TW201145275A - Memory cell and an associated memory device - Google Patents

Memory cell and an associated memory device Download PDF

Info

Publication number
TW201145275A
TW201145275A TW99118016A TW99118016A TW201145275A TW 201145275 A TW201145275 A TW 201145275A TW 99118016 A TW99118016 A TW 99118016A TW 99118016 A TW99118016 A TW 99118016A TW 201145275 A TW201145275 A TW 201145275A
Authority
TW
Taiwan
Prior art keywords
transistor
storage
coupled
transistors
memory
Prior art date
Application number
TW99118016A
Other languages
Chinese (zh)
Other versions
TWI446342B (en
Inventor
Soon-Jyh Chang
Ming-Liang Chung
Po-Ying Chen
Chung-Ming Huang
Original Assignee
Himax Tech Ltd
Ncku Res & Dev Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd, Ncku Res & Dev Foundation filed Critical Himax Tech Ltd
Priority to TW99118016A priority Critical patent/TWI446342B/en
Publication of TW201145275A publication Critical patent/TW201145275A/en
Application granted granted Critical
Publication of TWI446342B publication Critical patent/TWI446342B/en

Links

Landscapes

  • Dram (AREA)
  • Semiconductor Memories (AREA)

Abstract

A memory cell includes a pair of sub-cells, each including an access transistor, a storage transistor, and an isolation transistor that are serially coupled in sequence with their source/drain connected. The isolation transistor is shared with a sub-cell of an adjacent memory cell and always turned off, wherein the storage transistor is always turned on. A wordline is coupled to a gate of the access transistor of each sub-cell, and complementary bit lines are respectively coupled to sources/drains of the access transistors of the pair of sub-cells, such that data bit may be accessed between the bit line and the corresponding storage transistor through the corresponding access transistor.

Description

201145275 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係有關一種半導體記憶體,特別是關於一種3T2C (3-1;ransistor-2-capacitor)動態隨機存取記憶體 (dynamic random access memory)單元。 【先前技術·】 [0002] 半導體記憶體是最常使用的資料儲存媒體之一,例如動 態隨機存取記憶體(dynamic random access memory, DRAM)以及靜態隨機存取記憶體(static random access memory, SRAM)。半導體記憶體可單獨製成一積 體電路,或是與其他元件整合後製成系統晶片(system on chip,S0C)。 [0003] 在目前的系統晶片應用中,記憶體佔了整個晶片的絕大 部分面積,例如60%至70%。因此,記憶體的型態及技術 之選擇會對整個晶片的效能及成本形成重要的影響。 [0004] 一些系統晶片係使用動態隨機存取記憶體技術來做為資 料儲存媒體。第一A圖顯示傳統動態隨機存取記憶體單元 之示意圖,其包括一儲存電容Cs以及一存取電晶體Ta。 由於架構簡單,故動態隨機存取記憶體的密度通常比靜 態隨機存取記憶體來得高。然而,傳統動態隨機存取記 憶體需要使用特定的製程技術,才能在微小矽晶片上形 成大電容量的儲存電容Cs。再者,該特定製程技術並不 相容於系統晶片的製程,因而增加了整個的製造成本。 [0005] 其他系統晶片則使用靜態隨機存取記憶體技術來做為資 料儲存媒體。第一B圖顯示傳統靜態隨機存取記憶體單元 099118016 表單編號 A0101 第 4 頁/共 20 頁 0992031922-0 201145275 之不意鞫,其包括兩個交又耦合(cross-coupled)的反 相器10Q及兩個存取電晶體Tb、Tc。不同於動態隨機存 取s己憶趲的是,靜態隨機存取記憶體的製程可相容於系 統晶片的製程,但其密度則比動態隨機存取記憶體低。 再者’知第一B圖所示,由於交叉耦合的反相器10是直接 輕接於電源Vdd和地之間,使得靜態隨機存取記憶體容易 丈電源的雜訊之干擾。 [0006] Ο 因此亟需提出一種新穎之記憶體架構,其能使用標準的 互補金屬氧化物半導體 mPlementary-iBe t a oxide- semi con d u c t o r, CM〇S)製程以降低製造成本,且兼具較高密度之特性。 【發明内容】 [0007] 鍛於上迷’本發明實施例之目的之一在於提出一種記憶 體單元架構以及一相關的高密度動態隨機存取記憶體裝 、可適用於系統晶片製程,且較不受電源雜訊的千 擾。 Ο [0008] 根據本發明實施例之-,記憶體單元包括-對子單元,201145275 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a semiconductor memory, and more particularly to a 3T2C (3-1; ransistor-2-capacitor) dynamic random access memory (dynamic random Access memory) unit. [Prior Art] [0002] Semiconductor memory is one of the most commonly used data storage media, such as dynamic random access memory (DRAM) and static random access memory (static random access memory). SRAM). The semiconductor memory can be fabricated into a single integrated circuit or integrated with other components to form a system on chip (S0C). [0003] In current system wafer applications, memory occupies a substantial portion of the entire wafer area, such as 60% to 70%. Therefore, the choice of memory type and technology will have an important impact on the performance and cost of the entire wafer. [0004] Some system chips use dynamic random access memory technology as a data storage medium. The first A diagram shows a schematic diagram of a conventional dynamic random access memory cell including a storage capacitor Cs and an access transistor Ta. Due to the simple architecture, the density of dynamic random access memory is usually higher than that of static random access memory. However, conventional dynamic random access memory devices require specific process technology to form a large capacitance storage capacitor Cs on a small germanium wafer. Moreover, this particular process technology is not compatible with the system wafer process, thus increasing the overall manufacturing cost. [0005] Other system chips use static random access memory technology as a data storage medium. The first B-picture shows a conventional SRAM unit 099118016, Form No. A0101, No. 4/20, 0992031922-0, 201145275, which includes two cross-coupled inverters 10Q and Two access transistors Tb, Tc. Unlike dynamic random access, the SRAM process is compatible with system wafer processes, but its density is lower than that of dynamic random access memory. Furthermore, as shown in the first B diagram, since the cross-coupled inverter 10 is directly connected between the power supply Vdd and the ground, the static random access memory is easy to interfere with the noise of the power supply. [0006] Therefore, there is a need to propose a novel memory architecture that can use standard complementary metal-oxide-semiconductor (MPP)S) processes to reduce manufacturing costs and have higher The nature of density. SUMMARY OF THE INVENTION [0007] One of the objects of the present invention is to provide a memory cell architecture and a related high-density dynamic random access memory device, which can be applied to a system wafer process, and Not disturbed by power noise. [0008] According to an embodiment of the present invention, a memory unit includes a pair of subunits,

每一早_ A 099118016 卞早兀包括一存取電晶體、一儲存電晶體以及一隔 離電晶體,其依序藉由連接源極/沒極而串聯耗接在〆起 隔離電曰曰體係共享使用於一鄰近記憶體單元的子單元 且係一直關閉的。而儲存電晶體則是一直導通的。字 線(word line)耗接至每一+單元的存取電晶體之問極 而互補位疋線(complementary bit Η此幻則分別 接至„玄對子單儿的存取電晶體之源極/没極,因此藉由 子取電晶體,可於相應之位元線與儲存電晶體之間存取 表單編號咖1 第5頁/共2Q胃 〇992〇3192 201145275 資料位元。 [0009] 根據本發明另一實施例,記憶體裝置包括多個如上所述 之記憶體單元。每一記憶體單元更包括一預充電路以及 一感測放大器。當預充電路被啟動時,可對互補位元線 預先充電至一電壓準位。當感測放大器被啟動時,可分 別驅動互補位元線至電源及接地端之準位。 【實施方式】 [0010] 第二圖顯示本發明實施例之動態隨機存取記憶體(D R A Μ ) 的記憶體單元20之電路圖。在本實施例中,每一記憶體 單元20係使用差動(differential)架構以儲存互補( complementary)資料位元。具體來說,記憶體單元20 包括一對子單元200A、20 0B »第一子單元200A包括一存 取電晶體Ma、一儲存電晶體Me以及一隔離電晶體Me。同 樣地,第二子單元200B亦包括一存取電晶體Mb、一儲存 電晶體Md以及一隔離電晶體Mf。雖然本實施例使用P型金 屬氧化物半導體(P-type metal-ox-ide-semiconductor,PM0S)電晶體,但亦可使用N型 金屬氧化物半導體(N-type M0S)電晶體,或上述兩者之 組合,故不以揭露者為限。值得注意的是,隔離電晶體 Me、Mf係分別共享給鄰近記憶體單元的子單元。換句話 說,第一子單元200A實際上只包括半個隔離電晶體Me, 而第二子單元200B只包括半個隔離電晶體Mf。因此,每 一記憶體單元20共包括兩個存取電晶體、兩個作為電容 器的儲存電晶體以及一個隔離電晶體。因此本實施例的 記憶體單元20可稱為3T2C記憶體單元或5T記憶體單元。 099118016 表早編號A0101 第6頁/共20頁 0992031922-0 201145275 剛上述之子單元,例如第一子單元2〇〇A,其存取電晶體動 、儲存電晶體Me以及隔離電晶體如係依序藉由(直接或 間接)連接源極/汲極而串聯耦接在一起。值得注意的是 ,對稱之金屬氧化物半導體電晶體的源極和汲極是可互 換的,因此本說明書和圖式中並未特別描述或標示出電 晶體的源極和汲極,而是使用,,源極/汲極,,來代表源極 或者汲極。此外,本發明書中所述的”耦接,’或,,連接 ’’係表示兩元件直接用線電性相連或透過至少一中介元 件而間接相連。 〇 [0012]在本實施例中,存取電晶體Ma、Mb之閘極係耦接至字元 線(w〇rdline)WL。未與儲存電晶體1、Md連接的存取 電晶體Ma、Mb之源極/汲極係分別耦接至互補位元線 (complementary bit line)BL、BL_b。因此,藉由存 取電晶體Ma/Mb,可於位元線BL/BL_b和相應儲存電晶體 肋/Md之間進行電荷的存取。儲存電晶體Mc/m_問極係 耦接至接地端GND,隔離電晶體Me/Mf的閘極係耦接至電 〇 源、㈣。未與儲存電晶體k、Md連接的隔離電晶體Me、Each morning _ A 099118016 兀 early 兀 includes an access transistor, a storage transistor, and an isolation transistor, which are connected in series by the connection source/depolarization in a separate isolation system. In a subunit adjacent to the memory unit and is always closed. The storage transistor is always on. The word line is consumed by the access transistor of each + unit and the complementary bit line (the complementary bit is connected to the source of the access transistor of the meta-pair) / No pole, so by using the transistor, the form number can be accessed between the corresponding bit line and the storage transistor. Page 5 / Total 2Q stomach 〇 〇 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 192 In another embodiment of the present invention, a memory device includes a plurality of memory cells as described above. Each memory cell further includes a precharge path and a sense amplifier. When the precharge path is activated, the complementary bit can be The power line is pre-charged to a voltage level. When the sense amplifier is activated, the complementary bit line can be driven to the level of the power source and the ground end respectively. [Embodiment] [0010] The second figure shows the embodiment of the present invention. A circuit diagram of the memory unit 20 of the dynamic random access memory (DRA Μ ). In this embodiment, each memory unit 20 uses a differential architecture to store complementary data bits. Say, memory list The second sub-unit 200A includes a pair of sub-units 200A, 20 0B. The first sub-unit 200A includes an access transistor Ma, a storage transistor Me, and an isolation transistor Me. Similarly, the second sub-unit 200B also includes an access. The transistor Mb, a storage transistor Md, and an isolation transistor Mf. Although the present embodiment uses a P-type metal-ox-ide-semiconductor (PMOS) transistor, an N-type can also be used. A metal-oxide-semiconductor (N-type MOS) transistor, or a combination of the two, is not limited to the disclosure. It is worth noting that the isolation transistors Me and Mf are respectively shared to sub-units of adjacent memory cells. In other words, the first sub-unit 200A actually includes only half of the isolated transistor Me, and the second sub-unit 200B includes only half of the isolated transistor Mf. Therefore, each memory unit 20 includes two accesses in total. The transistor, two storage transistors as capacitors, and an isolation transistor. Therefore, the memory unit 20 of the present embodiment can be referred to as a 3T2C memory unit or a 5T memory unit. 099118016 Table Early Number A0101 Page 6 of 20 Page 09920 31922-0 201145275 The subunits just mentioned above, such as the first subunit 2〇〇A, the access transistor, the storage transistor Me and the isolated transistor are connected (directly or indirectly) to the source/汲 sequentially. Extremely coupled in series. It is worth noting that the source and drain of a symmetrical MOS transistor are interchangeable, so the source of the transistor is not specifically described or labeled in this specification and the drawings. Pole and bungee, but use, source / bungee, to represent the source or bungee. In addition, "coupled," or "connected" as used in the present specification means that the two elements are directly connected by wire or indirectly through at least one intermediate element. [0012] In this embodiment, The gates of the access transistors Ma and Mb are coupled to a word line (WL). The source/drain electrodes of the access transistors Ma and Mb that are not connected to the storage transistors 1, Md are respectively coupled. Connected to the complementary bit lines BL, BL_b. Therefore, by accessing the transistor Ma/Mb, charge access can be performed between the bit line BL/BL_b and the corresponding storage transistor rib/Md. The storage transistor Mc/m_ is connected to the ground GND, the gate of the isolation transistor Me/Mf is coupled to the power source, and (4) the isolation transistor not connected to the storage transistor k, Md. Me,

Mf之源極/汲極係分別耦接至鄰近記龍單元的子單元之 儲存電晶體。 [0013] 很髁上迅朱稱田识锊存電晶體齔、Md係一 因此在半導體氧化物介—。卜〇xide in_ Μ — )會形成一反向層(Version layer),因而 產生電子…般來說’係產生相反於多數栽子(major- …㈣子。本實施例之反向層可用以儲存 資料位元。儲存電晶體Me、Md的電容量係根據它的寄生 099118016 表單編號 A0101 0992031922-0 主路㈣誦1 第7頁/共20頁 201145275 電容:決定的。根據本實施例所採用的差動架構,如果 堵存貝料位tlG於-儲存電晶體,例如電晶體&,則資料 位元1即儲存於另-儲存電晶體,例如電晶細。此外, 由於隔離電晶體Me、Mf係-直關閉的,因此所儲存的資 料會與鄰近記憶體單元隔離。 [0014] [0015] 第三A圖顯示本發明實施例的記憶體裝置,其包含第二圖 的記憶體單元20以及預充電路川、感測放大器32。在本 實施例中’預充電路30包括三個預充電晶體ρι、p2、P3 ’其中的預充電晶體PhP2互相串聯絲接於互補位元 線BL、BL—b之間。預充電晶體P1、P2之間互相連接的源 極/汲極係耦接至電源Vdd(或一電壓準位)^預充電晶體 P3的源極和汲極係分別耦接至互補位元線、BL_b。三 個預充電晶體PI、P2、P3的閘極係耦接至一預充信號 pre。雖然本實施例使用p型金屬氧化物半導體電晶體, 但亦可使用N型金屬氧化物半導體(N_type MOS)電晶體 : .; . ,或上述兩者之組合。本發明所揭露之預充電路30之設 計還可使用傳統的預充電路來取代,亦包含根據習知技 藝可輕易思及而修改者,故不以揭露者為限。 在本實施例中,感測放大器32包括兩個交又耦合 (cross-coup 1 ed)的反相器320、第一感測電晶體si (例 如N型金屬氧化物半導體)以及第二感測電晶體S2 (例如P 型金屬氧化物半導體電晶體)。其中’第二感測電晶體S2 、兩交叉耦合的反相器320以及第一感測電晶體S1是依序 串聯耦接於電源Vdd以及接地端GND之間。第一感測電晶 體S1的閘極會被第一感測信號sa驅動’而第二感測電晶 099118016 表單編號A0101 第8頁/共20頁 0992031922-0 201145275 體S2的閘極會被第二感測信號_驅動 反相器320的輸入端係分別耦接 :又°的 敁冲c 伐主互補位兀線BL、BL b 。所述反相器32〇之設計還了 - 敢状,h 定用1寻統的感測放大器來 取亦包含根據習知技藝可輕易思及而 以揭露者為限。 /又者,故不 [0016] 第三B圖顯示第三A圖的記憶體裝置 _ 心貢取細作相關波形 不』1預充信細e於時間㈣拉至主純準位時, 充電路30導通。因此’互補位元線被預 Ο 先充電至電源而之電壓準位。接著,於時間邮,藉由 將預充信號Pre拉回被動高準位,因而關閉預充電路3〇, 且將被選到的字元雜拉至主動低準位。_存的電荷 會分享於所選到的子單元(例如,第一子單元2〇〇A)及其 相應的位元線(例如,位元線BL)之間。於是,位於位元 線6 上的電壓準位會稍微改變,且在互補位元線 〜b之間會有電壓擺動(v〇jtage ”丨叫)的現象發 生之後,於時間t3時’將第一感測*信號sa拉至主動高 Ο 準位以導通感測放大器Μ,因而對電壓正在向下擺動 (down~Swing)的位元線(例如BL)進行放電使其更趨 近低準位,如第三3圖所示。接下來,於時間以時,將第 二感測信號sab拉至主動低準位,因而對電壓正在向上擺 動(up-swing)的位元線(例如BL_b)進行充電,使其更 趨近同準位。於感測放大期間,為了讓互補位元線BL、 BL_b形成充分擺動(full swing),意即使其分別趨近 接地知GND與電源Vdd之準位,兩交又耦合的反相器32〇 會加強彼此的訊號而形成一閂鎖(latch)。 099118016 表單編號A0101 第9頁/共20頁 0992031922-0 201145275 [0017] 當第三A圖的記憶體裝置進行寫入操作時,藉由寫入資料 來分別驅動互補位元線BL、BL_b至電源Vdd和接地端GND 。於一實施例中,於進行寫入時,不需啟動預充電路3 0 和感測放大器32。在另一實施例中,於進行寫入時,可 根據前述及第三B圖所示操作以啟動預充電路30和感測放 大器32。對於後者實施例,被選到的同一位元線(其具有 相同字元線WL )可於同一時間使用相同程序以進行寫入和 讀取操作。藉此,於寫入操作時,可對寫入記憶體單元 之外的記憶體單元進行重新讀取(r e-r ead ),使得衰減 的儲存電荷得以被更新(refresh)。 [0018] 根據上述,本實施例採用差動架構,且避免傳統動態隨 機存取記憶體所使用的電容,因而利於記憶體和系統的 整合,例如和系統晶片的整合。此外,本實施例之記憶 體單元的架構(第二圖)較傳統靜態隨機存取記憶體單 元(第一B圖)來得簡單。而且,本實施例的儲存電晶體Me 、Md未直接與電源Vdd和接地端GND耦接,因此較傳統靜 態隨機存取記憶體單元(第一B圖)更可避免電源雜訊的影 響。 [0019] 以上所述僅為本發明之較佳實施例而已,並非用以限定 本發明之申請專利範圍;凡其它未脫離發明所揭示之精 神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。 【圖式簡單說明】 [0020] 第一 A圖顯示傳統動態隨機存取記憶體單元之示意圖。 第一 B圖顯示傳統靜態隨機存取記憶體單元之示意圖。 099118016 表單編號A0101 第10頁/共20頁 0992031922-0 201145275 第二圖顯示本發明實施例之動態隨機存取記憶體的記憶 體單元之電路圖。 第三A圖顯示本發明實施例之記憶體裝置,其包含第二圖 的記憶體單元以及預充電路、感測放大器。 第三B圖例示第三A圖的記憶體裝置之相關波形。The source/drain electrodes of the Mf are respectively coupled to the storage transistors of the subunits adjacent to the cell. [0013] Very 髁 迅 朱 朱 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称 称Bud xide in_ Μ — ) will form a Version layer, thus producing electrons... Generally speaking, the generation is opposite to the majority (major-...). The reverse layer of this embodiment can be used for storage. Data bit. The capacitance of the storage transistor Me, Md is based on its parasitic 099118016 Form No. A0101 0992031922-0 Main Road (4) 诵 1 Page 7 / Total 20 pages 201145275 Capacitance: Determined. According to the embodiment In the differential architecture, if the block material level tlG is stored in a storage transistor, such as a transistor &, the data bit 1 is stored in another storage transistor, such as a transistor. Further, due to the isolation transistor Me, The Mf system is directly closed, so that the stored data is isolated from the adjacent memory unit. [0015] FIG. 3A shows a memory device according to an embodiment of the present invention, which includes the memory unit 20 of the second figure. And pre-charging the channel, the sense amplifier 32. In the present embodiment, the pre-charging circuit 30 includes three pre-charged crystals ρι, p2, P3, wherein the pre-charged crystals PhP2 are wired in series with the complementary bit line BL, Between BL-b. Precharge crystal P 1. The source/drain connection between P2 is coupled to the power supply Vdd (or a voltage level). The source and the drain of the precharged crystal P3 are respectively coupled to the complementary bit line, BL_b. The gates of the pre-charged crystals PI, P2, and P3 are coupled to a precharge signal pre. Although the present embodiment uses a p-type metal oxide semiconductor transistor, an N-type metal oxide semiconductor (N_type MOS) may be used. The transistor: . . . , or a combination of the two. The design of the pre-charging circuit 30 disclosed in the present invention may also be replaced by a conventional pre-charging circuit, and may also be modified according to the prior art. Therefore, the sensing amplifier 32 includes two cross-coupling inverters 320 and a first sensing transistor si (for example, N-type metal oxide). And a second sensing transistor S2 (eg, a P-type metal oxide semiconductor transistor), wherein 'the second sensing transistor S2, the two cross-coupled inverters 320, and the first sensing transistor S1 are The series is coupled in series between the power supply Vdd and the ground GND. The first sensing The gate of the crystal S1 will be driven by the first sensing signal sa' and the second sensing transistor 099118016 Form No. A0101 Page 8 / Total 20 pages 0992031922-0 201145275 The gate of the body S2 will be the second sensing signal _ The input terminals of the driving inverter 320 are coupled respectively: a buffer of c is further divided into the complementary bit lines BL, BL b. The design of the inverter 32 is also - dare, h is determined by 1 The use of a sense amplifier is also limited to the disclosure of the art according to the skill of the art. / Again, it is not [0016] The third B picture shows the memory device of the third A picture _ heart tribute to the relevant waveform not to be 1 1 pre-charge fine e when the time (four) is pulled to the main pure level, the charging path 30 conduction. Therefore, the 'parallel bit line is precharged to the voltage level of the power supply. Then, at time, by pulling the precharge signal Pre back to the passive high level, the precharge path 3 is turned off, and the selected word is pulled to the active low level. The stored charge will be shared between the selected subunit (e.g., the first subunit 2A) and its corresponding bit line (e.g., bit line BL). Thus, the voltage level on the bit line 6 will change slightly, and after a phenomenon of voltage swing (v〇jtage squeaking) between the complementary bit lines ~b occurs, at time t3, the first A sense* signal sa is pulled to the active high level to turn on the sense amplifier Μ, thus discharging the bit line (eg, BL) whose voltage is swinging down (down~Swing) to be closer to the low level. As shown in Figure 3. Next, at time and time, the second sense signal sab is pulled to the active low level, thus the up-swing bit line (eg BL_b) Charging, so that it is closer to the same level. During the sense amplification, in order to make the complementary bit lines BL, BL_b form a full swing, it is intended to be close to the grounding GND and the power supply Vdd, respectively. The two coupled and coupled inverters 32 加强 will strengthen each other's signals to form a latch. 099118016 Form No. A0101 Page 9 / Total 20 Page 0992031922-0 201145275 [0017] When the memory of the third A picture When the body device performs a write operation, the complementary bit is driven separately by writing data Lines BL, BL_b to power supply Vdd and ground GND. In one embodiment, the precharge path 30 and the sense amplifier 32 need not be activated when writing is performed. In another embodiment, when writing is performed The precharge path 30 and the sense amplifier 32 can be activated as described above and in the third B. For the latter embodiment, the same bit line selected (which has the same word line WL) can be at the same time The same program is used for writing and reading operations, whereby the memory cells outside the write memory unit can be re-read (er er ead) during the write operation, so that the attenuated stored charge can be According to the above, the present embodiment adopts a differential architecture and avoids the capacitance used by the conventional dynamic random access memory, thereby facilitating the integration of the memory and the system, for example, integration with the system chip. In addition, the architecture of the memory unit of the present embodiment (second diagram) is simpler than that of the conventional static random access memory unit (the first B diagram). Moreover, the storage transistors Me and Md of the embodiment are not directly connected to the power supply. Vdd The grounding terminal GND is coupled, so that the influence of the power supply noise is more avoided than the conventional static random access memory unit (Fig. B). [0019] The above description is only a preferred embodiment of the present invention, and is not used. The scope of the invention is defined by the scope of the invention, and the equivalents and modifications of the invention may be included in the scope of the following claims. [0020] Figure A shows a schematic diagram of a conventional dynamic random access memory cell. The first B diagram shows a schematic diagram of a conventional static random access memory cell. 099118016 Form No. A0101 Page 10 of 20 0992031922-0 201145275 The second figure shows a circuit diagram of a memory cell of a dynamic random access memory according to an embodiment of the present invention. FIG. 3A shows a memory device according to an embodiment of the present invention, which includes a memory unit of the second figure, and a precharge path and a sense amplifier. The third B diagram illustrates the correlation waveform of the memory device of the third A diagram.

【主要元件符號說明】 [0021] 10 反相器 20 記憶體單元 200A 第一子單元 200B 第二子單元 30 預充電路 32 感測放大1§ 320 反相 器 Vdd 電源 GND 接地端 Cs 儲存電容 Ta 存取電晶體 Tb、Tc存取 電晶體 Ma、Mb存取電晶體 Me、Md儲存 電晶體 Me、Mf隔離 電晶體 WL 字元線 BL、BL_b (互補)位元線 PI、P2、P3預充電晶體 pre 預充信號 S1 第一感測電晶體 099118016 0992031922-0 表單編號A0101 第11頁/共20頁 201145275 S2 sa sab 11、 第二感測電晶體 第一感測信號 第二感測信號 t2、t3、t4 時間 099118016 表單編號A0101 第12頁/共20頁 0992031922-0[Main component symbol description] [0021] 10 Inverter 20 Memory unit 200A First subunit 200B Second subunit 30 Precharge path 32 Sensing amplification 1 § 320 Inverter Vdd Power supply GND Ground terminal Cs Storage capacitor Ta Access transistor Tb, Tc access transistor Ma, Mb access transistor Me, Md storage transistor Me, Mf isolation transistor WL word line BL, BL_b (complementary) bit line PI, P2, P3 precharge Crystal pre precharge signal S1 first sense transistor 099118016 0992031922-0 Form No. A0101 Page 11 / Total 20 pages 201145275 S2 sa sab 11, second sensing transistor first sensing signal second sensing signal t2 T3, t4 time 099118016 Form number A0101 Page 12 / Total 20 pages 0992031922-0

Claims (1)

201145275 七、申請專利範圍: 1 . 一種記憶體單元,包含: 一對子單元,每一該子單元包括一存取電晶體、一儲 存電晶體以及一隔離電晶體,其依序藉由連接源極/汲極 而串聯耦接在一起,其中,該隔離電晶體係共享使用於一 鄰近記憶體單元的該子單元,且該隔離電晶體係一直關閉 的,且該儲存電晶體係一直導通的; 一字元線,耦接至每一該子單元的存取電晶體之一閘 極;及 ^ 二互補之位元線(complementary bit 1 ines),其 分別耦接至該對子單元的存取電晶體之源極/汲極,因此 藉由該存取電晶體,可於相應之該位元線與該儲存電晶體 之間存取資料位元。 2 .如申請專利範圍第1項所述之記憶體單元,其中未與該些 儲存電晶體連接的該些存取電晶體之源極/>及極係分別搞 接至該些互補位元線。 3 .如申請專利範圍第1項所述之記憶體單元,其中該存取電 ^ 晶體、該儲存電晶體以及該隔離電晶體係為N型金屬氧化 物半導體(NM0S)電晶體。 4 .如申請專利範圍第1項所述之記憶體單元,其中該存取電 晶體、該儲存電晶體以及該隔離電晶體係為P型金屬氧化 物半導體(PM0S)電晶體。 5 .如申請專利範圍第4項所述之記憶體單元,其中該儲存電 晶體的閘極係耦接至一接地端。 6 .如申請專利範圍第4項所述之記憶體單元,其中該隔離電 099118016 表單編號A0101 第13頁/共20頁 0992031922-0 201145275 晶體的閘極係耦接至一電源。 7 .如申請專利範圍第1項所述之記憶體單元,其中互補資料 位元係分別儲存於該對子單元的該些儲存電晶體中。 8 .如申請專利範圍第1項所述之記憶體單元,其中未與該些 儲存電晶體連接的該些隔離電晶體之源極/汲極係分別耦 接於該鄰近記憶體單元的該些子單元之該些儲存電晶體。 9 . 一種記憶體裝置,包含: 複數個記憶體單元,每一該記憶體單元包括: 一對子單元,每一該子單元包括一存取電晶體、一儲存電 晶體以及一隔離電晶體,其依序藉由連接源極/汲極而串 聯耦接在一起,其中,該隔離電晶體係共享使用於一鄰近 記憶體單元的該子單元,且該隔離電晶體係一直關閉的, 且該儲存電晶體係一直導通的; 一字元線,耦接至每一該子單元的該存取電晶體之閘極; 二互補之位元線(complementary bit lines),其分別 耦接至該對子單元的存取電晶體之源極/汲極,因此藉由 該存取電晶體,可於相應之該位元線與該儲存電晶體之間 存取資料位元; 一預充電路,耦接於該些互補位元線之間,當該預充電路 被啟動時,用以對該些互補位元線預先充電至一電壓準位 :及 一感測放大器,耦接於該些互補位元線之間,當該感測放 大器被啟動時,用以分別驅動該些互補位元線至一電源及 一接地端之準位。 10 .如申請專利範圍第9項所述之記憶體裝置,其中該存取電 晶體、該儲存電晶體以及該隔離電晶體係為N型金屬氧化 099118016 表單編號A0101 第14頁/共20頁 0992031922-0 201145275 物半導體(NM0S)電晶體。 11 .如申請專利範圍第9項所述之記憶體裝置,其中該存取電 晶體、該儲存電晶體以及該隔離電晶體係為P型金屬氧化 物半導體(PM0S)電晶體。 12 .如申請專利範圍第11項所述之記憶體裝置,其中該儲存電 晶體的閘極係耦接至該接地端。 13 .如申請專利範圍第11項所述之記憶體裝置,其中該隔離電 晶體的閘極係耦接至一電源。 14 .如申請專利範圍第9項所述之記憶體裝置,其中互補資料 〇 位元係分別儲存於該對子單元的該些儲存電晶體中。 15 .如申請專利範圍第9項所述之記憶體裝置,其中未與該些 儲存電晶體連接的該些存取電晶體之源極/汲極係分別耦 接於該些互補位元線。 16 .如申請專利範圍第9項所述之記憶體裝置,其中未與該些 儲存電晶體連接的該些隔離電晶體之源極/汲·極係分別搞 接於該鄰近記憶體單元的該些子單元之該些儲存電晶體。 099118016 表單編號A0101 第15頁/共20頁 0992031922-0201145275 VII. Patent application scope: 1. A memory unit, comprising: a pair of sub-units, each of the sub-units comprising an access transistor, a storage transistor and an isolation transistor, which are sequentially connected by a connection source The pole/drain is coupled in series, wherein the isolated cell system shares the subunit used in a neighboring memory cell, and the isolated cell system is always turned off, and the storage cell system is always turned on. a word line coupled to one of the gates of each of the sub-cells; and a complementary bit 1 ines coupled to the pair of sub-units The source/drain of the transistor is taken, so that the data transistor can be accessed between the corresponding bit line and the storage transistor by the access transistor. 2. The memory unit of claim 1, wherein the source/> and the poles of the access transistors not connected to the storage transistors are respectively connected to the complementary bits. line. 3. The memory unit of claim 1, wherein the access transistor, the storage transistor, and the isolated transistor system are N-type metal oxide semiconductor (NMOS) transistors. 4. The memory unit of claim 1, wherein the access transistor, the storage transistor, and the isolated electro-crystal system are P-type metal oxide semiconductor (PMOS) transistors. 5. The memory unit of claim 4, wherein the gate of the storage transistor is coupled to a ground. 6. The memory unit according to claim 4, wherein the isolated electric 099118016 form number A0101 page 13 / total 20 pages 0992031922-0 201145275 The gate of the crystal is coupled to a power source. 7. The memory unit of claim 1, wherein the complementary data bits are stored in the storage transistors of the pair of subunits, respectively. 8. The memory unit of claim 1, wherein the source/drain electrodes of the isolated transistors not connected to the storage transistors are respectively coupled to the adjacent memory cells. The storage cells of the subunits. 9. A memory device, comprising: a plurality of memory cells, each of the memory cells comprising: a pair of sub-units, each of the sub-units comprising an access transistor, a storage transistor, and an isolation transistor, The series is coupled in series by connecting the source/drain, wherein the isolated cell system shares the sub-cell used in a neighboring memory cell, and the isolated cell system is always turned off, and the a memory cell system is always turned on; a word line coupled to the gate of the access transistor of each of the subunits; and a complementary bit line coupled to the pair The sub-cell accesses the source/drain of the transistor, so that the access transistor can access the data bit between the corresponding bit line and the storage transistor; a pre-charge path, coupled Connected between the complementary bit lines, when the precharge path is activated, to precharge the complementary bit lines to a voltage level: and a sense amplifier coupled to the complementary bits Between the lines, when the sense amplifier is When starting, it is used to respectively drive the complementary bit lines to a power source and a ground terminal. 10. The memory device of claim 9, wherein the access transistor, the storage transistor, and the isolated transistor system are N-type metal oxides 099118016 Form No. A0101 Page 14 of 20 pages 0992031922 -0 201145275 Semiconductor (NM0S) transistor. 11. The memory device of claim 9, wherein the access transistor, the storage transistor, and the isolated transistor system are P-type metal oxide semiconductor (PMOS) transistors. 12. The memory device of claim 11, wherein the gate of the storage transistor is coupled to the ground. 13. The memory device of claim 11, wherein the gate of the isolating transistor is coupled to a power source. 14. The memory device of claim 9, wherein the complementary data bits are stored in the storage transistors of the pair of subunits, respectively. The memory device of claim 9, wherein the source/drain electrodes of the access transistors not connected to the storage transistors are respectively coupled to the complementary bit lines. The memory device of claim 9, wherein the source/pole/poles of the isolated transistors not connected to the storage transistors are respectively connected to the adjacent memory unit. The storage cells of the subunits. 099118016 Form No. A0101 Page 15 of 20 0992031922-0
TW99118016A 2010-06-03 2010-06-03 Memory cell and an associated memory device TWI446342B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99118016A TWI446342B (en) 2010-06-03 2010-06-03 Memory cell and an associated memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99118016A TWI446342B (en) 2010-06-03 2010-06-03 Memory cell and an associated memory device

Publications (2)

Publication Number Publication Date
TW201145275A true TW201145275A (en) 2011-12-16
TWI446342B TWI446342B (en) 2014-07-21

Family

ID=46765911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99118016A TWI446342B (en) 2010-06-03 2010-06-03 Memory cell and an associated memory device

Country Status (1)

Country Link
TW (1) TWI446342B (en)

Also Published As

Publication number Publication date
TWI446342B (en) 2014-07-21

Similar Documents

Publication Publication Date Title
JP4994135B2 (en) Sense amplification circuit and sense amplification method
JP4171201B2 (en) Semiconductor memory device
TW200826099A (en) A dual port static random access memory cell
TW200818214A (en) Semiconductor memory device
US9305635B2 (en) High density memory structure
TW200842872A (en) Semiconductor memory device
CN101009135A (en) Semiconductor memory device having reduced voltage coupling between bit lines
JP4251815B2 (en) Semiconductor memory device
WO2015001722A1 (en) Semiconductor storage device
JP2006324007A (en) Technique for pre-charging bit lines for dram array
JP4294256B2 (en) Semiconductor memory device
JP2007504594A (en) Dynamic memory, sense amplifier circuit, word line driving circuit, control signal PX driving circuit, signal sensing or restoring method, and leakage current reducing method
US9171606B2 (en) Semiconductor device having complementary bit line pair
US7336553B2 (en) Enhanced sensing in a hierarchical memory architecture
US6469925B1 (en) Memory cell with improved retention time
JP2937719B2 (en) Semiconductor storage device
CN116564382A (en) Static random access memory and chip
TWI699764B (en) Memory write operation apparatus and method
US8970256B2 (en) Sense amplifier
TWI484499B (en) Ripple bit-lines/search-lines for improving leakage/variation tolerance and density/performance of static random access memory
TWI681391B (en) Data line control circuit and associated data line control method
TW201145275A (en) Memory cell and an associated memory device
JP3828847B2 (en) Semiconductor memory device
US8228705B2 (en) Memory cell and an associated memory device
JP3488433B2 (en) Two-phase charge sharing data latch circuit for memory circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees