TW201145083A - Optical beacon device positioning method used for large-sized display device interaction - Google Patents

Optical beacon device positioning method used for large-sized display device interaction Download PDF

Info

Publication number
TW201145083A
TW201145083A TW99117783A TW99117783A TW201145083A TW 201145083 A TW201145083 A TW 201145083A TW 99117783 A TW99117783 A TW 99117783A TW 99117783 A TW99117783 A TW 99117783A TW 201145083 A TW201145083 A TW 201145083A
Authority
TW
Taiwan
Prior art keywords
positioning
spot
display
light source
display device
Prior art date
Application number
TW99117783A
Other languages
Chinese (zh)
Other versions
TWI419012B (en
Inventor
xin-ping Wang
ren-yong Lin
Zong-Lin Xie
rong-jing Chen
Original Assignee
Univ Chaoyang Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chaoyang Technology filed Critical Univ Chaoyang Technology
Priority to TW99117783A priority Critical patent/TWI419012B/en
Publication of TW201145083A publication Critical patent/TW201145083A/en
Application granted granted Critical
Publication of TWI419012B publication Critical patent/TWI419012B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The present invention discloses an optical beacon device positioning method used for large-sized display device interaction. The optical beacon device comprises: an optical beacon, a display screen, a camera and a calculator. The positioning method comprises the following steps: the optical beacon projecting a plurality of directional optical sources onto the display screen to generate a plurality of positioning light points; the camera capturing an image of the display screen and transmitting the image to the calculator for processing; the calculator calculating a coordinate of each positioning light point relative the center of the display screen; the calculator calculating an emission position and direction of the optical beacon according to the coordinate of each of the positioning light points; and the calculator displaying a corresponding emission position and direction of the optical beacon according to the calculated emission position and direction of the optical beacon.

Description

201145083 六、發明說明: 【發明所屬之技術領域】 本發明主要係揭示一種用於大型顯示裝置互動的光學 信標裝置的定位方法,尤指一種由顯示屏上定位光點的相 對位置定位出光源信標發射位置的大型顯示裝置互動的光 學信標裝置及其定位方法。 【先前技術】 定位系統(positioning system)用於決定物件或使用 者在特巾的位置及方向,這㈣統普遍使用在今日 互動式遊戲及虛擬貫境等應用上。 φ 使用者透過一手持式控制器與遊戲互動 -般定位系統多依賴於機械裝置陀螺儀、超音波、無 線電波或光學等特殊光钱置㈣量訊號傳輸端及接收端 的傳遞時間差以推導距離並藉以得到彼此相對位置,如互 動式遊戲機狀㈣光學賴與赌叙綠,其主要讓 互動’但是前述這些方 其不僅價錢昂貴,無法 法使用的特殊裝置為精密的設備, 有效降低售價。 再者’前述這些定位系絲交旦201145083 VI. Description of the Invention: [Technical Field] The present invention mainly discloses a positioning method for an optical beacon device for interaction of a large display device, in particular, a light source is positioned by a relative position of a positioning spot on a display screen. An optical beacon device for interactive display of a large display device at a beacon transmitting position and a positioning method thereof. [Prior Art] The positioning system is used to determine the position and orientation of objects or users in special towels. This (4) is commonly used in today's interactive games and virtual reality applications. φ The user interacts with the game through a handheld controller. The general positioning system relies on the transmission time difference between the transmission unit and the receiving end of the special device such as gyroscope, ultrasonic wave, radio wave or optics to derive the distance and In order to get relative position, such as interactive game machine (four) optical and gambling green, it mainly allows interaction 'but these are not only expensive, the special device that can not be used is a sophisticated device, effectively reducing the price. Furthermore, the aforementioned positioning lines are crossed.

201145083 點 可克服上述習知結構之所有缺 f發明内容】 本《明所奴解決之技術問題在於針對現有技術存在的 上述缺失’提供—種用於大型顯示裝置互動的光學信標裝 置的定位方法。 本發明主要目的在於,以一般可見光或不可見光發光 -極體搭配魏擷取相機實施,齡光源信標在顯示屏上 :相對位置後’㉟由計算機以軟體方式演算定位出光源信 =_射位置及方向,因此相較於—般定位系統具有價 廉、彈性、姻及容易設置等優點。 兩本發明*要目的在於’方向性歧間的θ與#角度值 不需固定,可視應用需求如顯示設備外觀幾何、定位空間 大小、疋位精度需求及統聚錄等彈性調整財最佳化。 卜十、ίΓ !的、優點和本發明的新賴特性將從以下詳細的 栺述與相關的附圖更加顯明。 【實施方式】 在專利 有關本發_採狀減、手段及其功效,兹舉一較 Λ _並配合圖式詳述如後,此僅供說明之用, 申請上並不受此種結構之限制。 桿發明用於大型顯示裝置互動的光學信 不裝置疋位方法的流㈣。本發日賴於大軸 的光學信標t置定位方法包括有以下步驟: 201145083 光源信標投射數個方向性光源在顯示屏上產生數個定 位光點; 攝影機娜顯科的影像並傳遞至計算機作處理; 計算機計算各定位光點相對於顯示屏中心的座標值; 計算機依各定位光點的座標值計算光源信標的發射位 置及方向; 计算機依光源b標的發射位置及方向在顯示屏上顯示 對應光源信標的顯示位置及方向。 參照圖二及圖三,為本發明用於大型顯示裝置互動的 光學信標裝置的示意圖。本發明之光學信標裝置包括有一 個顯示屏10、一個光源信標(optical beacon)20、一個攝 影機30及一個計算機40,且本發明定義有X軸、¥轴及z 軸的空間坐標軸’顯示屏1 〇為大尺寸顯示設備,該光源信 標20將定位光點投射到顯示屏1 〇上。其中: 該顯示屏10為大尺寸的顯示設備,以供受測物觀看, 該顯示屏10位於X軸與Y軸所構成的X-Y平面,且X軸與 Y轴的相交處為中心〇。 該光源信標20是用來裝設在受測者的頭部,該光學信 標20能夠投射出五値方向性光源201、202、203、204、 205,所述五個方向性光源201、202、203、204、205如雷 射或經聚焦的紅外線以特殊幾何排列投射在顯示屏10上 產生呈十字形狀的五個定位光點21、22、23、24、25,且 該光源信標20相對於顯示屏10具有一個發射位置〇v、一 個轉角α及一個仰角0,該發射位置Ον的坐標為(χν,yv, 201145083201145083 points can overcome all the shortcomings of the above-mentioned conventional structure.] The technical problem solved by the present invention is to provide a positioning method for an optical beacon device for large-scale display device interaction for the above-mentioned shortcomings existing in the prior art. . The main purpose of the invention is to implement the general visible light or invisible light-polar body with Wei Wei taking the camera, and the age source beacon is on the display screen: after the relative position, the computer calculates the light source signal by the computer. Position and direction, so compared to the general positioning system has the advantages of low cost, flexibility, marriage and easy setting. The purpose of the two inventions is that the θ and # angle values of the directionality do not need to be fixed, and the visual application requirements such as the appearance geometry of the display device, the size of the positioning space, the need for the positional accuracy, and the optimization of the flexibility are optimized. . The advantages and advantages of the present invention will become more apparent from the detailed description and the accompanying drawings. [Embodiment] In the patent related to the hair _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ limit. The rod invents the flow of the optical signal device for the interaction of large display devices (4). The optical beacon t positioning method according to the large axis includes the following steps: 201145083 The light source beacon projects a plurality of directional light sources to generate a plurality of positioning spots on the display screen; the image of the camera Na Hinke is transmitted to The computer performs processing; the computer calculates the coordinate value of each positioning spot relative to the center of the display screen; the computer calculates the transmitting position and direction of the light source beacon according to the coordinate value of each positioning spot; the computer emits the position and direction according to the source b mark on the display screen The display position and direction of the corresponding source beacon are displayed on the top. Referring to Figures 2 and 3, there is shown a schematic diagram of an optical beacon device for interaction of a large display device. The optical beacon apparatus of the present invention includes a display screen 10, an optical beacon 20, a camera 30, and a computer 40, and the present invention defines a spatial coordinate axis of the X-axis, the ¥-axis, and the z-axis. The display 1 is a large-sized display device that projects a positioning spot onto the display 1 〇. Wherein: the display screen 10 is a large-sized display device for viewing by the object to be tested. The display screen 10 is located on the X-Y plane formed by the X-axis and the Y-axis, and the intersection of the X-axis and the Y-axis is the center 〇. The light source beacon 20 is mounted on the head of the subject, and the optical beacon 20 can project five directional light sources 201, 202, 203, 204, 205, and the five directional light sources 201, 202, 203, 204, 205 such as laser or focused infrared light are projected onto the display screen 10 in a special geometric arrangement to produce five positioning spots 21, 22, 23, 24, 25 in the shape of a cross, and the source beacon 20 has a launch position 〇v, a rotation angle α and an elevation angle 0 with respect to the display screen 10. The coordinates of the emission position Ον are (χν, yv, 201145083)

Zv。依照這些光源依設計的定位功能細分為水平定位光點 組η及垂直定位光點組[水平定位光點組H包括有三個 呈水平排列狀位光點22、2卜24,垂直錢光點^括 有三個呈垂直排列的定位光點23、21、25 ,且該水平定位 光點Η與垂直定位光點v共有一個位於中心位置的定位光 點2卜水平定位光點組Η與X轴平行,垂直定位光點" 與Υ軸平行。 該水平定位光點組Η的方向性光源2〇2、2〇1、2〇4朝 著—Ζ軸方向行進,且所述的方向性光源202、201、204在 χ一Ζ平面上各以相距等角角度0相隔。該垂直定位光點組ν 的方向性光源203、204、205亦朝著軸方向行進,且所 述的方向性光源203、2(Π、205在γ-Ζ平面上各以相距等 角角度0相隔。其中0與0角度值不需固定,可視應用需 求如顯示設備外觀幾何、定位空間大小、定位精度需求及 光源聚焦性等彈性調整以求最佳化。 戎攝影機3〇以影像方式擷取顯示屏1〇上的定位光點 21、22、23、24、25,以取得各定位光點 21、22、23、24、 25相對於顯示屏10的幾何位置,並將擷取到的顯像傳遞 到計算機40中作處理。 5亥计算機40將依定位光點21、22、23、24、25相對 於^屏10的幾何位置計算光源信標20相對於顯示屏10 的二間位置及方向;當得知光源信標20的位置後,計算機 可依光源彳5標20的位置及方向作顯示屏10對應顯示位 置的變化1達互動效果。 201145083 該顯示屏Η)構造除提供光源安置並確保光源 關係外,並無材質及形狀等特殊限制,可視應用 ^ 不同設計。 ^有Zv. According to the positioning function of these light sources, the horizontal positioning spot group η and the vertical positioning spot group are subdivided [the horizontal positioning spot group H includes three horizontally arranged spot lights 22, 2 b 24, vertical money spot ^ Included are three vertically arranged positioning spots 23, 21, 25, and the horizontal positioning spot Η and the vertical positioning spot v share a centrally located positioning spot 2, the horizontally positioned spot group is parallel to the X axis , the vertical positioning light spot " parallel to the Υ axis. The directional light sources 2〇2, 2〇1, 2〇4 of the horizontally positioned spot group 行进 travel toward the Ζ-axis direction, and the directional light sources 202, 201, 204 are respectively on the χ-Ζ plane The equiangular angles are separated by 0. The directional light sources 203, 204, 205 of the vertically positioned spot group ν also travel toward the axis direction, and the directional light sources 203, 2 (Π, 205 are at equal angular angles on the γ-Ζ plane) The distance between 0 and 0 does not need to be fixed, and the visual application requirements such as the appearance geometry of the display device, the size of the positioning space, the positioning accuracy requirement, and the focus of the light source are adjusted to optimize. 戎 The camera 3 captures images by image. Positioning spots 21, 22, 23, 24, 25 on the display screen 1 to obtain geometric positions of the respective positioning spots 21, 22, 23, 24, 25 with respect to the display screen 10, and to capture the displayed The image is passed to the computer 40 for processing. The computer 40 will calculate the position of the light source beacon 20 relative to the display screen 10 based on the geometric position of the positioning spot 21, 22, 23, 24, 25 relative to the screen 10. And the direction; after knowing the position of the light source beacon 20, the computer can make the interaction effect corresponding to the display position of the display screen 10 according to the position and direction of the light source 彳5 mark 20. 201145083 The display screen 构造) construction in addition to providing the light source There is no material and no matter the placement and ensuring the light source relationship Shape or the like particularly limited, ^ different designs depending on the application. ^有有

同時參照圖三至圖六,當計算機4〇接收到攝 所操取到的影像後,計算機40會將影像中對應光點〇 水平定位光點組Η(22,21,24)及垂蚊位光點組心 '為 ⑸,並求出各定位絲2卜22、23、24、25相對於显1 屏10中心0的座標值。然後計算機40將依幾何關係^ 將水平定位光點組Η (23, 21,25)投影到χ軸上73別 Β、C二個投影點,以及垂直定位光點組ν (23, Μ 2 投影到Υ軸上形成A,、Β,及C,三個投影點。待完成’ 5) 點2卜22、23、24、25在X軸及γ軸上的投影後,計2 40將依A、Β、C在X軸上的座標值及A,、B,、c,在 幾 的座標值計算光源信標20的發射位置〇ν (χν, 由上 及轉角α與仰角yj。 以 圖四疋圖二在X-Z平面上的投影。其中〇νχζ是 標20發射位置〇ν在x-Z平面上的投影位置。已知A Β 5 三點在X軸上的座標,我們可以求出線段AB,BC,及Ας匸 度。同時我們亦已知預先設定的Θ角度值。以下我們將長 用上述已知條件及幾何定律推導得知光源信標2〇在乂利 平面上的投影位置〇vX_z (Xv,〇,Zv)的座標與轉角^ . 公式推導計算 根據正弦定律,任意三角形三邊為R,S,了且對應角度分 別是Ρ,σ, τ則以下關係式成立: 201145083 (1) R/SINp = S/SINa = T/SINt 從上述正弦定律(1)及圖五中三角形ABOvx-z可得: since sin0 AQvx-z ΑΒ ...........................⑵Referring to FIG. 3 to FIG. 6 simultaneously, after the computer 4〇 receives the image taken by the camera, the computer 40 will position the corresponding spot in the image to the horizontal spot group (22, 21, 24) and the mosquito bit. The spot group 'is (5), and the coordinate value of each of the positioning wires 2, 22, 23, 24, and 25 with respect to the center 0 of the display screen 10 is obtained. Then, the computer 40 will project the horizontally positioned spot group Η (23, 21, 25) onto the 73 axis, 73 投影, C, two projection points, and the vertical positioning spot group ν (23, Μ 2 projection according to the geometric relationship ^ A, Β, and C are formed on the Υ axis, and three projection points are to be completed. After the projection of the 2 5 22, 23, 24, and 25 on the X-axis and the γ-axis, the measurement will be based on A. , Β, C coordinate values on the X-axis and A, B, and c, calculate the emission position 光源ν (χν, from the upper and the rotation angle α and the elevation angle yj) of the source beacon 20 at several coordinate values. Figure 2 is a projection on the XZ plane, where 〇νχζ is the projection position of the target 20 emission position 〇ν on the xZ plane. Knowing the coordinates of the three points on the X-axis of A Β 5, we can find the line segment AB, BC At the same time, we also know the preset value of the Θ angle. Below we will use the above known conditions and geometric laws to derive the projection position of the source beacon 2 on the profit plane 〇vX_z (Xv , 〇, Zv) coordinates and corners ^ . Formula derivation calculation According to the sine law, the three sides of an arbitrary triangle are R, S, and the corresponding angles are Ρ, σ, τ The following relationship is established: 201145083 (1) R/SINp = S/SINa = T/SINt From the above sine law (1) and the triangle ABOvx-z in Figure 5: since sin0 AQvx-z ΑΒ ...... .....................(2)

同樣從上述正弦定律(1)及圖五中三角形ACOvx-ζ可得: _ ^QyX-Z AC sin(a-0) sin20 .................. 將方程式(2)/(3)可得: sin a ——^^ - sin Θ/ sin a cos θ - sin θ cos cc _ sin 2ΘAlso from the above sine law (1) and the triangle ACOvx-ζ in Figure 5: _ ^QyX-Z AC sin(a-0) sin20 .................. Equation (2)/(3) can be obtained: sin a ——^^ - sin Θ/ sin a cos θ - sin θ cos cc _ sin 2Θ

sin 20 sin a /iCsin0 => cos Θ - sin 〇 sin 2Θ cos a _ cosO AB sin 2Θ s,na ΛΟύηθ sin a sin0 JCsin0sin0 C〇S Ci - ΛΒ2 sin Θ cos Θ cos a cos0 ABlco^G sin a sinfl -:—————=—~~-- — y >iCsin0sin0 sin a sin0 AC sin Θ => cos a = 2 AB' sin a sin ΘSin 20 sin a /iCsin0 => cos Θ - sin 〇sin 2Θ cos a _ cosO AB sin 2Θ s,na ΛΟύηθ sin a sin0 JCsin0sin0 C〇S Ci - ΛΒ2 sin Θ cos Θ cos a cos0 ABlco^G sin a sinfl -:——————=—~~-- — y >iCsin0sin0 sin a sin0 AC sin Θ => cos a = 2 AB' sin a sin Θ

AC => 計算受測者在面上的轉角a' 由⑷得叫轉Γ2罐做置a,.z(x、0,zO 处角a代換到方長式Ο中可得⑸: (4: AB sina sin© ^ ^vX-Z =sina AB sin0 圖五中F〇v)f/ a 五中直角由I到X軸的麵,其長度即為 月二角形AF〇vX-z可得: Z = ΡΓ) v uvx^z -A〇 、 ( 、 AR v-ν^ s'n(«+0)=sina-~sln(a+0)......... (5;AC => Calculate the angle a' on the face of the subject. From (4), turn the can 2 into the a, .z (x, 0, zO angle a is replaced by the square long (5): ( 4: AB sina sin© ^ ^vX-Z =sina AB sin0 Figure 5F〇v)f/ a The five right-angled faces from I to the X-axis, the length of which is the moon-shaped AF〇vX-z : Z = ΡΓ) v uvx^z -A〇, ( , , AR v-ν^ s'n(«+0)=sina-~sln(a+0)......... (5;

Zv。由 201145083 方程式(6)給的是光源信標2〇的投影位置〇νχζ , 、λν,U,Ζν) 中的Ζν值。 ; ................................⑺ 同方程式(6),我們亦可得到線段AF值。而〇vXz(Xv 〇 中的χν值為線段Α〇νΧΖ及AF的差,即: ’ ’ Ζν) = Α0^ Α〇νΧ_ζ -sina ^cos(a +Θ)... sm0 ’ ............(8) 最後,因為在Z平面上,所以Qvxz & 值為ο,而真實的^值需透過γ_ζ 的w 所示。:圖五及圖六兩者有相同幾何,所 =紅及仰角$的步驟相似於圖五η平面使用過程如同 條⑻’因此此處我們省略推導步驟而直接將結果 《一 s.............................................⑻ {5\ηθ{ A'C JJ .......................................(1〇) y,/=A,0^-z-A^'=A'Ovy ^ βΑ'β' . 2 句...............(11) 方程式⑽是㈣㈣肖度, W中的减。總和方程式⑷,式(11)疋1(心 ⑴),我們可以得到光源 ,(8),(9),(1〇), 心〇所在的發射位置0ν、(χ*20相對於顯示屏10幾何中 石的角度值。 V’ yv,ZV),以及轉角〇:及仰角 201145083 以及轉^機4G依光源信標2G的發射位置Qv (Xv,yv,Zv), 作ϋ “及仰^的方向麵示屏1G上顯示對應光源 仏20的顯示位置及方向。 參照圖七,冬止,広从, 位朵a:。 田九’原仏標20向右改變轉角〇:時,水平定 H中邀7/ 4目對於Χ轴的位置產生變化,水平定位光點組Zv. Equation (6) given by 201145083 is the value of Ζν in the projection positions 〇νχζ, λν, U, Ζν) of the source beacon 2〇. ; ..........................(7) With equation (6), we can also get the line segment AF value. And 〇vXz (χv value in Xv 〇 is the difference between the line segment Α〇νΧΖ and AF, ie: ' ' Ζν) = Α0^ Α〇νΧ_ζ -sina ^cos(a +Θ)... sm0 ' .... ........(8) Finally, because it is in the Z plane, the Qvxz & value is ο, and the actual value of ^ is shown by w of γ_ζ. : Figure 5 and Figure 6 have the same geometry. The steps of = red and elevation $ are similar to those in Figure 5. The use of the η plane is like the strip (8). So here we omit the derivation step and directly the result "a s.... ...................................(8) {5\ηθ{ A'C JJ .................................(1〇) y, /=A, 0^-zA^'=A'Ovy ^ βΑ'β' . 2 sentences..................(11) Equation (10) is (4) (4) Xiaodu, the subtraction in W. The sum equation (4), the formula (11) 疋 1 (heart (1)), we can get the light source, (8), (9), (1 〇), the eccentricity of the emission position 0ν, (χ * 20 relative to the display 10 The angle value of the stone in the geometry. V' yv, ZV), and the angle 〇: and the elevation angle 201145083 and the emission position of the 4G according to the source beacon 2G (Xv, yv, Zv), as the direction of "and the direction of the ^ The display position and direction of the corresponding light source 仏20 are displayed on the display screen 1G. Referring to Figure 7, the winter end, the 広 ,, the position a:. Tian Jiu's original 仏 20 change the corner to the right 时: when, horizontally set H Invite 7/4 mesh to change the position of the x-axis, horizontally position the spot group

小於座7 k夾角#近2^的兩定位光點24、21的投影距離 泉日”夾角遠離z軸的兩定位光點21、22的投影距離。 定位光點t I原信標2〇沿著X軸向右平移時’所有 =’且各定位光點21、22、23、24、25_投影距離不 位来*、圖九,§光源信標20向下改變仰角^時,垂直定 v 相對於Y軸的位置產生變化,垂直定位光點組 小;^lz#失角鄰近2轴的兩^位光點23、21的投影距離 Z軸夾角遠離Z軸的兩定位光點21、25的投影距離。 ^參知、圖十,當光源信標2〇沿著γ軸向下平移時,所有 仅光點21、22、23、24、25跟著光源信標20沿著γ軸 了移’且各定位光點21、22、23、24、25間的投影距離不 變。 由上述各種光源信標20相對於顯示屏10的位置及方 向發射方向性光源2(H、202、203、204、205,會在顯示 10上產生不同相對位置的定位光點21、22、23、24、 25 ’利用攝影機30擷取光源信標2〇在顯示屏10上的相對 201145083 位置後’經由計錢4G崎針式·Μ出光源信標 20的發射位置及方向。 就以上所述可以歸納出本發明具有以下之優點: 1. 本發明『祕大雜示裝置互_絲信標裝置的 定位方法』,其中娜光源信標在顯示屏上_對位置後, 經由計算機以軟體方式演算定位出光源信標的發射位置及 方向,因此相較於-般定位系統具有價廉、彈性、通用及 容易設置等優點。The projection distance of the two positioning spots 24, 21 of the two positioning spots 24, 21 which are smaller than the seating angle of 7 k is the projection distance of the two positioning spots 21, 22 which are away from the z-axis. The positioning spot t I is the original beacon 2 When the X axis is right-shifted, 'all =' and the position of each of the positioning spots 21, 22, 23, 24, 25_ is not in position*, Figure IX, § the source beacon 20 changes downwards at an angle ^, vertically v The position relative to the Y-axis changes, the vertical positioning spot group is small; the projection distance of the two-position spot 23, 21 adjacent to the two axes of the angle of loss is the two positioning spots 21, 25 away from the Z-axis. The projection distance. ^See, Figure 10. When the source beacon 2〇 translates down the γ axis, all the only spots 21, 22, 23, 24, 25 follow the source beacon 20 along the γ axis. 'and the projection distance between the respective positioning spots 21, 22, 23, 24, 25 is unchanged. The directional light source 2 (H, 202, 203, is emitted from the position and direction of the above-mentioned various light source beacons 20 with respect to the display screen 10. 204, 205, positioning spots 21, 22, 23, 24, 25 which will generate different relative positions on the display 10. The camera 30 is used to capture the relative position of the source beacon 2 on the display screen 10. 201145083 After the position, the position and direction of the light source beacon 20 are transmitted via the metering 4G. The above description can be summarized as follows: 1. The present invention has the following advantages: The positioning method of the silk beacon device, in which the Na light source beacon is located on the display screen _ to the position, and the position and direction of the light source beacon are located and calculated by the computer in a software manner, so that the positioning system is cheaper than the general positioning system. Flexibility, versatility and easy setup.

2. 本發明『驗A型顯示裝置互動的光學信標裝置的 定位方法』’其中方向性光源間㈣與0角度值不需固定, 可視應用需求如顯示屏外觀幾何、定位空間大小、定位精 度需求及光源聚焦性等彈性調整以求最佳化。 惟上所述者,僅為本發明之較佳實施例而已,當不能 以之限定树财社_,故軌練 件之置換,或依本發明申喑糞剎妒a ^ ^ °'專利_所作之均等變化與修 飾,皆應仍屬本發明專利涵蓋之範疇。 【圖式簡單說明】 置互動的光學信標裝置的 圖一:為本發明用於大型顯示裝 定位方法之流程圖。 圖二: 不意圖 為本發明用於大型顯示裝 置互動的光學信標裝置之 圖三A:為本發明用於大型 投射在顯示屏於χ-γ平面之 顯不裝置互動的光學信標裝置 示意圖。 201145083 圖三B:為本發明用於大型顯示裝置互動的光學信標裝置 投射在顯示屏於X-Z平面之示意圖。 圖三C:為本發明用於大型顯示裝置互動的光學信標裝置 投射在顯示屏於Y-Z平面之示意圖。 圖四:為本發明用於大型顯示裝置互動的光學信標裝置運 作原理示意圖。 圖五:為本發明用於大型顯示裝置互動的光學信標裝置運 作原理投影於X-Z平面之示意圖。 圖六:為本發明用於大型顯示裝置互動的光學信標裝置運 作原理投影於Y-Z平面之示意圖。 圖七A:為本發明用於大型顯示裝置互動的光學信標裝置 改變轉角時投射在顯示屏於X-Y平面之示意圖。 圖七B:為本發明用於大型顯示裝置互動的光學信標裝置 改變轉角時投射在顯示屏於X-Z平面之示意圖。 圖七C:為本發明用於大型顯示裝置互動的光學信標裝置 改變轉角時投射在顯示屏於Y-Z平面之示意圖。 圖八A:為本發明用於大型顯示裝置互動的光學信標裝置 向右平移時投射在顯示屏於X-Y平面之示意圖。 圖八B:為本發明用於大型顯示裝置互動的光學信標裝置 向右平移時投射在顯示屏於X-Z平面之示意圖。 圖八C:為本發明用於大型顯示裝置互動的光學信標襞置 向右平移時投射在顯示屏於Y-Z平面之示意圖。 圖九A:為本發明用於大型顯示裝置互動的光學信標裝置 改變仰角時投射在顯示屏於X-Y平面之示意圖。 201145083 圖九B:為本發明用於大型顯示裝置互動的光學信標裝置 改變仰角時投射在顯示屏於X-Z平面之示意圖。 ' 圖九C:為本發明用於大型顯示裝置互動的光學信標裝置 - 改變仰角時投射在顯示屏於Y-Z平面之示意圖。 圖十A:為本發明用於大型顯示裝置互動的光學信標裝置 向下平移時投射在顯示屏於X-Y平面之示意圖。 圖十B:為本發明用於大型顯示裝置互動的光學信標裝置 向下平移時投射在顯不屏於x_z平面之不意圖。 • 圖十C:為本發明用於大型顯示裝置互動的光學信標裝置 向下平移時投射在顯示屏於Y-Z平面之示意圖。 【主要元件符號說明】 10 顯示屏 20 光源信標 201、202、203、204、205 方向性光源 φ 21、22、23、24、25 定位光點 30 攝影機 40 計算機 0 中心 Η 水平定位光點組 V 垂直定位光點組 Ον 發射位置 ΟνΧ-Ζ投影位置 a 轉角 201145083 β 仰角 θ 角度 Φ 角度2. The invention "detects the positioning method of the optical beacon device of the A-type display device interactively", wherein the directional light source (4) and the 0 angle value do not need to be fixed, and the visual application requirements such as the display appearance geometry, the positioning space size, and the positioning accuracy Elastic adjustments such as demand and source focus are optimized. However, the above description is only a preferred embodiment of the present invention, and when it is not possible to limit the tree financial society, the replacement of the orbital training piece, or the application of the invention according to the invention, a ^ ^ ° 'patent _ Equivalent changes and modifications shall remain within the scope of this invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart of a method for positioning a large display device according to the present invention. Figure 2: Figure 3A, which is not intended to be an optical beacon device for large-scale display device interaction, is a schematic diagram of an optical beacon device for large-scale projection of a display device on a display screen in a χ-γ plane. . 201145083 Figure 3B: Schematic diagram of the optical beacon device for interactive display of a large display device projected on the X-Z plane of the display screen. Figure 3C is a schematic view of the optical beacon device for interactive display of a large display device projected on the Y-Z plane of the display screen. Figure 4 is a schematic diagram showing the operation principle of the optical beacon device for interaction of a large display device of the present invention. Fig. 5 is a schematic view showing the operation principle of the optical beacon device for interacting with a large display device in the X-Z plane. Fig. 6 is a schematic view showing the operation principle of the optical beacon device for interacting with a large display device in the Y-Z plane. Fig. 7A is a schematic view showing the optical beacon device for interacting with a large display device according to the present invention, which is projected on the X-Y plane of the display screen when the corner is changed. Figure 7B is a schematic view of the optical beacon device for interactive display of a large display device projected on the X-Z plane of the display screen when the corner is changed. Figure 7C is a schematic view of the optical beacon device for interactive display of a large display device projected on the display screen in the Y-Z plane when the corner is changed. Figure 8A is a schematic view of the optical beacon device for interactive display of a large display device projected onto the X-Y plane of the display screen when panning to the right. FIG. 8B is a schematic diagram of the optical beacon device for interacting with a large display device projected on the X-Z plane of the display screen when being shifted to the right. FIG. 8C is a schematic diagram of the optical beacon device for interacting with a large display device according to the present invention projected onto the Y-Z plane when being translated to the right. Figure 9A is a schematic view of the optical beacon device for interactive display of a large display device projected on the X-Y plane of the display screen when the elevation angle is changed. 201145083 Figure 9B: Schematic diagram of the optical beacon device for interactive display of a large display device in the X-Z plane of the display screen when the elevation angle is changed. Figure 9C: is an optical beacon device for interactive display of a large display device of the present invention - a schematic view projected on the display screen in the Y-Z plane when the elevation angle is changed. Figure 10A is a schematic view of the optical beacon device for interacting with a large display device projected onto the X-Y plane of the display screen when translated downward. Figure 10B: The optical beacon device for interacting with a large display device of the present invention is projected on the x_z plane when it is translated downward. • Figure 10C: Schematic diagram of the optical beacon device for interactive display of large-scale display devices projected onto the Y-Z plane when translated downward. [Main component symbol description] 10 Display 20 Light source beacons 201, 202, 203, 204, 205 Directional light source φ 21, 22, 23, 24, 25 Positioning spot 30 Camera 40 Computer 0 Center Η Horizontal positioning spot group V Vertical positioning spot group Ον Emission position ΟνΧ-ΖProjection position a Corner 201145083 β Elevation angle θ Angle Φ Angle

Claims (1)

201145083 七、申請專利範圍: 1.:種用於大型顯示裝置互動的光學信標裝 :機及 包括一個光源信標、-個顯示屏、-個攝 衫觀-個計算機,所述定位方法包括有以下步驟··攝 位光點糾標投射數財向絲源在顯㈣上產生數個定201145083 VII. Patent application scope: 1. An optical beacon device for interaction of large-scale display devices: a machine and a light source beacon, a display screen, a camera, a computer, and the positioning method includes There are the following steps: · The position of the spot is corrected, the number of projections is counted, and the source of the wire is produced on the display (four). 取顯示屏的影像並傳遞至計算機作處理; 計算各定位光點相對於顯示屏中㈣座標值; 置及^ 各定位光點的座標值計算光源信標的發射位 及方向在顯示屏上顯示 計算機依光源信標的發射位置 對應光源k標的顯示位置及方向。 ”晋Γΐ求項1所述之用於大型顯示裝置互動的光學信 4置的疋位方法’其中光源信標發射出五個方向性光 源’所述五個方向性光源在顯示屏上產生五個定位光點。 _ .士明求項2所述之用於大型顯示裝置互動的光學信 標裝置的定財法,其巾.所紐個定位絲呈十字形狀f =些光源依設計的定位功能細分為水平定位光點組及垂直 疋,光點組’水平定位光點組包括有至少三個呈水平排列 =定位光點,垂直^位光點包括有至少三個呈垂直排列的 疋位光點’ 該水平定位光點與垂直定位光點共有一個位 於中心位置的定位光點。 q 4·如4求項3所述之用於大型顯示裝置互動的光學信 ‘虞置的定位方法’其該水平定位光點組的方向性光源各 201145083 以相距等角角度相隔,該 以相距等以度相隔。 。組的方向性光源各 5. 如明求項3或4所述之用於大型 w a生,..、員不扁置互動的光 干置的核方法,其巾 -個轉角及—個仰角。 ^柯射方向包括有 6. 如請求項5所述之用於大型顯 標裝置的定仂古、土廿丄 < 且反助的九学k 位光點相^ 光源信標改變轉角時,水平定 小於愈Z站h1 的兩定位光點的投影距離 二轴夹角遠離2轴的兩定位光點的投影距離。 如凊求項5所述之用於大型顯 標裝置的定位方法,苴由束丄広 立動的先學g 其中备光源信標改變仰角時,垂直定 位光點組中與2軸夾角鄰月了 $直疋 小於愈的兩定位光點的投影距離 \轴夾角㈣“的兩定位光點的投影距離。 標穿二==所述之用於大型顯示裝置互動的光學信 位方法,其中當光源信標沿著X軸平移時,所 =疋位光絲著光源錢沿著χ料移, 的投影距離不變。 疋仅尤點間 求項5所述之用於大型顯示裝置互動的光學信 =置的讀方法,其巾當光源信標沿著γ軸平 h位光點跟著_信標沿著Υ 1 的投影距離不變。 Ο尤點間 10.如印求項2所述之用於大型顯示震 信標裝置的定位方、、共,甘七 郓们九子 ? / /、中方向性光源如雷射或經聚焦的 、.工外線彳又射在顯示屏。Take the image of the display and transfer it to the computer for processing; Calculate the coordinates of each positioning spot relative to the (4) coordinates in the display; Set the coordinate value of each positioning spot to calculate the emission position and direction of the source beacon. Display the computer on the display. The emission position of the light source beacon corresponds to the display position and direction of the light source k mark. "Clamping method for optical signal 4 for large-scale display device interaction", wherein the light source beacon emits five directional light sources, and the five directional light sources generate five on the display screen. Positioning light spot. _. Shiming item 2 The optical beacon device for large-scale display device interaction, the towel. The new positioning wire has a cross shape f = some light source according to the design positioning The function is subdivided into a horizontally positioned spot group and a vertical frame. The spot group 'horizontal positioned spot group includes at least three horizontally arranged = positioned spots, and the vertical position includes at least three vertically arranged positions. Spot 'The horizontal positioning spot and the vertical positioning spot share a positioning spot at the center position. q 4·The positioning method of the optical letter 'position for large-scale display device interaction as described in 4 item 3' The directional light source of the horizontally positioned spot group is separated by an equiangular angle, and the distances are equal to each other by degrees. The directional light sources of the group are respectively 5. For the large scale as described in Item 3 or 4 Washeng,.., members are not flat The nuclear method of the light-drying, the towel-a corner and the elevation angle. The direction of the eclipse includes 6. The singularity and the soil of the large-scale display device as described in claim 5; Anti-help nine-study k-spot phase ^ When the source beacon changes the corner, the horizontal distance is smaller than the projection distance of the two positioning spots of the Z-station h1. The projection distance of the two-axis angle away from the two-axis is from the two-axis. The positioning method for the large-scale display device described in Item 5, 先 苴 苴 g 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中The projection distance of the two positioning spots is less than the projection distance of the two positioning spots, and the projection distance of the two positioning spots. The optical letter method for multi-display device interaction is described in the following, wherein when the light source beacon is translated along the X-axis, the projection distance of the light source along the x-ray is constant.光学 疋 尤 尤 尤 求 求 用于 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学 光学The projection distance does not change. Ο 点 10 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. The outside line is shot on the display.
TW99117783A 2010-06-02 2010-06-02 A method of positioning an optical beacon device for interaction of a large display device TWI419012B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99117783A TWI419012B (en) 2010-06-02 2010-06-02 A method of positioning an optical beacon device for interaction of a large display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99117783A TWI419012B (en) 2010-06-02 2010-06-02 A method of positioning an optical beacon device for interaction of a large display device

Publications (2)

Publication Number Publication Date
TW201145083A true TW201145083A (en) 2011-12-16
TWI419012B TWI419012B (en) 2013-12-11

Family

ID=46765824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99117783A TWI419012B (en) 2010-06-02 2010-06-02 A method of positioning an optical beacon device for interaction of a large display device

Country Status (1)

Country Link
TW (1) TWI419012B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478026B (en) * 2012-12-25 2015-03-21 Qisda Corp Adjustment auxiliary tool and projection system therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744589B (en) * 2018-12-28 2021-11-01 宏正自動科技股份有限公司 Video interactive system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409599B1 (en) * 1999-07-19 2002-06-25 Ham On Rye Technologies, Inc. Interactive virtual reality performance theater entertainment system
KR100734894B1 (en) * 2000-09-07 2007-07-03 카네스타, 인코포레이티드 Quasi-three-dimensional method and apparatus to detect and localize interaction of user-object and virtual transfer device
US8328368B2 (en) * 2007-04-26 2012-12-11 Accuvein Inc. Projection system
TWI402606B (en) * 2007-05-09 2013-07-21 Dolby Lab Licensing Corp System for 3d image projections and viewing
TWM374605U (en) * 2009-10-06 2010-02-21 Ming-Shing Wu Briefing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478026B (en) * 2012-12-25 2015-03-21 Qisda Corp Adjustment auxiliary tool and projection system therewith

Also Published As

Publication number Publication date
TWI419012B (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US10217288B2 (en) Method for representing points of interest in a view of a real environment on a mobile device and mobile device therefor
JP5762892B2 (en) Information display system, information display method, and information display program
CN204465706U (en) Terminal installation
CN105138135B (en) Wear-type virtual reality device and virtual reality system
TWI281623B (en) Orientation point orientating method of orientation device and device thereof
CN105701790B (en) For determining method and system of the video camera relative to the posture of at least one object of true environment
US9256986B2 (en) Automated guidance when taking a photograph, using virtual objects overlaid on an image
CN108363519B (en) Distributed infrared visual detection and projection fusion automatic correction touch display system
WO2012147702A1 (en) Head-mounted display
KR20160081788A (en) Electronic System With Gesture Calibration Mechanism And Method Of Operation Thereof
JPWO2016042926A1 (en) Image processing apparatus, image processing method, and program
CN101911162A (en) Input device for a scanned beam display
WO2017147748A1 (en) Wearable system gesture control method and wearable system
WO2016008265A1 (en) Method and apparatus for locating position
WO2017043145A1 (en) Information processing device, information processing method, and program
JP2010176313A (en) Information-processing device and information-processing method
JP2008293357A (en) Information processing method and information processor
CN102426509A (en) Method, device and system for displaying hand input
WO2015159547A1 (en) Information processing system, control method, and program recording medium
TW200928879A (en) Positioning apparatus and related method of orientation devices
CN114047831B (en) Computing system with direct three-dimensional pointing and method of tracking pointing/input device
TW201145083A (en) Optical beacon device positioning method used for large-sized display device interaction
Andersen et al. A hand-held, self-contained simulated transparent display
TW201337639A (en) Finger-pointing direction image control device and method thereof
CN110060349B (en) Method for expanding field angle of augmented reality head-mounted display equipment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees