TW201200487A - Dense formulation method for preparing concrete containing rice hull ash - Google Patents

Dense formulation method for preparing concrete containing rice hull ash Download PDF

Info

Publication number
TW201200487A
TW201200487A TW99119686A TW99119686A TW201200487A TW 201200487 A TW201200487 A TW 201200487A TW 99119686 A TW99119686 A TW 99119686A TW 99119686 A TW99119686 A TW 99119686A TW 201200487 A TW201200487 A TW 201200487A
Authority
TW
Taiwan
Prior art keywords
ash
ratio
concrete
rice hull
dense
Prior art date
Application number
TW99119686A
Other languages
Chinese (zh)
Other versions
TWI471287B (en
Inventor
Zhao-Long Huang
Li-Guo Lin
Le Anh Tuan Bui
Original Assignee
Hou mei li
Huang Cai Zhu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hou mei li, Huang Cai Zhu filed Critical Hou mei li
Priority to TW99119686A priority Critical patent/TWI471287B/en
Publication of TW201200487A publication Critical patent/TW201200487A/en
Application granted granted Critical
Publication of TWI471287B publication Critical patent/TWI471287B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

A dense formulation method used for preparing concrete containing rice hull ash is provided to mix the rice hull ash processed by ashing treatment with a cement mixture. The dense formulation method includes: calculating the use ratio of coarse aggregate, fine aggregate and rice hull ash according to Fuller's curve and sieve analysis data; selecting an appropriate aggregate stacking architecture to find the maximal dry and loose density; calculating and deducting the interstitial volume needed to be filled with coarse aggregate and fine aggregate; and setting the ratio of water to adhesive for calculating usage quantity of each component material. Accordingly, this invention can lower usage quantity of cement, reuse waste, effectively enhance workability and durability of concrete, and achieve the purpose of energy conservation and carbon emission reduction of concrete.

Description

201200487 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種混凝土之緻密配比法,特別適用於普通混凝土、 自充填混凝土、尚性能混凝土、超高強度混凝土、纖維混凝土和活性粉混 凝土等。 【先前技術】 目前,由於亞洲國家(如我國)或東南亞(如越南)等地區大多以米食為 鲁 ±食,因此農民每年將會種植大量稻米,以我國為例,每年稻米量大約生 產三千七百萬㈣’稻米於收割後經㈣米加工以獲得精敏米,而稻米經 處理後所產生之稻殼量也將近一千公嘲。 -般對於稻殼之處理方式,大多採用隨意放置作為肥料或燃燒,但由 於稻殼為Μ細且0分解’降低其作為肥料的解,祕決此問題, 則是將稻殼就地進行燃燒處理,然而,就地將稻殼以火燃燒,其燃燒時所 產生之濃煙會縛线品質及料㈣安全,且_驗之織灰若無法 鲁好好處理’而任意四處掩埋或侧時,將會造成環境二次破壞。 有鑑於此,本發明人乃潛心研思、設計配製,期能建立混凝土技術科 學化基礎’提供一種能精確定性、定量之混凝土配比設計精算方式。藉由 材料間相應理論,建立輯式,推求各材料理論用量,簡化混凝土配比計 算流程’並改善現今混凝土廠商仰賴繁複實驗、操作人員經驗決定配比的 確疋n m將稻殼灰應用於混凝土,藉以提高廢棄物再利用性,達到綠 l環保及保觀鱗目的,為本㈣所欲研狀創作動機者。 【發明内容】 本發月之主要目的’在提供—種用於製造含稻殼灰之混凝土的緻密配 3 201200487 比法,以節省水泥用量及廢棄物再利用之功效。 本發明之次要目的,在於提供一種用於製造含稻殼灰之混凝土的緻密 配比法,以有效提高混凝土工作性及耐久性之功效。 為達上述目的,本發明係提供一種用於製造含稻殼灰之混凝土的緻密 配比法,係將灰化處理後之稻殼灰與水泥混合物混合,該水泥混合物係包 括水泥、粗粒料、細粒料及水,該緻密配比法係包括:由富勒曲線配合篩 分析資料推求粗粒料、細粒料及稻殼灰之使用比例;選擇合適之粒料堆積 架構,推求最大乾鬆容積密度;計算扣除粗粒料及細粒料所需填充間隙體 積;以及設定水膠比,計算各組成材料用量。藉此,以稻殼灰取代部分水 泥,可減少水泥用量、廢棄物再利用及有效提高混凝土工作性與耐久性之 功效。 為了能夠更進一步瞭解本發明之特徵、特點和技術内容,請參閱以下 有關本發明之詳細說明與附圖,惟所附圖式僅提供參考與說明用,非用以 限制本發明。 【實施方式】 請參閱第1圖所示’為本發明之用於製造含稻殼灰之混凝土的敏密配 比法流程示意® ’本發鴨提供__於製造含織灰之峨土的緻密配 比法’係將灰化處理狀健紐iee Husk As_水祕合物齡,灰化 處理之溫度係為3〇〇度至9〇〇度。混合後該稻殼灰佔整體重量之1〇至4〇 重量百分比(即為傭灰直接取代之水泥f,該水泥量為每單位立方水泥用 量例如每單位水泥用量為4〇〇公斤,而稻殼灰取代之水泥量為施,即混 合比例為320公斤水泥與8〇公斤稻殼灰),其中該水泥混合物與該稻殼灰 201200487 混合之水膠比(w/b : water/binder)為0· 2至0. 5。該水泥混合物主要由 水(water)、水泥(cement)、細粒料(Fine Aggregate,F.Agge)及粗粒料 (Coarse Aggregate,C.Agge)所組成,該細粒料一般為砂(sand),而該粗 粒料一般為石(stone)。該緻密配比法係包括:一、由富勒曲線(fuuer,s curve)配合筛分析資料推求粗粒料、細粒料及稻殼灰之使用比例;二、選 擇合適之粒料堆積架構(h),推求最大乾鬆容積密度;三、計算扣除 粗粒料及細粒料所需填充間隙體積(n);以及四、設定水膠比(w/b),計 • 算各組成材料用量。該缴密配比法配比材料設計範圍涵蓋毫米(刪)、微米 (μπι)至奈米(nm) ’使材料彼此間都能相互組合而形成最緻密狀態。藉由推 求粒料表面積(S),透過量測間隙體積(〇,引入裏聚厚度⑴概念, 計算水泥衆量(LS.t),依據需求設計強度,控制混凝土品質。 步驟1由田勒曲線配合绵分析資料推求粗粒料、細粒料及稻殼灰之使 用比例: 筛分析是藉由通過-組網格連續增加的網筛,並量測停留於筛網上之 •粗粒料、細粒料及稻殼灰之重量。將筛分析資料配合富勒曲線推算不同粒 徑之體積比: P:小於粒徑d之粒料含量; d:d粒料之粒經; D:粒料之最大粒徑。 (2)粒料分佈分析定義: 5 201200487 假設所用粒料種類⑴共㈣,篩分析粒捏⑴共有m個筛號,而此 分析資料為:夂= pv,,. 〜:((H) ’混合粒料中第i種粒料號篩之留筛率。 ν · (ίΗ) ’混合粒料中第i種粒料之體積百分比(%灿,i=^n。 .(〇 1) ’依理淪曲線計算所得理論第】號篩留篩率,。 (3)混和粒料級配曲線與理論曲線之離散量(从)以最小平方法運算之 結果: w ( η Λ2=ΣΣν〜-\ \2 \ 1=1201200487 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a compact ratio method for concrete, which is particularly suitable for ordinary concrete, self-filling concrete, performance concrete, ultra high strength concrete, fiber concrete and active powder. Concrete, etc. [Prior Art] At present, most Asian countries (such as China) or Southeast Asia (such as Vietnam) use rice as a food, so farmers will plant a large amount of rice every year. For example, in China, the annual rice production is about 3,000. Seven million (four) 'rice is processed by (four) meters after harvesting to obtain fine-sensitive rice, and the amount of rice husk produced by the treatment of rice is also nearly a thousand taunts. Generally, the treatment of rice husks is mostly carried out as a fertilizer or burning, but since the rice husk is fine and 0 decomposition' reduces its solution as a fertilizer, the problem is to burn the rice husk in situ. Treatment, however, the rice husk is burned on fire in situ, and the smoke generated during the burning will bind the line quality and the material (4) safety, and if the ash is not able to be handled well, and burying or arranging at any place, Will cause secondary damage to the environment. In view of this, the inventors have devoted themselves to research and design, and have been able to establish a scientific basis for concrete technology, providing an actuarial method for concrete ratio design with precise certainty and quantitative. Through the corresponding theories between materials, the establishment of the series, the theoretical amount of each material is estimated, the concrete proportioning calculation process is simplified, and the current concrete manufacturers rely on complicated experiments, the experience of the operators determines the ratio, and the rice husk ash is applied to concrete. In order to improve the recycling of waste, to achieve the green environmental protection and preservation of scales, for the purpose of (4) the motivation to create research. SUMMARY OF THE INVENTION The main purpose of this month is to provide a densely packed 3 201200487 method for the production of concrete containing rice hull ash to save cement usage and waste recycling. A secondary object of the present invention is to provide a compact ratio method for producing concrete containing rice hull ash to effectively improve the workability and durability of concrete. In order to achieve the above object, the present invention provides a compact ratio method for producing concrete containing rice hull ash by mixing ash-treated rice hull ash with a cement mixture including cement and coarse granules. , fine granules and water, the dense proportioning method includes: using the Fuller curve and sieve analysis data to estimate the proportion of coarse, fine and rice ash; selecting a suitable granule packing structure to estimate the maximum dry volume Density; calculate the filling gap volume required to subtract coarse and fine particles; and set the water-to-binder ratio to calculate the amount of each component. In this way, replacing some of the cement with rice husk ash can reduce the amount of cement, reuse of waste, and effectively improve the workability and durability of concrete. The detailed description of the present invention and the accompanying drawings are to be understood by the accompanying drawings. [Embodiment] Please refer to Fig. 1 for the schematic diagram of the method for producing a dense proportioning method for producing concrete containing rice hulls according to the present invention. 'This hair duck provides __ for the manufacture of ash containing ash. The dense proportioning method is the age of ashing treatment, iee Husk As_ water, and the temperature of ashing treatment is 3 to 9 degrees. After mixing, the rice husk ash accounts for 1% to 4% by weight of the whole weight (that is, the cement f directly replaced by the ash, the amount of cement is 4 gram per unit of cement, for example, 4 gram per unit of cement, and rice The amount of cement replaced by shell ash is applied, that is, the mixing ratio is 320 kg of cement and 8 〇 kg of rice hull ash), wherein the water-to-binder ratio (w/b: water/binder) of the cement mixture mixed with the rice husk ash 201200487 is 0·2 to 0. 5. The cement mixture is mainly composed of water, cement, Fine Aggregate (F. Agge) and coarse aggregate (Coarse Aggregate, C. Agge), and the fine aggregate is generally sand (sand ), and the coarse aggregate is generally stone. The compact ratio method includes: 1. Using the fuuer curve and the sieve analysis data to estimate the proportion of the coarse aggregate, the fine pellet and the rice hull ash; 2. selecting a suitable pellet accumulation structure (h) ), to estimate the maximum dry bulk density; third, calculate the filling gap volume (n) required to subtract coarse and fine materials; and 4. set the water-to-binder ratio (w/b), calculate the amount of each component. The weight ratio method is designed to cover millimeters (deletion) and micrometers (μπι) to nanometers (nm) so that the materials can be combined with each other to form the most compact state. By estimating the surface area (S) of the pellet, by measuring the gap volume (〇, introducing the concept of the thickness of the cohesion (1), calculating the mass of the cement (LS.t), designing the strength according to the demand, controlling the quality of the concrete. Step 1 is coordinated by the Tianle curve The cotton analysis data is used to estimate the proportion of coarse, fine and rice hull ash: The sieve analysis is a sieve that is continuously increased by passing through a group of grids, and measuring the coarse and fine particles remaining on the sieve. The weight of the material and the rice hull ash. Calculate the volume ratio of different particle sizes by using the sieve analysis data and the Fuller curve: P: the content of the pellets smaller than the particle diameter d; the d: the pellets of the pellets; D: the maximum of the pellets (2) Definition of analysis of pellet distribution: 5 201200487 Assume that the type of pellets used (1) is total (4), sieve analysis and pelleting (1) have a total of m sieve numbers, and the analysis data is: 夂= pv,,. 〜:((H ) 'Retaining ratio of the i-th particle number sieve in the mixed pellets. ν · (ίΗ) 'The volume percentage of the i-th pellet in the mixed pellets (%can, i=^n. (〇1) 'The theoretical sieve No. calculated by the curve of the rational curve】 (3) The discrete amount of the grading curve of the mixed pellets and the theoretical curve ( From the result of the least squares method: w ( η Λ2=ΣΣν~-\ \2 \ 1=1

m f /i-l 、 因為 ίΧ, =ι〇〇% Μ 所以八m f /i-l , because ίΧ, =ι〇〇% Μ so eight

故整理後得Μ = ίίΣ(α„厂+%一 y*l V i=*l J / 對从進行偏微分= V" ^M—dp 1¾ dPv, V·' 當从有極大或極小值時,dM=0 經推導後得方程式(1) K-,=hi -Η,J,Ll4, -ΚΚ-,,ί' χ-[4 [H.Therefore, after finishing, you can get Μ = ίίΣ(α„厂+%一y*l V i=*l J / Partial differentiation for slave = V" ^M—dp 13⁄4 dPv, V·' when there is a maximum or minimum value , dM=0 After derivation, the equation (1) K-, =hi -Η, J, Ll4, -ΚΚ-,, ί' χ-[4 [H.

v>2 Mv>2 M

Pv. ,/1-/ w. 气1 a2,i八 A-i,丨 αΐ,2 fl2,2 八 β”-|,2 Μ ai,m α2,ι» 八 an-\tm [4.Pv. , /1-/ w. Gas 1 a2, i 八 A-i, 丨 αΐ, 2 fl2, 2 八 β”-|, 2 Μ ai,m α2, ι» eight an-\tm [4.

an,. fl«,2 M W/» M Lk L w·An,. fl«,2 M W/» M Lk L w·

&L&L

Hxl 6 201200487 ,求取理想級配曲線之各篩號粒料體積比。Hxl 6 201200487, to obtain the ratio of the mesh size of each sieve of the ideal gradation curve.

a.選定粗粒料最大粒徑D b. 求取各h次訂之粒料體積比。 c. 將各h次方下之粒料體積比轉成重量比。 由此可推斷出練料、峰料及赌灰(可—侧餘料)之使用比例。 步驟2 :選擇合適之粒料堆積架構⑹,推求乾鬆容積密度試驗(亦稱為 乾搗單位重試驗)之最大乾鬆容積密度(ί/_): 根據理’與實際級配曲線圖、堆積最大體積百分比以及粒料間之使用 比例’選擇合適之粒料堆積架構⑹,即前述卜!^中所述之h,進行乾a. Select the maximum particle size of the coarse aggregate D b. Find the volume ratio of the pellets for each h times. c. Convert the pellet volume ratio under each h-th power to a weight ratio. From this, it can be inferred that the proportion of the materials used, the peak materials and the gambling ash (can be used as the side material). Step 2: Select the appropriate pellet accumulation structure (6) and derive the maximum dry bulk density (ί/_) of the dry bulk density test (also known as the dry weight unit test): According to the rational 'and actual grade curve, The maximum volume percentage of the accumulation and the proportion of use between the pellets 'select the appropriate pellet accumulation structure (6), which is the h described in the above, and dry

\DJ 鬆谷積密麟驗(Dry Loose density test)推求最大乾鬆容積密度d)。 步驟3 :計算扣除粗粒料及細粒料所需填充間隙體積(匕): (1)計算緻密堆積下,扣除粗粒料及細粒料所需填充空隙體積\DJ Dry Loose density test deduces the maximum dry bulk density d). Step 3: Calculate the filling gap volume (匕) required to subtract coarse and fine particles: (1) Calculate the required filling void volume for coarse and fine particles under dense packing

-) Αν":粒料混合物中粗粒料1之重量百分率(w找) :粒料混合物中粗粒料2之重量百分率(wt%) y,:粗粒料1之密度(kg/m3) y2 :粗粒料2之密度(kg/m3) :粒料最緻密狀態之乾鬆容積密度(kg/m3) (2)計算粗粒料及細粒料總表面積($ ) 假設粒料顆粒為球形’推求粗細粒料總表面積^ = ^ 。-) Αν": weight percentage of coarse aggregate 1 in the pellet mixture (w): weight percentage (wt%) of coarse pellet 2 in the pellet mixture y, density of coarse pellet 1 (kg/m3) Y2 : density of coarse aggregate 2 (kg/m3): dry bulk density of the most dense state of pellets (kg/m3) (2) calculation of total surface area of coarse and fine aggregates ($) Assuming that the pellets are spherical 'Put the total surface area of coarse and fine pellets ^ = ^.

201200487 l,·/·:指定第j號篩之表面積常數(1/m)。 心对:混合粒料比表面積(m2/kg) 步驟4 :設定水膠比(w/b),計算各組成材料用量: 向性能混凝土材料組紐敎致為:姉料(w_)、細婦(u、稻 般灰(Wrha)、水泥(weement)及水(Wwater)。依所需混凝土之耐久性及強度品 質H轉tb(w/b) ’本發_水泥齡物無織魏合之水膠比係 為0.2至0.5,而其關係式為: A = >v/6 ---^jvater ^y^cement ^RHA ) 又.U又.W咖-A. w驗=〇 列出個材料相關式,建立矩陣式,以電腦程式作反矩陣求解 ,得出混 凝土各材料用量。 a.混凝土用漿量推算:, 帶入前述總表面積之公式得201200487 l,···: Specify the surface area constant (1/m) of the No. j sieve. Heart pair: mixed pellet specific surface area (m2/kg) Step 4: Set the water-to-binder ratio (w/b), calculate the amount of each component material: To the performance concrete material group: 姊 (w_), fine woman ( u, rice-like ash (Wrha), cement (weement) and water (Wwater). According to the durability and strength quality of the required concrete H to tb (w / b) 'this hair _ cement age non-woven Weihe water-to-gel ratio The system is 0.2 to 0.5, and its relationship is: A = >v/6 ---^jvater ^y^cement ^RHA ) Also. U and .W coffee - A. w test = 〇 list related materials Formula, matrix is established, and the computer program is used as the inverse matrix to solve the concrete materials. a. The calculation of the amount of concrete used for the concrete: the formula for bringing in the aforementioned total surface area

匕=匕+t/u=d+u.L 般而。’聚(或稱水泥毁)為水泥、粗粒料、細粒料、稻殼灰及水中 _小於1GG觸__磐所域,可得下式:匕=匕+t/u=d+u.L Like. 'Poly (or called cement) is cement, coarse aggregate, fine aggregate, rice husk ash and water _ less than 1GG touch __ 磐 domain, can get the following formula:

Vp = —~ί—yo 一 1 1 -咖Cl氣〜)式〆 移項整理後如下式:Vp = —~ί—yo A 1 1 -Cal Cl gas ~) Formula 移 After the movement is sorted, the following formula:

Ksst stone + Ksst * t sandKsst stone + Ksst * t sand

"RHA"RHA

RHA cement cement waterRHA cement cement water

-K 'ivater 201200487-K 'ivater 201200487

b.粗細粒料關係式: 混凝土内扣除漿及預估含氣量 ( 1 \ / Ksst * t + —b. Relationship between coarse and fine pellets: deducting pulp and predicting gas content in concrete ( 1 \ / Ksst * t + —

V «即為粗細粒料體積 Τ ston< y^stone Ksst * / + C·V « is the volume of coarse and fine pellets Τ ston< y^stone Ksst * / + C·

Ka,J粗細粒料與稻殼灰比例關係式:Ka, J ratio of coarse and fine grain to rice husk gray ratio:

Wstone _ Wsand P^i Pw2Wstone _ Wsand P^i Pw2

Pw3Pw3

IL w, 咖e r, ~ * ^sand = 〇IL w, coffee e r, ~ * ^sand = 〇

依上述a〜c關係式建立方程式(2):Equation (2) is established according to the above a~c relationship:

Ksst · t Ksst · t + 1 1 0 /ston, ^ -it: 0 〇 ο τν stone Wsand -K I-K-K 0 〇 〇 〜.ι Λ WRHA = 0 Pw>3 0 0 w cement 0 又 Λ -1 w .water 0Ksst · t Ksst · t + 1 1 0 /ston, ^ -it: 0 〇ο τν stone Wsand -K IKK 0 〇〇~.ι Λ WRHA = 0 Pw>3 0 0 w cement 0 again Λ -1 w . Water 0

Ksst. t Ksst · t + —L_ ysandKsst. t Ksst · t + —L_ ysand

— f^L 0 0— f^L 0 0

Ksst * t Ksst · t L_ l Ί •1 -K Wsand . 4. x i ^rha ycement y water ysta Ksst · t H—— ne ysand 0 0 0 i-K-K WRHA — 1 Pw,, 0 0 0 0 Ke福 1 0 Pyv,s 0 0 0 ^ water L 〇 0 λ λ -1 0 _ 以電腦程式作反矩陣求解,得出混凝土各材料用量。Ksst * t Ksst · t L_ l Ί •1 -K Wsand . 4. xi ^rha ycement y water ysta Ksst · t H—— ne ysand 0 0 0 iKK WRHA — 1 Pw,, 0 0 0 0 Ke Fu 1 0 Pyv,s 0 0 0 ^ water L 〇0 λ λ -1 0 _ Solve the inverse matrix with computer program to get the amount of concrete materials.

當然’本發明之用於製造含稻殼灰之混凝土的缴密配比法,其中, 該稻殼灰可進一步經過研磨處理。而該混凝土中亦可進一步包括添加 物,該添加物係為強塑劑、助流劑、界面活性劑及黏著劑的其中之一, 9 201200487 以改善該混凝土之工作性。 [實施例] 本發明之篩分析(粗粒料-石、細粒料-砂、稻殼灰)結果如下: 表1 篩號 <#100 #100 #50 #30 #16 粒徑 (mm) <0.15 0.15 0.3 0.6 1.18 粒徑編號G) 1 2 3 4 5 留 篩 率 $㈣ 0.007 0 0 0 0 砂(i=2) 0.048 0.095 0.136 0.155 0.277 稻殼灰 0=3) 1 0 0 0 0 篩號 #8 #4 3”/8 Γ/2 3Ύ4 粒徑 (mm) 2.36 4.75 9.5 12.5 19 粒徑編號〇 6 7 8 9 10 留 篩 率 石(i=l) 0 0.361 0.414 0.218 0 砂(i=2) 0.290 0 0 0 0 稻殼灰 (i=3) 0 0 0 0 0 篩分析結果配合富勒曲線(本實施例中粒料之最大粒徑19麵,可於 h=l/2〜1/3 間設定數組計算,如:h=0. 333、0. 4、0. 45、0. 5,現以 h=0. 5 列舉)所得數據如下: 表2 篩號 <#100 #100 #50 #30 #16 201200487Of course, the method of the present invention for producing a concrete containing rice hull ash, wherein the rice husk ash can be further subjected to a grinding treatment. Further, the concrete may further include an additive which is one of a strong plasticizer, a flow aid, a surfactant, and an adhesive, 9 201200487 to improve the workability of the concrete. [Examples] The sieve analysis (coarse-stone, fine-grain-sand, rice husk ash) of the present invention was as follows: Table 1 sieve number <#100 #100 #50 #30 #16 Particle size (mm) <0.15 0.15 0.3 0.6 1.18 Particle size number G) 1 2 3 4 5 Screening rate $(4) 0.007 0 0 0 0 Sand (i=2) 0.048 0.095 0.136 0.155 0.277 Rice husk ash 0=3) 1 0 0 0 0 Screen #8 #4 3"/8 Γ/2 3Ύ4 Particle size (mm) 2.36 4.75 9.5 12.5 19 Particle size number 76 7 8 9 10 Retaining rate stone (i=l) 0 0.361 0.414 0.218 0 Sand (i =2) 0.290 0 0 0 0 Rice husk ash (i=3) 0 0 0 0 0 The results of the sieve analysis are combined with the Fuller curve (the maximum particle size of the pellets in this example is 19 faces, which can be h=l/2~ Set the array calculation between 1/3, such as: h=0. 333, 0. 4, 0. 45, 0.5, now h = 0.5. The data obtained are as follows: Table 2 Screen number <#100 # 100 #50 #30 #16 201200487

粒徑 (mm) <0.15 0.15 0.3 0.6 1.18 留篩率P 0 0.09 0.13 0.18 0.25 過篩率 0.09 0.04 0.05 0.07 0.10 篩號 #8 #4 3”/8 1”/2 3”/4 粒徑心(mm) 2.36 4.75 9.5 12.5 19 留篩率P 0.35 0.50 0.71 0.81 1.00 留篩率P 0.15 0.21 0.10 0.19 0.14 由表1及表2可定義[4,7、[4,;、[4·、及[iU,如下: [也 '0.007 0.048" T "0.09" 0 0.095 0 0.04 0 0.136 0 0.05 0 0.155 0 0.07 0 0.277 \A\j = 0 [kl = 0.10 0 0.290 0 0.15 0.361 0 0 0.21 0.414 0 0 0.10 0.218 0 0 0.19 0 0 0 0.14 >v,/ Λ Ά-μ = 1 1 /v,3_ 1 將上述矩陣帶入方程式(1)得Particle size (mm) <0.15 0.15 0.3 0.6 1.18 Screening ratio P 0 0.09 0.13 0.18 0.25 Screening rate 0.09 0.04 0.05 0.07 0.10 Screen number #8 #4 3"/8 1"/2 3"/4 Particle size (mm) 2.36 4.75 9.5 12.5 19 Retaining ratio P 0.35 0.50 0.71 0.81 1.00 Retaining ratio P 0.15 0.21 0.10 0.19 0.14 Can be defined by Tables 1 and 2 [4,7,[4,;,[4·, and [ iU, as follows: [also '0.007 0.048" T "0.09" 0 0.095 0 0.04 0 0.136 0 0.05 0 0.155 0 0.07 0 0.277 \A\j = 0 [kl = 0.10 0 0.290 0 0.15 0.361 0 0 0.21 0.414 0 0 0.10 0.218 0 0 0.19 0 0 0 0.14 >v,/ Λ Ά-μ = 1 1 /v,3_ 1 Bring the above matrix into equation (1)

ΡνΊ '0.4700' — 0.4614 fV3_ 0.0686 將體積比轉換成重量比 表3 P = id] [d. h ,/) = 19mm h=0.5 201200487 體積比 0.4700 0.4614 0.0686 Pw,, 0.4792 重量比 Pw,2 0.4668 Pw,3 0.0540 A,:混合粒料中粗粒料-石(stone)之體積比。 h :混合粒料中細粒料-砂(sand)之體積比。ΡνΊ '0.4700' — 0.4614 fV3_ 0.0686 Converting the volume ratio to weight ratio Table 3 P = id] [d. h , /) = 19mm h=0.5 201200487 Volume ratio 0.4700 0.4614 0.0686 Pw,, 0.4792 Weight ratio Pw, 2 0.4668 Pw , 3 0.0540 A,: the volume ratio of coarse aggregate to stone in the mixed pellets. h : volume ratio of fine aggregate-sand in the mixed pellets.

Pv,3 :混合粒料中稻殼灰(RHA)之體積比。 :混合粒料中粗粒料-石(stone)之重量比。 :混合粒料中細粒料-砂(sand)之重量比。 :混合粒料中稻殼灰(RHA)之重量比。 由於推算結果最適當之h〜1/2,所以本實施例選擇合適之粒料堆積 架構h=l/2(即h=0.5),而經乾鬆容積密度試驗(亦稱為乾捣單位重試 驗)得最大推求乾鬆容積密度i/max=2046(kg/m3)。Pv, 3: volume ratio of rice husk ash (RHA) in mixed pellets. : The weight ratio of coarse aggregate to stone in the mixed pellets. : The weight ratio of fine granules to sand in the mixed granules. : weight ratio of rice husk ash (RHA) in mixed pellets. Since the calculation result is the most appropriate h~1/2, this embodiment selects a suitable pellet accumulation structure h=l/2 (ie h=0.5), and the dry bulk density test (also known as dry weight unit weight) Test) The maximum dry bulk density i/max = 2046 (kg/m3) is derived.

扣除粗粒料及細粒料所需填充間隙體積 vv=\-um^Fill gap volume required for coarse and fine pellets vv=\-um^

Pw,/ ^ Pw,2 其中 y/=2670(kg/m3),y2=2650(kg/m3) + 2724Pw, / ^ Pw,2 where y/=2670(kg/m3), y2=2650(kg/m3) + 2724

v y2 Jv y2 J

計算比表面積= XCalculate specific surface area = X

(Pw,j Pw,2 λ v ·〜Η h v 〜 KsstJ LI a Ϊ2 J 表4 12 201200487 篩號 <#100 #100 #50 #30 #16 粒徑4; (mm) <0.15 0.15 0.3 0.6 1.18 A:5s,7 (1/mm) 0 28.85 14.43 7.27 3.67 篩號 #8 #4 378 l”/2 3”/4 粒徑(mm) 2.36 4.75 9.5 12.5 19 1.83 0.91 0.55 0.39 0.28(Pw,j Pw,2 λ v ·~Η hv ~ KsstJ LI a Ϊ2 J Table 4 12 201200487 Screen number <#100 #100 #50 #30 #16 Particle size 4; (mm) <0.15 0.15 0.3 0.6 1.18 A: 5s, 7 (1/mm) 0 28.85 14.43 7.27 3.67 Screen #8 #4 378 l"/2 3"/4 Particle size (mm) 2.36 4.75 9.5 12.5 19 1.83 0.91 0.55 0.39 0.28

由此,我們可推算出^^,=1.4148(1112/1^)。 設定一水膠比(w/b)=0.35後,帶入方程式(2) l 1 Ί Ύcement y water -1 -K 0 0 i-K-K 0 0 0 0 0 0 λ — 1 0From this, we can infer ^^, = 1.4148 (1112/1^). After setting the water-to-binder ratio (w/b)=0.35, bring in the equation (2) l 1 Ί Ύcement y water -1 -K 0 0 i-K-K 0 0 0 0 0 0 λ — 1 0

Yrha 0 0 Pw„ Pw,3 λ w stone Ksst · t f I 1 ^ sand ivooi l \ 7stone WRHA — 1 w cement 1 \v water 0 Ksst · t +Yrha 0 0 Pw„ Pw,3 λ w stone Ksst · t f I 1 ^ sand ivooi l \ 7stone WRHA — 1 w cement 1 \v water 0 Ksst · t +

Ksst · t y sand ΡΛν,Ι ~Pw^ 0 0 '1.4148·5χ1(Γ6 1.4148·5χ10'6 1 2060 1 3150 1 1000 •1 _ -0.2724 _ 1.4148·5χ10-6 + 2^7〇 1.4148 ·5χ10_6+^ό 0 0 0 1-0.02-0.2724 1 0.4792 0.4668 0 0 0 0 1 0 0.4792 0.0540 0 0 0 0 0 0.35 0.35 -1 _ 0 w stone '936' Wsand 912 WRHA = 105 w cement 296 w _ water _ 140 測試結果· 13Ksst · ty sand ΡΛν,Ι ~Pw^ 0 0 '1.4148·5χ1(Γ6 1.4148·5χ10'6 1 2060 1 3150 1 1000 •1 _ -0.2724 _ 1.4148·5χ10-6 + 2^7〇1.4148 ·5χ10_6+^ό 0 0 0 1-0.02-0.2724 1 0.4792 0.4668 0 0 0 0 1 0 0.4792 0.0540 0 0 0 0 0 0.35 0.35 -1 _ 0 w stone '936' Wsand 912 WRHA = 105 w cement 296 w _ water _ 140 Test results · 13

I 201200487 分別將上述含稻殼灰之混凝土形成圓柱試體,且期齡達28後,進行抗 壓強度試驗,其結果如表5、表6所示。 依緻密配比法製造之含稻榖灰之混凝土抗壓強度61Mpa及66Mpa : 表5 抗壓強度 61Mpa 66Mpa 水泥(kg) 296 376 稻殼灰(kg) 105 98 水泥抗壓強度效能 (Mpa/kg/ m3) 0.206 0.175 混泥土成本 (NTD/m3) 1535 1627 二氧化碳排放量 (kg/ m3) 296 376 未依緻密配比法製造之含稻穀灰之混凝土抗壓強度61Mpa及66Mpa : 表6 抗壓強度 61Mpa 66Mpa 水泥(kg) 514 783 稻殼灰(kg) 57 87 水泥抗壓強度效能 (Mpa/kg/ m3) 0.119 0.084 201200487 混泥土成本 (NTD/m3) 1727 2613 二氧化碳排放量 (kg/ m3) 514 783 •水泥:3 000NTD /ton •稻殼灰:495 NTD/ton •粗粒料:500 NTD /ton •細粒料:383 NTD /ton 由表5及表6之測試結果可知,依緻密配比法製造含稻殼灰之混凝土 相較於未依緻密配比法製造含稻殼灰之混凝土,在相同抗壓強度61MPaT 水泥量分別為296kg及514kg,而抗壓強度66MPa下水泥量分別為376kg 及783kg ’由於水泥用量為混凝土成本之關鍵因素,所以,在相同抗壓強度 61MPa下混凝土成本分別為1535 NTD/ m3及1727 NTD/ m3,而抗壓強度 66MPa下混凝土成本分別為1627NTD/m3及2613 NTD/m3,可見依緻密配 比法製造含稻殼灰之混凝土的成本較低,再者,依緻密配比法製造含稻殼 灰之混凝土相較於未依緻密配比法製造含稻殼灰之混凝土的二氧化碳排放 量亦相對較低,符合節能減碳之環保意識。 由表5及表6之測試結果明顯可知,依緻密配比法製造含稻殼灰之混 凝土相較於未依緻密配比法製造含稻殼灰之混凝土的水泥抗壓強度效能高 達〜2.1倍’可推得在相同水泥量下’依緻密配比法製造含稻殼灰之混凝 土具有較高的抗壓強度。 15 201200487 综上所述,本發明之用於製造含稻殼灰之混凝土的緻密配比法係將 灰化處理後之稻殼灰與水泥混合物混合,該緻密配比法係包括:由富勒曲 線配合筛分析資料推求粗粒料、細粒料及稻殼灰之使用比例;選擇合適之 粒料堆積架構,推求最大乾鬆容雜度;計算扣除姉料及細㈣所需填 充間隙體積;以及設定水膠比,計算各組紐料用^使其可節省水泥用 量及廢棄物再利用,並可有效提高混凝土工作性及耐久性。 以上所述僅為本發明之較佳實施例,非因此即偈限本發明之可實施範 圍,凡根據本發明之内容所作之部份修改,而未違背本發明之精神時,皆 應屬本發明之細者。此外,本發明於t請前並未曾見於任何公開場合或 刊物上,因此本案深具「實用性、新穎性及進步性」之發明專利要件,故 爰法提出發明專利之申請^請t審查委員允撥時間惠允審查為禱。 201200487 【圖式簡單說明】 第1圖係為本發明之用於製造含稻殼灰之混凝土的緻密配比法流程示意圖。 【主要元件符號說明】 1 :由富勒曲線配合篩分析資料推求粗粒料、細粒料及稻殼灰之使用比例 2:選擇合適之粒料堆積架構,推求最大乾鬆容積密度 3:計算扣除粗粒料及細粒料所需填充間隙體積 4:設定水膠比,計算各組成材料用量I 201200487 The above-mentioned concrete containing rice hull ash was respectively formed into a cylindrical test piece, and after the age of 28, the compressive strength test was carried out, and the results are shown in Tables 5 and 6. The compressive strength of concrete containing rice ash produced by the dense proportioning method is 61Mpa and 66Mpa: Table 5 Compressive strength 61Mpa 66Mpa Cement (kg) 296 376 Rice husk ash (kg) 105 98 Cement compressive strength performance (Mpa/kg / m3) 0.206 0.175 Cost of concrete (NTD/m3) 1535 1627 Carbon dioxide emissions (kg/m3) 296 376 Compressive strength of concrete containing rice ash not produced by dense proportioning method 61Mpa and 66Mpa : Table 6 Compressive strength 61Mpa 66Mpa Cement (kg) 514 783 Rice husk ash (kg) 57 87 Cement compressive strength performance (Mpa/kg/ m3) 0.119 0.084 201200487 Concrete cost (NTD/m3) 1727 2613 Carbon dioxide emissions (kg/ m3) 514 783 • Cement: 3 000 NTD /ton • Rice husk ash: 495 NTD/ton • Coarse pellets: 500 NTD /ton • Fine pellets: 383 NTD /ton From the test results of Tables 5 and 6, it is known that the compact ratio Compared with the concrete with rice hull ash, the concrete with rice husk ash is 296kg and 514kg respectively at the same compressive strength of 61MPaT, and the cement content is 376kg under the compressive strength of 66MPa. And 783kg 'Because cement consumption is a key factor in concrete cost Therefore, the concrete costs at the same compressive strength of 61 MPa are 1535 NTD/m3 and 1727 NTD/m3, respectively, while the concrete costs at compressive strength of 66 MPa are 1627 NTD/m3 and 2613 NTD/m3, respectively. The cost of concrete for rice husk ash is relatively low. Moreover, the carbon dioxide emissions of concrete containing rice husk ash according to the compact ratio method are relatively lower than those of concrete containing rice hull ash. Meet the environmental awareness of energy saving and carbon reduction. From the test results of Tables 5 and 6, it is obvious that the concrete with the rice hull ash according to the dense ratio method has a compressive strength of ~2.1 times that of the concrete containing the rice hull ash without the dense proportioning method. 'It can be pushed to produce concrete with rice hull ash according to the compact ratio method under the same amount of cement. It has high compressive strength. 15 201200487 In summary, the dense proportioning method for producing concrete containing rice hull ash according to the present invention mixes the ash-treated rice hull ash with a cement mixture, the dense proportioning method comprising: by Fuller Curve matching sieve analysis data to estimate the proportion of coarse, fine and rice hull ash; select the appropriate pellet accumulation structure to estimate the maximum dry looseness; calculate the required filling gap volume for deducting the material and fine (4); The water-to-binder ratio is used to calculate the amount of cement used in each group, which can save cement consumption and waste reuse, and can effectively improve the workability and durability of concrete. The above is only the preferred embodiment of the present invention, and thus the scope of the present invention is not limited thereto, and all modifications made in accordance with the content of the present invention without departing from the spirit of the present invention are The details of the invention. In addition, the present invention has not been seen in any public occasions or publications before the request for t, so the case has the patents of inventions of "practicality, novelty and progressiveness", so the application for invention patents is proposed by the law. Allowing time to pass the review is a prayer. 201200487 [Simple description of the drawings] Fig. 1 is a schematic flow chart of the dense proportioning method for producing concrete containing rice hull ash according to the present invention. [Explanation of main component symbols] 1 : Use the Fuller curve and sieve analysis data to estimate the proportion of coarse, fine and rice hull ash 2: Select the appropriate pellet accumulation structure, and estimate the maximum dry bulk density 3: Calculate the deduction Filling gap volume required for coarse and fine aggregates 4: setting the water-to-binder ratio and calculating the amount of each component

Claims (1)

201200487 七、申請專利範圍: 1. 一種用於製造含稻殼灰之混凝土的緻密配比法,係將灰化處理後之稻殼 灰與水泥混合物混合,該水泥混合物係包括水泥、粗粒料、細粒料及 水,該緻密配比法係包括: 由富勒曲線配合筛分析資料推求粗粒料、細粒料及稻殼灰之使用比 例;選擇合適之粒料堆積架構,推求最大乾鬆容積密度;計算扣除粗 粒料及細粒料所需填充間隙體積;以及設定水膠比,計算各組成材料 用量。 2. 如申請專利範圍第1項所述之用於製造含稻殼灰之混凝土的緻密配比 法’其中,由富勒曲線配合筛分析資料推求粗粒料、細粒料及稻殼灰 之使用比例係導入離散量之運用。 3. 如申請專利範圍第1項所述之用於製造含稻殼灰之混凝土的緻密配比 法,其中,該稻殼灰與水泥混合物混合後之稻殼灰係佔整體重量之1〇 至40重量百分比。 4. 如申請專利範圍第1項所述之用於製造含稻殼灰之混凝土的緻密配比 法,其中,該灰化處理之溫度係為3〇〇度至900度。 5. 如申請專利範圍第1項所述之用於製造含稻殼灰之混凝土的緻密配比 法,其中,該水泥混合物與該稻殼灰混合之水膠比係為〇 2至〇 5。 6. 如申4專利範圍第1項所述之用於製造含稻殼灰之混凝土的緻密配比 法,其中,該稻殼灰係經過研磨處理。 7. 如申請專利細第丨項所述之用於製造含織灰之混凝土的緻密配比 法,其中,該混凝土係包括添加物。 201200487 8.如申請專利範圍第7項所述之用於製造含稻殼灰之混凝土的緻密配比 法,其中,該添加物係為強塑劑、助流劑、界面活性劑及黏著劑的其 中 〇201200487 VII. Patent application scope: 1. A compact proportioning method for manufacturing concrete containing rice hull ash, which is a mixture of ash ash and cement mixture, including cement and coarse granules. , fine granules and water, the dense proportioning system includes: The ratio of coarse granules, fine granules and rice husk ash is derived from the Fuller curve and sieve analysis data; the appropriate granule packing structure is selected to estimate the maximum dry bulk volume. Density; calculate the filling gap volume required to subtract coarse and fine particles; and set the water-to-binder ratio to calculate the amount of each component. 2. For the dense proportioning method for the manufacture of concrete containing rice hulls as described in item 1 of the patent application', the use of the Fuller curve and sieve analysis data to estimate the use of coarse, fine and rice hull ash The ratio is introduced into the application of discrete quantities. 3. The dense proportioning method for producing concrete containing rice hull ash according to item 1 of the patent application, wherein the rice husk ash of the rice husk ash mixed with the cement mixture accounts for 1% of the total weight to 40 weight percent. 4. The dense proportioning method for producing concrete containing rice hulls according to claim 1, wherein the ashing temperature is from 3 to 900 degrees. 5. The compact ratio method for producing concrete containing rice hull ash according to claim 1, wherein the water mixture ratio of the cement mixture to the rice husk ash is 〇 2 to 〇 5. 6. The dense proportioning method for producing concrete containing rice hull ash according to claim 1, wherein the rice husk ash is subjected to a grinding treatment. 7. The compact ratio method for producing ash-containing concrete according to the application of the patent specification, wherein the concrete system comprises an additive. 201200487 8. The dense proportioning method for producing concrete containing rice hull ash according to claim 7, wherein the additive is a plasticizer, a glidant, a surfactant, and an adhesive. Which 〇 1919
TW99119686A 2010-06-17 2010-06-17 A dense compounding method for the manufacture of concrete containing rice husk ash TWI471287B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99119686A TWI471287B (en) 2010-06-17 2010-06-17 A dense compounding method for the manufacture of concrete containing rice husk ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99119686A TWI471287B (en) 2010-06-17 2010-06-17 A dense compounding method for the manufacture of concrete containing rice husk ash

Publications (2)

Publication Number Publication Date
TW201200487A true TW201200487A (en) 2012-01-01
TWI471287B TWI471287B (en) 2015-02-01

Family

ID=46755434

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99119686A TWI471287B (en) 2010-06-17 2010-06-17 A dense compounding method for the manufacture of concrete containing rice husk ash

Country Status (1)

Country Link
TW (1) TWI471287B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922662A (en) * 2014-03-18 2014-07-16 上海罗洋新材料科技有限公司 Ultra-high performance cement base composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808455B (en) * 2021-07-26 2023-07-11 賴瑞星 Establishment method of quantitative model of water consumption and admixture consumption in concrete proportioning

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001236747A1 (en) * 2000-02-08 2001-08-20 Rha Technology, Inc. Method for producing a blended cementitious composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922662A (en) * 2014-03-18 2014-07-16 上海罗洋新材料科技有限公司 Ultra-high performance cement base composite material

Also Published As

Publication number Publication date
TWI471287B (en) 2015-02-01

Similar Documents

Publication Publication Date Title
Charitha et al. Use of different agro-waste ashes in concrete for effective upcycling of locally available resources
CN100577599C (en) Limestone powder dry powder mortar
Sinsiri et al. Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste
MX2007004860A (en) External additive composition and process.
Kamaruddin et al. Effect of combined supplementary cementitious materials on the fresh and mechanical properties of eco-efficient self-compacting concrete
CN102923997B (en) Method for preparing high-strength semi-regenerative coarse aggregate concretes
CN105314691A (en) Bottom material modifier used for aquaculture
TW201200487A (en) Dense formulation method for preparing concrete containing rice hull ash
CN101518743A (en) Porous spherical support protective agent
CN104891873B (en) A kind of analog material for simulating swell-shrink characteristic tunnel surrounding and preparation method thereof
Šupić et al. Environmentally Friendly Masonry Mortar Blended with Fly Ash, Corn Cob Ash or Ceramic Waste Powder
CN105601208B (en) Concrete of fly ash and preparation method thereof
DE102020100549A1 (en) High strength, low density Ceramsit proppant
Biswas et al. Utilization of rice husk with lime in subgrade soil for a rural road
CN106242473A (en) A kind of non-burning brick quick preparation technology
CN102311248A (en) Compact proportioning method for manufacturing rice husk ash-containing concrete
TWI438168B (en) A compound mineral admixture with multiple functions applied to the concrete cement material
CN104728849A (en) Sludge treatment system
CN101328047A (en) Adhesive polystyrene granule insulating mortar for exterior wall external insulation and preparation thereof
NZ755774A (en) Method of preparing coal ash, coal ash, and cement composition
JP2008001567A (en) Anhydrous gypsum powder and method of manufacturing the same
CN103857641A (en) Method For Manufacturing a Sound Absorbing Panel Including Artificial Lightweight Aggregate Manufactured Using Coal Ash of a Power Generating System
CN104725901A (en) Diatom ooze and production method thereof
Jiménez-García et al. A low environmental impact admixture for the elaboration of unfired clay building bricks
Gunasekaran et al. Performance of bamboo biochar as partial cement replacement in mortar