TW201144439A - Inhibition-based high-throughput screen strategy for cell clones - Google Patents

Inhibition-based high-throughput screen strategy for cell clones Download PDF

Info

Publication number
TW201144439A
TW201144439A TW99128012A TW99128012A TW201144439A TW 201144439 A TW201144439 A TW 201144439A TW 99128012 A TW99128012 A TW 99128012A TW 99128012 A TW99128012 A TW 99128012A TW 201144439 A TW201144439 A TW 201144439A
Authority
TW
Taiwan
Prior art keywords
cells
screening
dhfr
expression
gene
Prior art date
Application number
TW99128012A
Other languages
Chinese (zh)
Other versions
TWI475109B (en
Inventor
Wei-Kuang Liu
Min-Pey Ding
Original Assignee
Scinopharm Taiwan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/792,924 external-priority patent/US8765370B2/en
Application filed by Scinopharm Taiwan Ltd filed Critical Scinopharm Taiwan Ltd
Publication of TW201144439A publication Critical patent/TW201144439A/en
Application granted granted Critical
Publication of TWI475109B publication Critical patent/TWI475109B/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method for screening cells with high level expression of a target protein is disclosed. The method includes introducing into a plurality of host cells a DNA construct that encodes both a target protein and an inhibitor to an endogenous selectable marker in the host cells, screening host cells harboring the DNA construct for the expression of the endogenous selectable marker, and isolating cells with reduced expression of the selectable marker. Also disclosed is a DNA construct configured to express both the target protein and the inhibitor inside the host cell.

Description

201144439 六、發明說明: 【發明所屬之技術領域】 本發明所揭示之技術大體而言係關於生物技術及分子生 物學,且詳言之係關於細胞純系之大量篩選。 本申請案主張2009年6月11曰申請之美國臨時申請案第 61/213,459號的優先權,該案之全文以引用的方式併入本 文中。 【先前技術】 在生產重組蛋白之細胞株的產生中,關鍵步驟在於將相 關之基因併入宿主細胞之後選擇有效純系。對於工業規模 生物生產而言’極需一種產物基因穩定嵌合且大量生產蛋 白產物之純系。 在異質群體中’重組基因嵌合至宿主基因體為隨機度頗 高之事。含有多個穩定嵌合基因拷貝之細胞較彼等具有低 拷貝數之細胞比例來的少。高產量之次選殖系較罕見且易 於被生長較快的非生產細胞或低產量細胞給稀釋。因此, 為分離高生產率的次選殖系’需要多次篩選及測試。一般 而言’限數稀釋法(limited dilution methods)係過於冗長且 耗時。 使用流式細胞儀及細胞分選之篩選方法一般認為可顯著 增加篩選細胞之效率。幾百萬個細胞可在短時間内被筛 選,且即便在混合細胞群體中出現的頻率低達丨〇-6,亞群 及單一細胞亦可自其中分離。 流式細胞儀搭配非螢光報導蛋白以便能在早期快速識別 150275.doc 201144439 生產大量目標蛋白之純系。藉由細胞表面蛋白表現,抗體 及配位體結合螢光染料,而使得分離細胞的技術變得容易 進行°舉例而言,通常不表現於宿主細胞上的細胞表面蛋 白可與目標蛋白一起共表現而作為報導體。 在細胞表面蛋白表現與生產率不相關之情況下,可基於 細胞内蛋白質之含量使用諸如綠色螢光蛋白(GF:P)之報導 分子來分離細胞。GFp已成為基因表現及基於誘導性基因 產物選擇細胞的重要報導體。在哺乳動物細胞株中,gfp 已用於與重組蛋白共表現來篩選高產量純係,而該篩選係 基於登光的強度。已在若干表現各種重組蛋白之細胞株中 發現GFP螢光強度與重組蛋白產量的相關性。然而,此等 筛選標記之表現會增加細胞中蛋白表現機構之負荷且減少 了目標蛋白之產量。 【發明内容】 本發明之一態樣係關於一種篩選具高目標蛋白表現量之 細胞的方法。該方法包括將具有編碼目標蛋白及宿主細胞 内源性篩選標記之抑制子兩者的DNA構築體引入至數個宿 主細胞内’針對内源性篩選標記之表現來篩選含有DNA構 築體的宿主細胞,及分離蒒選標記表現量低的細胞。DNA 構築體系配置為可於在宿主細胞内表現目標蛋白及抑制子 兩者。 在一實施例中’抑制子係選自由小干擾RNA(siRNA)、 小髮夾狀 RNA(shRNA)、微 RNA(miRNA)、mi:RNA 與 shRNA之雜合體及反義RNA組成之族群。 150275.doc 201144439 在另一實施例中,抑制子係shRNA » 在另一實施例中,内源性篩選標記係螢光標記且分離步 驟包含用螢光活化細胞分選儀(FACS)分選細胞。 在另一實施例中,DNA構築體進一步編碼二氫葉酸還原 酶(DHFR)且宿主細胞為DHFR缺陷型細胞。 本發明之另一態樣係關於一種選擇轉殖基因表現細胞之 高產能篩選方法。該方法包括用載有至少一種轉殖基因及 抑制螢光蛋白表現之干擾RNA的載體轉染表現螢光蛋白之 宿主細胞;量測經轉染細胞中之螢光強度;及分離螢光強 度低於未經轉染細胞之螢光強度的細胞。 在一實施例中,螢光蛋白為綠色螢光蛋白(GFP)。 在另一實施例中,干擾RNA為mir-30based之shRNA。 在另一實施例中,分離步驟包含用FACS進行分選細 胞。 在另一實施例中,表現螢光蛋白之細胞為DHFR缺陷型 CHO細胞。 在另一實施例中,至少一種轉殖基因經由内部核糖體進 入位點(IRES)連接於編碼DHFR之基因。 本發明之另一態樣係關於一種表現載體’其用於高產能 篩選含有表現載體之細胞。該表現載體包含編碼目標蛋白 的第一核苷酸序列、編碼宿主細胞外源性篩選標記的第二 核苷酸序列、編碼宿主細胞内源性篩選標記之抑制子的第 三核苷酸序列、及一或多個控制宿主細胞内第一核苷酸序 列、第二核苷酸序列及第三核苷酸序列表現的調控元件。 150275.doc 201144439 第一核苷酸序列經由内部核糖體進入位點(IRES)連接於第 一核苦酸序列。 在一實施例中’表現載體另外包含一或多個抗阻遏子元 件。 在一相關實施例中,一或多個抗阻遏子元件包括部分小 鼠抗阻遏子元件40。 在另一實施例中,抑制子為干擾RNA。 在一相關實施例中,干擾RNA為miR-30 based之 shRNA 〇 在另一實施例中,内源性篩選標記為螢光蛋白<= 在一相關實施例中,螢光蛋白為綠色螢光蛋白。 在另一實施例中,外源性篩選標記為二氫葉酸還原酶。 在另一實施例中’一或多個調控元件包括CMV ΙΕ增強 子。 【實施方式】 本發明揭不一種師選外源性蛋白南表現量之細胞的方 法。在一實施例中’該方法包括以下步驟:將具有編碼目 標蛋白及宿主細胞内源性篩選標記之抑制子兩者的DNA構 築體引入至數個宿主細胞中’其中該構築體經配置成可於 宿主細胞内表現目標蛋白及抑制子兩者;針對内源性筛選 標記之表現來篩選含有DMA構築體的宿主細胞;及分離内 源性筛選標記表現量低的細胞。 如下文所用,術語「細胞」/「宿主細胞」及「細胞 株」/「宿主細胞株」通常分別定義為真核細胞及其均質 150275.doc 201144439 群體,其可藉由技術領域t已知之方法以細胞培養維持, 且具有表現異源蛋白的能力。在—實施例中,該等細胞為 CH〇細胞。在另一實施例中,該等細胞為表現GFP作為内 源性篩選標記的CHO細胞。在另一實施例中,該等細胞為 缺乏DHFR基因且表現GFp作為内源性篩選,標記的ch〇細 胞。 如下文所用,術語「表現」通常用於指細胞中一或多種 特異性RNA產物或一或多種特異性蛋白的生產。在rna產 物的情況下,其係指轉錄過程。在蛋白產物的情況下,其 係指轉錄、轉譯及視情況存在的後轉譯修飾過程。在分泌 蛋白的情況下,其係指轉錄、轉譯及視情況存在的後轉譯 修飾(例如糖基化、二硫鍵形成等)及隨後的分泌過程。在 夕聚體蛋白(multimenc protein)的情況下,其包括多肽單 體形成多聚體結構的組裝。相應於名詞「表現」之動詞具 有與名詞類似的意義。 如下文所用,術語「篩選標記」通常用於指可在細胞中 直接或間接偵測到其存在的基因及/或蛋白’例如使篩選 劑失活且保護宿主細胞免受該篩選劑之致死效應或生長抑 制效應影響的基因及/或蛋白(例如抗生素抗性基因及/或蛋 白)。另一可能性為可誘導螢光或顏色沈積物之筛選標記 (例如綠色螢光蛋白及衍生物、螢光素酶或鹼性磷酸酶)。 術語「内源性篩選標記」係指在DNA構築體引入至宿主細 胞之削即已存在於宿主細胞中之聚核苷酸所編碼的篩選標 記。「内源性篩選標記」的編碼序列可為嵌入形式(亦即嵌 150275.doc 201144439 合至細胞基因組中)或以游離形式存在。 如下文所用,術語「麵構築體」係指表現或轉型構華 體,A構築體包含至少—個表現單元或表現卡£。術語 表現單元或表現卡£」在本文中^義為能表現編竭序列 或開放閱讀㈣之單元。「表現單元或表現切」通常包 含-或多個調控元件可操作地連接於編喝相關之分子二 即多肽或聚核苷酸)之轉殖基因。 「調控元件」為藉由可操作地連接於編碼序列而調控轉 殖基因表現之核酸序列。調控序列之實例包括(但不限於) 適當的轉軸料列、終止序列、啟料序列及增強子序 列;有效的RNA加工信^,諸如剪接信號及聚腺㈣化产 號;穩定細胞質mRNA的序列;提高轉譯效率的序列(亦即 Kozak—致性序列);增強蛋白穩定性的序列;及當需要 時’増加蛋白分泌的序列。調控序列可以順式組態或以反 式組態,或在一定距離處起作用以控制相關之基因。 「轉殖基因」為有待傳遞或轉移至哺乳動物細胞之核酸 序列。轉殖基因可編碼適於用作標記、報導體或治療分子 之蛋白質、肽或多肽。轉殖基因亦可編碼適用於蛋白生 產、診斷檢定或用於活體外或活體内之任何暫時或穩定基 因轉移的蛋白f、多肽或肽^者,轉殖基因可編Hi 性聚核皆酸,諸如miRNA、RNAi、shRNA、反義RNa、核 糖核酸酶或其他調控核酸。轉殖基因亦包括用於誘導 重組及基因修復之DNA序列。 當一核酸序列與另一核酸序列呈功能性關係時,前者 150275.doc 201144439 可操作地連接」於後者。舉例而言,若前序列或分泌性 刖V肽之DNA表現為參與多狀分泌之前蛋白,則該〇财可 操作地連接於多肽之DNA;若啟動子或增強子影響編碼序 列的轉錄’則其可操作地連接於該序列;或若核糖體結合 位點經定位以促進轉譯’則其可操作地連接於編碼序列。 通* ’「可操作地連接」意謂所連接的DNA序列為連續 的,且在分泌性前導序列之情況下為連續的並處於閱讀階 段。然而,增強子不需要連續。連接係藉由在適宜限制位 點上接合來達成。若不存在該等位點,則以傳統方式使用 合成券核f酸接附子或連接子。 「篩選標記之抑制子」可為直接或間接抑制篩選標記之 表現或活性的多肽或聚核苷酸。在一實施例中,抑制子為 抑制宿主細胞内篩選標記之表現的聚核苷酸,諸如小干擾 RNA(siRNA)、小髮夹狀RNA(shRNA)、微RNA(miRNA)、 miRNA與shRNA之雜合體或反義RNA分子。在另一實施例 中’抑制子為抑制宿主細胞内選擇標記之表現的多肽,諸 如轉錄調控子。在另一實施例中,抑制子為抑制選擇標記 之生物活性的多肽,諸如抗體。 如本文所用’術語「siRNA」係指長度為約1 〇_5〇個核苦 酸(術語「核苷酸」包括核苷酸類似物)、較佳約15-25個核 苷酸、更佳約 17、18、19、20、21、22、23、24 或 25 個核 苷酸之RNA劑,較佳為雙股鈿,該等股視情況具有包含例 如1、2或3個突出核苷酸(或核苷酸類似物)之突出末端,其 能指示或介導RNA干擾。天然存在之siRNA係藉由細胞之 150275.doc • 10· 201144439 RNA干擾(RNAi)機構自較長dsRNA分子(例如長度>25個核 苷酸)產生。 如本文所用,術語「RNA干擾」或「RNAi」通常係指 導致目標分子(例如目標基因、蛋白或RNA)向下調節之序 列特異性或選擇性過程。在特定實施例中,「RNA干擾」 或「RNAi」過程之特徵為RNA分子(例如細胞内之RNA分 子)之降解,該降解由RNA劑觸發。降解由酶RNA誘導沉 默複合物(RISC)來催化。RNAi係自然存在於細胞中以移除 外來RNA(例如病毒RNA)。天然RNAi源自於可將降解機制 導入其他類似RNA序列之游離dsRNA分解之片段。或者, RNAi可藉由將小干擾RNA分子引入至細胞中以使目標基 因之不表現而引發。 如下文所用,術語「shRNA」係指具有莖-環結構之 RNA劑,其包含互補序列之第一區域及第二區域,該等區 域之互補程度及取向足以使該等區域之間發生鹼基配對, 第一區域與第二區域經由環區域連接,該環係因為在環區 域内核苷酸(或核苷酸類似物)之間缺少鹼基配對而產生。 shRNA髮夾狀結構由細胞機構分解為siRNA,其接著結合 於RNA誘導沉默複合物(RISC)。此複合物結合及分解與 siRNA相配對且與之結合的mRNA。 DNA構築體可在其構築期間另外包含用於細菌中複製及 篩選之質體元件。DNA構築體亦可含有其他篩選標記以促 進DNA構築體在宿主細胞内擴增。由DNA構築體編碼之篩 選標記被視為外源性篩選標記。外源性選擇標記之實例包 150275.doc 201144439 括(但不限於)抗生素抗性(例如編碼G418抗性之新黴素 (neomycin)基因)或酶類似物抗性(例如編碼甲胺喋呤抗性 之二氫葉酸還原酶基因)。 在一實施例中,DNA構築體含有雙效(b.icistr〇nic)表現 卡匣,其中相關之蛋白之開放閱讀框架經由内部核糖體進 入位點(IRES),連接於外源性篩選標記或内源性篩標抑制 子的編碼序列,以使其在同一 mRNA中轉錄但獨立轉譯。 因為其均來自共同的mRNA,所以外源性篩選標記或抑制 子之表現量可準確地預測各純系之相關之蛋白的相對表現 量。較佳地,雙效表現卡匣中相關之蛋白之開放閱讀框架 位於外源性篩選標記或内源性篩選標記抑制子的編碼序列 的上游。 舉例而言,為改良多輪甲胺喋呤(ΜΤχ)擴增之精確度及 產量,編碼治療蛋白(諸如抗體輕鏈)之基因在3,端經由 IRES連接於外源性篩選標記(諸如DHFR),以使其在同一 mRNA中轉錄但獨立轉譯。相對於5,帽(5i cap)_介導之轉譯 而為效率較低的IRES介導轉譯可確保細胞資源主要用於生 產治療蛋白而非DHFR蛋白。然而’因為其來自同一 mRNA,所以對於各純系而言,DHFR擴增量可準確地預 測治療蛋白的相對表現量。 在另一實施例中,DNA構築體另外含有一或多個對抗染 色質相關阻遏之抗阻遏子元件(ARE卜如下文所用, ARE(或抗阻遏子序列,其在本文中互換使用)為具有阻斷 轉殖基因阻遏之能力,而自真核基因組中分離的天然存在 150275.doc -12- 201144439 之DNA元件。ARE具有可影響基因順式轉錄及/或提供穩 定效應及/或增強效應的能力。已證實當ARE側接轉殖基因 時,隨機選擇之重組細胞株之轉殖基因表現量可増加至接 近轉殖基因啟動子之最大可能表現量。此外,轉殖基因之 表現量歷經多個細胞世代保持穩定,且不顯現隨機靜默 (silencing)。因此,ARE賦予轉殖基因在習知轉殖基因系 統的情況下不可能實現的位置獨立性表現。位置獨立性意 謂轉殖基因嵌入至可導致轉殖基因靜默之基因組位置,在 ARE保護下維持轉錄活性狀態。在—實 分小鼠~。在另—實施财,讓構築體含Ϊ多 個部分小鼠ARE40片段。 將DNA構築體引入至細胞中之方法已為此項技術所熟 知。該等方法之實例包括(但不限於)電穿孔、脂質體轉 染、鱗酸的或氣化約共沈澱及DEAE_葡聚糖介導之轉染。 DNA構築體亦可㈣麵則人至細胞巾。常用病毒載體 包括(但不限於)腺病毒載體、腺相關病毒載體、疱 療病毒載體及反轉錄病毒載體^ 針對外源性及⑽性選標記之表現”選經舰構築 體轉染之細胞。DNA構築體中之㈣標記抑制子之高表現 篁可導致内源性篩選標記之表現量及/或活性降低。接著 分離筛選標記表現降低的細胞並進行次選殖,以測定轉殖 基因表現之量及穩定性。 在某些實施例中,内源柯综.联4a5 — * n你I·生師遠標記為可經誘導而發出螢 光之蛋白。在此等實施例中’筛選步驟及分離步驟可利用 150275.doc 201144439 螢光活化細胞分選儀(FACS)同時進行。 在其他實施例中,首先用外源性標記對經DNA構築體轉 染之細胞進行一或多輪篩選(例如篩選抗G418及/或抗曱胺 喋呤純系)。篩選出的細胞接著再篩選出内源性篩選標記 表現及/或活性低者。 本發明亦揭示一種DNA構築體,其經配置成可使含有該 DNA構築體之細胞高產量篩選。在一實施例中,該構 築體含有目標蛋白之編碼序列及宿主細胞内源性篩選標記 抑制子之編碼序列,其中該DNA構築體經配置成可於宿主 細胞内表現目標蛋白及抑制子兩者。 在一實施例中,抑制子為抑制宿主細胞内源性篩選標記 表現的小干擾RNA(siRNA)、小髮夾狀RNA(shRNA)、微 RNA(miRNA)、miRNA與shRNA之雜合體或反義RNA分 子。 在另一實施例中,抑制子為抑制宿主細胞内源性篩選標 記表現的多肽,諸如轉錄調控子。 在另一實施例中’抑制子為抑制内源性篩選標記之生物 活性的多肽,諸如抗體。 在另一實施例中,内源性選擇標記為可誘發螢光的蛋 白。 在另一實施例中’ DNA構築體另外包含一或多個抗阻遏 子元件。 本發明所述之技術能自經轉染細胞之異質群體中快速識 別及分離高產量的純系,從而減少標準限數稀釋選殖法相 150275.doc -14- 201144439 關的工作及時間。此外,因為此項技術可識別群體中罕見 的欲得細胞,所以其可藉由減少在分離高產純系之前池擴 增(pool amplification)之輪數或藉由先分離用於藥物擴增 及次選殖之高產純系,來縮短發展時間。 實例 綠色螢光蛋白(GFP)/螢光活化細胞分選儀(FACS)之篩選 方法的簡易性及有效性已在先前研究中得到證實。在此等 先前報導中’ GFP使用内部核糖體進入位點(IRES)或雙啟 動子系統(two promoter system)併入,作為融合蛋白之一 部分或作為雙效構築體之一部分。具有高GfP含量之細胞 與相關之蛋白產物之高含量有關。此可歸因於高拷貝數之 重組基因的穩定嵌合或該基因已嵌合至具有極高轉錄活性 之位點。雖然此等方法已顯示有效,但在使用含有Gpp之 細胞株製造人類治療劑方面可能存在某些掛慮。此外,似 乎不必要使細胞之代謝機構在分離亞群之後加諸GFp生產 的負擔。此細胞資源可潛在地轉為增加細胞生長或重組蛋 白產量。以下實例描述一種相反地使用GFp作為篩選標 s己,併用FACS分選來篩選高產細胞純系的新穎技術。 圖1為顯示基於GFP之篩選過程的示意圖。簡言之,將 含有編碼GFP之cDNA的質體載體轉染入DHFR缺陷型CH〇 細胞。成功獲得所要載體之細胞具有螢光。GFp表現細胞 設定為用於重組蛋白表現之親本宿主細胞。 為生產欲得之重組蛋白,用含有shRNAmireGFP之載體轉 染親本宿主細胞’接著進行FACS分選選低螢光強度 150275.doc •15· 201144439 的細胞。在若干輪遞增ΜΤχ攻毒之後,對細胞培養進行反 覆多輪分選及擴增。GFP螢光強度最低的細胞純系對應於 轉殖基因表現最高的純系。最後,擴增所選擇之純系且測 試其產量及穩定性。因為FACS能輕易地篩選大量細胞, 所以獲得高產純系之機會相比於限數稀釋法將大大提高。 此外’該程序較不耗費人力且可顯著縮短產生用於生物生 產之純系所需的時間。 實例1 :建立CHO+GFP/-dhfr細胞株 將中國倉鼠卵巢二氫葉酸還原酶缺陷型細胞株(CH〇/dhfr-)培養於補充有111'(0.1111]^次黃嘌呤鈉及0.016 111]^胸苷,201144439 VI. INSTRUCTIONS OF THE INVENTION: FIELD OF THE INVENTION The technology disclosed herein relates generally to biotechnology and molecular biology, and in particular to the extensive screening of cell lines. The present application claims priority to U.S. Provisional Application Serial No. 61/213,459, filed on Jun. [Prior Art] In the production of a cell strain producing a recombinant protein, a key step is to select an effective pure line after incorporating the relevant gene into the host cell. For industrial scale bioproduction, there is a great need for a pure line in which the product gene is stably chimeric and produces a large amount of protein product. In a heterogeneous population, the recombination of the recombinant gene into the host genome is highly random. Cells containing multiple copies of a stable chimeric gene are less abundant than those with a low copy number. Sub-selection lines with high yields are rare and are easily diluted by non-producing cells or low-yielding cells that grow faster. Therefore, multiple screening and testing are required to isolate high-productivity secondary colonies. In general, 'limited dilution methods' are too lengthy and time consuming. Screening methods using flow cytometry and cell sorting are generally considered to significantly increase the efficiency of screening cells. Millions of cells can be screened in a short period of time, and even if the frequency of occurrence in the mixed cell population is as low as 丨〇-6, subpopulations and single cells can be isolated therefrom. Flow cytometry with non-fluorescent reporter proteins to quickly identify early in the 150275.doc 201144439 production of a large number of target proteins. By the expression of cell surface proteins, antibodies and ligands bind to fluorescent dyes, making the technique of isolating cells easy. For example, cell surface proteins that are not normally expressed on host cells can be co-expressed with the target protein. And as a conductor. In the case where cell surface protein expression is not related to productivity, a reporter molecule such as green fluorescent protein (GF: P) can be used to separate cells based on the content of intracellular proteins. GFp has become an important reporter for gene expression and cell selection based on induced gene products. In mammalian cell lines, gfp has been used to co-exhibit with recombinant proteins to screen high yield pure lines based on the intensity of light. The correlation between GFP fluorescence intensity and recombinant protein production has been found in several cell lines expressing various recombinant proteins. However, the performance of such screening markers increases the load on the protein expression machinery in the cell and reduces the production of the target protein. SUMMARY OF THE INVENTION One aspect of the present invention relates to a method of screening cells having a high target protein expression amount. The method comprises introducing a DNA construct having both a protein encoding a target protein and a suppressor of an endogenous selection marker of a host cell into a plurality of host cells, and screening the host cell containing the DNA construct for expression of the endogenous screening marker And separating cells with low expression markers. The DNA construction system is configured to express both the target protein and the inhibitor in the host cell. In one embodiment, the inhibitor is selected from the group consisting of small interfering RNA (siRNA), small hairpin RNA (shRNA), microRNA (miRNA), a hybrid of mi:RNA and shRNA, and antisense RNA. 150275.doc 201144439 In another embodiment, the suppressor shRNA is selected. In another embodiment, the endogenous screening marker is fluorescently labeled and the separating step comprises sorting the cells with a fluorescence activated cell sorter (FACS) . In another embodiment, the DNA construct further encodes dihydrofolate reductase (DHFR) and the host cell is a DHFR deficient cell. Another aspect of the invention pertains to a high capacity screening method for selecting cells for expression of a transgenic gene. The method comprises transfecting a host cell expressing a fluorescent protein with a vector carrying at least one of a transgenic gene and an interfering RNA expressing a fluorescent protein; measuring the fluorescence intensity in the transfected cell; and separating the fluorescent intensity Cells that are not fluorescently transfected with the fluorescence intensity of the cells. In one embodiment, the fluorescent protein is green fluorescent protein (GFP). In another embodiment, the interfering RNA is a mir-30 based shRNA. In another embodiment, the separating step comprises sorting the cells with FACS. In another embodiment, the cell expressing the fluorescent protein is a DHFR deficient CHO cell. In another embodiment, at least one of the transgenic genes is linked to a gene encoding DHFR via an internal ribosome entry site (IRES). Another aspect of the invention pertains to an expression vector' for use in high throughput screening of cells containing an expression vector. The expression vector comprises a first nucleotide sequence encoding a protein of interest, a second nucleotide sequence encoding an exogenous screening marker of a host cell, a third nucleotide sequence encoding a repressor of a host cell endogenous selection marker, And one or more regulatory elements that control expression of the first nucleotide sequence, the second nucleotide sequence, and the third nucleotide sequence in the host cell. 150275.doc 201144439 The first nucleotide sequence is linked to the first nucleotide acid sequence via an internal ribosome entry site (IRES). In one embodiment, the expression vector additionally comprises one or more anti-repressor elements. In a related embodiment, the one or more anti-repressor elements comprise a portion of the mouse anti-repressor element 40. In another embodiment, the repressor is an interfering RNA. In a related embodiment, the interfering RNA is a miR-30 based shRNA. In another embodiment, the endogenous screening marker is a fluorescent protein <= In a related embodiment, the fluorescent protein is green fluorescent protein. In another embodiment, the exogenous screening marker is dihydrofolate reductase. In another embodiment, the one or more regulatory elements comprise a CMV ΙΕ enhancer. [Embodiment] The present invention discloses a method for cultivating cells of the exogenous protein in the south. In one embodiment, the method comprises the steps of: introducing a DNA construct having both a protein encoding a target protein and a host cell endogenous screening marker into a plurality of host cells, wherein the construct is configured to be Both the target protein and the suppressor are expressed in the host cell; the host cell containing the DMA construct is screened for the expression of the endogenous screening marker; and the cell with low expression of the endogenous screening marker is isolated. As used hereinafter, the terms "cell" / "host cell" and "cell strain" / "host cell strain" are generally defined as eukaryotic cells and their homogeneous 150275.doc 201144439 population, which can be known by the art. It is maintained in cell culture and has the ability to express heterologous proteins. In the embodiment, the cells are CH〇 cells. In another embodiment, the cells are CHO cells that express GFP as an endogenous selection marker. In another embodiment, the cells are devoid of the DHFR gene and exhibit GFp as an endogenous screen, labeled ch〇 cell. As used hereinafter, the term "expression" is generally used to refer to the production of one or more specific RNA products or one or more specific proteins in a cell. In the case of an RNA product, it refers to the transcription process. In the case of a protein product, it refers to the process of transcription, translation, and, where appropriate, post-translational modification. In the case of a secreted protein, it refers to transcription, translation, and, where appropriate, post-translational modifications (e.g., glycosylation, disulfide bond formation, etc.) and subsequent secretion processes. In the case of a multimenc protein, it includes the assembly of a polypeptide monomer to form a multimeric structure. A verb corresponding to the noun "performance" has a meaning similar to a noun. As used hereinafter, the term "screening marker" is generally used to refer to a gene and/or protein that can detect its presence, either directly or indirectly, in a cell, such as inactivating a screening agent and protecting the host cell from the lethal effect of the screening agent. Or genes and/or proteins (eg, antibiotic resistance genes and/or proteins) that are affected by growth inhibition effects. Another possibility is a selection marker (e.g., green fluorescent protein and derivative, luciferase or alkaline phosphatase) that can induce fluorescence or color deposits. The term "endogenous screening marker" refers to a screening marker encoded by a polynucleotide that has been introduced into a host cell, i.e., a polynucleotide already present in the host cell. The coding sequence for the "endogenous selection marker" can be in an embedded form (i.e., embedded in 150275.doc 201144439 incorporated into the genome of the cell) or in free form. As used hereinafter, the term "face structure" means a performance or transformational structure, and the A structure contains at least one performance unit or performance card. The term performance unit or performance card is used herein to mean a unit that can express a sequence of compilation or open reading (4). "Expression unit or performance cut" typically comprises - or a plurality of regulatory elements operably linked to a transgenic gene encoding a related molecule, i.e., a polypeptide or a polynucleotide. A "regulatory element" is a nucleic acid sequence that regulates the expression of a transgene by being operably linked to a coding sequence. Examples of regulatory sequences include, but are not limited to, appropriate recurstor strands, termination sequences, initiation sequences, and enhancer sequences; efficient RNA processing signals, such as splicing signals and poly(s) genes; sequences that stabilize cytoplasmic mRNA a sequence that increases translation efficiency (ie, Kozak-induced sequence); a sequence that enhances protein stability; and a sequence that secretes protein secretion when needed. Regulatory sequences can be configured cis or in reverse, or at a distance to control the relevant genes. A "transgenic gene" is a nucleic acid sequence to be delivered or transferred to a mammalian cell. The transgene can encode a protein, peptide or polypeptide suitable for use as a marker, reporter or therapeutic molecule. The transgenic gene may also encode a protein f, a polypeptide or a peptide suitable for protein production, diagnostic assay or for any temporary or stable gene transfer in vitro or in vivo, and the transgene may be edited with a polynuclear acid. Such as miRNA, RNAi, shRNA, antisense Rna, ribonuclease or other regulatory nucleic acids. Transgenic genes also include DNA sequences for inducing recombination and gene repair. When a nucleic acid sequence is functionally related to another nucleic acid sequence, the former 150275.doc 201144439 is operatively linked to the latter. For example, if the DNA of the pro-sequence or secretory 刖V peptide is expressed as a protein involved in polymorphism, then the operably linked to the DNA of the polypeptide; if the promoter or enhancer affects the transcription of the coding sequence' It is operably linked to the sequence; or operably linked to the coding sequence if the ribosome binding site is positioned to facilitate translation. By "operably linked" is meant that the DNA sequences being linked are contiguous and, in the case of a secretory leader sequence, contiguous and in the reading phase. However, enhancers do not need to be continuous. The attachment is achieved by joining at suitable restriction sites. If the sites are not present, the synthetic nucleus f acid acceptor or linker is used in a conventional manner. A "strainer of a selection marker" can be a polypeptide or polynucleotide that directly or indirectly inhibits the expression or activity of a marker. In one embodiment, the inhibitor is a polynucleotide that inhibits the expression of a marker in a host cell, such as small interfering RNA (siRNA), small hairpin RNA (shRNA), microRNA (miRNA), miRNA, and shRNA A hybrid or antisense RNA molecule. In another embodiment, the 'inhibitor is a polypeptide that inhibits the expression of a selectable marker in a host cell, such as a transcriptional regulator. In another embodiment, the inhibitor is a polypeptide, such as an antibody, that inhibits the biological activity of the selectable marker. As used herein, the term 'siRNA' refers to a length of about 1 〇 5 5 nucleotides (the term "nucleotide" includes nucleotide analogs), preferably about 15-25 nucleotides, more preferably. An RNA agent of about 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides, preferably double-stranded, having, for example, 1, 2 or 3 overhang nucleosides The overhanging end of an acid (or nucleotide analog) that can signal or mediate RNA interference. The naturally occurring siRNA is produced by the cell's 150275.doc • 10· 201144439 RNA interference (RNAi) machinery from longer dsRNA molecules (e.g., length > 25 nucleotides). As used herein, the term "RNA interference" or "RNAi" generally refers to a sequence-specific or selective process that results in downregulation of a target molecule (e.g., a target gene, protein, or RNA). In a particular embodiment, the "RNA interference" or "RNAi" process is characterized by degradation of an RNA molecule (e.g., an RNA molecule within a cell) that is triggered by an RNA agent. Degradation is catalyzed by the enzyme RNA-induced silencing complex (RISC). RNAi is naturally present in cells to remove foreign RNA (eg, viral RNA). Native RNAi is derived from fragments of free dsRNA that can be introduced into other similar RNA sequences by degradation mechanisms. Alternatively, RNAi can be initiated by introducing small interfering RNA molecules into the cell to render the target gene unexpressed. As used hereinafter, the term "shRNA" refers to an RNA agent having a stem-loop structure comprising a first region and a second region of a complementary sequence, the regions of which are complementary to each other in such an extent as to occur between the regions. Pairing, the first region and the second region are joined via a loop region resulting from the lack of base pairing between nucleotides (or nucleotide analogs) within the loop region. The shRNA hairpin structure is broken down into siRNA by cellular machinery, which in turn binds to RNA-induced silencing complex (RISC). This complex binds to and decomposes mRNA that is paired with and bound to siRNA. The DNA construct may additionally contain plastid elements for replication and screening in bacteria during its construction. DNA constructs may also contain additional screening markers to facilitate amplification of the DNA construct within the host cell. Screening markers encoded by DNA constructs are considered exogenous screening markers. An example set of exogenous selectable markers 150275.doc 201144439 includes, but is not limited to, antibiotic resistance (eg, neomycin gene encoding G418 resistance) or enzyme analog resistance (eg, encoding methotrexate resistance) Sex dihydrofolate reductase gene). In one embodiment, the DNA construct contains a double-effect (b. icistr〇nic) expression cassette in which an open reading frame of the associated protein is linked to an exogenous screening marker via an internal ribosome entry site (IRES) or The coding sequence of the endogenous screening inhibitor is such that it is transcribed in the same mRNA but independently translated. Because they are all derived from a common mRNA, the amount of expression of the exogenous screening marker or repressor accurately predicts the relative amount of protein associated with each pure line. Preferably, the open reading frame of the protein associated with the double-effected cassette is located upstream of the coding sequence of the exogenous screening marker or the endogenous screening marker repressor. For example, to improve the accuracy and yield of multi-round methotrexate (ΜΤχ) amplification, a gene encoding a therapeutic protein (such as an antibody light chain) is linked to an exogenous screening marker (such as DHFR) via the IRES at the 3' end. ) to transcribe in the same mRNA but independently translated. Relatively low, IRES-mediated translation relative to 5, 5i cap-mediated translation ensures that cellular resources are primarily used to produce therapeutic proteins rather than DHFR proteins. However, because it is derived from the same mRNA, the amount of DHFR amplification can accurately predict the relative amount of therapeutic protein for each pure line. In another embodiment, the DNA construct additionally comprises one or more anti-repressor elements that are resistant to chromatin-related repression (ARE, as used hereinafter, ARE (or anti-repressor sequences, which are used interchangeably herein) as having The ability to block the ability of the transgene to repress, and the natural DNA of 150275.doc -12- 201144439 isolated from the eukaryotic genome. ARE has the effect of affecting the cis transcription of the gene and/or providing a stabilizing and/or enhancing effect. Capacity. It has been confirmed that when the ARE is flanked by the transgenic gene, the transgenic gene expression of the randomly selected recombinant cell line can be increased to the maximum possible expression of the promoter of the transgenic gene. In addition, the expression of the transgenic gene has been experienced. Cell generations remain stable and do not exhibit random silencing. Therefore, ARE confers positional independence that the transgenic genes are not possible in the case of conventional transgenic gene systems. Positional independence means transgenic embedding To the genomic location that can cause the transgenic gene to be silent, maintain the transcriptional activity state under the protection of ARE. In the real part of the mouse ~. In the other - implement the wealth, let the structure contain Multiple partial mouse ARE40 fragments. Methods for introducing DNA constructs into cells are well known in the art. Examples of such methods include, but are not limited to, electroporation, lipofection, sulphuric acid or gas. Recombination and DEAE-dextran-mediated transfection. DNA constructs can also be used to (4) face human to cell towels. Common viral vectors include, but are not limited to, adenoviral vectors, adeno-associated viral vectors, and vesicular viruses. Vectors and retroviral vectors ^ for the expression of exogenous and (10) sex-selective markers "cells transfected with warship constructs. (4) high expression of marker suppressors in DNA constructs can lead to endogenous screening markers The amount of expression and/or activity is reduced. The cells with reduced expression are then screened and sub-selected to determine the amount and stability of the transgenic gene expression. In some embodiments, endogenous ke. * n You are born as a protein that can be induced to emit fluorescence. In these examples, the 'screening step and the separation step can be performed using the 150275.doc 201144439 fluorescence activated cell sorter (FACS). In the other In the embodiment, the cells transfected with the DNA construct are first screened by one or more rounds (for example, screening for anti-G418 and/or anti-amidoxime pure lines) with exogenous markers. The selected cells are then screened out. The present invention also discloses a DNA construct that is configured to allow high yield screening of cells containing the DNA construct. In one embodiment, the construct contains the protein of interest. The coding sequence and the coding sequence of the host cell endogenously screened for the marker repressor, wherein the DNA construct is configured to express both the target protein and the inhibitor in the host cell. In one embodiment, the inhibitor is an inhibitory host Endogenous screening markers for small interfering RNA (siRNA), small hairpin RNA (shRNA), microRNA (miRNA), hybrids of miRNA and shRNA, or antisense RNA molecules. In another embodiment, the inhibitor is a polypeptide, such as a transcriptional regulator, that inhibits expression of the host cell endogenously screened for expression. In another embodiment the 'inhibitor is a polypeptide, such as an antibody, that inhibits the biological activity of the endogenous screening marker. In another embodiment, the endogenous selection marker is a protein that induces fluorescence. In another embodiment, the DNA construct further comprises one or more anti-repressor elements. The technique of the present invention is capable of rapidly identifying and isolating high yield pure lines from heterogeneous populations of transfected cells, thereby reducing the work and time of the standard limiting dilution method 150275.doc -14- 201144439. In addition, because this technique can identify rare cells in a population, it can reduce the number of rounds of pool amplification before separating high-yield pure lines or by first separating for drug amplification and secondary selection. The high yield of the colony is pure to shorten the development time. EXAMPLES The simplicity and effectiveness of the screening method for green fluorescent protein (GFP)/fluorescent activated cell sorter (FACS) has been confirmed in previous studies. In these previous reports, 'GFP is incorporated using an internal ribosome entry site (IRES) or a two promoter system, either as part of a fusion protein or as part of a double-effect construct. Cells with high GfP levels are associated with high levels of related protein products. This can be attributed to the stable chimerization of a high copy number recombinant gene or the fact that the gene has been chimeric to a site having extremely high transcriptional activity. While these methods have been shown to be effective, there may be some concerns regarding the use of Gpp-containing cell lines to make human therapeutics. Furthermore, it does not seem necessary to impose a burden on the GFp production after the separation of the subpopulations by the metabolic machinery of the cells. This cellular resource can potentially be converted to increase cell growth or recombinant protein production. The following example describes a novel technique for the reverse use of GFp as a screening target and FACS sorting to screen high yielding cell lines. Figure 1 is a schematic diagram showing a GFP-based screening process. Briefly, a plastid vector containing cDNA encoding GFP was transfected into DHFR-deficient CH〇 cells. The cells that successfully obtained the desired vector have fluorescence. GFp expressing cells are set as parental host cells for recombinant protein expression. To produce the desired recombinant protein, the parental host cell was transfected with a vector containing shRNAmireGFP' followed by FACS sorting to select cells with a low fluorescence intensity of 150275.doc •15·201144439. After several rounds of increasing sputum challenge, the cell culture was subjected to multiple rounds of sorting and amplification. The cell line with the lowest GFP fluorescence intensity corresponds to the pure line with the highest expression of the transgenic gene. Finally, the selected pure lines are amplified and tested for yield and stability. Because FACS can easily screen large numbers of cells, the chances of obtaining a high-yield pure line will be greatly improved compared to the limit dilution method. In addition, the procedure is less labor intensive and can significantly reduce the time required to produce a pure line for biological production. Example 1: Establishment of CHO+GFP/-dhfr cell line Chinese hamster ovary dihydrofolate reductase-deficient cell line (CH〇/dhfr-) was cultured with 111'(0.1111)^hypoxanthine and 0.016 111] ^Thymidine,

Gibco’ 目錄號 11067)、10% FBS(Biological Industries,目 錄04-001· 1A)及2 μΜ甲胺喋呤水合物(ΜΤΧ,Sigma, SI-M8407)之伊思考夫氏改良杜爾貝可氏培養基(Isc〇ve,s modified Dulbecco’s medium,IMDM,Gibco,目錄號 12200)中。 用5 pg含有編碼GFP之cDNA的質體載體(pFLAg-eGFP-IRES-Puro)及脂染胺(lip〇fectamine)根據 LipofectamineTM Invitrogen Puls TM試劑(目錄號11514-015)說明書轉染 CHO/ 細胞。用5 pg/mlD票。令徽素二鹽酸鹽(pUromyCin dihydrochloride)(Sigma,SI-P8833)篩選經轉染之細胞。在 補充有HT、10% FBS、2 μΜ MTX及篩選抗生素的IMDM 培養基中篩選10天之後’將細胞培養於上述培養基中。選 殖表現GFP之CHO··細胞(CHO+GFP/-_細胞)且將其設定 為重組蛋白表現之親本宿主。 150275.doc •16· 201144439 實例2:構築表現載體 (1) pScinoDP-DHFR載體 藉由用IRES-DHFR融合基因取代pEGFP-Nl(Clontech)質 體骨架中之EGFP基因,且將額外的SV40聚腺苷酸尾 (polyA tail)及 CMV-IE啟動子插入 pEGFP-Nl (Clonlech)質體 骨架中,來構築pScinoDP-DHFR質體。簡言之,藉由使用 pCEP4質體(Invetrogen)作為模板進行PCR擴增來獲得聚腺 苷酸尾及CMV-IE啟動子‘序列。藉由重疊延伸PCR (OL-PCR)來建立融合聚腺苷酸尾-啟動子之融合序歹丨J SV40polA-CMV-IE(約 1·2 kb)。用 Xhol/Bglll消化融合序列 且將其插入經Xhol/Bglll消化之pEGFP-Nl載體。所得構築 體命名為pScinoDP。 藉由用PIRES2-EGFP及pSV2-DHFR質體作為模板進行 PCR擴增來獲得IRES序列及DHFR基因。藉由重疊延伸 PCR(OL-PCR)來產生IRES序列片段及DHFR基因片段 (IRES2-DHFR)之雜合體。用Agel/Notl消化雜合體片段(約 1.1 kb)且將其插入經Agel/Notl消化之pEGFP-Nl中以取代 pEGFP-Nl載體中之EGFP基因。所得構築體命名為 pIRES2-DHFR。進行定點突變以消除IRES序列中之ApaLI 位點。 用Agel/Notl消化在IRES序列中具有突變限制酶ApaLI位 點的質體PIRES2-DHFR,且將含有IRES序列及整個DHFR 編碼區基因的1.2 kb片段接合至經Agel/Notl消化之 pScinoDP,產生pScinoDP-DHFR(圖2)。所有構築體藉由限 150275.doc -17- 201144439 制酶分析及/或藉由核苷酸定序來驗證。 (2) pScinoDP3-DHFR載體 pScinoDP3-DHFR載體設計為基於載有hEFla啟動子及 CMV-IE增強子的pScinoDP-DHFR之載體。簡言之,hEFla 啟動子係自pBudCE4.1載體(Invitrogen)擴增而來》經由在 pEGFP-Nl上在CMV-IE增強子之後次選殖hEFla啟動子以 形成pCMVe-hEFla-EGFP載體,來獲得含有hEFla啟動子 及CMV-IE增強子序列之雜合體。CMVe-hEF 1 a片段係自 pCMVe-hEFla-EGFP 載體 PCR擴增且用於置換 pScionDP-DHFR載體中之2個CMV啟動子。所得載體命名為 pScinoDP3-DHFR(圖 3) ° (3) pScinoDP3mir-DHFR載體 使用以下合成骨架DNA及引子利用所述PCR產生單股97 nt「mir30樣」shRNAiGFP寡聚物: 單股97 nt「shRNAiGFP」DNA寡聚物 y-TGCTGTTGACAGTGAGCGAGCXCAAGOTGGXGTACAACTATAGTGAAGCCAC AGATGTATAGTTGTACTCCAGCnGTGCCTGCCTACTGCCTCGGA-3’ (SEQ Π) ΝΟ:1) 加下劃線之斜體序列表示側接mir30序列,且未加下劃 線之斜體序列表示mir30環結構。有義及反義篩選之目標 序列樣本分別用粗體及加下劃線之粗體顯示。mir3〇樣 shRNAiGFP係以單股DNA寡聚核苷酸形式合成,其具有與 内源性mir30 miRNA側接序列之一部分相對應的常見末 端。 mirFWD-Agel弓I子序列(40個基體): 150275.doc -18· 201144439Gibco' catalog number 11067), 10% FBS (Biological Industries, catalog 04-001·1A) and 2 μM methylamine hydrazine hydrate (ΜΤΧ, Sigma, SI-M8407) I think Fu's modified Durbec Medium (Isc〇ve, s modified Dulbecco's medium, IMDM, Gibco, Cat. No. 12200). CHO/cells were transfected with 5 pg of plastid vector containing GFP-encoding cDNA (pFLAg-eGFP-IRES-Puro) and lipfectamine (LipofectamineTM Invitrogen PulsTM Reagent (Cat. No. 11514-015) instructions. Use 5 pg/ml D votes. Transfected cells were screened by pUromyCin dihydrochloride (Sigma, SI-P8833). The cells were cultured in the above medium after 10 days of screening in IMDM medium supplemented with HT, 10% FBS, 2 μM MTX and screening antibiotics. CHO·· cells (CHO+GFP/-_ cells) expressing GFP were selected and set as parental hosts of recombinant protein expression. 150275.doc •16· 201144439 Example 2: Construction of expression vector (1) pScinoDP-DHFR vector by replacing the EGFP gene in the plastid backbone of pEGFP-Nl (Clontech) with the IRES-DHFR fusion gene, and adding additional SV40 polyglycans The polyA tail and the CMV-IE promoter were inserted into the pEGFP-Nl (Clonlech) plastid skeleton to construct the pScinoDP-DHFR plastid. Briefly, the polyadenylation tail and the CMV-IE promoter 'sequence were obtained by PCR amplification using pCEP4 plastid (Invetrogen) as a template. The fusion poly(A) tail-promoter fusion sequence J SV40polA-CMV-IE (about 1.2 kb) was established by overlap extension PCR (OL-PCR). The fusion sequence was digested with Xhol/Bglll and inserted into the XH/Bglll-digested pEGFP-Nl vector. The resulting construct was named pScinoDP. The IRES sequence and the DHFR gene were obtained by PCR amplification using PIRES2-EGFP and pSV2-DHFR plastids as templates. Hybrids of the IRES sequence fragment and the DHFR gene fragment (IRES2-DHFR) were generated by overlap extension PCR (OL-PCR). The hybrid fragment (about 1.1 kb) was digested with Agel/Notl and inserted into the Agel/Notl-digested pEGFP-N1 to replace the EGFP gene in the pEGFP-Nl vector. The resulting construct was named pIRES2-DHFR. Site-directed mutagenesis was performed to eliminate the ApaLI site in the IRES sequence. The plastid PIRES2-DHFR having the mutation restriction enzyme ApaLI site in the IRES sequence was digested with Agel/Notl, and the 1.2 kb fragment containing the IRES sequence and the entire DHFR coding region gene was ligated to the Agel/Notl-digested pScinoDP to generate pScinoDP. -DHFR (Figure 2). All constructs were verified by enzyme assays and/or by nucleotide sequencing. (2) pScinoDP3-DHFR vector The pScinoDP3-DHFR vector was designed as a vector based on pScinoDP-DHFR carrying the hEFla promoter and the CMV-IE enhancer. Briefly, the hEFla promoter was amplified from the pBudCE4.1 vector (Invitrogen) by sub-selecting the hEFla promoter after the CMV-IE enhancer on pEGFP-N1 to form the pCMVe-hEFla-EGFP vector. A hybrid containing the hEFla promoter and the CMV-IE enhancer sequence was obtained. The CMVe-hEF 1 a fragment was PCR amplified from the pCMVe-hEFla-EGFP vector and used to replace the two CMV promoters in the pScionDP-DHFR vector. The resulting vector was named pScinoDP3-DHFR (Fig. 3) ° (3) pScinoDP3mir-DHFR vector The single-strand 97 nt "mir30-like" shRNAiGFP oligomer was generated using the PCR using the following synthetic backbone DNA and primer: Single-stranded 97 nt "shRNAiGFP" DNA oligo y-TGCTGTTGACAGTGAGCGAGCXCAAGOTGGXGTACAACTATAGTGAAGCCAC AGATGTATAGTTGTACTCCAGCnGTGCCTGCCTACTGCCTCGGA-3' (SEQ Π) ΝΟ: 1) The underlined italic sequence indicates the mir30 sequence, and the un-underlined italic sequence indicates the mir30 loop structure. Targets for sense and antisense screening Sequence samples are shown in bold and underlined bold, respectively. The mir3-like shRNAiGFP line was synthesized as a single-stranded DNA oligonucleotide having a common terminus corresponding to one of the endogenous mir30 miRNA flanking sequences. mirFWD-Agel bow I subsequence (40 matrices): 150275.doc -18· 201144439

S,-CAGAXGGACCGGTAAGGTXYXTTaCTGTTGACAGTGAGCG-Zi (SEQ ED NO:2) mirREV-Hindlll弓I子序列(37個基體): S^CrAAAGTAGCCCCTTAAGCTTTCCGAGGCAGTAGGCA^ (SEQ ID NO:3) 以加下劃線之斜體序列顯示之側接區用做通用侧接序列 以引發反應,藉此整個mir30樣shRNAiGFP得以擴增,產生 可選殖至接受載體中之PCR產物。 利用Platinum® Pfx DNA聚合酶及以下概況來進行 PCR : 95*t持續3分鐘,接著95°C持續30秒,54°C持續30 秒,75°C持續30秒,總共35個循環。將所得PCR產物 (AgeI-shRNAiGFP)選殖至經修飾之pEGFP-Nl載體中(Agel 位點已破壞,且在新黴素基因後有其他Agel位點及EcoRV 位點)。所得構築體命名為pEGFP-Nl-shRNAiGFP。此等 列亦由DNA定序來驗證。 用 ApaLI-Notl 消化 pEGFP-Nl-shRNAiGFP載體。用來自 pScinoDP3-DHFR之 ScinoDP3-DHFR 片段置換 CMV-IE-GFP 片段。所得構築體命名為pScinoDP3mir-DHFR(圖4)。 (4) pScinoDP8mir-DHFR載體 pScinoDP8mir-DHFR 載體含有調控 DNA 元件 mARE40 〇 諸如源自管家基因之抗阻遏元件的調控元件顯示可正向影 響由細胞株產生之重組蛋白的特異性生產率。質體pEGFP-Nl 用作此構築體之骨架。簡言之,使用以下合成骨架DNA及 引子利用所述重疊PCR產生部分小鼠抗阻遏子元件40片 段: 150275.doc •19· 201144439 mARE40-Ll(+)骨架 DNA ; 5’-TTGCTCTGAGCCAGCCCACCAGTTTGGAATGACTCCTTTTTATGACTTGAATT TTCAAGTATAAAGTCTAGTGCTAAATTTAATTTGAACAACTGTATAGTTTTTG-3, (SEQ ID NO:4) mARE40-Ll(-)骨架 DNA : 5’-TTAGAAATCCTCACACACAACAAGTTTTCATTTCACTTCTAATTCTGAAAAAA ACACTGCCACCATTTTTTTTCCTTCCCCCAACCAGCAAAAACTATACAGTTGT-3, (SEQ ID NO:5) mARE40-Rl(+)骨架 DNA : 5,-GTGTGTGAGGATTTCTAATGACATGTGGTGGTTGCATACTGAGTGAAGCCGG TGAGCATTCTGCCATGTCACCCCCTCGTGCTCAGTAATGTACTTTACAGAAATC -3,(SEQ ID NO:6) mARE40-Rl(-)骨架 DNA : 5’-TGGCAGAAATGCAGGCTGAGTGAGACTACCCAGAGAAGAGACCGGATATA CACAAGAAGCATGGTTTATATCAATCnTTGAGTTTAGGATTTCTGTAAAGTAC AT-3J (SEQ ID NO:7) mARE40-5'引子:S,-CAGAXGGACCGGTAAGGTXYXTTaCTGTTGACAGTGAGCG-Zi (SEQ ED NO:2) mirREV-Hindlll arch I subsequence (37 matrices): S^CrAAAGTAGCCCCTTAAGCTTTCCGAGGCAGTAGGCA^ (SEQ ID NO: 3) used to display the flanking region in underlined italic sequence A universal flanking sequence is made to initiate the reaction whereby the entire mir30-like shRNAiGFP is amplified, resulting in a PCR product that is optionally colonized into the receiving vector. PCR was performed using Platinum® Pfx DNA polymerase and the following profile: 95*t for 3 minutes, followed by 95 °C for 30 seconds, 54 °C for 30 seconds, and 75 °C for 30 seconds for a total of 35 cycles. The resulting PCR product (AgeI-shRNAiGFP) was cloned into the modified pEGFP-Nl vector (the Agel site was disrupted and there were other Agel sites and EcoRV sites after the neomycin gene). The resulting construct was named pEGFP-Nl-shRNAiGFP. These columns are also verified by DNA sequencing. The pEGFP-Nl-shRNAiGFP vector was digested with ApaLI-Notl. The CMV-IE-GFP fragment was replaced with a ScinoDP3-DHFR fragment from pScinoDP3-DHFR. The resulting construct was named pScinoDP3mir-DHFR (Fig. 4). (4) pScinoDP8mir-DHFR vector The pScinoDP8mir-DHFR vector contains a regulatory DNA element mARE40 调控 A regulatory element such as an anti-repressor element derived from a housekeeping gene has been shown to positively affect the specific productivity of a recombinant protein produced by a cell line. The plastid pEGFP-Nl was used as the backbone of this construct. Briefly, a partial mouse anti-repressor element 40 fragment was generated using the overlapping synthetic DNA using the following synthetic backbone DNA and primers: 150275.doc •19· 201144439 mARE40-Ll(+) backbone DNA; 5'-TTGCTCTGAGCCAGCCCACCAGTTTGGAATGACTCCTTTTTATGACTTGAATT TTCAAGTATAAAGTCTAGTGCTAAATTTAATTTGAACAACTGTATAGTTTTTG-3 , (SEQ ID NO: 4) mARE40-Ll (-) backbone DNA: 5'-TTAGAAATCCTCACACACAACAAGTTTTCATTTCACTTCTAATTCTGAAAAAA ACACTGCCACCATTTTTTTTCCTTCCCCCAACCAGCAAAAACTATACAGTTGT-3, (SEQ ID NO: 5) mARE40-Rl (+) backbone DNA: 5, -GTGTGTGAGGATTTCTAATGACATGTGGTGGTTGCATACTGAGTGAAGCCGG TGAGCATTCTGCCATGTCACCCCCTCGTGCTCAGTAATGTACTTTACAGAAATC -3, ( SEQ ID NO: 6) mARE40-Rl(-) backbone DNA: 5'-TGGCAGAAATGCAGGCTGAGTGAGACTACCCAGAGAAGAGACCGGATATA CACAAGAAGCATGGTTTATATCAATCnTTGAGTTTAGGATTTCTGTAAAGTAC AT-3J (SEQ ID NO: 7) mARE40-5' primer:

5'-TTGCTCTGAGCCAGCCCACCAGTTT-3' (SEQ ID NO:8) mARE40-3'AseI引子: 5'-GTTATTAATTGGCAGAAATGCAGGCTGAGT-3' (SEQ ID NO:9) mARE40-3,AflII引子: 5'-CCCACATGTTGGCAGAAATGCAGGCTGAGT-3' (SEQ ID NO:10) mARE40-3'SpeI 引子: 5,-GGACTAGTTGGCAGAAATGCAGGCTGAGTG-3, 150275.doc •20- 201144439 (SEQ ID NO:ll) 利用Platinum® Pfx DNA聚合酶及以下概況來進行 PCR : 95°C持續3分鐘,接著95°C持續30秒,58°C持續30 秒,75°C持續30秒,總共35個循環。將所得PCR產物 (mARE40-AseI及mARE40-AflII)分別選殖至經修飾之 pEGFP-Nl(AgeI位點已破壞,且在Agel前有其他EcoRV, 且在Aflll位點前有Seal位點)載體中以形成pmARE40-EGFP-N1,且將(mARE40-SpeI)選殖至 pScinoDP3-DHFR (在Spel位點前有其他EcoRV位點)載體中以形成pScinoDP3-DHFR-F2。用 Asel-BamHI 消化 pmARE40-EGFP-Nl 載體, 且用來自 pScinoDP3-DHFR載體之約 1.6 kb AseI-CMVe-hEFla-BamHI片段置換CMV-IE啟動子。所得構築體命名 為 pFmARE40ScinoDP3-EGFP-Nl 。用 BamHI-Nc,tI 消化 pFmARE40ScinoDP3-EGFP-Nl 載體,且用來自 pScinoDP3-DHFR-F2之約 1·6 kb BamHI-SV40polA-mARE40-DP3_IRES-DHFR-Notl片段置換EGFP基因。所得構築體命名為 pScinoDP8-DHFR。用 ApaLI-Notl 消化 pEGFP-Nl_shRNAiGFP 載體,且用來自 pScinoDP8-DHFR 之 ScinoDP8-DHFR 片段 置換CMV-IE-GFP片段。所得構築體命名為pScinoDP8mir-DHFR(圖5) 〇以下顯示已選殖之部分小鼠抗阻遏子元件40 片段的完整序列:5'-TTGCTCTGAGCCAGCCCACCAGTTT-3' (SEQ ID NO: 8) mARE40-3'AseI primer: 5'-GTTATTAATTGGCAGAAATGCAGGCTGAGT-3' (SEQ ID NO: 9) mARE40-3, AflII primer: 5'-CCCACATGTTGGCAGAAATGCAGGCTGAGT-3' ( SEQ ID NO: 10) mARE40-3'SpeI primer: 5,-GGACTAGTTGGCAGAAATGCAGGCTGAGTG-3, 150275.doc •20- 201144439 (SEQ ID NO: 11) PCR using Platinum® Pfx DNA polymerase and the following profile: 95° C lasted for 3 minutes, followed by 95 ° C for 30 seconds, 58 ° C for 30 seconds, and 75 ° C for 30 seconds for a total of 35 cycles. The resulting PCR products (mARE40-AseI and mARE40-AflII) were separately selected to the modified pEGFP-Nl (AgeI site was disrupted and there were other EcoRVs before Agel, and there was a Seal site before the Aflll site) vector Medium to form pmARE40-EGFP-N1, and (mARE40-SpeI) was cloned into pScinoDP3-DHFR (other EcoRV sites before the Spel site) vector to form pScinoDP3-DHFR-F2. The pmARE40-EGFP-N1 vector was digested with Asel-BamHI, and the CMV-IE promoter was replaced with the approximately 1.6 kb AseI-CMVe-hEFla-BamHI fragment from the pScinoDP3-DHFR vector. The resulting construct was named pFmARE40ScinoDP3-EGFP-Nl. The pFmARE40ScinoDP3-EGFP-N1 vector was digested with BamHI-Nc, tI, and the EGFP gene was replaced with the about 1.6 kb BamHI-SV40polA-mARE40-DP3_IRES-DHFR-Notl fragment from pScinoDP3-DHFR-F2. The resulting construct was named pScinoDP8-DHFR. The pEGFP-Nl_shRNAiGFP vector was digested with ApaLI-Notl, and the CMV-IE-GFP fragment was replaced with the ScinoDP8-DHFR fragment from pScinoDP8-DHFR. The resulting construct was named pScinoDP8mir-DHFR (Fig. 5). The complete sequence of the mouse anti-repressor element 40 fragment that has been cloned is shown below:

5,-TTgCTCTgAgCCAgCCCACCAgTTTggAATgACTCCrmTATgACTTgAATTTTC AAgTATAAAgTCTAgTgCTAAATTTAATTTgAACAACTgTATAgTTTTTgCTggTTgg5,-TTgCTCTgAgCCAgCCCACCAgTTTggAATgACTCCrmTATgACTTgAATTTTC AAgTATAAAgTCTAgTgCTAAATTTAATTTgAACAACTgTATAgTTTTTgCTggTTgg

gggAAggAAAAAAAATggTggCAgTgTTTTTTTCAgAATTAgAAgTgAAATgAAAACTgggAAggAAAAAAAATggTggCAgTgTTTTTTTCAgAATTAgAAgTgAAATgAAAACT

TGTTgTgTgTgAggATTTCTAATgACATgTggTggTTgCATACTgAgTgAAgCCggTgAgC 150275.doc -21 - 201144439 ATTCTgCCATgTCACCCCCTCgTgCTCAgTAATgTACTTTACAgAAATCCTAAACT CAAAAgATTgATATAAACCATgCTTCTTgTgTATATCCggTCTCTTCTCTGGGTAgT CTCACTCAgCCTgCATTTCTgCCA-3, (SEQ ID NO:12). (5) pScinoDP9mir-DHFR載體 使用類似於構築pScinoDP8mir-DHFR載體所用者之程 序,且用CAG啟動子(與雞β肌動蛋白啟動子融合之CMV-IE 增強子)取代pScinoDP8mir-DHFR中之兩個CMV增強子, 來構築 pScinoDP9mir-DHFR 載體(圖 6)。pScinoDP9mir-DHFR之完整序列以SEQ ID NO: 13顯示。 pScinoDP9mir-DHFR在 MCSII與二氫葉酸還原酶(DHFR) 編碼區之間含有腦心肌炎病毒(ECMV)之内部核糖體進入 位點(IRES)。此特徵允許相關基因(例如選殖至MCSII中之 輕鏈)及DHFR基因自單一雙效mRNA轉譯。側接DHFR之序 列已轉化為Kozak —致性轉譯起始位點以進一步提高真核 細胞中之轉譯效率。pScinoDP9mir-DHFR中之MCSI位於 CMV之即刻早期啟動子(PCMV IE)與SV40聚腺苷酸化信號 序列之間。MCSI下游的SV40聚腺苷酸化信號指導第一次 轉錄的3'端的正確加工。pScinoDP-dhfr中之MCSII位於細 胞巨大病毒之第二即刻早期啟動子(PCMV IE)與IRES序列 之間。DHFR基因下游的SV40聚腺苷酸化信號指導雙效 mRNA之3’端的正確加工。. TGTTgTgTgTgAggATTTCTAATgACATgTggTggTTgCATACTgAgTgAAgCCggTgAgC 150275.doc -21 - 201144439 ATTCTgCCATgTCACCCCCTCgTgCTCAgTAATgTACTTTACAgAAATCCTAAACT CAAAAgATTgATATAAACCATgCTTCTTgTgTATATCCggTCTCTTCTCTGGGTAgT CTCACTCAgCCTgCATTTCTgCCA-3, (SEQ ID NO: 12) (5) pScinoDP9mir-DHFR vector constructed using similar procedures pScinoDP8mir-DHFR vector of the wearer, and with the CAG promoter (chicken The CMV-IE enhancer of the β-actin promoter fusion) replaced the two CMV enhancers in pScinoDP8mir-DHFR to construct the pScinoDP9mir-DHFR vector (Fig. 6). The complete sequence of pScinoDP9mir-DHFR is shown as SEQ ID NO: 13. pScinoDP9mir-DHFR contains an internal ribosome entry site (IRES) of encephalomyocarditis virus (ECMV) between the MCSII and dihydrofolate reductase (DHFR) coding regions. This feature allows for the translation of related genes (e.g., the light chain in MCSII) and the DHFR gene from a single double-effect mRNA. The sequence flanking DHFR has been translated into a Kozak-positive translation initiation site to further improve translation efficiency in eukaryotic cells. The MCSI in pScinoDP9mir-DHFR is located between the immediate early promoter of CMV (PCMV IE) and the SV40 polyadenylation signal sequence. The SV40 polyadenylation signal downstream of MCSI directs the correct processing of the 3' end of the first transcription. The MCSII in pScinoDP-dhfr is located between the second immediate early promoter (PCMV IE) of the cellular giant virus and the IRES sequence. The SV40 polyadenylation signal downstream of the DHFR gene directs the correct processing of the 3' end of the double effect mRNA.

因為pScinoDP9mir-DHFR源自pEGFP-Nl載體,所以其 含有表現SV40 T抗原之哺乳動物細胞中的SV40複製起 點。由SV40早期啟動子、Tn5之新黴素/康黴素 (kanamycin)抗性基因及疮療單純型病毒胸苷激酶(HSV -22- 150275.doc 201144439 TK)基因之聚腺苷酸化信號組成的新黴素抗性卡匣(Neof) 容許利用G41 8來篩選已穩定轉染之真核細胞。此卡匣上游 之細菌啟動子在大腸桿菌中表現康黴素抗性。pScinoDP-DHFR骨架亦含有用於在大腸桿菌中擴增之pUC複製起點 及用於單股DNA生產之fl起點。 (6) pGFP/嘌呤黴素載體 藉由使用PIRES2-EGFP及pLKO-AS3w-puro質體作為模 板進行PCR擴增來獲得IRES序列及DHFR基因。藉由重疊 延伸PCR(OL-PCR)來獲得IRES序列片段及嘌呤黴素基因片 段(IRES2-嘌呤黴素)之雜合體。將IRES2-嘌呤黴素片段插 入經 Sall-BamHI 消化之 pFLAG-CMV2 載體(Kodak)。所得 構築體命名為pIRES2-Puro。自pEGFP-Nl載體獲得EGFP基 因且將其插入pIRES-Puro載體以形成pGFP/嘌呤黴素載 體。 (7) pScinoDP9mir-贺癌平(Herceptin)-DHFR載趙 pScinoDP9mir-贺癌平-DHFR載體之構築在圖7中顯示。 簡言之,自募聚合成骨架片段PCR擴增4-1前導序列及4-2 前導序列,同時自含有人類IgG,序列之重組質體獲得人類 IgG!之重鏈恆定區序列(hlgG/H)及人類IgG丨之輕鏈恆定區 序列(hlgG/L)。藉由將hlgG】恆定區藉助於定向鍵聯次選 殖至含有前導序列之載體中來獲得前導序列及hlgG,恆定 區序列載體雜合體。 接著,經由自寡聚合成骨架片段進行反覆重疊PCR來產 生重鏈可變區(VH)及輕鏈可變區(VL),且將其次選殖至p4- 150275.doc •23- 201144439 1前導序列-hlgG^H載體或ρ4·2前導序列-hlgG/L載體。在 校正PCR錯誤及移除在選殖過程中引入之額外序列之後, 藉由定序來檢驗前導序列-肽-賀癌平VC序列之正確度。 最後,將4-1前導序列-賀癌平重鏈雜合體(4-1-賀癌平 VCh)及4-2前導序列-賀癌平輕鍵(4-2-贺癌平VCl)個別地選 殖至pScinoDP9mir-DHFR載體中之MCSI位點及MCSII位點 以形成pScinoDP9mir-賀癌平-DHFR載體(圖7)。 抗HER2重鏈1之可變區的胺基酸序列及核苷酸序列分別 以SEQIDNO:14及15顯示。用於重鏈可變區(VH)的骨架片 段及PCR引子具有以下序列: 骨架片段: 贺癌平νΗ-Ι^(+)(108個基體) 55-gAggTgCAgCTCgTggAgAgTggTggCgggTTggTCCAgCCAggCgggTCTCTgCgATTg AgCTgTgCTgCCTCTggATTTAACATCAAAgACACgTACATCCATTgg-3, (SEQ Π) ΝΟ:16) 贺癌平VH-L2(-)(105個基體)Since pScinoDP9mir-DHFR is derived from the pEGFP-N1 vector, it contains the origin of SV40 replication in mammalian cells expressing the SV40 T antigen. Consisting of the SV40 early promoter, the tn5 neomycin/canamycin resistance gene and the polyadenylation signal of the sore-type virus thymidine kinase (HSV-22-150275.doc 201144439 TK) gene Neomycin-resistant cassette (Neof) allows the use of G41 8 to screen for stably transfected eukaryotic cells. The bacterial promoter upstream of this cassette exhibited benzimycin resistance in E. coli. The pScinoDP-DHFR backbone also contains a pUC origin of replication for amplification in E. coli and a starting point for fl production for single-strand DNA production. (6) pGFP/puromycin vector The IRES sequence and the DHFR gene were obtained by PCR amplification using PIRES2-EGFP and pLKO-AS3w-puro plasmid as templates. A hybrid of the IRES sequence fragment and the puromycin gene fragment (IRES2-puromycin) was obtained by overlap extension PCR (OL-PCR). The IRES2-puromycin fragment was inserted into a Sall-BamHI digested pFLAG-CMV2 vector (Kodak). The resulting construct was named pIRES2-Puro. The EGFP gene was obtained from the pEGFP-N1 vector and inserted into the pIRES-Puro vector to form a pGFP/paumycin carrier. (7) Construction of pScinoDP9mir-Herceptin-DHFR-loaded Zhao pScinoDP9mir-Hepato-DHFR vector is shown in Fig. 7. Briefly, self-polymerization into a backbone fragment PCR amplification of the 4-1 leader sequence and the 4-2 leader sequence, while obtaining a heavy chain constant region sequence of human IgG! from a recombinant plastid containing human IgG, sequence (hlgG/H) And the light chain constant region sequence (hlgG/L) of human IgG丨. The leader sequence and the hlgG, constant region sequence vector hybrid are obtained by ligating the hlgG] constant region to the vector containing the leader sequence by directional linkage. Next, the heavy chain variable region (VH) and the light chain variable region (VL) are generated by repeated overlapping PCR from the oligomeric polymerization into a backbone fragment, and the second is selected to p4-150275.doc • 23- 201144439 1 lead Sequence-hlgG^H vector or ρ4·2 leader sequence-hlgG/L vector. After correcting for PCR errors and removing additional sequences introduced during the selection process, the correctness of the leader sequence-peptide-hepatoma VC sequence was verified by sequencing. Finally, the 4-1 leader sequence-Hepatoa heavy chain hybrid (4-1-Hejiaping VCh) and the 4-2 leader sequence-He Cancer Ping light bond (4-2-He cancer flat VCl) were individually The MCSI site and the MCSII site in the pScinoDP9mir-DHFR vector were selected to form the pScinoDP9mir-hepatoma-DHFR vector (Fig. 7). The amino acid sequence and nucleotide sequence of the variable region of the anti-HER2 heavy chain 1 are shown as SEQ ID NOS: 14 and 15, respectively. The backbone fragment and PCR primer for the heavy chain variable region (VH) have the following sequences: Skeleton fragment: Hepatoma ΗVΗ-Ι^(+) (108 substrates) 55-gAggTgCAgCTCgTggAgAgTggTggCgggTTggTCCAgCCAggCgggTCTCTgCgATTg AgCTgTgCTgCCTCTggATTTAACATCAAAgACACgTACATCCATTgg-3, (SEQ Π) ΝΟ :16) He Cancer Ping VH-L2(-) (105 substrates)

5,-TTTAACgCTATCAgCgTATCTggTgTAgCCgTTAgTgggATAgATTCTAgCTACCCA TTCAAggCCCTTgCCgggggCCTgTCTCACCCAATggATgTACgTgTC-3, (SEQ JD NO:17) 贺癌平VH-R1 (+)(105個基體) 5’-TACgCTgATAgCgTTAAAggAAggTTTACTATTTCTgCCgACACCTCCAAgAATA CCgCATATCTACAgATgAACTCCCTgCgCgCTgAggACACCgCTgTgTAT-3,(SEQ Π) NO: 18) 贺癌平VH-R2(-)(108個基體) 5’-CTTAgTAgAgCACTgCTAACTgTCACTAAggTACCCTggCCCCAgTAgTCCATTgC gTAgAATCCgTCTCCCCCCCAACgTgAgCAgTAATACACAgCggTgTCCTC-35 (SEQ roNO:19) 150275.doc • 24· 201144439 用於擴增的引子: 賀癌平-VH-5HindIII(30個基體)(有義) 5,-gCCAAgCTTgAggTgCAgCTCgTggAgAgT-3, (SEQ Π) ΝΟ:20) 贺癌平-VH-3 Apal(30個基體)(反義) 5,-AgggggCCCTTAgTAgAggCACTgCTAACT-3, (SEQ Π) NO:21) 抗HER2輕鏈1之可變區的胺基酸序列及核苷酸序列分別 以SEQ ID NO:22及23顯示。用於輕鏈可變區(VL)的骨架片 段及PCR引子具有以下序列: 骨架片段: 賀癌平Vl-L1(+)(93個基體) 5,-gATATACAgATgACACAgTCTCCgTCAAgTCTgAgCgCAAgCgTgggCgACCggGTA ACAATTACCTgTAgAgCCAgCCAggACgTAAATACA-3, (SEQ Π) ΝΟ:24) 賀癌平Vl-L2(-)(95個基體) S'-CCgCTATAAAggAACgAggCAgAgTAgATCAgAAgCTTAggAGCTTTACCAggTTT TTgCTgATACCAggCCACggCTgTATTTACgTCCTggCT-3, (SEQ Π) NO:25) 賀癌平Vl-R1(+)(94個基體) 5’-CTCgTTCCTTTATAgCggggTgCCAAgCCgCTTCTCCggATCTAggTCTggAACAgA CTTTACTCTgACCATTTCCAgTCTCCAgCCCgAAgAC-3, (SEQ ID NO:26) 賀癌平VL-R2(-)(93個基體) 5’-CTTgATCTCgACCTTggTgCCCTgCCCAAATgTgggTggAgTCgTgTAATgTTgCTggC AATAgTAggTAgCAAAgTCTTCgggCTggAgACT-3’(SEQ ED NO:27) 用於擴增的引子 賀癌平-VL-5HindIII(30個基體)(有義) 5’-gCCAAgCTTgATATACAgATgACACAgTCT-3’(SEQ ID NO:28) 賀癌平-VL-3HindIII(30個基體)(反義) 5,-CgCggATTCCTTgATCTCgACCTTggTgCC-3, (SEQ Π) NO:29) 150275.doc -25- 201144439 實例3 :建立贺癌平/CHO+GFP"dhf|·細胞株 將CHO/+GFP"dhff細胞懸浮於PBS緩衝液中。向細胞中添 加40 pg線性化質體(pScinoDP9mir-賀癌平-DHFR)DNA且 在冰上培育10分鐘。接著藉由在750 V之電壓設定及25 pF 之電容設定下之兩個脈衝(具有電容擴充器之Gene Pulser II,及購自Bio-Rad之脈衝控制器)對細胞進行電穿孔。將 經電穿孔之細胞塗在含有25 mL培養基(補充有HT、10% FBS、2 μΜ MTX及5 pg/ml嘌呤黴素二鹽酸鹽之IMDM)之 T-175燒瓶中歷時24小時。接著使用800 gg/ml G418硫酸鹽 (Calbiochem,目錄號 345810)於補充有 10% D-FBS (Gibco,目錄號30067-334)及5 pg/m卜票呤黴素二鹽酸鹽的 最低必需培養基α培養基(α-ΜΕΜ,Gibco,目錄號12000) 中篩選細胞。在補充有10% D-FBS及選擇抗生素之α-ΜΕΜ 培養基中篩選14天之後,對細胞進行遞增濃度ΜΤΧ處理以 擴增基因。 FACS分選細胞以篩選低GFP螢光強度的細胞。因為目標 基因及shRNAGFP的表現會導致CHO+GFP"dhf'細胞中之GFP 產量降低,所以綠色螢光最少的(GFP陰性)細胞具有最高 的目標基因表現量。利用裝配有Summit軟體之MoF1otm XDP(Beckman Coulter)、在488 nm下發出之雷射及細胞保 存單元進行FACS分選。 利用FACS使單一細胞保存至含有220 μΐ補充有10%〇-FBS、G418、嘌呤黴素二鹽酸鹽及ΜΤΧ之α-ΜΕΜ的96孔細 胞培養盤中來分選低螢光及高螢光細胞群體。在37°C及 150275.doc -26- 201144439 5%二氧化碳下在含濕氣培育箱中培育純系12天。 實例4:贺癌平/CH〇+GFP/-dhfr細胞株之表徵 (1) 藉由免疫染色偵測表面抗體 將經胰蛋白酶處理之賀癌平/CH0+GFp/-dhfr細胞在2〇〇 rpm 下離心5分鐘。用pBS洗滌細胞2次且將其再懸浮於pbs 中,達到約1 X 1〇7細胞/毫升之最終濃度。接著用藻紅素 (PE)、,’。合小鼠抗人類 (Fc)(Beckman Coulter,目錄號 736007) ’根據製造商之建議,以各種稀釋度在4。(:在黑暗 中培育細胞30分鐘’用PBS洗滌2次且保持於冰上以用於 FACS分析。 (2) 藉由ELISA偵測分泌抗體 簡言之’用在〇.〇5 Μ碳酸鹽-碳酸氫鹽緩衝液(pH 9.7)中 稀釋之抗人類IgG抗體(Sigma : I 1886)塗佈96孔盤,且在 4 C培育16小時。在37°C下用阻斷緩衝液(1 〇 mM: Tris、 〇·15 M NaCl、1%脫脂牛奶,pH 8_0)阻斷孔盤30分鐘。將 培養上清液加入於孔洞中且在37°C下培育2小時。辣根過 氧化%結合抗人類IgG-F(c)抗體(Abeam : ab7499),根據製 造商之建議在稀釋緩衝液(10 mM Tris、0.15 M NaCl、 0.05% Tween 20,pH 8.0)中稀釋,且在37°c下培育1小 時。利用受質(l-stepTM ultra TMB-ELISA,Pierce,目錄號 34028)偵測反應且在微量板讀取儀(Bio-Rad)上讀取孔盤。 (3) 結果 圖8呈現利用FACS在不同螢光強度下分選之賀癌平 (CHO/+GFP/_dh〃)細胞的直方圖曲線。圖A顯示贺癌平 150275.doc •27· 201144439 CHO/+GFP"dh〃細胞群中之GFP螢光。基於螢光強度將細胞 分成若干亞群(R2、R3及R4)。圖B-D顯示各亞群中之GFP 表現量。圖E顯示群及各亞群中之抗賀癌平抗體效價。數據 顯示最低GFP螢光含量的細胞(賀癌平/R4/(CHO/+GFP/_dhfD)具 有最高抗賀癌平效價。 圖9顯示當用含有目標蛋白(贺癌平)及shRNAiGFP之DNA 構築體轉染時,CHO/+GFP"dh〃細胞中之GFP表現量降低。 FACS曲線顯示在兩輪MTX攻毒之後GFP表現量進一步降低 (圖C及D)。此等結果表明目標基因擴增量與GFP表現量及 基因擴增強度有關。 圖10顯示經PE結合小鼠抗人類IgG (Fc)染色之贺癌平/ CHO/+GFP/'dhf\細胞的代表性FACS分析。結果顯示抗體產生 細胞(亦即PE染色較深的細胞)展現低GFP表現量。 圖11A顯示贺癌平(CHO/+GFP"dhff)細胞之直方圖曲線。橫 條及陰影區域指示用於單一細胞分析的低螢光及高螢光細 胞群體。圖11B顯示18個低螢光細胞純系中有8個產生大於 0.3之ELISA值,而18個高螢光細胞純系中僅有2個產生大 於0.3之ELIS A值。此等結果顯示低螢光細胞群體含有較高 頻率之高產量抗體產生細胞,且證實了基於GFP之反向篩 選策略。 圖12顯示CH0+GFP/_dhf3s胞中之GFP表現因編碼賀癌平 (圖A-C)及shRNAGFP之DNA構築體之轉染而降低。 (4)結論 使用shRNAmireGFP併用流式細胞儀可實質上改良細胞株 150275.doc •28- 201144439 發展的兩個關鍵點之精確度及效率。首先,就早期純系篩 選而言’ FACS方法相較於分析培養基中之治療蛋白效 價,為更好的純系生產率預測法。其次,藉由在擴增階段 所觀測之螢光增加,可容易地識別轉殖基因表現不穩定的 純系。因此,本發明方法提供精確96_孔純系篩選法相較 於傳統方法之新穎益處:其可在發展過程之較早階段識別 良好候選者以供進一步發展及去除不穩定純系。 此等結果顯不本發明之DNA構築體及篩選方法可靠地得 到问表現純系同源蛋白製劑.。由於並非藉由限數稀釋技術 來篩選多個個別純系’以分離能夠高產率表現重組抗體的 哺乳動物細胞株,所以該程序耗費較少人力且可顯著縮短 產生用於生物生產之純系所需的時間。該程序不需要額外 試劑來選擇純系且額外提供了監測基因組穩定性之益處。 目標基因之表現量亦與擴增基因之強度具有更大相關性。 雙效设計容許兩個外來基因在同一染色體中同時表現。抑 制性方法藉由降低報導基因擴增之強度來增強目標基因擴 增之強度。使用ARE可藉由消除由外來基因插入不同染色 體區域之抑制作用所引起的差異來增加外來重組蛋白之表 現。 【圖式簡單說明】 圖1為基於GFP之筛選策略進行高轉殖基因表現細胞純 系之圖。 圖2為表現載體pScinoDP-DHFR之圖譜。 圖3為表現載體pScinoDP3-DHFR之圖错。 150275.doc -29- 201144439 圖4為表現載體pScinoDP3mir-DHFR之圖譜。 圖5為表現載體pScinoDP8mir-DHFR之圖譜。 圖6為表現載體pScinoDP9mir-DHFR之圖譜。 圖7為顯示表現載體pScinoDP9mir-贺癌平-DHFR之構築 的圖。 圖8為顯示賀癌平-CHO+gfp/··細胞中之GFP表現及抗體 表現的複合圖。圖A為贺癌平-CHO/+GFP/-dhff細胞之FACS直 方圖曲線。圖B_C為在不同螢光強度下分選之賀癌 平-CHO/+GFP/_dhff細胞的FACS直方圖曲線。圖E為自不同螢 光群體分選之細胞之抗體產量的ELISA分析。 圖9為顯示在多輪篩選之後贺癌平-CHO+GFPrdhff細胞中 之GFP表現的複合圖。圖A為在GFP表現之後CHO"dhf細胞 的FACS直方圖曲線。圖B為在G418選擇之後贺癌 平-CHO/+GFP"dh〃細胞的FACS直方圖曲線。圖C為在第一輪 MTX(100 nM)擴增之後贺癌平-CHO/+GFP"dhfr細胞的FACS 直方圖曲線。圖D為在第二輪MTX(200 nM)擴增之後賀癌 平-CHO/+GFP"dh〃細胞的FACS直方圖曲線。. 圖10為顯示用PE結合抗人類IgG (Fc)抗體染色之賀癌 平-CHO+GFP/_dh'細胞的FACS分析的圖。根據實驗設計’分 泌抗體之細胞呈PE陽性及GFP陰性,且在左上方之圖中顯 示。螢光信號由FACS測定且由標準補償方案來校正。 圖11顯示賀癌平-CHO+GFP厂dhf'細胞之FACS分選程序的主 要特徵,及ELISA結果。圖A為贺癌平(CHO/+GFP/-dhfr)細 胞的FACS直方圖曲線。橫條及灰色區域指示用於單一細 150275.doc -30- 201144439 胞分析的低螢光及高螢光細胞群體。圖B為選自低螢光或 高螢光群體之各個別純系藉由ELIS A偵測之抗體表現量。 圖12為顯示經編碼shRNAGFP及賀癌平之DNA構築體轉染 的細胞中GFP表現的FACS分析的複合圖(圖C)。 150275.doc -31 -5, -TTTAACgCTATCAgCgTATCTggTgTAgCCgTTAgTgggATAgATTCTAgCTACCCA TTCAAggCCCTTgCCgggggCCTgTCTCACCCAATggATgTACgTgTC-3, (SEQ JD NO: 17) Herceptin VH-R1 (+) (105 mer units) 5'-TACgCTgATAgCgTTAAAggAAggTTTACTATTTCTgCCgACACCTCCAAgAATA CCgCATATCTACAgATgAACTCCCTgCgCgCTgAggACACCgCTgTgTAT-3, (SEQ Π) NO: 18) Herceptin VH- R2(-)(108 matrices) 5'-CTTAgTAgAgCACTgCTAACTgTCACTAAggTACCCTggCCCCAgTAgTCCATTgC gTAgAATCCgTCTCCCCCCCAACgTgAgCAgTAATACACAgCggTgTCCTC-35 (SEQ roNO:19) 150275.doc • 24· 201144439 Primer for amplification: Hepatic-VH-5HindIII (30 matrices) 5)-gCCAAgCTTgAggTgCAgCTCgTggAgAgT-3, (SEQ Π) ΝΟ:20) Hepatic-VH-3 Apal (30 matrices) (antisense) 5,-AgggggCCCTTAgTAgAggCACTgCTAACT-3, (SEQ Π) NO:21) The amino acid sequence and nucleotide sequence of the variable region of HER2 light chain 1 are shown as SEQ ID NOS: 22 and 23, respectively. The backbone fragment and PCR primer for the light chain variable region (VL) have the following sequence: backbone fragment: Hepatic Vl-L1(+) (93 substrates) 5,-gATATACAgATgACACAgTCTCCgTCAAgTCTgAgCgCAAgCgTgggCgACCggGTA ACAATTACCTgTAgAgCCAgCCAggACgTAAATACA-3, (SEQ Π) ΝΟ :24) He Cancer Ping Vl-L2(-)(95 substrates) S'-CCgCTATAAAggAACgAggCAgAgTAgATCAgAAgCTTAggAGCTTTACCAggTTT TTgCTgATACCAggCCACggCTgTATTTACgTCCTggCT-3, (SEQ Π) NO:25) He Cancer Ping Vl-R1(+)(94 substrates) 5'- CTCgTTCCTTTATAgCggggTgCCAAgCCgCTTCTCCggATCTAggTCTggAACAgA CTTTACTCTgACCATTTCCAgTCTCCAgCCCgAAgAC-3, (SEQ ID NO: 26) Herceptin VL-R2 (-) (93 mer units) 5'-CTTgATCTCgACCTTggTgCCCTgCCCAAATgTgggTggAgTCgTgTAATgTTgCTggC AATAgTAggTAgCAAAgTCTTCgggCTggAgACT-3 '(SEQ ED NO: 27) primers used for amplification Herceptin -VL-5HindIII (30 matrices) (sense) 5'-gCCAAgCTTgATATACAgATgACACAgTCT-3' (SEQ ID NO: 28) Hepatic-VL-3HindIII (30 matrices) (antisense) 5,-CgCggATTCCTTgATCTCgACCTTggTgCC-3, (SEQ Π) NO: 29) 150275.doc -25- 201144439 Example 3: Establishing Hepao Ping/CHO+GFP"d Hf|·cell strain CHO/+GFP"dhff cells were suspended in PBS buffer. 40 pg of linearized plastid (pScinoDP9mir-Hepatotine-DHFR) DNA was added to the cells and incubated on ice for 10 minutes. The cells were then electroporated by two pulses (a Gene Pulser II with a capacitive expander and a pulse controller from Bio-Rad) with a voltage setting of 750 V and a capacitance setting of 25 pF. The electroporated cells were plated in T-175 flasks containing 25 mL of medium (IMDM supplemented with HT, 10% FBS, 2 μM MTX and 5 pg/ml puromycin dihydrochloride) for 24 hours. Then use 800 gg/ml G418 sulfate (Calbiochem, Cat. No. 345810) for minimum replenishment with 10% D-FBS (Gibco, Cat. No. 30067-334) and 5 pg/m. Cells were screened in medium alpha medium (α-ΜΕΜ, Gibco, Cat. No. 12000). After 14 days of screening in α-ΜΕΜ medium supplemented with 10% D-FBS and selected antibiotics, the cells were subjected to increasing concentration ΜΤΧ treatment to amplify the gene. Cells were sorted by FACS to screen for cells with low GFP fluorescence intensity. Since the expression of the target gene and shRNAGFP resulted in a decrease in GFP production in CHO+GFP"dhf' cells, the green fluorescent least (GFP-negative) cells had the highest target gene expression. FACS sorting was performed using a MoF1otm XDP (Beckman Coulter) equipped with Summit software, a laser emitted at 488 nm, and a cell storage unit. Low-fluorescence and high-fluorescence cell populations were sorted by FACS using a single cell in a 96-well cell culture dish containing 220 μL supplemented with 10% 〇-FBS, G418, puromycin dihydrochloride and αα-ΜΕΜ. . The pure line was incubated for 12 days in a moisture-containing incubator at 37 ° C and 150275.doc -26- 201144439 5% carbon dioxide. Example 4: Characterization of Hepatic/CH〇+GFP/-dhfr Cell Line (1) Trypsin-treated Hepatocarcin/CH0+GFp/-dhfr cells were detected by immunostaining. Centrifuge at rpm for 5 minutes. The cells were washed twice with pBS and resuspended in pbs to a final concentration of about 1 X 1 7 cells/ml. Then use phycoerythrin (PE),,'. Mouse anti-human (Fc) (Beckman Coulter, Cat. No. 736007) 'at various dilutions according to the manufacturer's recommendations. (: cells were incubated in the dark for 30 minutes' washed twice with PBS and kept on ice for FACS analysis. (2) Detection of secreted antibodies by ELISA Briefly used in 〇.〇5 Μ carbonate - An anti-human IgG antibody (Sigma: I 1886) diluted in bicarbonate buffer (pH 9.7) was plated in a 96-well plate and incubated at 4 C for 16 hours. At 37 ° C with blocking buffer (1 〇 mM : Tris, 〇·15 M NaCl, 1% skim milk, pH 8_0) Block the wells for 30 minutes. Add the culture supernatant to the wells and incubate for 2 hours at 37 ° C. Horseradish peroxidation % binding Human IgG-F(c) antibody (Abeam: ab7499), diluted in dilution buffer (10 mM Tris, 0.15 M NaCl, 0.05% Tween 20, pH 8.0) according to the manufacturer's recommendations and incubated at 37 ° C One hour. The reaction was detected using a substrate (l-stepTM ultra TMB-ELISA, Pierce, Cat. No. 34029) and the well plate was read on a microplate reader (Bio-Rad). (3) Results Figure 8 presents utilization Histogram plot of FACS (CHO/+GFP/_dh〃) cells sorted by FACS at different fluorescence intensities. Figure A shows Hepatic Ping 150275.doc •27· 201144439 CHO/+GFP&quo t; GFP fluorescence in dh〃 cell population. Cells are divided into several subpopulations based on fluorescence intensity (R2, R3 and R4). Figure BD shows the amount of GFP expression in each subpopulation. Figure E shows the population and subgroups The anti-hepatoma antibody titer in the data. The data showed that the cells with the lowest GFP fluorescence content (Hejiaping/R4/(CHO/+GFP/_dhfD) have the highest anti-cancer efficacy price. Figure 9 shows the target with the target. The expression of GFP in CHO/+GFP"dh〃 cells was decreased when transfected with the protein (He Cancer) and shRNAiGFP DNA constructs. The FACS curve showed that the GFP expression decreased further after two rounds of MTX challenge (Figure C and D) These results indicate that the amount of target gene amplification is related to the amount of GFP expression and the intensity of gene amplification. Figure 10 shows the combination of PE-conjugated mouse anti-human IgG (Fc) staining of Hepatic/CHO/+GFP/'dhf Representative FACS analysis of cells. The results show that antibody-producing cells (i.e., cells stained with deeper PE) exhibit low GFP expression. Figure 11A shows histogram curves of CHO/+GFP & dhff cells. Strips and shaded areas indicate low fluorescence and high fluorescence cell populations for single cell analysis. Figure 11B shows 18 Cell fluorescence inbred Eight of producing greater than 0.3 of ELISA value, 18 and the high fluorescence cell only 2 inbred ELIS A in a large value of 0.3. These results show that the low-fluorescence cell population contains high-frequency, high-yield antibody-producing cells and demonstrates a GFP-based reverse screening strategy. Figure 12 shows that the GFP expression in the CH0+GFP/_dhf3s cells was reduced by transfection of the DNA construct encoding the Hepato (Fig. A-C) and shRNAGFP. (4) Conclusions The use of shRNAmireGFP and flow cytometry can substantially improve the accuracy and efficiency of two key points in the development of cell lines 150275.doc •28- 201144439. First, in terms of early pure line screening, the FACS method is a better pure line productivity predictor than the therapeutic protein titer in the assay medium. Secondly, the pure line in which the transgene expression is unstable can be easily identified by the increase in fluorescence observed during the amplification phase. Thus, the method of the present invention provides a novel benefit of the precise 96-well pure line screening method over conventional methods: it can identify good candidates at an earlier stage of the development process for further development and removal of unstable pure lines. These results show that the DNA constructs and screening methods of the present invention reliably yield a pure homologous protein preparation. Since a plurality of individual pure lines are not screened by a limiting dilution technique to isolate a mammalian cell line capable of expressing recombinant antibodies in high yield, the procedure is less labor intensive and can significantly shorten the production of pure lines required for biological production. time. This procedure does not require additional reagents to select pure lines and additionally provides the benefit of monitoring genomic stability. The amount of expression of the target gene is also more correlated with the intensity of the amplified gene. The double-effect design allows two foreign genes to be expressed simultaneously on the same chromosome. The inhibitory method enhances the intensity of target gene amplification by reducing the intensity of reporter gene amplification. The use of ARE can increase the expression of foreign recombinant proteins by eliminating the differences caused by the inhibition of insertion of foreign genes into different chromosome regions. [Simplified Schematic] Figure 1 is a diagram showing the high-transfer gene expression cell lineage based on the GFP-based screening strategy. Figure 2 is a map showing the vector pScinoDP-DHFR. Figure 3 is a representation of the representation vector pScinoDP3-DHFR. 150275.doc -29- 201144439 Figure 4 is a map of the expression vector pScinoDP3mir-DHFR. Figure 5 is a map showing the vector pScinoDP8mir-DHFR. Figure 6 is a map showing the expression vector pScinoDP9mir-DHFR. Fig. 7 is a view showing the construction of the expression vector pScinoDP9mir-HECD-DHFR. Fig. 8 is a composite diagram showing the expression of GFP and the expression of antibodies in Hepatic-CHO+gfp/·· cells. Panel A is a FACS histogram plot of Hepatic-CHO/+GFP/-dhff cells. Panel B_C is a FACS histogram plot of Hepato-CHO/+GFP/_dhff cells sorted at different fluorescence intensities. Panel E is an ELISA analysis of antibody production from cells sorted from different fluorescent populations. Figure 9 is a composite diagram showing the expression of GFP in Hepatot-CHO+GFPrdhff cells after multiple rounds of screening. Panel A is a FACS histogram of CHO"dhf cells after GFP expression. Panel B is a FACS histogram of Hepato-CHO/+GFP "dh〃 cells after G418 selection. Panel C is a FACS histogram of Hepato-CHO/+GFP "dhfr cells after the first round of MTX (100 nM) amplification. Panel D is a FACS histogram of Hepato-CHO/+GFP "dh〃 cells after a second round of MTX (200 nM) amplification. Figure 10 is a graph showing FACS analysis of Hepato-PHO+GFP/_dh' cells stained with PE-conjugated anti-human IgG (Fc) antibody. According to the experimental design, the cells secreting the antibody were PE positive and GFP negative, and were shown in the upper left panel. The fluorescent signal is measured by FACS and corrected by a standard compensation scheme. Figure 11 shows the main features of the FACS sorting procedure of the Hepatotine-CHO+GFP plant dhf' cells, and the ELISA results. Panel A is a FACS histogram of Hepatic (CHO/+GFP/-dhfr) cells. The horizontal and gray areas indicate low fluorescence and high fluorescence cell populations for single fine 150275.doc -30- 201144439 cell analysis. Panel B is the amount of antibody expression detected by ELIS A for each individual selected from the group consisting of low fluorescence or high fluorescence populations. Figure 12 is a composite diagram showing FACS analysis of GFP expression in cells transfected with DNA constructs encoding shRNAGFP and Hepatic (Figure C). 150275.doc -31 -

Claims (1)

201144439 七、申請專利範圍: 1 · 一種篩選目標蛋白高表現量之細胞之方法,其包含: 將具有編碼目標蛋白及宿主細胞内源性篩選標記之抑 制子兩者的DNA構築體引入至複數個宿主細胞中,其中 該DNA構築體經配置成於該宿主細胞内表現該目標蛋白 及該抑制子兩者; 針對該内源性筛選標記之表現來篩選含有該DNA構築 體之宿主細胞;及 分離該篩選標記表現量低的細胞。 2. 如請求項1之方法,其中該抑制子係選自由小干擾rNa (siRNA)、小髮夾狀 RNA(shRNA)、微 RNA(miRNA)、 miRNA與shRNA之雜合體及反義RNA組成之群。 3. 如請求項1之方法’其中該抑制子為shRNA。 4·如請求項1之方法’其中該内源性選擇標記為螢光標 記’且其中該分離步驟包含用螢光活化細胞分選計 (FACS)分選細胞。 5*如請求項1之方法,其中該DNA構築體進一步編碼二氫 葉酸還原酶(DHFR),且其中該等宿主細胞為dhfr缺陷 型細胞。 6. 一種筛選轉殖基因表現細胞之高產能篩選方法,其包 含: 用栽有至少一種轉殖基因及抑制螢光蛋白表現之干擾 RNA的载體轉染該等細胞; 篁測該等經轉染之細胞中之螢光強度;及 150275.doc 201144439 刀離營光強度低於未經轉染細胞之螢光強度之細胞。 7. 如凊求項ό之方法,其中該螢光蛋白為綠色螢光蛋白 (GFP)。 8. 如δ青求項6之方法,其中該干擾RNA為mir-30-baesd之 shRNA。 9. 如5青求項6之方法’其中該分離步驟包含使用FACS分選 細胞。 10·如清求項6之方法’其中該等表現螢光蛋白之細胞為二 氫葉酸還原酶(DHFR)缺陷型CHO細胞。 11. 如請求項6之方法’其中該至少一種轉殖基因經由内部 核糖體進入位點(IRES)連接於編碼Dhfr之基因。 12. —種表現載體,其用於高產能篩選含有該表現載體之細 胞’其包含: 編碼目標蛋白之第一核苷酸序列; 編碼宿主細胞外源性篩選標記之第二核苷酸序列; 編碼宿主細胞内源性篩選標記之抑制子之第三核苷酸 序列;及 一或多個控制該第一核苷酸序列、該第二核苷酸序列 及該第三核苷酸序列在該宿主細胞中表現的調控元件, 其中該第一核苷酸序列經由内部核糖體進入位點 (IRES)連接於該第二核苷酸序列。 13·如§青求項12之表現載體’其另外包含一或多個抗阻遏子 元件。 14.如請求項13之表現載體,其中該一或多個抗阻遏子元件 150275.doc 201144439 包括部分小鼠抗阻遏子元件40。 15·如請求項12之表現載體,其中該抑制子為干擾rna。 16.如請求項15之表現載體,其中該干擾rna為miR-30-based之 shRNA。 1 7.如請求項12之表現載體,其中該内源性篩選標記為螢光 蛋白。 18·如請求項17之表現載體,其中該螢光蛋白為綠色螢光蛋 白。 19. 如請求項12之表現載體,其中該外源性篩選標記為二氫 葉酸還原酶。 20. 如請求項12之表現載體,其中該一或多個調控元件包括 CMV IE增強子。 150275.doc201144439 VII. Patent application scope: 1 . A method for screening cells with high expression amount of a target protein, comprising: introducing a DNA construct having both a target protein and a suppressor of an endogenous screening marker of a host cell into a plurality of In the host cell, wherein the DNA construct is configured to display both the target protein and the suppressor in the host cell; and to screen the host cell containing the DNA construct for the expression of the endogenous screening marker; The cells in which the screening marker is expressed in a low amount are isolated. 2. The method of claim 1, wherein the inhibitor is selected from the group consisting of a small interfering rNa (siRNA), a small hairpin RNA (shRNA), a microRNA (miRNA), a hybrid of miRNA and shRNA, and an antisense RNA. group. 3. The method of claim 1, wherein the inhibitor is a shRNA. 4. The method of claim 1 wherein the endogenous selection marker is a fluorescent cursor' and wherein the separating step comprises sorting the cells with a fluorescence activated cell sorting (FACS). 5) The method of claim 1, wherein the DNA construct further encodes dihydrofolate reductase (DHFR), and wherein the host cells are dhfr-deficient cells. 6. A high-capacity screening method for screening a gene for expressing a gene, comprising: transfecting the cells with a vector carrying at least one of a transgenic gene and an interfering RNA that inhibits expression of a fluorescent protein; Fluorescence intensity in transfected cells; and 150275.doc 201144439 Knife-out camp light intensity is lower than that of untransfected cells. 7. The method of claim 1, wherein the fluorescent protein is green fluorescent protein (GFP). 8. The method of claim 6, wherein the interfering RNA is mir-30-baesd shRNA. 9. The method of claim 5, wherein the separating step comprises sorting the cells using FACS. 10. The method of claim 6, wherein the cells expressing the fluorescent protein are dihydrofolate reductase (DHFR)-deficient CHO cells. 11. The method of claim 6 wherein the at least one transgene is linked to the gene encoding Dhfr via an internal ribosome entry site (IRES). 12. An expression vector for high throughput screening of a cell comprising the expression vector comprising: a first nucleotide sequence encoding a protein of interest; a second nucleotide sequence encoding an exogenous selection marker of the host cell; a third nucleotide sequence encoding a suppressor of the endogenous screening marker of the host cell; and one or more controls the first nucleotide sequence, the second nucleotide sequence, and the third nucleotide sequence A regulatory element expressed in a host cell, wherein the first nucleotide sequence is linked to the second nucleotide sequence via an internal ribosome entry site (IRES). 13. The expression vector of § § 12, which additionally comprises one or more anti-repressor elements. 14. The expression vector of claim 13, wherein the one or more anti-repressor elements 150275.doc 201144439 comprises a portion of the mouse anti-repressor element 40. 15. The expression vector of claim 12, wherein the inhibitor is an interfering rna. 16. The expression vector of claim 15, wherein the interfering RNA is a miR-30-based shRNA. 1 7. The expression vector of claim 12, wherein the endogenous selection marker is a fluorescent protein. 18. The expression vector of claim 17, wherein the fluorescent protein is a green fluorescent protein. 19. The expression vector of claim 12, wherein the exogenous screening marker is dihydrofolate reductase. 20. The performance vector of claim 12, wherein the one or more regulatory elements comprise a CMV IE enhancer. 150275.doc
TW099128012A 2010-06-03 2010-08-20 Inhibition-based high-throughput screen strategy for cell clones TWI475109B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/792,924 US8765370B2 (en) 2009-06-11 2010-06-03 Inhibition-based high-throughput screen strategy for cell clones

Publications (2)

Publication Number Publication Date
TW201144439A true TW201144439A (en) 2011-12-16
TWI475109B TWI475109B (en) 2015-03-01

Family

ID=46786030

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128012A TWI475109B (en) 2010-06-03 2010-08-20 Inhibition-based high-throughput screen strategy for cell clones

Country Status (1)

Country Link
TW (1) TWI475109B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030114409A1 (en) * 2001-11-16 2003-06-19 Mello Craig C. Facilitation of RNA interference
US20050042641A1 (en) * 2003-05-27 2005-02-24 Cold Spring Harbor Laboratory In vivo high throughput selection of RNAi probes
CA2610265A1 (en) * 2005-05-31 2007-05-10 Cold Spring Harbor Laboratory Methods for producing micrornas
US20090217399A1 (en) * 2006-03-17 2009-08-27 Massachusetts Institute Of Technology Lentiviral Vectors That Provide Improved Expression And Reduced Variegation After Transgenesis

Also Published As

Publication number Publication date
TWI475109B (en) 2015-03-01

Similar Documents

Publication Publication Date Title
US8765370B2 (en) Inhibition-based high-throughput screen strategy for cell clones
US20220298228A1 (en) Novel eukaryotic cells and methods for recombinantly expressing a product of interest
JP7087061B2 (en) Integration site in CHO cells
US20220325310A1 (en) Novel eukaryotic cells and methods for recombinantly expressing a product of interest
CN108064305B (en) Programmable oncolytic virus vaccine system and applications thereof
KR101476010B1 (en) Expression vector for establishing hyper-producing cells, and hyper-producing cells
TWI812596B (en) PROMOTER OF Hspa5 GENE
WO2019129175A1 (en) Chimeric promoter with high transcriptional activity in t-cells
TWI475109B (en) Inhibition-based high-throughput screen strategy for cell clones
JP2016514477A (en) Methods and constructs for expressing bioactive proteins in mammalian cells
WO2006006520A1 (en) Method of searching for novel target of drug discovery
US20080066196A1 (en) Short interfering rna duplexes targeting an ires sequence and uses therefor
TW201035312A (en) Gene amplification method for enhancing gene expression