TW201200492A - Method of making concrete compositions - Google Patents

Method of making concrete compositions Download PDF

Info

Publication number
TW201200492A
TW201200492A TW99120669A TW99120669A TW201200492A TW 201200492 A TW201200492 A TW 201200492A TW 99120669 A TW99120669 A TW 99120669A TW 99120669 A TW99120669 A TW 99120669A TW 201200492 A TW201200492 A TW 201200492A
Authority
TW
Taiwan
Prior art keywords
concrete
inorganic sludge
sludge
preparing
pellets
Prior art date
Application number
TW99120669A
Other languages
Chinese (zh)
Inventor
Chau Lee
Qing-An Wang
Tung-Hsuan Lu
Original Assignee
Tung-Hsuan Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tung-Hsuan Lu filed Critical Tung-Hsuan Lu
Priority to TW99120669A priority Critical patent/TW201200492A/en
Publication of TW201200492A publication Critical patent/TW201200492A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatment Of Sludge (AREA)

Abstract

A method of making a concrete composition that includes sludge from ceramic industry wastewater is disclosed. 20-50 % of mineral admixtures of the concrete is replaced by the sludge to make controlled low strength material or self-compacting concrete. The sludge comprises 60-70% silica, and 10-20% alumina.

Description

201200492 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種混凝土製備方法。 【先前技術】 、製造業廢水的回收處理再使用已行之有年,經過固 液分離等程序,將廢水處理排放或回收再利用;然而廢 •水j理後留下的污泥’卻是長久以來亟待解決的問題。 目刖廢水處理後的污泥大多是以固化、堆放或掩埋方式 處理。 近年來對於污泥逐漸朝向回收、再利用和資源化的 方向t展。不同行業別的污泥因成分特性不同,可能資 源化方向可分為建築用碑、輕質粒料、水泥原料或取代 粒料等。 目前已有利用回收污泥,經過燒結、研磨、造粒等 _流程製成骨材’作為取代混凝土中天然骨材。然而,由 於利用回收污泥製成骨材的製程繁複,使得再生成本居高 不下,且尚須委託相關處理業者進行處理,就經濟效益來 說,並不符合回收處理業者的需求。 此外,上述技術尚須配合硬體設備及回收流程的重新 没计,需要改變目前營建材料業的備料處理流程,因此難 以實際應用於產業。 【發明内容】 201200492 因此’本發明之一態樣是在提供一種製備混凝土的方 法,包含直接使用陶瓷業拋光研磨廢水處理產生之細度為 55〇0〜6000 (cm2/g)的陶瓷無機性污泥作為粒料’取代全 部粒料的20-50 %。陶瓷無機性污泥包含6〇-川%的氧化矽 及10-20%氧化銘。 依照本發明之實施例,陶曼無機性污泥並未經過高溫 燒結、添加膠結劑造粒等製程處理。依照本發明之實施方 式’混凝土可為控制性低強度混凝土、自充填混凝土或預 ❿摔混凝土。 根據上述,可知本發明實施方式之混凝土其製備方 法’係直接使用陶瓷無機性污泥作為混凝土拌合之粒料, 由於陶瓷無機性污泥之細度達5500〜6000( cm2/g)’故資源 化時無需再對其做加工處理(例如燒結、造粒處理),即可 直接添加於控制性低強度混凝土、自充填混凝土或預拌混 凝土中取代部份粒料,藉由粉體量的增加,使得其工作性 優於一般水泥混凝土。此外,陶瓷無機性污泥加入自充填 鲁’見凝土之中,可適度的降低混凝土水化熱,達到降低生產 成本及増加工作性的需求。 因此’應用本發明實施方式之方法,不需繁複的處理 程序及額外添購硬體設備來進行無機性污泥的資源化工 作’可有效節省陶瓷業拋光研磨製程產生之無機性污泥的 處理成本’減少陶瓷無機性污泥廢棄物的廢棄量,並提高 資源再生利用廠商的利潤。 201200492 【實施方式】 陶竟成分是以三軸链體為主,包括長石、石英、黏土, 又黏土屬於一種鋁矽酸鹽材料’其主要成分為氧化鋁 (A1203)及矽石(Si〇2)。 本文中所述「陶瓷無機性污泥」,係指陶瓷業拋光研磨 製程產生之無機性污泥,即陶瓷拋光研磨後產生之含陶竟 粉屑的廢水’其内含之陶瓷粉屑的細度約為55〇〇_6000 (cm2/g)以上,再經調合、快混、慢混、沈澱濃縮及壓濾 ‘程產生無渗出水且無呈塊狀的產物,且未經過任何高溫 (例如800-90(TC )燒結、添加膠結料造粒等製程處理。 本發明實施例所使用的陶瓷無機性污泥的基本性質, 包括材料特性及有害重金屬含量分析整理於下: (一)陶瓷無機性污泥的材料特性: 本發明實施方式利用陶瓷廠拋光研磨產生之陶瓷無機 可泥作為添加於混凝土之粒料。表1及表2為本發明實 施方式使用之陶瓷無機性污泥的化學及物理分析。其中, =究無機性污泥之化學成份分析(表1)係委託台^水泥 &司代為檢測之結果。 應說明的是,表丨之檢測結果數值僅代表檢測當時的 5之精確分析(達小數點後第二位),僅用以顯示本發明 n使用之μ無機性污泥之通常化學成份組成“, /、化學成份數值可能隨供應之陶瓷廠出廠批次不同而稍有 差異,但其主要成份種類仍大致不變,因此表1之结果並 非用以限定本發明實施例之陶瓷無機性污泥的組成含量。 201200492 表1.陶瓷無機性污泥之化學成份分析 化學成分 (%) 試驗材料 陶瓷無機性污泥 Si02 67.14 AI2O3 12.73 Fe203 0.86 CaO 0.99 MgO 2.32 S03 0.97 Na20 1.61 K20 1.95 r2〇 2.89 由表1可知,陶瓷無機性污泥的化學組成以矽、鋁之氧 化物為主要成份,包含約60-70%的氧化矽(Si〇2 )、約10-20% 氧化鋁(Al2〇3),即氧化矽與氧化鋁之組成比例為3-7 : 1。 且氧化矽與氧化鋁的含量合計佔陶瓷無機性污泥總成份之 75%以上。 表1中顯示陶瓷無機性污泥可能包含其他微量的氧化 物或元素,例如氧化鈣(以表1為例,約0.99% ),為其通 φ 常組成份之一。應說明的是,微量的氧化i弓存在並未對本 發明應用陶瓷無機性污泥直接取代混凝土粒料的基礎產生 實質上的影響,且此微量的氧化鈣亦非用以使陶瓷無機性 污泥產生新的特徵。上述「新的特徵」可例如形成人工骨 材粒料(需額外添加水泥等膠結劑於污泥中,約含30%以 上的妈成份的骨材粒料)。 由於本發明實施例所使用之陶瓷無機性污泥係陶瓷業 拋光研磨廢水處理產生之無機性污泥,故其產出時細度已 經很細。 201200492 表2.陶瓷無機性污泥之物理性質 物理性質 檢測值 比重(kg/m3) 2.39 細度(cm2/g) 5500〜6000 有機物含量試驗 無 燒失量(%) 4.8 活性指數(%) 86.2 (28 天) 由表2可知陶瓷無機性污泥其產出時細度約5500 cm2/g以上,由於其細度比水泥更細,故資源化運用時不再 參進行額外加工處理。 此外,由陶竟無機性之燒失量(小於10 %)可知,陶 瓷業拋光研磨製程產生之陶瓷無機性污泥中幾乎不含有機 物質。 再者,利用有機物含量比色法測試結果的均屬淡色(無 色),符合規範之要求,即:若作為資源化再利用的原料時, 可視為穩定的無機資材或充填料。 φ (二)陶瓷無機性污泥的重金屬含量分析: 依據「有害事業廢棄物認定標準」規定,一般廢水處 理後的污泥經過毒性溶出試驗,可分為有害事業廢棄物及 一般事業廢棄物。 下表3為本發明實施方式使用之陶瓷無機性污泥的毒 性特性溶出程序(Toxic Characteristic Leaching Procedure ; TCLP)分析結果。 由表3的結果顯示,本發明所使用的陶瓷無機性污泥 在六價鉻、汞、砷、銅、鉻、鎘、鉛等重金屬溶出試驗中, 201200492 其含量皆低於標準值或未偵測到。 表3無機性污泥有害特性分析結果 檢測項目 檢測值 (mg/L) 檢測方法 TCLP溶出標準 (mg/L) 總鎘(Cd) ND 顺 AR201.13C &NIEAM104.01C 1.0 總鉻(Cr) ND NIEAR201.13C&NIEAM104.01C 5.0 總銅(Cu) <0.020 NIEAR201.13C&NIEAM104.01C 15.0 總鉛(Pb) <0.020 NIEAR201.13C&NIEAM104.01C 5.0 總汞(Hg) ND NBEAR201.13C&NIEAR314.12C 0.2 總珅(As) <0.025 NIEAR201.13C&NIEAM104.01C 5.0 總涵(Se) ND NIEAR201.13C &NIEAR300.10C 1.0 總鋇(Ba) 0.270 NIEA R201.13C & NIEA M104.01C 100 六價鉻 (Cr6+) ND NIEA R201.13C & NIEA R309.12C 2.5 註1.低於偵測極限值以表示,並註明其方法偵測極限值(MDL)。 註2.檢驗值低於檢量線最低值濃度而高於MDL濃度時,以、<〃表示檢量線201200492 VI. Description of the Invention: [Technical Field to Which the Invention Is Along] The present invention relates to a method of preparing a concrete. [Prior Art] The recycling of manufacturing wastewater has been used for many years. After the process of solid-liquid separation, the wastewater is discharged or recycled. However, the sludge left after the waste water is A long-standing problem that needs to be solved. Most of the sludge after the wastewater treatment is treated by solidification, stacking or landfill. In recent years, sludge has gradually been oriented toward recycling, reuse, and recycling. Sludges from different industries may be classified into building monuments, light-grain materials, cement raw materials or substituted pellets due to their different composition characteristics. At present, recycled sludge has been used, which has been sintered, ground, granulated, etc. to form aggregates as a substitute for natural aggregates in concrete. However, due to the complicated process of using recycled sludge to make aggregates, the cost of recycling is high, and it has to be entrusted to the relevant processing industry for processing. In terms of economic benefits, it does not meet the needs of recycling operators. In addition, the above technology still needs to be matched with the hardware equipment and recycling process, and it is necessary to change the current processing flow of the construction materials industry, so it is difficult to apply it to the industry. SUMMARY OF THE INVENTION 201200492 Therefore, one aspect of the present invention is to provide a method for preparing concrete, which comprises directly using ceramic polishing polishing wastewater to produce ceramic inorganicity with a fineness of 55 〇 0 to 6000 (cm 2 /g). Sludge as a pellet 'replaces 20-50% of all pellets. The ceramic inorganic sludge contains 6〇% of cerium oxide and 10-20% of oxidation. According to an embodiment of the present invention, the Tauman inorganic sludge is not subjected to high temperature sintering, addition of a binder granulation, and the like. In accordance with an embodiment of the present invention, the concrete may be a controlled low strength concrete, self-filling concrete or pre-filled concrete. According to the above, it can be seen that the method for preparing the concrete according to the embodiment of the present invention directly uses ceramic inorganic sludge as a pellet for concrete mixing, since the fineness of the ceramic inorganic sludge is 5500 to 6000 (cm 2 /g). When it is resourced, it is not necessary to process it (such as sintering and granulation treatment), and it can be directly added to controlled low-strength concrete, self-filling concrete or ready-mixed concrete to replace part of the pellets, by the amount of powder. The increase makes it more workable than ordinary cement concrete. In addition, the ceramic inorganic sludge is added to the self-filling Lu's concrete, which can moderately reduce the hydration heat of the concrete to reduce the production cost and increase the workability. Therefore, the application of the method of the embodiment of the present invention does not require complicated processing procedures and additional purchase of hardware equipment for resource utilization of inorganic sludge, which can effectively save the treatment of inorganic sludge produced by the ceramic polishing process. Cost 'reduces the amount of waste of ceramic inorganic sludge waste and increases the profit of resource recycling companies. 201200492 [Embodiment] The Tao Jing composition is mainly composed of triaxial chains, including feldspar, quartz, clay, and clay belongs to an aluminosilicate material whose main components are alumina (A1203) and vermiculite (Si〇2). ). The term "ceramic inorganic sludge" as used herein refers to the inorganic sludge produced by the ceramic industry polishing process, that is, the wastewater containing ceramics and powders produced after polishing and grinding in ceramics. The degree is about 55〇〇_6000 (cm2/g), and then the blending, fast mixing, slow mixing, precipitation concentration and pressure filtration process produce non-bleeding water and no blocky product, and have not passed any high temperature. (For example, 800-90 (TC) sintering, adding binder granulation, etc.) The basic properties of the ceramic inorganic sludge used in the examples of the present invention, including material properties and harmful heavy metal content, are summarized as follows: Material Properties of Ceramic Inorganic Sludge: In the embodiment of the present invention, ceramic inorganic sludge produced by polishing in a ceramics factory is used as a pellet added to concrete. Tables 1 and 2 are ceramic inorganic sludge used in the embodiment of the present invention. Chemical and physical analysis. Among them, the chemical composition analysis of the inorganic sludge (Table 1) is the result of the inspection by the commissioning station, Cement & and it should be noted that the value of the test results of the watch indicates only the test at the time. The accurate analysis of 5 (second point after the decimal point) is only used to show the general chemical composition of the inorganic sludge used in the invention n, /, the chemical composition value may be different from the ceramic batch factory supplied There is a slight difference, but the main component types are still substantially unchanged, so the results of Table 1 are not intended to limit the composition content of the ceramic inorganic sludge of the embodiment of the present invention. 201200492 Table 1. Chemical composition of ceramic inorganic sludge Analytical chemical composition (%) Test material Ceramic inorganic sludge Si02 67.14 AI2O3 12.73 Fe203 0.86 CaO 0.99 MgO 2.32 S03 0.97 Na20 1.61 K20 1.95 r2〇2.89 As shown in Table 1, the chemical composition of ceramic inorganic sludge is 矽, aluminum The oxide is a main component and contains about 60-70% of cerium oxide (Si〇2) and about 10-20% of aluminum oxide (Al2〇3), that is, the composition ratio of cerium oxide to aluminum oxide is 3-7:1. The total content of cerium oxide and aluminum oxide accounts for more than 75% of the total composition of the ceramic inorganic sludge. Table 1 shows that the ceramic inorganic sludge may contain other traces of oxides or elements, such as calcium oxide (see Table 1 for example). About 0.99%), which is one of the constituents of φ. It should be noted that the presence of trace amounts of oxidized i-bow does not have a substantial effect on the basis of the direct application of ceramic inorganic sludge to the concrete granules of the present invention, and This trace amount of calcium oxide is not used to create new characteristics of ceramic inorganic sludge. The above "new features" can, for example, form artificial aggregate pellets (addition of cement and other cementing agents in the sludge, about 30 The aggregate of the above-mentioned ingredients of the mother component is more than 5%. The inorganic sludge produced by the treatment of the ceramic inorganic sludge-based ceramic polishing and grinding wastewater used in the embodiment of the present invention has a fineness in production. 201200492 Table 2. Physical properties of ceramic inorganic sludge Physical properties Determination specific gravity (kg/m3) 2.39 Fineness (cm2/g) 5500~6000 Organic content test No loss on ignition (%) 4.8 Activity index (%) 86.2 (28 days) It can be seen from Table 2 that the ceramic inorganic sludge has a fineness of about 5500 cm2/g or more. Since its fineness is finer than that of cement, it is not used for additional processing when it is used in resource utilization. In addition, it is known from the inorganic loss of ceramics (less than 10%) that the ceramic inorganic sludge produced by the ceramic polishing process contains almost no organic matter. Furthermore, the results of the organic matter colorimetric test are all pale (no color) and meet the requirements of the specification, that is, if used as a raw material for resource recycling, it can be regarded as a stable inorganic material or filler. Analysis of heavy metal content of φ (II) ceramic inorganic sludge: According to the “Standards for Identification of Hazardous Wastes”, the sludge after general wastewater treatment can be classified into hazardous business wastes and general business wastes through toxic dissolution tests. Table 3 below shows the results of the Toxic Characteristic Leaching Procedure (TCLP) analysis of the ceramic inorganic sludge used in the embodiment of the present invention. The results of Table 3 show that the ceramic inorganic sludge used in the present invention is in a heavy metal dissolution test of hexavalent chromium, mercury, arsenic, copper, chromium, cadmium, lead, etc., and the content of each of them is lower than the standard value or undetected. Measured. Table 3 Inorganic Sludge Harmful Characteristics Analysis Results Test Item Detection Value (mg/L) Test Method TCLP Dissolution Standard (mg/L) Total Cadmium (Cd) ND 顺AR201.13C & NIEAM104.01C 1.0 Total Chromium (Cr) ND NIEAR201.13C&NIEAM104.01C 5.0 Total Copper (Cu) <0.020 NIEAR201.13C&NIEAM104.01C 15.0 Total Lead (Pb) <0.020 NIEAR201.13C&NIEAM104.01C 5.0 Total Mercury (Hg) ND NBEAR201.13C&amp ;NIEAR314.12C 0.2 Total 珅(As) <0.025 NIEAR201.13C&NIEAM104.01C 5.0 Total culvert (Se) ND NIEAR201.13C &NIEAR300.10C 1.0 Total 钡(Ba) 0.270 NIEA R201.13C & NIEA M104 .01C 100 Hexavalent Chromium (Cr6+) ND NIEA R201.13C & NIEA R309.12C 2.5 Note 1. Below the detection limit to indicate and indicate the method detection limit (MDL). Note 2. When the inspection value is lower than the minimum concentration of the calibration line and higher than the MDL concentration, the calibration curve is represented by <〃

由於陶瓷業拋光研磨製程產生之陶瓷無機性污泥在各 項重金屬溶出的測定值都遠低於規範值,於再利用上沒有 重金屬溶出之虞,依據「有害事業廢棄物認定標準」規定, 屬於一般事業廢棄物。 依照本發明之一實施方式,陶瓷無機性污泥可應用於 製備控制性低強度混凝土( Controlled Low Strength Materials,CLSM)。控制性低強度材料為一種具自我充填之 m 8 201200492 材料(self-compacting),主要當作需回填夯實之替代材料, 組成之基本材料與混凝土材料類似,具有低強度、高坍声、 高流動、自我填充性、免搗實、低強度及易於再開挖^ 之多重優點之性質。 若以混凝土的觀點來說,控制性低強度材料為—種Μ 天抗壓強度不超過1,2〇〇 psi (約84 kg/cm2 )之混凝土,以 膠結料、水、砂、石,透過配比技術,使之具有一定強度, 將來又能便利以人工或機具方式再開挖的低強度水泥^ 籲料。 何 依照本實施方式之一或多個實施例,含有陶瓷無機性 污泥的控制性低強度混凝土,其配方包含9_1〇 wt %的水 泥、70-75 wt %的粒料(粒料可為人工或天然粗、細粒料, 其中包含佔全部粒料體積3〇_5〇 %的陶瓷無機性污泥)、 2-2.5 wt 4的卜作風材料(ρ〇ζζ〇ι&ι^ materials )及 i〇_i2 wt %的水。 應說明的是’本發明實施例之含有陶瓷無機性污泥的 籲控制性⑻強度騎土,其所含之陶究無機I生污泥係未經任 何南溫燒結 '添加膠結料造粒等製程處理,與以污泥為原 料製成人工骨材粒料,再添加於混凝土者完全不同。 此外’相較於其他種類的污泥,陶瓷無機性污泥因其 在呂質含量較高’與水泥水化反應之後可具有早強之效應, 故特別適合應用於控制性低強度混凝土中。因此本發明實 施例使用陶瓷無機性污泥於控制性低強度混凝土中取代部 份細粒料’即是著眼於其可產生早強之效應’本發明實施 201200492 例所提出之陶瓷無機性污泥取代細粒料的特定比例,亦特 別考量取代細粒料的比例對於控制性低強度混凝土所需之 早強效應的適用性,是為本發明實施例之特色之一。 此外,控制性低強度混凝土更可添加0.15-0.25 wt %之 早強固結劑,例如矽酸鹽系固結劑,以幫助達到控制性低 強度混凝土所需之早強性質。 控制性低強度混凝土可更包含5 %的空氣。控制性低強 度混凝土之空氣含量,除於混凝土拌合過程中自然產生 ® 外,亦可添加適量之輸氣劑以增加含氣量,由於拌合機的 型式、拌合方法、拌合數量及拌合時間等之不同,其空氣 含量亦會發生些微差異。上述差異係為所屬技術領域具有 通常知識者,參酌本技術領域的習知技藝,不需過度實驗 即可依照實際狀況予以調整。 實施方式一: 依照本發明實施方式,應用陶瓷無機性污泥添加於控 • 制性低強度混凝土中於實廠拌合之例示如下: 本實施例使用來自三洋窯業股份有限公司第二廠「拋 光研磨廢水處理產生之無機性污泥」。一般來說,經陶瓷業 者初步處理出廠之陶瓷無機性污泥,其含水率約在25%左 右。由於乾燥後的陶瓷無機性污泥無法判定面乾内飽和之 狀態,故於導入配比設計時以乾基為基準而不考慮吸水率。 陶瓷無機性污泥接著可直接進行控制性低強度混凝土 拌合作業,拌合機設備為水平單軸強拌式拌合機,每批次 [S] 10 201200492 之最大拌合量可為2 m3 (但不僅限於此拌合量),實廠試驗 時之實際拌合量為1.5 m3,拌合時間為60〜120秒。 表4為實廠拌合配比及無機性污泥使用數量。實施例 (1)、(2)分別為以陶瓷無機性污泥取代粒料體積之30%、 50%;比較例(1)、(2)為制式控制性低強度混凝土配比。 表4實廠拌合配比及無機性污泥之使用數量 配比編號 比較例(1) 比較例(2) 實施例(1) 實施例(2) 配比說明 制式CLSM 制式CLSM 非制式CLSM 非制式CLSM 再生粒料 再生粒料 材料說明 天然粒料 再生粒料 (以陶瓷無機 性污泥取代30 (以陶瓷無機 性污泥取代50 V%) V%) 藥劑型式 早強 (氣化鈣系) +輸氣劑 早強 (氯化鈣系) +輸氣劑 早強固結劑 (矽酸鹽系) 早強固結劑 (矽酸鹽系) 水灰比 1.039 1.170 1.696 1.739 73.8% 77,8% 74.4% 73.9% 每立方米之 理論 實際 理論 實際 理論 實際 理論 實際 配比 (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) 水泥 180 180 180 180 180 180 180 180 爐石粉 50 50 50 50 50 50 50 50 天然粗粒料 400 416 — — _ _ — — 天然細粒料 1,128 1,207 — — _ _ — — 陶瓷粗粒料 — _ 400 412 400 412 400 412 爐碴細粒料 — _ 1,398 1482 814 863 566 600 陶瓷無機性 污泥 — _ — — 251 314 407 509 拌合水 230 135 260 164 385 261 395 247 早強劑 6 6 6 6 — _ — — 輸氣劑 3 3 3 3 一 — — — 早強 C r C 固結劑 D D J 空氣含量 10% 10% 10% 10% 5% 5% 5% 5% 合計 1,997 1,997 2,297 2,297 2,085 2,085 2,003 2,003 m 11 201200492 以下為本發明實施例之控制性低強度混凝土性質與制 式控制性低強度混凝土性質的比較測試,包含控制性低強 度混凝土之新拌性質、初凝時間以及抗壓強度試驗: (一)控制性低強度混凝土之新拌性質試驗 表5為控制性低強度混凝土之新拌性質試驗結果。新 拌性質包含坍度、坍流度及修正管流度等工作度。其中, 坍度試驗係測定新拌控制性低強度混凝土之稠度,以表示 φ 控制性低強度混凝土之流動性,同時判別其工作度是否合 乎工程品質之要求。一般來說,工作度不佳之情況下,控 制性低強度混凝土將產生潰裂、分離之現象。 如表5顯示,不論是實施例(丨)、(2)或比較例(1 )、 (2)的配比,皆可超過高流動性標準25公分以上。在坍 流度方面,實施例及比較例的配比均可符合CNS 14842坍 流度大於40公分之規定。修正管流度方面,實施例及比 較例的配比均可符合ASTM D6103所規定的15-20公分。 φ 根據由表5可看出添加陶瓷無機性污泥對於低控制性低強 度混凝土具有良好的效益。 表5、實施例與比較例CLSM之新拌性質試驗結果 配比編號 比較例(1) 比較伤 (2) 實施例(1) 實施伤 (2) 試驗組別 A1 A2 B1 B2 C1 C2 D1 D2 坍度 (公分) 25 24.5 25.5 25 24.5 25 25.5 26.0 树流度 (公分) 50x52 49.5x50 52x52 50x51 50x50 50.5x51 53x53 53x54 修正管 流度 (公分) 18 17.5 18 17 17 17.5 17 18 [S1 12 201200492 由表5可看出相對於比較例(1 )、( 2),實施例(1 )、 (2)之新拌控制性低強度混凝土稠性較高,因此添加陶瓷 無機性污泥相對可降低控制性低強度混凝土粒料分離與泌 水之現象。 (二)控制性低強度混凝土之初凝時間試驗 控制性低強度混凝土初凝時間的量測方式是依據 ASTM C403之規定進行。基於未來管線施工復原的需求’ φ 初凝時間以4小時内為本試驗之目標,且需符合4小時内 大於400 psi之規範要求。 表6為實施例與比較例的控制性低強度混凝土之初 凝時間試驗結果。 表6、實施例與比較例CLSM之初凝時間試驗結果 配比編號 比較例 (1) 比較你 (2) 實施伤 (Π 實施例(2) 試驗組別 A1 A2 B1 B2 C1 C2 D1 D2 1小時(psi) 0 0 0 0 0 0 0 0 2小時(psi) 0 0 0 ~0 92 85 95 90 3小時(psi) 104 110 112 125 207 198 270 262 4小時(psi) 528 490 1 480 540 744 703 776 750 由表6顯示’不論是實施例(丨)、(2)或比較例(1)、 (2 )的配比皆符合4小時内大於4〇〇 psi之規範要求。而 添加陶瓷無機性污泥之實施例(1 )及實施例(2 ),於2-4 小時貫入阻抗試驗之強度均較比較例(1)、(2)為高,此 乃因陶瓷無機性污泥具卜作嵐材料特性,具有促進混凝土 之初凝效果。 [S) 13 201200492 (三)控制性低強度混凝土之抗壓強度試驗 跟據ASTM D4832規範要求,控制性低強度混凝土材料 的24小時抗壓強度必須大於7 kgf/cm2,28天抗壓強度必須 小於90 kgf/cm2。 本發明實施例之控制性低強度混凝土抗壓強度量測’ 要針對控制性低強度混凝土硬固後24小時及28天二個齡 期對承壓強度的測試,表7為實施例與比較例的控制性低 強度混凝土之抗壓強度試驗結果。 表7、實施例與比較例CLSM之抗壓強度試驗結果 配比編號 比較例(1) 比較例(2) 實施例(1) 實施例(2) 試驗組別 A1 A2 B1 B2 C1 C2 D1 D2 24小時 抗壓強度 (kg/cm2) 8.7 8.4 9.0 9.7 13.4 12.4 13.2 14.7 28天抗壓強 度(kg/cm2) 58.3 56.5 68.9 64.3 71.3 70.3 86.4 79.7 表7結果顯示,實施例(1)及實施例(2)之強度相較 於比較例(1 )、(2)有遞增之現象,由此顯示陶瓷無機性 污泥除具卜作嵐材料特性外,還具有早強之性質,顯示陶 瓷無機性污泥適合取代天然細粒料或再生細粒料應用於控 制性低強度混凝土中。 (四)控制性低強度混凝土之鑕心抗壓強度試驗 針對控制性低強度混凝土硬固後24小時、28天及90天 三個齡期對承壓強度的測試,以實廠試驗之現場鑕心進行 201200492 抗壓試驗。表8為實施例與比較例的控制性低強度混凝土之 抗壓強度試驗結果。 表8、實施例與比較例CLSM之抗壓強度試驗結果 配比編號 比較例(1) 比較例(2) 實施例(1) 實施例(2) 備s主 試驗組別 A1 A2 B1 B2 C1 C2 D1 D2 24小時 抗壓強度 (kg/cm2) 8.7 8.4 9.0 9.7 13.4 12.4 13.2 14.7 現場製作 15cm><30cm 試體 28天抗壓 強度 (kg/cm2) 58.3 56.5 68.9 64.3 71.3 70.3 86.4 79.7 現場製作 15cm><30cm 試體 90天抗壓 強度 (kg/cm2) 62 63 71 69 75 72 84 84 由實廠試驗 之現場鑽心 取樣 表8的結果顯示添加陶瓷無機性污泥於產製控制性低 強度混凝土時’其晚期天之抗壓強度並無明顯之增加。 實施方式二: 本發明之另一實施方式,係提供一種含有陶瓷無機性 污泥的自充填混凝土,其配方包含5〇 wt%之水泥及50 wt% 之粒料’其中粒料含有2〇wt%以下之陶瓷無機性污泥及有 效量之水。依照本實施方式之一實施例,自充填混凝土之 水膠比為0.3-0.4。此外,自充填混凝土更可添加〇 5_丨wt〇/〇 之強塑劑,例如多元羧酸系強塑劑。 依照本實施方式之一實施例,粒料可包含20-60 wt% 之爐石粉、20 wt°/〇之陶瓷無機性污泥以及20-60 wt。/。之飛Since the ceramic inorganic sludge produced by the ceramic polishing process has a far lower than the standard value of the determination of the dissolution of heavy metals, there is no heavy metal dissolution after reuse, according to the "Standards for the Identification of Hazardous Wastes", General business waste. According to an embodiment of the present invention, the ceramic inorganic sludge can be applied to the preparation of Controlled Low Strength Materials (CLSM). The controlled low-strength material is a self-compacting m 8 201200492 material (self-compacting), which is mainly used as a substitute material for backfilling and compacting. The basic material is similar to concrete material, with low strength, high hum and high flow. The nature of multiple benefits of self-filling, free compaction, low strength and easy re-excavation. In the case of concrete, the controlled low-strength material is a concrete with a compressive strength of not more than 1,2 psi (about 84 kg/cm2), which is cemented, water, sand, stone. The matching technology makes it have a certain strength, and in the future, it can facilitate the low-strength cement that is re-excavated by manual or machine tools. According to one or more embodiments of the present embodiment, a controlled low-strength concrete containing ceramic inorganic sludge, the formulation comprising 9_1% by weight of cement, 70-75 wt% of pellets (the pellets may be artificial Or natural coarse and fine granules, including ceramic inorganic sludge containing 3〇_5〇% of the total pellet volume), 2-2.5 wt 4 of the wind-making material (ρ〇ζζ〇ι&ι^ materials) and I〇_i2 wt% water. It should be noted that 'the controllable (8) strength riding soil containing ceramic inorganic sludge according to the embodiment of the present invention contains the inorganic inorganic sludge which is contained in the ceramics without any south temperature sintering, adding cement granulation, etc. The process treatment is completely different from the use of sludge as raw material to make artificial aggregate pellets and then added to concrete. In addition, compared with other types of sludge, ceramic inorganic sludge is particularly suitable for use in controlled low-strength concrete because of its early strength after hydration reaction with cement. Therefore, the embodiment of the present invention uses a ceramic inorganic sludge to replace a part of the fine-grained material in the controlled low-strength concrete, that is, it is focused on the effect of the early strength of the invention. The ceramic inorganic sludge proposed in the 201200492 embodiment of the present invention is implemented. Replacing the specific proportion of fine particles, and also considering the applicability of the ratio of the substituted fine particles to the early strength effect required for controlled low-strength concrete, is one of the features of the embodiments of the present invention. In addition, controlled low-strength concrete can be added with 0.15-0.25 wt% of early strength consolidation agents, such as citrate-based consolidation agents, to help achieve the early strength properties required for controlled low-strength concrete. Controlled low-strength concrete can contain 5% more air. The air content of controlled low-strength concrete, in addition to naturally occurring in the concrete mixing process, can also be added with an appropriate amount of gas carrier to increase the gas content, due to the type of mixing machine, mixing method, mixing quantity and mixing The air content will also vary slightly depending on the time and time. The above differences are generally known to those skilled in the art, and can be adjusted according to actual conditions without undue experimentation, depending on the prior art of the art. Embodiment 1 According to an embodiment of the present invention, an example in which ceramic inorganic sludge is added to a controlled low-strength concrete in a factory mixing is as follows: This embodiment uses the second factory from Sanyo Kiln Co., Ltd. Inorganic sludge produced by grinding wastewater treatment." In general, ceramics are initially treated by ceramics to have a moisture content of about 25%. Since the ceramic inorganic sludge after drying cannot be judged to be saturated in the surface of the dough, the water absorption rate is not taken into consideration based on the dry basis when introducing the ratio design. The ceramic inorganic sludge can then be directly used in the controlled low-strength concrete mixing industry. The mixing machine equipment is a horizontal uniaxial strong mixing mixer. The maximum mixing capacity per batch [S] 10 201200492 can be 2 m3. (but not limited to this mixing amount), the actual mixing amount during the factory test is 1.5 m3, and the mixing time is 60 to 120 seconds. Table 4 shows the actual mixing ratio of the plant and the amount of inorganic sludge used. Examples (1) and (2) were 30% and 50%, respectively, of the volume of the pellets replaced by ceramic inorganic sludge; and Comparative Examples (1) and (2) were the controlled low-strength concrete ratios of the system. Table 4 Comparison of the actual mixing ratio and the amount of inorganic sludge used. Comparative example (1) Comparative example (2) Example (1) Example (2) Ratio description CLSM system CLSM Non-standard CLSM Standard CLSM recycled pellets Recycled pellets Description Natural pellets Recycled pellets (replaced with ceramic inorganic sludge 30 (50 V% replaced by ceramic inorganic sludge) V%) Chemical type early strength (gasified calcium) +gassing agent early strength (calcium chloride system) + gas carrier early strength consolidation agent (manganate system) early strength consolidation agent (manganate system) water cement ratio 1.039 1.170 1.696 1.739 73.8% 77,8% 74.4 % 73.9% theoretical theoretical theory per cubic meter actual theoretical actual ratio (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) cement 180 180 180 180 180 180 180 180 Hearthstone 50 50 50 50 50 50 50 50 Natural coarse grain 400 416 — — _ _ — — Natural fine grain 1,128 1,207 — — _ _ — — Ceramic coarse grain — _ 400 412 400 412 400 412 Furnace fines Material — _ 1,398 1482 814 863 566 600 Ceramic Inorganic Sludge — _ — — 251 314 407 509 Mixing water 230 135 260 164 385 261 395 247 Early strength agent 6 6 6 6 — _ — — Gas delivery agent 3 3 3 3 One — — — Early strength C r C Consolidation agent DDJ Air content 10% 10% 10% 10% 5% 5% 5% 5% Total 1,997 1,997 2,297 2,297 2,085 2,085 2,003 2,003 m 11 201200492 The following is a comparative test of the properties of controlled low-strength concrete and the controllable low-strength concrete of the embodiment of the present invention, including controllability New mix properties, initial setting time and compressive strength test of low-strength concrete: (1) Freshness properties of controlled low-strength concrete Table 5 shows the test results of new properties of controlled low-strength concrete. The new mixing properties include working degrees such as twist, turbulence and corrected tube flow. Among them, the twist test is to determine the consistency of the freshly controlled low-strength concrete to indicate the fluidity of the φ control low-strength concrete, and to determine whether the working degree meets the requirements of engineering quality. In general, in the case of poor working conditions, controlled low-strength concrete will cause cracking and separation. As shown in Table 5, the ratio of the examples (丨), (2) or the comparative examples (1) and (2) can exceed 25 parts of the high fluidity standard. In terms of turbulence, the ratios of the examples and the comparative examples can all comply with the requirements of CNS 14842 坍 flow greater than 40 cm. In terms of correcting the tube fluidity, the ratio of the examples and the comparative examples can be 15-20 cm as specified in ASTM D6103. φ According to Table 5, it can be seen that the addition of ceramic inorganic sludge has good benefits for low-control low-strength concrete. Table 5, Example and Comparative Example CLSM New Mixing Property Test Results Matching Number Comparison Example (1) Comparative Injury (2) Example (1) Injury (2) Test Group A1 A2 B1 B2 C1 C2 D1 D2 坍Degree (cm) 25 24.5 25.5 25 24.5 25 25.5 26.0 Tree fluidity (cm) 50x52 49.5x50 52x52 50x51 50x50 50.5x51 53x53 53x54 Correction tube fluidity (cm) 18 17.5 18 17 17 17.5 17 18 [S1 12 201200492 From Table 5 It can be seen that the fresh-controlled low-strength concrete of the examples (1) and (2) has higher consistency than the comparative examples (1) and (2), so that the addition of the ceramic inorganic sludge can reduce the controllability relatively. Separation of strength concrete pellets and bleeding. (II) Initial setting time test of controlled low-strength concrete The measurement method of initial setting time of controlled low-strength concrete is carried out in accordance with ASTM C403. Based on the need for future pipeline construction recovery' φ initial setting time is the target of this test within 4 hours, and must meet the specification requirements of more than 400 psi within 4 hours. Table 6 shows the results of the initial setting time test of the controlled low-strength concrete of the examples and the comparative examples. Table 6, Example and Comparative Example CLSM Initial Setting Time Test Results Matching Number Comparison Example (1) Compare You (2) Injury (Π Example (2) Test Group A1 A2 B1 B2 C1 C2 D1 D2 1 hour (psi) 0 0 0 0 0 0 0 0 2 hours (psi) 0 0 0 ~0 92 85 95 90 3 hours (psi) 104 110 112 125 207 198 270 262 4 hours (psi) 528 490 1 480 540 744 703 776 750 It is shown in Table 6 that the ratios of either the examples (丨), (2) or the comparative examples (1) and (2) are in compliance with the specification of more than 4 psi in 4 hours. In the examples (1) and (2) of the sludge, the strength of the penetration test in 2-4 hours was higher than that of the comparative examples (1) and (2), which was due to the ceramic inorganic sludge. Characteristics, which promote the initial setting effect of concrete. [S) 13 201200492 (III) Compressive strength test of controlled low-strength concrete According to ASTM D4832 specification, the 24-hour compressive strength of controlled low-strength concrete material must be greater than 7 Kgf/cm2, 28 days compressive strength must be less than 90 kgf/cm2. The compressive strength measurement of the controlled low-strength concrete according to the embodiment of the present invention is to test the compressive strength for the two-hour period of 24 hours and 28 days after the hardening of the controlled low-strength concrete, and Table 7 is an example and a comparative example. Test results of compressive strength of controlled low-strength concrete. Table 7, Example and Comparative Example CLSM Compressive Strength Test Results Ratio No. Comparative Example (1) Comparative Example (2) Example (1) Example (2) Test Group A1 A2 B1 B2 C1 C2 D1 D2 24 Hour compressive strength (kg/cm2) 8.7 8.4 9.0 9.7 13.4 12.4 13.2 14.7 28-day compressive strength (kg/cm2) 58.3 56.5 68.9 64.3 71.3 70.3 86.4 79.7 Table 7 results show that Example (1) and Example (2 The intensity of the ceramics has an increasing phenomenon compared with the comparative examples (1) and (2), which indicates that the ceramic inorganic sludge has the properties of early strength in addition to the properties of the material, indicating that the ceramic inorganic sludge is suitable for replacement. Natural fine or recycled fines are used in controlled low strength concrete. (IV) Centrifugal compressive strength test of controlled low-strength concrete For the test of compressive strength at the three ages of 24 hours, 28 days and 90 days after the control of low-strength concrete, the site of the factory test The heart carries out the 201200492 compression test. Table 8 shows the results of the compressive strength test of the controlled low-strength concrete of the examples and the comparative examples. Table 8, Example and Comparative Example CLSM Compressive Strength Test Results Matching Number Comparison Example (1) Comparative Example (2) Example (1) Example (2) Preparation s main test group A1 A2 B1 B2 C1 C2 D1 D2 24 hour compressive strength (kg/cm2) 8.7 8.4 9.0 9.7 13.4 12.4 13.2 14.7 On-site production 15cm><30cm test body 28-day compressive strength (kg/cm2) 58.3 56.5 68.9 64.3 71.3 70.3 86.4 79.7 On-site production 15cm&gt ;<30cm test body 90-day compressive strength (kg/cm2) 62 63 71 69 75 72 84 84 The results of the on-site core sampling of the factory test show that the addition of ceramic inorganic sludge is less controllable in production control. In concrete, there is no significant increase in the compressive strength of the late days. Embodiment 2: Another embodiment of the present invention provides a self-filling concrete containing ceramic inorganic sludge, the formulation comprising 5 wt% of cement and 50 wt% of pellets, wherein the pellets contain 2 wt% Ceramic inorganic sludge below % and an effective amount of water. According to an embodiment of the present embodiment, the self-filling concrete has a water-to-binder ratio of 0.3 to 0.4. In addition, a self-filling concrete may be further added with a strong plasticizer of 〇 5_丨wt〇/〇, such as a polycarboxylic acid-based plasticizer. According to an embodiment of the present embodiment, the pellets may comprise 20-60 wt% of calculus powder, 20 wt/min of ceramic inorganic sludge, and 20-60 wt. /. Flying

LSI 15 201200492 灰;例如,粒料可為60 wt%之爐石粉、20 wt%之陶瓷無機 性污泥及20 wt%之飛灰所組成。 以下為陶瓷無機性污泥添加於自充填混凝土中取代部 份粒料的效果測試’包含砂漿抗壓強度測試、障礙通過性 試驗以及抗壓強度試驗: (一)砂漿抗壓強度測試:LSI 15 201200492 ash; for example, the pellets may be composed of 60 wt% of furnace stone powder, 20 wt% of ceramic inorganic sludge, and 20 wt% of fly ash. The following is the effect test of ceramic inorganic sludge added to self-filling concrete to replace part of the pellets' including mortar compressive strength test, barrier passability test and compressive strength test: (1) Mortar compressive strength test:

抗壓強度為評估砂漿品質的重要指標之一,而強度指 標的來源主要來自於水泥水化反應後之膠結強度以及卜作 嵐反應消耗氫氧化鈣生成之C-S-H (碳-硫-氫)膠體。 表9為在水膠比0.33、粒料/水泥比為2及強塑劑1 % 條件下,不同粒料混合比例(以陶瓷無機性污泥取代部份 粒料)以之砂漿抗壓強度試驗結果。試體編號代表其混合 比例,其中符號為S8F2W0時,即代表爐石粉(s)、飛灰 (F)及研磨污泥(W)之混合比例為8 : 2 : 〇 (爐石粉: 飛灰:研磨污泥)。 田卜衣9可看出在固定水膠比〇 33、粒料/水泥比為 ^強塑劑1 %條件下,當使賴兗無機性污泥取代部份 時’:期(齡期3、7天)之砂聚抗壓強度較未使 摇末者咼,故以陶瓷無機性污泥取代部份粉體料 徒局砂漿之抗壓強度。 時,2 Γί ϊ示粉體粒料中含有2G _陶究無機性污 产雖知強度白較未添加者佳’在齡期56天時,其抗壓 又車父低於無添加污泥者,但差里性I丨m _ w t %陶無機性污泥,不影響砂襞之晚期抗壓 201200492 度。 表9、不同粒料混合比例之砂漿抗壓強度試驗結果 5式體編5虎 抗壓強度 (kgf/cm2 ) 3天 7天 28天 56天 S8F2W0 530.9 702.1 796.8 858.3 S8F0W2 579.3 747.2 803.2 843.3 S6F4W0 442.7 551.4 743.6 752.5 S6F2W2 485.6 659.4 796.0 858.7 S6F0W4 486.3 579.6 699.7 714.1 S4F6W0 428.6 517.4 664.1 851.3 S4F4W2 405.0 506.3 753.5 823.6 S4F2W4 401.1 562.1 697.7 814.3 S4F0W6 478.2 545.8 637.8 697.8 S2F8W0 281.8 458.9 569.1 653.0 S2F6W2 357.6 423.9 610.0 675.0 S2F4W4 390.7 448.5 662.4 679.9 S2F2W6 401.3 461.7 712.5 810.9 S2F0W8 309.3 413.1 700.5 732.8 S0F0W0 74.5 101.2 155.6 164.0 S0F8W2 286.6 355.9 577.2 664.2 S0F6W4 297.1 390.3 619.2 663.9 S0F4W6 304.7 423.7 645.5 688.4 S0F2W8 299.2 399.7 606.7 647.6Compressive strength is one of the important indicators for evaluating the quality of mortar. The strength index is mainly derived from the cementation strength after cement hydration reaction and the C-S-H (carbon-sulfur-hydrogen) colloid formed by calcium hydroxide. Table 9 shows the compressive strength test of mortar with different mixing ratios of pellets (substituting some inorganic pellets with ceramics) at a water-to-binder ratio of 0.33, a pellet/cement ratio of 2, and a fermenting agent of 1%. result. The sample number represents the mixing ratio. When the symbol is S8F2W0, it means that the mixing ratio of whetstone powder (s), fly ash (F) and grinding sludge (W) is 8 : 2 : 炉 ( hearth powder: fly ash: Grinding sludge). Tianbuyi 9 can be seen that when the fixed water-to-binder ratio 〇33 and the pellet/cement ratio are 1% of the strong plasticizer, when the lysine inorganic sludge is substituted for the part, the period: The compressive strength of the sand at 7 days is lower than that of the shaker. Therefore, the compressive strength of the mortar is replaced by ceramic inorganic sludge. When 2 Γί ϊ shows that the powder granules contain 2G _ ceramics inorganic pollution, although the intensity of white is better than the unadded ones However, the poor I丨m _ wt % pottery inorganic sludge does not affect the late compression of the sand shovel 201200492 degrees. Table 9. Test results of mortar compressive strength of different pellets mixing ratio 5 type body code 5 tiger compressive strength (kgf/cm2) 3 days 7 days 28 days 56 days S8F2W0 530.9 702.1 796.8 858.3 S8F0W2 579.3 747.2 803.2 843.3 S6F4W0 442.7 551.4 743.6 752.5 S6F2W2 485.6 659.4 796.0 858.7 S6F0W4 486.3 579.6 699.7 714.1 S4F6W0 428.6 517.4 664.1 851.3 S4F4W2 405.0 506.3 753.5 823.6 S4F2W4 401.1 562.1 697.7 814.3 S4F0W6 478.2 545.8 637.8 697.8 S2F8W0 281.8 458.9 569.1 653.0 S2F4W4 390.7 448.5 662.0 679.9 S2F2W6 401.3 461.7 712.5 810.9 S2F0W8 309.3 413.1 700.5 732.8 S0F0W0 74.5 101.2 155.6 164.0 S0F8W2 286.6 355.9 577.2 664.2 S0F6W4 297.1 390.3 619.2 663.9 S0F4W6 304.7 423.7 645.5 688.4 S0F2W8 299.2 399.7 606.7 647.6

(二)障礙通過性試驗: 自充填混凝土障礙通過性試驗為判別自充填混凝土是 否能達到可自我充填且免捣實之能力。 試驗時,將混凝土倒入試驗儀器内,再將中間隔板抽 離,其中間隔板是由鋼筋所構成之柵欄狀隔板,依不同鋼 筋密度構造條件,主要可分三種等級,而本研究皆使用通 過充填等級1為試驗依據,鋼筋最小間距為35-60 mm。 表10為以陶瓷無機性污泥取代20 wt%粒料的自充填混 凝土之障礙通過性試驗結果。 m 17 201200492 表1 ο、不同粒料混合比例的砂漿障礙通過性試驗結果 試體編戒 自充填混凝土 障礙通過性試驗(cm) S8F2W0 18.9 S8F0W2 28.5 S6F4W0 27.5 S6F2W2 30.8 S4F6W0 33.7 S4F4W2 34.0 S2F8W0 33.5 S2F6W2 31.0 表10的結果顯示,當粒料中含有2〇 wt%之陶曼無機性 污泥,以及爐石粉的含量不超過6〇 wt%之情況下,將可提 咼自充填混凝土的障礙通過性。 (三)抗壓強度試驗: 抗壓強度疋§平估混凝土品質的重要指標之一,從混凝 土施工完工啟用至整體生命週期,均需滿足設計需求之抗 壓強度。表11為以CNS 1232標準進行不同粒料混合比例 鲁之自充填混凝土抗壓強度的試驗結果。 由下表11之自充填混凝土的抗壓強度試驗結果可知, 添加陶瓷無機性污泥取代部份水泥用量拌製自充填混凝 土,其3、7及28天齡期之抗壓強度皆高於無添加之試體。 根據上述,陶瓷無機性污泥資源化用於自充填混凝土 時,粉體粒料中含有2Gwt %之喊無機性污泥粉末^具有 較好之流度值,尤其在搭配粉體粒料中含有60、4〇或20 Wt%之爐石粉時最為_著,且流度值均優於無添加污泥者。 201200492 表11、自充填混凝土之抗壓強度 5式體編號 抗壓強度(kgf/cm2) 3天齡期 7天齡期 28天齡期 S8F2W0 429.77 484.50 591.40 S8F0W2 450.60 557.17 664.73 S6F4W0 312.03 404.20 499.50 S6F2W2 389.27 508.50 625.70 S4F6W0 301.83 393.97 541.33 S4F4W2 328.57 448.83 604.70 S2F8W0 247.27 337.40 467.03 S2F6W2 278.23 376.00 527.97 註:其符號為S8F2W0,即代表爐石粉 '飛灰及研磨污泥之混合比例為8 : 2 : 0。 此外,由於自充填混凝土的粒料含量比一般混凝土 少,所以將部份的粉體替代剩餘的體積,可節省水泥用量, 且水泥用量高時,會使混凝土的成本增加與產生較高的水 化熱,因此可利用陶瓷無機性污泥粉末取代部份自充填混 凝土中之粉體粒料,來降低生產成本及減少水化熱的產生。 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 無 【主要元件符號說明】 無 m 19(II) Obstacle passability test: The self-filling concrete barrier pass test is used to determine whether self-filling concrete can achieve self-filling and free compaction. During the test, the concrete is poured into the test instrument, and then the intermediate partition is separated. The partition plate is a fence-like partition made of steel bars. According to different reinforcement density construction conditions, it can be divided into three grades. Use the filling level 1 as the test basis, the minimum spacing of the steel bars is 35-60 mm. Table 10 shows the results of the barrier test of the self-filling concrete in which 20 wt% of the pellets were replaced by ceramic inorganic sludge. m 17 201200492 Table 1 ο. Mortar barriers for different pellet mixing ratios Test results Test specimens Self-filling concrete barrier passability test (cm) S8F2W0 18.9 S8F0W2 28.5 S6F4W0 27.5 S6F2W2 30.8 S4F6W0 33.7 S4F4W2 34.0 S2F8W0 33.5 S2F6W2 31.0 The results of 10 show that when the pellet contains 2% by weight of the Tauman inorganic sludge and the content of the hearth powder does not exceed 6〇wt%, the barrier property of the self-filling concrete can be improved. (III) Compressive strength test: Compressive strength 疋 § One of the important indicators for assessing concrete quality. From the completion of concrete construction to the overall life cycle, it is necessary to meet the compressive strength of the design requirements. Table 11 shows the test results of the compressive strength of self-filling concrete with different proportions of pellets mixed by CNS 1232. From the results of the compressive strength test of the self-filling concrete in Table 11 below, it is known that the ceramic inorganic sludge is used to replace the part of the cement and the self-filling concrete is mixed, and the compressive strength at 3, 7 and 28 days of age is higher than that of the non-filled concrete. Added test body. According to the above, when the ceramic inorganic sludge is used for self-filling concrete, the powdered pellet contains 2Gwt% of the inorganic sludge powder, which has a good fluidity value, especially in the powdered pellets. 60, 4 〇 or 20 Wt% of whetstone powder is the most _, and the fluidity value is better than no added sludge. 201200492 Table 11. Compressive strength of self-filling concrete type 5 compressive strength (kgf/cm2) 3 days old 7 days old 28 days old S8F2W0 429.77 484.50 591.40 S8F0W2 450.60 557.17 664.73 S6F4W0 312.03 404.20 499.50 S6F2W2 389.27 508.50 625.70 S4F6W0 301.83 393.97 541.33 S4F4W2 328.57 448.83 604.70 S2F8W0 247.27 337.40 467.03 S2F6W2 278.23 376.00 527.97 Note: The symbol is S8F2W0, which means that the mixing ratio of whetstone powder 'fly ash and grinding sludge is 8:2:0. In addition, since the self-filling concrete has less pellet content than ordinary concrete, part of the powder can replace the remaining volume, which can save cement consumption, and when the cement dosage is high, the cost of concrete will increase and the water will be produced. By heating, the ceramic inorganic sludge powder can be used to replace the powder particles in the partially self-filling concrete to reduce the production cost and reduce the heat of hydration. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached. [Simple description of the diagram] None [Key component symbol description] None m 19

Claims (1)

201200492 七、申請專利範圍: 1. 一種製備混凝土的方法,包含直接應用陶瓷無機性 污泥作為粒料取代全部粒料體積的20-50 %,不經過燒結及 . 造粒製程,其中該陶瓷無機性污泥包含60-70%的氧化矽及 10-20%氧化鋁。 2. 如請求項1所述之製備混凝土的方法,其中該陶瓷 無機性污泥之細度為5 500 cm2/g以上。 3. 如請求項1所述之製備混凝土的方法,更包含利用 該陶瓷無機性污泥於混凝土中進行卜作嵐反應。 4. 如請求項1所述之製備混凝土的方法,其中該混凝 土為控制性低強度混凝土、自充填混凝土或預拌混凝土。 φ 5.如請求項4所述之製備混凝土的方法,其中製備該 控制性低強度混凝土的方法包含: 提供9-10 wt %水泥; 添加70-75 wt %的粒料,其中該陶瓷無機性污泥佔 全部粒料體積的30-50 % ; 添加2-2.5 wt %的卜作凰材料;以及 以水拌合,製備出水膠比為1.65-1.75的控制性低 強度混凝土。 201200492 6. 如請求項5所述之製備混凝土的方法,更包含將該 控制性低強度混凝土中所含的空氣控制於5-10%。 7. 如請求項5所述之製備混凝土的方法,更包含添加 0.15-0.25 wt %之早強固結劑。 8. 如請求項5所述之製備混凝土的方法,其中該粒料 包含陶瓷、爐渣、天然粒料或上述之混合物。 9. 如請求項5所述之製備混凝土的方法,其中該卜作 嵐材料包含爐石、飛灰、陶瓷無機性污泥或上述之混合物。 10. 如請求項4所述之製備混凝土的方法,其中製備該 自充填混凝土的方法包含: 提供40-50 wt %水泥; 添加40-50 wt %的粒料,其中該陶莞無機性污泥佔 全部粒料的20 wt %以下;以及 以水拌合,製備出水膠比為0.3-0.4的自充填混凝 土。 11. 如請求項10所述之製備混凝土的方法,更包含添 加0.5-1 wt%之強塑劑。 12. 如請求項10所述之製備混凝土的方法,其中該粒 [S1 21 201200492 料包含20-60 wt%之爐石粉、20 wt%之陶瓷無機性污泥以 及20-60 wt%之飛灰。 13. —種製備混凝土的方法,包含直接應用陶瓷無機 性污泥作為粒料取代全部粒料體積的20-50 %,不經過燒結 及造粒製程,該陶瓷無機性污泥實質上由60-70%的氧化矽 及10-20%氧化鋁所組成。 14. 一種適用於混凝土的粒料,實質上由氧化矽及氧化 鋁所組成,其中該氧化矽及氧化鋁的組成比例為3-7 : 1, 且氧化矽及氧化鋁的含量合計佔該粒料組成份之7 5 %以 上,該粒料細度為5500-6000 cm2/g。201200492 VII. Patent application scope: 1. A method for preparing concrete, which comprises directly applying ceramic inorganic sludge as pellets to replace 20-50% of the total volume of the pellets, without sintering and granulation process, wherein the ceramic inorganic The sludge contains 60-70% cerium oxide and 10-20% alumina. 2. The method of preparing concrete according to claim 1, wherein the ceramic inorganic sludge has a fineness of 5 500 cm 2 /g or more. 3. The method for preparing concrete according to claim 1, further comprising performing the cerium reaction in the concrete using the ceramic inorganic sludge. 4. The method of preparing concrete according to claim 1, wherein the concrete is controlled low-strength concrete, self-filling concrete or ready-mixed concrete. Φ 5. The method of preparing concrete according to claim 4, wherein the method for preparing the controlled low-strength concrete comprises: providing 9-10 wt% of cement; adding 70-75 wt% of pellets, wherein the ceramic inorganicity The sludge accounts for 30-50% of the total volume of the pellets; 2-2.5 wt% of the material is added; and water is mixed to prepare a controlled low-strength concrete with a water-to-binder ratio of 1.65-1.75. 201200492 6. The method of preparing concrete according to claim 5, further comprising controlling the air contained in the controlled low-strength concrete to 5-10%. 7. The method of preparing concrete according to claim 5, further comprising adding 0.15-0.25 wt% of an early strong consolidation agent. 8. The method of preparing concrete according to claim 5, wherein the pellet comprises ceramic, slag, natural pellets or a mixture thereof. 9. The method of preparing concrete according to claim 5, wherein the material comprises furnace stone, fly ash, ceramic inorganic sludge or a mixture thereof. 10. The method of preparing concrete according to claim 4, wherein the method for preparing the self-filling concrete comprises: providing 40-50 wt% of cement; adding 40-50 wt% of pellets, wherein the pottery inorganic sludge It accounts for less than 20 wt% of all pellets; and water-mixed to prepare self-filling concrete with a water-to-binder ratio of 0.3-0.4. 11. The method of preparing concrete according to claim 10, further comprising adding 0.5-1 wt% of a plasticizer. 12. The method of preparing concrete according to claim 10, wherein the granule [S1 21 201200492 comprises 20-60 wt% of calculus powder, 20 wt% of ceramic inorganic sludge, and 20-60 wt% of fly ash. . 13. A method for preparing concrete comprising directly applying ceramic inorganic sludge as a pellet to replace 20-50% of the total volume of the pellet, without undergoing a sintering and granulation process, the ceramic inorganic sludge is substantially composed of 60- 70% yttrium oxide and 10-20% alumina. 14. A pellet suitable for concrete, consisting essentially of cerium oxide and aluminum oxide, wherein the composition ratio of cerium oxide and aluminum oxide is 3-7:1, and the total content of cerium oxide and aluminum oxide accounts for the total amount of granules. More than 75% of the composition of the material, the fineness of the pellet is 5500-6000 cm2/g. [S1 22 201200492 四、指定代表圖: (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件符號簡單說明: 無[S1 22 201200492 IV. Designated representative map: (1) The representative representative map of this case is: ( ). (2) A brief description of the component symbols of this representative figure: None 五、本案若有化學式時,請揭示最能顯示發明特徵的化 學式:5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW99120669A 2010-06-24 2010-06-24 Method of making concrete compositions TW201200492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99120669A TW201200492A (en) 2010-06-24 2010-06-24 Method of making concrete compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99120669A TW201200492A (en) 2010-06-24 2010-06-24 Method of making concrete compositions

Publications (1)

Publication Number Publication Date
TW201200492A true TW201200492A (en) 2012-01-01

Family

ID=46755438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99120669A TW201200492A (en) 2010-06-24 2010-06-24 Method of making concrete compositions

Country Status (1)

Country Link
TW (1) TW201200492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580664B (en) * 2013-07-19 2017-05-01 國立成功大學 Controlled low strength materials with mudstone component
TWI744184B (en) * 2021-02-02 2021-10-21 王慶祥 Lightweight material manufacturing equipment and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580664B (en) * 2013-07-19 2017-05-01 國立成功大學 Controlled low strength materials with mudstone component
TWI744184B (en) * 2021-02-02 2021-10-21 王慶祥 Lightweight material manufacturing equipment and method

Similar Documents

Publication Publication Date Title
CN102585834B (en) Solidifying agent for treating chromium-polluted soil
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
Abdel-Gawwad et al. Sustainable disposal of cement kiln dust in the production of cementitious materials
Liu et al. Microstructure and macro properties of sustainable alkali-activated fly ash mortar with various construction waste fines as binder replacement up to 100%
EP2855394B1 (en) Cementitious binders, activators and methods for making concrete
CN110734257A (en) Preparation method of high impervious concrete
CN101927524B (en) Method for producing baking-free slag bricks by using steel slag sludge of rotating furnace
CN101033127A (en) Method for preparing desulfurization plastering gypsum
Razali et al. Preliminary studies on calcinated chicken eggshells as fine aggregates replacement in conventional concrete
Singh et al. Application of thermo-chemically activated lime sludge in production of sustainable low clinker cementitious binders
CN107365094A (en) A kind of preparation method of mine filling paste
Zheng et al. Utilization of copper slag waste in alkali-activated metakaolin pervious concrete
Kanneboina et al. Valorization of lead and zinc slags for the production of construction materials-A review for future research direction
JP5583429B2 (en) Hydraulic composition
Wang et al. Basic properties, characteristic heavy metals leaching and migration of coal incineration fly ash-based mortar
KR101750011B1 (en) Concrete binder composition containing polysilicon dry sludge powder
JP2014051433A (en) Hydraulic composition
CN106630712B (en) A kind of water resistant building gypsum plaster and preparation method thereof using the preparation of copper-contained sludge Bioleaching slag
CN102690069A (en) Regeneration method taking construction wastes as cement raw materials
CN112341116A (en) Desulfurized gypsum and super-sulfur cement concrete and preparation method thereof
TW201200492A (en) Method of making concrete compositions
Luo et al. Utilisation of electrolytic manganese residue as a sulphate activator in producing concrete blocks with high-volume fly ash
JP2017149639A (en) Artificial aggregate and cement curing body
Zhang et al. The effects and solidification characteristics of municipal solid waste incineration fly ash-slag-tailing based backfill blocks in underground mine condition
Memis et al. Some durability properties of alkali activated materials (AAM) produced with ceramic powder and micro calcite