TW201145954A - Methods and apparatus for time synchronization and measurement of power distribution systems - Google Patents

Methods and apparatus for time synchronization and measurement of power distribution systems Download PDF

Info

Publication number
TW201145954A
TW201145954A TW100105861A TW100105861A TW201145954A TW 201145954 A TW201145954 A TW 201145954A TW 100105861 A TW100105861 A TW 100105861A TW 100105861 A TW100105861 A TW 100105861A TW 201145954 A TW201145954 A TW 201145954A
Authority
TW
Taiwan
Prior art keywords
power distribution
synchronized
measurements
time
power
Prior art date
Application number
TW100105861A
Other languages
Chinese (zh)
Inventor
Jr James Douglass Deloach
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201145954A publication Critical patent/TW201145954A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • H04Q9/04Arrangements for synchronous operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Power Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

Methods and apparatus for time synchronization and measurement of power distribution systems. A method includes receiving a synchronized wireless communication signal, synchronizing to the synchronized wireless communication signal to produce synchronized time, performing one or more power distribution measurements based on the synchronized time to produce synchronized power distribution measurements, and transmitting the synchronized power distribution measurements to a power control center. An apparatus includes a receiver configured to receive a synchronized wireless communication signal and to synchronize to the synchronized wireless communication signal to produce synchronized time, a measurement module configured to perform one or more power distribution measurements based on the synchronized time to produce synchronized power distribution measurements, and a transmitter configured to transmit the synchronized power distribution measurements to a power control center.

Description

201145954 六、發明說明: 【發明所屬之技術領域】 本案大體而言係關於配電(power distributi〇n)系統的 操作,且更特定言之,本案係關於用於配電系統的時間同 步和量測的方法和裝置。 【先前技術】 隨著公用事業推出所謂的「智慧電網」,電力工業正在 a歷轉變。「智慧電網」是覆蓋在現有配電網路之上的一 種智慧的、受管理的、受控制的網路通訊。本質上,智慧 電網將效用電腦飼服器鏈結到電網基礎設施設備和新型 「智慧電錶」一些智慧電網服務需要知道精確的時間。 例如同步相置置測(交流電相位的時間戳記量測)、使 用時間(του)計量和受排程的負載卸載僅僅是該等服務 中的幾個。 但是,在整個智慧電網中決定精確的同步時間可能是且 有挑戰性的和昂貴的。—些較高端的效用基礎Μ元件使 用全球定位㈣(GPS)模組來保持精確的時間,但是該 等模組太昂責而不能將其部署在個人智慧型儀錶中。因 智慧型儀錶必須使用其他準確度較低和較便宜的方式 來獲取和保持時間。 通二:慧型儀錶使用電源頻率自身來量測時間的流 ^ 代利用昂貴的即時時脈元件來覆蓋停電。不幸的 疋,此舉顯著地增加了儀錶的成本,並且時間精度誤差趨 201145954 向於隨著使用的時段累積。結果是 準確性遠不夠賦能同步相量量測,並且對=的時間的 量而言其幾乎是不夠的。 、用時間的計 因m㈣單、有成本效^ 的,該機制操作成針對配電系統提供時間同步:人滿意 實現改良的監測和故障偵測。 ’门步和-測’以 【發明内容】 本案提供了 一 X,., ι括方法和裝置的時間同步( 統,該系統操作成針對配電系統提供時間同步和系 ι現改良的監測和故障偵测。 在一個態樣中,提供τ _猫m μ 的方法。該方法包括:、接…;配電系統中的時間同步 該同步的無線通訊信號,以產生心=訊以,同步到 的時間執行-或多個配電量Γ Γ 基於該同步 « ' I測,以產生同步的配電量測結 在一。電力控制中心發送該等同步的配電量測結果。 的裝詈個態樣中’提供了一種用於配電系統中的時間同步 件·用;^裝置包括:用於接收同步的無線通訊信號的構 :構::::該同步的無線通訊信號以產生同步的時間 、 、土於該同步的時間執行一或多個配電量測, 以生同步的配電量測結果的構件;及用於 心發送該等同步的配電量測結果的構件。 個態樣中’提供了 一種用於配電系統中的時間同步 、豸裝置包括·接收機’被配置成接收同步的無線 201145954 通訊信號,並同步到該同步的無線通訊作躲ιν * ,t3 3¾ Μ ^生同步的 時間;量測模組,被配置成基於該同步的時間執行—或多 個配電量測以產生同步的配電量測結果. ,久赞射機,被配 置成向電力控制中心發送該等同步的配電量測結果。 在一個態樣中,提供了一種用於配電系統中的時間同步 的電腦程式產品。該電腦程式產品包括電腦可讀取媒體, 該電腦可讀取媒體包含可以由處理器執行的代碼,該等代 碼用於接收同步的無線通訊信號、同步到該同步的無線通 訊信號以產生同步的時間、基於該同步的時間執行一或多 個配電量測以產生同步的配電量測結果,以及向電力控制 中心發送該等同步的配電量測結果。 在個態樣中,提供了一種用於配電系統中的時間同步 的方法。該方法包括:分別從一或多個量測設備接收一或 多個時間同步的配電量測結果,其中每一個量測設備被同 步至·!同步無線通訊系統’以及分析該一或多個時間同步的 配電量測結果,以決定該配電系統的一或多個電力狀況。 在一個態樣中,提供了一種用於配電系統中的時間同步 的裳置°該裝置包括:收發機,被配置成分別從一或多個 量測设備接收一或多個時間同步的配電量測結果,其中每 個量測設備被同步到同步無線通訊系統;及被耦合到該 收發機的處理器’該處理器被配置成分析該一或多個時間 同步的配電量測結果以決定該配電系統的一或多個電力 狀况。 在審閱了下文提供的圖式簡單説明、實施方式和申請專 201145954 利祀圍之後,其他態樣將變得顯而易見。 【實施方式】 下文的描述描述了一種時間同步系 例,其中該時間同步孕统摔作& …實施 半^曰., 成針對配電系統提供時間同 步和罝測以實現改良的監測和故障债測。 圖1圖示用於在配電系中 inft . τ使用的不例性時間同步系統 圖不配電線路102,該配電線路是在所選擇的地理區 配電力的配電網的一部分。例如’配電線路102可 以在街區、社區、城市、縣,或者任何其他區域上配電。 時間同步袭置(職)104、106、1〇8'11〇和112被麵合 到配電線路102。例如,TSA可以位於企業、住宅、政府 2樓、所選擇的地理位置’或者期望在其上可以監測配電 仃位置母一個TSA可以操作成與無線通訊 舰器進行通訊。例如,TSA1G4和⑽可以利用無線通 訊與飼服器114進行通訊,且TSAl〇6、11〇和⑴可以利 用無線通訊分別與伺服器116、118和120進行通訊。 曰=一種實施例中,無線通訊伺服器lu、li6、ii8* 口〇 疋刀碼多工存取(CDMA )無線通訊系統的一部分,該分 碼多工存取(CDMA )無線通訊系統提供了同步的無線通 訊以允許多㈤節點才目互通訊以及與被福合到網路基礎設 施的其他實體進行通訊。CDMA系統根據諸如全球定位系 統(GPS )之類的世界時系統導出其時間同步❶如此,所 有的通訊以時間同步的方式被執行。應當注意的是,時間 201145954 同步系統適合於與可以操作成提供同步通訊的任诃益線 通訊系統一起使用,且其並不限於僅僅與CDMA系統—起 使用。 向每一個TSA指派識別符’該識別符對TSA進行辨識 並提供用於建立其相對於配電線路1〇2的位置的機制。每 一個TSA包括允許其利用從無線通訊飼服器發送的信號 以根據該等信號獲取時間同步的無線數據機/無線電設 備。其結果是’所有TSA變得同步料定㈣值或者準確 度内。例如’利用CDMA信號傳輸,TSA可以實現時間同 步到一微秒内。 在-種實施例中’將無線電數據機中内在發展的時間知 識輸出到在TSA處的時脈處理電路,並且tsa採取的任 何量測皆利用該高度„的時間源進行了標記。此舉使得 每一個TSA能夠執行高度準確的相量量測、以精確的時間 =隔執行功率㈣、執行任—其他_的量測以及非常精 確地排程任務。 ·’ ==_心線傳輸允系統避免或消除在 =發現的時間誤差累積的問題。例如,每一個TSA基 於從時間同步的益续朽BB gg秘 # ‘”、V ^ 接收的無線電傳輸獲取並保 步。因此,在沒有㈣誤差累積的情況下,每一 積的局部時序電路的—般系統;使同用可㈣時間誤差累 測:同就操作成執行任何期望的電力線量 作成量測相位、電壓、電流、用電,或 8 201145954 者與配電線路1()2相關聯的任何其他參數。此舉在沿著配 電線路1G2的已知位置處得到了被準確時間同步的—組量 測結果。例如,沿著配電線路1〇2獲得—組時間同步的相 位量測結果是可能的。 現在參見具有識別符#2的TSA1〇6, tsai〇6利用從無 線伺服器116接收的無線信號獲取時間同步。隨後, 106進订期望的電力線量測以產生同步的電力線量測結 果。隨後,TSA 106向電力控制中心(pcc) 122發送該等 同步的量測結果。如路徑126所圖示@,使用無線伺服器 116來無線地發送量測結果,或者如路徑124所圖示的, 使用陸地線路通訊系統來發送量測結果。陸地線路通訊系 統包括電話、網路、光纖通訊系,统,或者其他類型的有線 通訊系統,包括使用電力線102的有線通訊系統。 相位量測有效地量測配電線路102的線路頻率。通常, 電力波形的頻率是60赫茲正弦波。藉由以一微秒的時間 間隔來量測該頻率,可以很好地分辨出該頻率(和相關聯 的相位)。在處理期間,橫跨整個電網即時地關聯量測結 果,以決疋可能有問題的相位變化。將每一個TSA的識別 碼映射到一個地理位置,其中該地理位置允許決定具有過 度相位變化的位置。圖i中所圖示的所有TSA執行與tsa 106相同的功能,並且亦向電力控制中心122發送其同步 量測結果。 電力控制中心122操作成從沿著配電線路1〇2設置的 TSA接收同步的量測結果傳輸^ ppc 122經由每一個tsa 201145954 ' 苻來瞭解母一個T s A的位置。無線地或經由陸地線 路不統來接收同步的量測結果。電力控制中心122操作成 刀析上述同步量測結果以決定配電線路102的各種狀況或 操作狀g °例如’電力控制中心122可以根據上述同步的 里測、果和TSA識別符來決定在沿著配電線路102的特定 位置處疋否存在不可接受的功率或相位變化。電力控制中 μ 122亦可以向TS A發送命令或指令,以調整執行同步的 量測的時間和要執行哪些量測。使用TSA識別符,電力控 制中^ 122亦可以與所選擇的TSA進行通訊,以請求採取 另外的量測或其他動作。另外,pcc 122可以傳送異常參 數,以動態地控制TSA如何偵測電力線1〇2上的異常狀 況。下文提供了異常參數的更詳細描述。 此外,PCC 122支援允許與配電網的其他pcc進行通訊 的通訊通道130。通訊通道13〇允許在PCC之間交換資訊, 及/或允許對TSA執行的電力線量測的分散式處理。 在另一種實施例中’每一個TSA可以「自動定位」其位 置’並向適當的pcc報告其位置。例如,每一個TSA利 用無線數據機/無線電設備的一或多個定位能力來沐定地 理位置。該等定位能力包括但不限於:細胞服務區扇區辨 識和高級前向鏈路三點定位(AFLT )。在AFLT中,TSA 對來自附近蜂巢基地台(塔)的信號進行量測,並向pcc 報告回時間/距離讀數’上述時間/距離讀數隨後被用於士十 算該TSA的近似位置。通常’使用三個周圍的基地台來獲 得最佳的定位。 10 201145954 在另一種實施例中,Ts A可以藉由與其他伺服器或網路 實體接合來決定其自身的位置。例如,每一個TSA包括網 路介面128,用於與其他網路實體交換任何類型的資訊, 以決定其自身的位置。 作為使用自動定位技術中的一或多個自動定位技術的 結果,每一個TS A向PCC報告近似的緯度和經度(具有 已知的不確定性),以提供針對每—個電力量測的位置上 下文。由於PCC將操作成自學習TSA位置,而不是必須 小心地維護將TSA的識別碼與位址以及相應的位置聯絡 在—起的資料庫,因此此舉簡化了系統的管理。 或者,若PCC維護了位置資料庫,則具有由TSA傳送 的近似緯度和經度可以被用於發現該資料庫中的錯誤。要 注意的是,非常準確的自動定位不是必需的。即使是基本 的細胞服務區扇區定位能力(由多種無線技術提供)亦足 夠用於決定電網位置問題或者維護該位置資料庫。 八應當注意的是’ TSA可以是配電網上每一個節點的一部 分。與利用幾個高端基礎設施元件且每—個此種元件皆具 有叩貝的定位電子設備的一般系統相&,可以利用相對低 的成本來實施TSA’並且該等TSA可以在整個電網中提供 實質上無限數量的同步量測點。 因此’時間同步系統操作成在配電系統中提供時間同步 ^量測1系統允許以有成本效益的方式獲取大量的同步 八结果,並將該等量測結果傳送到電力控制中心以進行 刀斤°例如’該大量的同步量測結果允許在要偵測的整個 201145954 配電網中存在微小的相位變化。該系統亦允許電力控制中 心向一或多個TSA傳送對另外的量測或其他動作的請 求,以允許對分配狀況或低效率進行更詳細的調查。 圖2圖示一種用於根據時間同步系統而使用的示例性 TSA 200。例如’ TSA 200適合於用作圖i中圖示的μ 106。TSA 200包括處理器2〇2、量測模組2〇4、陸地線路 收發機2G6和無線收發機2()8,所有該等部件使用資料匯 流排210福合在一起進行通訊。應當注意的是,丁从2〇〇 僅僅是一種實施例,且其他實施例亦是可以允許的。 無線收發機2G8包括操作成允許TSA 2⑽使用無線通訊 系統來與其他實體進行資料或其他資訊通訊的硬體及/或 執行軟體的硬體。在一種實施例中,收發機2〇8包括被配 置成經由無線通訊系統通訊的無線電數據機。例如,收發 機208包括接收機部分,該接收機部分可以操作成從諸如 在CDMA通訊系統中操作的飼服器之類的無線通訊词服 器接收同步的傳輸訊框212。 收發機208包括發射機部分,該發射機部分操作成使用 無線通訊系統來向其他實體發送資料或其他資訊。如此, 收發機⑽利用無線電數據機來使用無線通㈣統進㈣ 訊’以經由傳輸訊框212從電力控制中心接收指令或者可 以向電力控制中心發送同步的量測結果Μ# ^ 收發機2G8亦㈣無線通㈣統的傳輸㈣來獲取時間 同步。例如’在與無線通訊系統通訊期間,收發機2⑽固 有地獲取準確的時間同步,並將該時間同步傳送給處理器 12 201145954 202的時序邏輯222。 陸地線路收發機206包括操作成允許TSA 200使用陸地 線路通訊系統來與其他實體進行資料或其他資訊通訊的 硬體及/或執行軟體的硬體。陸地線路通訊系統包括電話、 網路,或者光纖通訊系統’或者其他類型的有線通訊系 統’包括使用電力線自身的有線通訊系統。例如,收發機 208可操作成使用陸地線路通訊系統來向其他實體發送資 料或其他資訊或者從其他實體接收資料或其他資訊。例 如’收發機208包括發射機部分和接收機部分,該發射機 部分和接收機部分可以使用陸地線路通訊系統來進行通 訊以從電力控制中心接收指令216或者可以向電力控制中 心發送同步的量測結果218。 量測模組204包括操作成從處理器2〇2接收同步信號, 並對電力線220執行一或多個量測的硬體及/或執行軟體 的硬體。例如’處sn 202控制量測模组2〇4何時執行量 測以及執行哪些量測。該等量測包括功率、電壓、電流、 相位、使用歷史及/或任何其他類型的量測。電壓、電流和 相位疋基本量測結果。但是,由於功率是由其他基本量測 結果導㈣,所以其是派生量測結果。量測模組2〇4可以 刼作成決定任何類型的派生量測結果,包括負載因數、諧 波含量、其他無功特性’或者㈣其他類型的派生量測結 果。藉由所接收的同步信號將該等量測結果進行同步,並 將其傳送給處理器202。 在-種實施例中,量測模組2〇4操作成量測ΜΑ相對於 13 201145954 網路中的固定點的穩態平均「相位 。 任何兩偏τ ς A +叫 垔」。此舉使得對 少5ΓΓ 距離的估計能夠實現。通常,對於至 對所有一Α里’相位偏移量不會變得含掬不清,因此,針 之際的目的’其在任何電力服務供應商的運營區域 明確的。任何兩個-之間的相位偏移量的差: 估+電力去往該兩個各自的位置所經過的距離的差值的201145954 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates generally to the operation of a power distributi system, and more specifically to the time synchronization and measurement for a power distribution system. Method and apparatus. [Prior Art] With the introduction of the so-called "smart grid" by utilities, the power industry is undergoing a change. A Smart Grid is a smart, managed, controlled network communication that overlays an existing distribution network. Essentially, smart grids will use computerized feeders to link to grid infrastructure equipment and new “smart meters”. Some smart grid services need to know the exact time. For example, synchronous phase placement (timestamp measurement of AC phase), time of use (του) metering, and scheduled load offload are just a few of these services. However, determining precise synchronization times throughout the smart grid can be challenging and expensive. Some of the higher-end utility-based components use Global Positioning (GPS) modules to maintain accurate time, but these modules are too reputable to be deployed in personal smart meters. Because smart meters must use other less accurate and less expensive methods to acquire and maintain time. Pass 2: The smart meter uses the power frequency itself to measure the flow of time. It uses expensive instant clock components to cover the power outage. Unfortunately, this has significantly increased the cost of the meter, and the time accuracy error tends to be 201145954 towards accumulating over the period of use. The result is that accuracy is far from enough to enable simultaneous phasor measurements, and it is almost insufficient for the amount of time =. The time is calculated by m(4) single, cost-effective, and the mechanism is operated to provide time synchronization for the power distribution system: satisfactory to achieve improved monitoring and fault detection. 'Gate Step and Test' to [Invention] This case provides an X,., method of time synchronization of methods and devices. The system is operated to provide time synchronization and system improvement monitoring and faults for the power distribution system. Detecting. In one aspect, a method of providing τ_cat m μ. The method includes:: receiving; the time synchronization of the synchronized wireless communication signal in the power distribution system to generate a heart=signal, synchronization time Execution - or multiple distributions Γ Γ Based on the synchronization « 'I test to generate synchronized distribution measurements in one. The power control center sends the synchronized distribution measurements. A time synchronization component for use in a power distribution system includes: a device for receiving a synchronized wireless communication signal:::: the synchronized wireless communication signal to generate a synchronization time, Simultaneously performing one or more power distribution measurements to generate components of the synchronized power distribution measurement results; and means for transmitting the synchronized power distribution measurement results to the heart. In the system The inter-synchronization device includes a receiver configured to receive the synchronized wireless 201145954 communication signal and synchronize to the synchronized wireless communication for the time of the synchronization, and the measurement module is configured Performing based on the time of the synchronization—or multiple power distribution measurements to produce synchronized power distribution measurements. The Jiuzhai, configured to send the synchronized power distribution measurements to the power control center. Provided is a computer program product for time synchronization in a power distribution system. The computer program product comprises computer readable media, the computer readable medium containing code executable by a processor for receiving Synchronizing wireless communication signals, synchronizing to the synchronized wireless communication signals to generate synchronization time, performing one or more power distribution measurements based on the time of the synchronization to generate synchronized power distribution measurements, and transmitting the same to the power control center Synchronous distribution measurement results. In one aspect, a method for time synchronization in a power distribution system is provided. The method includes Receiving one or more time synchronized power distribution measurements from one or more measurement devices, each of which is synchronized to a synchronous wireless communication system' and analyzing the one or more time synchronized power distributions Measuring results to determine one or more power conditions of the power distribution system. In one aspect, a time synchronization for use in a power distribution system is provided. The apparatus includes: a transceiver configured to separately One or more metrology devices receive one or more time synchronized power distribution measurements, wherein each measurement device is synchronized to a synchronous wireless communication system; and a processor coupled to the transceiver 'the processor is Configuring to analyze the one or more time synchronized power distribution measurements to determine one or more power conditions of the power distribution system. After reviewing the simplified description, implementation, and application of the 201145954 Other aspects will become apparent. [Embodiment] The following description describes a time synchronization system in which the time synchronization gestation & implementation implements time synchronization and speculation for the power distribution system to achieve improved monitoring and faulty debts. Measurement. Figure 1 illustrates an exemplary time synchronization system for inft. τ used in a power distribution system. Figure 5 is a distribution line 102 that is part of a distribution network that is in the selected geographic area. For example, distribution line 102 can be distributed across blocks, communities, cities, counties, or any other area. Time synchronization attacks (services) 104, 106, 1 〇 8'11 〇 and 112 are integrated into the distribution line 102. For example, the TSA can be located at the corporate, residential, government, 2nd floor, selected geographic location, or where it is desired to monitor the power distribution. A TSA can operate to communicate with the wireless carrier. For example, TSA1G4 and (10) can communicate with the feeder 114 using wireless communication, and TSAl〇6, 11〇, and (1) can communicate with the servers 116, 118, and 120, respectively, using wireless communication.曰=In one embodiment, a portion of a wireless communication server lu, li6, ii8* port multiplexed access (CDMA) wireless communication system is provided by the code division multiplex access (CDMA) wireless communication system Synchronous wireless communication to allow multiple (five) nodes to communicate with each other and with other entities that are blessed to the network infrastructure. The CDMA system derives its time synchronization according to a world time system such as the Global Positioning System (GPS), and all communications are performed in a time synchronized manner. It should be noted that the time 201145954 synchronization system is suitable for use with any line communication system that can operate to provide synchronous communication, and is not limited to use only with CDMA systems. Each TSA is assigned an identifier 'this identifier identifies the TSA and provides a mechanism for establishing its position relative to the distribution line 1〇2. Each TSA includes a wireless modem/radio device that allows it to utilize the signals transmitted from the wireless communication feeder to obtain time synchronization based on the signals. The result is that 'all TSAs become synchronized (4) values or within accuracy. For example, with CDMA signal transmission, TSA can achieve time synchronization to within one microsecond. In an embodiment, the inherently developed time knowledge in the radio data machine is output to the clock processing circuit at the TSA, and any measurements taken by tsa are marked with the time source of the height „. Each TSA is capable of performing highly accurate phasor measurements, performing precise time = interval execution power (4), performing any-other _ measurement, and very precise scheduling tasks. · ' == _ heartline transmission allows system to avoid Or eliminate the problem of accumulating time errors at =. For example, each TSA is acquired and guaranteed based on radio transmissions received from time-synchronized BB gg secret # ', V ^ . Therefore, in the absence of (d) error accumulation, the general system of each product of the local sequential circuit; the same can be used for (four) time error accumulating: the same as operating to achieve any desired power line amount to measure the phase, voltage, Current, power, or any other parameter associated with distribution line 1()2 of 201145954. This results in an accurate time-synchronized group measurement at a known location along the distribution line 1G2. For example, it is possible to obtain a phase measurement result of the group time synchronization along the distribution line 1〇2. Referring now to TSA1〇6 with identifier #2, tsai〇6 utilizes the wireless signals received from the wireless server 116 to obtain time synchronization. Subsequently, 106 the desired power line measurements are ordered to produce synchronized power line measurements. The TSA 106 then sends the synchronized measurements to the power control center (pcc) 122. The wireless server 116 is used to wirelessly transmit the measurement results as indicated by path 126, or the landline communication system is used to transmit the measurement results as illustrated by path 124. Landline communication systems include telephone, network, fiber optic communication systems, or other types of wired communication systems, including wired communication systems that use power line 102. The phase measurement effectively measures the line frequency of the distribution line 102. Typically, the frequency of the power waveform is a 60 Hz sine wave. This frequency (and associated phase) is well resolved by measuring the frequency at intervals of one microsecond. During processing, the measurement results are instantly correlated across the entire grid to account for possible phase changes. Each TSA's identification code is mapped to a geographic location that allows for the determination of locations with excessive phase changes. All of the TSAs illustrated in Figure i perform the same functions as tsa 106 and also transmit their synchronized measurements to power control center 122. The power control center 122 operates to receive synchronized measurement results from the TSAs disposed along the distribution line 1〇2 to transmit the location of the parent Ts A via each tsa 201145954 '. The synchronized measurement results are received wirelessly or via a terrestrial line. The power control center 122 operates to analyze the synchronized measurement results to determine various conditions or operational conditions of the distribution line 102. For example, the power control center 122 can determine the following along the synchronized measurements, the fruit, and the TSA identifier. There is an unacceptable power or phase change at a particular location of the distribution line 102. In power control, μ 122 can also send commands or commands to TS A to adjust the time at which the synchronized measurements are performed and which measurements to perform. Using the TSA identifier, power control 122 can also communicate with the selected TSA to request additional measurements or other actions. In addition, pcc 122 can transmit anomalous parameters to dynamically control how the TSA detects anomalies on power line 1〇2. A more detailed description of the anomaly parameters is provided below. In addition, the PCC 122 supports a communication channel 130 that allows communication with other pccs of the distribution network. The communication channel 13 allows for the exchange of information between the PCCs and/or the decentralized processing of power line measurements performed on the TSA. In another embodiment, each TSA can "automatically locate" its location and report its location to the appropriate pcc. For example, each TSA utilizes one or more positioning capabilities of the wireless modem/radio to determine the location. Such positioning capabilities include, but are not limited to, Cell Service Area Sector Identification and Advanced Forward Link Three Point Positioning (AFLT). In AFLT, the TSA measures the signal from a nearby cellular base station (tower) and reports back the time/distance reading to pcc. The above time/distance reading is then used to calculate the approximate position of the TSA. Usually 'three surrounding base stations are used to get the best positioning. 10 201145954 In another embodiment, Ts A can determine its own location by engaging with other servers or network entities. For example, each TSA includes a network interface 128 for exchanging any type of information with other network entities to determine its own location. As a result of using one or more automatic positioning techniques in the automatic positioning technique, each TS A reports approximate latitude and longitude (with known uncertainty) to the PCC to provide a position for each power measurement. Context. Since the PCC will operate as a self-learning TSA location, rather than having to carefully maintain a database that links the TSA's identification code to the address and location, this simplifies system management. Alternatively, if the PCC maintains a location repository, the approximate latitude and longitude transmitted by the TSA can be used to discover errors in the database. It is important to note that very accurate automatic positioning is not required. Even the basic cell service area sector location capability (provided by multiple wireless technologies) is sufficient to determine grid location issues or to maintain the location database. Eight should note that the 'TAA can be part of every node on the distribution network. With a general system of positioning electronics that utilizes several high-end infrastructure components and each of which has mussels, the TSA' can be implemented with relatively low cost and the TSAs can be provided throughout the grid A virtually unlimited number of simultaneous measurement points. Therefore, the 'time synchronization system operates to provide time synchronization in the power distribution system. The measurement 1 system allows a large number of synchronized eight results to be obtained in a cost-effective manner, and the measurement results are transmitted to the power control center for processing. For example, 'this large amount of simultaneous measurement results allows for a slight phase change in the entire 201145954 distribution network to be detected. The system also allows the power control center to send requests for additional measurements or other actions to one or more TSAs to allow for a more detailed investigation of the distribution status or inefficiency. FIG. 2 illustrates an exemplary TSA 200 for use with a time synchronization system. For example, the 'TSA 200 is suitable for use as the μ 106 illustrated in Figure i. The TSA 200 includes a processor 2〇2, a measurement module 2〇4, a landline transceiver 2G6, and a wireless transceiver 2()8, all of which communicate using the data bus 210. It should be noted that Ding 2 is merely an embodiment, and other embodiments are also permissible. The wireless transceiver 2G8 includes hardware and/or software executing hardware that operates to allow the TSA 2 (10) to communicate with other entities using data or other information using a wireless communication system. In one embodiment, transceiver 2A includes a radio modem configured to communicate via a wireless communication system. For example, transceiver 208 includes a receiver portion that is operative to receive a synchronized transmission frame 212 from a wireless communication word server such as a feeder operating in a CDMA communication system. Transceiver 208 includes a transmitter portion that is operative to use a wireless communication system to transmit data or other information to other entities. In this manner, the transceiver (10) uses the radio data machine to use the wireless communication system to receive an instruction from the power control center via the transmission frame 212 or to transmit the synchronized measurement result to the power control center. #^ transceiver 2G8 (4) Wireless (four) unified transmission (four) to obtain time synchronization. For example, during communication with the wireless communication system, transceiver 2 (10) inherently acquires accurate time synchronization and synchronously transmits the time to timing logic 222 of processor 12 201145954 202. The landline transceiver 206 includes hardware and/or software that operates to allow the TSA 200 to use the landline communication system to communicate data or other information with other entities. Landline communication systems, including telephone, network, or fiber optic communication systems' or other types of wired communication systems' include wired communication systems that use the power line itself. For example, transceiver 208 is operable to use a landline communication system to transmit data or other information to other entities or to receive data or other information from other entities. For example, 'transceiver 208 includes a transmitter portion and a receiver portion that can communicate using a landline communication system to receive instructions 216 from a power control center or can transmit synchronized measurements to a power control center. Results 218. The metrology module 204 includes hardware that is operative to receive synchronization signals from the processor 2〇2 and perform one or more measurements on the power line 220, and/or hardware that executes the software. For example, 'sn 202 controls the measurement module 2〇4 when to perform the measurement and which measurements are performed. Such measurements include power, voltage, current, phase, usage history, and/or any other type of measurement. Voltage, current, and phase 疋 basic measurement results. However, since the power is derived from other basic measurements (4), it is a derivative measurement. The measurement module 2〇4 can be used to determine any type of derived measurement, including load factor, harmonic content, other reactive characteristics' or (d) other types of derived measurement results. The measurements are synchronized by the received sync signal and transmitted to processor 202. In one embodiment, the metrology module 2〇4 operates to measure the steady-state average “phase of any fixed point in the network of 13 201145954. Any two offsets τ ς A + 垔 。. This allows an estimate of the distance of less than 5ΓΓ to be achieved. In general, the phase offset does not become ambiguous for all Α, so the purpose of the needle' is clear in the operating area of any power service provider. The difference in phase offset between any two - estimated + the difference in the distance traveled by the power to the two respective locations

^右本應該在—特定㈣或者區域中的—個TS :::域:的其他—相位,則指示可能需要 進仃進—步調查的錯誤狀況。 :測模組204亦包括異常參數224。異常參數224辨識 要由量測模組2G4_的電力線異常狀況。該等異常狀況 可成需要量測模組204決定派生量測結果。上述異常參數 針對與各異常狀況相關聯的基本量測結果和派生量測結 果設置邊界和閾值。若超過了與異常狀況相關聯的邊界或 閾值則決疋存在異常狀況。如此’異常參數提供了用於 異吊偵測的邊界或閾值,此外,#提供了若偵測到一或多 個異常狀況要採取的動作。 在一種實施例中,量測模組2〇4操作成非同步地偵測電 力線異常狀%,以使得在任何肖間發生㈣識的異常狀況 時’量測模組204皆將快速地將其偵測到。 在一種實施例中’在量測模組2〇4處對異常參數224進 仃預先配置。例如,在製造或安裝TSA 200時配置異常參 數。在另一種實施例中,異常參數224由Pcc進行配置、 更新和維護。例如’在任何時間,Pcc皆可以使用收發機^ The right should be in - specific (four) or the other - phase of the TS ::: field: in the region, indicating the error condition that may need to be investigated. The test module 204 also includes an anomaly parameter 224. The abnormal parameter 224 identifies the power line abnormal condition to be measured by the measurement module 2G4_. These abnormal conditions can be determined by the required measurement module 204 to determine the derived measurement results. The above abnormal parameters set the boundary and threshold for the basic measurement results and the derived measurement results associated with each abnormal condition. If the boundary or threshold associated with the abnormal condition is exceeded, then there is an abnormal condition. Thus the 'abnormal parameter provides a boundary or threshold for different lift detection. In addition, # provides an action to be taken if one or more abnormal conditions are detected. In one embodiment, the measurement module 2〇4 operates to detect the power line abnormality % asynchronously so that the measurement module 204 will quickly take it when any abnormality occurs in any of the cases. Detected. In one embodiment, the anomaly parameter 224 is pre-configured at the metrology module 2〇4. For example, configure anomalies when manufacturing or installing the TSA 200. In another embodiment, the anomaly parameter 224 is configured, updated, and maintained by the Pcc. For example, 'Pcc can use the transceiver at any time.

14 201145954 208或者收發機2〇6來下載 尤u 跃224 °此舉使Per 4 動態地控制由TSA執行的異常m + cq 此外,異常參數224辨識與各 ^Έ1Ι /、谷^吊狀况相關聯的另外的 里測。當债測到相應的異常 的 并吾.1,1加1 町耵上述另外的量測進 仃3:測。例如,量測模組2〇4基於夂 定的異常狀況。隨後,量測模 4 / 24偵測特 ㈣罝㈣組204存取異常參數224, 以基於制到的異常狀況來決定要執行的另外量測。執行 上述另外的量測,並將偵測 灶罢值、关仏+ 幻八*狀况和相關聯的量測 、,·。果傳送給處理器2〇2,以便傳輸給pcc。 處^器2〇2包括CPU、處理器、閑陣列、硬體邏輯、記 憶體早元及/或執行敕體的麻# 钒仃欺體的硬體中的至少—個。處理器2〇2 操作成控制量測模組2G4來執行所選擇的量♦處理器州 包括時序邏輯222,該時序邏輯產㈣步信號,該同步作 號被發送到量測模組叫以控制何時進行量測。時序邏輯 222從收發機⑽獲得同步,其中收發機208已根據所接 收的無線傳輪訊框獲取其同步。例如,所接收的同步傳輪 訊框由收發機2G8接收,並由收發機⑽進行分析以決定 向時序邏輯222指示的確切的時間參考,隨後,時序邏輯 222 f生用於指示精確時間的同步信號,在該精確的時間 上,量測模組204將執行特定的量測。 處理器202亦包括介面邏輯以支援通訊鍵路心复中 通訊鍵路226提供與各種網路實體的網路通訊。例如,處 器202可以使用鏈路226來與其他網路實體進行通訊以 自動定位TSA 2GG的位置。可以執行任何適當的定位技 15 201145954 術,且由處理器202使用收發機206及/或收發機2〇8來向 PCC報告結果。 處理器202亦可以操作成使用無線通訊系統或者陸地線 路通訊系統來從電力控制中心接收指令。例如,電力控制 中〜可以將指令編碼到所接收的無線傳輸訊框212中上 ^無線傳輸訊框212由無線收發機208接收。電力控制中 亦可以將扣令編碼到由陸地線路收發機接收的陸地 線路通訊216中。在任_情況下,所接收的指令皆被傳送 給處理器202。 處理器202對上述指令進行解碼,並決定是否必須執行 任何動作。例如,若另外的量測被請求,則處理器202控 制量測模組204來執行另外的量測。隨後,處理器2〇2使 用陸地線路收發機206或者無線收發機 208來向電力控制 中〜發送另外的量測結果。處理器2()2亦可以執行電力控 制中。所π求的任何其他動作,且其並不限於僅僅獲得另 外的電力線篁測結果。例如,上述指令可以包括儲存在量 測模組2G4處的異常參數224。使用異常參數224來允許 CC動態地控制異常偵測和處理。在下文的其他部分中提 供了 TSA 200的操作的更詳細描述。 、圖3圖示根據時間同步系 '統所構造的示例性電力控制中 3〇0例如PCC 3〇〇適合於用作為圖1中所圖示的pcc 122。PCC 300 包括盧 ϊ® 吳 處理15 302、陸地線路收發機304、無 線收發機306、TSA資料庫3〇8,使用資料匯流排31〇將 所有。ρ件耗σ在-起進行通訊。應當注意的是, 16 201145954 僅僅是一種貫施例’且其他實施例亦是可以允許的。 無線收發機306包括操作成允許PCC 300使用無線通訊 系統來與其他實體進行資料或其他資訊通訊的硬體及/或 執行軟體的硬體。例如,收發機3〇6包括發射機部分,該 發射機部分可以操作成使用諸如CDMA通訊系統之類的 同步無線通訊系統的同步傳輸訊框314來向一或多個Ts a 發送資訊、指令,或者其他資料。收發機3〇6亦包括接收 機,該接收機操作成使用同步無線通訊系統從一或多個 TSA接收同步的量測結果312。 陸地線路收發機304包括操作成允許pcc 300使用陸地 線路通訊系統來與其他實體進行資料或其他資訊通訊的 硬體及/或執行軟體的硬體。例如,收發機3〇4包括接收機 部分,該接收機部分可以操作成使用陸地線路通訊系統從 或多個TSA接收同步的量測結果316。收發機3〇4亦包 括發射機,該發射機可以操作成使用陸地線路通訊系統向 —或多個TSA發送指令318或其他資料。 TSA資料庫308包括關於TSA的資訊,該資訊儲存在可 經由匯流排310存取的任何適當的記憶體中。資料庫3〇8 藉由指派給TSA的識別符來辨識TSA,並且資料庫3〇8包 括用於處理從任-TSA接收的同步量測結果所必需的任 何其他資訊。資料庫㈣TSA識別符與地理位置進行關 聯,以使得針對每—個接㈣同步量測結㈣㈣可以被 決定。 處理器302包括CPU、處理器、閘陣列、硬體邏輯、記 17 201145954 憶體單元及/或執行軟體的硬體中的至少一個。處理器302 操作成處理由收發機304和收發機306所接收的同步量測 結果以決疋與配電線路相關聯的一或多個電力線狀況。例 如’將所接收的同步量測結果與所辨識的TSA相關聯,並 且處理器302能夠存取TSA資料庫,以決定與每一個接收 的同步量測結果相關聯的位置。隨後,處理器3〇2藉由分 析在每一個位置處得到的量測結杲能夠決定一或多個電 力線狀況。例如,若一或多個TSA報告低壓狀況,則處理 器302可以存取TSA資料庫308以決定上述低壓狀況的位 置。同樣,處理器302可以即時地將TSA報告的同步的相 位量測結果相關聯以決定可以指示負載問題或者潛在的 電力中斷狀況的任何相位變化的位置。 處理器302亦可以操作成決定是否期望來自一或多個 TSA的任何另外的量測或動作。若是,則處理器可以 控制無線收發機306在同步的傳輸訊框中向一或多個tsa 發送指令。該等指令指示特定的TSA進行另外的量測、更 新異常參數,或者執行另外的動作並報告回結果。 器302亦支援通訊通道32〇,該通訊通道32〇允許 ”配電、,同的其他Pcc進行通訊。通訊通道允許在pcc 父換資訊,並且允許對TSA所執行的電力線量測的分 散式處理。通訊通道320包括允許多個PCC進行通訊的任 何適當的通訊鏈路。 方圖4圖讀據時間同步系統的時間同步和量測的示例性 方法。為了清楚起見’下文參照圖2中所圖示的tsa _ 18 201145954 來曰迷方法400。在—種實施例中,處理器2〇2執行一或 多組代碼以控制TSA 200執行下文所描述的功能。 在方境402處,接收同步的無線通訊信號。例如,從諸 如CDMA系統之類的同步無線通訊系統,或者從可以提供 同步的通訊信號的任何其他類型的系…统接收無線通訊信 號。在一種實施例中,收發機208從諸如圖i中所圖示的 祠服器116之類的無線通訊祠服器接收同步的無線通訊信 號。 在方塊404 4,藉由同步到上述同步的無線通訊信號來 獲取時間同步。在—種實施例中,收發機2G8根據所接收 的同步的無線通訊信號來決定時間同步。例如,所接收的 同步的無線通訊信號包括被同步到GPS時間標準的傳輸 訊框。收發機208能夠分析所接收的該等訊框以獲取(或 鎖疋)時間同步。例如,使用CDMA傳輸訊框可以將時間 同步決定到-微㈣,錢得㈣上述傳輸訊框的任何設 備可以同步到該精確度。隨後,向產生 時序邏輯222指示該時間同步。 说的 在方塊406冑,接收更新的異常參數。在一種實旅例中, 異常參數由收發機2G8接收,並在量測模組2()4處被储存 成異常參$ 224。異常參數辨識要㈣的電力線異常以及 作為回應要採取的動作。 在方塊408處,執行同步的配電量測。在—種實施例中, 時序邏輯222向量測模組2〇4提供同步信號或者觸發。量 測模組204藉由量測配電線路的相位或者其他參數來進^ 19 201145954 回應。量測模組204可以操作成將相位量測到任何期望的 精度並且藉由同步信號對其量測結果進行同步。量測模組 亦可以操作成執行任何其他類型的電力線量測。 在方塊41 〇處’使用無線通訊系統向電力控制中心發送 罝測結果。例如,量測模組2〇4控制無線收發機2〇8使用 無線通訊键路214來向電力控制中心發送同步的相位量測 結果。 在方塊410處,在一種可選的操作中,使用陸地線路通 訊系統來向電力控制中心發送同步的相位量測結果。例 如’量測模組204控制陸地線路收發機206使用陸地線路 通訊鏈路218來向電力控制中心發送同步的相位量測結 果。陸地線路通訊系統包括電話、網路,或者光纖通訊系 統,或者其他類型的有線通訊系統,包括使用電力線自身 的有線通訊系統。 在方塊412處,決定是否接收到針對另外的量測或其他 動作的請求。例如,針對另外的量測的請求可以由PCC產 生並使用無線傳輸訊框212將其發送給TSA 200。若尚未 接收到針對另外的量測或其他動作的請求,則該方法轉到 方塊418。若已經接收到針對另外的量測或其他動作的請 求,則該方法轉到方塊416。處理器202進行該決定操作。 在方塊416處,執行另外的量測或動作。例如,處理器 202控制量測模組2〇4執行另外的相位量測或其他配電量 測。—旦執行了另外的量測或動作,則該方法轉到方塊41〇 以發送量測結果。 20 201145954 在方塊418處,決定是否偵測到任何雪卢 艺刀線異常。例如, 在-種實施例巾’利用異常參數224對量測模組2〇4進行 了預先配置,其中異常參數224對要檢杳仃 ~ J 組電力線里 常進行辨識。該等異常包括過度的電力使 , 冤壓或電流 尖波,或者與電力線102相關聯的任何其他類型的異常。 在另一種實施例中,PCC在方塊4〇6處提供異常參數。例 如,PCC藉由提供及/或更新異常參數224可以在任何時間 動態地調整要偵測的異常。異常參數辨識了針對基本量測 結果或派生量測結果的邊界和閾值。若超過了邊界$間 值,則量測模組決定是否存在任何異常的狀況。若存在— 或多個異常狀況,則該方法轉到方塊42〇。若不存在異常 狀況’則該方法轉到方塊406。 在方塊420處,執行另外的量測或動作。例如,異常參 數224包括針對每一個偵測到的異常要執行的另外量測。 例如,若偵測到低壓異常,則可以執行諸如功率或電流量 測之類的另外量測。處理器2〇2基於偵測到的異常和在異 常參數224中所辨識的相應量測結果來控制量測模組204 執打另外的量測。一旦執行了另外的量測或動作,則該方 法轉到方塊以向PCC發送結果。 因此’在一種實施例中,方法400由在與配電線路相關 聯的任何位置處的TSA執行以決定同步的相位量測或者 其他配電參數’並且使用無線傳輸鏈路及/或陸地線路傳輸 鍵路來向電力控制中心發送彼等量測結果。應當注意的 疋’方法400僅僅是一種實施例,並且可以在各種實施例 21 201145954 的保護範疇内重新排列或者修改方法4〇〇的操作。因此, 其他實施例亦是可以允許的。 圖5圖示根據時間同步系統用於接收和處理同步的量測 結果的示例性方法500。為了清楚起見,下文參照圖3中 所圖示的PCC 300來描述方法5〇〇。在一種實施例中,處 理器302執行一或多組代碼以控制pcc 3〇〇執行下文所描 述的功能。 在方塊502處,向一或多個TSA發送更新 例如,處理器3〇2產生異常參數,並使用收發機3〇6將其 發送給所辨識的TSA。 在方塊504處,從一或多個TSA接收同步的配電量測結 果。例如,使用收發機3G4從陸地線路通訊系統或者使用 收發機306從無線通訊系統接收同步的配電量測結果。同 步的配電量測結果中的每一個與所辨識的TSA相關聯。 在方塊506處,對接收的量測結果進行分析以決定一或 亡個電力線狀況。例如’處理器3〇2分析來自多個tsa的 量測結果以決定在功率、電壓、電流、相位,或者任何其 他參數上的波動。在一種實施例中,處理器3〇2藉由根據 TSA資料庫308決定TSA的位置’來決定由一或多個m 所指示的狀電力線狀況的位置。例如,》了決定相位變 化,處理器302即時地關聯所接收的同步的相位量測社果 以偵測可能存在問題的任何相位變化。隨後,基於TSA的 :別符和從TSA資料庫⑽獲得的相應位置可以決定所偵 測到的相位變化的位置。 22 201145954 在方塊508處’決定是否期望另外的量測或動作。例如 期望來自一或多個TSA的另外的量測以充分地分析特定 的電力線狀況。若不需要另外的量測或動作,則該方法片 束。若需要另外的量測或動作,則該方法轉到方塊5〇8 ^ 處理器302做出該決定。 在方塊510處,辨識一或多個TSA以執行另外的量測或 動作。例如,處理器302基於以前的同步量測結果來決定 一或多個電力線狀況,並辨識期望來自其的另外的量測以 執行進一步分析的一或多個TSA<>TSA由其位置及/或唯一 的識別符來辨識。例如,若在特定的位置處偵測到相位變 化,則處理器302操作成請求來自於位於該位置處或者在 該位置附近的TSA的另外的相位量測結果。 在方塊512處,向所辨識的TSA發送針對另外的量測或 動作的請求。處理器3〇2辨識上述TSA和要在—或多個請 求中獲得的相關聯的量測結果。將上述請求轉發給無線收 發機306,以便使用1蝮诵糸 …琛逋讯系統的傳輸訊框212來傳輸 給所辨識的TSA。隨德,诗古'土姑以丄 隨便該方法轉到方塊502以更新異常 參數。 、 因此’方法500可以握你士、八 麵作成刀析由複數個TSA報告的斤 步量測結果,並在期望·沾性& 、 的時候’向一或多個特定的TSA % 求另外的量測或動作。應各 β 應田左意的疋,方法5〇〇僅僅是一 種實施例,且可以太欠# & t 各種實施例的保護範疇内重新排列^ 者修改方法5〇〇的择作。 '、作因此’其他實施例亦是可以允言 的。 23 20114595414 201145954 208 or transceiver 2〇6 to download the special 224 ° This action makes Per 4 dynamically control the abnormal m + cq executed by TSA. In addition, the abnormal parameter 224 identification is related to each ^Έ1Ι /, Another test of the joint. When the debt is measured to the corresponding abnormality, I.1,1 plus 1 耵 耵 耵 耵 耵 耵 耵 : : : : : : : : : : : : : For example, the measurement module 2〇4 is based on the determined abnormal condition. Subsequently, the measurement module 4 / 24 detects the special (four) 罝 (four) group 204 access exception parameter 224 to determine additional measurements to be performed based on the resulting abnormal condition. Perform the above additional measurements and measure the resistance, the 仏+ 幻八* status and the associated measurements, . It is passed to the processor 2〇2 for transmission to pcc. The device 2〇2 includes at least one of a CPU, a processor, an idle array, a hardware logic, a memory element, and/or a hardware that performs a carcass. The processor 2〇2 operates to control the measurement module 2G4 to execute the selected amount. The processor state includes a timing logic 222 that generates a (four) step signal that is sent to the measurement module to control When to measure. The timing logic 222 obtains synchronization from the transceiver (10), wherein the transceiver 208 has acquired its synchronization based on the received wireless routing frame. For example, the received synchronization frame is received by transceiver 2G8 and analyzed by transceiver (10) to determine the exact time reference indicated to timing logic 222, which is then used to indicate the synchronization of the precise time. The signal, at this precise time, the measurement module 204 will perform a particular measurement. The processor 202 also includes interface logic to support the communication key centering communication keyway 226 to provide network communication with various network entities. For example, the router 202 can use the link 226 to communicate with other network entities to automatically locate the location of the TSA 2GG. Any suitable positioning technique can be performed and the processor 202 can use the transceiver 206 and/or the transceiver 2〇8 to report the results to the PCC. The processor 202 is also operative to receive commands from the power control center using a wireless communication system or a landline communication system. For example, power control may encode an instruction into the received wireless transmission frame 212. The wireless transmission frame 212 is received by the wireless transceiver 208. In the power control, the deduction order can also be encoded into the terrestrial line communication 216 received by the landline transceiver. In the case of _, the received instructions are all transmitted to the processor 202. Processor 202 decodes the above instructions and determines if any action must be performed. For example, if additional measurements are requested, the processor 202 controls the metrology module 204 to perform additional measurements. Processor 2〇2 then uses land line transceiver 206 or wireless transceiver 208 to transmit additional measurements to power control. Processor 2() 2 can also perform power control. Any other action sought by π, and which is not limited to obtaining only additional power line speculation results. For example, the above instructions may include an anomaly parameter 224 stored at the measurement module 2G4. The exception parameter 224 is used to allow the CC to dynamically control anomaly detection and processing. A more detailed description of the operation of the TSA 200 is provided in other sections below. 3 illustrates that exemplary power control constructed in accordance with a time synchronization system, such as PCC 3, is suitable for use as the pcc 122 illustrated in FIG. The PCC 300 includes Lu Hao® Wu Processing 15 302, Land Line Transceiver 304, Wireless Transceiver 306, TSA Repository 3〇8, and all using Data Bus 31. The ρ piece consumption σ is communicated at the beginning. It should be noted that 16 201145954 is merely an example and other embodiments are also permissible. The wireless transceiver 306 includes hardware and/or software that operates to allow the PCC 300 to communicate with other entities using hardware or other information using a wireless communication system. For example, transceiver 3〇6 includes a transmitter portion operable to transmit information, instructions, or one or more Ts a using synchronous transmission frame 314 of a synchronous wireless communication system, such as a CDMA communication system, or other information. Transceiver 3〇6 also includes a receiver that is operative to receive synchronized measurements 312 from one or more TSAs using a synchronous wireless communication system. The landline transceiver 304 includes hardware and/or software-implementing hardware that operates to allow the pcc 300 to communicate with other entities using a landline communication system for data or other information. For example, transceiver 3〇4 includes a receiver portion that is operable to receive synchronized measurement results 316 from or from multiple TSAs using a landline communication system. Transceiver 3〇4 also includes a transmitter operable to transmit instructions 318 or other data to - or a plurality of TSAs using a terrestrial line communication system. The TSA repository 308 includes information about the TSA stored in any suitable memory accessible via the busbar 310. The database 〇8 identifies the TSA by the identifier assigned to the TSA, and the database 〇8 includes any other information necessary to process the synchronization measurements received from the REN-TSA. The database (4) TSA identifier is associated with the geographic location so that the synchronization measure (4) (4) for each connection can be determined. The processor 302 includes at least one of a CPU, a processor, a gate array, hardware logic, a memory unit, and/or a hardware that executes software. The processor 302 is operative to process the synchronization measurements received by the transceiver 304 and the transceiver 306 to determine one or more power line conditions associated with the distribution line. For example, the received synchronization measurement result is associated with the identified TSA, and the processor 302 can access the TSA database to determine the location associated with each received synchronization measurement result. Processor 3〇2 can then determine one or more power line conditions by analyzing the measured scores obtained at each location. For example, if one or more TSAs report a low voltage condition, the processor 302 can access the TSA database 308 to determine the location of the low voltage condition described above. Similarly, processor 302 can correlate the synchronized phase measurements of the TSA report in real time to determine the location of any phase change that can indicate a load problem or a potential power outage condition. Processor 302 can also be operative to determine whether any additional measurements or actions from one or more TSAs are desired. If so, the processor can control the wireless transceiver 306 to send an instruction to one or more of the tsa in the synchronized transmission frame. These instructions instruct the particular TSA to make additional measurements, update the anomaly parameters, or perform additional actions and report back the results. The device 302 also supports a communication channel 32, which allows "power distribution, communication with other Pccs. The communication channel allows information to be exchanged at the pcc parent and allows for decentralized processing of power line measurements performed by the TSA. Communication channel 320 includes any suitable communication link that allows multiple PCCs to communicate. Figure 4 illustrates an exemplary method of time synchronization and measurement of a time synchronization system. For clarity, reference is made to Figure 2 below. The method tsa _ 18 201145954 shows a method 400. In an embodiment, the processor 2 执行 2 executes one or more sets of code to control the TSA 200 to perform the functions described below. At the context 402, the synchronization is received. Wireless communication signals, for example, from a synchronous wireless communication system, such as a CDMA system, or from any other type of system that can provide synchronized communication signals. In one embodiment, the transceiver 208 is from, for example, The wireless communication server, such as the server 116 illustrated in Figure i, receives the synchronized wireless communication signals. At block 404 4, by synchronizing to the synchronization described above The line communication signal is used to obtain time synchronization. In an embodiment, the transceiver 2G8 determines time synchronization based on the received synchronized wireless communication signal. For example, the received synchronized wireless communication signal includes synchronization to a GPS time standard. Transmitting frame 208. Transceiver 208 can analyze the received frames to obtain (or lock) time synchronization. For example, using CDMA transmission frame can determine time synchronization to -micro (four), money (4) the above transmission frame Any of the devices can be synchronized to the accuracy. Subsequently, the time synchronization is indicated to the generation timing logic 222. At block 406, the updated anomaly parameter is received. In an actual travel example, the exception parameter is received by the transceiver 2G8. And stored in the measurement module 2 () 4 as an abnormal parameter $ 224. The abnormal parameter identifies the power line anomaly to (4) and the action to be taken in response. At block 408, a synchronized power distribution measurement is performed. In an embodiment, the timing logic 222 vector measurement module 2〇4 provides a synchronization signal or trigger. The measurement module 204 measures the phase of the distribution line or other parameters. The response module 204 can be operative to measure the phase to any desired accuracy and synchronize the measurement results by a synchronization signal. The measurement module can also be operated to perform any other type of Power line measurement. At block 41 ' 'Use the wireless communication system to send a test result to the power control center. For example, the measurement module 2〇4 controls the wireless transceiver 2〇8 to use the wireless communication key 214 to send to the power control center. Synchronized phase measurement results. At block 410, in an optional operation, a landline communication system is used to transmit synchronized phase measurements to the power control center. For example, the measurement module 204 controls the land line transceiver 206. The landline communication link 218 is used to transmit synchronized phase measurements to the power control center. Landline communication systems include telephone, network, or fiber optic communication systems, or other types of wired communication systems, including wired communication systems that use the power line itself. At block 412, a determination is made whether a request for additional measurements or other actions is received. For example, a request for additional measurements may be generated by the PCC and sent to the TSA 200 using the wireless transmission frame 212. If a request for additional measurements or other actions has not been received, then the method passes to block 418. If a request for additional measurements or other actions has been received, then the method passes to block 416. The processor 202 performs the decision operation. At block 416, additional measurements or actions are performed. For example, processor 202 controls measurement module 2〇4 to perform additional phase measurements or other power distribution measurements. Once additional measurements or actions have been performed, the method proceeds to block 41 〇 to send the measurement results. 20 201145954 At block 418, it is determined whether any Snowy Art Knife line anomalies are detected. For example, in the embodiment of the invention, the measurement module 2〇4 is pre-configured using the abnormal parameter 224, wherein the abnormal parameter 224 is often identified in the power line to be checked. Such anomalies include excessive power, voltage or current spikes, or any other type of anomaly associated with power line 102. In another embodiment, the PCC provides anomalous parameters at block 4-6. For example, the PCC can dynamically adjust the anomaly to be detected at any time by providing and/or updating the anomaly parameter 224. The anomaly parameter identifies the boundary and threshold for the basic or derived measurement. If the boundary $ value is exceeded, the measurement module determines if there is any abnormal condition. If there are - or multiple anomalies, the method moves to block 42. The method proceeds to block 406 if there is no abnormal condition. At block 420, additional measurements or actions are performed. For example, the anomaly parameter 224 includes additional measurements to be performed for each detected anomaly. For example, if a low voltage anomaly is detected, additional measurements such as power or current measurements can be performed. The processor 2〇2 controls the measurement module 204 to perform additional measurements based on the detected anomalies and corresponding measurements identified in the anomaly parameters 224. Once additional measurements or actions have been performed, the method goes to the block to send the results to the PCC. Thus 'in one embodiment, method 400 is performed by a TSA at any location associated with a distribution line to determine synchronized phase measurements or other power distribution parameters' and uses wireless transmission links and/or landline transmission links To send their measurement results to the power control center. It should be noted that the method 400 is merely an embodiment, and the operations of the method 4 can be rearranged or modified within the scope of protection of the various embodiments 21 201145954. Therefore, other embodiments are also permissible. Figure 5 illustrates an exemplary method 500 for receiving and processing synchronized measurement results in accordance with a time synchronization system. For the sake of clarity, the method 5 is described below with reference to the PCC 300 illustrated in FIG. In one embodiment, processor 302 executes one or more sets of code to control pcc 3 to perform the functions described below. At block 502, an update is sent to one or more TSAs. For example, processor 3〇2 generates an anomaly parameter and transmits it to the identified TSA using transceiver 3〇6. At block 504, synchronized power distribution measurements are received from one or more TSAs. For example, the transceiver 3G4 is used to receive synchronized power distribution measurements from the wireless communication system from the landline communication system or using the transceiver 306. Each of the synchronized power distribution measurements is associated with the identified TSA. At block 506, the received measurements are analyzed to determine a dead or power line condition. For example, processor 3〇2 analyzes measurements from multiple tsa to determine fluctuations in power, voltage, current, phase, or any other parameter. In one embodiment, processor 〇2 determines the location of the power line condition indicated by one or more m by determining the location of the TSA based on TSA repository 308. For example, to determine the phase change, processor 302 immediately correlates the received synchronized phase measurements to detect any phase changes that may be problematic. Subsequently, the TSA-based: and the corresponding position obtained from the TSA database (10) can determine the position of the detected phase change. 22 201145954 At block 508, it is determined whether additional measurements or actions are desired. For example, additional measurements from one or more TSAs are desired to adequately analyze a particular power line condition. If no additional measurements or actions are required, the method is bundled. If additional measurements or actions are required, the method proceeds to block 5〇8^ Processor 302 to make the decision. At block 510, one or more TSAs are identified to perform additional measurements or actions. For example, processor 302 determines one or more power line conditions based on previous synchronization measurements and identifies one or more TSAs <> TSAs from which additional measurements are desired to perform further analysis by their location and/or Or a unique identifier to identify. For example, if a phase change is detected at a particular location, processor 302 operates to request additional phase measurements from the TSA located at or near the location. At block 512, a request for additional measurements or actions is sent to the identified TSA. The processor 〇2 identifies the TSA described above and the associated measurement results to be obtained in one or more of the requests. The request is forwarded to the wireless transceiver 306 for transmission to the identified TSA using the transmission frame 212 of the system. With the German, the poems of the ancient times, the method is turned to the block 502 to update the abnormal parameters. Therefore, the 'method 500 can hold you and the eight sides to analyze the results of the measurement by the multiple TSAs, and ask for one or more specific TSA % when expecting the smudges & Measurement or action. The method 5 is only an embodiment, and may be too owed to the rearrangement of the protection method of the various embodiments. 'Others' are also allowed to be allowed. 23 201145954

圖6圖示根據時間同步系統所構造的示例性時間同步裝 置6〇0例如’ TS A 6GG適合於用作為圖2中所圖示的TSA 2〇〇。在-個態樣中’ TSA 6〇〇由包括一或多個模組的至少 個積體電路實施,其中該—或多個模組被配置成提供如 本案中:描述的時間同步系統的態樣。例如,在一種實施 例中,每一個模組皆包括硬體及/或執行軟體的硬體。 TSA 600包括第—模組,該第—模組包括用於接收同步 的無線通訊信號的構件(⑷),在—個態樣中,該構件包 括收發機208。TSA _亦包括第二模組,該第二模組包 括用於同步到該同步的無線通訊信號以產生同步的時間 的構件( 604),在一個態樣中,該構件包括收發機2〇8。 TSA 600亦包括第三模組,該第三模組包括用於基於該同 步的時間來執行—或多個配電量測以產生㈤步的配電量 測結果的構件(6G6)’在—個態樣中,該構件包括量測模 組204。TSA 600亦包括第四模組,該第四模組包括用於 向電力控制中心發送同步的配電量測結果的構件(608 ), 在一個態樣中’該構件包括收發機208。 圖7圖示根據時間同步系統所構造的示例性電力控制中 心700。例如,PCC7〇()適合於用作為圖3中所圖示的pcc 300。在一個態樣中,PCC 700由包括一或多個模組的至少 一個積體電路實施,其中該一或多個模組被配置成提供如 本案中所描述的時間同步系統的態樣。例如,在一種實施 例中’每一個模組包括硬體及/或執行軟體的硬體。 PCC 7〇〇包括第一模組,該第一模組包括用於分別從一 24 201145954 或多個量測設備接收-或多個時間同步的配電量測結果 =構件(702) ’其中每—個量測設備被同步到同步的無線 5二統在個態樣中,該構件包括收發機306t>PCc 7〇〇 亦包括第二模組,㈣二模組包括用於分析該—或多個時 間同步的配電量測結果以決定配電系統的一或多個電力 302的構件(Μ4 ^在—個態樣中’該構件包括處理器 在-或多個示例性的實施例中’所描述的功能可以在硬 =、由電腦執行的軟體、勤體,或者其任何組合中實施。 右在軟料實施,則可㈣㈣魏料在電腦可讀取媒 或者作為電腦可讀取媒體上的—或多個指令或代碼 辦订傳輸、。電腦可讀取媒體包括電腦儲存媒體和通訊媒 其中通訊媒體包括促進將電腦程式從一個地方向另一 個地方傳送的任何媒體。儲存媒體可以是電腦可以存取的 任何可用媒體。舉例而言(但並非限制),此種電腦可讀 取媒體可^括RAM、刪、EEPROM、CD_R〇M或其他 光碟儲存H、磁㈣存^或其他磁㈣存設備,或者可以 用於以指令或資料結構的形式攜帶或儲存期望的程式碼 、、可乂由電腦進行存取的^何其他媒體。此外,可以將任 何連接適當地稱為電腦可讀取媒體。舉例而言若軟體是 使用同轴電纜、光纖電纜、雙絞線、數位用戶線(DSL), 3 = 外線、無線電和微波之類的無線技術,從網 站、伺服器,壶j:仙、告μ π於 電魔、雙絞線,L 則該同_、光纖 或者諸如紅外線、無線電和微波之 25 201145954 類的無線技衡被包括在該媒體的定義中。如本案所使用 Γ,磁碟和光樓包括壓縮光碟(⑶)、雷射光碟、光碟、 數位多功能光碟(DVD )、 子人啼年監先先碟,其中磁碟通 常磁性地再現資4c4, ’ 先碟則用雷射來光學地再現資料。 上述内谷的組合亦靡合姑4 t 卜 丌應s被包括在電腦可讀取媒體的保護 範轉之内。 用於執行本案所描述功能的㈣處理器、數位信號處理 W)、特殊應用積體電路(ASIC)、現場可程式閉陣 列\FPGA)或其他可程式邏輯設備、個別閉門或者電晶體 邏輯個別硬體%件,或者其任何組合,可以用來實施或 執行、·”本案所揭不的態樣描述的各種說明性的邏輯、邏 輯區塊:模組和電路。通用處理器可以是微處理器,或者, 該處理益亦可以是任何一般的處理器、控制器、微控制 器,或者狀態機。處理器亦可以實施為計算設備的組合, 例如’ DSP和微處理器的組合、複數個微處理器、一或多 個微处理器與DSP核心的結合,或者任何其他此種結構。 為使本領域任何技#人士能夠實現或者使用本發明,上 文圍繞所揭示的態樣進行了描述。對於本領域技藝人士而 $ ’對該等態樣的各種修改是顯而易見的,並且,本案中 定義的普適原理亦可以在不脫離本發明的精神或保護範 π的基礎上適用於其他態樣,例如,即時訊息服務或者任 何通用無線資料通訊應用。因此’本發明並不意欲限於本 案所展示的該等態樣,而是與本案揭示的原理和新穎性特 徵的最廣範疇相一致。本案專門使用的用語「示例性的 26 201145954 思谓「用作示例、實命丨式句 . 只A玖說明」。本案描述為「示例性」 的任何態樣不必被解釋為比其他態樣更佳或更具優勢。 因此儘S本案中已經描述和說明了時間同步系統的— 些態樣,但應當理解的县 -Γ γ二* 解的疋,可以在不偏離該等態樣的精神 或本質特徵的基礎上對盆^ ^ 呢上對其進仃各種改變。因此,本案所揭 示的内容和描述音错& 佃扎思欲為說明性的,而不是對在下文請求項 中提供的本發明的保護範疇的限制。 【圖式簡單說明】 結合附圖來參考上文的眘# 士 4 ^ ^ ^ 又的實施方式,本案中所描述的上 態樣變得更加顯而易見,其中: 配電系統中使用的示例性時間同步 圖1圖示一種用於在 系統; 的示例性時間同步 圖2圖示根據該時間同步系統所構造 裝置; 中 圖3圖示根據該時間同步系統所構造的示例性電力控制 心; 例性方法; 圖4圖不根據該時間同步系統用於時間同步和量測的示 圖5圖示根攄9 龈該時間同步系統用於接收和處理時間 的量測結果的示例性方法; ’ 圖6圖示根據兮·& 骒荔時間同步系統所構造的示例性時 裝置; ^ 圖7圖示根據該時間同步系統所構造的示例性電力控制 27 201145954 中心。 【主要元件符號說明】 100 時間同步系統 102 配電線路/電力線 104 時間同步裝置 (TSA) 106 TSA 108 TSA 110 TSA 112 TSA 114 無線通訊伺服器 116 無線通訊伺服器 118 無線通訊伺服器 120 無線通訊伺服器 122 電力控制中心 (PCC) 124 路徑 126 路徑 128 網路介面 130 通訊通道 200 TSA 202 處理器 204 量測模組 206 陸地線路收發機 208 無線收發機 28 201145954 210 2 12 214 216 218 220 222 224 226 300 302 304 306 308 3 10 3 12 314 316 318 320 400 402 404 406 資料匯流排 傳輸訊框 同步的量測結果/無線通訊鏈路 指令/陸地線路通訊 陸地線路通訊鏈路/同步的量測結果 電力線 時序邏輯 異常參數 通訊鍵路 電力控制中心 處理器 陸地線路收發機 無線收發機 TSA資料庫 育料匯流排 同步的量測結果 同步傳輸訊框 同步的量測結果 指令 通訊通道 方法 方塊 方塊 方塊 29 201145954 408 方塊 410 方塊 412 方塊 416 方塊 418 方塊 420 方塊 500 方法 502 方塊 504 方塊 506 方塊 508 方塊 510 方塊 512 方塊 600 時間同步裝置 602 構件 604 構件 606 構件 608 構件 700 電力控制中心 702 構件 704 構件 30Figure 6 illustrates an exemplary time synchronization device 6 〇 0, e.g., ' TS A 6 GG constructed in accordance with a time synchronization system suitable for use as the TSA 2 图示 illustrated in Figure 2 . In one aspect, the 'TSA 6' is implemented by at least one integrated circuit including one or more modules, wherein the one or more modules are configured to provide the state of the time synchronization system as described in the present case: kind. For example, in one embodiment, each of the modules includes hardware and/or hardware that executes the software. The TSA 600 includes a first module that includes means ((4)) for receiving synchronized wireless communication signals, and in one aspect, the component includes a transceiver 208. The TSA_ also includes a second module that includes means (604) for synchronizing to the synchronized wireless communication signals to generate a synchronized time, in one aspect, the member includes a transceiver 2〇8 . The TSA 600 also includes a third module including a component (6G6)' in a state of performing a measurement measurement based on the time of the synchronization—or a plurality of power distribution measurements to generate (5) steps. In this example, the component includes a metrology module 204. The TSA 600 also includes a fourth module that includes means (608) for transmitting synchronized power distribution measurements to the power control center, in one aspect the component includes a transceiver 208. FIG. 7 illustrates an exemplary power control center 700 constructed in accordance with a time synchronization system. For example, PCC7() is suitable for use as pcc 300 as illustrated in FIG. In one aspect, PCC 700 is implemented by at least one integrated circuit including one or more modules configured to provide a temporal synchronization system as described in this context. For example, in one embodiment, 'each module includes hardware and/or hardware that executes the software. The PCC 7A includes a first module including power distribution measurement results for receiving from a 24 201145954 or a plurality of measurement devices, respectively, or multiple time synchronizations = components (702) 'each of which The measuring devices are synchronized to the synchronized wireless system, the component includes a transceiver 306t> the PCc 7〇〇 also includes a second module, and the (4) two modules include for analyzing the one or more Time-synchronized power distribution measurements to determine the components of one or more powers 302 of the power distribution system (described in the context of the component including the processor in the - or exemplary embodiments) The function can be implemented in hard =, software executed by computer, hard work, or any combination thereof. Right on the soft material implementation, then (4) (4) Wei materials in the computer readable media or as computer readable media - or A plurality of instructions or code-ordered transmissions. Computer-readable media includes computer storage media and communication media, wherein the communication media includes any media that facilitates the transfer of computer programs from one location to another. The storage media may be computer-readable. Any available media. For example (but not limited to), such computer readable media may include RAM, EEPROM, CD EEPROM, CD_R〇M or other optical disk storage H, magnetic (four) memory or other magnetic (four) storage devices. Or it can be used to carry or store the desired code in the form of an instruction or data structure, and other media that can be accessed by a computer. In addition, any connection can be appropriately referred to as a computer readable medium. In terms of software, use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), 3 = wireless technology such as outside line, radio and microwave, from the website, server, pot j: fairy, conf π in the electric magic, twisted pair, L is the same _, optical fiber or such as infrared, radio and microwave 25 201145954 class wireless technology is included in the definition of the media. As used in this case, disk and light floor Including compact discs ((3)), laser discs, compact discs, digital versatile discs (DVD), sub-persons, first-hand discs, where the discs are usually magnetically reproduced 4c4, 'first discs are laser-optic Reproduction The combination of the above-mentioned inner valleys is also included in the protection of computer-readable media. (4) Processors for performing the functions described in this case, digital signal processing W), special Application Integrated Circuit (ASIC), Field Programmable Array (FPGA) or other programmable logic devices, individual closed gates or transistor logic hardware parts, or any combination thereof, can be used to implement or execute, "this case The various illustrative logical, logical blocks are described in terms of modules, modules, and circuits. The general purpose processor may be a microprocessor, or the processing may be any general processor, controller, or micro A controller, or a state machine. The processor can also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, a combination of one or more microprocessors and a DSP core, or any other This structure. To enable any person skilled in the art to practice or use the present invention, the above description is directed to the disclosed aspects. Various modifications to the above-described aspects will be apparent to those skilled in the art, and the general principles defined in the present invention can also be applied to other aspects without departing from the spirit or protection of the invention. For example, an instant messaging service or any general wireless data communication application. Therefore, the present invention is not intended to be limited to the embodiments shown herein, but rather in the broadest scope of the principles and novel features disclosed herein. The term used exclusively in this case "exemplary 26 201145954 thinks "is used as an example, a sacred sentence. Only A 玖 description." Any aspect described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects. Therefore, the situation of the time synchronization system has been described and illustrated in this case, but it should be understood that the county-Γ γ ** solution can be based on the spirit or essential characteristics of the aspect. Pots ^ ^ on it to change various changes. Therefore, the content and description of the present invention are intended to be illustrative, and not to limit the scope of protection of the invention as set forth in the claims below. [Simple description of the drawings] With reference to the above drawings, the above-described embodiment of the present invention becomes more apparent, in which: the exemplary time synchronization used in the power distribution system 1 illustrates an exemplary time synchronization for use in a system; FIG. 2 illustrates an apparatus constructed in accordance with the time synchronization system; FIG. 3 illustrates an exemplary power control core constructed in accordance with the time synchronization system; an exemplary method Figure 4 is a diagram showing an exemplary method for the time synchronization and measurement based on the time synchronization system for time synchronization and measurement. The exemplary method for receiving and processing time measurements by the time synchronization system; 'Figure 6 An exemplary time device constructed in accordance with a 兮·& 骒荔 time synchronization system; ^ Figure 7 illustrates an exemplary power control 27 201145954 center constructed in accordance with the time synchronization system. [Main component symbol description] 100 Time synchronization system 102 Distribution line/power line 104 Time synchronization device (TSA) 106 TSA 108 TSA 110 TSA 112 TSA 114 Wireless communication server 116 Wireless communication server 118 Wireless communication server 120 Wireless communication server 122 Power Control Center (PCC) 124 Path 126 Path 128 Network Interface 130 Communication Channel 200 TSA 202 Processor 204 Measurement Module 206 Land Line Transceiver 208 Wireless Transceiver 28 201145954 210 2 12 214 216 218 220 222 224 226 300 302 304 306 308 3 10 3 12 314 316 318 320 400 402 404 406 Data bus transmission frame synchronization measurement result / wireless communication link command / land line communication land line communication link / synchronous measurement result power line timing Logic abnormal parameter communication keyway power control center processor land line transceiver wireless transceiver TSA database nurturing bus synchronization measurement result synchronous transmission frame synchronization measurement result command communication channel method block square block 29 201145954 408 410 block 412 Block 416 Block 418 Block 420 Block 500 Method 502 Block 504 Block 506 Block 508 Block 510 Block 512 Block 600 Time Synchronizer 602 Member 604 Member 606 Member 608 Member 700 Power Control Center 702 Member 704 Member 30

Claims (1)

201145954 七、申請專利範圍·· 1- 一種用於—配 . 括以下步驟: ’、統中的時間同步的方法’該方法包 接收一同步的益飨.s &amp; ,,,、線通訊信號; 同步到該同步的益 基於哕同+&amp; + 訊信號以產生同步的時間; 丞尽忑w步的時間 _ 配電量測結果;及订—或多個配電量測,以產生同步的 向一電力控制中 适該等同步的配電量測結果。 2 · 如晴求項1,、+ ^ _ n .a ,,八中該接收之步驟包括以下步驟: 從一冋步通訊系統中 ^ β服器接收該同步的無線通訊 1吕就。 其中該同步通訊系統是一分碼多 3.如睛求項2之方法 工存取(CDMA)系統 4.如。月求項1之方法,其中該同步之步驟包括以下步驟: 同步到該同步的無線通訊信號中的傳輸訊框,Μ避免累積 的時間誤差。 5.如請求項丨之方法,其中該執行之步驟包括以下步驟: 在一電力線上執行該一或多個配電量測,以決定一或多個 同步的基本量測結果或派生量測結果。 31 201145954 6 ·如請求項1 從功率、電流、 之方法,其中該一或多個配電量測包括 電壓和相位量測中選擇的至少一個量測 之步驟包括以下步驟: 制中心發送該等同步 如叫求項1之方法,其中該發送 使用一第二無線傳輸來向該電力控 的配電量測結果。 月求項1之方法,其中該發送之步驟包括以下步驟: 使用1¾地線路傳輸來向該電力控制中心發送該等 的配電量測結果。 9.如請求項1之方法,進一步包括以下步驟: 接收針對一或多個另外的量測的一請求; 執打該一或多個另外的量測,以產生一或多個另外的結 果;及 發送該一或多個另外的結果。 10· 一種用於一配電系統中的時間同步的裝置,該裝置包 括: 用於接故一同步的無線通訊信號的構件; 用於同步到該同步的無線通訊信號以產生同步的時間的 構件; 用於基於該同步的時間執行一或多個配電量測,以產生同 32 201145954 步的配電量剜結果的構件;及 用於向一電力控制中心發送該等同步的配電量測結果、 構件。 的 u·如請求項ίο之裝置,其中該用於接收的構件包括. 用於從一同步通訊系統中的一伺服器接收該同步的無線 通訊信號的構件。 12.如請求項11之裝置,其中該同步通訊系統是—分辱夕 工存取(CDMA)系統。 夕 1, .如請求項10之裝置,其中該用於同步的構件包括· 用於同步到該同步的無線通訊信號中的傳輸訊框, 累積的時間誤差的構件。 避免 I4.如請求項10之裝置,其中該用於執行的構件包括. 於在—電力線上執行該一或多個配電量測,以決〜一 多個固牛^一或 夕的基本量測結果或派生量測結果的構件。 從功如率睛未項Η之裝置’其中該一或多個配電量測包括: …、電流、電壓和相位量測中選擇的至少—個 測 β 用I:/求項η之裝置’其中該用於發送的構件包括. 、用—第二無線傳輸來向該電力控制中心發送該等 33 201145954 同步的配電量測結果的構件。 17·如請求们〇之裝置’其中該用於發送的構件包括: 用於使用陸地線路傳輸來向該電力控制中心發送該等 同步的配電量測結果的構件。 18.如請求項1〇之裝置,進一步包括: 用於接收針對一或多個另外的量測的—請求的構件; 用於執行該一或多個另外的量測,以產生一或多個另外的 結杲的構件;及 用於發送該一或多個另外的結果的構件。 19. 一種用於一配電系統中的時間同步的裝置,該裝置包 括: / 、 ,並同 一接收機,被配置成:接收一同步的無線通訊信號 步到該同步的無線通訊信號以產生同步的時間; 一量測模組 配電量測, ,被配置成:基於該同步的時間執行一或多個 以產生同步的配電量測結果;及 -發射機’被配置成:肖一電力控制中心發送該等同步的 配電量測結果。 20.如請求項19之裝置,其中該接收機被配置成: 從一同步通訊系統令的一伺服器接收該同步的無線通吞 信號。 訊 34 201145954 21·如請求項20之裝置,其中該同步通訊系統是一分碼多 工存取(CDMA)系統。 22.如請求項19之裝置,其中該接收機被配置成: 同步到該同步的無線通訊k號中的傳輸訊框,以避免累積 的時間誤差。 ' 23.如叫求項19之裝置,其中該量測模組被配置成: 在-電力線上執行該一或多個配電量測,以決定一或多個 同步的基本量測結果或派生量測結果。 认如請求項19之裝置,纟中該一或多個酉己電量測包括: 從力率t流、電壓和相位量測中選擇的至少一個量測。 25.如叫求項19之裝置,其中該發射機被配置成: 使用第一'無線傳輸來向該電力控制中心發送該等同步 的配電量測結果。 ’ 26·如β求項19之裝置,其中該發射機被配置成: 使 陸地線路傳輪來向該電力控制中心發送該等同步 的配電量測結果。 ’ 27 如請求項19之裝置,其中 35 201145954 該接收機被配置成接故斜料 ^ 測的一請 又斜對一或多個另外的量 求; 該量測模組被配置成勃并兮 ,.., 執仃该一或多個另外的量測,以產生 一或多個另外的結果;及 該發射機被配置成發送該—或多個另夕卜的結果。 28· —種用於一配雷糸銥士 品 '、統中的時間同步的電腦程 該電腦程式產品包括: 處理器執行的代碼,該 一電腦可讀取媒體,包含可以由一 等代碼用於: 接收一同步的無線通訊信號; 同步到該同步的盔飨诵 、 …訊號,以產生同步的時間; 基於該同步的昧門社 時間執仃-或多個配電量測,以產生同步的 配電量測結果;及 U 7 向一電力控制中心發谈 赞送該等同步的配電$測結果。 29·如請求項28 成: 之電腦可讀取媒體,其中該等代碼被配置 從一同步通訊备 信號 讯系統中的一伺服器接收該同步的無線通訊 3 0 如求_ jg • $ 29之電腦可讀取媒體,其中該同步通訊系統 是一分碼多1^ 工存取(CDMA)系統。 36 201145954 =·:如請求項28之電腦可讀取媒體,其中該等代碼被配置 同步到該同步的無線通訊信號中的傳輸訊框, 的時間誤差 以避免累積 之電腦可讀取媒體,其中該等代碼被 配置 32_如請求項28 成: 在電力線上執行該一或多個配雷旦% v 尺夕1固配電里測,以決定一或客 同步的基本景測处I + v L曰 4夕個 个置別果或派生量測結果。 33· %請 &lt;項28之電腦可讀 量測包括:從功率、雷…r $多個配電 /;,L電壓和相位量測中選擇的至少 一個量測。 、评刃主&gt; 配置 3成1 2.如請求項28之電腦可讀取媒體,其中該等代碼被 u發送該等同步 使用第一無線傳輸來向該電力控制中, 的配電量測結果。 37 1 成3.如請求項28之電腦可讀取媒體,其中該等代碼被配置 2 :二地線路傳輸來向該電力控制中心發送該等同步 3 的配電置測結果。 , 201145954 3 6.如4求項28之電腦可讀取媒體,其中該等代碼被配置 成: 接收針對一或多個另外的量測的一請求; / s 或多個另外的量測,以產生一或多個另外的结 果;及 … 發送該一或多個另外的結果。 37.種用於一配電系統中的時間同步的方法,該方法包 括以下步驟: =別從一或多個量測設備接收一或多個時間同步的配電 置測、'°果,其中每一個量測設備皆被同步到一同步無線通 訊系統;及 — 刀析u或多個時間同步的配電量測結果,以決定該配電 系統的一或多個電力狀況。 X 如吻求項37之方法,進一步包括以下步驟: 將該一或多個時間同步的配電量測結果分別與一或多個 地理位置相關聯;及 的配 基於該—或多個地理位置來使該一或多個時間同步 電量測結果相關聯,以決定一量測結果變化。 以下步驟: 或多個時 39.如請求項37之方法,其中該接收之步驟包括 從該同步無線通訊系統中的一伺服器接收該一 間同步的配電量測結果。 38 系 個時間同步 果, 201145954 40·如請求項37之方法,其中該同步無 碼多工存取(CDMA)系統。 :1·如請求項37之方法,其中該一或多 -測結果與該配電系統的一電力線相關聯。° 如凊求項37之方法,其中該一或多個 量泪1丨&amp;士 | ^ 間g 擇/匕括:從功率、電流、電壓和相位量濟 的至少—個量測結果。 、 如π求項37之方法,其中該接收之步驟包括 陸地線路傳輸中接收該一或多 測結果。 用於配電系統中的時間同步的裝置, :於從-或多個量測設備接收一或 董測結果的槿杜甘士在 同 结、s #件其—個量測設備被同步到 線通訊系統;及 7 SJ 用於分析該—或多個時間同步的配 配電系統的—❹個電力狀況的構件 45.如請求項44之裝置,進一步包括: 統是一分 丨步的配電 丨步的配電 J結果中選 以下步驟: 的配電量 該裝置包 步的配電 一同步無 以決定該 39 201145954 用於將該—或多個時間同步的配電量測結果分別與—或 多個地理位置相關聯的構件;及 〆 用於基於該-或多個地理位置來使該—或多個時間同步 的配電量測結杲相關聯’以決定—量測結果變化的構件。 46.如請求項44之襞置,其中該用於接收的構件包括: 用於從該同步無線通訊系統中的—伺服器接收該—或多 個時間同步的配電量測結果的構件。 夕 A如請求項44之裝置’其中該同步無線通訊系統是一分 碼多工存取(CDMA)系統。 4:如請求項44之裝置,其中該一或多個時間同步的配電 量測結果與該配電系統的一電力線相關聯。 伙如請求項44之裝置,其中該—或多個時間同步的配電 量測結果包括:從功率、電流、電壓和相位量測結果中選 擇的至少—個量測結果。 50.如請求項44之裝置,其中該用於接收的構件包括: 用於在—陸地線路傳輸中接收該一或多個時二· ,θ , 叮间同步的1 電S測結果的構件。 .-㈣於—配電系統中的時間同步的裝置,該裝置包 40 201145954 括: 一收發機,被配置成:分 刀別從一或多個量測設備接收一或 夕個時間同步的配電量測彡士 j,··°不其中母一個量測設備被同 且被配置成:分析該一或 以決定該配電系統的一或 步到一同步無線通訊系統;及 一處理器,被耦合到該收發機 多個時間同步的配電量測結果 多個電力狀況。 52·如請求項51之裝置’其中該處理器被配置成: 將該-或多個時間同步的配電量測結果分別與一或多個 地理位置相關聯;及 基於該或夕個地理位置來使該一或多個時間同步的配 電量測結果相關聯,以決定一量測結果變化。 53·如請求項51之裝置,其中該收發機被配置成: 從該同步無線通訊系統中的一伺服器接收該一或多個時 間同步的配電量測結果。 54. 如知求項51之裝置,其中該同步無線通訊系統是一分 碼多工存取(CDMA )系統。 55. 如請求項51之裝置,其中該一或多個時間同步的配電 量測結果與該配電系統的一電力線相關聯。 41 201145954 ^請求項5丨之裝置,其中該一或多個時間同步的配電 里測結果包括:從功率、電流、電壓和相位量測結果中遽 擇的至少一個量測結果。 57.如請求項51之裝置,其中該收發機被配置成: 在一陸地線路傳輸中接收該一或多個時間同步的配電量 測結果。 58. -種用於一配電系統中的時間同步的電腦程式產品, 該電腦程式產品包括: -電腦可讀取媒體,包含可以由—處理器執行的代碼,該 等代碼用於: :別從-或多個量測設備接收一或多個時間同步的配電 量測結果’其中每—個量測設備被同步到_同步無線通訊 系統;及 分析該—或多個時間同步的配電量測結果,以決定該配電 系統的一或多個電力狀況。 其中該等代碼被配置 59.如請求項58之電腦可讀取媒體, 成使該處理器·· 將該-或多個時間同步的配電量測結果分別與一或多個 地理位置相關聯;及 、 土; ^或多個地理位置來使該—或多個時間同步的配 電量測結果相關聯,以決定一量測結果變化。 42 201145954 6 0.如4求項58之電腦可讀取媒體,其中該等代碼被配置 成使該處理器從該同步無線通訊系統中的一伺服器接收 該一或多個時間同步的配電量測結果。 61_如清求項58之電腦可讀取媒體,其中該同步無線通訊 系統疋一分碼多工存取(CDMA )系統。 62·如請求項58之電腦可讀取媒體,其中該一或多個時間 同步的配電量測結果與該配電系統的一電力線相關聯。 如咕求項58之電腦可讀取媒體’其中該一或多個時間 同步的配電量測結果包肖:從功率、電流、電壓和相位量 測結果中選擇的至少一個量測結果。 64.如請求項 Μ之電腦可讀取媒體,其中該等代碼被配置 成使該處理器在—陸地線路傳輸中接收該一或多個時間 同步的配電量測結果。 43201145954 VII. Scope of application for patents·· 1- One for-matching: The following steps are included: 'Method of time synchronization in the system' This method package receives a synchronized benefit.s &amp;,,,, line communication signal The benefit of synchronizing to the synchronization is based on the same +&amp; + signal to generate the synchronization time; the time of the w step _ the power measurement result; and the subscription or multiple distribution measurements to generate the synchronization direction A synchronous power distribution measurement result is suitable for a power control. 2 · If the request is 1, , + ^ _ n .a , , the eight steps of receiving include the following steps: Receiving the synchronized wireless communication from the β server in a step communication system. The synchronous communication system is a code division. 3. The method of the solution 2 (CDMA) system 4. For example. The method of claim 1, wherein the step of synchronizing comprises the steps of: synchronizing to a transmission frame in the synchronized wireless communication signal to avoid accumulated time error. 5. The method of claim 1, wherein the step of performing comprises the step of: performing the one or more power distribution measurements on a power line to determine one or more synchronized basic measurements or derived measurements. 31 201145954 6 - The method of claim 1, wherein the one or more power distribution measurements comprise at least one of the selected ones of the voltage and phase measurements comprises the steps of: the center transmitting the synchronizations The method of claim 1, wherein the transmitting uses a second wireless transmission to measure the power distribution to the power control. The method of claim 1, wherein the step of transmitting comprises the step of: transmitting the power distribution measurements to the power control center using a 13⁄4 line transmission. 9. The method of claim 1, further comprising the steps of: receiving a request for one or more additional measurements; performing the one or more additional measurements to generate one or more additional results; And transmitting the one or more additional results. 10. A device for time synchronization in a power distribution system, the device comprising: means for receiving a synchronized wireless communication signal; means for synchronizing to the synchronized wireless communication signal to generate a synchronized time; A means for performing one or more power distribution measurements based on the time of the synchronization to generate a power distribution 剜 result of 32 201145954; and for transmitting the synchronized power distribution measurement results, components to a power control center. The apparatus of claim 355, wherein the means for receiving comprises: means for receiving the synchronized wireless communication signal from a server in a synchronous communication system. 12. The apparatus of claim 11, wherein the synchronous communication system is a CDMA system. The apparatus of claim 10, wherein the means for synchronizing comprises: means for synchronizing to the transmission frame in the synchronized wireless communication signal, the accumulated time error. A device of claim 10, wherein the means for performing comprises: performing the one or more power distribution measurements on the power line to determine a basic measurement of a plurality of solid cattle or one or the evening The result or component of the derived measurement result. The device of the power supply is not included in the device, wherein the one or more power distribution measurements include: at least one selected from the following: ..., current, voltage, and phase measurements. The means for transmitting includes means for transmitting, by the second wireless transmission, the 33 201145954 synchronized power distribution measurement results to the power control center. 17. A device as claimed </ RTI> wherein the means for transmitting includes: means for transmitting the synchronized power distribution measurements to the power control center using terrestrial line transmission. 18. The apparatus of claim 1, further comprising: means for receiving a request for one or more additional measurements; for performing the one or more additional measurements to generate one or more Additional crusted components; and means for transmitting the one or more additional results. 19. A device for time synchronization in a power distribution system, the device comprising: /, and the same receiver configured to: receive a synchronized wireless communication signal to the synchronized wireless communication signal to generate synchronization Time; a measurement module power distribution measurement, configured to: perform one or more based on the synchronized time to generate a synchronized power distribution measurement result; and - the transmitter 'is configured to: the Xiaoyi Power Control Center sends These synchronized power distribution measurements. 20. The device of claim 19, wherein the receiver is configured to: receive the synchronized wireless pass signal from a server of a synchronous communication system. The device of claim 20, wherein the synchronous communication system is a code division multiple access (CDMA) system. 22. The apparatus of claim 19, wherein the receiver is configured to: synchronize to a transmission frame in the synchronized wireless communication k number to avoid accumulated time errors. 23. The device of claim 19, wherein the measurement module is configured to: perform the one or more power distribution measurements on the power line to determine one or more synchronized basic measurements or derivatives Test results. In the device of claim 19, the one or more power measurements include: at least one measurement selected from a force rate t-stream, a voltage, and a phase measurement. 25. The device of claim 19, wherein the transmitter is configured to: transmit the synchronized power distribution measurements to the power control center using the first 'wireless transmission. The apparatus of claim 19, wherein the transmitter is configured to: cause the landline to transmit the synchronized power distribution measurements to the power control center. [27] The apparatus of claim 19, wherein 35 201145954 the receiver is configured to receive one or more additional quantities of the slanting material; the measuring module is configured to be 勃 兮The one or more additional measurements are performed to generate one or more additional results; and the transmitter is configured to transmit the one or more results. 28·- A computer program for a time-synchronized computer with a Thunder product, the computer program product includes: a code executed by the processor, the computer can read the media, and can be used by the first code Receiving a synchronized wireless communication signal; synchronizing to the synchronized helmet, ... signal to generate a synchronization time; based on the synchronization of the time-to-business time- or a plurality of power distribution measurements to generate synchronization The power distribution measurement result; and U 7 sends a comment to the power control center to send the synchronized power distribution measurement results. 29) The method of claim 28, wherein the code is configured to receive the synchronized wireless communication from a server in a synchronous communication signal system, such as seeking _jg • $29 The computer can read the media, wherein the synchronous communication system is a one-code multi-access (CDMA) system. 36 201145954 =:: The computer readable medium of claim 28, wherein the code is configured to synchronize the time error of the transmission frame in the synchronized wireless communication signal to avoid accumulation of computer readable media, wherein The codes are configured 32_ as requested in item 28: performing the one or more matching Rayleigh % v 固 1 solid power distribution measurements on the power line to determine the basic scene of the one or the guest synchronization I + v L曰 夕 个 个 个 个 个 个 个 个 个 个 个 个 个 个33· %Please refer to the computer readable measurement of item 28: at least one measurement selected from power, lightning, r$multiple power distribution/;, L voltage and phase measurement. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> 37 1 to 3. The computer readable medium of claim 28, wherein the codes are configured 2: two-way line transmission to transmit the power distribution test results of the synchronizations 3 to the power control center. 6. The computer readable medium of claim 28, wherein the code is configured to: receive a request for one or more additional measurements; /s or a plurality of additional measurements to Generating one or more additional results; and... transmitting the one or more additional results. 37. A method for time synchronization in a power distribution system, the method comprising the steps of: = not receiving one or more time synchronized power distribution measurements from one or more measurement devices, '° fruit, each of which The measurement devices are all synchronized to a synchronous wireless communication system; and - a plurality of time synchronized power distribution measurements to determine one or more power conditions of the power distribution system. The method of claim 37, further comprising the steps of: associating the one or more time synchronized power distribution measurements with one or more geographic locations; and assigning the one or more geographic locations based on the geographic location The one or more time synchronized power measurement results are correlated to determine a measurement result change. The method of claim 37, wherein the step of receiving comprises receiving the synchronized power distribution measurement result from a server in the synchronous wireless communication system. 38. Time synchronization, 201145954. The method of claim 37, wherein the synchronous codeless multiple access (CDMA) system. The method of claim 37, wherein the one or more results are associated with a power line of the power distribution system. ° The method of claim 37, wherein the one or more of the tears 1 丨 &amp; 士 | ^ g 匕 匕 匕 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The method of claim 37, wherein the step of receiving comprises receiving the one or more test results in a terrestrial line transmission. A device for time synchronization in a power distribution system: receiving a one or a test result from a measuring device or a plurality of measuring devices, the same measuring device, the measuring device being synchronized to the line communication System; and 7 SJ means for analyzing the power distribution system of the one or more time-synchronized power distribution systems. 45. The apparatus of claim 44, further comprising: the system is a step-by-step power distribution step The following steps are selected in the power distribution J result: The power distribution amount of the device is not synchronized to determine the 39 201145954 is used to associate the power distribution measurement results of the time synchronization time with - or multiple geographical locations respectively And means for correlating the one or more time synchronized power distribution measurements based on the one or more geographic locations to determine a change in the measurement result. 46. The apparatus of claim 44, wherein the means for receiving comprises: means for receiving the one or more time synchronized power distribution measurements from a server in the synchronous wireless communication system. A device of claim 44 wherein the synchronous wireless communication system is a code division multiple access (CDMA) system. 4: The apparatus of claim 44, wherein the one or more time synchronized power distribution measurements are associated with a power line of the power distribution system. The device of claim 44, wherein the one or more time synchronized power distribution measurements comprise: at least one of the measurements selected from the power, current, voltage, and phase measurements. 50. The apparatus of claim 44, wherein the means for receiving comprises: means for receiving one or more of the one or more time synchronizations in the land-line transmission. - (d) - Time-synchronized device in a power distribution system, the device package 40 201145954 includes: a transceiver configured to: receive one or more time-synchronized power distributions from one or more measurement devices Measuring a gentleman j, ···° a parent measuring device is identical and configured to: analyze the one or to determine a one-step to one synchronous wireless communication system of the power distribution system; and a processor coupled to The transceiver has multiple time synchronized power distribution measurements resulting in multiple power conditions. 52. The device of claim 51 wherein the processor is configured to: associate the one or more time synchronized power distribution measurements with one or more geographic locations; and based on the geographic location The one or more time synchronized power distribution measurements are correlated to determine a measurement change. 53. The device of claim 51, wherein the transceiver is configured to: receive the one or more time synchronized power distribution measurements from a server in the synchronous wireless communication system. 54. The apparatus of claim 51, wherein the synchronous wireless communication system is a code division multiple access (CDMA) system. 55. The device of claim 51, wherein the one or more time synchronized power distribution measurements are associated with a power line of the power distribution system. 41 201145954. The apparatus of claim 5, wherein the one or more time synchronized power distribution measurements comprise: at least one measurement result selected from power, current, voltage, and phase measurements. 57. The device of claim 51, wherein the transceiver is configured to: receive the one or more time synchronized power distribution measurements in a landline transmission. 58. A computer program product for time synchronization in a power distribution system, the computer program product comprising: - a computer readable medium containing code executable by a processor, the code for: - or a plurality of measuring devices receive one or more time synchronized power distribution measurements - wherein each of the measuring devices is synchronized to a synchronous wireless communication system; and analyzing the - or multiple time synchronized power distribution measurements To determine one or more electrical conditions of the power distribution system. Wherein the code is configured 59. The computer readable medium of claim 58 is such that the processor associates the one or more time synchronized power distribution measurements with one or more geographic locations; And, or; or a plurality of geographic locations to correlate the one or more time-synchronized distribution measurements to determine a measurement change. 42. The computer readable medium of claim 54, wherein the code is configured to cause the processor to receive the one or more time synchronized power distributions from a server in the synchronous wireless communication system Test results. 61. The computer readable medium of claim 58, wherein the synchronous wireless communication system is a code division multiplex access (CDMA) system. 62. The computer readable medium of claim 58, wherein the one or more time synchronized power distribution measurements are associated with a power line of the power distribution system. The computer readable medium of claim 58 wherein the one or more time synchronized power distribution measurements include at least one measurement selected from the power, current, voltage, and phase measurements. 64. A computer readable medium as claimed in claim 1, wherein the code is configured to cause the processor to receive the one or more time synchronized power distribution measurements in a landline transmission. 43
TW100105861A 2010-02-22 2011-02-22 Methods and apparatus for time synchronization and measurement of power distribution systems TW201145954A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/709,771 US9271057B2 (en) 2010-02-22 2010-02-22 Methods and apparatus for time synchronization and measurement of power distribution systems

Publications (1)

Publication Number Publication Date
TW201145954A true TW201145954A (en) 2011-12-16

Family

ID=43971509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105861A TW201145954A (en) 2010-02-22 2011-02-22 Methods and apparatus for time synchronization and measurement of power distribution systems

Country Status (7)

Country Link
US (1) US9271057B2 (en)
EP (2) EP2621117A1 (en)
JP (1) JP5526243B2 (en)
KR (2) KR20120131192A (en)
CN (1) CN102845004B (en)
TW (1) TW201145954A (en)
WO (1) WO2011103597A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012079151A1 (en) * 2010-12-15 2012-06-21 Triacta Power Technologies, Inc. Wireless voltage reference broadcast in a distributed energy metering system
US9293924B2 (en) * 2011-02-15 2016-03-22 Raytheon Company Electrical phase synchronization
US9883259B2 (en) 2011-08-15 2018-01-30 Digimarc Corporation Synchronized metrology in power generation and distribution networks
US9330563B2 (en) * 2013-02-12 2016-05-03 Digimarc Corporation Synchronized metrology in power generation and distribution networks
GB2514415A (en) 2013-05-24 2014-11-26 Ralugnis As Method and apparatus for monitoring power grid parameters
JP6225839B2 (en) * 2013-06-17 2017-11-08 三菱電機株式会社 Demand batch monitoring system, demand batch monitoring device, and demand monitoring device
CN103442312B (en) * 2013-09-06 2016-08-17 国家电网公司 Intelligent distribution network clock synchronization system based on PTN+EPON communication system and method
US9673994B2 (en) * 2014-01-20 2017-06-06 General Electric Company Synchrophasor data management systems and methods
US10495672B2 (en) 2015-04-03 2019-12-03 Aclara Technologies Llc Framework for fault detection and localization in power distribution networks
US10401402B2 (en) 2016-07-26 2019-09-03 Aclara Technologies Llc Synchronized phasor measurement in power distribution networks
CN106911416B (en) * 2017-03-15 2018-08-31 中国南方电网有限责任公司 Intelligent distribution network failure detector based on Packet Transport Network and wireless network
CN107086895B (en) * 2017-06-09 2018-11-30 上海胜战科技发展有限公司 High-accuracy network time service method based on alternating supply voltage phase difference correction
US11287285B2 (en) * 2017-12-18 2022-03-29 Landis+Gyr Innovations, Inc. Methods and systems for distributed verification and control of a resource distribution network
US10790878B1 (en) 2018-08-13 2020-09-29 Smart Wires Inc. Systems and methods for real-time communication among a cluster of impedance injection nodes in a power distribution system
US10763918B1 (en) * 2019-06-10 2020-09-01 Baker Hughes, A Ge Company, Llc Time synchronization of bottom hole assembly components via powerline communication
CN111090003B (en) * 2019-11-14 2022-04-12 国网江西省电力有限公司电力科学研究院 Synchronous direct current electric energy metering system based on Beidou/GPS clock
KR102436274B1 (en) * 2020-08-28 2022-08-25 현대로오텍(주) A life assessment equipment of three phase power source circuit breakers
CN114338806B (en) * 2022-02-28 2022-06-21 湖南云畅网络科技有限公司 Synchronous message processing method and system

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3343479B2 (en) 1996-07-26 2002-11-11 株式会社日立製作所 Distribution line monitoring system
JP4110747B2 (en) 2001-05-18 2008-07-02 富士電機システムズ株式会社 Harmonic monitoring system in power system
JP3689078B2 (en) 2002-10-09 2005-08-31 株式会社三英社製作所 Fault location system and slave station used for fault location system
JP2005106696A (en) 2003-09-30 2005-04-21 Dowango:Kk Apparatus for controlling time synchronization, method therefor, program therefor, and method for controlling event and program therefor
JP4545521B2 (en) 2004-03-31 2010-09-15 財団法人ソフトピアジャパン Multiple access apparatus and method using power line
WO2006014691A1 (en) * 2004-07-21 2006-02-09 Underground Systems, Inc. Dynamic line rating system with real-time tracking of conductor creep to establish the maximum allowable conductor loading as limited by clearance
US7804763B2 (en) * 2005-04-04 2010-09-28 Current Technologies, Llc Power line communication device and method
JP2007013486A (en) 2005-06-29 2007-01-18 Kyocera Corp Image sending request apparatus and recorder system
US20070058659A1 (en) * 2005-07-27 2007-03-15 Ayyagari Deepak V Method for providing requested quality of service
US8086281B2 (en) 2007-01-06 2011-12-27 Apple Inc. Apparatuses and methods that facilitate the transfer of power and information among electrical devices
DK2036189T3 (en) * 2006-06-01 2019-05-27 Google Llc Continuous power distribution architecture for a data center
US7761079B2 (en) * 2006-06-09 2010-07-20 Current Technologies, Llc Power line communication device and method
JP5100044B2 (en) 2006-06-27 2012-12-19 九州電力株式会社 Data collection method in case of power system accident
US20080077336A1 (en) 2006-09-25 2008-03-27 Roosevelt Fernandes Power line universal monitor
US7795877B2 (en) * 2006-11-02 2010-09-14 Current Technologies, Llc Power line communication and power distribution parameter measurement system and method
US7944868B2 (en) * 2006-12-04 2011-05-17 Nec Laboratories America, Inc. Method and system for dynamic power management in wireless local area networks
CN101680922B (en) * 2007-02-27 2013-04-17 Osi软件公司 Impedance measurement of a power line
US7877169B2 (en) * 2007-08-21 2011-01-25 Electro Industries/ Gauge Tech System and method for synchronizing an auxiliary electrical generator to an electrical system
US7715951B2 (en) 2007-08-28 2010-05-11 Consert, Inc. System and method for managing consumption of power supplied by an electric utility
US20090289637A1 (en) * 2007-11-07 2009-11-26 Radtke William O System and Method for Determining the Impedance of a Medium Voltage Power Line
US7965195B2 (en) * 2008-01-20 2011-06-21 Current Technologies, Llc System, device and method for providing power outage and restoration notification
DE102008046737B4 (en) 2008-09-11 2010-12-30 Siemens Aktiengesellschaft Method and system for synchronizing the clock frequencies of a transmitter and a receiver
US9647454B2 (en) * 2011-08-31 2017-05-09 Aclara Technologies Llc Methods and apparatus for determining conditions of power lines

Also Published As

Publication number Publication date
KR101701099B1 (en) 2017-01-31
US20110208364A1 (en) 2011-08-25
CN102845004A (en) 2012-12-26
EP2540017B1 (en) 2018-01-10
EP2621117A1 (en) 2013-07-31
KR20160013268A (en) 2016-02-03
JP5526243B2 (en) 2014-06-18
WO2011103597A1 (en) 2011-08-25
EP2540017A1 (en) 2013-01-02
US9271057B2 (en) 2016-02-23
CN102845004B (en) 2016-06-01
JP2013520948A (en) 2013-06-06
KR20120131192A (en) 2012-12-04

Similar Documents

Publication Publication Date Title
TW201145954A (en) Methods and apparatus for time synchronization and measurement of power distribution systems
US10327048B2 (en) Automatic network topology detection and fraud detection
JP5442015B2 (en) Determining phase connectivity of electrical grid endpoints
CN110463061A (en) Measurement report enhancing in system based on wave beam
Agarwal et al. Multi-level time-sensitive networking (TSN) using the data distribution services (DDS) for synchronized three-phase measurement data transfer
RU2009130406A (en) PLANNING THE STRUCTURE OF MEASUREMENT SPACES FOR MAINTENANCE
RU112441U1 (en) ELECTRIC ENERGY QUALITY MONITORING SYSTEM BASED ON SYNCHRONOUS MEASUREMENTS OF ELECTRIC ENERGY QUALITY INDICATORS
CA2863596C (en) Automatic network topology detection and fraud detection
CN106716886A (en) Communication network nodes and methods performed therein
JP2014522143A5 (en)
CN116406491A (en) Power line low-voltage transformer area topology identification method and device
Seyedi et al. A new approach to reliability assessment and improvement of synchrophasor communications in smart grids
CN109699068B (en) Base station synchronization method and device
EP3793174A1 (en) Monitoring of heat consumption
KR20140056461A (en) Supporting method for forecasting population density and apparatus supporting the same
RU2014140726A (en) Enabling CDMA2000 System Sharing in LTE
CN107277761B (en) Terminal position sending method and device
Mikkelsen et al. NetMap-creating a map of application layer qos metrics of mobile networks using crowd sourcing
CN103813382A (en) Clock synchronization method, device and system
WO2021056435A1 (en) Method and apparatus for abnormality detection
Kostopoulos et al. WiFiMon: Combining Crowdsourced and Probe Measurements for Wi-Fi Performance Evaluation
CN111948447A (en) Meter reading method and device for full-electric-quantity data
DK201870654A1 (en) Monitoring of heat consumption
Nourbakhsh Wireless sensor networks for monitoring smart grids: Design and experimental verification
BR102013009882A2 (en) Method for defining communication network architecture in smart grid applications