泳法、特 別是,毛細管電泳法、固相萃取法(CSPE)、反相高效液相 色譜法、酸水解後的氨基酸分析、快原子轟擊(FAB)質譜 分析法以及MALDI、ESI-Q-TOF質譜分析法。 另一方面’本發明提出了一種編碼本發明中肽或肽變體 的核酸(如多聚核苷酸)。多聚核苷酸可能為,例如, DNA、cDNA、PNA、CNA、RNA或其組合物,它們可為 單鏈和/或雙鏈、或多聚核苷酸的原生或穩定形式(如:具 有硫代磷酸骨架的多聚核苷酸),並且只要它編碼肽,就 可能包含也可能不包含内含子。當然,多聚核苷酸只能編 碼加入天然肽鍵並含有天然氨基酸殘基的肽。另一個方 面’本發明提出了一種可根據本發明表達多肽的表達載 體。 對於連接多核苷酸,已經開發出多種方法,尤其是針對 DNA,可通過向載體補充可連接性末端等方法進行連接。 例如,可向DNA片段加入補充性均聚物軌道,之後DNA片 段被插入到載體DNA。然後’通過補充性均聚物尾巴的氣 154845.doc 115 201200594 料+,將載體和DNA片段結合,從而形成重組DNA分 子。 3有一個或多個酶切位點的合成接頭為DNA片段與載體 連接提供了另一種方法。含各種限制性核酸内切酶的合成 接頭可通過多種管道購得中包括從國際生物技術公司 (International Bi0techn〇i〇gies Inc,New Haven,CN,美國) 購得。 、 編碼本發明多肽的DNA理想修飾方法是使用Saiki等人 (1988年)所採用的聚合酶鏈反應方法。此方法可用於將 DNA引入合適的載體(例如,通過設計合適的酶切位點), 也可用於本領域已知的其他有用方法修飾dna。如果使用 病毒載體,痘病毒載體或腺病毒載體為優選。 之後,DNA(或在逆轉錄病毒載體情況下,RNA)可能表 達於合適的宿主,從而製成含本發明肽或變體的多肽。因 此,可根據已知技術使用編碼本發明肽或變體的dna,用 本文所述方法適當修飾後,構建表達載體,然後表達載體 用於轉化合適宿主細胞,從而表達和產生本發明中的多 肽。這些方法包括下列美國專利中披露的方法: 4,440,859、4,530,901、4,582,800、4,677,063、4,678,751、 4,704,362 > 4,710,463 ' 4,757,006 ' 4,766,075^4,810,648 〇 編碼含本發明化合物多肽的DNA(或在逆轉錄病毒載體 情況下,RNA)可能被加入到其他多種〇1^八序列,從而引 入到合適的宿主中。同伴DNA將取決於宿主的性質、DNA 引入宿主的方式、以及是否需要保持為游離體還是要相互 154845.doc •116· 201200594 結合。 -般來說’ DNA可以適當的方向和正確的表達閱讀框架 附著到種表達載體(如質粒)中。如有必要,該DNA可能 與所需宿主所識別的相應轉錄和翻譯調節控制核苦酸序列 連接,儘管表達載體中-般存在此類㈣功能。然後,該 載體通過標準方法被引人宿主…般來說,並不是所有的 宿主都會被載體轉化。因此,有必要選擇轉化過的宿主細 胞。選擇方法包括用任何必要的控制元素向表達載體插入 個DNA序列,该序列對轉化細胞中的可選擇性屬性(如 抗生素耐藥性)進行編碼。 另外,有這種ϋ擇屬性的基因可在另夕卜一個載體上,該 載體用來協同轉化所需的宿主細胞。 然後,本發明中的重組DNA所轉化的宿主細胞在本文中 所述本領$技術人員H悉的合適條件下培養足夠長的時 間,從而表達之後可回收的肽。 有許多已知的表達系、統,包括細菌(如大腸桿菌和枯草 芽抱桿菌)、酵母(如酵母菌)、絲狀真菌(如曲黴菌)、植物 細胞、動物細胞及昆蟲細胞。該线可優選為哺乳動物細 胞,如來自ATCC細胞生物學庫(CeU Bi〇1〇gy Co—) 中的CHO細胞。 典型的哺乳動物細胞組成型表達載體質粒包括c M V或含 一個合適的多聚A尾巴的SV4〇啟動子以及抗性標誌物(如 新黴素)。一個實例為從Pharmacia公司(Piscataway,新澤 西美國)獲仔的pSVL。_種可誘導型哺乳動物表達載體 154845.doc 117 201200594 的例子是pMSG,也可以從Pharmacia公司獲得。有用的酵 母質粒載體是pRS403-406和pRS413-416 ’ 一般可從 Stratagene Cloning Systems公司(La Jolla,CA 92037,美 國)獲得。質粒 pRS403、pRS404、pRS405 和 pRS406 是 酵母整合型質粒(Yip),並插入了酵母可選擇性標記物 HIS3、TRP1、LEU2 和 URA3。pRS413-416 質粒為酵母著 絲粒質粒(Yep)。基於CMV啟動子的載體(如,來自於 Sigma-Aldrich公司)提供了暫態或穩定的表達、胞漿表達 或分泌’以及FLAG、3xFLAG、c-mF或MATN不同組合物 中的N-端或C-端標記。這些融合蛋白可用於檢測、純化及 分析重組蛋白。雙標融合為檢測提供了靈活性。 強勁的人巨細胞病毒(CMV)啟動子調控區使得COS細胞 中的組成蛋白表達水準高達1 mg/L。對於較弱的細胞株, 蛋白水準一般低於〇. 1 mg/L。SV40複製原點的出現將導 致DNA在SV4〇複製容納性COS細胞中高水準複製。例如, CMV載體可包含細菌細胞中的pMBl(pBR322的衍生物)複 製原點、細菌中進行氨苄青黴素抗性選育的鈣-内醢胺酶 基因、hGH polyA和f 1的原點。含前胰島素原引導(ppT)序 列的載體可使用抗FLAG抗體、樹脂和板引導FLAG融合 蛋白分泌到進行純化的培養基中。其他與各種宿主細胞一 起應用的載體和表達系統是本領域熟知眾所周知的。 本發明還涉及一種宿主細胞,其以本發明的多核苷酸載 體構建轉化而來。宿主細胞可為原核細胞,也可為真核細 胞。在有些情況下’細菌細胞為優選原核宿主細胞,典型 154845.doc -118· ⑧ 201200594 為大腸桿菌株,例如,大腸桿菌菌株 DH5(從Bethesda Research Laboratories 公司(Bethesda,MD,美國)獲得)和 RR1(從美國菌種保藏中心(ATCC,Rockville, MD,美國), ATCC編號3 1343獲得)。首選的真核宿主細胞包括酵母、 昆蟲和哺乳動物細胞,優選為脊椎動物細胞,如:小鼠、 大鼠、猴子或人成纖維細胞和結腸癌細胞株中的細胞。酵 母宿主細胞包括YPH499、YPH500和YPH501,一般可從 Stratagene Cloning Systems公司(La Jolla, CA 92037,美 國)獲得。首選哺乳動物宿主細胞包括中國倉鼠卵巢(CHO) 細胞為ATCC中的CCL61細胞、NIH瑞士小鼠胚胎細胞 NIH/3T3為ATCC中的CRL 1658細胞、猴腎源性COS-1細胞 為ATCC中的CRL 1650細胞以及人胚胎腎細胞的293號細 胞。首選昆蟲細胞為Sf9細胞,可用杆狀病毒表達載體轉 染。有關針對表達選擇合適宿主細胞的概要,可從教科書 (Paulina Baibas and Argelia Lorence 《Methods inThe method described by Meziere et al., J. Immunol. ((1997) J. Immun〇i. 159, 3230-3237) is incorporated herein by reference. This method involves the preparation of a peptidomimetic comprising a change in the backbone, but not the side chain. ^^"^ et al. (1997) showed that these analog peptides favor mhc binding and helper T cell responses. Reverse reversed peptides that replace CO-NH peptide bonds with NH-CO bonds have greatly improved Hydrolysis resistance. Non-peptide bonds are _CH2-NH, -CH2S-, -CH2CH2-, _CH=CH-, _COCH2-, -CH(OH)CH2- and -CH2SO-, etc. The polypeptide is proposed in US Pat. A non-solid phase synthesis of a non-peptide bond (-CHz-NH) in a chain involving a polypeptide synthesized according to standard procedures and a non-peptide bond synthesized by the interaction of an aminoaldehyde with a NaCNBH3-containing amino acid. Peptides can be synthesized with their amino and/or other chemical groups at the terminal end of the group to increase the stability, bioavailability, and/or affinity of the peptide, etc. For example, hydrophobic groups such as 'benzyloxycarbonyl, tanshinyl, or tertiary A butoxycarbonyl group can be added to the amino terminus of the peptide. Similarly, an ethionyl group or a 9-mole oxygen group may be located at the amino terminus of the peptide. Further, a hydrophobic group, a t-butoxy group or an amino group may be added to the peptide. In addition, all peptides in the present invention may be modified by synthesis. It is possible to change its spatial configuration. For example, it is possible to use the right-handed body of one or more amino acid residues of these peptides, usually not its left-handed body. Further, at least one amino acid residue of the peptide of the present invention can be known. Substitution of a non-natural amino acid residue. Such changes may help to increase the stability, bioavailability and/or binding of the peptides of the invention. 154845.doc 201200594 Similarly, the peptides or variants of the invention may be synthesized The peptide is chemically modified by a reaction of a specific oxyacid before or after the peptide. Examples of such modifications are well known in the art, for example, "Chemical Reagents for Pr〇tein Modification" by R. Lundblad (3rd ed. CRC Press, 2005) is incorporated by reference in its entirety. Although the amino-chemical modification method is not limited, it includes, but is not limited to, modification by thiolation, thiolation, Lysine pyridylation, reductive alkylation, 2,4,6-trinitrobenzenesulfonic acid (TNBS) trinitrophenylated amino group, by oxidation of cysteine percarboxylic acid to sulfo group C Acid and amino group modification of carboxyl group and sulfhydryl group, formation of a volatile derivative, formation of a mixed disulfide compound with other mercapto compounds, reaction with maleimide, carboxylation with iodoacetic acid or iodoacetamide, Cyanide is cyanide at alkaline pH. In this regard, 'Technicians refer to Current Protocols In Protein Science' (Eds. Coligan et al. (J〇hn Wiley & Sons NY 1995-2000) A broad range of methods related to chemical modification of proteins as described in Chapter 15. Simplified S's modified amino acid residues of the protein are often formed based on the reaction of the adjacent two prison compounds (such as benzoquinone formaldehyde, 2,3-butanedione, and 1,2-enephthalenedione). Compound. Another example is the reaction of pyruvic aldehyde with an arginine residue. Cysteine can be modified without modification with nucleophilic sites such as lysine and histidine. Therefore, a large number of reagents can be modified with cysteine. The company's website, such as Sigma-Aldrich (http://www.sigma-aldrich.com), contains information on specific reagents. Selective reduction of disulfide bonds in proteins is also common. Disulfide bonds can form and oxidize in biopharmaceutical heat treatment. 154845.doc 112 201200594 Woodward's reagent K can be used to modify specific glutamic acid residues β N-(3--f-aminopropyl)-Ν'-ethyl-carbodiimide can be used to form lysine Intramolecular crosslinking of residues and glutamic acid residues. For example, diethyl pyrocarbonate is a reagent that modifies a histidine residue. Histidine can also be modified using 4-hydroxy-2-nonenal. The reaction of a lysine residue with other hydrazine-amino groups, for example, facilitates binding of the peptide to the surface or cross-linking of the protein/peptide. Lysine poly is the attachment point of poly(ethylene) glycol and is also the major modification site for protein glycosylation. The methionine residue of the protein can be modified by iodoacetamide, bromoethylamine, amiamine tau, and the like. Tetranitrodecane and oxime-ethenyl imidazole can be used for the modification of tyrosine residues. The cross-linking formed by di-tyrosine can be used to complete the modification of β-tryptophan by hydrogen peroxide/copper ions. In recent studies using β-bromoarene quinone imine, 2-hydroxy-5-nitrobenzyl bromide or 3-bromo-3-methyl-2-(2-nitrophenylhydrazino)_3Η-吲哚 (BPNS-skatole). § Cross-linking of proteins with valeric acid, polyethylene glycol diacrylate and formic acid For the preparation of hydrogels, successful modification of therapeutic proteins and peptides containing polyethylene glycol often prolongs the half-life of the loop. Allergen chemical modifications for immunotherapy are often achieved by aminoguanidine of potassium cyanate. A peptide or variant 'where the peptide is modified or contains a non-peptide bond, preferably an embodiment of the invention. In general, peptides and variants (at least peptide linkages between amino acid residues) can be synthesized using the solid phase peptides of Lu et al. (1981) and the references listed herein to synthesize Fmoc-polyamide. The pattern is synthesized. The methoxycarbonyl (Fmoc) group provides temporary protection for the N-amino group. Repeated cleavage of a protecting group that is highly sensitive to this domain in 20% dimethyl acridine in guanamine using N,N-dimethyl 154845.doc •113·201200594. Due to their butyl ether (in the case of serine threonine and sulphate), butyl ester (in the case of glutamic acid and aspartic acid), tert-butoxycarbonyl derivative (in lysine) In the case of acid and histidine), a trityl derivative (in the case of cysteine) and a 4-decyloxy-2,3,6-trimethylbenzene hydrazino derivative (in the case of acid and histidine) In the case of arginine, the side chain function may be protected. As long as the indoleamine and asparagine are C-terminal residues, the side bond amino functional protection is carried out by the 4,4'-dimethoxydiphenyl group. The solid phase support is based on a polydimercapto acrylamide polymer consisting of three monomeric dimercapto acrylamide (skeletal monomer), bis propylene ethylene diamine (crosslinking agent) and N-propylene hydrazine Methyl creatinine (functional agent) is composed. The resin-linking agent used is an acid-sensitive 4-hydroxydecylphenoxyacetic acid derivative. All amino acid derivatives are added as their pre-formed symmetrical anhydride derivatives, except for aspartame and hydrazine amines, which use reversed N,N-dicyclohexylcarbodiimide via benzotriazole Joined by the coupling program. All coupling and deprotection reactions were monitored using Bp diketone, benzoic acid or is〇tjn test procedures. After completion of the synthesis, the peptide was cleaved from a resin support accompanied by removal of the side chain protecting group with a concentration of 95% trifluoroacetic acid containing a 50% scavenger mixture. Commonly used scavenger mixtures include ethanedithiol, phenol, anisole and water, with the exact choice based on the amino acid composition of the synthetic peptide. In addition, solid phase and liquid phase methods are possible in combination with the use of a pair (see, for example, Bruckdorfer et al. Trifluoroacetic acid is evaporated in vacuo and subsequently removed by titration with diethyl ether carrying the crude peptide. Extraction procedure (after lyophilization of the aqueous phase, the procedure 154845.doc -114-201200594 peptides without a scavenger mixture) removes any existing scavenger mixture. The synthase can be obtained from Calbiochem-Novabiochem (UK) Company (NG7 2QJ, UK). Purification can be carried out by any one or combination of the following techniques, such as: recrystallization, size exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography, and (usually) reversed phase efficiency Liquid chromatography (eg using acetonitrile/water gradient separation) Peptide analysis can be performed using the following methods: thin layer chromatography, electrophoresis, in particular, capillary electrophoresis, solid phase extraction (CSPE), reversed phase high performance liquid chromatography Chromatography, amino acid analysis after acid hydrolysis, fast atom bombardment (FAB) mass spectrometry, and MALDI, ESI-Q-TOF mass spectrometry. The invention proposes a nucleic acid (such as a polynucleotide) encoding a peptide or peptide variant of the invention. The polynucleotide may be, for example, DNA, cDNA, PNA, CNA, RNA or a combination thereof, It may be a single or a double strand, or a native or stable form of a polynucleotide (eg, a polynucleotide having a phosphorothioate backbone), and may or may not contain as long as it encodes a peptide Introns. Of course, polynucleotides can only encode peptides that incorporate natural peptide bonds and contain natural amino acid residues. Another aspect of the invention provides an expression vector that can express a polypeptide according to the invention. Acids, various methods have been developed, especially for DNA, which can be ligated by supplementing the vector with a linker end, etc. For example, a complementary homopolymer orbit can be added to the DNA fragment, after which the DNA fragment is inserted into the vector DNA. Then, the carrier and the DNA fragment are combined by gas 154845.doc 115 201200594, which is a complementary homopolymer tail, to form a recombinant DNA molecule. 3 Synthesis of one or more cleavage sites The head provides an alternative method for ligation of DNA fragments to vectors. Synthetic linkers containing various restriction endonucleases are commercially available through a variety of pipelines including from International Biotech (International Bi0techn〇i〇gies Inc, New Haven, CN , USA), the preferred method for DNA modification encoding a polypeptide of the invention is the polymerase chain reaction method employed by Saiki et al. (1988). This method can be used to introduce DNA into a suitable vector (eg, by design The cleavage site can also be used to modify the DNA in other useful methods known in the art. A poxvirus vector or an adenoviral vector is preferred if a viral vector is used. Thereafter, the DNA (or RNA in the case of a retroviral vector) may be expressed in a suitable host to produce a polypeptide comprising the peptide or variant of the present invention. Thus, a DNA encoding a peptide or variant of the invention can be used according to known techniques, and appropriately modified by the methods described herein to construct an expression vector, which can then be used to transform a suitable host cell to express and produce the polypeptide of the invention. . These methods include the methods disclosed in the following U.S. Patents: 4,440,859, 4,530,901, 4,582,800, 4,677,063, 4,678,751, 4,704,362 > 4,710,463 '4,757,006 '4,766,075^4,810,648 〇 encoding DNA containing a polypeptide of the compound of the invention (or in the case of a retroviral vector, RNA) may be added to a variety of other sequences to be introduced into a suitable host. The companion DNA will depend on the nature of the host, the way the DNA is introduced into the host, and whether it needs to remain as a free form or a combination of 154845.doc •116· 201200594. In general, DNA can be attached to an expression vector (such as a plasmid) in the appropriate orientation and in the correct expression reading frame. If necessary, the DNA may be linked to the corresponding transcriptional and translational regulatory control nucleotide sequences recognized by the desired host, although such (four) functions are generally present in the expression vector. The vector is then introduced into the host by standard methods. In general, not all hosts are transformed by the vector. Therefore, it is necessary to select transformed host cells. The selection method involves the insertion of a DNA sequence into the expression vector with any necessary control elements that encodes selectable properties (e.g., antibiotic resistance) in the transformed cell. Alternatively, a gene having such a selection property can be used on a vector which is used to cooperatively transform a desired host cell. Then, the host cell transformed with the recombinant DNA of the present invention is cultured for a sufficiently long period of time under suitable conditions as described herein, to express the peptide which can be recovered later. There are many known expression lines, including bacteria (such as Escherichia coli and Bacillus subtilis), yeast (such as yeast), filamentous fungi (such as Aspergillus), plant cells, animal cells, and insect cells. The line may preferably be a mammalian cell, such as a CHO cell from the ATCC Cell Biology Library (CeU Bi〇1〇gy Co-). A typical mammalian cell constitutive expression vector plasmid includes c M V or an SV4 〇 promoter containing a suitable poly A tail and a resistance marker (e.g., neomycin). An example is the pSVL obtained from Pharmacia (Piscataway, New Jersey USA). An inducible mammalian expression vector 154845.doc 117 An example of 201200594 is pMSG, also available from Pharmacia. Useful yeast plasmid vectors are pRS403-406 and pRS413-416' are generally available from Stratagene Cloning Systems, Inc. (La Jolla, CA 92037, USA). Plasmids pRS403, pRS404, pRS405 and pRS406 are yeast integrated plasmids (Yip) with yeast selectable markers HIS3, TRP1, LEU2 and URA3. The pRS413-416 plasmid is a yeast centromere plasmid (Yep). Vectors based on the CMV promoter (eg, from Sigma-Aldrich) provide transient or stable expression, cytoplasmic expression or secretion 'and N-terminus in different compositions of FLAG, 3xFLAG, c-mF or MATN or C-end mark. These fusion proteins can be used to detect, purify and analyze recombinant proteins. Dual-label fusion provides flexibility for detection. The potent human cytomegalovirus (CMV) promoter regulatory region allows expression levels of constituent proteins in COS cells up to 1 mg/L. For weaker cell lines, the protein level is generally less than 0.1 mg/L. The appearance of the SV40 origin of replication will result in high level of replication of DNA in SV4〇 replication-containing COS cells. For example, the CMV vector may comprise the origin of pMB1 (a derivative of pBR322) in a bacterial cell, the calcium-indolease gene for breeding ampicillin resistance in bacteria, the origin of hGH polyA and f1. The vector containing the pro-proinsulin-directed (ppT) sequence can be used to direct the secretion of the FLAG fusion protein into the culture medium for purification using anti-FLAG antibodies, resins and plates. Other vectors and expression systems for use with a variety of host cells are well known in the art. The invention also relates to a host cell transformed with the construction of a polynucleotide vector of the invention. The host cell can be either a prokaryotic cell or a eukaryotic cell. In some cases the 'bacterial cell is a preferred prokaryotic host cell, typically 154845.doc -118· 8 201200594 is an E. coli strain, for example, E. coli strain DH5 (obtained from Bethesda Research Laboratories, Inc. (Bethesda, MD, USA)) and RR1 (obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA), ATCC No. 3 1343). Preferred eukaryotic host cells include yeast, insect and mammalian cells, preferably vertebrate cells, such as cells in mouse, rat, monkey or human fibroblasts and colon cancer cell lines. Yeast host cells include YPH499, YPH500 and YPH501, and are generally available from Stratagene Cloning Systems, Inc. (La Jolla, CA 92037, USA). Preferred mammalian host cells include Chinese hamster ovary (CHO) cells as CCL61 cells in ATCC, NIH Swiss mouse embryonic cells NIH/3T3 as CRL 1658 cells in ATCC, and monkey kidney-derived COS-1 cells as CRLs in ATCC. 1650 cells and 293 cells of human embryonic kidney cells. The preferred insect cell is Sf9 cells, which can be transfected with a baculovirus expression vector. A summary of the selection of suitable host cells for expression can be found in textbooks (Paulina Baibas and Argelia Lorence, Methods in

Molecular Biology Recombinant Gene Expression, Reviews and Protocols》Part One,Second Edition, ISBN 978-1-58829-262-9)和本領域技術人員知道的其他文獻中查到。 含本發明DNA結構的適當宿主細胞的轉化可使用大家熟 知的方法完成,通常取決於使用載體的類型。對於原核宿 主細胞的轉化,可參閱,如:Cohen等人(1972)在Proc. Natl. Acad. Sci. USA 1972,69,2110 中以及 Sambrook 等人 (1989)所著《Molecular Cloning, A Laboratory Manual》 Cold Spring Harbor Laboratory,Cold Spring Harbor, NY 中 154845.doc -119- 201200594 使用的方法。酵母細胞的轉化在Sherman等人(1986)在 Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY中有描述。Beggs(1978)Nature 275,104-109中所述方法也很有用。對於脊椎動物細胞,轉染這些 細胞的試劑等,例如,磷酸鈣和DEAE-葡聚糖或脂質體配 方’可從 Stratagene Cloning Systems 公司或 Life Technologies 公司(Gaithersburg, MD 20877,美國)獲得。 電穿孔也可用於轉化和/或轉染細胞,是本領域用於轉化 酵母細胞、細菌細胞、昆蟲細胞和脊椎動物細胞大家熟知 的方法。 被成功轉化的細胞(即含本發明DNA結構的細胞)可用大 家熟知的方法(如PCR)進行識別。另外,上清液存在的蛋 白可使用抗體進行檢測。 應瞭解,本發明中的某些宿主細胞用於製備本發明中的 肽’例如細菌細胞、酵母細胞和昆蟲細胞。但是,其他宿 主細胞可能對某些治療方法有用。例如,抗原提呈細胞 (如樹突狀細胞)可用于表達本發明中的肽,使他們可以加 載入相應的MHC分子中。因此,本發明提出了含本發明中 核酸或表達載體的一種宿主細胞。 在-個優選實施方案中’宿主細胞為抗原提呈細胞, 其是樹突狀細胞或抗原提呈細胞。目前,載有含攝護腺 ^生鱗酸酶(PAP)重組融合蛋白的Apc正在針對用於治療 護腺癌(Sipuleucel-T)而進行研究(Rini et ^ 67_74;8卬州 al. 3089-94) 〇 丨涵.doc .丨2〇_ ⑧ 201200594 法另二二本發明提出了一種配製-種狀及其變體的方 八離肽匕括培養宿主細胞和從宿主細胞或其培養基中 分離肽。 在另一個實施方案中,本發明中的肽、核酸或表達載體 用於藥物中。例如,狀或其變體可製備為靜脈㈣注射 劑、皮下(S.C.)注射劑、皮内(i.d.)注射劑、腹腔(i.p.)注射 劑肌肉(i.m·)注射劑。肽注射的優選方法包括I。、 Ld·、i.p.、Lm.和i v注射。dna注射的優選方法為丨^、 i.m.、s.c,、i.p.和i,v·注射。例如,給予 5〇 5 叫, 優選為125 至500 的肽或DNA,這取決於具體的肽或 DNA。上述劑$範圍在以前的試驗中成功使用(Brunsvig al. 1553-64; Staehler et al.)。 本發明的另一方面包括一種體外製備啟動的T細胞的方 法’該方法包括將T細胞與載有抗原的人MHC分子進行體 外連接’這些分子在合適的抗原提呈細胞表面表達足夠的 一段時間從而以抗原特異性方式啟動T細胞,其中所述抗 原為根據本發明所述的一種肽。優選情況是足夠量的抗原 與抗原提呈細胞一同使用。 優選情況是,哺乳動物細胞的TAP肽轉運載體缺乏或水 準下降或功能降低。缺乏T AP肽轉運載體的適合細胞包括 T2、RMA-S和果蠅細胞。TAP是與抗原加工相關的轉運載 體。 人體肽載入的缺陷細胞株T2從屬美國菌種保藏中心 (ATCC, 12301 Parklawn Drive, Rockville, Maryland 20852 j 154845.doc -121 - 201200594 美國)目錄號CRL1992;果蠅細胞株Schneider 2號株從屬 ATCC目錄CRL 19863 ;小鼠RMA-S細胞株Karre等人在 19 8 5年描述過。 優選情況是’宿主細胞在轉染前基本上不表達MHCI類 分子。刺激因數細胞還優選為表達對T細胞共刺激信號起 到重要作用的分子’如,B7.1、B7.2、ICAM-1和LFA 3中 的任一種分子。大量MHCI類分子和共刺激分子的核酸序 列可從GenBank和EMBL資料庫中公開獲得。 當MHCI類表位用作一種抗原時,τ細胞為CD8陽性 CTL ° 如果抗原提呈細胞受到轉染而表達這種表位,則優選的 細胞包括一個表達載體’該載體有能力表達含SEQ ID ΝΟ:1至SEQIDNO:95的肽或其變體氨基酸序列。 可使用其他一些方法來體外生成CTL。例如,可使用 Peoples等人(1995)描述的方法和Kawakami等人(1992)使用 自體腫瘤浸潤性淋巴細胞生成CTL的方法。Plebanski等人 在(1995)使用自體外周血淋巴細胞(Plb)制得CTL。 Jochmus等人(1997)描述了用肽或多肽脈衝處理樹突狀細胞 或通過與重組病毒感染而製成自體CTL。Hill等人(1995)和 Jerome等人(1993)使用B細胞製成自體CTL。此外,用肽或 多肽脈衝處理或用重組病毒感染的巨噬細胞可用於配製自 體CTL。Walter等人在2003年描述了通過使用人工抗原提 呈細胞(aAPC)體外啟動T細胞,這也是生成作用於所選肽 的T細胞的一種合適方法。在這項研究中,根據生物素: I54845.doc -122- ⑧ 201200594 鏈黴素生物化學方法通過將預製的MHC:肽複合物耦合到 聚苯乙烯顆粒(微球)而生成aAPC。該系統實現了對aApc 上的MHC密度進行精確調節,這使得可以在血液樣本中選 擇地引發高或低親合力的高效抗原特異性丁細胞反應。除 了 MHC :肽複合物外,aAPC還應攜運含共刺激活性的其 他蛋白,如耦合至表面的抗_CD28抗體。此外,此類基於 aAPC的系統往往需要加入適當的可溶性因數,例如,諸 如白細胞介素-12的細胞因數。 也可用同種異體細胞制得τ細胞,在w〇 97/26328中詳 細描述了一種方法,以參考文獻方式併入本文。例如,除 了果蠅細胞和T2細胞,也可用其他細胞來提呈肽,如CH〇 細胞、杆狀病毒感染的昆蟲細胞、細菌、酵母、牛痘感染 的靶細胞。此外,也可使用植物病毒(例如,參閱卩沉^等 人(1994)描述了將豇豆花葉病毒開發為一種提呈外來肽的 rlj產系統。 被啟動的T細胞直接針對本發明中的肽,有助於治療。 因此,本發明的另一方面提出了用本發明前述方法制得的 啟動T細胞。 按上述方法製成的啟動τ細胞將會有選擇性地識別異常 表達含SEQ ID NO: 1至95氨基酸序列一種多肽的細胞。 優選情況是,T細胞通過與其含hlA/肽複合物的TCR相 互作用(如’結合)而識別該細胞。T細胞是殺傷患者無細 胞方法中有用的細胞,其靶細胞異常表達含本發明中氨基 酸序列的多肽。此類患者給予有效量的啟動T細胞。給予 154845.doc • 123- 201200594 患者的τ細胞可能源自該患者,並按上述方法啟動(即,它 們為自體Τ細胞)。或者,Τ細胞不是源自該患者,而是來 自另一個人。當然’優選情況是該供體為健康人。發明人 使用「健康個人」系指一個人一般狀況良好,優選為免疫 系統合格,更優選為無任何可很容易測試或檢測到的疾 病。 根據本發明,CD8陽性Τ細胞的體内靶細胞可為腫瘤細 胞(有時表達MHCI類抗原)和/或腫瘤周圍的基質細胞(腫瘤 細胞)(有時也表達MHCI類抗原;(Dengjel et al. 4163- 70))。 本發明所述的T細胞可用作治療性組合物中的活性成 分。因此’本發明也提出了一種殺傷患者靶細胞的方法, 其中患者的靶細胞異常表達含本發明中氨基酸序列的多 肽’該方法包括給予患者上述有效量的τ細胞。 發明人所用的「異常表達」的意思還包括,與正常表達 水準相比’多肽過量表達,或該基因在源自腫瘤的組織中 未表達’但是在該腫瘤中卻表達。「過量表達」系指多肽 水準至少為正常組織中的1 _2倍;優選為至少為正常組織 中的2倍,更優選為至少5或10倍。 Τ細胞可用本領域已知的方法制得(如,上述方法)。 Τ細胞繼轉移方案為本領域所熟知的方案並可在以下參 考文獻中找到’例如:(Dudley et al. 850-54; Dudley et al. 2346-57; Rosenberg et al. 889-97; Rosenberg et al. 1676- 80; Yee et al. 16168-73);綜述(Gattinoni et al. 383-93)和 I54845.doc -124- 201200594 (Morgan et al.) 〇 本發明的任一分子(即肽、核酸、表達載體、細胞,啟 動CTL、Τ細胞受體或編碼核酸)都有益於治療疾病,其特 點在於細胞逃避免疫反應的打擊。因此,本發明的任一分 子都可用作藥劑或用於製造藥劑。這種分子可單獨使用也 可與本發明十的其他分子或已知分子聯合使用。 本發明中所述的藥劑優選為一種疫苗。該疫苗可直接給 到患者的受影響器官,也可Ld.、Lm.、s.c·、ip>iv.注 射方式全身給藥,或體外應用到來自患者或其細胞株的細 胞(隨後再將這些細胞注入到患者中),或體外用於從來自 患者的免疫細胞的一個細胞亞群(然後再將細胞重新給予 患者)。如果核酸體外注入細胞,可能有益於細胞轉染, 以共同表達免疫刺激細胞因數(如白細胞介素_2)。肽可完 全單獨給藥,也可與免疫刺激佐劑相結合(見下文)、或與 免疫刺激細胞因數聯合使用、或以適當的輸送系統給藥 (例如脂質體)。該肽也可共軛形成一種合適的載體(如鑰孔 蟲戚血藍蛋白(KLH)或甘露)到合適的載體(參閱w〇 95/18145及Longeneckerl993)。該肽也可進行標記、或可 能是一種融合蛋白或是雜合分子。本發明中給出肽序列的 狀預期會刺激CD4或CD8T細胞。但是,有cd4T輔助細胞 提供幫助時,對CD8 CTL的刺激更為有效。因此,對於刺 激CD8 CTL的MHCI類表位,一種雜合分子的融合夥伴或 片段提供了刺激CD4陽性T細胞的適當表位。CD4j〇 cD8 刺激表位為本領域所熟知、並包括本發明中確定的表位。 154845.doc • 125· 201200594 一方面’疫苗包括至少含有SEQ ID ΝΟ:1至33中提出的 一種肽以及至少另外一種肽,優選為2至50個、更優選為2 至25個、再優選為2至15個、最優選為2、3、4、5、6、 7、8、9、1〇、11、12或13個肽。肽可能從一個或多個特 定TAA中衍生’並且可能與mhCI類分子結合。 多聚核苷酸可為基本純化形式,也可包被於載體或輸送 系統。核酸可能為DNA ' cDNA、PNA、CNA、RNA,也 可能為其組合物。這種核酸的設計和引入方法為本領域所 熟知。例如,文獻中有其概述(Pasc〇1〇 et al U7 22)。多 核苷酸疫苗很容易製備,但這些載體誘導免疫反應的作用 模式尚未完全瞭解《合適的載體和輸送系統包括病毒DNa 和/或RNA,如基於腺病毒、牛痘病毒、逆轉錄病毒、皰 疹病毒、腺相關病毒或含一種以上病毒元素的混合病毒的 系統。非病毒輸送系統包括陽離子脂質體和陽離子聚合 物,疋DNA輸送所屬領域内熟知的系統。也可使用物理輸 送系統,如通過「基因搶」。肽或核酸編碼的肽可以是一 種融合蛋白’例如’含刺激T細胞進行上述cdr的表位。 本發明的藥劑也可能包括一種或多種佐劑。佐劑是那些 非特異性地增強或加強免疫反應的物質(例如,通過CTL和 輔助T(TH)細胞介導的對一種抗原的免疫應答,因此被視 為對本發明的藥劑有用。適合的佐劑包括(但不僅限 於)1018ISS、鋁鹽、Amplivax@、AS15、BCG cp_ 870,893、CPG7909、CyaA、dSLIM、鞭毛蛋白或鞭毛蛋白 衍生的 TLR5 配體、FLT3 配體、GM-CSF、IC30、 154845.doc ⑧ 201200594 IC31、味噎莫特(ALDARA®)、resiquimod、ImuFact IMP321、白細胞介素IL-2、IL-13、IL-21、干擾素α或β, 或其聚乙二醇衍生物、IS Patch、ISS、ISCOMATRIX、 ISCOMs、Juvlmmune、LipoVac、MALP2、MF59、單碟醯 脂 A、Montanide IMS 1312、Montanide ISA 206、 Montanide ISA 50V、Montanide ISA-5 1、水包油和油包水 乳狀液、OK-432、OM-174、OM-197-MP-EC、ONTAK、 OspA、PepTel®載體系統、基於聚丙交酯複合乙交酯 [PLG]和右旋糖苷微粒、重組人乳鐵傳遞蛋白SRL172、病 毒顆粒和其他病毒樣顆粒、YF-17D、VEGF trap、R848、 β-葡聚糖、Pam3Cys、源自皂角苷、分支桿菌提取物和細 菌細胞壁合成模擬物的Aquila公司的QS21刺激子,以及其 他專有佐劑,如:Ribi's Detox、Quil或Superfos。優選佐 劑如:弗氏佐劑或GM-CSF。前人對一些樹突狀細胞特異 性免疫佐劑(如MF59)及其製備方法進行了描述(Allison and Krummel 932-33)。也可使用細胞因數。一些細胞因數 直接影響樹突狀細胞向淋巴組織遷移(如,TNF-),加速樹 突狀細胞成熟為T淋巴細胞的有效抗原提呈細胞(如,GM-CSF、IL-1和IL-4)(美國5849589號專利,特別以其完整引 用形式併入本文),並充當免疫佐劑(WIL-12、IL-15、IL-23、IL-7、IFN-α、IFN-p)[Gabrilovich 1996]。 據報告,CpG免疫刺激寡核苷酸可提高佐劑在疫苗中的 作用。如果沒有理論的約束,CpG寡核苷酸可通過Toll樣 受體(TLR)(主要為TLR9)啟動先天(非適應性)免疫系統從 154845.doc -127- 201200594 而起作用》CPG引發的TLR9活化作用提高了對各種抗原 的抗原特異性體液和細胞反應,這些抗原包括肽或蛋白抗 原、活病毒或被殺死的病毒、樹突狀細胞疫苗、自體細胞 疫苗以及預防性和治療性疫苗中的多糖結合物。更重要的 是,它會增強樹突狀細胞的成熟和分化,導致Thi細胞的 活化增強以及細胞毒性τ淋巴細胞(CTL)生成加強,甚至 CD4T細胞説明的缺失。甚至有疫苗佐劑的存在也能維持 TLR9活化作用誘發的Th|偏移,這些佐劑如:正常促進 Τη2偏移的明礬或弗氏不完全佐劑(IFA)。CpG寡核苷酸與 以下其他佐劑或配方一起製備或聯合給藥時,表現出更強 的佐劑活性’如微粒、納米粒子、脂肪乳或類似製劑,當 抗原相對較弱時,這些對誘發強反應尤為必要。他們還能 加速免疫反應’使抗原劑量減少約兩個數量級,在有些實 驗中’對不含CpG的全劑量疫苗也能產生類似的抗體反應 (Kneg 471-84)。美國6406705 B1號專利對CpG寡核苷酸、 非核酸佐劑和抗原結合使用促使抗原特異性免疫反應進行 了描述。一種CpGTLR9拮抗劑為Mologen公司(德國柏 林)的dSLIM(雙幹環免疫調節劑),這是本發明藥物組合物 的優選成分。也可使用其他如TLR結合分子,如:RNA結 合 TLR7、TLR8和 /或 TLR9。 其他有用的佐劑例子包括(但不限於)化學修飾性 CpG(如 CpR、idera)、dsRNA模擬物,如,Poly(I:C)及其 衍生物(如:AmpliGen®、Hiltonol®、多聚-(ICLC)、多聚 (IC-R)、多聚(I:C12U))、非CpG細菌性DNA或RNA以及免 I54845.doc (S) •128· 201200594 疫活性小分子和抗體,如:環磷醯胺、舒尼替單抗、貝伐 單抗、西樂葆、NCX_4016、西地那非、他達拉非、伐地 那非、索拉非尼 '替莫唾胺、temSir〇Hmus、、Cp_ 547632、帕唑帕尼、VEGF Trap、ZD2171、AZD2171、 抗-CTLA4、免疫系統的其他抗體靶向性主要結構(如:抗_ CD40、抗-TGFp、抗_TNFa受體)和8(:58175,這些藥物都 可能有治療作用和/或充當佐劑。技術人員無需過度進行 不當實驗就很容易確定本發明中有用的佐劑和添加劑的數 量和濃度6 優選佐劑為咪喹莫特、resiquimod、GM-CSF '環碟醯 胺、舒尼替尼、貝伐單抗、干擾素_a、CpG募核苷酸和衍 生物、t (I:C)和衍生物、RNA、西地那非、以及plg的微 粒製劑或病毒顆粒。 本發明藥物組合物的一個優選實施方案中,佐劑從含集 落刺激因數製劑中選擇,如粒細胞巨噬細胞集落刺激因數 (GM-CSF ’沙格司亭)' 咪喹莫特、resiqUim〇d和干擾素_ a ° 本發明藥物組合物的一個優選實施方案中,佐劑從含集 落刺激因數製劑中選擇’如粒細胞巨噬細胞集落刺激因數 (GM-CSF ’沙格司亭)、。米啥莫特和resimiquim〇d 〇 在本發明藥物組合物的一個優選實施方案中,佐劑為咪 啥莫特或resiquimod。 此組合藥物為非腸道注射使用,如皮下、皮内、肌肉注 射,也可口服。為此,肽和其他選擇性分子在藥用載體中 154845.doc -129- 201200594 分解或懸浮,優選為水載體。此外,組合物可包含辅料, 如:緩衝劑、結合劑、衝擊劑、稀釋劑、香料、潤滑劑 等。這些肽也可與免疫刺激物質合用,如:細胞因數。可 用於此類組合物的更多輔料可在從A Kibbe所著的 Handbook 〇f pharmaceutical Excipients(第 3版,2〇〇〇年, 美國醫藥協會和制藥出版社)等書中獲知。此組合藥物可 用於阻止、預防和/或治療腺瘤或癌性疾病。EP2113253中 有示例製劑。 本發明提出了一種藥劑,其有利於治療癌症,尤其是胃 癌腎細胞癌、結腸癌、非小細胞肺癌、腺癌、攝護腺 癌、良性腫瘤和惡性黑色素瘤。 本發明的一個試劑盒套件還包括: (a) —個容器,包含上述溶液或凍乾粉形式的藥物組合物; (b) 可選的第二個容器,其含有凍乾粉劑型的稀釋劑或重組 〉谷液;和 (c) 可選項,⑴使用溶液或(ii)重組和/或使用凍乾粉劑型的 說明書。 6亥套件還步包括一個或多個(iii)緩衝劑,(iv)稀釋劑, (v)過濾液,(Vi)針,或(V)注射器。容器優選為瓶子、西林 瓶、注射器或試管;也可為多用途容器。藥物組合優選為 凍幹粉劑。 本發明中的套件優選包含一種置於合適容器中的康幹製 劑以及重組和/或使用說明。適當的容器包括,例如瓶 子、西林瓶(如雙室瓶)、注射器(如雙室注射器)和試管。 154845.doc •130· 201200594 5亥奋器可能由多種材料製成,如玻璃或塑膠。優選情況 疋,套件和/或容器上有說明,表明重組和/或使用的指 示例如’標籤可能表明凍幹劑型重組為上述肽濃度。該 標籤可進一步表明製劑用於皮下注射。 存放製劑的谷器可使用多用途西林瓶,使得可重複給予 (例如,2-6次)重組劑型。該套件可進一步包括裝有合適稀 釋劑(如碳酸氫鈉溶液)的第二個容器。 稀釋液和凍幹製劑混合後,重組製劑中的肽終濃度優選 為至夕0.15 mg/mL/肽(=75 軏 g),不超過 3 mg/mL/肽(=1500 軏g)。該套件還可包括商業和用戶角度來說可取的其他材 料,包括其他緩衝劑、稀釋劑,過濾液、針頭、注射器和 帶有使用說明書的包裝插頁。 本發明中的套件可能有一個單獨的容器,其中包含本發 明所述的藥物組合物製劑’該製劑可有其他成分(例如, 其他化合物或及其藥物組合物),也可無其他成分,或者 每種成分都有其不同容器。 優選情況是,本發明的套件包括與本發明的一種製劑, ώ裝後與第二種化合物(如佐劑(例如GM_CSF)、化療藥 物、天然產品、激素或拮抗劑、抗血管生成劑或抑制劑、 凋亡誘導劑或螯合劑)或其藥物組合物聯合使用。該套件 的成分可進行預絡合或每種成分在給予患者之前可放置於 單獨的不同容器。該套件的成分可以是一種或多種溶液, 優選為水溶液,更優選為無菌水溶液。該套件的成分也可 為固體形式,加入合適的溶劑後轉換為液體,最好放置於 154845.doc 131 201200594 另一個不同的容器中。 〜療套件的容器可能為西林瓶、試管、燒瓶、瓶子、注 射益、或任何其他盛裝固體或液體的工具。通常,當成分 不八一種時,套件將包含第二個西林瓶或其他容器,使之 可以單獨定量。該套件還可能包含另一個裝載藥用液體的 谷盗。優選情況是,治療套件將包含一個設備(如,一個 或多個針頭、注射器、滴眼器、吸液管等),使得可注射 本發明的藥物(本套件的組合物)。 本發明的藥物配方適合以任何可接受的途徑進行肽給 藥’如口服(腸道)、鼻内、眼内、皮下、皮内、肌内,靜 脈或經皮給藥《優選為皮下給藥,最優選為皮内給藥,也 可通過輸液泵給藥。 由於源自 MST1R、UCHL5、SMC4、NFYB、PPAP2C、 AVL9、UQCRB和MUC6的本發明中的肽從胃癌中分離而 得’因此,本發明的藥劑優選用於治療胃癌。 下列描述優選方案的實施例將對本發明進行說明(但是 不僅限於此)。為了本發明之目的,所有參考文獻均以完 整引用的形式併入本文》 實施例 實施例1 : 細胞表面提呈的腫瘤相關肽的識別 組織樣本 患者腫瘤組織由日本大阪的京都府立醫科大學(KPUM) 和日本大阪的大阪市立大學醫學研究生院(OCU)提供。所 154845.doc •132· ⑧ 201200594 有患者在手術前都獲得了書面知情同意。手術後立即用液 態氮對組織進行冷休克處理,在分離TUMAP前儲存於-80 °C下。 從組織樣本中分離HLA肽 根據方案略加修改,使用HLA-A、HLA-B、HLA-C特 異性抗體W6/32、CNBr活化的瓊脂糖凝膠、酸處理和超 濾方法以固體組織的免疫沉澱法獲得了冷休克組織樣本的 HLA肽庫(Falk,K.1991; Seeger,F.H.T1999)。 方法 獲得的HLA肽庫根據其疏水性用反相色譜(Acquity UPLC system,Waters)分離,洗脫肽用裝有電喷霧源的 LTQ- Orbitrap雜交質譜(ThermoElectron)進行 了分析。肽 庫被直接載入填充有1.7 μηι C18反相材料(Waters)的分 析用溶煉石英微毛細管柱(75 μιη内徑x250 mm),應用流 速為400 nL每分鐘。隨後,使用來自流速為300 nL每分 鐘、濃度為10%至33%溶劑 B中的兩步180分鐘二元梯度 法對肽進行分離。梯度由溶劑A(含0.1 %曱酸的水)和溶劑 B(含0.1%甲酸的乙腈)。金鍍膜玻璃毛細管(PicoTip, New Objective)用於引入到納升電喷霧源。使用前5(TOP5)策略 在資料依賴模式下操作LTQ-Orbitrap質譜儀。簡言之’ 首先以高精確品質完全掃描在orbitrap開始一個掃描週期 (R=30 000),之後用先前選定離子的動態排除技術在 orbitrap中對5種含量最為豐富的前體離子進行MS/MS掃描 (R=7500)。串聯質譜以SEQUEST和另一種手動控制器進行 154845.doc -133· 201200594 解凟。生成的自然肽破碎模式與合成序列相同參考肽的破 碎模式進行比較後,確保了被識別的肽序列。圖1顯示了 從腫瘤組織中獲得的MHCI類相關肽CDC2-001的一個典 型譜及其在UPLC系統中的洗脫譜。 實施例2 : 編碼本發明肽的基因的表達譜 並不是所有確定為由MHC分子提呈于腫瘤細胞表面的肽 都適5用於免疫治療,這是因為這些肽大部分都由許多類 型細胞表達的正常細胞蛋白衍生而來。這些肽只有很少一 部分具有腫瘤相關性,並可能能夠誘導對其來源腫瘤識別 有高特異性的T細胞。為了確定這些肽並最大限度地降低 這些肽接種所誘導的自身免疫風險,發明人主要採用從過 量表達於腫瘤細胞上(與大多數正常組織相比)的蛋白中所 獲得的狀。 理想的肽來源於對該腫瘤獨一無二且不出現於其他組織 中的蛋白中。為了確定具有與理想基因相似表達譜的基因 所產生的肽,確定的肽被分別分配到蛋白和基因中,從中 獲得基因並生成這些基因的表達譜。 RNA來源與製備 手術切除組織標本由兩個不同的臨床中心(參見實施例 1)在獲付母名患者的書面知情同意後提供。手術後立即在 液態氮中速凍腫瘤組織標本,之後在液態氮中用杵白句 漿·。使用TRI5式劑(Ambion公司,Darmstadt,德國)之後用 RNeasy(QIAGEN公司’ Hilden,德國)清理從這些樣本中 154845.doc . 134- ⑧ 201200594 製備總RNA ;這兩種方法都根據製造商的方案進行。 健康人體組織中的總RNA從商業途徑獲得(Ambion公 司,Huntingdon,英國;Clontech公司,海德堡,德國; Stratagene公司,阿姆斯特丹,荷蘭;BioChain公司, Hayward,CA,美國)。混合數個人(2至123個人)的RNA, 從而使每個人的RNA得到等加權。白細胞從4個健康志願 者的血液樣本中分離獲得。 所有RNA樣本的品質和數量都在Agilent 2100 Bioanalyzer分析儀(Agilent公司,Waldbronn,德國)上使用 RNA6000 Pico LabChip Kit試劑盒(Agilent 公司)進行評 估。 微陣列實驗 所有腫瘤和正常組織的RNA樣本都使用Affymetrix Human Genome(HG)U133A或 HG-U133 Plus 2.0Affymetrix 寡核苷酸晶片(Affymetrix公司’ Santa Clara,CA,美國) 進行基因表達分析。所有步驟都根據Affymetrix手冊進 行。簡言之,如手冊中所述,使用Superscript RTII (Invitrogen 公司)以及 oligo-dT-T7 引物(MWG Biotech 公 司,Ebersberg,德國)從5-8 pg RNA中合成雙鏈cDNA。用 BioArray High YieldRNATranscript Labelling Kit(ENZO Diagnostics公司,Farmingdale,NY,美國)進行 U133A 測 定或用 GeneChip IVT Labelling Kit(Affymetrix公司)進行 U133 Plus 2.0測定,之後用鏈黴親和素-藻紅蛋白和生物素 化抗鏈黴素蛋白抗體(Molecular Probes公司,Leiden,荷 154845.doc -135- 201200594 蘭)進行破碎、雜交和染色,這樣完成體外轉錄。用 Agilent 2500A GeneArray Scanner(U133A)或 Affymetrix Gene-Chip Scanner 3000(U133 Plus 2.0)對圖像進行掃描, 用GCOS軟體(Affymetrix公司)在所有參數默認設置情況 下對資料進行分析。為了實現標準化,使用了 Affymetrix 公司提供的100種管家基因(housekeeping gene)。相對表達 值用軟體給定的signal log ratio進行計算,正常腎組織樣 本的值任意設置為1.0。 本發明的源基因在胃癌中高度過量表達的表達譜如圖2 所示。 實施例3 : IMA941MHC-I類提呈肽的體外免疫原性 為了獲知關於本發明的TUMAP免疫原性方面的資訊, 我們使用了 Walter, S、Herrgen,L、Schoor,Ο、Jung,G、 Wernet, D、Buhring,HJ、Rammensee,HG和 Stevanovic,S 等人 2003 年在 Cutting edge:predetermined avidity of humanCD8T cells expanded on calibratedMHC/anti-CD28-coated microspheres,J.Immunol.,171,4974-4978—文中所 述的被廣為接受的體外刺激平臺進行了研究。用這種方 法,本發明32種HLA-A*2402限制TUMAP都顯示出免疫原 性,這表明這些肽為對抗人CD8+前體T細胞的T細胞表位 (表 4)。 CD8+ T細胞體外啟動 為了用載有肽-MHC複合物(pMHC)和抗CD28抗體的人工 154845.doc -136- 201200594 抗原提呈細胞(aAPC)進行體外刺激,我們首先從 Tuebingen血庫中獲取健康供體白細胞清除術後新鮮HLA-A*24產物而分離出CD8T細胞。 然後,以白細胞清除術所得產物直接豐富CD8T細胞, 或首先運用標準梯度分離介質(PAA公司,C6lbe,德國)分 離出PBMC(外周血單核細胞)。分離出的CD8淋巴細胞成 PBMC使用前在T細胞培養基(TCM)中培養,培養基包枯 RPMI-Glutamax(Invitrogen公司,Karlsruhe,德國)並補充 10% 熱滅活人 AB jk 清(PAN-Biotech 公司,Aidenbach,德 國)、100U/ml青黴素/100 pg/ml鏈黴素(Cambrex公司, Cologne,德國),1 mM丙酮酸鈉(CC Pro公司, Oberdorla,德國)和20 pg/ml慶大黴素(Cambrex公司)。在 此步驟,2.5 ng/ml 的 IL-7(PromoCell公司,Heidelberg,德 國)和 10 U/ml 的 IL- 2(Novartis Pharma公司,Niirnberg,德 國)也加入TCM。CD8+淋巴細胞使用MicroBeads(Miltenyi Biotec公司,Bergisch-Gladbach,德國)通過正向選擇進行 分離。 pMHC/抗-CD28塗層珠的生成、T細胞的刺激和讀出方法 如前所述(Walter et al. 4974-78)並作微小改動。簡言之’ 製備了缺乏跨膜域和在重鏈羧基端生物素化的生物素化載 肽重組HLA-A*2402分子。純化的共刺激小鼠IgG2a抗人 CD28抗體 9.3 (Jung, Ledbetter,and Muller-Eberhard 4611, 15)使用製造商(Perbio公司,波恩,德國)推薦的N-羥基琥 珀醯亞胺生物素進行化學生物素化處理。所用珠為5.6 μπι 154845.doc -137- 201200594 的大鏈黴抗生物素蛋白包裹的多聚苯乙烯顆粒(Bangs Labooratories,伊利諾州,美國)。作為對照的pMHC分別 為 A*0201/MLA-001(從 Melan-A/MART-Ι 中修飾制得的肽 ELAGIGILTV)和 A*0201/DDX5-001(從 DDX5 中獲得的 YLLPAIVHI)。 800.000珠/200 μΐ包裹於96孔板,以600 ng生物素抗 CD28 + 200 ng相關生物素pMHC(高密度珠)存在。在37°C 下,在含 5 ng/ml IL-12(PromoCell)的 200 μΐ TCM 中共培養 lxlO6 CD8+T細胞與2χ105的清洗塗層珠3至4天,從而在96 孔板中啟動刺激。之後,一半培養基與補充80 U/ml IL-2 的新鮮TCM進行交換,並且在37°C下持續培養3至4天《這 種刺激週期總共進行3次。最後,用Live/dead-Aqua染料 (Invitrogen 公司,Karlsruhe,德國)、CD8-FITC抗體克隆 SK1(BD 公司,Heidelberg,德國)和 PE-或 APC-耦合 A*2402MHC多聚體染色而執行多聚體分析。對於分析, 使用了配有合適鐳射儀和篩檢程序的BD LSRII SORP細胞 儀。肽特異性細胞以占總CD8 +細胞的百分比形式進行計 算。多聚體分析結果使用FlowJo軟體(Tree Star公司, Oregon,美國)進行評估。特定多聚體+ CD8 +淋巴細胞的 體外填裝用適當的門控技術以及與陰性對照刺激組比較而 進行檢測。如果健康供體中的至少一個可評價的體外刺激 孔在體外刺激後發現含有特異性CD8+T細胞株(即該孔包 含至少1%特定多聚體+ CD8+T細胞,並且特定多聚體+的 百分比至少為陰性對照刺激中位數的1 0倍),則檢測給定 154845.doc -138- ⑧ 201200594 抗原的免疫原性。 IMA94 1肽的體夕卜免疫原性 對於54種測試之HLA-A*2402肽中之47種及3種測試之 HLA-A*0201肽中之3種,可藉由產生肽特異性T細胞株來 證明活體外免疫原性。圖3中展示本發明之兩種肽以及相 應陰性對照在TUMAP特異性多聚體染色後之例示性流式 細胞分析儀結果。本發明之54種A*2402及3種A*0201之結 果概述於表4中。 表4 :本發明中HLA I類肽的體外免疫原性 Immatics所做的體外免疫原性實驗的結果顯示所評估之陽 性受測試供體和板孔的百分比。每個肽至少評估四個供體 和4 8個板孔。 SEQ ID NO: 抗原 陽性供體/受測試 供體[%] 陽性孔/受測試孔 [%1 1 CDC2-001 83 28 2 ASPM-002 67 32 18 MMP3-001 11 1 4 MET-006 67 21 3 UCHL5-001 75 12 7 MST1R-001 50 13 33 KIF2C-001 17 2 9 SMC4-001 73 10 17 EPHA2-005 0 0 5 PROM 1-001 83 26 6 MMP11-001 33 11 8 NFYB-001 50 7 16 ASPM-001 17 3 20 PLK4-001 60 5 154845.doc -139- 201200594 14 ABL1-001 83 18 26 ATAD2-001 33 3 21 ATAD2-002 17 1 27 ATAD2-003 0 0 12 AVL9-001 100 31 22 COL12A1-001 0 0 23 COL6A3-001 0 0 24 FANCI-001 17 1 28 HSP90B1-001 50 7 15 MUC6-001 83 22 13 NUF2-001 100 50 19 NUF2-002 50 6 11 PPAP2C-001 83 29 25 RPS11-001 17 3 29 SIAH2-001 50 8 30 SLC6A6-001 17 1 10 UQCRB-001 83 24 31 IQGAP3-001 100 24 32 ERBB3-001 83 CCDC88A-001 0 0 CCNB1-003 33 3 CCND2-001 17 10 CCNE2-001 0 0 CEA-010 40 3 CLCN3-001 33 6 DNAJC10-001 50 15 DNAJC10-002 33 3 EIF2S3-001 17 1 EIF3L-001 100 29 EPPK1-001 17 1 GPR3 9-001 50 6 ITGB4-001 67 20 LCN2-001 17 1 SDHC-001 33 3 154845.doc •140- ⑧ 201200594 PBK-001 0 0 POLD3-001 67 7 PSMD14-001 17 1 PTK2-001 17 4 TSPAN1-002 17 1 ZNF598-001 83 17 下列肽已在Immatics之其他申請案中描述且包括在疫苗 IMA901(MET-001 及 TOP-001)、IMA910(MET-001 及 TOP-001)及 IMA950(IGF2BP3-001)。舉例來說,ΜΕΤ-00 1 可導 致特別好的活體内反應,此結果可被視為作為本發明之肽 在臨床上有用的證據。 SEQ ID NO: 抗原 陽性供體/受測試供 體[%】 陽性孔/受測試孔 ί%1 IGF2BP3-001 50 21 MET-001 67 42 TOP-OO1 40 10 所做的體外免疫原性實驗的結果顯示所評估之陽性受測 試供體和板孔的百分比。每個肽至少評估四個供體和48個 板孔》 參考文獻Molecular Biology Recombinant Gene Expression, Reviews and Protocols, Part One, Second Edition, ISBN 978-1-58829-262-9) and other literature known to those skilled in the art. Transformation of a suitable host cell comprising a DNA construct of the invention can be accomplished using well-known methods, usually depending on the type of carrier used. For the transformation of prokaryotic host cells, see, for example, Cohen et al. (1972) in Proc.  Natl.  Acad.  Sci.  USA 1972, 69, 2110 and Sambrook et al. (1989), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 154845. Doc -119- 201200594 The method used. Transformation of yeast cells is described by Sherman et al. (1986) in Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY. The method described in Beggs (1978) Nature 275, 104-109 is also useful. For vertebrate cells, reagents such as calcium phosphate and DEAE-dextran or liposome formulation can be obtained from Stratagene Cloning Systems, Inc. or Life Technologies, Inc. (Gaithersburg, MD 20877, USA). Electroporation can also be used to transform and/or transfect cells and is well known in the art for transforming yeast cells, bacterial cells, insect cells, and vertebrate cells. Successfully transformed cells (i.e., cells containing the DNA structure of the present invention) can be identified by well-known methods such as PCR. In addition, the protein present in the supernatant can be detected using an antibody. It will be appreciated that certain host cells of the invention are useful in the preparation of peptides such as bacterial cells, yeast cells and insect cells of the invention. However, other host cells may be useful for certain treatments. For example, antigen presenting cells (e. g., dendritic cells) can be used to express the peptides of the present invention so that they can be added to the corresponding MHC molecules. Accordingly, the present invention proposes a host cell comprising the nucleic acid or expression vector of the present invention. In a preferred embodiment the host cell is an antigen presenting cell which is a dendritic cell or an antigen presenting cell. Currently, Apc containing a recombinant fusion protein containing prostate luciferase (PAP) is being studied for the treatment of prostate cancer (Sipuleucel-T) (Rini et ^ 67_74; 8 Perak al.  3089-94) 丨 丨涵. Doc . 丨2〇_ 8 201200594 The second invention of the present invention proposes a formula - a species and a variant thereof, which comprises culturing a host cell and isolating the peptide from the host cell or its culture medium. In another embodiment, the peptide, nucleic acid or expression vector of the invention is used in a medicament. For example, the form or variant thereof can be prepared as a intravenous (four) injection, subcutaneous (S. C. Injection, intradermal (i. d. Injection, abdominal cavity (i. p. Injection muscle (i. m·) Injection. A preferred method of peptide injection includes I. , Ld·, i. p. , Lm. And i v injection. The preferred method for dna injection is 丨^, i. m. , s. c,, i. p. And i, v· injection. For example, a peptide of 5 〇 5, preferably 125 to 500, or DNA is administered, depending on the particular peptide or DNA. The above range of agents was successfully used in previous trials (Brunsvig al.  1553-64; Staehler et al. ). Another aspect of the invention includes a method of producing activated T cells in vitro - the method comprising in vitro linking T cells to antigen-loaded human MHC molecules - these molecules are expressed on the surface of a suitable antigen presenting cell for a sufficient period of time The T cell is thereby initiated in an antigen-specific manner, wherein the antigen is a peptide according to the invention. Preferably, a sufficient amount of antigen is used with the antigen presenting cells. Preferably, the TAP peptide transporter of the mammalian cell is deficient or has a decreased level or decreased function. Suitable cells lacking the TAP peptide transport vector include T2, RMA-S and Drosophila cells. TAP is a transposome that is involved in antigen processing. The defective cell line T2 loaded by the human peptide belongs to the American Type Culture Collection (ATCC, 12301 Parklawn Drive, Rockville, Maryland 20852 j 154845. Doc-121 - 201200594 USA) catalog number CRL1992; Drosophila cell line Schneider No. 2 strain ATCC catalog CRL 19863; mouse RMA-S cell strain Karre et al. described in 1985. Preferably, the host cell does not substantially express an MHC class I molecule prior to transfection. The stimulatory factor cells are also preferably molecules which express an important role in T cell costimulatory signals' such as B7. 1, B7. 2. Any of the molecules of ICAM-1 and LFA3. Nucleic acid sequences of a large number of MHC class I molecules and costimulatory molecules are publicly available from the GenBank and EMBL databases. When an MHC class I epitope is used as an antigen, the tau cell is a CD8 positive CTL. If the antigen presenting cell is transfected to express the epitope, the preferred cell comprises an expression vector which is capable of expressing the SEQ ID ΝΟ: 1 to SEQ ID NO: 95 peptide or variant amino acid sequence thereof. Other methods can be used to generate CTL in vitro. For example, a method described by Peoples et al. (1995) and a method of generating CTL using autologous tumor infiltrating lymphocytes by Kawakami et al. (1992) can be used. Plebanski et al. (1995) used CTLs derived from autologous peripheral blood lymphocytes (Plb). Jochmus et al. (1997) describe the treatment of dendritic cells with peptides or polypeptides or by autologous CTLs by infection with recombinant viruses. Hill et al. (1995) and Jerome et al. (1993) used B cells to make autologous CTLs. In addition, macrophages pulsed with peptides or polypeptides or infected with recombinant viruses can be used to formulate autologous CTLs. Walter et al., in 2003, describe the in vitro initiation of T cells by the use of artificial antigen-presenting cells (aAPC), which is also a suitable method for generating T cells that act on selected peptides. In this study, according to biotin: I54845. Doc -122- 8 201200594 Streptomycin biochemical method generates aAPC by coupling a preformed MHC:peptide complex to polystyrene particles (microspheres). This system enables precise adjustment of the MHC density on aApc, which allows for the efficient induction of high or low affinity high antigen-specific butyl cell responses in blood samples. In addition to the MHC:peptide complex, aAPC should also carry other proteins containing costimulatory activity, such as anti-CD28 antibodies coupled to the surface. Moreover, such aAPC-based systems often require the addition of an appropriate solubility factor, such as a cytokine such as interleukin-12. Tau cells can also be produced using allogeneic cells, and a method is described in detail in WO 97/26328, herein incorporated by reference. For example, in addition to Drosophila cells and T2 cells, other cells can be used to present peptides, such as CH〇 cells, baculovirus-infected insect cells, bacteria, yeast, and target cells infected with vaccinia. In addition, plant viruses can also be used (for example, see 卩 ^ et al. (1994) for the development of cowpea mosaic virus as a rlj production system for the presentation of foreign peptides. The activated T cells directly target the peptides of the present invention. Therefore, it is helpful for treatment. Therefore, another aspect of the present invention provides activating T cell produced by the aforementioned method of the present invention. The activated tau cell prepared as described above will selectively recognize abnormal expression including SEQ ID NO. A cell having a polypeptide of 1 to 95 amino acid sequence. Preferably, the T cell recognizes the cell by interacting (e.g., 'binding') with its TCR containing the hlA/peptide complex. T cells are useful in killing a cell-free method in a patient. A cell whose target cell aberrantly expresses a polypeptide comprising the amino acid sequence of the present invention. Such a patient is administered an effective amount of activating T cell. Doc • 123- 201200594 The patient's tau cells may be derived from the patient and initiated as described above (ie, they are autologous sputum cells). Alternatively, the sputum cell is not from the patient but from another person. Of course, it is preferred that the donor be a healthy person. The inventor's use of "healthy individual" means that a person is generally in good condition, preferably an immune system, and more preferably is free of any disease that can be easily tested or detected. According to the present invention, the in vivo target cells of CD8-positive sputum cells may be tumor cells (sometimes expressing MHC class I antigens) and/or stromal cells surrounding tumors (tumor cells) (sometimes also expressing MHC class I antigens; (Dengjel et al .  4163- 70)). The T cells of the present invention are useful as active ingredients in therapeutic compositions. Thus, the present invention also proposes a method of killing a target cell of a patient, wherein the target cell of the patient aberrantly expresses a polypeptide comprising the amino acid sequence of the present invention. The method comprises administering to the patient an effective amount of the above-mentioned tau cell. The term "abnormal expression" as used by the inventors also includes 'overexpression of a polypeptide compared to normal expression levels, or the gene is not expressed in tumor-derived tissues but expressed in the tumor. "Overexpression" means that the polypeptide level is at least 1 - 2 times that in normal tissues; preferably at least 2 times, more preferably at least 5 or 10 times in normal tissues. Purine cells can be made by methods known in the art (e.g., as described above). The sputum cell subsequent transfer protocol is well known in the art and can be found in the following references' for example: (Dudley et al.  850-54; Dudley et al.  2346-57; Rosenberg et al.  889-97; Rosenberg et al.  1676- 80; Yee et al.  16168-73); review (Gattinoni et al.  383-93) and I54845. Doc -124- 201200594 (Morgan et al. Any of the molecules of the present invention (i.e., peptides, nucleic acids, expression vectors, cells, promoter CTLs, sputum cell receptors, or encoding nucleic acids) are beneficial for the treatment of diseases, and are characterized by the evasion of immune responses by cells. Thus, any of the molecules of the present invention can be used as a medicament or for the manufacture of a medicament. Such a molecule may be used alone or in combination with other molecules or known molecules of the present invention. The agent described in the present invention is preferably a vaccine. The vaccine can be given directly to the affected organ of the patient, or it can be Ld. , Lm. , s. c·, ip>iv. Injection is administered systemically, or in vitro to cells from patients or their cell lines (and then injected into patients), or in vitro for a subpopulation of cells from the patient's immune cells (and then the cells) Re-administer the patient). If the nucleic acid is injected into the cell in vitro, it may be beneficial for cell transfection to co-express the immunostimulatory cytokine (eg, interleukin-2). The peptide may be administered alone or in combination with an immunostimulatory adjuvant (see below), or in combination with an immunostimulatory cytokine, or in a suitable delivery system (e.g., liposomes). The peptide may also be conjugated to form a suitable vector, such as keyhole limpet hemocyanin (KLH) or mannose, to a suitable vector (see w〇 95/18145 and Longeneckerl 993). The peptide may also be labeled or may be a fusion protein or a hybrid molecule. The appearance of the peptide sequence in the present invention is expected to stimulate CD4 or CD8 T cells. However, stimulation with CD8 CTL is more effective when cd4T helper cells provide help. Thus, for stimulating MHC class I epitopes of CD8 CTL, a fusion partner or fragment of a hybrid molecule provides an appropriate epitope for stimulating CD4-positive T cells. The CD4j〇 cD8 stimulation epitope is well known in the art and includes the epitopes identified in the present invention. 154845. Doc • 125· 201200594 In one aspect, the vaccine comprises at least one peptide as set forth in SEQ ID ΝΟ: 1 to 33 and at least one other peptide, preferably 2 to 50, more preferably 2 to 25, still more preferably 2 to Fifteen, most preferably 2, 3, 4, 5, 6, 7, 8, 9, 1 〇, 11, 12 or 13 peptides. The peptide may be derivatized from one or more specific TAAs and may bind to mhCI-like molecules. The polynucleotide may be in a substantially purified form or may be coated on a carrier or delivery system. The nucleic acid may be DNA 'cDNA, PNA, CNA, RNA, or a combination thereof. Methods of designing and introducing such nucleic acids are well known in the art. For example, there is an overview in the literature (Pasc〇1〇 et al U7 22). Polynucleotide vaccines are easy to prepare, but the mode of action of these vectors to induce immune responses is not fully understood. "Appropriate vectors and delivery systems include viral DNa and/or RNA, such as adenovirus, vaccinia virus, retrovirus, herpes virus A system of adeno-associated viruses or mixed viruses containing more than one viral element. Non-viral delivery systems include cationic liposomes and cationic polymers, and 疋DNA delivery systems are well known in the art. Physical delivery systems can also be used, such as through "general robbing." The peptide encoded by the peptide or nucleic acid may be a fusion protein', e.g., an epitope containing a stimulating T cell for the above cdr. The agents of the invention may also include one or more adjuvants. Adjuvants are those that non-specifically enhance or potentiate an immune response (eg, an immune response to an antigen mediated by CTL and helper T (TH) cells and are therefore considered useful for the agents of the invention. Agents include, but are not limited to, 1018 ISS, aluminum salts, Amplivax@, AS15, BCG cp_ 870, 893, CPG7909, CyaA, dSLIM, flagellin or flagellin-derived TLR5 ligand, FLT3 ligand, GM-CSF, IC30, 154845. Doc 8 201200594 IC31, ALDARA®, resiquimod, ImuFact IMP321, interleukin IL-2, IL-13, IL-21, interferon alpha or beta, or its polyethylene glycol derivatives, IS Patch, ISS, ISCOMATRIX, ISCOMs, Juvlmmune, LipoVac, MALP2, MF59, Single Disc Rouge A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-5 1, Oil-in-Water and Water-in-Water Emulsion , OK-432, OM-174, OM-197-MP-EC, ONTAK, OspA, PepTel® carrier system, based on polylactide complex glycolide [PLG] and dextran microparticles, recombinant human lactoferrin SRL172 Aquila's QS21 stimulator, viral particles and other virus-like particles, YF-17D, VEGF trap, R848, β-glucan, Pam3Cys, saponins, mycobacterial extracts, and bacterial cell wall synthesis mimics, And other proprietary adjuvants such as Ribi's Detox, Quil or Superfos. Preferred adjuvants are, for example, Freund's adjuvant or GM-CSF. Some dendritic cell-specific immunoadjuvants (such as MF59) and their preparation methods have been described (Allison and Krummel 932-33). Cytokines can also be used. Some cytokines directly affect the migration of dendritic cells to lymphoid tissues (eg, TNF-), and accelerate the maturation of dendritic cells into effective antigen-presenting cells of T lymphocytes (eg, GM-CSF, IL-1, and IL-4). (US Patent No. 5,849,589, specifically incorporated herein by reference) and serving as an immunoadjuvant (WIL-12, IL-15, IL-23, IL-7, IFN-alpha, IFN-p) [Gabrilovich 1996]. It has been reported that CpG immunostimulatory oligonucleotides enhance the role of adjuvants in vaccines. Without theoretical constraints, CpG oligonucleotides can initiate a congenital (non-adaptive) immune system from Toll-like receptors (TLRs) (mainly TLR9) from 154,845. Doc -127- 201200594 And the role of CPG-induced TLR9 activation increases antigen-specific humoral and cellular responses to various antigens, including peptide or protein antigens, live viruses or killed viruses, dendritic cells Vaccines, autologous cell vaccines, and polysaccharide combinations in prophylactic and therapeutic vaccines. More importantly, it enhances the maturation and differentiation of dendritic cells, resulting in enhanced activation of Thi cells and enhanced production of cytotoxic tau lymphocytes (CTLs), even in the absence of CD4 T cells. Even the presence of a vaccine adjuvant maintains the Th|shift induced by TLR9 activation, such as alum or Freund's incomplete adjuvant (IFA), which normally promotes Τη2 shift. CpG oligonucleotides exhibit stronger adjuvant activity when prepared or co-administered with other adjuvants or formulations, such as microparticles, nanoparticles, fat emulsions or similar preparations, when the antigen is relatively weak, these pairs It is especially necessary to induce a strong reaction. They can also accelerate the immune response to reduce the antigen dose by about two orders of magnitude, and in some experiments, a similar antibody response can be produced for CpG-free full-dose vaccines (Kneg 471-84). U.S. Patent 6,406,705 B1 describes the use of CpG oligonucleotides, non-nucleic acid adjuvants, and antigens to promote antigen-specific immune responses. One CpGTLR9 antagonist is dSLIM (double dry loop immunomodulator) from Mologen Corporation (Berlin, Germany), which is a preferred component of the pharmaceutical composition of the present invention. Other TLR binding molecules such as RNA binding TLR7, TLR8 and/or TLR9 can also be used. Other useful adjuvant examples include, but are not limited to, chemically modified CpG (eg, CpR, idera), dsRNA mimics, eg, Poly(I:C) and its derivatives (eg, AmpliGen®, Hiltonol®, multimerization) - (ICLC), poly (IC-R), poly (I: C12U), non-CpG bacterial DNA or RNA and I54845. Doc (S) •128· 201200594 Epidermal active small molecules and antibodies, such as: cyclophosphamide, sunituzumab, bevacizumab, celebrex, NCX_4016, sildenafil, tadalafil, alfalfa Nafia, sorafenib, temSir〇Hmus, Cp_547632, pazopanib, VEGF Trap, ZD2171, AZD2171, anti-CTLA4, other major antibody-targeting major structures of the immune system (eg: Anti-CD40, anti-TGFp, anti-TNFa receptors and 8 (:58175, these drugs may have therapeutic effects and / or act as adjuvants. The skilled person can easily determine the usefulness of the present invention without excessive undue experimentation. Amounts and Concentrations of Adjuvants and Additives 6 Preferred adjuvants are imiquimod, resiquimod, GM-CSF 'cycloheximide, sunitinib, bevacizumab, interferon-a, CpG nucleotides and a microparticle preparation or viral particle of a derivative, t (I:C) and a derivative, RNA, sildenafil, and plg. In a preferred embodiment of the pharmaceutical composition of the present invention, the adjuvant is from a colony-containing stimulation factor preparation Selection, such as granulocyte macrophage colony stimulation factor (GM-CSF 'sagstatin' Imiquimod, resiqUim〇d, and interferon_a ° In a preferred embodiment of the pharmaceutical composition of the present invention, the adjuvant selects from the colony-containing stimulation factor preparation such as granulocyte macrophage colony stimulation factor (GM-CSF) 'Sagstatin', M. militaric and resimiquim 〇d 一个 In a preferred embodiment of the pharmaceutical composition of the invention, the adjuvant is imiprote or resiquimod. The combination drug is for parenteral injection, Such as subcutaneous, intradermal, intramuscular injection, can also be taken orally. For this, peptides and other selective molecules in the pharmaceutically acceptable carrier 154,845. Doc -129- 201200594 Decomposed or suspended, preferably a water carrier. Additionally, the compositions may contain adjuvants such as buffers, binders, impact agents, diluents, perfumes, lubricants and the like. These peptides can also be combined with immunostimulating substances such as cytokines. Further excipients which can be used in such compositions are known from the Handbook 〇f pharmaceutical Excipients by A Kibbe (3rd edition, 2nd year, American Medical Association and Pharmaceutical Press). This combination drug can be used to prevent, prevent and/or treat adenoma or cancerous diseases. There are exemplary formulations in EP 2113253. The present invention proposes an agent which is advantageous for the treatment of cancer, particularly gastric cancer, renal cell carcinoma, colon cancer, non-small cell lung cancer, adenocarcinoma, prostate cancer, benign tumor and malignant melanoma. A kit kit of the present invention further comprises: (a) a container comprising the above-described solution or a pharmaceutical composition in the form of a lyophilized powder; (b) an optional second container containing a lyophilized powder-type diluent Or recombinant > trough; and (c) optional, (1) use of the solution or (ii) instructions for reconstitution and/or use of the lyophilized powder form. The 6-well kit also includes one or more (iii) buffers, (iv) diluent, (v) filtrate, (Vi) needle, or (V) syringe. The container is preferably a bottle, vial, syringe or test tube; it can also be a multi-purpose container. The pharmaceutical combination is preferably a lyophilized powder. The kit of the present invention preferably comprises a Kanggan formulation in a suitable container and instructions for reconstitution and/or use. Suitable containers include, for example, bottles, vials (e.g., dual chamber bottles), syringes (e.g., dual chamber syringes), and test tubes. 154845. Doc •130· 201200594 5 The device can be made of a variety of materials, such as glass or plastic. Preferably, 套件, kits and/or containers are indicated, indicating that recombination and/or use of examples such as 'tags may indicate that the lyophilized dosage form is recombined to the above peptide concentration. This label can further indicate that the formulation is for subcutaneous injection. The trough for storing the formulation may use a multi-purpose vial such that the reconstituted dosage form can be re-administered (e.g., 2-6 times). The kit may further comprise a second container filled with a suitable diluent, such as a sodium bicarbonate solution. After the diluent and the lyophilized preparation are mixed, the final concentration of the peptide in the recombinant preparation is preferably 0. 15 mg/mL/peptide (=75 軏 g), no more than 3 mg/mL/peptide (=1500 軏g). The kit may also include other materials that are commercially and user-friendly, including other buffers, thinners, filters, needles, syringes, and package inserts with instructions for use. The kit of the present invention may have a separate container containing the pharmaceutical composition preparation of the present invention. The preparation may have other ingredients (for example, other compounds or pharmaceutical compositions thereof), or may have no other ingredients, or Each ingredient has its own different container. Preferably, the kit of the invention comprises a formulation with the invention, after armoring with a second compound (such as an adjuvant (eg GM_CSF), a chemotherapeutic drug, a natural product, a hormone or antagonist, an anti-angiogenic agent or inhibition A agent, an apoptosis inducing agent or a chelating agent) or a pharmaceutical composition thereof is used in combination. The components of the kit can be pre-complexed or each component can be placed in a separate container before being administered to a patient. The ingredients of the kit may be one or more solutions, preferably an aqueous solution, more preferably a sterile aqueous solution. The kit may also be in solid form, converted to a liquid by adding a suitable solvent, preferably placed at 154845. Doc 131 201200594 Another different container. The container for the treatment kit may be a vial, test tube, flask, bottle, injection benefit, or any other tool that holds a solid or liquid. Typically, when there are no more than one ingredient, the kit will contain a second vial or other container so that it can be quantified separately. The kit may also contain another grain thief loaded with a medicinal liquid. Preferably, the treatment kit will contain a device (e.g., one or more needles, syringes, eye drops, pipettes, etc.) such that the medicament of the invention (composition of the kit) can be injected. The pharmaceutical formulation of the invention is suitable for peptide administration by any acceptable route 'eg oral (intestinal), intranasal, intraocular, subcutaneous, intradermal, intramuscular, intravenous or transdermal administration, preferably subcutaneous administration Most preferably, it is administered intradermally or by an infusion pump. Since the peptide of the present invention derived from MST1R, UCHL5, SMC4, NFYB, PPAP2C, AVL9, UQCRB and MUC6 is isolated from gastric cancer, the agent of the present invention is preferably used for the treatment of gastric cancer. The following description of the preferred embodiments of the invention will be illustrative (but not limited thereto). For the purposes of the present invention, all references are hereby incorporated by reference in their entirety in each of the entireties in the the the the the the the the the the the the the the the the the the the the the the the the the the the the ) Provided by the Osaka City University Graduate School of Medicine (OCU) in Osaka, Japan. Institute 154845. Doc •132· 8 201200594 Some patients received written informed consent prior to surgery. Tissues were cold shock treated with liquid nitrogen immediately after surgery and stored at -80 °C prior to separation of TUMAP. Isolation of HLA peptides from tissue samples was slightly modified according to protocol, using HLA-A, HLA-B, HLA-C specific antibody W6/32, CNBr activated agarose gel, acid treatment and ultrafiltration method to solid tissue The HLA peptide library of cold shock tissue samples was obtained by immunoprecipitation (Falk, K. 1991; Seeger, F. H. T1999). Methods The obtained HLA peptide library was separated according to its hydrophobicity by reverse phase chromatography (Acquity UPLC system, Waters), and the eluted peptide was analyzed by LTQ-Orbitrap hybridization mass spectrometry (ThermoElectron) equipped with an electrospray source. The peptide library is loaded directly into the fill. The 7 μηι C18 reversed phase material (Waters) was analyzed by a lyotropic quartz microcapillary column (75 μm inner diameter x 250 mm) at a flow rate of 400 nL per minute. Subsequently, the peptide was separated using a two-step 180 minute binary gradient method from a flow rate of 300 nL per minute at a concentration of 10% to 33% solvent B. The gradient is from solvent A (including 0. 1% citric acid water) and solvent B (including 0. 1% formic acid in acetonitrile). A gold coated glass capillary (PicoTip, New Objective) was used to introduce the nanoliter electrospray source. Use the top 5 (TOP5) strategy to operate the LTQ-Orbitrap mass spectrometer in data dependent mode. In short' first, a full scan of high-precision quality begins at orbitrap for one scan cycle (R = 30,000), followed by MS/MS for the five most abundant precursor ions in orbitrap using dynamic exclusion of previously selected ions. Scan (R=7500). Tandem mass spectrometry was performed with SEQUEST and another manual controller 154845. Doc -133· 201200594 Interpretation. The resulting natural peptide fragmentation pattern is compared to the fragmentation pattern of the same reference peptide of the synthetic sequence to ensure the identified peptide sequence. Figure 1 shows a typical spectrum of the MHC class I related peptide CDC2-001 obtained from tumor tissues and its elution profile in a UPLC system. Example 2: Expression profiles of genes encoding the peptides of the present invention Not all peptides identified as being presented to the surface of tumor cells by MHC molecules are suitable for immunotherapy because most of these peptides are expressed by many types of cells. The normal cellular proteins are derived. Only a small fraction of these peptides are tumor-associated and may be able to induce T cells with high specificity for their source of tumor recognition. In order to identify these peptides and minimize the risk of autoimmunity induced by vaccination of these peptides, the inventors primarily employed the morphologies obtained from proteins that were overexpressed on tumor cells (as compared to most normal tissues). The ideal peptide is derived from a protein that is unique to the tumor and does not appear in other tissues. In order to determine a peptide produced by a gene having a similar expression profile to an ideal gene, the identified peptides are separately assigned to proteins and genes, from which genes are obtained and expression profiles of these genes are generated. RNA Sources and Preparation Surgical resection of tissue specimens was provided by two different clinical centers (see Example 1) after obtaining written informed consent from the parent patient. Tumor tissue specimens were quickly frozen in liquid nitrogen immediately after surgery, and then sputum was used in liquid nitrogen. After using TRI5 (Ambion, Darmstadt, Germany), RNeasy (QIAGEN's Hilden, Germany) was used to clean from these samples 154,845. Doc .  134- 8 201200594 Preparation of total RNA; both methods were performed according to the manufacturer's protocol. Total RNA in healthy human tissues is commercially available (Ambion, Huntingdon, UK; Clontech, Heidelberg, Germany; Stratagene, Amsterdam, The Netherlands; BioChain, Hayward, CA, USA). Mix a few individuals (2 to 123 individuals) of RNA so that each person's RNA is equally weighted. White blood cells were isolated from blood samples from four healthy volunteers. The quality and quantity of all RNA samples were evaluated on an Agilent 2100 Bioanalyzer analyzer (Agilent, Waldbronn, Germany) using the RNA6000 Pico LabChip Kit kit (Agilent). Microarray experiments All tumor and normal tissue RNA samples were made using Affymetrix Human Genome (HG) U133A or HG-U133 Plus 2. Gene expression analysis was performed on a 0 Affymetrix oligonucleotide wafer (Affymetrix ' Santa Clara, CA, USA). All steps are performed according to the Affymetrix manual. Briefly, double-stranded cDNA was synthesized from 5-8 pg of RNA using Superscript RTII (Invitrogen) and oligo-dT-T7 primer (MWG Biotech, Ebersberg, Germany) as described in the manual. U133A was measured with BioArray High Yield RNATranscript Labelling Kit (ENZO Diagnostics, Inc., Farmingdale, NY, USA) or U133 Plus with GeneChip IVT Labelling Kit (Affymetrix). 0 assay followed by streptavidin-phycoerythrin and biotinylated anti-streptomycin antibody (Molecular Probes, Leiden, 154845. Doc -135- 201200594 lan) performs disruption, hybridization and staining to complete in vitro transcription. Use Agilent 2500A GeneArray Scanner (U133A) or Affymetrix Gene-Chip Scanner 3000 (U133 Plus 2. 0) Scan the image and analyze the data with GCOS software (Affymetrix) with default settings for all parameters. To standardize, 100 housekeeping genes from Affymetrix were used. The relative expression values were calculated using the signal log ratio given by the software. The value of the normal kidney tissue sample was arbitrarily set to 1. 0. The expression profile of the highly expressed gene of the present invention in gastric cancer is shown in Fig. 2. Example 3: In vitro immunogenicity of IMA941MHC-I-presented peptides In order to obtain information on the immunogenicity of TUMAP of the present invention, we used Walter, S, Herrgen, L, Schoor, Ο, Jung, G, Wernet. D, Buhring, HJ, Rammensee, HG and Stevanovic, S et al. 2003 in Cutting edge: predetermined avidity of human CD8T cells expanded on calibrated MHC/anti-CD28-coated microspheres, J. Immunol. , 171, 4974-4978 - The widely accepted in vitro stimulation platform described in the paper was studied. In this way, the 32 HLA-A*2402-restricted TUMAPs of the present invention all showed immunogenicity, indicating that these peptides are T cell epitopes against human CD8+ precursor T cells (Table 4). CD8+ T cells are activated in vitro in order to use artificial 154845 carrying peptide-MHC complex (pMHC) and anti-CD28 antibody. Doc -136- 201200594 Antigen-presenting cells (aAPC) were stimulated in vitro. We first isolated fresh HLA-A*24 products from healthy donor leukocyte clearance from the Tuebingen blood bank to isolate CD8 T cells. Then, the product obtained by leukapheresis is directly enriched with CD8 T cells, or PBMC (peripheral blood mononuclear cells) is first isolated using standard gradient separation medium (PAA, C6lbe, Germany). The isolated CD8 lymphocytes were cultured in T cell culture medium (TCM) before use. The culture medium was coated with RPMI-Glutamax (Invitrogen, Karlsruhe, Germany) and supplemented with 10% heat-killed human AB jk clear (PAN-Biotech , Aidenbach, Germany), 100 U/ml penicillin/100 pg/ml streptomycin (Cambrex, Cologne, Germany), 1 mM sodium pyruvate (CC Pro, Oberdorla, Germany) and 20 pg/ml gentamicin (Cambrex). In this step, 2. 5 ng/ml IL-7 (PromoCell, Heidelberg, Germany) and 10 U/ml IL-2 (Novartis Pharma, Niirnberg, Germany) were also added to TCM. CD8+ lymphocytes were isolated by positive selection using MicroBeads (Miltenyi Biotec, Bergisch-Gladbach, Germany). Generation of pMHC/anti-CD28 coated beads, T cell stimulation and readout methods as previously described (Walter et al.  4974-78) with minor modifications. Briefly, a biotinylated peptide recombinant HLA-A*2402 molecule lacking a transmembrane domain and biotinylated at the carboxy terminus of the heavy chain was prepared. Purified co-stimulated mouse IgG2a anti-human CD28 antibody 9. 3 (Jung, Ledbetter, and Muller-Eberhard 4611, 15) Chemical biotinylation using N-hydroxysuccinimide biotin recommended by the manufacturer (Perbio, Bonn, Germany). The beads used are 5. 6 μπι 154845. Doc-137-201200594 Large streptavidin-coated polystyrene particles (Bangs Labooratories, Ill., USA). The pMHC as a control were A*0201/MLA-001 (peptide ELAGIGILTV prepared from modification in Melan-A/MART-Ι) and A*0201/DDX5-001 (YLLPAIVHI obtained from DDX5). 800. 000 beads/200 μΐ were wrapped in 96-well plates and were present in 600 ng biotin anti-CD28 + 200 ng related biotin pMHC (high density beads). lxlO6 CD8+ T cells and 2 χ 105 washcoat beads were co-cultured in 200 μΐ TCM containing 5 ng/ml IL-12 (PromoCell) for 3 to 4 days at 37 ° C to initiate stimulation in 96-well plates. Thereafter, half of the medium was exchanged with fresh TCM supplemented with 80 U/ml IL-2, and culture was continued for 3 to 4 days at 37 ° C. This stimulation cycle was performed a total of 3 times. Finally, multimerization was performed with Live/dead-Aqua dye (Invitrogen, Karlsruhe, Germany), CD8-FITC antibody clone SK1 (BD company, Heidelberg, Germany) and PE- or APC-coupled A*2402 MHC multimer staining. Body analysis. For the analysis, a BD LSRII SORP cytometer equipped with a suitable laser and screening procedure was used. Peptide-specific cells were calculated as a percentage of total CD8+ cells. Multimeric analysis results were evaluated using FlowJo software (Tree Star, Oregon, USA). In vitro filling of specific multimer + CD8+ lymphocytes was performed using appropriate gating techniques as well as comparison with the negative control stimulation group. If at least one evaluable in vitro stimulation well in a healthy donor is found to contain a specific CD8+ T cell line after stimulation in vitro (ie, the well comprises at least 1% specific multimer + CD8+ T cells, and the specific polymer The percentage of + is at least 10 times the median of the negative control stimulus, and the test is given 154845. Doc -138- 8 201200594 The immunogenicity of the antigen. Immunogenicity of the IMA94 1 peptide for 47 of the 54 tested HLA-A*2402 peptides and 3 of the 3 tested HLA-A*0201 peptides, by generating peptide-specific T cells Strain to demonstrate in vitro immunogenicity. An exemplary flow cytometer result of the two peptides of the invention and the corresponding negative controls after staining with TUMAP-specific polymers is shown in Figure 3. The results of the 54 A*2402 and 3 A*0201 of the present invention are summarized in Table 4. Table 4: In vitro immunogenicity of HLA class I peptides in the present invention The results of in vitro immunogenicity experiments performed by Immatics show the percentage of positive tested donors and plate wells evaluated. At least four donors and 48 wells were evaluated per peptide. SEQ ID NO: antigen positive donor/tested donor [%] positive well/tested well [%1 1 CDC2-001 83 28 2 ASPM-002 67 32 18 MMP3-001 11 1 4 MET-006 67 21 3 UCHL5-001 75 12 7 MST1R-001 50 13 33 KIF2C-001 17 2 9 SMC4-001 73 10 17 EPHA2-005 0 0 5 PROM 1-001 83 26 6 MMP11-001 33 11 8 NFYB-001 50 7 16 ASPM -001 17 3 20 PLK4-001 60 5 154845. Doc -139- 201200594 14 ABL1-001 83 18 26 ATAD2-001 33 3 21 ATAD2-002 17 1 27 ATAD2-003 0 0 12 AVL9-001 100 31 22 COL12A1-001 0 0 23 COL6A3-001 0 0 24 FANCI- 001 17 1 28 HSP90B1-001 50 7 15 MUC6-001 83 22 13 NUF2-001 100 50 19 NUF2-002 50 6 11 PPAP2C-001 83 29 25 RPS11-001 17 3 29 SIAH2-001 50 8 30 SLC6A6-001 17 1 10 UQCRB-001 83 24 31 IQGAP3-001 100 24 32 ERBB3-001 83 CCDC88A-001 0 0 CCNB1-003 33 3 CCND2-001 17 10 CCNE2-001 0 0 CEA-010 40 3 CLCN3-001 33 6 DNAJC10- 001 50 15 DNAJC10-002 33 3 EIF2S3-001 17 1 EIF3L-001 100 29 EPPK1-001 17 1 GPR3 9-001 50 6 ITGB4-001 67 20 LCN2-001 17 1 SDHC-001 33 3 154845. Doc •140- 8 201200594 PBK-001 0 0 POLD3-001 67 7 PSMD14-001 17 1 PTK2-001 17 4 TSPAN1-002 17 1 ZNF598-001 83 17 The following peptides are described in other applications by Immatics and are included in Vaccines IMA901 (MET-001 and TOP-001), IMA910 (MET-001 and TOP-001) and IMA950 (IGF2BP3-001). For example, ΜΕΤ-00 1 can lead to particularly good in vivo reactions, and this result can be considered as clinically useful evidence as a peptide of the present invention. SEQ ID NO: antigen-positive donor/tested donor [%] positive well/tested well ί%1 IGF2BP3-001 50 21 MET-001 67 42 TOP-OO1 40 10 Results of in vitro immunogenicity experiments performed The percentage of positive donors and plate wells evaluated is shown. Evaluate at least four donors and 48 plate wells per peptide. References

Ahmed, A. U·, et al. "Effect of disrupting seven-inabsentia homolog 2 function on lung cancer cell growth." J Natl.Cancer Inst. 100.22(2008): 1606-29.Ahmed, A. U·, et al. "Effect of disrupting seven-inabsentia homolog 2 function on lung cancer cell growth." J Natl. Cancer Inst. 100.22(2008): 1606-29.

Allison, J. P. and M. F. Krummel. "The Yin and Yang of T cell costimulation." Science 270.5238(1995): 932-33.Allison, J. P. and M. F. Krummel. "The Yin and Yang of T cell costimulation." Science 270.5238 (1995): 932-33.

Altmeyer, A., et al. "Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock 154845.doc -141 - 201200594 protein gp96." Int J Cancer 69.4(1996): 340-49.Altmeyer, A., et al. "Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock 154845.doc -141 - 201200594 protein gp96." Int J Cancer 69.4 (1996): 340-49.

Appay, V., et al. "Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide." Eur.J Immunol. 36.7(2006): 1805-14.Appay, V., et al. "Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide." Eur.J Immunol. 36.7(2006): 1805-14.

Banerjee, S. K·, et al. "Expression of cdc2 and cyclin B 1 in Helicobacter pylori-associated gastric MALT and MALT lymphoma : relationship to cell death, proliferation, and transformation." Am J Pathol. 156.1(2000): 217-25.Banerjee, S. K., et al. "Expression of cdc2 and cyclin B 1 in Helicobacter pylori-associated gastric MALT and MALT lymphoma : relationship to cell death, proliferation, and transformation." Am J Pathol. 156.1 (2000) : 217-25.

Bartman, A. E., et al. "Aberrant expression of MUC5AC and MUC6 gastric mucin genes in colorectal polyps." Int J Cancer 80.2(1999): 210-18.Bartman, A. E., et al. "Aberrant expression of MUC5AC and MUC6 gastric mucin genes in colorectal polyps." Int J Cancer 80.2 (1999): 210-18.

Basu, S., et al. "Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway." Int Immunol. 12.11(2000): 1539-46.Basu, S., et al. "Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway." Int Immunol. 12.11(2000): 1539 -46.

Bauer, B., S. Bartfeld, and T. F. Meyer. "H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA." Cell Microbiol. 11.1(2009): 156-69.Bauer, B., S. Bartfeld, and T. F. Meyer. "H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA." Cell Microbiol. 11.1(2009): 156-69.

Benatti, P., et al. "A balance between NF-Y and p53 governs the pro- and anti-apoptotic transcriptional response." Nucleic Acids Res 36.5(2008): 1415-28.Benatti, P., et al. "A balance between NF-Y and p53 governs the pro- and anti-apoptotic transcriptional response." Nucleic Acids Res 36.5(2008): 1415-28.

Bertolini, G., et al. "Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by 154845.doc -142- 201200594 cisplatin treatment." Proc Natl.Acad.Sci.U.S.A 106.38 (2009): 16281-86.Bertolini, G., et al. "Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by 154845.doc -142- 201200594 cisplatin treatment." Proc Natl.Acad.Sci.USA 106.38 (2009): 16281-86.

Bierie,B. and H. L. Moses. "TGF-beta and cancer." Cytokine Growth Factor Rev. 17.1-2(2006): 29-40.Bierie, B. and H. L. Moses. "TGF-beta and cancer." Cytokine Growth Factor Rev. 17.1-2(2006): 29-40.

Bitoun, E. and K. E. Davies. "The robotic mouse: unravelling the function of AF4 in the cerebellum." Cerebellum. 4.4(2005): 250-60.Bitoun, E. and K. E. Davies. "The robotic mouse: unravelling the function of AF4 in the cerebellum." Cerebellum. 4.4(2005): 250-60.

Bolhassani,A. and S. Rafati. "Heat-shock proteins as powerful weapons in vaccine development." Expert.Rev.Vaccines. 7.8(2008): 1185-99.Bolhassani, A. and S. Rafati. "Heat-shock proteins as powerful weapons in vaccine development." Expert.Rev.Vaccines. 7.8(2008): 1185-99.

Borset,M., et al. "The role of hepatocyte growth factor and its receptor c-Met in multiple myeloma and other blood malignancies." Leuk.Lymphoma 32.3-4(1999): 249-56.Borset, M., et al. "The role of hepatocyte growth factor and its receptor c-Met in multiple myeloma and other blood malignancies." Leuk. Lymphoma 32.3-4(1999): 249-56.

Bradbury, P. A., et al. "Matrix metalloproteinase 1,3 and 12 polymorphisms and esophageal adenocarcinoma risk and prognosis." Carcinogenesis 30.5(2009): 793-98.Bradbury, P. A., et al. "Matrix metalloproteinase 1,3 and 12 polymorphisms and esophageal adenocarcinoma risk and prognosis." Carcinogenesis 30.5(2009): 793-98.

Brown, C. E.,et al. "Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells." Cancer Research 69.23(2009): 8886-93.Brown, C. E., et al. "Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells." Cancer Research 69.23(2009): 8886-93.

Bruckdorfer, T.,O. Marder, and F. Albericio. "From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future." Curr.Pharm.Biotechnol. 5.1(2004): 29-43.Bruckdorfer, T., O. Marder, and F. Albericio. "From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future." Curr.Pharm.Biotechnol. 5.1(2004): 29 -43.

Brunsvig, P. F., et al. "Telomerase peptide vaccination: a 154845.doc -143- 201200594 phase I/II study in patients with non-small cell lung cancer." Cancer Immunol.Immunother. 55.12(2006): 1553-64.Brunsvig, PF, et al. "Telomerase peptide vaccination: a 154845.doc -143- 201200594 phase I/II study in patients with non-small cell lung cancer." Cancer Immunol. Immunother. 55.12(2006): 1553- 64.

Cabanes,D.,et al. "Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein." EMBO J 24.15(2005): 2827-38.Cabanes, D., et al. "Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein." EMBO J 24.15(2005): 2827-38.

Calzado, M. A., et al. "An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response." Nat.Cell Biol. 11.1(2009): 85-91.Calzado, M. A., et al. "An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response." Nat. Cell Biol. 11.1(2009): 85-91.

Castelli, C., et al. "Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer." Cancer Immunol.Immunother. 53.3 (2004): 227-33.Castelli, C., et al. "Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer." Cancer Immunol. Immunother. 53.3 (2004): 227-33.

Castriconi, R.,et al. "Both CD133+ and C." Eur.J Immunol. 37.11(2007): 3190-96.Castriconi, R., et al. " Both CD133+ and C." Eur.J Immunol. 37.11(2007): 3190-96.

Chanock, S. J., et al. "HLA-A, -B, -Cw, -DQA1 and -DRB1 Alleles in a Caucasian Population from Bethesda, USA." Hum.Immunol. 65(2004): 1211-23.Chanock, S. J., et al. "HLA-A, -B, -Cw, -DQA1 and -DRB1 Alleles in a Caucasian Population from Bethesda, USA." Hum.Immunol. 65(2004): 1211-23.

Chen, C. H., et al. "Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3." Proc Natl.Acad.Sci.U.S.A 100.16(2003): 9226-31.Chen, CH, et al. "Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3." Proc Natl.Acad.Sci.USA 100.16(2003): 9226-31 .

Chen, Z. and J. J. O'Shea. "Regulation of IL-17 production in human lymphocytes." Cytokine 41.2(2008): I54845.doc -144- 201200594 71-78.Chen, Z. and J. J. O'Shea. "Regulation of IL-17 production in human lymphocytes." Cytokine 41.2(2008): I54845.doc -144- 201200594 71-78.

Cho, S. 0., et al. "Helicobacter pylori in a Korean Isolate Expressed Proteins Differentially in Human Gastric Epithelial Cells." Dig.Dis.Sci. (2009).Cho, S. 0., et al. "Helicobacter pylori in a Korean Isolate Expressed Proteins Differentially in Human Gastric Epithelial Cells." Dig.Dis.Sci. (2009).

Christianson, J. C., et al. "OS-9 and GRP94 deliver mutant alpha 1 - antitrypsin to the Hrdl-SELIL ubiquitin ligase complex for ERAD." Nat.Cell Biol. 10.3(2008): 272-82.Christianson, J. C., et al. "OS-9 and GRP94 deliver mutant alpha 1 - antitrypsin to the Hrdl-SELIL ubiquitin ligase complex for ERAD." Nat. Cell Biol. 10.3(2008): 272-82.

Cisek, L. J. and J. L. Corden. "Phosphorylation ofRNApolymerase by the murine homologue of the cell-cycle control protein cdc2." Nature 339.6227(1989): 679-84.Cisek, L. J. and J. L. Corden. "Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2." Nature 339.6227 (1989): 679-84.

Colombetti, S., et al. "ProlongedTCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin." J Immunol. 176.5(2006): 2730-38.Colombetti, S., et al. "Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin." J Immunol. 176.5(2006): 2730-38.

Confalonieri, S., et al. "Alterations of ubiquitin ligases in human cancer and their association with the natural history of the tumor." Oncogene 28.33(2009): 2959-68.Confalonieri, S., et al. "Alteras of ubiquitin ligases in human cancer and their association with the natural history of the tumor." Oncogene 28.33(2009): 2959-68.

Corso, S., et al. "Silencing the MET oncogene leads to regression of experimental tumors and metastases." Oncogene 27.5(2008): 684-93.Corso, S., et al. "Silencing the MET oncogene leads to regression of experimental tumors and metastases." Oncogene 27.5 (2008): 684-93.

Cox, C. V., et al. "Expression of CD133 on leukemia-initiating cells in childhood ALL." Blood 113.14(2009): 154845.doc -145- 201200594 3287-96.Cox, C. V., et al. "Expression of CD133 on leukemia-initiating cells in childhood ALL." Blood 113.14(2009): 154845.doc -145- 201200594 3287-96.

Cunha-Ferreira, I., et al. "The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4." Curr.Biol. 19.1(2009): 43-49.Cunha-Ferreira, I., et al. "The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4." Curr.Biol. 19.1(2009): 43-49.

DeLuca, J. G., et al. "Heel and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites." Mol.Biol.Cell 16.2(2005): 519-31.DeLuca, J. G., et al. " Heel and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites." Mol. Biol. Cell 16.2 (2005): 519-31.

Deng, H., et al. "Matrix metalloproteinase 11 depletion inhibits cell proliferation in gastric cancer cells." Biochem.Biophys.Res Commun. 326.2(2005): 274-81.Deng, H., et al. "Matrix metalloproteinase 11 depletion inhibits cell proliferation in gastric cancer cells." Biochem. Biophys. Res Commun. 326.2 (2005): 274-81.

Dengjel, J., et al. "Unexpected Abundance ofHLA ClassIIPresented Peptides in Primary Renal Cell Carcinomas." Clin Cancer Res. 12.14(2006): 4163-70.Dengjel, J., et al. "Unexpected Abundance of HLA Class IIPresented Peptides in Primary Renal Cell Carcinomas." Clin Cancer Res. 12.14(2006): 4163-70.

Deremer, D. L.,C. Ustun, and K. Natarajan. "Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia." Clin Ther. 30.11(2008): 1956-75.Deremer, D. L., C. Ustun, and K. Natarajan. "Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia." Clin Ther. 30.11(2008): 1956-75.

Di Renzo, M. F., et al. "Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer." Clin.Cancer Res. 1.2(1995): 147-54.Di Renzo, M. F., et al. "Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer." Clin. Cancer Res. 1.2(1995): 147-54.

Dong, G., et al. "Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines 154845.doc -146- 201200594 interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma." Cancer Res. 61.15 (2001): 5911-18.Dong, G., et al. "Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines 154845.doc -146- 201200594 interleukin-8 and vascular endothelial growth factor in head and neck Squamous cell carcinoma." Cancer Res. 61.15 (2001): 5911-18.

Dudley, Μ. E., et al. "Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes." Science 298.5594(2002): 850-54.Dudley, Μ. E., et al. "Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes." Science 298.5594 (2002): 850-54.

Dudley, Μ. E., et al. "Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma." J.Clin.Oncol. 23.10(2005): 2346-57.Dudley, Μ. E., et al. "Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma." J. Clin. Oncol. 23.10(2005): 2346-57.

Duong, C., et al. "Pretreatment gene expression profiles can be used to predict response to neoadjuvant chemoradiotherapy in esophageal cancer." Ann Surg Oncol 14.12(2007): 3602-09.Duong, C., et al. "Pretreatment gene expression profiles can be used to predict response to neoadjuvant chemoradiotherapy in esophageal cancer." Ann Surg Oncol 14.12(2007): 3602-09.

Egland, K. A., et al. "High expression of a cytokeratin-associated protein in many cancers." Proc Natl.Acad.Sci.U.S.A 103.15(2006): 5929-34.Egland, K. A., et al. "High expression of a cytokeratin-associated protein in many cancers." Proc Natl.Acad.Sci.U.S.A 103.15(2006): 5929-34.

Eramo, A., et al. "Identification and expansion of the tumorigenic lung cancer stem cell population." Cell Death Differ 15.3(2008): 504-14.Eramo, A., et al. "Identification and expansion of the tumorigenic lung cancer stem cell population." Cell Death Differ 15.3(2008): 504-14.

Esashi, F., et al. "CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair." Nature 434.7033(2005): 598-604.Esashi, F., et al. "CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair." Nature 434.7033 (2005): 598-604.

Escobar, M. A., et al. "Profiling of nuclear extract 154845.doc -147- 201200594 proteins from human neuroblastoma cell lines: the search for fingerprints." J Pediatr.Surg 40.2(2005): 349-58.Escobar, M. A., et al. "Profiling of nuclear extract 154845.doc -147- 201200594 proteins from human neuroblastoma cell lines: the search for fingerprints." J Pediatr.Surg 40.2 (2005): 349-58.

Ferracini, R., et al. "The Met/HGF receptor is overexpressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit." Oncogene 10.4(1995): 739-49.Ferracini, R., et al. "The Met/HGF receptor is overexpressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit." Oncogene 10.4(1995): 739-49.

Fischer, J., et al. "Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours." Oncogene 17.6(1998): 733-39.Fischer, J., et al. "Duplication and overexpression of the mutant allele of the MET proto-oncogene in multiple hereditary papillary renal cell tumours." Oncogene 17.6 (1998): 733-39.

Flanagan, J. M., et al. "Genomics screen in transformed stem cells reveals RNASEH2A, PPAP2C, and ADARB1 as putative anticancer drug targets." Mol.Cancer Ther. 8.1(2009): 249-60.Flanagan, J. M., et al. "Genomics screen in transformed stem cells reveals RNASEH2A, PPAP2C, and ADARB1 as putative anticancer drug targets." Mol.Cancer Ther. 8.1(2009): 249-60.

Fong, L., et al. "Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy." Proc.Natl.Acad.Sci.U.S. A 98.15(2001): 8809-14.Fong, L., et al. "Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy." Proc.Natl.Acad.Sci.U.S. A 98.15(2001): 8809-14.

Frasor, J., et al. "Estrogen down-regulation of the corepressor N-CoR: mechanism and implications for estrogen derepression of N-CoR-regulated genes." Proc Natl.Acad.Sci.U.S.A 102.37(2005): 13153-57.Frasor, J., et al. "Estrogen down-regulation of the corepressor N-CoR: mechanism and implications for estrogen derepression of N-CoR-regulated genes." Proc Natl. Acad. Sci. USA 102.37 (2005): 13153-57.

Frew, I. J., et al. "Generation and analysis of Siah2 mutant mice." Mol.Cell Biol. 23.24(2003): 9150-61. I54845.doc -148- 201200594Frew, I. J., et al. "Generation and analysis of Siah2 mutant mice." Mol. Cell Biol. 23.24(2003): 9150-61. I54845.doc -148- 201200594

Fu, Y. and A. S. Lee. "Glucose regulated proteins in cancer progression, drug resistance and immunotherapy." Cancer Biol.Ther· 5.7(2006): 741-44.Fu, Y. and A. S. Lee. "Glucose regulated proteins in cancer progression, drug resistance and immunotherapy." Cancer Biol. Ther· 5.7 (2006): 741-44.

Furge, K. A·, et al. "Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase." Proc.Natl.Acad.Sci.U.S.A 98.19 (2001): 10722-27.Furge, K. A·, et al. "Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase." Proc.Natl.Acad.Sci.U.S.A 98.19 (2001): 10722-27.

Furge, K. A., Y. W. Zhang, and G. F. Vande Woude. "Met receptor tyrosine kinase: enhanced signaling through adapter proteins." Oncogene 19.49(2000): 5582-89.Furge, K. A., Y. W. Zhang, and G. F. Vande Woude. "Met receptor tyrosine kinase: enhanced signaling through adapter proteins." Oncogene 19.49(2000): 5582-89.

Gattinoni, L., et al. "Adoptive immunotherapy for cancer: building on success." Nat.Rev.Immunol. 6.5(2006): 383-93.Gattinoni, L., et al. "Adoptive immunotherapy for cancer: building on success." Nat. Rev. Immunol. 6.5 (2006): 383-93.

Gherardi, E. and M. Stoker. "Hepatocyte growth factor--scatter factor: mitogen, motogen, and met." Cancer Cells 3.6(1991): 227-32.Gherardi, E. and M. Stoker. "Hepatocyte growth factor--scatter factor: mitogen, motogen, and met." Cancer Cells 3.6 (1991): 227-32.

Glen, A., et al. "iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression.” J Proteome.Res 7.3(2008): 897-907.Glen, A., et al. "iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression.” J Proteome. Res 7.3 (2008): 897-907.

Gnjatic, S., et al. "NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer." Int J Cancer (2009).Gnjatic, S., et al. "NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer." Int J Cancer (2009).

Guo, W. C., et al. "Expression and its clinical significance of heat shock protein gp96 in human 154845.doc -149- 201200594 osteosarcoma." Neoplasma 57.1(2010): 62-67.Guo, W. C., et al. "Expression and its clinical significance of heat shock protein gp96 in human 154845.doc -149- 201200594 osteosarcoma." Neoplasma 57.1 (2010): 62-67.

Habelhah, H.,et al. "Stress-induced decrease in TRAF2 stability is mediated by Siah2." EMBO J 21.21(2002): 5756-65.Habelhah, H., et al. "Stress-induced decrease in TRAF2 stability is mediated by Siah2." EMBO J 21.21(2002): 5756-65.

Hamamoto, A., et al. "Aberrant expression of the gastric mucin MUC6 in human pulmonary adenocarcinoma xenografts." Int J Oncol 26.4(2005): 891-96.Hamamoto, A., et al. "Aberrant expression of the gastric mucin MUC6 in human pulmonary adenocarcinoma xenografts." Int J Oncol 26.4 (2005): 891-96.

Harada, T.,et al. "Genome-wide analysis of pancreatic cancer using microarray-based techniques." Pancreatology. 9.1-2(2009): 13-24.Harada, T., et al. "Genome-wide analysis of pancreatic cancer using microarray-based techniques." Pancreatology. 9.1-2(2009): 13-24.

Harper, L. J·,et al. "Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma." J Oral Pathol.Med 36.10(2007): 594-603.Harper, L. J., et al. "Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma." J Oral Pathol. Med 36.10(2007): 594-603.

Hayama, S., et al. "Activation of CDC A1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis." Cancer Research 66.21 (2006): 10339-48.Hayama, S., et al. "Activation of CDC A1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis." Cancer Research 66.21 (2006): 10339-48.

Hayashi, M., et al. "High expression of HER3 is associated with a decreased survival in gastric cancer." Clinical Cancer Research 14.23(2008): 7843-49.Hayashi, M., et al. "High expression of HER3 is associated with a decreased survival in gastric cancer." Clinical Cancer Research 14.23(2008): 7843-49.

Heike, M., et al. "Expression of stress protein gp96, a tumor rejection antigen, in human colorectal cancer." Int J Cancer 86.4(2000): 489-93.Heike, M., et al. "Expression of stress protein gp96, a tumor rejection antigen, in human colorectal cancer." Int J Cancer 86.4 (2000): 489-93.

Hodorova, I., et al. "Gp96 and its different expression in 154845.doc -150- ⑧ 201200594 breast carcinomas." Neoplasma 55.1(2008): 31-35.Hodorova, I., et al. "Gp96 and its different expression in 154845.doc -150- 8 201200594 breast carcinomas." Neoplasma 55.1 (2008): 31-35.

Horton, R. A., et al. "A substrate for deubiquitinating enzymes based on time-resolved fluorescence resonance energy transfer between terbium and yellow fluorescent protein." Anal.Biochem. 360.1(2007): 138-43.Horton, R. A., et al. " A substrate for deubiquitinating enzymes based on time-resolved fluorescence resonance energy transfer between terbium and yellow fluorescent protein." Anal. Biochem. 360.1 (2007): 138-43.

House, C. M., A. Moller, and D. D. Bowtell. "Siah proteins: novel drug targets in the Ras and hypoxia pathways." Cancer Research 69.23(2009): 8835-38.House, C. M., A. Moller, and D. D. Bowtell. "Siah proteins: novel drug targets in the Ras and hypoxia pathways." Cancer Research 69.23(2009): 8835-38.

Howard, E. W., et al. "Decreased adhesiveness, resistance to anoikis and suppression of GRP94 are integral to the survival of circulating tumor cells in prostate cancer." Clin £xp.Metastasis 25.5(2008): 497-508.Howard, E. W., et al. "Decreased adhesiveness, resistance to anoikis and suppression of GRP94 are integral to the survival of circulating tumor cells in prostate cancer." Clin £xp.Metastasis 25.5(2008): 497-508.

Hu, G. and E. R. Fearon. "Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminalSEQuences regulate oligomerization and binding to target proteins." Mol.Cell Biol. 19.1(1999): 724-32.Hu, G. and ER Fearon. "Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminalSEQuences regulate oligomerization and binding to target proteins." Mol. Cell Biol. 19.1(1999): 724- 32.

Huang, Y., et al. "Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells." Mol.Cell Biochem. 308.1-2(2008): 133-39.Huang, Y., et al. "Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells." Mol. Cell Biochem. 308.1-2(2008): 133-39.

Jansen, Μ. P., et al. "Downregulation of SIAH2, an ubiquitin E3 ligase, is associated with resistance to endocrine therapy in breast cancer." Breast Cancer Res Treat. 116.2(2009): 263-71.Jansen, Μ. P., et al. "Downregulation of SIAH2, an ubiquitin E3 ligase, is associated with resistance to endocrine therapy in breast cancer." Breast Cancer Res Treat. 116.2(2009): 263-71.

Jia, H. L·,et al. "Gene expression profiling reveals 154845.doc -151 201200594 potential biomarkers of human hepatocellular carcinoma." Clinical Cancer Research 13.4(2007): 1133-39.Jia, H. L., et al. "Gene expression profiling reveals 154845.doc -151 201200594 potential biomarkers of human hepatocellular carcinoma." Clinical Cancer Research 13.4(2007): 1133-39.

Jucker, M., et al. "The Met/hepatocyte growth factor receptor(HGFR)gene is overexpressed in some cases of human leukemia and lymphoma." Leuk.Res. 18.1( 1994): 7-16.Jucker, M., et al. " The Met/hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma." Leuk. Res. 18.1 (1994): 7-16.

Jung, G., J. A. Ledbetter, and H. J. Muller-Eberhard. "Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates." Proc Natl Acad Sci U S A 84.13(1987): 4611-15.Jung, G., J. A. Ledbetter, and H. J. Muller-Eberhard. "Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates." Proc Natl Acad Sci U S A 84.13 (1987): 4611-15.

Jung, Η. M., S. J. Choi, and J. K. Kim. "Expression profiles of SV4 O-immortalization-associated genes upregulated in various human cancers." J Cell Biochem. 106.4(2009): 703-13.Jung, Η. M., S. J. Choi, and J. K. Kim. "Expression profiles of SV4 O-immortalization-associated genes upregulated in various human cancers." J Cell Biochem. 106.4(2009): 703-13.

Kaneko, N·,et al. "siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis." Biochem.Biophys.Res Commun. 390.4(2009): 1235-40.Kaneko, N., et al. "siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis." Biochem. Biophys. Res Commun. 390.4 (2009): 1235 -40.

Kang, Η. M., et al. "Effects of Helicobacter pylori Infection on gastric mucin expression." J ClinKang, Η. M., et al. "Effects of Helicobacter pylori Infection on gastric mucin expression." J Clin

Gastroenterol. 42.1(2008): 29-35.Gastroenterol. 42.1 (2008): 29-35.

Ko, M. A., et al. "Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis." Nat.Genet. 37.8(2005): 883- I54845.doc -152· 201200594 88.Ko, M. A., et al. "Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis." Nat.Genet. 37.8(2005): 883- I54845.doc -152· 201200594 88.

Kobayashi, M., et al. "Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas." Oncogene 22.9(2003): 1294-301.Kobayashi, M., et al. "Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas." Oncogene 22.9 (2003): 1294-301.

Koochekpour, S., et al. "Met and hepatocyte growth factor/scatter factor expression in human gliomas." Cancer Res. 57.23(1997): 5391-98.Koochekpour, S., et al. "Met and hepatocyte growth factor/scatter factor expression in human gliomas." Cancer Res. 57.23(1997): 5391-98.

Korzeniewski, N., et al. "Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels." Cancer Research 69.16(2009): 6668-75.Korzeniewski, N., et al. "Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels." Cancer Research 69.16(2009): 6668-75.

Krieg, A. M. "Therapeutic potential of Toll-like receptor 9 activation." Nat.Rev.Drug Discov. 5.6(2006): 471-84.Krieg, A. M. "Therapeutic potential of Toll-like receptor 9 activation." Nat.Rev.Drug Discov. 5.6(2006): 471-84.

Kunimoto, K., et al. "Involvement of IQGAP3, a regulator of Ras/ERK-related cascade, in hepatocyte proliferation in mouse liver regeneration and development." J Cell Physiol 220.3(2009): 621-31.Kunimoto, K., et al. "Involvement of IQGAP3, a regulator of Ras/ERK-related cascade, in hepatocyte proliferation in mouse liver regeneration and development." J Cell Physiol 220.3(2009): 621-31.

Kuriyama, R·, et al. "Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells." J Cell Sci. 122.Pt 12(2009): 2014-23.Kuriyama, R., et al. "Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells." J Cell Sci. 122. Pt 12(2009): 2014-23.

Lee, H. S., et al. "MUC1, MUC2, MUC5AC, and MUC6 expressions in gastric carcinomas: their roles as prognostic indicators." Cancer 92.6(2001): 1427-34. 154845.doc -153- 201200594Lee, H. S., et al. "MUC1, MUC2, MUC5AC, and MUC6 expressions in gastric carcinomas: their roles as prognostic indicators." Cancer 92.6(2001): 1427-34. 154845.doc -153- 201200594

Leivo,I.,et al. "Characterization of gene expression in major types of salivary gland carcinomas with epithelial differentiation." Cancer Genet.Cytogenet. 156.2(2005): 104-13.Leivo, I., et al. "Characterization of gene expression in major types of salivary gland carcinomas with epithelial differentiation." Cancer Genet. Cytogenet. 156.2 (2005): 104-13.

Lemmel, C” et al. "Differential quantitative analysis ofMHCligands by mass spectrometry using stable isotope labeling." Nat.Biotechnol. 22.4(2004): 450-54.Lemmel, C” et al. "Differential quantitative analysis of MHCligands by mass spectrometry using stable isotope labeling." Nat. Biotechnol. 22.4(2004): 450-54.

Li, G., et al. "Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development." Oncogene 20.56(2001): 8125-35.Li, G., et al. "Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development." Oncogene 20.56(2001): 8125-35.

Lim, S. O.,et al. "Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94)in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules." World J Gastroenterol. 1 1.14(2005): 2072-79.Lim, SO, et al. "Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules." World J Gastroenterol. 1 1.14 (2005) : 2072-79.

Lin, W·,et al. "Tyrosine kinases and gastric cancer." Oncogene 19.49(2000): 5680-89.Lin, W., et al. "Tyrosine kinases and gastric cancer." Oncogene 19.49 (2000): 5680-89.

Liu, B. and Z. LI. "Endoplasmic reticulum HSP90bl (gp96, grp94)optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin." Blood 112.4(2008): 1223-30.Liu, B. and Z. LI. "Endoplasmic reticulum HSP90bl (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin." Blood 112.4(2008): 1223-30.

Liu, S. Y., et al. "Requirement of MMP-3 in anchorage-independent growth of oral squamous cell carcinomas." J Oral Pathol.Med 36.7(2007): 430-35.Liu, S. Y., et al. "Requirement of MMP-3 in anchorage-independent growth of oral squamous cell carcinomas." J Oral Pathol. Med 36.7 (2007): 430-35.

Lochter, A., et al. "The significance of matrix 154845.doc •154- 201200594 metal loprote in ases during early stages of tumor progression." Ann N.Y.Acad.Sci. 857(1998): 180-93.Lochter, A., et al. "The significance of matrix 154845.doc •154- 201200594 metal loprote in ases during early stages of tumor progression." Ann N.Y.Acad.Sci. 857(1998): 180-93.

Lund, C. V.,et al. "Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology." Mol.Cell Biol. 25.20(2005): 9082-91.Lund, C. V., et al. "Zinc finger transcription factors designed for bispecific coregulation of ErbB2 and ErbB3 receptors: insights into ErbB receptor biology." Mol. Cell Biol. 25.20(2005): 9082-91.

Ma, S., et al. "Identification and characterization of tumorigenic liver cancer stem/progenitor cells." Gastroenterology 132.7(2007): 2542-56.Ma, S., et al. "Identification and characterization of tumorigenic liver cancer stem/progenitor cells." Gastroenterology 132.7(2007): 2542-56.

MacLeod, R. J., M. Hayes, and I. Pacheco. "Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells." Am J Physiol Gastrointest.Liver Physiol 293.1 (2007): G403-G411.MacLeod, RJ, M. Hayes, and I. Pacheco. "Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells." Am J Physiol Gastrointest. Liver Physiol 293.1 (2007): G403- G411.

Macmillan, J. C.,et al. "Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer." Ann Surg Oncol 8.9(2001): 729-40.Macmillan, J. C., et al. "Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer." Ann Surg Oncol 8.9 (2001): 729-40.

Maney, T., et al. "The kinetochore of higher eucaryotes: a molecular view." Int Rev.Cytol. 194(2000): 67-131.Maney, T., et al. "The kinetochore of higher eucaryotes: a molecular view." Int Rev.Cytol. 194(2000): 67-131.

Martin, C. M.,et al. "Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy." Methods Mol.Biol. 511(2009): 333-59.Martin, C. M., et al. "Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy." Methods Mol. Biol. 511(2009): 333-59.

Matsukita, S·, et al. "Expression of mucins(MUC 1, 154845.doc -155- 201200594 MUC2, MUC5AC and MUC6)in mucinous carcinoma of the breast: comparison with invasive ductal carcinoma."Matsukita, S·, et al. "Expression of mucins (MUC 1, 154845.doc -155- 201200594 MUC2, MUC5AC and MUC6) in mucinous carcinoma of the breast: comparison with invasive ductal carcinoma."

Histopathology 42.1(2003): 26-36.Histopathology 42.1 (2003): 26-36.

Maulik, G., et al. "Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition." Cytokine Growth Factor Rev. 13.1(2002): 41-59.Maulik, G., et al. "Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition." Cytokine Growth Factor Rev. 13.1(2002): 41-59.

Mizrak, D., M. Brittan, and M. Alison. "CD133: molecule of the moment." J Pathol. 214.1(2008): 3-9.Mizrak, D., M. Brittan, and M. Alison. "CD133: molecule of the moment." J Pathol. 214.1(2008): 3-9.

Montesano, R., et al. "Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis." Cell Growth Differ. 9.5(1998): 355-65.Montesano, R., et al. "Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis." Cell Growth Differ. 9.5 (1998): 355-65.

Monzani, E., et al. "Melanoma contains CD 133 and ABCG2 positive cells with enhanced tumourigenic potential." £ur.J Cancer 43.5(2007): 935-46.Monzani, E., et al. "Melanoma contains CD 133 and ABCG2 positive cells with enhanced tumourigenic potential." £ur.J Cancer 43.5(2007): 935-46.

Moore, A. and L. Wordeman. "The mechanism, function and regulation of depolymerizing kinesins during mitosis." Trends Cell Biol. 14.10(2004): 537-46.Moore, A. and L. Wordeman. "The mechanism, function and regulation of depolymerizing kinesins during mitosis." Trends Cell Biol. 14.10(2004): 537-46.

Morgan, R. A., et al. "Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes." Science (2006).Morgan, R. A., et al. "Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes." Science (2006).

Mori, M., et al. "HLA gene and haplotype frequencies in the North American population: the National Marrow Donor Program Donor Registry." Transplantation 64.7(1997): 154845.doc -156- ⑧ 201200594 1017-27.Mori, M., et al. "HLA gene and haplotype frequencies in the North American population: the National Marrow Donor Program Donor Registry." Transplantation 64.7 (1997): 154845.doc -156- 8 201200594 1017-27.

Murray, G. I., et al. "Matrix metalloproteinases and their inhibitors in gastric cancer." Gut 43.6(1998): 791-97.Murray, G. I., et al. "Matrix metalloproteinases and their inhibitors in gastric cancer." Gut 43.6 (1998): 791-97.

Murshid, A., J. Gong, and S. K. Calderwood. "Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation." Expert.Rev.Vaccines. 7.7(2008): 1019-30.Murshid, A., J. Gong, and S. K. Calderwood. "Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation." Expert.Rev.Vaccines. 7.7(2008): 1019-30.

Nakaigawa, N., et al. "Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma." Cancer Res. 66.7(2006): 3699-705.Nakaigawa, N., et al. "Inactivation of von Hippel-Lindau gene induces constitutive phosphorylation of MET protein in clear cell renal carcinoma." Cancer Res. 66.7(2006): 3699-705.

Nakamura, Y., et al. "Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer." Br.J Cancer 97.4(2007): 543-49.Nakamura, Y., et al. "Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer." Br.J Cancer 97.4 (2007): 543-49.

Nakayama, K., J. Qi, and Z. Ronai. "The ubiquitin ligase Siah2 and the hypoxia response." Mol.Cancer Res 7.4 (2009): 443-51.Nakayama, K., J. Qi, and Z. Ronai. "The ubiquitin ligase Siah2 and the hypoxia response." Mol. Cancer Res 7.4 (2009): 443-51.

Naldini, L., et al. "Hepatocyte growth factor(HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET." Oncogene 6.4 (1991): 501-04.Naldini, L., et al. "Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET." Oncogene 6.4 (1991): 501-04.

Nguyen, Q. N., et al. "Light controllable siRNAs regulate gene suppression and phenotypes in cells." Biochim.Biophys.Acta 1758.3(2006): 394-403. 154845.doc -157- 201200594Nguyen, Q. N., et al. "Light controllable siRNAs regulate gene suppression and phenotypes in cells." Biochim. Biophys. Acta 1758.3 (2006): 394-403. 154845.doc -157- 201200594

Nishio, K·, et al. "Crystal structure of the de-ubiquitinating enzyme UCH37(human UCH-L5)catalytic domain." Biochem.Biophys.Res Commun. 390.3(2009): 855-60.Nishio, K·, et al. "Crystal structure of the de-ubiquitinating enzyme UCH37(human UCH-L5)catalytic domain." Biochem.Biophys.Res Commun. 390.3(2009): 855-60.

Nojima, H., et al. "IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade." Nat.Cell Biol. 10.8(2008): 971-78.Nojima, H., et al. "IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade." Nat. Cell Biol. 10.8(2008): 971-78.

Nomura, H., et al. "Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2(gelatinase A)in human gastric carcinomas." Int J Cancer 69.1(1996): 9-16.Nomura, H., et al. "Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2 (gelatinase A) in human gastric carcinomas." Int J Cancer 69.1 (1996): 9-16.

Nomura, H., et al. "Network-based analysis of calciumbinding protein genes identifies Grp94 as a target in human oral carcinogenesis." Br.J Cancer 97.6(2007): 792-801.Nomura, H., et al. "Network-based analysis of calciumbinding protein genes identification Grp94 as a target in human oral carcinogenesis." Br.J Cancer 97.6 (2007): 792-801.

Ohnuma, S., et al. "Cancer-associated splicing variants of the CDCA1 and MSMB genes expressed in cancer cell lines and surgically resected gastric cancer tissues." Surgery 145.1(2009): 57-68.Ohnuma, S., et al. "Cancer-associated splicing variants of the CDCA1 and MSMB genes expressed in cancer cell lines and surgically resected gastric cancer tissues." Surgery 145.1 (2009): 57-68.

Park, Y. H.,et al. "Capecitabine in combination with Oxaliplatin(XELOX)as a first-line therapy for advanced gastric cancer." Cancer Chemother.Pharmacol. (2007).Park, Y. H., et al. "Capecitabine in combination with Oxaliplatin (XELOX) as a first-line therapy for advanced gastric cancer." Cancer Chemother. Pharmacol. (2007).

Pascolo, S., et al. "The non-classicalHLA class I molecule HFE does not influence the NK-like activity contained in fresh human PBMCs and does not interact with 154845.doc -158- 201200594 NK cells." Int.Immunol. 17.2(2005): 117-22.Pascolo, S., et al. "The non-classical HLA class I molecule HFE does not influence the NK-like activity contained in fresh human PBMCs and does not interact interact with 154845.doc -158- 201200594 NK cells." Int. Immunol. 17.2 (2005): 117-22.

Peel, N., et al. "Overexpressing centri ole-replication proteins in vivo induces centriole overduplication and de novo formation." Curr.Biol. 17.10(2007): 834-43.Peel, N., et al. "Overexpressing centri ole-replication proteins in vivo induces centriole overduplication and de novo formation." Curr.Biol. 17.10(2007): 834-43.

Pereira, Μ. B·, et al. "Immunohistochemical study of the expression of MUC5AC and MUC6 in breast carcinomas and adjacent breast tissues." J Clin Pathol. 54.3(2001): 210-13.Pereira, Μ. B·, et al. "Immunohistochemical study of the expression of MUC5AC and MUC6 in breast carcinomas and adjacent breast tissues." J Clin Pathol. 54.3(2001): 210-13.

Pietra, G·, et al. "Natural killer cells kill human melanoma cells with characteristics of cancer stem cells." Int Immunol. 21.7(2009): 793-801.Pietra, G·, et al. "Natural killer cells kill human melanoma cells with characteristics of cancer stem cells." Int Immunol. 21.7(2009): 793-801.

Poller, D. N., et al. "Production and characterization of a polyclonal antibody to the c-erbB-3 protein: examination of c-erbB-3 protein expression in adenocarcinomas." J Pathol. 168.3(1992): 275-80.Poller, DN, et al. "Production and characterization of a polyclonal antibody to the c-erbB-3 protein: examination of c-erbB-3 protein expression in adenocarcinomas." J Pathol. 168.3(1992): 275-80 .

Pons, E., C. C. Uphoff, and H. G. Drexler. "Expression of hepatocyte growth factor and its receptor c-met in human leukemia-lymphoma cell lines." Leuk.Res. 22.9(1998): 797-804.Pons, E., C. C. Uphoff, and H. G. Drexler. "Expression of hepatocyte growth factor and its receptor c-met in human leukemia-lymphoma cell lines." Leuk. Res. 22.9 (1998): 797-804.

Ponzetto, C” et al. "A novel recognition motif for phosphatidyl inositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor." Mol.Cell Biol. 13.8(1993): 4600-08.Ponzetto, C” et al. "A novel recognition motif for phosphatidyl inositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor." Mol. Cell Biol. 13.8(1993): 4600-08.

Poppe, M., et al. "Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility." Oncogene 26.24 154845.doc -159- 201200594 (2007) : 3462-72.Poppe, M., et al. "Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility." Oncogene 26.24 154845.doc -159- 201200594 (2007) : 3462-72.

Pytel, D., et al. "Tyrosine kinase blockers: new hope for successful cancer therapy." Anticancer Agents Med Chem. 9.1(2009): 66-76.Pytel, D., et al. "Tyrosine kinase blockers: new hope for successful cancer therapy." Anticancer Agents Med Chem. 9.1(2009): 66-76.

Qi, i., et al. "The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways." Proc Natl.Acad.Sci.U.S.A 105.43 (2008) : 16713-18.Qi, i., et al. "The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways." Proc Natl.Acad.Sci.U.S.A 105.43 (2008): 16713-18.

Qian, C. N., et al. "Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma." Cancer Res. 62.2(2002): 589-96.Qian, C. N., et al. "Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma." Cancer Res. 62.2(2002): 589-96.

Qian, Z., et al. "Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia." Chem.Biol.Interact. (2009) .Qian, Z., et al. "Cytogenetic and genetic pathways in therapy-related acute myeloid leukemia." Chem.Biol. Interact. (2009) .

Ramirez, R., et al. "Over-expression of hepatocyte growth factor/scatter factor(HGF/SF)and the HGF/SF receptor(cMET)are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma." Clin Endocrinol.(Oxf) 53.5(2000): 635-44.Ramirez, R., et al. "Over-expression of hepatocyte growth factor/scatter factor(HGF/SF) and the HGF/SF receptor(cMET) are associated with a high risk of metastasis and recurrence for children and young adults with Papillary thyroid carcinoma." Clin Endocrinol. (Oxf) 53.5 (2000): 635-44.

Rammensee, H. G·, et al. "SYFPEITHI: database forMHCligands and peptide motifs." Immunogenetics 50.3-4(1999): 213-19. I54845.doc •160- ⑧ 201200594Rammensee, H. G., et al. "SYFPEITHI: database forMHCligands and peptide motifs." Immunogenetics 50.3-4(1999): 213-19. I54845.doc •160- 8 201200594

Rammensee, H. G., J. Bachmann, and S. Stevanovic. MHCLigands and Peptide Motifs. Springer-Verlag, Heidelberg, Germany, 1997.Rammensee, H. G., J. Bachmann, and S. Stevanovic. MHCLigands and Peptide Motifs. Springer-Verlag, Heidelberg, Germany, 1997.

Rappa, G., O. Fodstad, and A. Lorico. "The stem cell-associated antigen CD 133(Prominin-1 )is a molecular therapeutic target for metastatic melanoma." Stem Cells 26.12(2008): 3008-17.Rappa, G., O. Fodstad, and A. Lorico. "The stem cell-associated antigen CD 133(Prominin-1 )is a molecular therapeutic target for metastatic melanoma." Stem Cells 26.12(2008): 3008-17 .

Richardson, G. D., et al. "CD133, a novel marker for human prostatic epithelial stem cells." J Cell Sci. 117.Pt 16(2004): 3539-45.Richardson, G. D., et al. "CD133, a novel marker for human prostatic epithelial stem cells." J Cell Sci. 117. Pt 16 (2004): 3539-45.

Rini, B. I., et al. "Combination immunotherapy with prostatic acid phosphatase pulsed anti gen-presenting cells (provenge)plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy." Cancer 107.1(2006): 67-74.Rini, BI, et al. "Combination immunotherapy with prostatic acid phosphatase pulsed anti gen-presenting cells (provenge)plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy." Cancer 107.1(2006): 67-74 .

Rodrigues-Martins, A., et al. "Revisiting the role of the mother centriole in centriole biogenesis." Science 316.5827(2007): 1046-50.Rodrigues-Martins, A., et al. "Revisiting the role of the mother centriole in centriole biogenesis." Science 316.5827 (2007): 1046-50.

Rosenberg, S. A., et al. "A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone." N.Engl. J.Med. 316.15(1987): 889-97.Rosenberg, SA, et al. "A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone." N.Engl. J.Med. 316.15 (1987): 889-97.

Rosenberg, S. A., et al. "Use of tumor-infiltrating 154845.doc -161 - 201200594 lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report." N.Engl.J Med 3 19.25(1988): 1676-80.Rosenberg, SA, et al. "Use of tumor-infiltrating 154845.doc -161 - 201200594 lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report." N.Engl.J Med 3 19.25( 1988): 1676-80.

Rott, R., et al. "Monoubiquitylation of alpha-synuclein by seven in absentia homolog(SIAH)promotes its aggregation in dopaminergic cells." J Biol.Chem. 283.6 (2008) : 3316-28.Rott, R., et al. "Monoubiquitylation of alpha-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells." J Biol. Chem. 283.6 (2008): 3316-28.

Rutella, S., et al. "Cells with characteristics of cancer stem/progenitor cells express the CD 133 antigen in human endometrial tumors." Clinical Cancer Research 15.13 (2009) : 4299-311.Rutella, S., et al. "Cells with characteristics of cancer stem/progenitor cells express the CD 133 antigen in human endometrial tumors." Clinical Cancer Research 15.13 (2009) : 4299-311.

Saiki, R. K·, et al. "Primer-directed enzymatic amplification ofDNAwith a thermostableDNApolymerase." Science 239.4839(1988): 487-91.Saiki, R. K., et al. "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase." Science 239.4839 (1988): 487-91.

Samant, G. V. and P. W. Sylvester. "gamma-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells." Cell Prolif. 39.6 (2006): 563-74.Samant, G. V. and P. W. Sylvester. "gamma-Tocotrienol inhibits ErbB3-dependent PI3K/Akt mitogenic signalling in neoplastic mammary epithelial cells." Cell Prolif. 39.6 (2006): 563-74.

Sanidas, E. E·,et al. "Expression of the c-erbB-3 gene product in gastric cancer." Int J Cancer 54.6(1993): 935-40.Sanidas, E. E., et al. "Expression of the c-erbB-3 gene product in gastric cancer." Int J Cancer 54.6 (1993): 935-40.

Scott, G. K·,et al. "Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b." J Biol.Chem. 282.2(2007): 1479-86.Scott, G. K., et al. " Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b." J Biol. Chem. 282.2(2007): 1479-86.

Sergina, N. V·,et al. "Escape from HER-family tyrosine 154845.doc -162- ⑧ 201200594 kinase inhibitor therapy by the kinase-inactive HER3 Nature 445.7126(2007): 437-41.Sergina, N. V., et al. "Escape from HER-family tyrosine 154845.doc -162- 8 201200594 kinase inhibitor therapy by the kinase-inactive HER3 Nature 445.7126(2007): 437-41.

Shah, M.,et al. "Inhibition of Siah2 ubiquitin ligase by vitamin K3(menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis." Pigment Cell Melanoma Res 22.6(2009): 799-808.Shah, M., et al. "Inhibition of Siah2 ubiquitin ligase by vitamin K3(menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis." Pigment Cell Melanoma Res 22.6(2009): 799-808.

Shapiro, G. I. "Cyclin-dependent kinase pathways as targets for cancer treatment." J Clin Oncol 24.11(2006): 1770-83.Shapiro, G. I. "Cyclin-dependent kinase pathways as targets for cancer treatment." J Clin Oncol 24.11(2006): 1770-83.

Sherman-Baust, C. A., et al. "Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells." Cancer Cell 3.4(2003): 377-86.Sherman-Baust, C. A., et al. "Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells." Cancer Cell 3.4 (2003): 377-86.

Sheu, M. L., S. H. Liu, and K. H. Lan. "Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduces tumor growth." PLoS.ONE. 2.10(2007): el096.Sheu, M. L., S. H. Liu, and K. H. Lan. "Honokiol induces calpain-mediated glucose-regulated protein-94 cleavage and apoptosis in human gastric cancer cells and reduced tumor growth." PLoS.ONE. 2.10(2007): el096.

Shimo, A.,et al. "Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis." Cancer Sci. 99.1(2008): 62-70.Shimo, A., et al. "Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis." Cancer Sci. 99.1(2008): 62-70.

Singh, S. K., et al. "Identification of a cancer stem cell in human brain tumors." Cancer Res. 63.18(2003): 5821-28.Singh, S. K., et al. "Identification of a cancer stem cell in human brain tumors." Cancer Res. 63.18(2003): 5821-28.

Singh, S. K., et al. "Identification of human brain tumour initiating cells." Nature 432.7015(2004): 396-401. 154845.doc -163- 201200594Singh, S. K., et al. "Identification of human brain tumour initiating cells." Nature 432.7015 (2004): 396-401. 154845.doc -163- 201200594

Sithanandam, G. and L. M. Anderson. "The ERBB3 receptor in cancer and cancer gene therapy." Cancer Gene Ther. 15.7(2008): 413-48.Sithanandam, G. and L. M. Anderson. "The ERBB3 receptor in cancer and cancer gene therapy." Cancer Gene Ther. 15.7(2008): 413-48.

Sithanandam, G., et al. "Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549." Oncogene 24.11(2005): 1847-59.Sithanandam, G., et al. "Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549." Oncogene 24.11(2005): 1847-59.

Skawran, B·, et al. "Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions." Mod.Pathol. 21.5(2008): 505-16.Skawran, B., et al. "Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions." Mod. Pathol. 21.5(2008): 505-16.

Slesak, B., et al. "Expression of epidermal growth factor receptor family proteins(EGFR,c-erbB-2 and c-erbB-3)in gastric cancer and chronic gastritis." Anticancer Res 18.4A(1998): 2727-32.Slesak, B., et al. "Expression of epidermal growth factor receptor family proteins (EGFR, c-erbB-2 and c-erbB-3) in gastric cancer and chronic gastritis." Anticancer Res 18.4A (1998): 2727-32.

Small, E. J., et al. "Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T(APC8015)in patients with metastatic, asymptomatic hormone refractory prostate cancer." J Clin Oncol. 24.19(2006): 3089-94.Small, EJ, et al. "Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T(APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer." J Clin Oncol. 24.19(2006): 3089-94 .

Smith, L. M., et al. "CD133/prominin-l is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers." Br.J Cancer 99.1 (2008): 100-09.Smith, L. M., et al. "CD133/prominin-l is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers." Br.J Cancer 99.1 (2008): 100-09.

Smith, M. J., et al. "Analysis of differential gene 154845.doc -164- ⑥ 201200594 expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification." Br.J Cancer 100.9(2009): 1452-64.Smith, M. J., et al. " Analysis of differential gene 154845.doc -164- 6 201200594 expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification." Br.J Cancer 100.9(2009): 1452-64.

Smogorzewska, A., et al. "Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required forDNArepair." Cell 129.2(2007): 289-301.Smogorzewska, A., et al. "Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNArepair." Cell 129.2(2007): 289-301.

Staehler, M., Stenzl, A., Dietrich, P. Y., Eisen, T., Haferkamp, A., Beck, J., Mayer, A., Walter, S., Singh-Jasuja, H.,and Stief, C. A phase I study to evaluate safety, immunogenicity and anti-tumor activity of the multi-peptide vaccine IMA901 in renal cell carcinoma patients(RCC). Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I Vol 25, No. 18S(June 20 Supplement), 2007: 5098. 6-20-2007.Staehler, M., Stenzl, A., Dietrich, PY, Eisen, T., Haferkamp, A., Beck, J., Mayer, A., Walter, S., Singh-Jasuja, H., and Stief, C A phase I study to evaluate safety, immunogenicity and anti-tumor activity of the multi-peptide vaccine IMA901 in renal cell carcinoma patients (RCC). Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I Vol 25, No. 18S( June 20 Supplement), 2007: 5098. 6-20-2007.

Ref Type: AbstractRef Type: Abstract

Stemmann, 0·,et al. "Dual inhibition of sister chromatid separation at metaphase." Cell 107.6(2001): 715-26.Stemmann, 0·, et al. "Dual inhibition of sister chromatid separation at metaphase." Cell 107.6 (2001): 715-26.

Suetsugu, A., et al. "Characterization of CD133 + hepatocellular carcinoma cells as cancer stem/progenitor cells." Biochem.Biophys.Res.Commun. 351.4(2006): 820-24.Suetsugu, A., et al. "Characterization of CD133 + hepatocellular carcinoma cells as cancer stem/progenitor cells." Biochem. Biophys. Res. Commun. 351.4 (2006): 820-24.

Suva, M. L., et al. "Identification of Cancer Stem Cells in Ewing's Sarcoma." Cancer Research (2009).Suva, M. L., et al. "Identification of Cancer Stem Cells in Ewing's Sarcoma." Cancer Research (2009).

Swallow, C. J., et al. "Sak/Plk4 and mitotic fidelity." 154845.doc -165- 201200594Swallow, C. J., et al. "Sak/Plk4 and mitotic fidelity." 154845.doc -165- 201200594

Oncogene 24.2(2005): 306-12.Oncogene 24.2 (2005): 306-12.

Szczepanowski,M·,et al. "Regulation of repp86 stability by human Siah2." Biochem.Biophys.Res Commun. 362.2(2007): 485-90.Szczepanowski, M., et al. "Regulation of repp86 stability by human Siah2." Biochem.Biophys. Res Commun. 362.2(2007): 485-90.

Tajima,Y.,et al. "Gastric and intestinal phenotypic marker expression in early differentiated-type tumors of the stomach: clinicopathologic significance and genetic background." Clinical Cancer Research 12.21(2006): 6469-79.Tajima, Y., et al. "Gastric and intestinal phenotypic marker expression in early differentiated-type tumors of the stomach: clinicopathologic significance and genetic background." Clinical Cancer Research 12.21(2006): 6469-79.

Takaishi, S., et al. "Identification of gastric cancer stem cells using the cell surface marker CD44." Stem Cells 27.5(2009): 1006-20.Takaishi, S., et al. "Identification of gastric cancer stem cells using the cell surface marker CD44." Stem Cells 27.5(2009): 1006-20.

Takayama, H·,et al. "Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor." Proc.Natl.Acad.Sci.U.S.A 94.2 (1997): 701-06.Takayama, H., et al. "Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor." Proc.Natl.Acad.Sci.U.S.A 94.2 (1997): 701-06.

Teofili, L·, et al. "Expression of the c-met protooncogene and its ligand, hepatocyte growth factor, in Hodgkin disease." Blood 97.4(2001): 1063-69.Teofili, L., et al. "Expression of the c-met protooncogene and its ligand, hepatocyte growth factor, in Hodgkin disease." Blood 97.4 (2001): 1063-69.

Thorsen, K·, et al. "Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis." Mol.Cell Proteomics. 7.7(2008): 1214-24.Thorsen, K., et al. "Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis." Mol. Cell Proteomics. 7.7(2008): 1214-24.

Tirino, V., et al. "The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small- 154845.doc -166- 201200594 cell lung cancer." Eur.J Cardiothorac.Surg 36.3(2009): 446-53.Tirino, V., et al. "The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small- 154845.doc -166- 201200594 cell lung cancer." Eur.J Cardiothorac.Surg 36.3( 2009): 446-53.

Todaro,M.,et al. "Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4." Cell Stem Cell 1.4(2007): 389-402.Todaro, M., et al. "Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4." Cell Stem Cell 1.4 (2007): 389-402.

Topol, L., et al. "Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation." J Cell Biol. 162.5(2003): 899-908.Topol, L., et al. "Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation." J Cell Biol. 162.5 (2003): 899-908.

Toribara, N. W., et al. "Human gastric mucin. Identification of a unique species by expression cloning." J Biol.Chem. 268.8(1993): 5879-85.Toribara, N. W., et al. "Human gastric mucin. Identification of a unique species by expression cloning." J Biol. Chem. 268.8 (1993): 5879-85.

Tsan, M. F. and B. Gao. "Heat shock protein and innate immunity." Cell Mol.Immunol. 1.4(2004): 274-79.Tsan, M. F. and B. Gao. "Heat shock protein and innate immunity." Cell Mol. Immunol. 1.4(2004): 274-79.

Tuck, A. B., et al. "Coexpression of hepatocyte growth factor and receptor(Met)in human breast carcinoma." Am.J.Pathol. 148.1(1996): 225-32.Tuck, A. B., et al. " Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma." Am. J. Pathol. 148.1 (1996): 225-32.

Vairaktaris, E..,et al. "Association of -1171 promoter polymorphism of matrix metalloproteinase-3 with increased risk for oral cancer." Anticancer Res 27.6B(2007): 4095-100.Vairaktaris, E.., et al. "Association of -1171 promoter polymorphism of matrix metalloproteinase-3 with increased risk for oral cancer." Anticancer Res 27.6B (2007): 4095-100.

Vandenbroeck, K., E. Martens, and I. Alloza. "Multichaperone complexes regulate the folding of interferon-gamma in the endoplasmic reticulum." Cytokine 33.5 (2006): 264-73. 154845.doc -167- 201200594Vandenbroeck, K., E. Martens, and I. Alloza. "Multichaperone complexes regulate the folding of interferon-gamma in the endoplasmic reticulum." Cytokine 33.5 (2006): 264-73. 154845.doc -167- 201200594

Walter, S., et al. "Cutting edge: predetermined avidity of humanCD8T cells expanded on calibratedMHC/anti-CD28-coated microspheres." J.Immunol. 171.10(2003): 4974-78.Walter, S., et al. "Cutting edge: predetermined avidity of humanCD8T cells expanded on calibratedMHC/anti-CD28-coated microspheres." J.Immunol. 171.10(2003): 4974-78.

Wang, Q., et al. "Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance." Cancer Detect.Prev. 29.6(2005): 544-51.Wang, Q., et al. "Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance." Cancer Detect. Prev. 29.6 (2005): 544-51.

Wang, R., et al. "Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice." J.Cell Biol. 153.5(2001): 1023-34.Wang, R., et al. "Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice." J. Cell Biol. 153.5(2001): 1023-34.

Wang, R. Q. and D. C. Fang. "Effects of Helicobacter pylori infection on mucin expression in gastric carcinoma and pericancerous tissues." J Gastroenterol.Hepatol. 21.2(2006): 425-31.Wang, R. Q. and D. C. Fang. "Effects of Helicobacter pylori infection on mucin expression in gastric carcinoma and pericancerous tissues." J Gastroenterol. Hepatol. 21.2(2006): 425-31.

Wang, S., et al. "IQGAP3, a novel effector of Racl and Cdc42, regulates neurite outgrowth." J Cell Sci. 120.Pt 4(2007): 567-77.Wang, S., et al. "IQGAP3, a novel effector of Racl and Cdc42, regulates neurite outgrowth." J Cell Sci. 120. Pt 4 (2007): 567-77.

Wang, X., et al. "Immunolocalisation of heat shock protein 72 and glycoprotein 96 in colonic adenocarcinoma." Acta Histochem. 110.2(2008): 117-23.Wang, X., et al. "Immunolocalisation of heat shock protein 72 and glycoprotein 96 in colonic adenocarcinoma." Acta Histochem. 110.2 (2008): 117-23.

Wang, X. P., et al. "Expression and significance of heat shock protein 70 and glucose-regulated protein 94 in human esophageal carcinoma." World J Gastroenterol. 11.3 (2005): 429-32. 154845.doc - 168- ⑧ 201200594Wang, XP, et al. "Expression and significance of heat shock protein 70 and glucose-regulated protein 94 in human esophageal carcinoma." World J Gastroenterol. 11.3 (2005): 429-32. 154845.doc - 168- 8 201200594

Wang, X. P., et al. "Correlation between clinicopathology and expression of heat shock protein 70 and glucose-regulated protein 94 in human colonic adenocarcinoma." World J Gastroenterol. 11.7(2005): 1056-59.Wang, X. P., et al. "Correlation between clinicopathology and expression of heat shock protein 70 and glucose-regulated protein 94 in human colonic adenocarcinoma." World J Gastroenterol. 11.7(2005): 1056-59.

Wang, X. P., Q. X. Wang, and X. P. Ying. "Correlation between clinicopathology and expression of heat shock protein 72 and glycoprotein 96 in human gastric adenocarcinoma." Tohoku J Exp.Med 212.1(2007): 35-41.Wang, X. P., Q. X. Wang, and X. P. Ying. "Correlation between clinicopathology and expression of heat shock protein 72 and glycoprotein 96 in human gastric adenocarcinoma." Tohoku J Exp. Med 212.1 (2007): 35-41.

Weinschenk, T., et al. "Integrated functional genomics approach for the design of patient-individual antitumor vaccines." Cancer Res. 62.20(2002): 5818-27.Weinschenk, T., et al. "Integrated functional genomics approach for the design of patient-individual antitumor vaccines." Cancer Res. 62.20(2002): 5818-27.

White, C. D., M. D. Brown, and D. B. Sacks. "IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis." FEBS Lett. 583.12(2009): 1817-24.White, C. D., M. D. Brown, and D. B. Sacks. "IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis." FEBS Lett. 583.12(2009): 1817-24.

Wicks, S. J., et al. "Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway." Biochem.Soc Trans. 34.Pt 5(2006): 761-63.Wicks, S. J., et al. "Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway." Biochem. Soc Trans. 34. Pt 5(2006): 761-63.

Wicks, S. J., et al. "The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling." Oncogene 24.54(2005): 8080-84.Wicks, S. J., et al. "The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling." Oncogene 24.54 (2005): 8080-84.

Yaj ima, S., et al. "Expression profiling of fecal colonocytes for RNA-based screening of colorectal cancer." Int J Oncol 31.5(2007): 1029-37.Yaj ima, S., et al. "Expression profiling of fecal colonocytes for RNA-based screening of colorectal cancer." Int J Oncol 31.5(2007): 1029-37.

Yang, L·,et al. "IL-21 and TGF-beta are required forYang, L·, et al. "IL-21 and TGF-beta are required for

154845.doc • 169- 201200594 differentiation of human T(H)17 cells." Nature (2008).154845.doc • 169- 201200594 differentiation of human T(H)17 cells." Nature (2008).

Yang, S., et al. "Molecular basis of the differences between normal and tumor tissues of gastric cancer." Biochim.Biophys.Acta 1772.9(2007): 1033-40.Yang, S., et al. "Molecular basis of the differences between normal and tumor tissues of gastric cancer." Biochim. Biophys. Acta 1772.9 (2007): 1033-40.

Yao, D. F., et al. "Abnormal expression of HSP gp96 associated with HBV replication in human hepatocellular carcinoma." Hepatobiliary.Pancreat.Dis.Int 5.3(2006): 381-86.Yao, D. F., et al. "Abnormal expression of HSP gp96 associated with HBV replication in human hepatocellular carcinoma." Hepatobiliary.Pancreat.Dis.Int 5.3(2006): 381-86.

Yasui, W., et al. "Increased expression of p34cdc2 and its kinase activity in human gastric and colonic carcinomas." Int J Cancer 53.1(1993): 36-41.Yasui, W., et al. "Increased expression of p34cdc2 and its kinase activity in human gastric and colonic carcinomas." Int J Cancer 53.1 (1993): 36-41.

Yee, C., et al. "Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells."Yee, C., et al. "Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells."

Proc.Natl.Acad.Sci.U.S.A 99.25(2002): 16168-73.Proc.Natl.Acad.Sci.U.S.A 99.25 (2002): 16168-73.

Yin, S., et al. "CD 133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity." Int.J Cancer 120.7(2007): 1444-50.Yin, S., et al. "CD 133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity." Int. J Cancer 120.7 (2007): 1444-50.

Yokozaki, H., W. Yasui, and E. Tahara. "Genetic and epigenetic changes in stomach cancer." Int Rev.CytoI. 204(2001): 49-95.Yokozaki, H., W. Yasui, and E. Tahara. "Genetic and epigenetic changes in stomach cancer." Int Rev.CytoI. 204 (2001): 49-95.

Yuan, W., et al. "Expression of EphA2 and E-cadherin in gastric cancer: correlated with tumor progression and I54845.doc -170- 201200594 lymphogenous metastasis." Pathol.Oncol Res 15.3(2009): 473-78.Yuan, W., et al. "Expression of EphA2 and E-cadherin in gastric cancer: correlated with tumor progression and I54845.doc -170- 201200594 lymphogenous metastasis." Pathol.Oncol Res 15.3(2009): 473-78 .

Yuan, W. J., et al. "Over-expression of EphA2 and EphrinA-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients." Dig.Dis.Sci. 54.11(2009): 2410-17.Yuan, W. J., et al. "Over-expression of EphA2 and EphrinA-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients." Dig.Dis.Sci. 54.11(2009): 2410-17.

Zaremba, S., et al. "Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen." Cancer Res. 57.20(1997): 4570-77.Zaremba, S., et al. "Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen." Cancer Res. 57.20(1997): 4570-77.

Zhang, X·,R. M. Kedl, and J. Xiang. "CD40 ligation converts TGF-beta-secreting tolerogenic CD4-8-dendritic cells into IL-12-secreting immunogenic ones." Biochem.Biophys.Res Commun. 379.4(2009): 954-58.Zhang, X·, RM Kedl, and J. Xiang. "CD40 ligation converts TGF-beta-secreting tolerogenic CD4-8-dendritic cells into IL-12-secreting immunogenic ones." Biochem.Biophys.Res Commun. 379.4( 2009): 954-58.

Zhang, X. L., et al. "Comparative study on overexpression of HER2/neu and HER3 in gastric cancer." World J Surg 33.10(2009): 2112-18.Zhang, X. L., et al. "Comparative study on overexpression of HER2/neu and HER3 in gastric cancer." World J Surg 33.10(2009): 2112-18.

Zhao, C·,et al. "Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia." Nature (2009).Zhao, C·, et al. "Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia." Nature (2009).

Zheng, H.,et al. "Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity." J Immunol. 167.12(2001): 6731-35.Zheng, H., et al. "Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity." J Immunol. 167.12(2001): 6731-35.

Zheng, H., et al. "MUC6 down-regulation correlates with gastric carcinoma progression and a poor prognosis: an 154845.doc -171 - 201200594 immunohisto chemical study with tissue microarrays." J Cancer Res Clin Oncol 132.12(2006): 817-23.Zheng, H., et al. "MUC6 down-regulation correlates with gastric carcinoma progression and a poor prognosis: an 154845.doc -171 - 201200594 immunohisto chemical study with tissue microarrays." J Cancer Res Clin Oncol 132.12 (2006) : 817-23.

Zheng, H. C., et al. "Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas." Hum.Pathol. 39.7(2008): 1042-49.Zheng, H. C., et al. "Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas." Hum. Pathol. 39.7(2008): 1042-49.

Zhou, G., et al. "2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers." Mol.Cell Proteomics. 1.2(2002): 117-24.Zhou, G., et al. "2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers." Mol. Cell Proteomics. 1.2(2002): 117-24.

Zhou, L., et al. "TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function." Nature 453.7192(2008): 236-40.Zhou, L., et al. "TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function." Nature 453.7192(2008): 236-40.

Zhu, K. J., et al. "Imiquimod inhibits the differentiation but enhances the maturation of human monocyte-derived dendritic cells." Int Immunopharmacol. 9.4(2009): 412-17. 【圖式簡單說明】 圖1 :證實CDC2-001提呈于原發性腫瘤樣本GC2464的 代表性質譜。NanoESI-LCMS在從GC樣本2464中洗脫所得 的狀庫上進行。品質色譜m/z 597.3501 ±0.001 Da、z=2顯 不肽在保留時間1 5 1.63分鐘時達到峰值β B)品質色譜中在 151.63分鐘時檢測到峰值顯示,信號在^^譜中為m/z 597·3 501。c) nanoESI-LCMS實驗中指定保留時間時所記 錄的選疋刖體的碰撞誘導衰變質譜為m/z 597 35〇1,證實 了 GC2464腫瘤樣本中提呈CDC2 〇〇1。D)合成CDC2 〇〇1參 154845.doc * 172 - 201200594 考肽的破碎模式進行了記錄,並且與C所示的自然TUMAP 破碎模式以驗證序列。 圖2 :選定蛋白的mRNA在正常組織和25份胃癌樣本中的 表達譜 a)CDC2(Probeset ID:2032 13_at) • b)ASPM(Probeset ID:2 1991 8_s_at) . 圖3 : I類TUMAP肽特異性體外免疫原性的典型結果。 C D 8+T細胞用分別載有相關(左圖)和不相關狀(有圖)的人 工抗原提呈細胞引入。經過3個週期的刺激後,用相關和 不相關的A*2402-多聚體二重染色法對肽反應性細胞進行 檢測。所示細胞在活CD8+淋巴細胞上得到門控,圖中數 位代表多聚體陽性細胞的百分比。 154845.doc -173 - 201200594 序列表 <110> 德商艾瑪提克生物技術有限公司 <120> 包括胃腸癌和胃癌的幾種腫瘤的新型免疫療法 <130> I31890TW <150> <151> GB1004551.6 2010-03-19 <150> <151> US 61/315,704 2010-03-19 <;160> 95 <170> Patentln version 3.5 <210> <211> <212> <213> <400> 1 10 PRT 智人(Homo sapiens) 1Zhu, KJ, et al. "Imiquimod inhibits the differentiation but enhances the maturation of human monocyte-derived dendritic cells." Int Immunopharmacol. 9.4(2009): 412-17. [Simple illustration] Figure 1: Confirmation of CDC2 -001 is presented as a representative mass spectrum of the primary tumor sample GC2464. NanoESI-LCMS was performed on a library obtained by eluting from GC sample 2464. Quality chromatogram m/z 597.3501 ± 0.001 Da, z=2 dynaminic peptide peaked at retention time of 1 5 1.63 minutes B) The peak value was detected at 153.63 minutes in the quality chromatogram, and the signal was m/ in the ^^ spectrum. z 597·3 501. c) The collision-induced decay mass spectrum of the selected scorpion recorded in the nanoESI-LCMS experiment was m/z 597 35〇1, confirming the presentation of CDC2 〇〇1 in the GC2464 tumor sample. D) Synthesis of CDC2 〇〇1 Ref. 154845.doc * 172 - 201200594 The fragmentation mode of the peptide was recorded and the natural TUMAP fragmentation mode shown in C was used to verify the sequence. Figure 2: Expression profiles of selected protein mRNA in normal tissues and 25 gastric cancer samples a) CDC2 (Probeset ID: 2032 13_at) • b) ASPM (Probeset ID: 2 1991 8_s_at) . Figure 3: Class I TUMAP peptide specific Typical results of in vitro immunogenicity. C D 8+ T cells were introduced with human antigen presenting cells containing relevant (left panel) and unrelated (map), respectively. After 3 cycles of stimulation, peptide-reactive cells were detected by correlated and unrelated A*2402-polymer double staining. The indicated cells were gated on live CD8+ lymphocytes, and the numbers in the figure represent the percentage of multimeric positive cells. 154845.doc -173 - 201200594 Sequence Listing <110> Deutsche Amytik Biotech Co., Ltd. <120> New immunotherapy including several tumors of gastrointestinal and gastric cancer <130> I31890TW <150><;151> GB1004551.6 2010-03-19 <150><151> US 61/315,704 2010-03-19 <;160> 95 <170> Patentln version 3.5 <210><211>;212><213><400> 1 10 PRT Homo sapiens 1

Leu Tyr Gin lie Leu Gin Gly lie Val Phe 15 10 <210> <211> 2 9 <212> <213> PRT 智人(Homo sapiens ) <400> 2Leu Tyr Gin lie Leu Gin Gly lie Val Phe 15 10 <210><211> 2 9 <212><213> PRT Homo sapiens <400> 2

Ser Tyr Asn Pro Leu Trp Leu Arg lie 1 5 <210> <211> 3 9 <212> <213> PRT 智人(Homo sapiens ) <400> 3Ser Tyr Asn Pro Leu Trp Leu Arg lie 1 5 <210><211> 3 9 <212><213> PRT Homo sapiens <400> 3

Asn Tyr Leu Pro Phe lie Met Glu Leu 1 5 <210> <211> <212> <213> 4 9 PRT 智人(Homo sapiens ) <400> 4Asn Tyr Leu Pro Phe lie Met Glu Leu 1 5 <210><211><212><213> 4 9 PRT Homo sapiens <400> 4

Ser Tyr lie Asp Val Leu Pro Glu Phe 1 5 154845-序列表.doc 201200594 <210> 5 <211> 9Ser Tyr lie Asp Val Leu Pro Glu Phe 1 5 154845 - Sequence Listing.doc 201200594 <210> 5 <211> 9

<212> PRT <213> 智人(Homo sapiens ) <_> 5<212> PRT <213> Homo sapiens <_> 5

Ser Tyr lie lie Asp Pro Leu Asn Leu 1 5Ser Tyr lie lie Asp Pro Leu Asn Leu 1 5

<210> 6 <211> 10 <212> PRT <213〉智人(Homo sapiens ) <400> 6<210> 6 <211> 10 <212> PRT <213> Homo sapiens <400> 6

Val Trp Ser Asp Val Thr Pro Leu Thr Phe 15 10 <210> 7 <211> 9Val Trp Ser Asp Val Thr Pro Leu Thr Phe 15 10 <210> 7 <211> 9

<212> PRT <213> 智人(Homo sapiens ) <400〉 7<212> PRT <213> Homo sapiens <400〉 7

Asn Tyr Leu Leu Tyr Val Ser Asn Phe 1 5 <210〉 8 <211> 9Asn Tyr Leu Leu Tyr Val Ser Asn Phe 1 5 <210〉 8 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400〉 8<212> PRT <213> Homo sapiens <400〉 8

Val Tyr Thr Thr Ser Tyr Gin Gin lie 1 5 <210〉 9 <211> 9Val Tyr Thr Thr Ser Tyr Gin Gin lie 1 5 <210> 9 <211> 9

<212> PRT <213> 智人(Homo sapiens ) <400> 9<212> PRT <213> Homo sapiens <400> 9

His Tyr Lys Pro Thr Pro Leu Tyr Phe 1 5 <210〉 10 <211〉 10 <212〉 PRT <213> 智人(Homo sapiens ) 154845-序列表.doc ⑧ 201200594 <400> 10His Tyr Lys Pro Thr Pro Leu Tyr Phe 1 5 <210> 10 <211> 10 <212> PRT <213> Homo sapiens 154845 - Sequence Listing.doc 8 201200594 <400>

Tyr Tyr Asn Ala Ala Gly Phe Asn Lys Leu 1 5 10 <210> <211> <212> <213> 11 9 PRT 智人(Homo sapiens) <400> 11Tyr Tyr Asn Ala Ala Gly Phe Asn Lys Leu 1 5 10 <210><211><212><213> 11 9 PRT Homo sapiens <400>

Ala Tyr Leu Val Tyr Thr Asp Arg Leu . i 5 <210> ' <211> 12 9 <212> <213> PRT 智人(Homo sapiens ) <-300> 12Ala Tyr Leu Val Tyr Thr Asp Arg Leu . i 5 <210> ' <211> 12 9 <212><213> PRT Homo sapiens <-300> 12

Phe Tyr lie Ser Pro Val Asn Lys Leu 1 5 <210> 13 <211> <212> <213> 9 PRT 智人(Homo sapiens ) <400> 13Phe Tyr lie Ser Pro Val Asn Lys Leu 1 5 <210> 13 <211><212><213> 9 PRT Homo sapiens <400> 13

Val Tyr Gly lie Arg Leu Glu His Phe 1 5 <210> <211> <212> ' <213〉 14 9 PRT 智人(Homo sapiens) <400> 14Val Tyr Gly lie Arg Leu Glu His Phe 1 5 <210><211><212> ' <213> 14 9 PRT Homo sapiens <400> 14

Thr Tyr Gly Asn Leu Leu Asp Tyr Leu 1 5 <210> <211> <212> <213> 15 9 PRT 智人(Homo sapiens ) <400> 15Thr Tyr Gly Asn Leu Leu Asp Tyr Leu 1 5 <210><211><212><213> 15 9 PRT Homo sapiens <400> 15

Asn Tyr Glu Glu Thr Phe Pro His lie 1 5 <210> 16 154845-序列表.doc 201200594 <211> 9 <212> <213> PRT 智人(Homo sapiens ) <400> 16Asn Tyr Glu Glu Thr Phe Pro His lie 1 5 <210> 16 154845 - Sequence Listing.doc 201200594 <211> 9 <212><213> PRT Homo sapiens <400> 16

Arg Tyr Leu Trp Ala Thr Val Thr lie 1 5 <210> 17 <211> <212> <213> 9 PRT 智人(Homo sapiens) <400> 17Arg Tyr Leu Trp Ala Thr Val Thr lie 1 5 <210> 17 <211><212><213> 9 PRT Homo sapiens <400> 17

Val Tyr Phe Ser Lys Ser Glu Gin Leu 1 5 <210> 18 <211> <212> <213> 9 PRT 智人(Homo sapiens ) <400> 18Val Tyr Phe Ser Lys Ser Glu Gin Leu 1 5 <210> 18 <211><212><213> 9 PRT Homo sapiens <400> 18

Val Phe lie Phe Lys Gly Asn Gin Phe 1 5 <210> <211> <212> <213> 19 9 PRT 智人(Homo sapiens) <400> 19Val Phe lie Phe Lys Gly Asn Gin Phe 1 5 <210><211><212><213> 19 9 PRT Homo sapiens <400> 19

Arg Phe Leu Ser Gly lie lie Asn Phe 1 5 <210> <211> <212> <213> 20 9 PRT · 智人(Homo sapiens ) <400> 20Arg Phe Leu Ser Gly lie lie Asn Phe 1 5 <210><211><212><213> 20 9 PRT · Homo sapiens <400> 20

Gin Tyr Ala Ser Arg Phe Val Gin Leu 1 5 <210> 21 <211> <212> <213> 9 PRT 智人(Homo sapiens) <400> 21 154845-序列表.doc -4- ⑧ 201200594Gin Tyr Ala Ser Arg Phe Val Gin Leu 1 5 <210> 21 <211><212><213> 9 PRT Homo sapiens <400> 21 154845 - Sequence Listing.doc -4- 8 201200594

Lys Tyr Leu Thr Val Lys Asp Tyr Leu 1 5 <210> <211> 22 9Lys Tyr Leu Thr Val Lys Asp Tyr Leu 1 5 <210><211> 22 9

<212> PRT <213> 智人(Homo sapiens) <400〉 22<212> PRT <213> Homo sapiens <400> 22

Val Tyr Asn Pro Thr Pro Asn Ser Leu 1 5 <210> <211> <212> <213> 23 9 PRT 智人(Homo sapiens ) <400> 23Val Tyr Asn Pro Thr Pro Asn Ser Leu 1 5 <210><211><212><213> 23 9 PRT Homo sapiens <400> 23

Ser Tyr Leu Gin Ala Ala Asn Ala Leu 1 5 <210> <211> <212> <213> 24 9 PRT 智人(Homo sapiens ) <400> 24Ser Tyr Leu Gin Ala Ala Asn Ala Leu 1 5 <210><211><212><213> 24 9 PRT Homo sapiens <400> 24

Phe Tyr Gin Pro Lys lie Gin Gin Phe 1 5 <210> <211〉 <212> <213> 25 9 PRT 智人(Homo sapiens) <400 25Phe Tyr Gin Pro Lys lie Gin Gin Phe 1 5 <210><211〉<212><213> 25 9 PRT Homo sapiens <400 25

Tyr Tyr Lys Asn lie Gly Leu Gly Phe 1 5 <210> <211> <212> <213> 26 9 PRT 智人(Homo sapiens) <400:> 26Hr sapiens &lt

Ala Tyr Ala lie lie Lys Glu Glu Leu 1 5 <210> 27 <211> 9Ala Tyr Ala lie lie Lys Glu Glu Leu 1 5 <210> 27 <211> 9

<212> PRT 154845-序列表.doc 201200594 <213> 智人(Homo sapiens ) <400> 27<212> PRT 154845 - Sequence Listing.doc 201200594 <213> Homo sapiens <400> 27

Leu Tyr Pro Glu Val Phe Glu Lys Phe 1 5Leu Tyr Pro Glu Val Phe Glu Lys Phe 1 5

<210> 28 <211> 10 <212> PRT <213> 智人(Homo sapiens) <400> 28<210> 28 <211> 10 <212> PRT <213> Homo sapiens <400> 28

Lys Tyr Asn Asp Thr Phe Trp Lys Glu Phe 15 10 <210> 29Lys Tyr Asn Asp Thr Phe Trp Lys Glu Phe 15 10 <210> 29

<211> 10 <212> PRT <213> 智人(Homo sapiens ) <400> 29<211> 10 <212> PRT <213> Homo sapiens <400> 29

Val Phe Asp Thr Ala lie Ala His Leu Phe 15 10 <210> 30 <211> 9Val Phe Asp Thr Ala lie Ala His Leu Phe 15 10 <210> 30 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 30<212> PRT <213> Homo sapiens <400> 30

Val Tyr Pro Asn Trp Ala lie Gly Leu 1 5 <210〉 31 <211> 9Val Tyr Pro Asn Trp Ala lie Gly Leu 1 5 <210> 31 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 31<212> PRT <213> Homo sapiens <400> 31

Val Tyr Lys Val Val Gly Asn Leu Leu 1 5 <210> 32 <211> 9Val Tyr Lys Val Val Gly Asn Leu Leu 1 5 <210> 32 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 32<212> PRT <213> Homo sapiens <400> 32

Val Tyr lie Glu Lys Asn Asp Lys Leu 1 5 154845-序列表.doc ⑧ 201200594 <210> <211〉 <212> <213> 33 10 PRT 智人(Homo sapiens ) <400> 33 lie Tyr Asn Gly Lys Leu Phe Asp Leu Leu 15 10 <210> <211> 34 9 <212> <213> PRT 智人(Homo sapiens ) <400> 34Val Tyr lie Glu Lys Asn Asp Lys Leu 1 5 154845 - Sequence Listing.doc 8 201200594 <210><211〉<212><213> 33 10 PRT Homo sapiens <400> 33 lie Tyr Asn Gly Lys Leu Phe Asp Leu Leu 15 10 <210><211> 34 9 <212><213> PRT Homo sapiens <400> 34

Gin Tyr lie Asp Lys Leu Asn Glu Leu 1 5 <210> <211> <212> <213> 35 11 PRT 智人(Homo sapiens ) <400> 35Gin Tyr lie Asp Lys Leu Asn Glu Leu 1 5 <210><211><212><213> 35 11 PRT Homo sapiens <400> 35

Met Tyr Met Thr Val Ser lie lie Asp Arg Phe 15 10 <210> <211> 36 9 <212> <213> PRT 智人(Homo sapiens ) <400> 36Met Tyr Met Thr Val Ser lie lie Asp Arg Phe 15 10 <210><211> 36 9 <212><213> PRT Homo sapiens <400> 36

Arg Tyr Leu Pro Gin Cys Ser Tyr Phe 1 5 <210> <211> <212> <213> 37 9 PRT 智人(Homo sapiens) <400> 37 lie Tyr Ala Pro Lys Leu Gin Glu Phe 1 5 <210> <211> 38 9 <212> <213> PRT 智人(Homo sapiens) <400> 38 154845-序列表.doc 201200594 lie Tyr Pro Asp Ala Ser Leu Leu lie 1 5 <210> 39 <211> 9Arg Tyr Leu Pro Gin Cys Ser Tyr Phe 1 5 <210><211><212><213> 37 9 PRT Homo sapiens <400> 37 lie Tyr Ala Pro Lys Leu Gin Glu Phe 1 5 <210><211> 38 9 <212><213> PRT Homo sapiens <400> 38 154845 - Sequence Listing.doc 201200594 lie Tyr Pro Asp Ala Ser Leu Leu lie 1 5 <210> 39 <211> 9

<212> PRT <213> 智人(Homo sapiens ) <400> 39<212> PRT <213> Homo sapiens <400> 39

Val Tyr Leu Leu Asn Ser Thr Thr Leu 1 5 <210> 40 <211> 9Val Tyr Leu Leu Asn Ser Thr Thr Leu 1 5 <210> 40 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 40 lie Tyr Leu Glu Val lie His Asn Leu 1 5 > > > > 0 12 3 Tx irH 2 2 2 2 < < < < 41 9<212> PRT <213> Homo sapiens <400> 40 lie Tyr Leu Glu Val lie His Asn Leu 1 5 >>>> 0 12 3 Tx irH 2 2 2 2 <<<< 41 9

PRT 智人(Homo sapiens) <400> 41PRT Homo sapiens <400> 41

Ala Tyr Pro Thr Val Lys Phe Tyr Phe 1 5 <210> 42 <211> 9Ala Tyr Pro Thr Val Lys Phe Tyr Phe 1 5 <210> 42 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 42 lie Phe Ser Lys lie Val Ser Leu Phe 1 5 <210> 43 <211> 9<212> PRT <213> Homo sapiens <400> 42 lie Phe Ser Lys lie Val Ser Leu Phe 1 5 <210> 43 <211>

<212> PRT <213> 智人(Homo sapiens) <400> 43<212> PRT <213> Homo sapiens <400> 43

Tyr Tyr Tyr Val Gly Phe Ala Tyr Leu 1 5 <210> 44 <211> 9 154845-序列表.doc 201200594 <212> <213> PRT 智人(Homo sapiens ) <400> 44Tyr Tyr Tyr Val Gly Phe Ala Tyr Leu 1 5 <210> 44 <211> 9 154845 - Sequence Listing.doc 201200594 <212><213> PRT Homo sapiens <400> 44

Arg Tyr Leu Glu Gly Thr Ser Cys lie 1 5 <210> <211〉 <212> <:213> 45 11 PRT 智人(Homo sapiens ) <400> 45Arg Tyr Leu Glu Gly Thr Ser Cys lie 1 5 <210><211〉<212><:213> 45 11 PRT Homo sapiens <400> 45

Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser Phe 15 10 <210> <211> <212> <213> 46 9 PRT 智人(Homo sapiens ) <400> 46Thr Tyr Leu Pro Thr Asn Ala Ser Leu Ser Phe 15 10 <210><211><212><213> 46 9 PRT Homo sapiens <400> 46

Ser Tyr Ala Thr Leu Leu His Val Leu 1 5 <210> <211> <212> <213> 47 9 PRT 智人(Homo sapiens ) <400> 47Ser Tyr Ala Thr Leu Leu His Val Leu 1 5 <210><211><212><213> 47 9 PRT Homo sapiens <400> 47

Asp Tyr Thr lie Gly Phe Gly Lys Phe 1 5 <210> <211> <212> <213> 48 9 PRT 智人(Homo sapiens) <400> 48Asp Tyr Thr lie Gly Phe Gly Lys Phe 1 5 <210><211><212><213> 48 9 PRT Homo sapiens <400> 48

Ser Tyr Asn Val Thr Ser Val Leu Phe 1 5 <210> <211> 49 9 <212> <213> PRT 智人(Homo sapiens) <400> 49Ser Tyr Asn Val Thr Ser Val Leu Phe 1 5 <210><211> 49 9 <212><213> PRT Homo sapiens <400> 49

Ser Tyr Leu Glu Leu Val Lys Ser Leu 1 5 •9- 154845-序列表.doc 201200594 <210> 50 <211> 9Ser Tyr Leu Glu Leu Val Lys Ser Leu 1 5 •9- 154845 - Sequence Listing.doc 201200594 <210> 50 <211> 9

<212> PRT <213> 智人(Homo sapiens ) <400> 50<212> PRT <213> Homo sapiens <400> 50

Ser Tyr Gin Lys Val lie Glu Leu Phe 1 5 <210> 51 <211> 9Ser Tyr Gin Lys Val lie Glu Leu Phe 1 5 <210> 51 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 51<212> PRT <213> Homo sapiens <400> 51

Leu Tyr Leu Glu Asn lie Asp Glu Phe 1 5 <210> 52 <211〉 9Leu Tyr Leu Glu Asn lie Asp Glu Phe 1 5 <210> 52 <211〉 9

<212> PRT <213> 智人(Homo sapiens ) <400> 52<212> PRT <213> Homo sapiens <400> 52

Val Tyr lie Ser Ser Leu Ala Leu Leu 1 5 <210〉 53Val Tyr lie Ser Ser Leu Ala Leu Leu 1 5 <210〉 53

<211> 11 <212> PRT <213> 智人(Homo sapiens) <400〉 53<211> 11 <212> PRT <213> Homo sapiens <400> 53

Arg Tyr Leu Pro Lys Gly Phe Leu Asn Gin Phe 15 10 <210> 54 <211> 9Arg Tyr Leu Pro Lys Gly Phe Leu Asn Gin Phe 15 10 <210> 54 <211> 9

<212> PRT <213> 智人(Homo sapiens ) <400> 54<212> PRT <213> Homo sapiens <400> 54

Tyr Tyr Lys Asn lie Gly Leu Gly Phe 1 5 <210> 55 <211〉 9 <212> PRT <213> 智人(Homo sapiens) 154845-序列表.doc • 10· ⑧ 201200594 <400> 55Tyr Tyr Lys Asn lie Gly Leu Gly Phe 1 5 <210> 55 <211> 9 <212> PRT <213> Homo sapiens 154845 - Sequence Listing.doc • 10· 8 201200594 <400&gt ; 55

Val Tyr Thr Thr Met Ala Glu His Phe 1 5 <210> 56 <211> <212> <213> 9 PRT 智人(Homo sapiens ) <400> 56Val Tyr Thr Thr Met Ala Glu His Phe 1 5 <210> 56 <211><212><213> 9 PRT Homo sapiens <400> 56

Asp Tyr Ala Tyr Leu Arg Glu His Phe 1 5 <210> 57 ' <211> <212> <213> 10 PRT 智人(Homo sapiens ) <400> 57Asp Tyr Ala Tyr Leu Arg Glu His Phe 1 5 <210> 57 ' <211><212><213> 10 PRT Homo sapiens <400> 57

Leu Tyr lie Gin Thr Asp His Leu Phe Phe 15 10 <210> 58 <211> <212> <2:L3> 10 PRT 智人(Homo sapiens ) <400> 58Leu Tyr lie Gin Thr Asp His Leu Phe Phe 15 10 <210> 58 <211><212><2:L3> 10 PRT Homo sapiens <400>

Thr Tyr Lys Tyr Val Asp lie Asn Thr Phe 1 5 10 <210> 59 <211> <212> <213> 9 PRT 智人(Homo sapiens ) <400> 59Thr Tyr Lys Tyr Val Asp lie Asn Thr Phe 1 5 10 <210> 59 <211><212><213> 9 PRT Homo sapiens <400> 59

Tyr Phe lie Ser His Val Leu Ala Phe 1 5 <210> <211> <212> <213:> 60 9 PRT 智人(Homo sapiens) <400> 60Tyr Phe lie Ser His Val Leu Ala Phe 1 5 <210><211><212><213:> 60 9 PRT Homo sapiens <400> 60

Val Tyr Thr Lys Val Ser Ala Tyr Leu 1 5 <210> 61 -11- 154845-序列表.doc 201200594 <211> 9 <212> <213> PRT 智人(Homo sapiens ) <400> 61Val Tyr Thr Lys Val Ser Ala Tyr Leu 1 5 <210> 61 -11- 154845 - Sequence Listing.doc 201200594 <211> 9 <212><213> PRT Homo sapiens <400> 61

Val Tyr Lys Glu Thr Cys lie Ser Phe 1 5 <210> 62 <211〉 <212〉 <213> 9 PRT 智人(Homo sapiens ) <400> 62Val Tyr Lys Glu Thr Cys lie Ser Phe 1 5 <210> 62 <211> <212〉 <213> 9 PRT Homo sapiens <400> 62

Ala Leu Tyr Asp Ser Val lie Leu Leu 1 5 <210> <211> <212> <213> 63 9 PRT 智人(Homo sapiens ) <400> 63Ala Leu Tyr Asp Ser Val lie Leu Leu 1 5 <210><211><212><213> 63 9 PRT Homo sapiens <400> 63

Lys lie Gin Glu lie Leu Thr Gin Val 1 5 <210> <211> <212> <213〉 64 9 PRT 智人(Homo sapiens) <400> 64Lys lie Gin Glu lie Leu Thr Gin Val 1 5 <210><211><212><213> 64 9 PRT Homo sapiens <400> 64

Leu Ala Asp Glu Thr Leu Leu Lys Val 1 5 <210> <211> <212> <213> 65 9 PRT 智人(Homo sapiens ) <400> 65Leu Ala Asp Glu Thr Leu Leu Lys Val 1 5 <210><211><212><213> 65 9 PRT Homo sapiens <400> 65

Ala Met Ser Ser Lys Phe Phe Leu Val 1 5 <210> <211> <212〉 <213> 66 9 PRT 智人(Homo sapiens ) <400> 66 154845·序列表.doc 12- ⑧ 201200594Ala Met Ser Ser Lys Phe Phe Leu Val 1 5 <210><211><212〉<213> 66 9 PRT Homo sapiens <400> 66 154845 · Sequence Listing.doc 12- 8 201200594

Tyr Val Tyr Gin Asn Asn lie Tyr Leu 1 5 <210> <211> 67 9Tyr Val Tyr Gin Asn Asn lie Tyr Leu 1 5 <210><211> 67 9

<212> PRT <213> 智人(Homo sapiens ) <400> 67<212> PRT <213> Homo sapiens <400> 67

Val Leu Glu Asp Leu Glu Val Thr Val 1 5 <210> <211> _ <212> ' <213> 68 9 PRT 智人(Homo sapiens ) <400> 68Val Leu Glu Asp Leu Glu Val Thr Val 1 5 <210><211> _ <212> ' <213> 68 9 PRT Homo sapiens <400> 68

Phe Leu Leu Asp Gly Ser Ala Asn Val 1 5 <210> <211> <212> <213> 69 9 PRT 智人(Homo sapiens) <4Q0> 69Phe Leu Leu Asp Gly Ser Ala Asn Val 1 5 <210><211><212><213> 69 9 PRT Homo sapiens <4Q0> 69

Asn Leu Leu Asp Leu Asp Tyr Glu Leu 1 5 <210> <211> <212> <213> 70 9 PRT f 智人(Homo sapiens) ' <400> 70Asn Leu Leu Asp Leu Asp Tyr Glu Leu 1 5 <210><211><212><213> 70 9 PRT f Homo sapiens ' <400> 70

Phe Leu lie Asp Ser Ser Glu Gly Val • 1 5 <210> <211> <212> <213> 71 9 PRT 智人(Homo sapiens ) <400> 71Phe Leu lie Asp Ser Ser Glu Gly Val • 1 5 <210><211><212><213> 71 9 PRT Homo sapiens <400> 71

Ala Leu Asp Glu Gly Asp lie Ala LeuAla Leu Asp Glu Gly Asp lie Ala Leu

1 5 , <210> _<211> <212〉 72 11 PRT -13- 154845·序列表.doc 201200594 <213> 智人(Homo sapiens) <400> 721 5 , <210>_<211><212〉 72 11 PRT -13- 154845· Sequence Listing.doc 201200594 <213> Homo sapiens <400> 72

Ala Leu Asn Glu Glu Ala Gly Arg Leu Leu Leu 1 5 10 <210> <211> <212> <213> 73 9 PRT 智人(Homo sapiens) <400> 73 lie Leu Ser Pro Thr Val Val Ser lie 1 5 <210> 74 <211〉 <212> <213> 9 PRT 智人(Homo sapiens ) <400> 74Ala Leu Asn Glu Glu Ala Gly Arg Leu Leu Leu 1 5 10 <210><211><212><213> 73 9 PRT Homo sapiens <400> 73 lie Leu Ser Pro Thr Val Val Ser lie 1 5 <210> 74 <211><212><213> 9 PRT Homo sapiens <400> 74

Lys Leu Leu Thr Glu Val His Ala Ala 1 5 <210> <211> <212> <213> 75 9 PRT 智人(Homo sapiens) <400> 75Lys Leu Leu Thr Glu Val His Ala Ala 1 5 <210><211><212><213> 75 9 PRT Homo sapiens <400> 75

Ala Leu Val Gin Asp Leu Ala Lys Ala 1 5 <210> <211> <212> <213> 76 9 PRT 智人(Homo sapiens ) <400> 76 lie Leu Gin Asp Arg Leu Asn Gin Val 1 5 <210> <211> <212> <213> ΊΊ 9 PRT 智人(Homo sapiens) <400> 77Ala Leu Val Gin Asp Leu Ala Lys Ala 1 5 <210><211><212><213> 76 9 PRT Homo sapiens <400> 76 lie Leu Gin Asp Arg Leu Asn Gin Val 1 5 <210><211><212><213> ΊΊ 9 PRT Homo sapiens <400> 77

Thr Leu Asp Pro Arg Ser Phe Leu Leu 1 5 154845-序列表.doc 14· ⑧ 201200594 <210> 78 <211> <212> <213> 9 PRT 智人(Homo sapiens ) <400> 78Thr Leu Asp Pro Arg Ser Phe Leu Leu 1 5 154845 - Sequence Listing.doc 14· 8 201200594 <210> 78 <211><212><213> 9 PRT Homo sapiens <400> 78

Thr Leu Asp Asp Leu Leu Leu Tyr lie 1 5 <210〉 <211> <:212> <213> 79 11 PRT 智人(Homo sapiens ) <400> Ί9Thr Leu Asp Asp Leu Leu Leu Tyr lie 1 5 <210〉 <211><:212><213> 79 11 PRT Homo sapiens <400> Ί9

Ser Leu Leu Ala Gin Asn Thr Ser Trp Leu Leu 1 5 10 <210> <211> <212〉 <213> 80 9 PRT 智人(Homo sapiens) <400> 80Ser Leu Leu Ala Gin Asn Thr Ser Trp Leu Leu 1 5 10 <210><211><212〉<213> 80 9 PRT Homo sapiens <400> 80

Ser Leu Ala Glu Val Asn Thr Gin Leu 1 5 <210> <211> <212> <213> 81 9 PRT 智人(Homo sapiens) <400> 81Ser Leu Ala Glu Val Asn Thr Gin Leu 1 5 <210><211><212><213> 81 9 PRT Homo sapiens <400> 81

Ala Leu Asp Gly Phe Val Met Val Leu 1 5 <210> <21i> <212> <213> 82 9 PRT 智人(Homo sapiens) <400> 82Ala Leu Asp Gly Phe Val Met Val Leu 1 5 <210><21i><212><213> 82 9 PRT Homo sapiens <400> 82

Gly Val Asp Asp Ala Phe Tyr Thr Leu 1 5 <210> <211> 83 9 <212> ,<213> PRT 智人(Homo sapiens) .1 <400> 83 -15- 154845-序列表.doc 201200594Gly Val Asp Asp Ala Phe Tyr Thr Leu 1 5 <210><211> 83 9 <212> , <213> PRT Homo sapiens .1 <400> 83 -15- 154845- List.doc 201200594

Tyr Val Asp Pro Val lie Thr Ser lie 1 5 <210> 84 <211> 9Tyr Val Asp Pro Val lie Thr Ser lie 1 5 <210> 84 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 84<212> PRT <213> Homo sapiens <400> 84

Tyr Leu Leu Ser Tyr lie Gin Ser lie 1 5 <210〉 85 <211> 9Tyr Leu Leu Ser Tyr lie Gin Ser lie 1 5 <210〉 85 <211> 9

<212> PRT <213> 智人(Homo sapiens ) <_> 85<212> PRT <213> Homo sapiens <_> 85

Gin lie Asp Asp Val Thr lie Lys lie 1 5Gin lie Asp Asp Val Thr lie Lys lie 1 5

<210> 86 <211> 10 <212> PRT <213> A (Homo sapiens) <400> 86<210> 86 <211> 10 <212> PRT <213> A (Homo sapiens) <400> 86

Tyr Leu Tyr Gly Gin Thr Thr Thr Tyr Leu 15 10 <210〉 87 <211> 9Tyr Leu Tyr Gly Gin Thr Thr Thr Tyr Leu 15 10 <210> 87 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 87<212> PRT <213> Homo sapiens <400> 87

Lys Leu Asp Glu Thr Gly Asn Ser Leu 1 5 <210> 88 <211> 9Lys Leu Asp Glu Thr Gly Asn Ser Leu 1 5 <210> 88 <211> 9

<212> PRT <213> 智人(Homo sapiens) <400> 88<212> PRT <213> Homo sapiens <400> 88

Arg Leu Asp Asp Leu Lys Met Thr Val 1 5 <210> 89 <211> 9 •16- 154845-序列表.doc 201200594Arg Leu Asp Asp Leu Lys Met Thr Val 1 5 <210> 89 <211> 9 •16- 154845 - Sequence Listing.doc 201200594

<212> PRT <213> 智人(Homo sapiens ) <400> 89<212> PRT <213> Homo sapiens <400> 89

Leu Thr Asp Glu lie Leu Thr Tyr Val 1 5 <210> <211> <212> <213> 90 9 PRT 智人(Homo sapiens) <400> 90 lie Leu lie Asp Trp Leu Val Gin Val 1 5 <210> <211> <212> <213> 91 10 PRT 智人(Homo sapiens ) <400> 91Leu Thr Asp Glu lie Leu Thr Tyr Val 1 5 <210><211><212><213> 90 9 PRT Homo sapiens <400> 90 lie Leu lie Asp Trp Leu Val Gin Val 1 5 <210><211><212><213> 91 10 PRT Homo sapiens <400> 91

Val Leu Tyr Gly Pro Asp Val Pro Thr lie 1 5 10 <210> <2:L1> <212〉 <213> 92 11 PRT 智人(Homo sapiens ) <400> 92Val Leu Tyr Gly Pro Asp Val Pro Thr lie 1 5 10 <210><2:L1><212〉<213> 92 11 PRT Homo sapiens <400> 92

Ser lie Phe Gly Glu Asp Ala Leu Ala Asn Val 1 5 10 <210> <21;L> 93 9 <212> <213> PRT 智人(Homo sapiens ) <400> 93Ser lie Phe Gly Glu Asp Ala Leu Ala Asn Val 1 5 10 <210><21;L> 93 9 <212><213> PRT Homo sapiens <400>

Lys Leu Leu Glu Tyr lie Glu Glu lie 1 5 <210> <211> <212> <213> 94 9 PRT 智人(Homo sapiens ) <400> 94Lys Leu Leu Glu Tyr lie Glu Glu lie 1 5 <210><211><212><213> 94 9 PRT Homo sapiens <400> 94

Lys lie Leu Glu Asp Val Val Gly Val 1 5 •17- 154845-序列表.doc 201200594 <210> 95Lys lie Leu Glu Asp Val Val Gly Val 1 5 •17- 154845 - Sequence Listing.doc 201200594 <210> 95

<211〉 10 <212> PRT <213〉智人(Homo sapiens) <400> 95<211> 10 <212> PRT <213> Homo sapiens <400> 95

Lys lie Phe Asp Glu lie Leu 1 5 Val Asn Ala 10 154845-序列表.doc 8 ⑧Lys lie Phe Asp Glu lie Leu 1 5 Val Asn Ala 10 154845 - Sequence Listing.doc 8 8

Claims (1)

201200594 七、申請專利範圍: 1 ·種肽,其包括選自SEQ ID No. 1至SEQ ID No. 95所組成 之群組的序列、或其與冗卩ID No. 1至SEQ ID No. 95具 有80%同源性的變體、或其誘導與該肽發生T細胞交叉反 應的變體,其中所述肽不是一種全長多肽。 . 2.根據權利要求1所述的肽,其中該肽總長度為8至100個 氨基酸、優選為8至30個氨基酸,最優選為8至14個氨基 酸。 3,根據權利要求1或2任一項中所述的肽,其具有與主要組 織相容性複合體(MHC)I或II類分子結合的能力。 4.根據權利要求1至3任一項中所述的肽,其中該肽系由或 基本系由根據SEQ ID NO 1至SEQ ID NO 95所選的氨基 酸序列組成。 5 ·根據權利要求1至5任一項中所述的肽,其中該肽被修飾 和/或包含非肽鍵。 6. 根據權利要求1至5任一項中所述的狀,其中該肽為融合 蛋白’特別是含HLA-DR抗原相關不變鏈(Π)的N-端氨基 . 酸。 7. 一種核酸,其編碼根據權利要求1至6任一項中所述的 肽’如果該肽不是完全人蛋白。 8. 根據權利要求7中所述的核酸,其可能為dnA、cDNA、 PNA、CAN、RNA ’也可能為其組合物。 9. 根據權利要求7或8中所述的一種能表達核酸的表達載 體。 154845.doc 201200594 1 〇.根據權利要求1至6任一項中所述的一種肽、根據權利要 求7或8任一項中所述的一種核酸、或根據權利要求9中 所述的一種表達載體。 11. 根據權利要求7或8中所述的一種宿主細胞或根據權利要 求9中所述的一種表達載體。 12. 根據權利要求11中所述為一種抗原提呈細胞的宿主細 胞。 13. 根據權利要求12中所述的宿主細胞,其中抗原提呈細胞 為樹突狀細胞。 14. 根據權利要求1至6任一項中所述的一種製備肽的方法, 該方法包括根據權利要求11中所述的培養宿主細胞,從 宿主細胞或其培養基中分離出肽。 15. —種體外製備啟動的細胞毒性τ淋巴細胞(CTL)的方法, 該方法包括將CTL與載有抗原的人I或π類MHC分子進行 體外連接,這些分子在合適的抗原提呈細胞表面表達足 夠的一段時間從而以抗原特異性方式啟動Ctl,其中所 述抗原為權利要求1至6任一項中所述的肽。 16. 根據權利要求15中所述的方法,其中抗原通過與足夠量 的含抗原提成細胞的抗原結合被載入表達於合適抗原提 呈細胞表面的I或II類MHC分子。 17. 根據權利要求15中所述的方法,其中該抗原提呈細胞包 括一個表達載體,該载體有能力表達含SEQ ID N〇 1至 SEQ ID NO 95的肽或所述變體氨基酸序列。 18. 根據權利要求15至17任一項中所述的按其方法製成的啟 154845.doc 201200594 動細胞毒性T址P. h Bibm201200594 VII. Patent Application Range: 1 - A peptide comprising a sequence selected from the group consisting of SEQ ID No. 1 to SEQ ID No. 95, or a redundant ID No. 1 to SEQ ID No. 95 A variant having 80% homology, or a variant thereof that induces a T cell cross-reactivity with the peptide, wherein the peptide is not a full length polypeptide. 2. A peptide according to claim 1 wherein the peptide has a total length of from 8 to 100 amino acids, preferably from 8 to 30 amino acids, and most preferably from 8 to 14 amino acids. 3. A peptide according to any one of claims 1 or 2 which has the ability to bind to a major tissue compatibility complex (MHC) class I or class II molecule. The peptide according to any one of claims 1 to 3, wherein the peptide consists of or consists essentially of the amino acid sequence selected according to SEQ ID NO 1 to SEQ ID NO 95. The peptide according to any one of claims 1 to 5, wherein the peptide is modified and/or comprises a non-peptide bond. 6. The form according to any one of claims 1 to 5, wherein the peptide is a fusion protein', particularly an N-terminal amino group containing an HLA-DR antigen-associated invariant chain (Π). A nucleic acid encoding a peptide according to any one of claims 1 to 6 if the peptide is not a complete human protein. 8. A nucleic acid according to claim 7, which may be dnA, cDNA, PNA, CAN, RNA' or a combination thereof. 9. An expression vector capable of expressing a nucleic acid according to claim 7 or 8. 154845.doc 201200594 1 〇. A peptide according to any one of claims 1 to 6, a nucleic acid according to any one of claims 7 or 8, or an expression according to claim 9. Carrier. 11. A host cell according to claim 7 or 8 or an expression vector according to claim 9. 12. A host cell which is an antigen presenting cell according to claim 11. 13. The host cell of claim 12, wherein the antigen presenting cell is a dendritic cell. 14. A method of preparing a peptide according to any one of claims 1 to 6, which comprises isolating a peptide from a host cell or a culture medium thereof according to the cultured host cell of claim 11. 15. A method for the preparation of activated cytotoxic tau lymphocytes (CTLs) in vitro, the method comprising: in vitro linking a CTL to an antigen-loaded human I or π-type MHC molecule, the molecules present on the surface of a suitable antigen presenting cell The expression is sufficient for a period of time to initiate Ctl in an antigen-specific manner, wherein the antigen is a peptide as claimed in any one of claims 1 to 6. 16. A method according to claim 15 wherein the antigen is loaded into a class I or class II MHC molecule expressed on the surface of a suitable antigen presenting cell by binding to a sufficient amount of antigen comprising the antigen-presenting cell. 17. The method of claim 15, wherein the antigen presenting cell comprises an expression vector capable of expressing a peptide comprising SEQ ID N〇 1 to SEQ ID NO 95 or the variant amino acid sequence. 18. The method according to any one of claims 15 to 17, wherein the cytotoxicity T site P. h Bibm 中給定氨基酸序列的多肽。A polypeptide of a given amino acid sequence. 基酸序列;一種給藥方法, 要求1至4任一項中給定的氨 其中包括給予患者權利要求 1 5中定義的有效量細胞毒性τ淋巴細胞(CTL)。 20·根據權利要求1至6任—項中所述的—種肽的用途、根據 權利要求7或8中所述的一種核酸的用途、根據權利要求 9中所述的一種表達載體的用途、根據權利要求11至13 中所述的一種細胞的用途、根據權利要求18中所述的一 種作為藥劑或製造藥劑的啟動細胞毒性T淋巴細胞的用 途。 2 1.根據權利要求20中所述的用途,其中藥劑系指一種疫 苗。 22. 根據權利要求2〇或21中所述的用途,其中藥劑有抗癌活 性。 23. 根據權利要求22中所述的用途,其中所述癌細胞為胃癌 細胞、胃腸癌細胞、結直腸癌細胞、胰腺癌細胞、肺癌 細胞或腎癌細胞。 154845.docA nucleic acid sequence; a method of administration, which requires a given amount of ammonia in any of 1 to 4, which comprises administering to the patient an effective amount of cytotoxic tau lymphocytes (CTL) as defined in claim 15. The use of the peptide according to any one of claims 1 to 6, the use of a nucleic acid according to claim 7 or 8, the use of an expression vector according to claim 9, Use of a cell according to any of claims 11 to 13, a use as a medicament or a medicament for the initiation of cytotoxic T lymphocytes according to claim 18. 2. Use according to claim 20 wherein the agent is a vaccine. 22. Use according to claim 2 or 21 wherein the agent has anti-cancer activity. 23. The use according to claim 22, wherein the cancer cell is a gastric cancer cell, a gastrointestinal cancer cell, a colorectal cancer cell, a pancreatic cancer cell, a lung cancer cell, or a renal cancer cell. 154845.doc
TW100109429A 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer TWI486445B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31570410P 2010-03-19 2010-03-19
GBGB1004551.6A GB201004551D0 (en) 2010-03-19 2010-03-19 NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer

Publications (2)

Publication Number Publication Date
TW201200594A true TW201200594A (en) 2012-01-01
TWI486445B TWI486445B (en) 2015-06-01

Family

ID=42227949

Family Applications (9)

Application Number Title Priority Date Filing Date
TW109130850A TWI768461B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW104113109A TWI621709B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW108144354A TWI715332B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW109130852A TWI766362B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW100109429A TWI486445B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW107110964A TWI681967B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW109130851A TWI766361B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW111118219A TW202300509A (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW106141450A TWI659967B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW109130850A TWI768461B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW104113109A TWI621709B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW108144354A TWI715332B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW109130852A TWI766362B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW107110964A TWI681967B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW109130851A TWI766361B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW111118219A TW202300509A (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
TW106141450A TWI659967B (en) 2010-03-19 2011-03-18 Novel immunotherapy against several tumors including gastrointestinal and gastric cancer

Country Status (30)

Country Link
US (24) US10064913B2 (en)
EP (9) EP3329933B1 (en)
JP (9) JP5891181B2 (en)
KR (13) KR102324498B1 (en)
CN (8) CN112409451A (en)
AU (1) AU2011229199B2 (en)
BR (1) BR112012023692B1 (en)
CA (5) CA3206214A1 (en)
CY (5) CY1119366T1 (en)
DK (6) DK2845604T3 (en)
EA (8) EA202091250A3 (en)
ES (6) ES2544529T3 (en)
GB (1) GB201004551D0 (en)
HK (5) HK1208174A1 (en)
HR (6) HRP20150867T1 (en)
HU (6) HUE027036T2 (en)
LT (5) LT3195873T (en)
ME (3) ME03569B (en)
MX (6) MX2012010813A (en)
MY (2) MY178651A (en)
NZ (7) NZ601438A (en)
PH (2) PH12016500949B1 (en)
PL (6) PL3195873T3 (en)
PT (6) PT2845604T (en)
RS (6) RS60765B1 (en)
SG (4) SG183880A1 (en)
SI (6) SI2547354T1 (en)
TW (9) TWI768461B (en)
UA (3) UA122047C2 (en)
WO (1) WO2011113819A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714869B (en) * 2013-08-05 2021-01-01 德商伊瑪提克斯生物科技有限公司 Novel peptides, cells, and their use against several tumors, methods for production thereof and pharmaceutical composition comprising the same

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604662B2 (en) 2007-07-13 2009-10-20 Boston Scientific Scimed, Inc. Endoprostheses containing boride intermetallic phases
DK2172211T3 (en) 2008-10-01 2015-02-16 Immatics Biotechnologies Gmbh Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
GB201004551D0 (en) 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
GB201004575D0 (en) * 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh Composition of tumor associated peptides and related anti cancer vaccine for the treatment of gastric cancer and other cancers
EP2400035A1 (en) * 2010-06-28 2011-12-28 Technische Universität München Methods and compositions for diagnosing gastrointestinal stromal tumors
US9040046B2 (en) 2011-01-31 2015-05-26 Kai Xu Sodium pump antibody agonists and methods of treating heart disease using the same
BR112014009176B1 (en) * 2011-10-28 2022-08-30 Oncotherapy Science, Inc COMPOSITION FOR INDUCTION OF CYTOTOXIC T-LYMPHOCYTE (CTL), USE IN THE TREATMENT AND PROPHYLAXIS OF CANCER AND INDUCTION OF IMMUNE RESPONSE AGAINST CANCER AND IN VITRO METHODS FOR INDUCTION OF CTL
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
CA2902415C (en) * 2012-03-19 2024-02-06 Stemline Therapeutics, Inc. Methods for treating and monitoring the status of cancer
RS62406B1 (en) 2012-05-16 2021-10-29 Stemline Therapeutics Inc Cancer stem cell targeted cancer vaccines
US9687538B2 (en) * 2012-07-10 2017-06-27 Oncotherapy Science, Inc. CDCA1 epitope peptides for Th1 cells and vaccines containing the same
US20150285802A1 (en) 2012-07-18 2015-10-08 Dana-Farber Cancer Institute, Inc. Methods for treating, preventing and predicting risk of developing breast cancer
JP6212249B2 (en) * 2012-08-08 2017-10-11 学校法人 京都産業大学 Screening method for calcium pump regulator and screening method for melanin pigment synthesis inhibitor
US9114157B2 (en) * 2012-08-30 2015-08-25 The Board Of Trustees Of The Leland Stanford Junior University Anti-tumor T cell immunity induced by high dose radiation
PL3456339T3 (en) 2013-08-05 2022-03-21 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors, such as lung cancer including nsclc
EP2876442A1 (en) * 2013-11-22 2015-05-27 Institut de Cancérologie de l'Ouest Olfactomedin-4, neudesin and desmoplakin as biomarkers of breast cancer
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
WO2015131035A1 (en) 2014-02-27 2015-09-03 Lycera Corporation Adoptive cellular therapy using an agonist of retinoic acid receptor-related orphan receptor gamma & related therapeutic methods
WO2015164826A2 (en) * 2014-04-24 2015-10-29 Rhode Island Hospital ASPARTATE-β-HYDROXYLASE INDUCES EPITOPE-SPECIFIC T CELL RESPONSES IN TUMORS
JP6523337B2 (en) 2014-05-05 2019-05-29 リセラ・コーポレイションLycera Corporation Benzenesulfonamides and related compounds for use as agonists of ROR.gamma. And disease treatment
US9896441B2 (en) 2014-05-05 2018-02-20 Lycera Corporation Tetrahydroquinoline sulfonamide and related compounds for use as agonists of RORγ and the treatment of disease
GB201408255D0 (en) * 2014-05-09 2014-06-25 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumours of the blood, such as acute myeloid leukemia (AML)
KR101644599B1 (en) 2014-10-14 2016-08-16 연세대학교 산학협력단 Construction of mitochondrial UQCRB mutant expressing cells and utilization of the cells for UQCRB assay system thereof
MA40737A (en) * 2014-11-21 2017-07-04 Memorial Sloan Kettering Cancer Center DETERMINANTS OF CANCER RESPONSE TO PD-1 BLOCKED IMMUNOTHERAPY
GB201423361D0 (en) * 2014-12-30 2015-02-11 Immatics Biotechnologies Gmbh Method for the absolute Quantification of naturally processed HLA-Restricted cancer peptides
US11000548B2 (en) 2015-02-18 2021-05-11 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11497767B2 (en) 2015-02-18 2022-11-15 Enlivex Therapeutics R&D Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11304976B2 (en) 2015-02-18 2022-04-19 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
IL297418B2 (en) 2015-02-18 2023-11-01 Enlivex Therapeutics Rdo Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11596652B2 (en) 2015-02-18 2023-03-07 Enlivex Therapeutics R&D Ltd Early apoptotic cells for use in treating sepsis
US11318163B2 (en) 2015-02-18 2022-05-03 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
GB201504502D0 (en) * 2015-03-17 2015-04-29 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers
CR20210232A (en) 2015-03-17 2022-06-24 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers
EP3285877B1 (en) 2015-04-21 2022-10-19 Enlivex Therapeutics Rdo Ltd Therapeutic pooled blood apoptotic cell preparations and uses thereof
GB201507030D0 (en) * 2015-04-24 2015-06-10 Immatics Biotechnologies Gmbh Immunotherapy against lung cancers, in particular NSCLC
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
JP2018515491A (en) 2015-05-05 2018-06-14 リセラ・コーポレイションLycera Corporation Dihydro-2H-benzo [b] [1,4] oxazinesulfonamide and related compounds for use as RORγ agonists and disease therapies
NL2014935B1 (en) 2015-06-08 2017-02-03 Applied Immune Tech Ltd T cell receptor like antibodies having fine specificity.
MX2017016134A (en) 2015-06-11 2018-08-15 Lycera Corp Aryl dihydro-2h-benzo[b][1,4]oxazine sulfonamide and related compounds for use as agonists of rory and the treatment of disease.
GB201510771D0 (en) 2015-06-19 2015-08-05 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy and methods for generating scaffolds for the use against pancreatic cancer
TWI751557B (en) * 2015-06-19 2022-01-01 德商英麥提克生物技術股份有限公司 Novel peptides and combination of peptides for use in immunotherapy and methods for generating scaffolds for the use against pancreatic cancer and other cancers
MA42294B1 (en) 2015-07-01 2020-11-30 Immatics Biotechnologies Gmbh New peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
GB201511546D0 (en) 2015-07-01 2015-08-12 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
MY189596A (en) * 2015-07-15 2022-02-18 Immatics Biotechnologies Gmbh A novel peptides for use in immunotherapy against epithelial ovarian cancer and other cancers
UA125817C2 (en) 2015-08-28 2022-06-15 Імматікс Біотекнолоджіс Гмбх Peptides and combination of peptides for use in immunotherapy against small cell lung cancer and other cancers
US10130693B2 (en) * 2015-08-28 2018-11-20 Immatics Biotechnologies Gmbh Peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
GB201515321D0 (en) 2015-08-28 2015-10-14 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
KR102601499B1 (en) * 2015-11-06 2023-11-13 연세대학교 산학협력단 Method for diagnosing uqcrb related desease by measuring micro rna expression level
GB201521746D0 (en) * 2015-12-10 2016-01-27 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against CLL and other cancers
KR20180107102A (en) 2015-12-16 2018-10-01 그릿스톤 온콜로지, 인코포레이티드 Identification of new antigens, manufacture, and uses
AU2017219415B2 (en) 2016-02-18 2023-08-10 Enlivex Therapeutics Rdo Ltd Combination immune therapy and cytokine control therapy for cancer treatment
CN116375797A (en) 2016-03-01 2023-07-04 伊玛提克斯生物技术有限公司 Peptides, peptide compositions and cell-based drugs for immunotherapy of bladder cancer and other cancers
GB201603568D0 (en) * 2016-03-01 2016-04-13 Immatics Biotechnologies Gmbh Efficient treatment options including peptides and combination of peptide and cell based medicaments for use in immunotherapy against urinary bladder cancer
GB201603987D0 (en) 2016-03-08 2016-04-20 Immatics Biotechnologies Gmbh Uterine cancer treatments
GB201604458D0 (en) * 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against cancers
GB201604490D0 (en) * 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Peptides combination of peptides for use in immunotherapy against cancers
PE20181897A1 (en) 2016-04-21 2018-12-11 Immatics Biotechnologies Gmbh IMMUNOTHERAPY AGAINST MELANOMA AND OTHER TYPES OF CANCER
MX2018012758A (en) 2016-04-21 2019-01-31 Immatics Biotechnologies Gmbh Immunotherapy against melanoma and other cancers.
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
HRP20211677T1 (en) * 2016-08-17 2022-02-18 Immatics Biotechnologies Gmbh T cell receptors and immune therapy using the same
DE102016115246C5 (en) * 2016-08-17 2018-12-20 Immatics Biotechnologies Gmbh NEW T-CELL RECEPTORS AND THEIR USE IN IMMUNOTHERAPY
ZA201900664B (en) 2016-08-17 2021-09-29 Paul Ehrlich Strasse 15 Tuebingen 72076 Germany T cell receptors and immune therapy using the same
CN109923121B (en) 2016-11-22 2022-12-23 武汉华大吉诺因生物科技有限公司 Polypeptide and application thereof
WO2018098715A1 (en) * 2016-11-30 2018-06-07 深圳华大基因研究院 Polypeptide and application thereof
EP4317432A3 (en) 2016-12-08 2024-04-17 Immatics Biotechnologies GmbH T cell receptors with improved pairing
DE102016123893A1 (en) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T cell receptors with improved binding
CN111548405A (en) * 2017-04-10 2020-08-18 伊玛提克斯生物技术有限公司 Peptides and peptide compositions thereof for cancer immunotherapy
US11427614B2 (en) 2017-04-10 2022-08-30 Immatics Biotechnologies Gmbh Peptides and combination thereof for use in the immunotherapy against cancers
SG11202000027WA (en) 2017-07-14 2020-02-27 Immatics Biotechnologies Gmbh Improved dual specificity polypeptide molecule
DE102017115966A1 (en) 2017-07-14 2019-01-17 Immatics Biotechnologies Gmbh Polypeptide molecule with improved dual specificity
CN111465989A (en) 2017-10-10 2020-07-28 磨石肿瘤生物技术公司 Identification of neoantigens using hot spots
DE102017125888A1 (en) * 2017-11-06 2019-05-23 Immatics Biotechnologies Gmbh New engineered T cell receptors and their use in immunotherapy
DK3707159T3 (en) 2017-11-06 2023-04-11 Immatics Biotechnologies Gmbh PREVIOUSLY UNKNOWN MODIFIED T CELL RECEPTORS AND IMMUNE THERAPY USING THEREOF
EP3714275A4 (en) 2017-11-22 2021-10-27 Gritstone bio, Inc. Reducing junction epitope presentation for neoantigens
BR112020009889A2 (en) 2017-12-14 2020-11-03 Flodesign Sonics, Inc. acoustic transducer driver and controller
US20210380661A1 (en) * 2018-10-16 2021-12-09 Texas Tech University System Method to Express, Purify, and Biotinylate Eukaryotic Cell-Derived Major Histocompatibility Complexes
EA202193139A1 (en) 2019-05-27 2022-03-01 Имматикс Юс, Инк. VIRAL VECTORS AND THEIR APPLICATIONS IN ADOPTIONAL CELL THERAPY
DE102019114735A1 (en) * 2019-06-02 2020-12-03 PMCR GmbH Class I and II HLA tumor antigen peptides for the treatment of breast cancer
KR20220018006A (en) 2019-06-06 2022-02-14 이매틱스 바이오테크놀로지스 게엠베하 Classification by counter selection using sequence-like peptides
KR102397922B1 (en) * 2020-02-19 2022-05-13 서울대학교 산학협력단 Novel tumor-associated antigen protein OLFM4 and the use thereof
WO2022045768A1 (en) 2020-08-28 2022-03-03 계명대학교 산학협력단 Micro rna biomarker for predicting drug response to antidiabetics and use thereof
WO2022109258A1 (en) * 2020-11-19 2022-05-27 Board Of Regents, The University Of Texas System Methods and compositions comprising mhc class i peptides
DE102021100038A1 (en) 2020-12-31 2022-06-30 Immatics US, Inc. MODIFIED CD8 POLYPEPTIDES, COMPOSITIONS AND METHODS OF USE THEREOF
JP2024502034A (en) 2020-12-31 2024-01-17 イマティクス ユーエス,アイエヌシー. CD8 polypeptides, compositions, and methods of using them
BR112023022975A2 (en) 2021-05-05 2024-01-23 Immatics Biotechnologies Gmbh IMPROVED BMA031 ANTIGEN BINDING POLYPEPTIDES
CN114732898B (en) * 2022-04-01 2023-05-09 中国人民解放军军事科学院军事医学研究院 Fixed-point covalent binding method of CpG adjuvant and antigen
US20240066127A1 (en) 2022-04-28 2024-02-29 Immatics US, Inc. Il-12 polypeptides, il-15 polypeptides, il-18 polypeptides, cd8 polypeptides, compositions, and methods of using thereof
WO2023212697A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof
US20230348561A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Dominant negative tgfbeta receptor polypeptides, cd8 polypeptides, cells, compositions, and methods of using thereof
WO2023215825A1 (en) 2022-05-05 2023-11-09 Immatics US, Inc. Methods for improving t cell efficacy
WO2024072954A1 (en) * 2022-09-29 2024-04-04 Jerome Canady Research Institute for Advanced Biological and Technological Sciences Cold atmopsheric plasma treated pan-cancer epitope peptide within the collagen type vi a-3 (col6a3) protein as cancer vaccine

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440859A (en) 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
YU44186B (en) 1978-12-22 1990-04-30 Biogen Nv Process for obtaining recombinant dnk molecules
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
US4342566A (en) 1980-02-22 1982-08-03 Scripps Clinic & Research Foundation Solid phase anti-C3 assay for detection of immune complexes
US4678751A (en) 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4766075A (en) 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
US4582800A (en) 1982-07-12 1986-04-15 Hoffmann-La Roche Inc. Novel vectors and method for controlling interferon expression
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4677063A (en) 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4897445A (en) 1986-06-27 1990-01-30 The Administrators Of The Tulane Educational Fund Method for synthesizing a peptide containing a non-peptide bond
GB2294267B (en) 1993-06-03 1996-11-20 Therapeutic Antibodies Inc Anti-TNFalpha Fab fragments derived from polyclonal IgG antibodies
AUPM322393A0 (en) 1993-12-24 1994-01-27 Austin Research Institute, The Mucin carbohydrate compounds and their use in immunotherapy
ATE244300T1 (en) 1996-01-17 2003-07-15 Imp College Innovations Ltd IMMUNOTHERAPY USING CYTOTOXIC T LYMPHOCYTES (CTL)
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US8299321B2 (en) 1998-06-16 2012-10-30 Monsanto Technology Llc Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
CN1319133A (en) * 1998-09-25 2001-10-24 儿童医疗中心有限公司 Short peptides which selectively modulate activity of protein kinases
AU3395900A (en) * 1999-03-12 2000-10-04 Human Genome Sciences, Inc. Human lung cancer associated gene sequences and polypeptides
CA2393738A1 (en) * 1999-12-10 2001-06-14 Epimmune Inc. Inducing cellular immune responses to her2/neu using peptide and nucleic acid compositions
JP4310104B2 (en) 2002-09-28 2009-08-05 英俊 猪子 Gene mapping method using microsatellite polymorphism markers
US20110131679A2 (en) 2000-04-19 2011-06-02 Thomas La Rosa Rice Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement
US20070067865A1 (en) 2000-09-05 2007-03-22 Kovalic David K Annotated plant genes
AU2001279581A1 (en) * 2000-09-06 2002-03-22 Friederike Muller Medicament comprising a dna sequence, which codes for the rna-binding koc protein, and comprising a koc protein or dna sequence of the koc promoter
AU2001294943A1 (en) 2000-10-02 2002-04-15 Bayer Corporation Nucleic acid sequences differentially expressed in cancer tissue
US6673549B1 (en) * 2000-10-12 2004-01-06 Incyte Corporation Genes expressed in C3A liver cell cultures treated with steroids
USH2191H1 (en) 2000-10-24 2007-06-05 Snp Consortium Identification and mapping of single nucleotide polymorphisms in the human genome
AU2002212471A1 (en) * 2000-11-01 2002-05-15 Insight Biotechnology Limited Peptides for use in the treatment of alzheimer's disease
US7919467B2 (en) * 2000-12-04 2011-04-05 Immunotope, Inc. Cytotoxic T-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
AU2002311787A1 (en) * 2001-03-28 2002-10-15 Zycos Inc. Translational profiling
AU2002303219A1 (en) * 2001-03-30 2002-10-15 Corixa Corporation Compositions and methods for the therapy and diagnosis of cancer
WO2005024017A1 (en) 2002-03-15 2005-03-17 Monsanto Technology Llc Nucleic acid molecules associated with oil in plants
DE10225139A1 (en) * 2002-05-29 2004-02-26 Immatics Biotechnologies Gmbh Methods for the identification of immunoreactive peptides
US20050221350A1 (en) * 2002-05-29 2005-10-06 Toni Weinschenk Method for identifying immunoreactive peptides
WO2004014867A2 (en) * 2002-08-13 2004-02-19 Warner-Lambert Company Llc Matrix metalloproteinase inhibitors and methods for identification of lead compounds
US20060188889A1 (en) * 2003-11-04 2006-08-24 Christopher Burgess Use of differentially expressed nucleic acid sequences as biomarkers for cancer
WO2005049806A2 (en) * 2003-03-14 2005-06-02 Nuvelo, Inc. Novel nucleic acids and polypeptides
US20070037204A1 (en) * 2003-08-08 2007-02-15 Hiroyuki ABURANTAI Gene overexpressed in cancer
WO2005019258A2 (en) * 2003-08-11 2005-03-03 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
US20070054278A1 (en) 2003-11-18 2007-03-08 Applera Corporation Polymorphisms in nucleic acid molecules encoding human enzyme proteins, methods of detection and uses thereof
CA2554440A1 (en) * 2004-01-27 2005-08-11 Compugen Usa, Inc. Novel nucleotide and amino acid sequences, and assays and methods of use thereof for diagnosis of breast cancer
EP1568383A3 (en) 2004-02-27 2005-11-16 Antisense Pharma GmbH Use of an oligonucleotide or its active derivative for the preparation of a pharmaceutical composition for inhibiting the formation of metastases in cancer treatment
US20070039069A1 (en) 2004-03-22 2007-02-15 Rogers James A Nucleic acid molecules associated with oil in plants
TW200600785A (en) 2004-03-23 2006-01-01 Oncotherapy Science Inc Method for diagnosing non-small cell lung cancer
AT501014A1 (en) * 2004-08-19 2006-05-15 Kury & Zeillinger Oeg METHOD AND KIT FOR THE DIAGNOSIS OF A CANCER DISEASE, METHOD FOR DETERMINING THE APPEAL OF A PATIENT FOR THE TREATMENT OF CANCER DISEASE, THERAPEUTIC AGAINST THE PROPHYLAXIS OR THE TREATMENT OF A CANCER DISEASE
WO2006023598A2 (en) * 2004-08-19 2006-03-02 University Of Maryland, Baltimore Prostate-specific antigen-derived mhc class ii-restricted peptides and their use in vaccines to treat or prevent prostate cancer
WO2007005635A2 (en) 2005-07-01 2007-01-11 Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Mitotic spindle protein aspm as a diagnostic marker for neoplasia and uses therefor
ATE461214T1 (en) * 2005-09-05 2010-04-15 Immatics Biotechnologies Gmbh TUMOR-ASSOCIATED PEPTIDES THAT BIND TO DIFFERENT CLASS II HUMAN LEUCOCYTE ANTIGENS
DE602005016112D1 (en) * 2005-09-05 2009-10-01 Immatics Biotechnologies Gmbh Tumor-associated peptides that bind HLA class I or II molecules and anti-tumor vaccines
GB0521958D0 (en) * 2005-10-27 2005-12-07 Ares Trading Sa vWFA, collagen and kunitz domain containing protein
DE102005052384B4 (en) * 2005-10-31 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the detection, labeling and treatment of epithelial lung tumor cells and means for carrying out the method
US20090004213A1 (en) * 2007-03-26 2009-01-01 Immatics Biotechnologies Gmbh Combination therapy using active immunotherapy
US8080634B2 (en) * 2007-07-27 2011-12-20 Immatics Biotechnologies Gmbh Immunogenic epitope for immunotherapy
SI2567707T1 (en) 2007-07-27 2017-01-31 Immatics Biotechnologies Gmbh Composition of tumour-associated peptides and related anti-cancer vaccine
US7892770B2 (en) * 2007-08-24 2011-02-22 Van Andel Research Institute Monoclonal antibody which binds cMet (HGFR) in formalin-fixed and paraffin-embedded tissues and related methods
NZ562237A (en) * 2007-10-05 2011-02-25 Pacific Edge Biotechnology Ltd Proliferation signature and prognosis for gastrointestinal cancer
WO2009075883A2 (en) * 2007-12-12 2009-06-18 University Of Georgia Research Foundation, Inc. Glycoprotein cancer biomarker
KR101184869B1 (en) * 2008-04-24 2012-09-20 이매틱스 바이오테크놀로지스 게엠베하 Novel formulations of tumour-associated peptides binding to human leukocyte antigen hla class i or ii molecules for vaccines
DK2113253T3 (en) 2008-04-30 2010-07-19 Immatics Biotechnologies Gmbh New Composition of Tumor-Associated Peptides Binding to Human Leukocyte Antigen (HLA) Class I or II Molecules for Vaccine Use
US8133686B2 (en) * 2008-05-15 2012-03-13 Van Andel Research Institute IL-8 as a biomarker for sunitinib resistance
TWI526219B (en) * 2008-06-19 2016-03-21 腫瘤療法 科學股份有限公司 Cdca1 epitope peptides and vaccines containing the same
WO2010037395A2 (en) * 2008-10-01 2010-04-08 Dako Denmark A/S Mhc multimers in cancer vaccines and immune monitoring
DK2172211T3 (en) 2008-10-01 2015-02-16 Immatics Biotechnologies Gmbh Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
GB201004575D0 (en) 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh Composition of tumor associated peptides and related anti cancer vaccine for the treatment of gastric cancer and other cancers
GB201004551D0 (en) * 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
GB201019331D0 (en) * 2010-03-19 2010-12-29 Immatics Biotechnologies Gmbh Methods for the diagnosis and treatment of cancer based on AVL9
GB201006360D0 (en) * 2010-04-16 2010-06-02 Immatics Biotechnologies Gmbh Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development
GB201015765D0 (en) * 2010-09-21 2010-10-27 Immatics Biotechnologies Gmbh Use of myeloid cell biomarkers for the diagnosis of cancer
GB201021289D0 (en) * 2010-12-15 2011-01-26 Immatics Biotechnologies Gmbh Novel biomarkers for a prediction of the outcome of an immunotherapy against cancer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714869B (en) * 2013-08-05 2021-01-01 德商伊瑪提克斯生物科技有限公司 Novel peptides, cells, and their use against several tumors, methods for production thereof and pharmaceutical composition comprising the same

Also Published As

Publication number Publication date
EA201690511A1 (en) 2016-11-30
US20200155645A1 (en) 2020-05-21
GB201004551D0 (en) 2010-05-05
JP2021080263A (en) 2021-05-27
TW202026308A (en) 2020-07-16
TWI486445B (en) 2015-06-01
US20210260160A1 (en) 2021-08-26
EP2845604A2 (en) 2015-03-11
KR20190033577A (en) 2019-03-29
HUE033682T2 (en) 2017-12-28
US20190290727A1 (en) 2019-09-26
US20220016207A1 (en) 2022-01-20
US11648292B2 (en) 2023-05-16
NZ727841A (en) 2019-11-29
TWI768461B (en) 2022-06-21
KR20220025133A (en) 2022-03-03
DK2845604T3 (en) 2017-05-01
KR20210019603A (en) 2021-02-22
JP6535040B2 (en) 2019-06-26
NZ711296A (en) 2017-03-31
TW202102536A (en) 2021-01-16
ES2544529T3 (en) 2015-09-01
TW202300509A (en) 2023-01-01
SI3195873T1 (en) 2019-11-29
EP2923708A1 (en) 2015-09-30
NZ601438A (en) 2014-12-24
DK3363456T3 (en) 2020-11-09
EA039357B1 (en) 2022-01-18
EA202091241A3 (en) 2021-04-30
US10357540B2 (en) 2019-07-23
KR20130016304A (en) 2013-02-14
EP3738606A1 (en) 2020-11-18
CN112409452A (en) 2021-02-26
SI3363456T1 (en) 2021-02-26
PL3363456T3 (en) 2021-05-04
TWI766361B (en) 2022-06-01
PL2923708T3 (en) 2018-03-30
UA126787C2 (en) 2023-02-08
ME03569B (en) 2020-07-20
EP3329933B1 (en) 2020-06-24
CN112457390A (en) 2021-03-09
CA3076642A1 (en) 2011-09-22
US20170304399A1 (en) 2017-10-26
SI2547354T1 (en) 2015-09-30
HRP20191859T1 (en) 2019-12-27
HUE045757T2 (en) 2020-01-28
US20210268063A1 (en) 2021-09-02
TWI766362B (en) 2022-06-01
SG10201710446PA (en) 2018-01-30
CN112409453A (en) 2021-02-26
NZ769427A (en) 2023-02-24
RS56612B1 (en) 2018-02-28
US10898546B2 (en) 2021-01-26
EP3753570A1 (en) 2020-12-23
KR20230141886A (en) 2023-10-10
BR112012023692B1 (en) 2020-06-09
CY1123447T1 (en) 2021-12-31
WO2011113819A2 (en) 2011-09-22
TWI659967B (en) 2019-05-21
CN105001339A (en) 2015-10-28
JP7034505B2 (en) 2022-03-14
US10064913B2 (en) 2018-09-04
MX2012010813A (en) 2012-11-12
JP2017140027A (en) 2017-08-17
EP2547354A2 (en) 2013-01-23
KR101826460B1 (en) 2018-02-06
LT3363456T (en) 2021-01-11
EA202091233A3 (en) 2020-12-30
TWI681967B (en) 2020-01-11
KR20200109390A (en) 2020-09-22
PT3329933T (en) 2020-09-22
JP2020191874A (en) 2020-12-03
KR20160106192A (en) 2016-09-09
PT2547354E (en) 2015-09-16
HUE027036T2 (en) 2016-08-29
US20220265764A1 (en) 2022-08-25
US9717774B2 (en) 2017-08-01
JP2020191875A (en) 2020-12-03
CY1119366T1 (en) 2018-02-14
JP7107586B2 (en) 2022-07-27
HK1255544A1 (en) 2019-08-23
EA201792409A3 (en) 2018-07-31
HRP20171504T1 (en) 2017-11-17
KR101656913B1 (en) 2016-09-13
US11273200B2 (en) 2022-03-15
PL3195873T3 (en) 2020-03-31
TWI715332B (en) 2021-01-01
US20180000896A1 (en) 2018-01-04
US20210275634A1 (en) 2021-09-09
EA201792409A2 (en) 2018-03-30
RS59554B1 (en) 2019-12-31
CN102905721A (en) 2013-01-30
EP2923708B1 (en) 2017-07-12
NZ708205A (en) 2015-09-25
US11298404B2 (en) 2022-04-12
JP2022141743A (en) 2022-09-29
TW202102535A (en) 2021-01-16
EA202091242A2 (en) 2021-01-29
US20200330552A1 (en) 2020-10-22
EA202091233A2 (en) 2020-09-30
KR102324498B1 (en) 2021-11-09
US11850274B2 (en) 2023-12-26
KR102388761B1 (en) 2022-04-20
HRP20201467T1 (en) 2020-12-11
JP2018057393A (en) 2018-04-12
EP3058947A3 (en) 2016-11-30
US20220008506A1 (en) 2022-01-13
US20180125929A1 (en) 2018-05-10
MX2020011675A (en) 2020-12-03
EP3195873A1 (en) 2017-07-26
CN112430255A (en) 2021-03-02
HK1210586A1 (en) 2016-04-29
EP2845604B1 (en) 2017-03-08
US20200297801A1 (en) 2020-09-24
JP6103608B2 (en) 2017-03-29
PL2845604T3 (en) 2017-09-29
MX2020011674A (en) 2020-12-03
RS56070B1 (en) 2017-10-31
SG10201606771SA (en) 2016-10-28
NZ627877A (en) 2015-08-28
US20210346466A1 (en) 2021-11-11
EP3329933A1 (en) 2018-06-06
AU2011229199A1 (en) 2012-08-16
HUE050376T2 (en) 2020-11-30
US10933118B2 (en) 2021-03-02
PH12019502194A1 (en) 2020-06-15
CY1122235T1 (en) 2020-11-25
PT3363456T (en) 2020-11-10
BR112012023692A2 (en) 2017-07-18
KR20210019139A (en) 2021-02-19
CA2936642A1 (en) 2011-09-22
MX2020011673A (en) 2020-12-03
US10478471B2 (en) 2019-11-19
ES2642562T3 (en) 2017-11-16
EA201201306A1 (en) 2013-02-28
KR102324499B1 (en) 2021-11-09
TW202102534A (en) 2021-01-16
WO2011113819A3 (en) 2011-11-10
JP2017006136A (en) 2017-01-12
EA037019B1 (en) 2021-01-27
CA2789857A1 (en) 2011-09-22
HK1226297A1 (en) 2017-09-29
ES2626798T3 (en) 2017-07-26
DK3329933T3 (en) 2020-09-21
CA3076642C (en) 2023-08-29
CY1119739T1 (en) 2018-06-27
US9101585B2 (en) 2015-08-11
LT2845604T (en) 2017-04-25
EP3363456A1 (en) 2018-08-22
PH12016500949A1 (en) 2017-02-13
HRP20170718T1 (en) 2017-07-14
ME02692B (en) 2017-10-20
CN112409451A (en) 2021-02-26
SI3329933T1 (en) 2021-01-29
US20210346465A1 (en) 2021-11-11
HRP20150867T1 (en) 2015-09-25
LT3329933T (en) 2020-09-25
ME02229B (en) 2016-02-20
NZ737956A (en) 2020-11-27
MY178651A (en) 2020-10-20
JP5891181B2 (en) 2016-03-22
HUE051478T2 (en) 2021-03-01
TW201529849A (en) 2015-08-01
US10905741B2 (en) 2021-02-02
KR102388577B1 (en) 2022-04-19
CN105001339B (en) 2020-10-16
EP2547354B1 (en) 2015-06-03
MX355074B (en) 2018-04-04
TW201825514A (en) 2018-07-16
PT2923708T (en) 2017-10-06
JP6238258B2 (en) 2017-11-29
US11077171B2 (en) 2021-08-03
US20150147347A1 (en) 2015-05-28
ES2753206T3 (en) 2020-04-07
JP2013521789A (en) 2013-06-13
SI2923708T1 (en) 2017-10-30
PH12016500949B1 (en) 2017-02-13
DK2923708T3 (en) 2017-10-16
HK1180610A1 (en) 2013-10-25
HUE032402T2 (en) 2017-09-28
CN102905721B (en) 2015-09-23
EA202091241A2 (en) 2021-01-29
KR102329791B1 (en) 2021-11-22
EA202091250A3 (en) 2020-12-30
US11957730B2 (en) 2024-04-16
HRP20201770T1 (en) 2021-03-19
SG10201502093QA (en) 2015-05-28
US9993523B2 (en) 2018-06-12
KR20180014848A (en) 2018-02-09
KR20200108934A (en) 2020-09-21
US11975042B2 (en) 2024-05-07
EP3363456B1 (en) 2020-08-05
US11839643B2 (en) 2023-12-12
JP6722644B2 (en) 2020-07-15
EA202091242A3 (en) 2021-04-30
TWI621709B (en) 2018-04-21
DK2547354T3 (en) 2015-07-20
NZ731580A (en) 2020-11-27
EA202091251A2 (en) 2020-09-30
PT2845604T (en) 2017-06-01
ES2829375T3 (en) 2021-05-31
NZ769435A (en) 2023-02-24
US20220016209A1 (en) 2022-01-20
AU2011229199B2 (en) 2015-01-22
US9895415B2 (en) 2018-02-20
KR102361467B1 (en) 2022-02-14
ES2819861T3 (en) 2021-04-19
CA3206214A1 (en) 2011-09-22
UA111711C2 (en) 2016-06-10
US20220040259A1 (en) 2022-02-10
US20210162004A1 (en) 2021-06-03
CA2986969A1 (en) 2011-09-22
EP3058947A2 (en) 2016-08-24
US20170312336A1 (en) 2017-11-02
EP3195873B1 (en) 2019-07-24
KR20200109392A (en) 2020-09-22
RS54182B1 (en) 2015-12-31
SI2845604T1 (en) 2017-06-30
US20190321442A1 (en) 2019-10-24
US11883462B2 (en) 2024-01-30
HK1208174A1 (en) 2016-02-26
CY1123762T1 (en) 2022-03-24
EA202091251A3 (en) 2020-12-30
KR20200109389A (en) 2020-09-22
LT2923708T (en) 2017-10-10
US20110229504A1 (en) 2011-09-22
MY197710A (en) 2023-07-09
SG183880A1 (en) 2012-10-30
US20210330743A1 (en) 2021-10-28
US20130045191A1 (en) 2013-02-21
US10420816B1 (en) 2019-09-24
RS60765B1 (en) 2020-10-30
TW201805301A (en) 2018-02-16
CA2986969C (en) 2020-04-28
EP2845604A3 (en) 2015-05-20
RS60993B1 (en) 2020-11-30
EA024497B1 (en) 2016-09-30
CN108456242A (en) 2018-08-28
LT3195873T (en) 2019-11-11
KR20200108935A (en) 2020-09-21
EA202091250A2 (en) 2020-09-30
MX2020011672A (en) 2020-12-03
JP7007504B2 (en) 2022-02-10
US11969455B2 (en) 2024-04-30
PL2547354T3 (en) 2015-12-31
DK3195873T3 (en) 2019-10-21
KR102324500B1 (en) 2021-11-09
JP2016034950A (en) 2016-03-17
CA2936642C (en) 2019-03-05
CA2789857C (en) 2017-03-21
UA122047C2 (en) 2020-09-10
PL3329933T3 (en) 2020-11-30
PT3195873T (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US11298404B2 (en) Immunotherapy against several tumors including gastrointestinal and gastric cancer
AU2017200376B2 (en) Novel immunotherapy against several tumors including gastrointestinal and gastric cancer