TW201144252A - Spattering target of aluminum oxide-zinc oxide group - Google Patents
Spattering target of aluminum oxide-zinc oxide group Download PDFInfo
- Publication number
- TW201144252A TW201144252A TW100106839A TW100106839A TW201144252A TW 201144252 A TW201144252 A TW 201144252A TW 100106839 A TW100106839 A TW 100106839A TW 100106839 A TW100106839 A TW 100106839A TW 201144252 A TW201144252 A TW 201144252A
- Authority
- TW
- Taiwan
- Prior art keywords
- powder
- zinc oxide
- density
- sintering
- content
- Prior art date
Links
- JODIJOMWCAXJJX-UHFFFAOYSA-N [O-2].[Al+3].[O-2].[Zn+2] Chemical group [O-2].[Al+3].[O-2].[Zn+2] JODIJOMWCAXJJX-UHFFFAOYSA-N 0.000 title abstract description 4
- 239000000843 powder Substances 0.000 claims abstract description 179
- 229910052745 lead Inorganic materials 0.000 claims abstract description 50
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 48
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 159
- 239000011787 zinc oxide Substances 0.000 claims description 97
- 238000005477 sputtering target Methods 0.000 claims description 83
- 239000011812 mixed powder Substances 0.000 claims description 57
- 238000007254 oxidation reaction Methods 0.000 claims description 34
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 abstract description 117
- 239000011701 zinc Substances 0.000 abstract description 20
- 239000000203 mixture Substances 0.000 abstract description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052725 zinc Inorganic materials 0.000 abstract description 12
- 239000002994 raw material Substances 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 80
- 238000000034 method Methods 0.000 description 69
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 58
- 229910001195 gallium oxide Inorganic materials 0.000 description 57
- 229910052733 gallium Inorganic materials 0.000 description 55
- 238000004544 sputter deposition Methods 0.000 description 43
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 39
- 230000000694 effects Effects 0.000 description 25
- 239000001301 oxygen Substances 0.000 description 25
- 229910052760 oxygen Inorganic materials 0.000 description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 230000003647 oxidation Effects 0.000 description 22
- 239000008187 granular material Substances 0.000 description 19
- 150000002258 gallium Chemical class 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 238000002156 mixing Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 238000004438 BET method Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000004663 powder metallurgy Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 101150029683 gB gene Proteins 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 102100037265 Podoplanin Human genes 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000009766 low-temperature sintering Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 2
- 102100035893 CD151 antigen Human genes 0.000 description 2
- 101710118846 CD151 antigen Proteins 0.000 description 2
- 102100030003 Calpain-9 Human genes 0.000 description 2
- 101000641575 Enterobacteria phage T3 DNA maturase A Proteins 0.000 description 2
- 102100034190 Glypican-1 Human genes 0.000 description 2
- 101000793680 Homo sapiens Calpain-9 Proteins 0.000 description 2
- 101001070736 Homo sapiens Glypican-1 Proteins 0.000 description 2
- 101100351324 Homo sapiens PDPN gene Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 101710157310 Tegument protein UL47 homolog Proteins 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 101150064129 slp gene Proteins 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 description 1
- SPBWHPXCWJLQRU-FITJORAGSA-N 4-amino-8-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-oxopyrido[2,3-d]pyrimidine-6-carboxamide Chemical compound C12=NC=NC(N)=C2C(=O)C(C(=O)N)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SPBWHPXCWJLQRU-FITJORAGSA-N 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- 102100039986 Apoptosis inhibitor 5 Human genes 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 101100055113 Caenorhabditis elegans aho-3 gene Proteins 0.000 description 1
- 101100392772 Caenorhabditis elegans gln-2 gene Proteins 0.000 description 1
- 102100038196 Chitinase-3-like protein 1 Human genes 0.000 description 1
- 101000899452 Dictyostelium discoideum Calcium-dependent cell adhesion molecule 1 Proteins 0.000 description 1
- 102100037024 E3 ubiquitin-protein ligase XIAP Human genes 0.000 description 1
- 102100029774 Eukaryotic translation initiation factor 1b Human genes 0.000 description 1
- 101150045567 GP16 gene Proteins 0.000 description 1
- 101800001670 GP38 Proteins 0.000 description 1
- 101150048348 GP41 gene Proteins 0.000 description 1
- 102100032558 Glypican-2 Human genes 0.000 description 1
- 102100032530 Glypican-3 Human genes 0.000 description 1
- 102100032527 Glypican-4 Human genes 0.000 description 1
- 102100021196 Glypican-5 Human genes 0.000 description 1
- 102100021194 Glypican-6 Human genes 0.000 description 1
- 102100036738 Guanine nucleotide-binding protein subunit alpha-11 Human genes 0.000 description 1
- 101000959871 Homo sapiens Apoptosis inhibitor 5 Proteins 0.000 description 1
- 101000896234 Homo sapiens Baculoviral IAP repeat-containing protein 5 Proteins 0.000 description 1
- 101000883515 Homo sapiens Chitinase-3-like protein 1 Proteins 0.000 description 1
- 101000804865 Homo sapiens E3 ubiquitin-protein ligase XIAP Proteins 0.000 description 1
- 101001012792 Homo sapiens Eukaryotic translation initiation factor 1b Proteins 0.000 description 1
- 101100283445 Homo sapiens GNA11 gene Proteins 0.000 description 1
- 101001014664 Homo sapiens Glypican-2 Proteins 0.000 description 1
- 101001014668 Homo sapiens Glypican-3 Proteins 0.000 description 1
- 101001014682 Homo sapiens Glypican-4 Proteins 0.000 description 1
- 101001040711 Homo sapiens Glypican-5 Proteins 0.000 description 1
- 101001040704 Homo sapiens Glypican-6 Proteins 0.000 description 1
- 101000600766 Homo sapiens Podoplanin Proteins 0.000 description 1
- 101000914496 Homo sapiens T-cell antigen CD7 Proteins 0.000 description 1
- 101100015456 Litomosoides carinii GP22 gene Proteins 0.000 description 1
- 101001054870 Mus musculus Ly-6/neurotoxin-like protein 1 Proteins 0.000 description 1
- QDWGRSGGOUPRJF-UHFFFAOYSA-N O.O.[O--].[Zn++] Chemical compound O.O.[O--].[Zn++] QDWGRSGGOUPRJF-UHFFFAOYSA-N 0.000 description 1
- 101000903919 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Glucan 1,3-beta-glucosidase Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- PFZCZKYOFNEBAM-UHFFFAOYSA-N [Fe].[Sr] Chemical compound [Fe].[Sr] PFZCZKYOFNEBAM-UHFFFAOYSA-N 0.000 description 1
- GPAYHNZZVJSUCV-UHFFFAOYSA-N [Ru+3].[O-2].[Zn+2] Chemical compound [Ru+3].[O-2].[Zn+2] GPAYHNZZVJSUCV-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000001268 chyle Anatomy 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical compound [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 101150002378 gC gene Proteins 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011536 re-plating Methods 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3294—Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6584—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6585—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
201144252 六、發明說明: 【發明所屬之技術領域】 本發明係有關-種氧化紹—氧化辞系賤錄乾 之’係有關-種即使以低溫燒結亦可製造,為高密^口 並可適一形成_ 【先前技術】 氧仙摻雜騎形叙㈣(⑽所構成之膜 (_在平面顯示11、難面板及太陽電池等之領域 廣泛使用來作為透料⑽等其他的用途。但是,IT〇 — 主成分的銦係昂貴,故祕透明導_等之製造成本古= 問題。因此,期盼開發較ΙΤ0廉價的替代材料。 ΙΤ0之替代材料係以廉價的氧化鋅作為主成分之氧化 鋅系材料’其中以氧化!呂_氧化鋅系材料(AZG)或氧化錄 氧化鋅系材料(_備受注目。錦係於氧化鋅摻雜氧化紹 (Al2〇3)所形成之材料,為無色透明,且具有高導電性。 ΑΖ0獏一般係藉由使用AZ〇系的濺鍍靶的濺鍍法而形 成。在如此之濺鍍中,伴隨濺鍍之進行,於靶材表面產生 被稱為結瘤(nodule)之突起物,此成為 / ·、 达土电m (arcing)或潑濺(splash),有時很難安定的成膜。又,電 弧等成為原因而使粒子(particle)於濺鍍室(3卯伙叶 chamber)内浮游,其附著於膜而降低AZ〇膜之品質。因此, 在滅鍵無之開發中,要求抑制結瘤等的發生之技術。如此 之技術係謀求之高密度化^又,為了提高賤鐵速 322881 4 201144252 度並實現有效率的成膜’尋求降低濺鍍靶之比電阻的技 術。即使是GZ0,亦存在與上述ΑΖ0同樣的情況。 就滿足上述要求之GZ0系的濺鍍靶而言,已提出例如 含有氧化鋁20至500質量ppm,燒結密度為5· 55g/cm3以 上之氧化鎵-氧化辞系燒結體濺鍍靶(專利文獻丨),或是含 有氧化錯20至2000質量ppm,燒結密度為5· 55g/cm3以上 之氧化鎵-氧化鋅系燒結體濺鍍靶(專利文獻2)等。 但是,專利文獻1及專利文獻2所記栽之濺鍍靶係在 藉由CIP(cold iS0Static press,冷均壓)形成原料粉末 後,若不燒結,則不會成為高密度。CIP為特殊之方法, 並非被廣泛使用者,又,其裝置昂貴,若進行此方法有 濺鍍靶之製造成本增大之問題。 [先前技術文獻] [專利文獻] 專利文獻1:日本專利第4054054號公報 專利文獻2:日本專利第4098345號公報 【發明内容】 (發明欲解決之課題) 本發明之目的為得到一種氧化鋅系濺錢乾,其可抑制 結瘤、電弧或粒子之產i,具有高的燒結密度及低的比電 阻率,不需使用特殊的裝置,可以低成本製造。 (用以解決課題之手段) 本發明人發現若於氧化鋅系濺鍍靶中含有Pb或Cd、 或其兩者,齡使;eip,亦可制高的燒結密度, 322881 5 201144252 因而完成本發明。 亦即,達成前述目的之本發明係一種氧化鋁_氧化鋅系 濺鐘靶,其特徵為:含有Pb及的至少一者。 前述氧化鋁-氧化鋅系濺鍍靶之適宜態樣係:在Pb及 Cd中只含有Pb ,其含量為4至2000質量ppin ; 在Pb及Cd中只含有cd,其含量為3至2000質量ppm; 含有Pb及Cd’各別之含量的合計為4至2000質量ppm。 前述氧化鋁-氧化鋅系濺鍍靶中,氧化鋁之濃度宜為 0.1至10質量%。 此外,其他之發明為一種氧化鋁_氧化辞系濺鍍靶的製 造方法,其特徵為:使含有氧化鋁粉末、與氧化鋅粉末、 與包含Pb及Cd的至少一者之粉末的混合粉末進行燒結。 (發明之效果) 本發明之氧化鋁-氧化鋅系濺鍍靶係不需使用如cip 之特殊裝置,可以低成本製造,並具有高的燒結密度。尤 其是本發明之錢鍵乾係即使燒結溫度為低溫,即使為例如 1300°C左右’亦成為高的燒結密度。例如,氧化銘漢度為 0. 5質量%時,即使燒結溫度為1300°C,燒結密度亦成為 5· 54g/cm3以上。因此’不需為了得到高的燒結密度而以高 溫燒結原料粉末,故對燒結爐之負擔小,可避免燒結爐之 早期劣化。又’因可低溫燒、结’故於燒結中可抑制源自原 料粉末之鋅等成分的揮發,靶材之組成的調整很容易,可 容易地藉由濺鍍而形成具有預定之組成的膜。又,氧化餘、 氧化鋅系濺鍍靶之比電阻小。更進一步,本發明之氧化在呂、 6 322881 201144252 氧化鋅系濺鍍靶係因靶材密度變高,而可抑制結瘤的生 成,再者,亦可抑制電弧或粒子的產生。因此,可進行安 定的濺鍍,進而亦可減少濺鍍速率減少率。 【實施方式】 <氧化蘇-氧化辞系錢鑛輕> 本發明之氧化鎵-氧化鋅系濺鍍靶之特徵為含有Pb及 Cd之至少一者。 當本發明之濺鍍靶係在Pb及Cd中只含有Pb時,Pb 之含量宜為4至2000質量ppm,較宜為5至1000質量ppm, 更宜為5至500質量ppm,尤宜為5至100質量ppm。 當本發明之濺鍍靶係在Pb及Cd中只含有Cd時,Cd 之含量宜為3至2000質量ppm,較宜為3至1000質量ppm, 更宜為3至500質量ppm,尤宜為3至100質量ppm。 當本發明之濺鍍靶係含有Pb及Cd之兩者時,Pb之含 量與Cd之含量的合計宜為4至2000質量ppm,較宜為5 至1000質量ppm,更宜為5至500質量ppm,尤宜為5至 100 質量 ppm。 若氧化鎵-氧化辞系濺鍍靶含有Pb或Cd、或是Pb及 Cd,則特別是在分別以上述所示之含量含有時,會得到高 的燒結密度。尤其是以上述含量含有Pb及Cd之至少一者 的氧化鎵-氧化鋅系濺鍍靶,即使以低溫燒結混合粉末,亦 可得到高的燒結密度。氧化鎵-氧化辞系濺鍍靶一般係藉由 將混合氧化鎵(Ga2〇3)粉末與氧化鋅(ZnO)粉末所得到之混 合粉末進行燒結來製造。此時,關於燒結體之燒結密度, 7 322881 201144252 一般係燒結溫度愈高則燒結密度愈大,若燒結溫度變低, 則燒結密度會降低。例如,混合粉末中之氧化鎵濃度為〇. 5 質量%時,若將其以所謂1500°C之高溫進行燒結,則即使 混合粉末未含有Pb及Cd,亦可得到燒結密度為5. 60g/cm3 以上之燒結體,但若以所謂1300°C之低溫燒結,則混合粉 末未含有Pb及Cd時,只可得到燒結密度約為5.53g/cm3 之燒結體。相對於此,在為以上述含量含有Pb及Cd之至 少一者的混合粉末時,無論是以1500°C之高溫燒結,或是 以1300°C之低溫燒結,均可得到燒結密度為5.60g/cm2以 上之燒結體。 若以1500°C以上之高溫進行燒結,則施於燒結爐之負 擔大,燒結爐之劣化變激烈。又,若以如此之高溫進行燒 結,則鋅等成分會從原料粉末揮發,各成分之組成會變化, 故有時無法形成具有預定之組成的靶材。本發明之濺鍍靶 係如上述般,即使以1300°C之低溫燒結亦可得到高的燒結 密度,故可減少施加於燒結爐之負擔,可降低燒結爐之劣 化。又,本發明之濺鍍靶係藉由如上述之低溫燒結而可抑 制燒結中源自混合粉末的鋅等成分之揮發,故容易得到預 定之組成。 如此之效果,在添加Pb及添加Cd之任一者均可得到。 又,即使令Pb與Cd共存,亦可得到該效果。此時之適宜 的Pb與Cd之合計量係與Pb或Cd單獨添加時無大幅差異。 從此等論述,認為對於上述效果,Pb與Cd係在氧化鎵-氧 化鋅系濺鍍靶_以同樣的機制進行作用者。又,由於即使 8 322881 201144252 在後述之氧化l氧化鋅^贿 濺鑛㈣同樣地顯現Pb * ed化鎵-氧化辞系 中以咖錄及氧化心氧化鋅系濺鍍輕 中以同樣的機制進行作用者。 又和 I特之氧化鎵_氧化鋅系濺鍍乾中的氧化鎵濃度係 :寺别限制,一般為0.1至10質《,宜為0.5至5.7質 =。。右氧化鎵濃度在此範圍内,可成為有效替代ιτ〇之材 \又\可適宜顯現由⑺及⑺所致的效果。此處,氧化 鎵濃度係指以Ga2〇3換算而標記之數值。 本發明之氧化鎵-氧化鋅系濺鍍靶係由汕及⑺之至少 任者的το素、Ga、Zn及〇、以及源自不可避免之雜質的 元素所構成。 本發明之濺鍍靶的密度係如前述般,燒結溫度愈高則 拴度變愈大,又,氧化鎵濃度愈高,則有密度變低之傾向。 關於本發明之濺鍍靶的密度,當氧化鎵濃度為0.5質量% 時’以1200Ϊ之燒結則為5.49至5 54g/cm3,以13〇(rc之 燒結則為5. 60至5. 61g/cm3,以1400。(:之燒結則為5. 60 至 5. 61g/cm3 ’ 以 15〇〇。(:之燒結則為 5. 60 至 5. 61g/cm3。 當氧化鎵濃度為3. 0質量%時,以1200。(:之燒結則為5. 23 至 5.27g/cm3,以 13〇〇。〇之燒結則為 5.47 至 5.50g/cro3, 以1400 C之燒結則為5.48至5. 51g/cm3,以1500°C之燒結 則為5.50至5. 54g/cm3。當氧化鎵濃度為5. 7質量%時’以 1200 C之燒結則為5· 12至5. 16g/cm3,以130(TC之燒結則 為5.27至5.29g/cm3,以1400°C之燒結則為5.28至 9 322881 201144252 5.35g/cm3,以 1500°C 之燒結則為 5.40 至 5. 50g/cm3。 本發明之濺鍍靶係因含有Pb或Cd、或是Pb及Cd,尤 其是因分別以上述所示之含量含有,而使比電阻率低。本 濺鍍靶之密度亦與燒結密度同樣地,燒結溫度愈高則密度 變愈大,又,氧化鎵濃度愈高,則有密度變低之傾向。關 於本發明之濺鍍靶的比電阻率,當氧化鎵濃度為0.5質量% 時,以1300之燒結則為1. 〇χι〇-3至2. 〇xi〇-3q · cm左右。 又,本發明之濺鍍靶係因含有Pb或cd、或是Pb及Cd, 尤其是因分別以上述所示之含量含有,而使濺鍵速率減少 率低。關於本發明之濺鍍靶的濺鍍速率減少率,當氧化鎵 濃度為0.5質量%,在13〇〇之燒結溫度時則為19至23%左 右。又,關於濺鍍速率減少率的測定方法,係在實施例中 詳述。 本發明之氧化鎵-氧化鋅系濺鍍靶係例如从即 法製造。製造在Pb及Cd中只含有Pb的濺鍍靶時,以信 pb之含量成為5至1〇00質量卯m的方式,將含有pb之求 末與氧化鎵(Ga^)粉末與氧化鋅(Zn〇)粉末混合而製作免 合粉末,並燒結此混合粉末。s造在Pb& cd +只含有c 的賤錄時,以使Cd之含量成為3至_質量_的戈 式,將対Gd讀末與氧傾粉末純倾粉末混合而f 作成合粉末,錢結此混合粉末。製造含有%及cd之碎 ^的濺錄時,以使Pb之含量與Cd之含量的合計成為 質量卿的方式,將含有pb之粉末與含有cd之啦 ”氧化鎵粉末與氧化鋅粉末混合而製作混合粉末,並灌 10 322881 201144252 結此混合粉末。當濺鍍靶中之氧化鎵的濃度設為0.5至5 Ί 質量%時,在上述各情形t,只要以使氧化鎵之濃度成為 0· 5至5. 7質量%之方式混合氧化錄粉末而製作混合粉末即 cFj" 〇 前述含有Pb之粉末可為Pb之金屬粉末、Pb之氧化物 粉末及其他之Pb化合物粉末的任一者。Pb之氧化物可舉 例如PbO、Pb〇2、及Pb3〇4專。前述含有cd之粉末可為cd 之金屬粉末、Cd之氧化物粉末及其他之cd化合物粉末的 任一者。Cd之氧化物可舉例如CdO。 前述含有Pb之粉末、含有Cd之粉末、氧化鎵粉末及 氧化鋅粉末的以BET(Brunauer-Emmett-Teller)法所測定 之平均粒徑一般為0. 05至〇. 5/zm。 混合粉末係藉由將前述各粉末以例如球磨機等進行混 合而得到。 混合粉末之燒結方法係無特別限定,但一般採用使此 成形而成為成形體,再以燒結爐進行燒結的方法。混合粉 末係可直接成形而成為成形體,亦可依需要而於混合粉末 中加入黏結劑(binder)而成形。此黏結劑係可使用在公知 之粉末冶金法中得到成形體時所使用的黏結劑,例如聚乙 烯醇等。λ,所得到之成形體可依需要而藉由在公知的粉 末冶金法巾所採用的方法進行脫脂。成形方法亦可適用在 公知之粉末冶金法巾所採用的方法。树,本發明之氣化 鎵-氧化鋅系濺餘係不需使用如⑽之特殊的成形方 法,即可製造成高密度。 322881 11 201144252 藉由燒結所得到之成形體以得到燒結體。燒結係可使 用在公知之粉末冶金法中所採用的燒結爐。燒結環境宜為 含有氧氣的氣體。具體上係以大氣為首,而可舉例如氧氣、 氮氣與氧氣之混合氣體、氬氣與氧氣之混合氣體、及氮氣 與氬氣與氧氣之混合氣體等。在含有氧氣之氣體中的氧濃 度宜為5至1 OOvol%。又,亦可一邊在大氣中吹入氧氣一 邊燒結。 如前述般,本發明之氧化鎵-氧化鋅系濺鍍靶係即使不 以1500°C之高溫進行燒結,亦可形成高密度。例如氧化鎵 濃度為0.5質量%時,即使以1300°C之低溫進行燒結,亦 可得到5. 60g/cm3以上之燒結密度。 <氧化鋁-氧化鋅系濺鍍靶> 本發明之氧化鋁-氧化鋅系濺鍍靶的特徵為含有Pb及 Cd之至少一者。 本發明之濺鍍靶係在Pb及Cd中只含有Pb時,Pb之 含量宜為4至2000質量ppm,較宜為5至1000質量ppm, 更宜為5至500質量ppm,尤宜為5至100質量ppm。 本發明之濺鍍靶係在Pb及Cd中只含有Cd時,Cd之 含量宜為3至2000質量ppm,較宜為3至1000質量ppm, 更宜為3至500質量ppm,尤宜為3至100質量ppm。 本發明之濺鍍靶含有Pb及Cd之兩者時,Pb之含量與 Cd之含量的合計宜為4至2000質量ppm,較宜為5至1000 質量ppm,更宜為5至500質量ppm,尤宜為5至100質量 ppm ° 12 322881 201144252 若氧化鋁氧化鋅系濺鑛乾含有%或cd、或是Pb及 Cd ’特別疋在分別以上述所示之含量含有時,會得到高的 ^〇、、’。後_度。尤其以上述含量含有%及⑺之至少一者的氧 =紹:氧化鋅彡、崎㉟’係卩卩使以m料合粉末,亦可 付到尚的燒結密度1化氧化鋅线神,般係藉由將 混合氧化鋁(Ahoo粉末與氧化鋅(Zn〇)粉末所得到之混合 粕末進行燒結來製造。此時,關於燒結體之燒結密度,一 般係燒結溫度愈高則燒結密度愈大,若燒結溫度變低,則 燒結密度降低。例# ’混合粉末中之氧化銘濃度$ 2 〇質 量%時,若再以1500X:之高溫燒結,則即使混合粉末未含 有Pb及Cd,亦可得到燒結密度為5. 54g/cm3以上之燒結 體,但若以1300¾之低溫燒結,則混合粉末未含有pb及 cd時,只可得到燒結密度約為5 47g/cm3之燒結體。相對 於此,在為以上述含量含有Pb及Cd之至少一者的混合粉 末時,無論是以1500°C之高溫燒結,或是以i30(rc之低溫 燒結,均可得到燒結密度為5. 54g/cm2以上之燒結體。 若以1500°C以上之高溫進行燒結,施於燒結爐之負擔 大’燒結爐之劣化變激烈。又,若以如此之高溫進行燒結, 則鋅等成分會從原料粉末揮發,各成分之組成會變化,故 有時無法形成具有預疋之組成的輕材。本發明之賤鍍乾係 如上述般,即使以130(TC之低溫燒結亦可得到高的燒結密 度’故可減少施加於燒結爐之負擔,可降低燒結爐之劣化。 又,本發明之濺鍍靶係藉由如上述之低溫燒結,而可抑制 燒結中源自混合粉末的鋅等成分之揮發,故容易得到預定 322881 13 201144252 之組成 如此之效果,在添加Pb及添加c 又,即使令Pb與Cd i£左者均可得到。 的此與Cd之二m到該效果。此時之適宜 從此等論述,認為對於;、+=cd早獨添加時無大鴨差異。 化鋅系辭物X同樣的機::行氧化^氧 鎵—氧化鋅系•…亦與氧化紹:氧= ,鑛_同樣地顯現Pb及Cd之添加效=化:系 d係在氧化鎵-氧化鋅系濺鍍靶及氧化鋁、.及 中以同樣的機制進行作用者。、&化鋅錢鍍乾 無特別:j之===:系:_的氧化叙濃度係 ==濃度在__,可成為有效替 銘遭产针見由此及W所致的效果。此處,氧化 晨度係指以㈣3換算而標記之數值。 任一^發明之氧化^氧化鋅系濺_係由Pb及Cd之至少 元素所::素、A1、如及〇、以及源自不可避免之雜質的 電阻 濺鍍 率;^於本發明之氧化IS'氧化鋅系雜㈣密度、比 速率減少率’係具有與前述氧化鎵-氧化鋅系 乾同樣之效果。 本發明之氧化銘-氧化辞系濺鑛祕例如以如下之方 法當製造在Pb及ed中只含有pb⑽餘時,以使 之3量成為5至1000質量ΡΡίπ的方式,將含有Pb之粉 322881 201144252 氧化鋅⑽)粉末混合而製作混 二r粉末。當製造在%及财只含有 之含量成為3至圆質量的 製:乍、二、太二、:末與氧化鋁粉末與氧化鋅粉末混合而 製:末燒結此現合粉末。當製造含有Pb及Cd =者的舰把時,以使Pb之含量與Cd之含量的合計成 為5、至刪質量卿的方式,將含有pb之粉末與含有Cd 之私末與氧化絲末錢化鋅粉末混合*製作混合粉末, 並UM私末。在機錄中之氧化銘的濃度設為5 至6.0質罝%時’在上述各情形中,只要以使氧化銘之漠度 成為0· 5至6· 0質里/。之方式混合氧化铭粉末而製作混 末即可。 前述含有Pb之粉末可為Pb之金屬粉末、Pb之氧化物 粉末及其他之Pb化合物粉末的任—者。pb之氧化物可舉 例如Pb〇、Pb〇2、及Pb^等。前述含有Cd之粉末可為cd 之金屬粉末、Cd之氧化物粉末及其他之Cd化合物粉末的 任一者。Cd之氧化物可舉例如CdO。 前述含有Pb之粉末、含有Cd之粉末、氧化鋁粉末及 氧化鋅粉末的以BET(Brunauer-Emmett-Teller)法所測定 之平均粒徑一般為0. 05至0. 5 // m。 混合粉末係藉由將前述各粉末以例如球磨機等進行混^ 合而得到。 在混合粉末之燒結方法中係無特別限定,但一般採用 使此成形而成為成形體’再以燒結爐進行燒結的方法。混^ 322881 15 201144252 合粉末可直接成糾成為成形體’亦可依需料於混合粉 末中加入黏結劑而成形。此黏結劑係可使用在公知之粉末 冶金法中得到成形體時所使用的黏結劑,例如聚乙稀醇 等。又’所得到之成形艘亦可依需要而藉由在公知的粉末 冶金法中所制的方料行旨。成形方法亦可適用在公 知之粉末冶金法中所採用的方法。亦即,本發明之氧化銘一 氧化鋅线練係不使用如CIP之特殊的成料法,而可 製造成高密度。 藉由燒結所得到之成形體以得到燒結體。燒結係可使 用在公知之粉末冶金法巾所制㈣結爐。燒結環境宜為 含有氧氣的氣體。具體上係以大氣為首,而可_如氧氣、 =與氧氣之混合氣體、氬氣與氧氣之混合氣體、及氮氣 與氧氣之混合氣料。在含有氧氣之氣體中的氧濃 5至驗。又,亦可在大氣卜邊吹入氧氣一 以15tn!^般,本發明之氧化^氧化鋅系職㈣即使不 0CM溫騎燒結,亦可形成高密度。例如氧化敍 0.5質量%時’即使以130(rc之低溫進行燒結,市 叮得到5.54g/cm3以上之燒結密度。 上述氧化鎵-氧化鋅系濺鍍靶係於 所構成的系中含右士、+ & 氧化錄及氧化辩 替h #成之機料,氧德-氧化鋅系 由f化缺氧化鋅所構成的系中含有Pb等而 成之濺鍍靶,但如上所述,pb等 氧化鋅系雜減氧化H氧化^、絲係於氧化鎵- 孔5乳化鋅系濺餘中同樣地 322881 16 201144252 現,故認為即使是在由氧化鎵、氧化鋁及氧化鋅系所構成 的系中含有Pb等而成之濺鍍靶中,亦可得到與上述氧化鎵 -氧化鋅系濺鍍靶等為同樣的效果者。 又,關於混合粉末中或濺鍍靶中之Pb、Cd、Ga及A1 等之化學組成,係可藉由ICP法等進行測定。在以下之實 施例中已確認混合粉末中之Pb、Cd、Ga及A1等之濃度與 濺鍍靶中之Pb、Cd、Ga及A1等之濃度相同。 [實施例] 首先,說明在實施例中採用的測定方法。 <密度及相對密度> 依據阿基米德(Aruchimedis)法測定前述藏鍍乾的相 對密度。具體上,係將濺鍍靶之空中重量除以體積(濺鍍靶 之水中重量/計測溫度中之水比重)而算出密度,以此密度 相對於依據下述式(X)而得之理論密度p (g/cm3)的百分率 之值作為相對密度(單位:%)。結果表示於表1中。201144252 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a kind of oxidation-smelting-oxidation system, which can be manufactured even at low temperature, and is high-density and suitable for one. Formation_ [Prior Art] Oxygen-doped riding type (4) ((10) The film (_ is widely used in the field of flat display 11, hard panel, solar cell, etc. as a transmissive material (10). However, IT 〇 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主 主The material "is oxidized! Lu_Zinc oxide-based material (AZG) or oxidized zinc oxide-based material (_ attracts attention. The material formed by the zinc oxide doped oxidation oxide (Al2〇3) is colorless. Transparent and highly conductive. ΑΖ0貘 is generally formed by sputtering using an AZ lanthanum sputtering target. In such sputtering, the sputtering is performed on the surface of the target. Prominence of nodule This becomes / ·, earthing electricity (arcing) or splashing, sometimes it is difficult to stabilize the film formation. Also, the arc is the cause of the particles in the sputtering chamber (3 卯 叶In the case of floating in the chamber, it is attached to the film to reduce the quality of the AZ film. Therefore, in the development of the dead button, it is required to suppress the occurrence of nodules, etc. This technology is aimed at increasing the density of the film. Increasing the speed of strontium iron 322881 4 201144252 degrees and achieving efficient film formation 'seeking to reduce the specific resistance of the sputtering target. Even GZ0, there is the same situation as the above ΑΖ0. GZ0 system sputtering meeting the above requirements In the case of the target, for example, a gallium oxide-oxidized sintered body sputtering target containing 20 to 500 ppm by mass of alumina and a sintered density of 5·55 g/cm 3 or more (Patent Document No.) has been proposed, or contains an oxidation error of 20 to a gallium oxide-zinc oxide-based sintered body sputtering target having a sintered density of 5,000 g/cm 3 or more (Patent Document 2), etc. However, the sputtering target systems described in Patent Document 1 and Patent Document 2 are Formed by CIP (cold iS0Static press) After the raw material powder, if it is not sintered, it will not become a high density. CIP is a special method, and it is not widely used, and its apparatus is expensive. If this method is performed, there is a problem that the manufacturing cost of the sputtering target increases. [PRIOR ART DOCUMENT] Patent Document 1: Japanese Patent No. 4054054 Patent Document 2: Japanese Patent No. 4098345 [Invention] The object of the present invention is to obtain a zinc oxide splash. Qiangan, which can inhibit the formation of nodules, arcs or particles, has a high sintered density and a low specific resistivity, and can be manufactured at low cost without using special equipment. (Means for Solving the Problem) The present inventors have found that if a zinc oxide-based sputtering target contains Pb or Cd, or both, the age can be made; eip can also have a high sintered density, 322881 5 201144252 invention. That is, the present invention which achieves the above object is an alumina-zinc oxide-based splashing target characterized by containing at least one of Pb and the like. The preferred mode of the foregoing alumina-zinc oxide sputtering target is: Pb and Cd only contain Pb, and the content thereof is 4 to 2000 mass ppin; and Pb and Cd only contain cd, and the content is 3 to 2000 mass. Ppm; the total content of each of Pb and Cd' is 4 to 2000 ppm by mass. In the above alumina-zinc oxide-based sputtering target, the concentration of alumina is preferably from 0.1 to 10% by mass. Further, another invention is a method for producing an alumina-oxidation-based sputtering target, characterized in that a mixed powder containing an alumina powder, a zinc oxide powder, and a powder containing at least one of Pb and Cd is used. sintering. (Effects of the Invention) The alumina-zinc oxide-based sputtering target of the present invention does not require the use of a special device such as cip, can be manufactured at low cost, and has a high sintered density. In particular, the money-bonding system of the present invention has a high sintered density even if the sintering temperature is low, even if it is, for example, about 1300 °C. For example, when the oxidation temperature is 0.5% by mass, even if the sintering temperature is 1300 ° C, the sintered density becomes 5.54 g/cm 3 or more. Therefore, it is not necessary to sinter the raw material powder at a high temperature in order to obtain a high sintered density, so that the burden on the sintering furnace is small, and early deterioration of the sintering furnace can be avoided. In addition, since it is possible to suppress volatilization of components such as zinc derived from the raw material powder during sintering, the composition of the target material can be easily adjusted, and a film having a predetermined composition can be easily formed by sputtering. . Further, the specific resistance of the oxidized residual zinc oxide sputtering target is small. Further, the oxidation of the present invention in Lu, 6 322881 201144252 zinc oxide sputtering target system can suppress the formation of nodules due to the high density of the target, and can also suppress the generation of electric arc or particles. Therefore, stable sputtering can be performed, and the sputtering rate reduction rate can be reduced. [Embodiment] <Oxide-oxidation-based money-mineral light> The gallium oxide-zinc oxide-based sputtering target of the present invention is characterized by containing at least one of Pb and Cd. When the sputtering target of the present invention contains only Pb in Pb and Cd, the content of Pb is preferably 4 to 2000 ppm by mass, more preferably 5 to 1000 ppm by mass, still more preferably 5 to 500 ppm by mass, particularly preferably 5 to 100 ppm by mass. When the sputtering target of the present invention contains only Cd in Pb and Cd, the content of Cd is preferably from 3 to 2,000 ppm by mass, more preferably from 3 to 1,000 ppm by mass, still more preferably from 3 to 500 ppm by mass, particularly preferably 3 to 100 ppm by mass. When the sputtering target of the present invention contains both Pb and Cd, the total content of Pb and Cd is preferably 4 to 2000 ppm by mass, more preferably 5 to 1000 ppm by mass, still more preferably 5 to 500 by mass. The ppm is particularly preferably 5 to 100 ppm by mass. When the gallium oxide-oxidation system sputtering target contains Pb or Cd or Pb and Cd, a high sintered density is obtained particularly when it is contained in the above-mentioned contents. In particular, a gallium oxide-zinc oxide-based sputtering target containing at least one of Pb and Cd as described above can obtain a high sintered density even when the mixed powder is sintered at a low temperature. The gallium oxide-oxidation system sputtering target is generally produced by sintering a mixed powder obtained by mixing gallium oxide (Ga2〇3) powder with zinc oxide (ZnO) powder. At this time, regarding the sintered density of the sintered body, 7 322 881 201144252 generally, the higher the sintering temperature, the larger the sintered density, and if the sintering temperature is lowered, the sintered density is lowered. For example, when the concentration of the gallium oxide is 5% by mass, the sintering density is 5.60g/, even if the mixed powder does not contain Pb and Cd. When the sintered body is not less than 1300 ° C, the sintered powder having a sintered density of about 5.53 g/cm 3 can be obtained only when Pb and Cd are not contained in the mixed powder. On the other hand, when the mixed powder containing at least one of Pb and Cd in the above content is sintered at a high temperature of 1500 ° C or sintered at a low temperature of 1300 ° C, a sintered density of 5.60 g can be obtained. Sintered body of /cm2 or more. When sintering is performed at a high temperature of 1500 ° C or higher, the load applied to the sintering furnace is large, and the deterioration of the sintering furnace becomes intense. Further, when the sintering is carried out at such a high temperature, the components such as zinc are volatilized from the raw material powder, and the composition of each component changes, so that a target having a predetermined composition may not be formed. As described above, the sputtering target of the present invention can obtain a high sintered density even at a low temperature of 1300 ° C, so that the burden on the sintering furnace can be reduced, and the deterioration of the sintering furnace can be reduced. Further, the sputtering target of the present invention can suppress the volatilization of components such as zinc derived from the mixed powder during sintering by the low-temperature sintering as described above, so that a predetermined composition can be easily obtained. Such an effect can be obtained by adding either Pb or Cd. Moreover, this effect can be obtained even if Pb and Cd are coexistent. The optimum amount of Pb and Cd at this time is not significantly different from that of Pb or Cd alone. From the above discussion, it is considered that for the above effects, Pb and Cd act on the gallium oxide-zinc oxide sputtering target by the same mechanism. In addition, even if 8 322881 201144252 is described later in the oxidation of zinc oxide, brittle and splashing (4), the Pb* ed gallium-oxidation system is similarly developed by the same mechanism as the oxidized zinc oxide-based sputtering. Activator. And the specific gallium oxide-zinc oxide-based sputtering of the gallium oxide concentration system: the temple limit, generally 0.1 to 10 quality ", preferably 0.5 to 5.7 quality =. . The concentration of right gallium oxide in this range can be an effective substitute for the material of ιτ〇 \ and \ can be suitable for the effects caused by (7) and (7). Here, the gallium oxide concentration means a value which is marked in terms of Ga2〇3. The gallium oxide-zinc oxide-based sputtering target of the present invention comprises at least one of yttrium, Ga, Zn, and ytterbium of (7) and an element derived from unavoidable impurities. As described above, the density of the sputtering target of the present invention is such that the higher the sintering temperature, the higher the temperature, and the higher the gallium oxide concentration, the lower the density. With respect to the density of the sputter target of the present invention, when the gallium oxide concentration is 0.5% by mass, the sintering at 1200 Å is 5.49 to 5 54 g/cm 3 , which is 13 〇 (the sintering of rc is 5.60 to 5.61 g / Cm3, to 1400. (: The sintering is 5.60 to 5.61g / cm3 ' to 15 〇〇. (: the sintering is 5. 60 to 5. 61g / cm3. When the concentration of gallium oxide is 3. 0. When the mass is %, it is 1200. (: The sintering is 5.23 to 5.27g/cm3, which is 13〇〇. The sintering is 5.47 to 5.50g/cro3, and the sintering at 1400C is 5.48 to 5. 51克/厘米之间。 The sintering at 1500 ° C is 5.12 to 5. 16g / cm3, when the concentration of galvanic oxide is 5. 5 to 5. 54g / cm3. 130 (the sintering of TC is 5.27 to 5.29 g/cm3, the sintering at 1400 ° C is 5.28 to 9 322881 201144252 5.35 g / cm 3 , and the sintering at 1500 ° C is 5.40 to 5. 50 g / cm 3 . The sputtering target contains Pb or Cd, or Pb and Cd, and is particularly contained in the above-mentioned content, so that the specific resistivity is low. The density of the sputtering target is also the same as the sintered density. The higher the temperature, the higher the density, and the oxygen The higher the gallium concentration, the lower the density. The specific resistivity of the sputtering target of the present invention is 1.00 % 〇 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至〇xi〇-3q · cm or so. Further, the sputtering target of the present invention contains Pb or cd, or Pb and Cd, and in particular, the sputtering rate reduction rate is contained by the content shown above. The sputtering rate reduction rate of the sputtering target of the present invention is about 0.5% by mass for the gallium oxide concentration and about 19 to 23% for the sintering temperature of 13 Å. Further, regarding the reduction rate of the sputtering rate The measurement method is described in detail in the examples. The gallium oxide-zinc oxide-based sputtering target of the present invention is produced, for example, by the same method. When a sputtering target containing only Pb in Pb and Cd is produced, the content of the letter pb is obtained. In a manner of 5 to 1 〇00 mass 卯m, a powder containing gallium (Ga^) powder and zinc oxide (Zn 〇) powder are mixed to form a powder, and the mixed powder is sintered. Pb& cd + only contains the record of c, so that the content of Cd becomes 3 to _ mass_, and the 対Gd is read and oxygen Pour the powder into a pure powder and mix it into a powder to form a mixed powder. When the pulverization of % and cd is produced, the total content of Pb and the content of Cd will be the quality, and will be contained. The pb powder is mixed with the cd-containing "gallium oxide powder and zinc oxide powder to prepare a mixed powder, and the mixed powder is poured in 10 322881 201144252. When the concentration of gallium oxide in the sputtering target is set to 0.5 to 5% by mass, in each case t, the oxidation recording powder is mixed so that the concentration of gallium oxide is from 0.5 to 5.7 mass%. The mixed powder is cFj" The powder containing Pb may be any of Pb metal powder, Pb oxide powder, and other Pb compound powder. Examples of the oxide of Pb include PbO, Pb〇2, and Pb3〇4. The cd-containing powder may be any of cd metal powder, Cd oxide powder, and other cd compound powder. The oxide of Cd may, for example, be CdO. The granules of the Pb-containing powder, the Cd-containing powder, the gallium oxide powder, and the zinc oxide powder are generally measured by a BET (Brunauer-Emmett-Teller) method. The mixed powder is obtained by mixing the above respective powders in, for example, a ball mill or the like. The method of sintering the mixed powder is not particularly limited, but a method of forming the molded body into a molded body and sintering it in a sintering furnace is generally employed. The mixed powder may be directly molded into a molded body, or may be formed by adding a binder to the mixed powder as needed. As the binder, a binder which is used in obtaining a molded body by a known powder metallurgy method, such as polyvinyl alcohol or the like can be used. λ, the obtained shaped body can be degreased by a method employed in a known powder metallurgical towel as needed. The forming method can also be applied to the method employed in known powder metallurgy towels. The tree, the vaporized gallium-zinc oxide system of the present invention can be manufactured to a high density without using a special molding method as in (10). 322881 11 201144252 A molded body obtained by sintering is obtained to obtain a sintered body. The sintering system can be used in a sintering furnace employed in a known powder metallurgy method. The sintering environment is preferably a gas containing oxygen. Specifically, the atmosphere is first, and examples thereof include oxygen, a mixed gas of nitrogen and oxygen, a mixed gas of argon and oxygen, and a mixed gas of nitrogen and argon and oxygen. The oxygen concentration in the gas containing oxygen is preferably from 5 to 100% by volume. Further, it is also possible to sinter while blowing oxygen into the atmosphere. As described above, the gallium oxide-zinc oxide-based sputtering target of the present invention can form a high density even if it is not sintered at a high temperature of 1500 °C. For example, when the concentration of the gallium oxide is 0.5% by mass, the sintered density of 5.60 g/cm3 or more can be obtained even if the sintering is performed at a low temperature of 1300 °C. <Alumina-Zinc Oxide Sputtering Target> The alumina-zinc oxide sputtering target of the present invention is characterized by containing at least one of Pb and Cd. When the sputtering target of the present invention contains Pb only in Pb and Cd, the content of Pb is preferably 4 to 2000 ppm by mass, more preferably 5 to 1000 ppm by mass, still more preferably 5 to 500 ppm by mass, particularly preferably 5 Up to 100 ppm by mass. When the sputtering target of the present invention contains only Cd in Pb and Cd, the content of Cd is preferably from 3 to 2,000 ppm by mass, more preferably from 3 to 1,000 ppm by mass, still more preferably from 3 to 500 ppm by mass, particularly preferably Up to 100 ppm by mass. When the sputtering target of the present invention contains both Pb and Cd, the total content of Pb and Cd is preferably 4 to 2000 ppm by mass, more preferably 5 to 1000 ppm by mass, still more preferably 5 to 500 ppm by mass. Especially preferably 5 to 100 ppm by mass ° 12 322881 201144252 If the alumina zinc oxide-based splashing concentrate contains % or cd, or Pb and Cd 'specially contained in the above-mentioned contents, it will be high ^ 〇,, '. After _ degrees. In particular, the above-mentioned content contains at least one of % and (7) of oxygen = :: zinc oxide 彡, 崎35' 卩卩 卩卩 以 以 以 以 以 以 m m m m m m m m m m 般 般 般 般 般 般 般 般 般 般 般 般 般It is produced by sintering a mixed alumina (Ahoo powder and zinc oxide (Zn 〇) powder). At this time, regarding the sintered density of the sintered body, generally, the higher the sintering temperature, the higher the sintered density. When the sintering temperature is lowered, the sintered density is lowered. When the oxidation concentration in the mixed powder is $2 〇 mass%, if it is sintered at a high temperature of 1500X: even if the mixed powder does not contain Pb and Cd, A sintered body having a sintered density of 5.54 g/cm3 or more is obtained. However, when sintered at a low temperature of 1,300⁄4, the mixed powder does not contain pb and cd, and only a sintered body having a sintered density of about 5 47 g/cm 3 is obtained. And a sintered density of 5.54 g/cm2, which is obtained by sintering at a high temperature of 1500 ° C or at a low temperature of i30 (rc). The above sintered body. If it is higher than 1500 °C When the temperature is sintered, the burden on the sintering furnace is large. The deterioration of the sintering furnace is fierce. When the sintering is performed at such a high temperature, the components such as zinc are volatilized from the raw material powder, and the composition of each component changes. A light-weight material having a pre-twisted composition is formed. As described above, the ruthenium plating system of the present invention can reduce the load applied to the sintering furnace and reduce the sintering even if 130 (TC can be sintered at a low temperature for low-temperature sintering). Further, the sputtering target of the present invention can suppress the volatilization of components such as zinc derived from the mixed powder during sintering by the low-temperature sintering as described above, so that it is easy to obtain the effect of the composition of 322881 13 201144252. Adding Pb and adding c, even if Pb and Cd i are left, can be obtained. This and Cd are two to the effect. At this time, it is appropriate to discuss from this, and it is considered that for +, cd There is no difference in big ducks. The same machine of zinc-based lexicon X:: Oxidation of oxy-gallium-zinc oxide system... Also with oxidation: oxygen =, mine _ similarly shows the addition of Pb and Cd = chemical: System d is a gallium oxide-zinc oxide sputtering target and Aluminium, and the same mechanism to play the role., & zinc zinc money plating dry no special: j ===: system: _ oxidative concentration system == concentration in __, can become effective The effect of the needle on the needle is the result of this and W. Here, the oxidation morning refers to the value marked with (4) 3 conversion. Any of the inventions oxidized ^ zinc oxide splash _ is composed of at least elements of Pb and Cd ::::,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - the same effect as the zinc oxide system. The oxidation of the present invention is oxidized, for example, in the following manner, when Pb and ed are only contained in Pb and ed, so that the amount of 3 is 5 to 1000 mass ΡΡ ίπ In a manner, a powder containing Pb powder 322881 201144252 zinc oxide (10)) is mixed to prepare a mixed powder. When the content of the product contained in % and the money is 3 to the mass of the round: 乍, 二,太二,: the end is mixed with the alumina powder and the zinc oxide powder: the sintered powder is finally sintered. When manufacturing a ship handle containing Pb and Cd =, the total amount of Pb and the content of Cd is 5, and the method of deleting the quality, the powder containing pb and the private and oxygen containing silk Cd Zinc powder is mixed* to make a mixed powder, and UM is private. When the concentration of the oxidized sulphur in the machine record is set to 5 to 6.0 罝%, in each of the above cases, the degree of oxidation is made to be 0·5 to 6.00. It is sufficient to mix the oxidized powder to make a mixture. The Pb-containing powder may be any of Pb metal powder, Pb oxide powder, and other Pb compound powder. Examples of the oxide of pb include Pb〇, Pb〇2, and Pb^. The powder containing Cd may be any of cd metal powder, Cd oxide powder, and other Cd compound powder. The oxide of Cd may, for example, be CdO. The granules of the granules of the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules, the granules. The mixed powder is obtained by mixing the above respective powders in, for example, a ball mill or the like. The method of sintering the mixed powder is not particularly limited, but a method of forming the molded body into a molded body and sintering it in a sintering furnace is generally employed. Mixing 322881 15 201144252 The powder can be directly formed into a shaped body. It can also be formed by adding a binder to the mixed powder as needed. As the binder, a binder which is used in obtaining a molded body in a known powder metallurgy method, such as polyethylene glycol or the like can be used. Further, the obtained forming vessel can be carried out by a method known in the known powder metallurgy method as needed. The forming method can also be applied to the method employed in the known powder metallurgy method. That is, the oxidized zinc oxide line of the present invention can be manufactured to a high density without using a special forming method such as CIP. The obtained body is obtained by sintering to obtain a sintered body. The sintering system can be used in a (4) junction furnace made by a known powder metallurgy towel. The sintering environment is preferably a gas containing oxygen. Specifically, it is based on the atmosphere, and may be a mixture of oxygen, a mixed gas of oxygen and oxygen, a mixed gas of argon and oxygen, and a mixture of nitrogen and oxygen. Oxygen in a gas containing oxygen is 5 to test. Further, it is also possible to blow oxygen into the atmosphere at a level of 15tn!^, and the oxidized zinc oxide of the present invention (4) can form a high density even if it is not sintered at 0CM. For example, when the oxidation amount is 0.5% by mass, the sintered density of 5.54 g/cm3 or more is obtained even if it is sintered at a low temperature of 130 (the low temperature of rc. The above-mentioned gallium oxide-zinc oxide sputtering target system is composed of the right-handed system in the system. , + & Oxidation Recording and Oxidation Deterioration h #成之料料, Oxygen-Zinc Oxide is a sputtering target composed of Pb, which is composed of f-depleted zinc oxide, but as described above, Zinc oxide, such as pb, is reduced by oxidation, and the wire is in the gallium oxide-hole 5 emulsified zinc system. Similarly, it is 322881 16 201144252. Therefore, it is considered to be composed of gallium oxide, aluminum oxide and zinc oxide. In the sputtering target containing Pb or the like, the same effect as that of the above-described gallium oxide-zinc oxide sputtering target can be obtained. Further, Pb and Cd in the mixed powder or in the sputtering target. The chemical compositions of Ga, A1, and the like can be measured by the ICP method, etc. In the following examples, the concentrations of Pb, Cd, Ga, and A1 in the mixed powder and the Pb and Cd in the sputtering target were confirmed. The concentrations of Ga, A1, etc. are the same. [Examples] First, the measurement method used in the examples will be described. Density and Relative Density> The relative density of the deposited plating is determined according to the Aruchimedis method. Specifically, the air weight of the sputtering target is divided by the volume (the weight of the water in the sputtering target/measured temperature) The density was calculated from the water specific gravity, and the value of the density with respect to the theoretical density p (g/cm3) obtained according to the following formula (X) was taken as the relative density (unit: %). The results are shown in Table 1.
Ci/100 C2/IOO , , Ci/100 ρ = -+--1-----1-- , P 1 P 2 P ' 、 J …⑴ (式(X)中,匕至Ci分別表示靶材燒結體的構成物質的含量 (重量%),PI至Pi表示對應於匕至Ci之各構成物質的密度 (g/cm3)。) <比電阻率> 比電阻率係藉由依據JIS K7194之四探針法,使用 Loresta GP MCP-T610(三菱化學(股)製)而測定。 17 322881 201144252 <濺鍍速率減少率> 使直徑4吋(inch)、厚5mm之濺鑛無接合於支樓板 (backing plate)上,依據下述之濺鍍條件而實施濺鍍處 理。以投入電力量3W/cm2進行此處理。 <濺鍍條件> 裝置:DC磁控錢鐘裝置,排氣系低溫栗(cryopump)、 旋轉泵(rotary pump) 到達真空度:3xlO_6Pa 濺鍍壓力:0. 4Pa 氧分壓:lxl(T3Pa 以上述條件之濺鍍處理進行30、60、120及180分鐘 成膜,測定各時間點之膜厚。以橫軸作為處理時間,以縱 軸作為膜厚,而製成曲線。將濺鍍開始時及濺鍍終止時之 前述曲線的切線之斜率,分別作為濺鍍開始時之濺鍍速率 Ri及減鑛終止時之錢鍍速率Re ’並依下式求出賤锻速率減 少率。減;鍍終止時係指把材的侵姓部(經錢鑛而被挖掘最深 之部分)的厚度成為1mm之時間點。 [濺鍍速率減少率]=[(Ri-Re)/Ri]xl〇〇 <氧化鎵-氧化鋅系濺鍍靶> [Pb及Cd之含量所產生的效果以及以燒結溫度所產生之效 果的比較] (參考例GP1至GP9) 以使Pb之含量成為表1所示數值的方式,又’以使氧 化鎵(Ga2〇3)之含量成為0·5質量%的方式,混合Pb〇粉末與 322881 201144252 氧化嫁(Ga2〇3)粉末與氧化鋅(ZnO)粉末,置人20公升的聚 丙烯製槪中’藉由球磨機混合而製作混合粉末。介質為直 徑lOmra之Zr〇2球。所使用之粉末、氧化錄粉末及氧化 鋅粉末的以BET法測定的平均粒徑分別為㈣㈣、〇12 β m、及 0. 35 y m。 於混合粉末中,相對於混合粉末添加稀釋成4質量% 之聚乙騎6質量% ’使用乳砵而使聚乙稀醇充分浸入粉 末,並使其通過5.5、網目之篩。將混合有聚乙稀醇之混合 粉末填充於沖壓用的模具,以沖壓5〇〇Kg/cm2進行單轴成形 60秒。 將所得到之成形體置入容量約lm3之燒結爐中,在大氣 中以1200 c燒結8小時。使昇溫速度為1〇〇〇C/小時,降溫 速度為10 0 C /小時。 藉由切削加工所得到之燒結體,製造474x305xl2mmt 之氧化鎵-氧化鋅系濺鍍靶。又,在濺鍍速率減少率測定中 為直徑4吋、厚度5mm。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表不於表1中。 (比較例G1) 除了未使用PbO粉末以外,其餘係與實施例gpi相同 做法而製造氧化鎵-氧化鋅系濺鑛乾。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表不於表1中。 (參考例GP10至GP18) 19 322881 201144252 除了以使Pb之含量成為表2所示數值的方式,又,以 使氧化鎵(Ga2〇3)之含量成為0 5質量%的方式,混合pb〇粉 末與氧化鎵(Ga2〇3)粉末與氧化鋅(Zn〇)粉末而製作混合粉 末,並使燒結溫度為1300¾以外,其餘係與實施例Gpi相 同做法而製造氧化鎵-氧化鋅系賤鍵把。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法測定密 度、比電阻率及濺鍍速率減少率。結果表示於表2中。 (比較例G2) 除了未使用PbO粉末及使燒結溫度為13〇〇。匚以外,其 餘係與實施例GP1相同做法而製造氧化鎵_氧化鋅系濺鍍 乾。 對於此氧化鎵-氧化鋅系濺鐘乾,以上述之方法測定密 度、比電阻率及濺鍍速率減少率。結果表示於表2中^ (參考例GP19至GP27) 除了以使Pb之含量成為表3所示數值的方式,又,以 使氧化鎵(Ga2〇3)之含量成為〇. 5質量%的方式,混合pb〇粉 末與氧化鎵(GaA3)粉末與氧化鋅(Zn〇)粉末而製作混合粉 末’並使燒結溫度為14〇〇t以外,其餘係與實施例GP1相 同做法而製造氧化鎵—氧化鋅系濺鍍靶。 對於此氧化鎵-氧化鋅系濺錢乾,以上述之方法測定密 度。結果表示於表3中。 (比較例G3) 除了未使用PbO粉末及使燒結溫度為i40(TC以外,其 餘係與實施例GP1相同做法而製造氧化鎵-氧化鋅系濺鍍 20 322881 201144252 起。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表示於表3中。 (參考例GP28至GP36) 除了以使Pb之含量成為表4所示數值的方式,又,以 使氧化鎵(Gaz〇3)之含量成為〇. 5質量%的方式,混合pb〇粉 末與氧化鎵(Gaz〇3)粉末與氧化鋅(Zn〇 )粉末而製作混合粉 末,並使燒結溫度為15〇(Tc以外,其餘係與實施例GP1相 同做法而製造氧化鎵-氧化鋅系濺鍍靶。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表示於表4中。 (比較例G4) 除了未使用Pb〇粉末及使燒結溫度為15〇(rc以外,其 餘係與實施例GP14目同做法而製造氧化鎵_氧化鋅系賤錢 乾。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表示於表4中。 (參考例GC1至GC9) 除了使用CdO粉末取代Pb〇粉末,以使cd之含量成為 表5所示數值的方式’又以使氧化鎵(Ga2〇3)的含量成為5 質量%的方式’混合cd〇粉末與氧化鎵(Ga2〇3)粉末與氧化鋅 (ZnO)粉末而製作混合粉末以外,其餘係與實施例Gpi相同 做法而製造氧化鎵-氧化鋅系濺鍍靶。所使用之Cd〇粉末之 以BET法測定的平均粒徑為〇 34^m。 21 322881 201144252 度 對於此氧化鎵-氧化鋅系濺鍍靶 。結果表不於表5中。 ’以上述之方法測定密 (參考例GC10至GC18) 除了使用CdO粉末取代m粉末’以使Cd之含量成為 值的Γ’又以使氧化鎵㈣3)的含量成為u :/昆σ Cd0粉末與氧化鎵(Ga2〇3)粉末與氧化鋅 ^々末而製作混合粉末’並使燒結溫度為⑽代以外, ^係與實施例GP1相同做法而製造氧化錄_氧化辞系賤 對於此氧化鎵-氧化鋅系錢錄,以上述之方法測定密 度 '比電阻率及濺鑛速率減少率。結果表示於表6中。 (參考例GC19至GC27) 除了使訂d〇粉末取代Pb0粉末,以使Cd =示數值的方式’又以使氧化鎵(_的含量成= 。的方式,混合⑽粉末與氧化鎵(Ga2〇〇粉末與氧化辞 η )粉末而製作混合粉末,並使燒結溫度為以外, ^係與實施例GP1相同做法而製造氧化鎵_氧化辞系職 度 對於此氧化鎵-氧化鋅系濺鍍靶 結果表示於表7中。 以上述之方法測定密 (參考例GC29至GC36) 除了使用cd〇粉末取代Pb0粉末,以使Cd之含量成為 斤示數值的方式,又以使氧化鎵(Ga2〇3)的含量成里為。:5 量的方式’混合CdO粉末與氧化鎵(GhO3)粉末與氧化鋅 322881 22 201144252 (ZnO)粉末而製作混合粉末,使燒結溫度為15〇(rc以外, 其餘係與實施例GP1相同做法而製造氧化鎵-氧化鋅系濺 鍍乾。 對於此氧化鎵-氧化鋅系滅鐘乾,以上述之方法測定密 度。結果表不於表8中。 (參考例GPC1至GPC9) 除了使用CdO粉末取代Pb〇粉末,以使Pb及cd之含 量成為表9所示數值的方式’又以使氧化鎵的含量 成為0.5質量%的方式,混合Pb〇粉末與Cd〇粉末與氧化鎵 (Ga2〇3)粉末與氧化鋅(Zn〇)粉末而製作混合粉末,並使燒結 溫度為1300°C以外,其餘係與實施例GP1相同做法而製造 氧化鎵-氧化鋅系濺鍍乾。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法測定密 度、比電阻率及濺鍍速率減少率。結果表示於表9中。 從表1可知,燒結溫度為120(TC時,藉由添加Pb而 顯現提高轉之密度的效果,但因燒結溫度低,故與燒結 溫度為130(TC以上時相比較,其密度未變大。 從表2可知,燒結溫度為130(TC時,藉由添加pb而 tit”變高’比電阻率亦隨之降低。關於濺鍍 文〜〉率’當%添加量為1〇PPm以下時若Pb添加量愈 定則=3: 7加量超過Μ,’則該率約成為-〇果可知’含有pb且以1300°C的燒結所得到的 乾材係雜速率減少率低,可進行安定的錢錢。 從表3可知,燒結溫度為14〇〇ΐ時,藉由添加此而 322881 23 201144252 使乾材之密度變高至約為理論密度附近。 從表4可知’燒結溫度為uoot時,即使不添加pb, 亦可得到大的密度,但藉由添加Pb而更進一步提高密度。 從表5至表8可知,添加Cd時,亦得到與表1至4所 示之添加Pb時的效果同樣的效果。 從表9可知,添加Pb及Cd之兩者並以130(TC燒結時, 亦得到與單獨添加表2所示之Pb並以1300。(:燒結時的效 果同樣之效果。 [氧化鎵之含量所致之效果的比較] (參考例GP37至GP42) 除了以使Pb之含量及氧化鎵(GazO3)之含量成為表1〇 所示之數值的方式’混合Pb〇粉末與氧化鎵(Ga2〇3)粉末與 氧化辞(ZnO)粉末而製作混合粉末,並使燒結溫度為13〇〇 C以外,其餘係與實施例GP1同樣做法而製作氧化鎵_氧化 鋅系濺鍍靶。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法進行密 度及相對密度之測定。結果表示於表10中。又,對於實施 例GP12及GP14亦進行相對密度的測定,其結果表示於表 10 〇 (比較例P1至P2) 除了以使Pb之含量成為表10所示之數值的方式,又 不使用氧化鎵(Ga2〇3)粉末’混合PbO粉末與氡化鋅(Zn〇) 粉末而製作混合粉末’並使燒結溫度為1300°c以外,其餘 係與實施例GP1同樣做法而製作氧化辞系濺鍍乾。 322881 24 201144252 對於此氧化辞系_乾,以上述之方法進行密度及相 對密度之測定。結果表示於表1〇中。 (比較例1) 除了不使用PbO粉末及氧化鎵(Ga2〇3)粉末而只使用氧 化鋅粉末’並使燒.度為13Gm卜,其餘係與 實施例GP1同樣做法而製作氧化辞系濺鍍靶。 對於此氧化鋅系濺鍍靶,以上述之方法進行密度及相 對进度之測定。結果表示於表1 〇中。 (比較例G5至G7) 除了不使用PbO粉末,又以使氧化鎵之含量成 為表10所不之數值的方式,混合氧化鎵卬出⑴)粉末盥氧化 鋅⑽)粉末而製作混合粉末,並使燒結溫度為㈣。〇以 外,其餘係與實施例GP1同樣做法而製作氧化鎵_氧化辞系 濺鍍靶。 ’ 對於此氧化鋅系濺鍍乾,以上述之方法進行密产及 對密度之測定。結果表示於表丨〇中。 又 (參考 GC37 至 GC42) 除了使用Cd〇粉末取代Pb0粉末,以使Cd之含量及氧 化鎵(Ga.)之含量成為表u所示之數值的方式,混合⑽ 粉末與氧化鎵(GaA)粉末與氧化鋅(Zn〇)粉末而製作混合 粉末’並使燒結溫度為13()(rc以外,其餘係與實施例肥 同樣做法而製作氧化鎵-氧化辞系濺鍍靶。 對於此氧化鎵-氧麟线_,以上述之方法進行密 度及相對密度之測定。結果表示於表u中。又,對於實施 322881 25 201144252 例GC12及GC14亦進行相對密度的測定,其結果表示於表 11。 (比較例C1至C2) 除了使用CdO粉末取代Pb〇粉末,以使cd之含量成為 表11所示之數值的方式,又不使用氧化鎵(Ga2〇3)粉末,混 合CdO粉末與氧化鋅(ZnO)粉末而製作混合粉末,並使燒結 溫度為1300°C以外’其餘係與實施例Gpi同樣做法而製作 氧化辞系濺鍍靶。 對於此氧化鋅系激鍵乾,以上述之方法進行密度及相 對密度之測定。結果表示於表11中。 從表10可知,若GazO3之含量變多,則很難燒結,有 乾材之达' 度降低的傾向,但藉由添加Pb,即抑制其傾向, 即使為高Ga2〇3含量’亦得到充分高的密度。 從表11可知,在添加Cd時,亦得到與表1〇所示之添 加Pb時的效果同樣之效果。 [含有之金屬的種類所致之效果的比較] (比較例GA1 1至GA1 2) 除了使用AhO3粉末取代Pb〇粉末,以使A1之含量成 為表12所示之數值的方式,又以使氧化鎵(Ga2〇3)之含量成 為0.5質量%的方式,混合Ah〇3粉末與氧化鎵(Ga2〇3)與氧 化鋅(ZnO)粉末而製作混合粉末,並使燒結溫度為13〇〇t: 以外,其餘係與實施例GP1同樣做法而製作氧化鎵_氧化鋅 系濺鍍靶。所使用之A12〇3粉末的以BET法測定之平均粒徑 為 0. 33 // m。 322881 26 201144252 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法進行密 度之測定。結果表示於表12中。 (比較例GZrl至GZr2) 除了使用Zr〇2粉末取代pb〇粉末,以使Zr之含量成為 表12所示之數值的方式,又以使氧化鎵(Ga2〇3)之含量成為 0· 5質量%的方式,混合Zr〇2粉末與氧化鎵(Ga2〇3)與氧化鋅 (ZnO)粉末而製作混合粉末,並使燒結溫度為13〇〇°c以外, 其餘係與實施例GP1同樣做法而製作氧化鎵-氧化鋅系濺 鍍靶。所使用之Zr〇2粉末的以BET法測定之平均粒徑為 0. 22 y m 〇 對於此氧化鎵-氧化辞系減鑛乾,以上述之方法進行密 度之測定。結果表示於表12中。 (比較例GInl至GIn2) 除了使用Im〇3粉末取代Pb〇粉末,以使In之含量成 為表12所示之數值的方式,又以使氧化鎵(Ga2〇3)之含量成 為0.5質量°/。的方式,混合丨化⑴粉末與氧化鎵(Ga2〇3)與氧 化鋅(ZnO)粉末而製作混合粉末,並使燒結溫度為 以外,其餘係與實施例GP1同樣做法而製作氧化鎵_氧化鋅 系濺鍍靶。所使用之Ιη^粉末的以BET法測定之平均粒句 為0. 13 // m。 叫工 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法進行户 度之測定。結果表示於表丨2中。 订进 (比較例GSnl至GSn2) 除了使用Sn〇2粉末取代pb〇粉末,以使Sn之含量成為 322881 27 201144252 表12所示之數值的方式’又以使氧化鎵(Ga2〇3)之含量成為 0· 5質量%的方式’混合Sn〇2粉末與氧化鎵(Ga2〇3)與氧化鋅 (ZnO)粉末而製作混合粉末,並使燒結溫度為13〇〇。〇以外, 其餘係與實施例GP1同樣做法而製作氧化鎵-氧化鋅系濺 鍍靶。所使用之Sn〇2粉末的以BET法測定之平均粒徑為 0. 14/zm。 對於此氧化鎵-氧化鋅系濺鍍靶,以上述之方法進行密 度之測定。結果表示於表12中。 (比較例GSbl至GSb2) 除了使用Sb2〇3粉末取代Pb〇粉末,以使sb之含量成 為表12所示之數值的方式,又以使氧化鎵(Ga2〇3)之含量成 為0. 5質量%的方式’混合Sb2〇3粉末與氧化鎵(Ga2〇3)與氧 化鋅(ZnO)粉末而製作混合粉末,並使燒結溫度為13〇〇ΐ 以外,其餘係與實施例GP1同樣做法而製作氧化鎵-氧化鋅 系濺鍍靶。所使用之Sb2〇3粉末的以BET法測定之平均粒徑 為 0· 24 v m 〇 對於此氧化蘇-氧化辞系濺鑛乾,以上述之方法進行密 度之測定。結果表示於表12中。 (比較例GBil至GBi2) 除了使用Bh〇3粉末取代pb〇粉末,以使μ之含量成 為表12所示之數值的方式,又以使氧化鎵(Ga2〇3)之含量成 為0. 5質罝%的方式’混合BhCb粉末與氧化鎵(Ga2〇3)與氧 化鋅(ZnO)粉末而製作混合粉末,並使燒結溫度為13〇〇ΐ 以外’其餘係與實施例GP1同樣做法而製作氧化鎵_氧化辞 322881 28 201144252 系濺鍍靶。所使用之Bh〇3粉末的以BET法測定之平均粒和 為 0. 37 // m。 對於此氧化錄-氧化辞糸錢鍛乾,以上述之方法進行密 度之測定。結果表示於表12中。 (比較例GCul至GCu2) 除了使用CuzO粉末取代Pb〇粉末’以使Cu之含量成 為表12所示之數值的方式,又以使氧化鎵((^2〇3)之含量成 為0.5質量%的方式,混合CmO粉末與氧化鎵((^2〇3)與氧 化鋅(ZnO)粉末而製作混合粉末,並使燒結溫度為丨3〇〇它 以外,其餘係與實施例GP1同樣做法而製作氧化鎵_氧化鋅 系濺鍍靶。所使用之CuzO粉末的以BET法測定之平均粒徑 為 0. 24 // m。 對於此氧化鎵-氧化鋅系濺鑛乾,以上述之方法進行密 度之測定。結果表示於表12中。 (比較例GNil至GNi2) 除了使用NiO粉末取代pb〇粉末,以使Ni之含量成為 表12所示之數值的方式,又以使氧化鎵卬出…)之含量成為 〇.5質量%的方式,混合Ni〇粉末與氧化鎵與氧化鋅 (ZnO)粉末而製作混合粉末,並使燒結溫度為η⑽。匚以外, 其餘係與實施例GP1同樣做法而製作氧化鎵_氧化辞系錢 鑛乾。所使用之_粉末的以βΕΤ法測定之平均粒徑為〇· μ // m。 * 對於此氧化鎵-氧化鋅系錢鑛I,以上述之方法進行密 度之測定。結果表示於表12中。 322881 29 201144252 從表12可知,所添加之各種的金屬中,對於燒結密度 顯現靶材很大的效果者係只有Pb及Cd,其他之金屬係二 果小’甚至為反效果。 <氧化鋁-氧化鋅系濺鍍靶〉 (實施例API至AP10) 以使Pb及氧化鋁(A12〇3)之含量成為表13所示數值的 方式,混合Pb〇粉末與氧化鋁(Al2〇3)粉末與氧化鋅(Zn〇) 粉末,置入2G公升的聚丙烯製瓶中,II由球磨機混合而製 作混合粉末。介質為直徑l〇min之Zr〇2球。所使用之pb〇 粉末、氧化鋁粉末及氧化鋅粉末的以BET法測定的平均粒 控分別為 0· 24/zm、〇· 33ym、及 〇. 。 於混合粉末中,相對於混合粉末添加稀釋成4質量% 之聚乙烯醇6質量%’使用乳蛛而使聚乙歸醇充分浸入粉 末,通過5.5網目之篩。使混合有聚乙烯醇之混合粉末填 充於沖壓用的模具,以沖壓5〇〇Kg/cm2進行單軸成形⑽秒。 使所得到之成形體置入容量約lm3之燒結爐中,在大氣 中以1200 C燒結8小時。使昇溫速度為i〇〇°c/小時,降溫 速度為100°C/小時。 藉由切削加工所得到之燒結體,製造474x305x12mm之 氧化紹-氧化鋅系濺鍍靶。又,在濺鍍速率減少率測定中為 直徑4吋、厚度5mm。 對於此氧化紹_氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表示於表13中。又,關於實施例Ap3、實施例AP4 及比較例A2係以上述之方法進行濺鍍速率減少率的測 30 322881 201144252 定。結果表示於表13中。 (比較例A1至A5) 除了不使用PbO粉末,又以使氧化鋁(Ah〇3)的含量成 為表13所示之數值的方式,混合氧化鋁(ai2〇3)粉末與氧化 鋅(ZnO)粉末以外,其餘係與實施例API同樣做法而製作氧 化鋁-氧化鋅系濺鑛乾。 對於此氧化鋁-氧化鋅系濺鍍靶,以上述之方法進行密 度之測定。結果表示於表13中。 (實施例AC1至AC10) 除了以使Cd及氧化鋁(Ah〇3)之含量成為表14所示數 值的方式’混合CdO粉末與氧化鋁(Ah〇3)粉末與氧化鋅 (ZnO)私纟’置a 20公升的聚丙稀製瓶中,藉由球磨機混 合而製作混合粉末以外,其餘係與實施例Αρι同樣做法而 製k氧化!g氧化鋅系濺鑛乾。所使用之⑽粉末的以βΕΤ 法所測定之平均粒徑為〇. 34“ ^。 對於此氧化氧化鋅系賤鍍&,以上述之方法測定密 度。結果表祕表14巾。又,關於實關[及實施例 AC4係以上述之方法進行濺鍍速率減少率。結果表示於表 從表13可知 ,.,^ ^ ^ ^ Al2〇3之含量變多,則很難燒結, 靶材之捃度降低的傾向 , 蚀&古η人曰 仏藉由添加Pb,即抑制其傾向, 即使為同A12〇3含置,亦可 你、*玄…士 , f / T了件到充分高的密度。又,可知濺 鍍速率減少率係Pb添‘曰& > ^ 繼係可藉由添力,:安氧化㈣化辞系 322881 31 201144252 從表14可知’添加Cd時,亦可得到與表13所示之添 加Pb時的效果同樣的效果。 (實施例AP11至APio 除了以使Pb之含量成為表15所示之數值的方式,又, 則吏氧化紹(ai2〇3)之含量成為2. 〇質量%的方式,混合pb〇 粉末與氧化紹(Al2〇3)粉末與氧化辞(Zn〇)粉末,更進一步使 成形體以表15所示之燒結溫度燒結以外,其餘係與實施例 API同樣做法而製造氧化紹—氧化辞系麟乾。 對於此氧化紹-氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表示於表15中。 (實施例AC11至AC16) 除了以使Cd之含量成為表16所示之數值的方式,又, 以使氧化鋁(Ai2〇3)之含量成為2 〇質量%的方式,混合Cd〇 粉末與氧化鋁(Ah〇3)粉末與氧化鋅(Zn〇)粉末,更進一步使 成形體以表16所示之燒結溫度燒結以外,其餘係與實施例 AC1同樣做法而製造氧化鋁_氧化鋅系濺鍍靶。 對於此氧化鋁-氧化鋅系濺鍍靶,以上述之方法測定密 度。結果表示於表16中。 從表15可知,1200X:、140(Tc、及150(^c之燒結時, 亦得到與13 0 0 C之燒結時同樣之添加pb之效果。 從表16可知,1200 C、1400°c、及1500〇c之燒結時, 亦得到與13〇〇°C之燒結時同樣之添加μ之效果。 322881 32 201144252 -士 [表 1 ]Ci/100 C2/IOO , , Ci/100 ρ = -+--1-----1-- , P 1 P 2 P ' , J (1) (in the formula (X), 匕 to Ci respectively represent the target The content (% by weight) of the constituent material of the sintered body, PI to Pi represents the density (g/cm3) of each constituent material corresponding to 匕 to Ci.) < Specific resistivity> The specific resistivity is based on JIS. The four-probe method of K7194 was measured using Loresta GP MCP-T610 (manufactured by Mitsubishi Chemical Corporation). 17 322881 201144252 < Sputtering rate reduction rate> Sputtering having a diameter of 4 inches (inch) and a thickness of 5 mm was not bonded to a backing plate, and sputtering treatment was carried out in accordance with the sputtering conditions described below. This treatment was carried out at an input power amount of 3 W/cm 2 . <sputtering conditions> Apparatus: DC magnetron clock device, exhaust system cryopump, rotary pump, vacuum degree: 3xlO_6Pa sputtering pressure: 0. 4Pa oxygen partial pressure: lxl (T3Pa The film was formed by sputtering treatment under the above conditions for 30, 60, 120, and 180 minutes, and the film thickness at each time point was measured. The horizontal axis was used as the treatment time, and the vertical axis was used as the film thickness to form a curve. The slope of the tangent of the aforementioned curve at the end of the sputtering and the sputtering rate Ri at the start of sputtering and the rate of re-plating at the end of the ore reduction, respectively, and the rate of reduction of the upset rate is obtained according to the following formula; When the plating is terminated, it means that the thickness of the invaded part of the material (the deepest part excavated by the money mine) becomes 1 mm. [Sputter rate reduction rate] = [(Ri-Re) / Ri] xl〇〇 <Gas Oxide-Zinc Oxide Sputtering Target> [Comparison of the effects of the contents of Pb and Cd and the effects of the sintering temperature] (Reference Examples GP1 to GP9) The contents of Pb are shown in Table 1. In the manner of numerical value, Pb〇 is mixed in such a manner that the content of gallium oxide (Ga2〇3) is 0.5% by mass. Powder and 322881 201144252 Oxidation (Ga2〇3) powder and zinc oxide (ZnO) powder, placed in a 20 liter polypropylene crucible' by a ball mill to make a mixed powder. The medium is a Zr〇2 sphere with a diameter of 10 mm. The average particle diameters of the powder, the oxidized recording powder, and the zinc oxide powder measured by the BET method are (iv) (iv), 〇12 β m, and 0.35 ym, respectively. In the mixed powder, the diluted powder is added to the mixed powder to a mass of 4 %聚乙骑6质量% 'Use the chyle to fully immerse the polyethylene glycol in the powder and pass it through the mesh of 5.5 and mesh. Fill the mixed mold with the mixed polyethylene powder into the mold for stamping. Uniaxial forming was carried out by pressing 5 〇〇Kg/cm 2 for 60 seconds. The obtained molded body was placed in a sintering furnace having a capacity of about lm 3 and sintered at 1200 c for 8 hours in the atmosphere. The heating rate was 1 〇〇〇 C / In the hour, the cooling rate is 10 0 C / hr. The 474x305xl2mmt gallium oxide-zinc oxide sputtering target is produced by the sintered body obtained by the cutting process, and the diameter is 4 吋 and thickness in the measurement of the sputtering rate reduction rate. 5mm. For this gallium oxide-oxygen The zinc-based sputtering target was measured for the density by the above method. The results are shown in Table 1. (Comparative Example G1) A gallium oxide-zinc oxide system was produced in the same manner as in the example gpi except that the PbO powder was not used. Sputtered dry. For this gallium oxide-zinc oxide sputtering target, the density was measured by the above method. The results are shown in Table 1. (Reference examples GP10 to GP18) 19 322881 201144252 In addition to making the content of Pb into Table 2 In the method of the numerical value, the pb powder and the gallium oxide (Ga2〇3) powder and the zinc oxide (Zn〇) powder are mixed so that the content of gallium oxide (Ga2〇3) is 0.55% by mass. The powder was mixed and the sintering temperature was 1303⁄4, and the gallium oxide-zinc oxide system was produced in the same manner as in the example Gpi. With respect to this gallium oxide-zinc oxide-based sputtering target, the density, the specific resistivity, and the sputtering rate reduction rate were measured by the above methods. The results are shown in Table 2. (Comparative Example G2) The sintering temperature was 13 Torr except that the PbO powder was not used. In the same manner as in Example GP1 except for ruthenium, gallium oxide-zinc oxide-based sputtering was produced. For this gallium oxide-zinc oxide-based splatter, the density, specific resistivity, and sputtering rate reduction rate were measured by the above methods. The results are shown in Table 2 (Reference Examples GP19 to GP27), except that the content of Pb is changed to the value shown in Table 3, and the content of gallium oxide (Ga2〇3) is 〇. 5 mass%. Gallium oxide-oxidation was carried out in the same manner as in Example GP1 except that the pb powder and the gallium oxide (GaA3) powder and the zinc oxide (Zn〇) powder were mixed to prepare a mixed powder 'and the sintering temperature was 14 Torr. Zinc sputter target. For this gallium oxide-zinc oxide-based splash, the density was measured by the above method. The results are shown in Table 3. (Comparative Example G3) Gallium Oxide-Zinc Oxide Sputtering was performed in the same manner as in Example GP1 except that the PbO powder was not used and the sintering temperature was i40 (TC). The sputtering target was measured, and the density was measured by the above method. The results are shown in Table 3. (Reference Examples GP28 to GP36) In addition to the method of making the content of Pb into the value shown in Table 4, in order to make gallium oxide (Gaz〇) 3) The content of 5% by mass is mixed with pb 〇 powder, gallium oxide (Gaz〇3) powder and zinc oxide (Zn 〇) powder to prepare a mixed powder, and the sintering temperature is 15 〇 (other than Tc). The gallium oxide-zinc oxide-based sputtering target was produced in the same manner as in Example GP1. The density of the gallium oxide-zinc oxide-based sputtering target was measured by the above method. The results are shown in Table 4. (Comparative Example G4 The gallium oxide-zinc oxide sputtering target was produced by the same method as the example GP14 except that the Pb powder was not used and the sintering temperature was 15 〇 (rc). , the density was measured by the above method. It is shown in Table 4. (Reference Examples GC1 to GC9) In addition to the use of CdO powder in place of Pb〇 powder, the content of cd became the value shown in Table 5, and the content of gallium oxide (Ga2〇3) was 5 In the same manner as in the example Gpi, a gallium oxide-zinc oxide-based sputtering target was produced in the same manner as in the example Gpi, except that the mixture of the cd powder and the gallium oxide (Ga2〇3) powder and the zinc oxide (ZnO) powder was mixed. The average particle diameter of the Cd〇 powder used by the BET method was 〇34^m. 21 322881 201144252 degrees for this gallium oxide-zinc oxide sputtering target. The results are shown in Table 5. The method was determined to be dense (Reference Examples GC10 to GC18) except that CdO powder was used instead of m powder 'to make the content of Cd a value of Γ' and the content of gallium oxide (4) 3) was made into u : / Kun σ Cd0 powder and gallium oxide (Ga 2 ) 〇3) Powder and zinc oxide were mixed to prepare a mixed powder 'and the sintering temperature was (10) generation, ^ is the same as in the example GP1 to produce an oxidation record - oxidized system for this gallium oxide - zinc oxide Record, measure the density 'specific resistivity and splashing by the above method Rate reduction rate. The results are shown in Table 6. (Reference Examples GC19 to GC27) In addition to the substitution of the powder of the Pb0 powder so that Cd = the numerical value, the gallium oxide (the content of _ was changed to =) By mixing (10) powder with gallium oxide (Ga2〇〇 powder and oxidized η) powder to prepare a mixed powder, and making the sintering temperature the same, ^ is the same as in the example GP1 to produce gallium oxide. The results of this gallium oxide-zinc oxide sputtering target are shown in Table 7. The density was measured by the above method (Reference Examples GC29 to GC36), except that the cd 〇 powder was used in place of the Pb0 powder so that the content of Cd became a numerical value, and the content of gallium oxide (Ga2 〇 3) was made in the middle. : 5 amount of 'mixed CdO powder and gallium oxide (GhO3) powder and zinc oxide 322881 22 201144252 (ZnO) powder to make a mixed powder, so that the sintering temperature is 15 〇 (rc other than the same as the embodiment GP1 Gallium oxide-zinc oxide-based sputtering was produced. For this gallium oxide-zinc oxide-based clock, the density was measured by the above method. The results are shown in Table 8. (Reference examples GPC1 to GPC9) In addition to the use of CdO powder Pb 〇 powder, in such a manner that the content of Pb and cd is the value shown in Table 9, and Pb 〇 powder and Cd 〇 powder and gallium oxide (Ga 2 〇 3) are mixed so that the content of gallium oxide is 0.5% by mass. The powder was mixed with zinc oxide (Zn 〇) powder to prepare a mixed powder, and the sintering temperature was 1300 ° C. The gallium oxide-zinc oxide-based sputtering was produced in the same manner as in Example GP1. The zinc-based sputtering target was measured for density, specific resistivity, and sputtering rate reduction rate by the above method. The results are shown in Table 9. As is apparent from Table 1, when the sintering temperature was 120 (TC, the Pb was increased by the addition of Pb. The effect of the density, but because of Since the sintering temperature is low, the density does not become large as compared with the case where the sintering temperature is 130 (TC or more. As is apparent from Table 2, the sintering temperature is 130 (the titer is increased by adding pb when TC is added), and the specific resistivity is also With regard to the sputtering text ~> rate 'when the % addition amount is 1〇PPm or less, if the Pb addition amount is more fixed = 3: 7 addition amount exceeds Μ, 'the rate is about - the result is known to contain 'pb Moreover, the reduction rate of the dry material obtained by sintering at 1300 ° C is low, and the money for stabilization can be carried out. From Table 3, it can be seen that when the sintering temperature is 14 ,, 322881 23 201144252 is dried by adding this. The density of the material is increased to about the theoretical density. As is clear from Table 4, when the sintering temperature is uoot, a large density can be obtained without adding pb, but the density is further increased by adding Pb. As is clear from Table 8, when Cd was added, the same effects as those in the case of adding Pb shown in Tables 1 to 4 were obtained. As is apparent from Table 9, both Pb and Cd were added and 130 (when TC was sintered, it was also obtained. Pb shown in Table 2 was separately added and was 1300. (: The same effect as the effect at the time of sintering. [Gal oxide Comparison of the effects by the amount] (Reference Example GP37 to GP42) In addition to the content of Pb and the content of gallium oxide (GazO3) as the values shown in Table 1 'mixed Pb powder and gallium oxide (Ga2〇) 3) A powdery powder and a oxidized (ZnO) powder were used to prepare a mixed powder, and a sintering temperature was 13 〇〇C, and a gallium oxide-zinc oxide-based sputtering target was produced in the same manner as in Example GP1. A zinc oxide-based sputtering target was measured for density and relative density by the above method. The results are shown in Table 10. Further, the relative densities of the examples GP12 and GP14 were also measured, and the results are shown in Table 10 (Comparative Examples P1 to P2), except that the content of Pb was changed to the value shown in Table 10, and gallium oxide was not used. (Ga2〇3) powder "mixed PbO powder and zinc telluride (Zn) powder to prepare a mixed powder" and the sintering temperature was 1300 ° C, and the same procedure as in Example GP1 was carried out to prepare an oxidized sputter dry. . 322881 24 201144252 For this oxidation system, the density and relative density were measured by the above method. The results are shown in Table 1. (Comparative Example 1) Oxide-based sputtering was carried out in the same manner as in Example GP1 except that only the PbO powder and the gallium oxide (Ga2〇3) powder were used, and only the zinc oxide powder was used and the degree of burning was 13 Gm. target. For this zinc oxide-based sputtering target, the density and the relative progress were measured by the above method. The results are shown in Table 1. (Comparative Examples G5 to G7) In addition to the use of the PbO powder, a powder of cerium oxide (10) was mixed with galvanic oxide (10) powder to form a mixed powder so that the content of gallium oxide became a value not shown in Table 10, and Let the sintering temperature be (4). Further, in the same manner as in Example GP1, a gallium oxide-oxidation system sputtering target was produced. For this zinc oxide-based sputtering, the density was measured and the density was measured by the above method. The results are shown in the table. (Refer to GC37 to GC42) Mixing (10) powder with gallium oxide (GaA) powder, except that Cd〇 powder is used in place of Pb0 powder so that the content of Cd and the content of gallium oxide (Ga.) become the values shown in Table u. A mixed powder was prepared with zinc oxide (Zn〇) powder and the sintering temperature was 13 () (Rc, except that the gallium oxide-oxidized sputtering target was produced in the same manner as in the example fertilizer. For this gallium oxide- Oxygen lining _, the density and relative density were measured by the above method. The results are shown in Table u. Further, the relative density of the 322881 25 201144252 GC12 and GC14 was also measured, and the results are shown in Table 11. Comparative Examples C1 to C2) In addition to using CdO powder in place of Pb 〇 powder, so that the content of cd became the value shown in Table 11, without using gallium oxide (Ga2〇3) powder, mixing CdO powder with zinc oxide (ZnO) The powder was mixed to prepare a mixed powder, and the sintering temperature was 1300 ° C. The rest of the method was the same as in the example Gpi to prepare an oxidized sputtering target. For the zinc oxide-based radical drying, the density was determined by the above method. Relatively dense The results are shown in Table 11. As is clear from Table 10, when the content of GazO3 is increased, sintering is difficult, and the degree of dryness tends to decrease. However, even if Pb is added, the tendency is suppressed. The high Ga 2 〇 3 content was also sufficiently high in density. As is apparent from Table 11, when Cd was added, the same effect as the effect of adding Pb shown in Table 1 得到 was obtained. Comparison of effects] (Comparative Examples GA1 1 to GA1 2) In addition to the use of the AhO3 powder in place of the Pb〇 powder, the content of A1 was changed to the value shown in Table 12, and the content of gallium oxide (Ga2〇3) was further increased. In the form of 0.5% by mass, the mixed powder of the Ah3 powder and the gallium oxide (Ga2〇3) and the zinc oxide (ZnO) powder was mixed to form a mixed powder, and the sintering temperature was 13 〇〇t: In the same manner, a gallium oxide-zinc oxide-based sputtering target was produced. The average particle diameter of the A12〇3 powder used by the BET method was 0.33 // m. 322881 26 201144252 For this gallium oxide-zinc oxide splash The target was plated and the density was measured by the above method. (Comparative Example GZrl to GZr2) In addition to the use of Zr〇2 powder in place of pb〇 powder, so that the content of Zr becomes the value shown in Table 12, the content of gallium oxide (Ga2〇3) is made zero. · 5 mass % of the method, mixing Zr 〇 2 powder with gallium oxide (Ga 2 〇 3) and zinc oxide (ZnO) powder to prepare a mixed powder, and the sintering temperature is 13 ° ° C, the rest of the system and the example GP1 In the same manner, a gallium oxide-zinc oxide sputtering target is produced. The average particle diameter of the Zr〇2 powder used by the BET method was 0.22 μm. 〇 For this gallium oxide-oxidation system, the density was measured by the above method. The results are shown in Table 12. (Comparative Examples GIn1 to GIn2) In addition to the use of Im 〇 3 powder in place of the Pb 〇 powder, so that the content of In became the value shown in Table 12, the content of gallium oxide (Ga 2 〇 3) was 0.5 mass ° / . In the same manner, a mixed powder of (1) powder, gallium oxide (Ga2〇3) and zinc oxide (ZnO) powder was mixed to prepare a mixed powder, and the sintering temperature was changed, and the gallium oxide-zinc oxide was produced in the same manner as in Example GP1. Sputter target. The average grain of the Ι ^ powder used in the BET method is 0.13 // m. For this gallium oxide-zinc oxide-based sputtering target, the measurement was carried out by the above method. The results are shown in Table 2. Preparation (Comparative Examples GSnl to GSn2) In addition to the use of Sn〇2 powder in place of pb〇 powder, the content of Sn was changed to the value shown in Table 12 of 322881 27 201144252, in order to make the content of gallium oxide (Ga2〇3) In a mode of 0.5% by mass, a mixture of Snn 2 powder and gallium oxide (Ga 2 〇 3 ) and zinc oxide (ZnO) powder was used to prepare a mixed powder, and the sintering temperature was 13 Torr. Other than ruthenium, a gallium oxide-zinc oxide-based sputtering target was produced in the same manner as in Example GP1. The average particle diameter of the Sn 〇 2 powder measured by the BET method is 0.14 / zm. For this gallium oxide-zinc oxide-based sputtering target, the density was measured by the above method. The results are shown in Table 12. 5质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量The % method was prepared by mixing Sb2〇3 powder with gallium oxide (Ga2〇3) and zinc oxide (ZnO) powder to prepare a mixed powder, and sintering temperature was 13 Torr, and the same procedure as in Example GP1 was carried out. Gallium oxide-zinc oxide sputtering target. The average particle diameter of the Sb2〇3 powder used by the BET method was 0·24 v m 〇 For this oxidized threo-oxidized rheology splash, the density was measured by the above method. The results are shown in Table 12. 5质量质量。 [Comparative Example GBil to GBi2) In addition to the use of Bh 〇 3 powder in place of the pb 〇 powder, so that the content of μ is shown in Table 12, and the content of gallium oxide (Ga2 〇 3) is 0.5.罝% of the method 'mixed BhCb powder with gallium oxide (Ga2〇3) and zinc oxide (ZnO) powder to prepare a mixed powder, and the sintering temperature was 13 ' except that the others were oxidized in the same manner as in Example GP1. Gallium_oxidation 322881 28 201144252 is a sputtering target. The average particle size of the Bh 3 powder used was determined by the BET method to be 0.37 // m. For this oxidation-oxidation word, the density was measured by the above method. The results are shown in Table 12. (Comparative Example GCul to GCu2) In addition to the use of CuzO powder in place of Pb powder "to make the content of Cu into the value shown in Table 12, the content of gallium oxide ((2 2 3) was 0.5% by mass). In the same manner, the mixed powder of the CmO powder and the gallium oxide ((2) and the zinc oxide (ZnO) powder were mixed, and the sintering temperature was 丨3 〇〇, and the others were oxidized in the same manner as in Example GP1. The gallium-zinc oxide-based sputtering target. The average particle diameter of the CuzO powder used by the BET method is 0.24 // m. For the gallium oxide-zinc oxide-based splashing ore, the density is determined by the above method. The results are shown in Table 12. (Comparative Examples GNil to GNi2) In addition to the use of NiO powder in place of the pb powder, the content of Ni was set to the value shown in Table 12, and the gallium oxide was removed...) When the content was 5% by mass, the Ni 〇 powder and the gallium oxide and the zinc oxide (ZnO) powder were mixed to prepare a mixed powder, and the sintering temperature was η (10). Other than the ruthenium, the oxidation was carried out in the same manner as in Example GP1. Gallium _ oxidized words are dry and dry. The average particle diameter measured by the β ΕΤ method was 〇·μ // m. * For this gallium oxide-zinc oxide-based ore I, the density was measured by the above method. The results are shown in Table 12. 322881 29 201144252 From the table 12 It can be seen that among the various metals added, those having a large effect on the sintered density show only Pb and Cd, and other metals are small and even 'anti-effects.' <Aluminum oxide-zinc oxide splash Plating target> (Examples API to AP10) Pb 〇 powder and alumina (Al2〇3) powder and zinc oxide (Zn) were mixed so that the content of Pb and alumina (A12〇3) became the values shown in Table 13. 〇) The powder is placed in a 2G liter polypropylene bottle, and II is mixed by a ball mill to make a mixed powder. The medium is a Zr 〇 2 ball with a diameter of 10 〇 min. The pb 〇 powder, alumina powder and zinc oxide powder used. The average particle size measured by the BET method is 0·24/zm, 〇·33 ym, and 〇. In the mixed powder, the amount of polyvinyl alcohol diluted to 4% by mass is added to the mixed powder. Spider and fully immerse the polyethylene into the powder, through the 5.5 mesh The mixed powder mixed with polyvinyl alcohol was filled in a die for pressing, and uniaxially formed (10) seconds by pressing at 5 〇〇 Kg/cm 2 . The obtained molded body was placed in a sintering furnace having a capacity of about lm 3 . The atmosphere is sintered at 1200 C for 8 hours, the heating rate is i〇〇°c/hour, and the cooling rate is 100 ° C / hour. By sintering the obtained sintered body, a 474×305×12 mm oxidation-zinc oxide splash is produced. In the measurement of the sputtering rate reduction rate, the diameter is 4 吋 and the thickness is 5 mm. For this oxidation-zinc oxide-based sputtering target, the density was measured by the above method. The results are shown in Table 13. Further, in Example Ap3, Example AP4 and Comparative Example A2, the sputtering rate reduction rate was measured by the above method 30 322881 201144252. The results are shown in Table 13. (Comparative Examples A1 to A5) Alumina (ai2〇3) powder and zinc oxide (ZnO) were mixed in such a manner that the content of alumina (Ah〇3) was changed to the value shown in Table 13 except that the PbO powder was not used. An alumina-zinc oxide-based splashing dry was produced in the same manner as in the example API except for the powder. For this alumina-zinc oxide-based sputtering target, the density was measured by the above method. The results are shown in Table 13. (Examples AC1 to AC10) In addition to the method of making the content of Cd and alumina (Ah〇3) into the values shown in Table 14, 'mixing CdO powder with alumina (Ah〇3) powder and zinc oxide (ZnO) privately. 'In a 20-liter polypropylene bottle, a mixed powder was prepared by mixing with a ball mill, and the rest was made in the same manner as in the example Αρι! g zinc oxide is splashed or dried. The average particle diameter of the (10) powder used by the β ΕΤ method was 〇 34. ^. For this oxidized zinc oxide ruthenium plating &, the density was measured by the above method. Actually [and Example AC4 is the sputtering rate reduction rate by the above method. The results are shown in Table 13. It can be seen from Table 13, that the content of . ^ ^ ^ ^ Al2 〇 3 is increased, it is difficult to sinter, the target The tendency to reduce the degree of enthalpy, Eclipse & ancient η people 抑制 by adding Pb, that is, suppressing its tendency, even if it is the same as A12 〇 3, you can, * 玄 ... ..., f / T pieces to full height Density. In addition, it can be seen that the rate of reduction of the sputtering rate is Pb added '曰 &> ^ The succession of the system can be added by force: An oxidation (4) of the system 322881 31 201144252 It can be seen from Table 14 that when adding Cd, The same effects as those obtained when Pb was added as shown in Table 13 were obtained. (Examples AP11 to APio were obtained in such a manner that the content of Pb became the value shown in Table 15, and further, it was oxidized (ai2〇3). a method of mixing the pb 〇 powder with the oxidized (Al 2 〇 3) powder and the oxidized (Zn 〇) powder in a manner of 2. Further, the molded body was sintered at the sintering temperature shown in Table 15, and the oxidation was carried out in the same manner as in the example API to produce a oxidized-oxidized lining. The density of the aluminum hydroxide (Ai2〇3) was changed to 2, In the mass % manner, the Cd 〇 powder and the alumina (Ah 〇 3) powder and the zinc oxide (Zn 〇 粉末 powder) were mixed, and the molded body was sintered at the sintering temperature shown in Table 16 in the same manner as in Example AC1. In the aluminum oxide-zinc oxide-based sputtering target, the density was measured by the above method. The results are shown in Table 16. From Table 15, it is known that 1200X:, 140 (Tc) And the effect of adding pb in the same manner as in the sintering of 130 ° C at the time of sintering of 150 ° C. From Table 16, it can be seen that when sintered at 1200 C, 1400 ° C, and 1500 〇c, The effect of adding μ is the same when sintering at 13 ° C. 322881 32 201144252 -士 [Table 1 ]
Pb含量 (ppm) Ga2〇3含量 (質量%) 燒結溫度 (°C) 密度 (g/cm3) 比較例G1 0 0. 5 1200 5. 481 參考例GP1 2 0. 5 1200 5. 482 參考例GP2 3 0. 5 1200 5. 482 參考例GP3 5 0. 5 1200 5. 493 參考例GP4 8 0. 5 1200 5. 504 參考例GP5 10 0. 5 1200 5. 516 參考例GP6 100 0. 5 1200 5. 530 參考例GP7 500 0. 5 1200 5. 533 參考例GP8 1000 0. 5 1200 5. 542 參考例GP9 5000 0. 5 1200 5. 510 [表2]Pb content (ppm) Ga2〇3 content (% by mass) Sintering temperature (°C) Density (g/cm3) Comparative Example G1 0 0. 5 1200 5. 481 Reference example GP1 2 0. 5 1200 5. 482 Reference example GP2 3 0. 5 1200 5. 482 Reference example GP3 5 0. 5 1200 5. 493 Reference example GP4 8 0. 5 1200 5. 504 Reference example GP5 10 0. 5 1200 5. 516 Reference example GP6 100 0. 5 1200 5 530 Reference example GP7 500 0. 5 1200 5. 533 Reference example GP8 1000 0. 5 1200 5. 542 Reference example GP9 5000 0. 5 1200 5. 510 [Table 2]
Pb含量 (ppm) Ga2〇3含量 (質量90 燒結溫度 (°e) 密度 (g/cm3) 比電阻率 (Ω · cm) 濺鍍速率 減少率(%) 比較例G2 0 0_ 5 1300 5. 534 3. 13E-03 25. 1 參考例GP10 2 0. 5 1300 5. 548 3. 13E-03 25. 1 參考例GP11 3 0_ 5 1300 5: 579 3.13E-03 24. 7 參考例GP12 5 0· 5 1300 5. 601 1·77E-03 22. 1 參考例GP13 8 0. 5 1300 5. 602 1.04E-03 19.4 參考例GP14 10 0. 5 1300 5. 606 1.04E-03 19. 1 參考例GP15 100 0. 5 1300 5. 604 1.04E-03 19. 0 參考例GP16 500 0. 5 1300 5. 604 1.05E-03 19. 1 參考例GP17 1000 0. 5 1300 5. 602 1.08E-03 19. 0 參考例GP18 5000 0. 5 1300 5. 581 1.64E-03 19. 1 33 322881 201144252 [表3]Pb content (ppm) Ga2〇3 content (mass 90 sintering temperature (°e) density (g/cm3) specific resistivity (Ω · cm) sputtering rate reduction rate (%) Comparative example G2 0 0_ 5 1300 5. 534 3. 13E-03 25. 1 Reference example GP10 2 0. 5 1300 5. 548 3. 13E-03 25. 1 Reference example GP11 3 0_ 5 1300 5: 579 3.13E-03 24. 7 Reference example GP12 5 0· 5 1300 5. 601 1·77E-03 22. 1 Reference example GP13 8 0. 5 1300 5. 602 1.04E-03 19.4 Reference example GP14 10 0. 5 1300 5. 606 1.04E-03 19. 1 Reference example GP15 100 0. 5 1300 5. 604 1.04E-03 19. 0 Reference example GP16 500 0. 5 1300 5. 604 1.05E-03 19. 1 Reference example GP17 1000 0. 5 1300 5. 602 1.08E-03 19. 0 Reference example GP18 5000 0. 5 1300 5. 581 1.64E-03 19. 1 33 322881 201144252 [Table 3]
Pb含量 (ppm) Ga2〇3含量 (質量%) 燒結溫度 (°C) 密度 (g/cm3) 比較例G3 0 0. 5 1400 5. 584 參考例GP19 2 0. 5 1400 5. 584 參考例GP20 3 0. 5 1400 5. 590 參考例GP21 5 0. 5 1400 5. 604 參考例GP22 8 0. 5 1400 5. 608 參考例GP23 10 0. 5 1400 5. 608 參考例GP24 100 0. 5 1400 5. 608 參考例GP25 500 0. 5 1400 5. 608 參考例GP26 1000 0. 5 1400 5. 608 參考例GP27 5000 0. 5 1400 5. 600 [表4]Pb content (ppm) Ga2〇3 content (% by mass) Sintering temperature (°C) Density (g/cm3) Comparative Example G3 0 0. 5 1400 5. 584 Reference example GP19 2 0. 5 1400 5. 584 Reference example GP20 3 0. 5 1400 5. 590 Reference example GP21 5 0. 5 1400 5. 604 Reference example GP22 8 0. 5 1400 5. 608 Reference example GP23 10 0. 5 1400 5. 608 Reference example GP24 100 0. 5 1400 5 608 Reference example GP25 500 0. 5 1400 5. 608 Reference example GP26 1000 0. 5 1400 5. 608 Reference example GP27 5000 0. 5 1400 5. 600 [Table 4]
Pb含量 (ppm) Ga2〇3含量 (質量%) 燒結溫度 (°C) 密度 (g/cm3) 比較例G4 0 0. 5 1500 5. 608 參考例GP28 2 0. 5 1500 5. 608 參考例GP29 3 0. 5 1500 5. 608 參考例GP30 5 0.5 1500 5. 608 參考例GP31 8 0. 5 1500 5. 608 參考例GP32 10 0. 5 1500 5. 608 參考例GP33 100 0. 5 1500 5. 608 參考例GP34 500 0. 5 1500 5. 608 參考例GP35 1000 0. 5 1500 5. 608 參考例GP36 5000 0. 5 1500 5. 608 34 322881 201144252 -- [表 5]Pb content (ppm) Ga2〇3 content (% by mass) Sintering temperature (°C) Density (g/cm3) Comparative example G4 0 0. 5 1500 5. 608 Reference example GP28 2 0. 5 1500 5. 608 Reference example GP29 3 0. 5 1500 5. 608 Reference example GP30 5 0.5 1500 5. 608 Reference example GP31 8 0. 5 1500 5. 608 Reference example GP32 10 0. 5 1500 5. 608 Reference example GP33 100 0. 5 1500 5. 608 Reference example GP34 500 0. 5 1500 5. 608 Reference example GP35 1000 0. 5 1500 5. 608 Reference example GP36 5000 0. 5 1500 5. 608 34 322881 201144252 -- [Table 5]
Cd含量 (ppm) Ga2〇3含量 (質量%) 燒結溫度 (°C) 密度 (g/cm3) 比較例G1 0 0. 5 1200 5.481 參考例GC1 2 0. 5 1200 5. 481 參考例GC2 3 0. 5 1200 5. 506 參考例GC3 5 0. 5 1200 5. 516 參考例GC4 8 0. 5 1200 5. 521 參考例GC5 10 0. 5 1200 5. 526 參考例GC6 100 0. 5 1200 5. 538 參考例GC7 500 0. 5 1200 5. 541 參考例GC8 1000 0. 5 1200 5. 540 參考例GC9 5000 0. 5 1200 5. 530 [表6]Cd content (ppm) Ga2〇3 content (% by mass) Sintering temperature (°C) Density (g/cm3) Comparative Example G1 0 0. 5 1200 5.481 Reference example GC1 2 0. 5 1200 5. 481 Reference example GC2 3 0 5 1200 5. 506 Reference example GC3 5 0. 5 1200 5. 516 Reference example GC4 8 0. 5 1200 5. 521 Reference example GC5 10 0. 5 1200 5. 526 Reference example GC6 100 0. 5 1200 5. 538 Reference example GC7 500 0. 5 1200 5. 541 Reference example GC8 1000 0. 5 1200 5. 540 Reference example GC9 5000 0. 5 1200 5. 530 [Table 6]
Cd含量 Ga2〇3含量 燒結溫度 密度 比電阻率 濺鍍速率 (ppm) (質量90 rc) (g/cms) (Ω · cm) 減少率(%) 比較例G2 0 0. 5 1300 5. 534 3.13E-03 25. 1 參考例GC10 2 0. 5 1300 5. 582 2.91E-03 23. 5 參考例GC11 3 0. 5 1300 5. 601 1.80E-03 21. 9 參考例GC12 5 0. 5 1300 5. 604 1.62E-03 20. 9 參考例GC13 8 0. 5 1300 5. 606 1.53E-03 20. 5 參考例GC14 10 0. 5 1300 5. 608 1.50E-03 20. 2 參考例GC15 100 0. 5 1300 5. 608 1.44E-03 20. 1 參考例GC16 500 0. 5 1300 5. 608 1.35E-03 19. 9 參考例GC17 1000 0. 5 1300 5. 608 1.37E-03 19. 7 參考例GC18 5000 0. 5 1300 5. 586 1.74E-03 21. 0 35 322881 201144252 [表7]Cd content Ga2〇3 content Sintering temperature density specific resistivity sputtering rate (ppm) (mass 90 rc) (g/cms) (Ω · cm) Reduction rate (%) Comparative example G2 0 0. 5 1300 5. 534 3.13 E-03 25. 1 Reference example GC10 2 0. 5 1300 5. 582 2.91E-03 23. 5 Reference example GC11 3 0. 5 1300 5. 601 1.80E-03 21. 9 Reference example GC12 5 0. 5 1300 5. 604 1.62E-03 20. 9 Reference example GC13 8 0. 5 1300 5. 606 1.53E-03 20. 5 Reference example GC14 10 0. 5 1300 5. 608 1.50E-03 20. 2 Reference example GC15 100 0. 5 1300 5. 608 1.44E-03 20. 1 Reference example GC16 500 0. 5 1300 5. 608 1.35E-03 19. 9 Reference example GC17 1000 0. 5 1300 5. 608 1.37E-03 19. 7 Reference example GC18 5000 0. 5 1300 5. 586 1.74E-03 21. 0 35 322881 201144252 [Table 7]
Cd含量 (ppm) Ga2〇3含量 (質量%) 燒結溫度 (°C) 密度 (g/cm3) 比較例G3 0 0. 5 1400 5. 584 參考例GC19 2 0. 5 1400 5. 589 參考例GC20 3 0. 5 1400 5. 603 參考例GC21 5 0. 5 1400 5. 608 參考例GC22 8 0. 5 1400 5. 608 參考例GC23 10 0. 5 1400 5. 608 參考例GC24 100 0. 5 1400 5. 608 參考例GC25 500 0. 5 1400 5. 608 參考例GC26 1000 0. 5 1400 5. 608 參考例GC27 5000 0. 5 1400 5. 593 [表8]Cd content (ppm) Ga2〇3 content (% by mass) Sintering temperature (°C) Density (g/cm3) Comparative Example G3 0 0. 5 1400 5. 584 Reference Example GC19 2 0. 5 1400 5. 589 Reference Example GC20 3 0. 5 1400 5. 603 Reference example GC21 5 0. 5 1400 5. 608 Reference example GC22 8 0. 5 1400 5. 608 Reference example GC23 10 0. 5 1400 5. 608 Reference example GC24 100 0. 5 1400 5 608 Reference example GC25 500 0. 5 1400 5. 608 Reference example GC26 1000 0. 5 1400 5. 608 Reference example GC27 5000 0. 5 1400 5. 593 [Table 8]
Cd含量 (ppm) Ga2〇3含量 (質量%) 燒結溫度 (°C) 密度 (g/cm3) 比較例G4 0 0. 5 1500 5. 608 參考例GC28 2 0. 5 1500 5. 608 參考例GC29 3 0. 5 1500 5. 608 參考例GC30 5 0. 5 1500 5. 608 參考例GC31 8 0. 5 1500 5. 608 參考例GC32 10 0. 5 1500 5. 608 參考例GC33 100 0.5 1500 5. 608 參考例GC34 500 0. 5 1500 5. 608 參考例GC35 1000 0.5 1500 5. 608 參考例GC36 5000 0.5 1500 5.604 36 322881 201144252 •〜 [表9 ]Cd content (ppm) Ga2〇3 content (% by mass) Sintering temperature (°C) Density (g/cm3) Comparative example G4 0 0. 5 1500 5. 608 Reference example GC28 2 0. 5 1500 5. 608 Reference example GC29 3 0. 5 1500 5. 608 Reference example GC30 5 0. 5 1500 5. 608 Reference example GC31 8 0. 5 1500 5. 608 Reference example GC32 10 0. 5 1500 5. 608 Reference example GC33 100 0.5 1500 5. 608 Reference example GC34 500 0. 5 1500 5. 608 Reference example GC35 1000 0.5 1500 5. 608 Reference example GC36 5000 0.5 1500 5.604 36 322881 201144252 •~ [Table 9]
Pb含量 (ppm) Cd含量 (ppm) Cd含量與Pb 含量之合計 (ppm) GaaOa含量 (質量« 燒結溫度 (°C) 密度 (g/cm3) 比電阻率 (Ω · cm) 濺鍍速率 減少率(%) 比較例G2 0 0 0 0. 5 1300 5. 534 3. 13E-03 25. 1 參考例GPC1 I 1 2 0. 5 1300 5. 542 2.93E-03 25. 1 參考例GPC2 2 2 3 0. 5 1300 5. 575 2. 13E-03 25. 1 參考例GPC3 3 3 5 0. 5 1300 5. 600 1.73E-03 20. 5 參考例GPC4 4 4 δ 0. 5 1300 5. 603 1.29E-03 20. 1 參考例GPC5 5 5 10 0_ 5 1300 5. 605 1.32E-03 19. 1 參考例GPC6 50 50 100 0.5 1300 5. 607 1.12E-03 19. 3 參考例GPC7 250 250 500 0_ 5 1300 5. 606 1. 16E-03 19. 1 參考例GPC8 500 500 1000 0.5 1300 5, 604 1_ 30E-03 18.9 參考例GPC9 2500 2500 5000 0.5 1300 5. 582 1.72E-03 19. 0 37 322881 201144252 [表 ίο]Pb content (ppm) Cd content (ppm) Total of Cd content and Pb content (ppm) GaaOa content (mass « sintering temperature (°C) density (g/cm3) specific resistivity (Ω · cm) sputtering rate reduction rate (%) Comparative Example G2 0 0 0 0. 5 1300 5. 534 3. 13E-03 25. 1 Reference Example GPC1 I 1 2 0. 5 1300 5. 542 2.93E-03 25. 1 Reference Example GPC2 2 2 3 0. 5 1300 5. 575 2. 13E-03 25. 1 Reference example GPC3 3 3 5 0. 5 1300 5. 600 1.73E-03 20. 5 Reference example GPC4 4 4 δ 0. 5 1300 5. 603 1.29E -03 20. 1 Reference example GPC5 5 5 10 0_ 5 1300 5. 605 1.32E-03 19. 1 Reference example GPC6 50 50 100 0.5 1300 5. 607 1.12E-03 19. 3 Reference example GPC7 250 250 500 0_ 5 1300 5. 606 1. 16E-03 19. 1 Reference example GPC8 500 500 1000 0.5 1300 5, 604 1_ 30E-03 18.9 Reference example GPC9 2500 2500 5000 0.5 1300 5. 582 1.72E-03 19. 0 37 322881 201144252 [ Table ίο]
Ga2〇3含量 Pb含量 燒結溫度 真密度 密度 相對密度 (質量%) (ppm) (°C) Cg/cm3) (g/cm3) (g/cm3) 比較例1 0 0 1300 5. 607 5.484 97. 8 比較例P1 0 5 1300 5. 607 5. 529 98. 6 比較例P2 0 10 1300 5. 607 5. 540 98. 8 比較例G2 0· 5 0 1300 5. 608 5. 534 98. 7 參考例GP12 0· 5 5 1300 5. 608 5. 601 99. 9 參考例GP14 0. 5 10 1300 5. 608 5. 606 100. 0 比較例G5 3. 0 0 1300 5. 616 5. 346 95. 2 參考例GP37 3. 0 5 1300 5. 616 5.476 97. 5 參考例GP38 3. 0 10 1300 5. 616 5.498 97. 9 比較例G6 5. 0 0 1300 5. 622 5. 167 91. 9 參考例GP39 5. 0 5 1300 5. 622 5. 324 94. 7 參考例GP40 5. 0 10 1300 5. 622 5. 341 95. 0 比較例G7 5. 7 0 1300 5. 625 5. 136 91. 3 參考例GP41 5. 7 5 1300 5. 625 5. 293 94. 1 參考例GP42 5. 7 10 1300 5. 625 5. 304 94. 3 38 322881 201144252 ,〜 [表11]Ga2〇3 content Pb content sintering temperature true density density relative density (% by mass) (ppm) (°C) Cg/cm3) (g/cm3) (g/cm3) Comparative Example 1 0 0 1300 5. 607 5.484 97. 8 Comparative Example P1 0 5 1300 5. 607 5. 529 98. 6 Comparative Example P2 0 10 1300 5. 607 5. 540 98. 8 Comparative Example G2 0· 5 0 1300 5. 608 5. 534 98. 7 Reference Example GP12 0· 5 5 1300 5. 608 5. 601 99. 9 Reference example GP14 0. 5 10 1300 5. 608 5. 606 100. 0 Comparative example G5 3. 0 0 1300 5. 616 5. 346 95. 2 Reference Example GP37 3. 0 5 1300 5. 616 5.476 97. 5 Reference example GP38 3. 0 10 1300 5. 616 5.498 97. 9 Comparative example G6 5. 0 0 1300 5. 622 5. 167 91. 9 Reference example GP39 5 0 5 1300 5. 622 5. 324 94. 7 Reference example GP40 5. 0 10 1300 5. 622 5. 341 95. 0 Comparative example G7 5. 7 0 1300 5. 625 5. 136 91. 3 Reference example GP41 5. 7 5 1300 5. 625 5. 293 94. 1 Reference example GP42 5. 7 10 1300 5. 625 5. 304 94. 3 38 322881 201144252 , ~ [Table 11]
Ga2〇3含量 Cd含量 燒結溫度 真密度 密度 相對密度 (質量%) (ppm) (°C) (g/cm3) (g/cm3) (g/cm3) 比較例1 0 0 1300 5. 607 5.484 97. 8 比較例C1 0 5 1300 5. 607 5. 529 98. 6 比較例C2 0 10 1300 5. 607 5. 540 98. 8 比較例G2 0. 5 0 1300 5. 608 5. 534 98. 7 參考例GC12 0. 5 5 1300 5. 608 5. 604 99. 9 參考例GC14 0. 5 10 1300 5. 608 5. 608 100. 0 比較例G5 3. 0 0 1300 5. 616 5. 346 95. 2 參考例GC37 3. 0 5 1300 5. 616 5.492 97. 8 參考例GC38 3. 0 10 1300 5. 616 5. 509 98. 1 比較例G6 5. 0 0 1300 5. 622 5. 167 91. 9 參考例GC39 5. 0 5 1300 5. 622 5. 347 95. 1 參考例GC40 5. 0 10 . 1300 5. 622 5. 363 95. 4 比較例G7 5. 7 0 1300 5. 625 5. 136 91. 3 參考例GC41 5. 7 5 1300 5. 625 5. 299 94. 2 參考例GC42 5. 7 10 1300 5. 625 5. 310 94. 4 39 322881 201144252 [表 12] 金屬之種類 金屬含量 (ppm) 燒結溫度 (°C) 密度 (g/cm3) 比較例G2 — — 1300 5. 534 參考例GP14 Pb 10 1300 5. 606 參考例GP15 Pb 100 1300 5. 604 參考例GC14 Cd 10 1300 5. 608 參考例GC15 Cd 100 1300 5. 608 比較例GA11 A1 10 1300 5. 537 比較例GAI2 A1 100 1300 5. 547 比較例GZrl Zr 10 1300 5. 536 比較例GZr2 Zr 100 1300 5. 542 比較例Glnl In 10 1300 5. 530 比較例Gln2 In 100 1300 5. 521 比較例GSnl Sn 10 1300 5. 527 比較例GSn2 Sn 100 1300 5. 517 比較例GSbl Sb 10 1300 5. 535 比較例GSb2 Sb 100 1300 5. 547 比較例GBil Bi 10 1300 5. 536 比較例GBi2 Bi 100 1300 5. 540 比較例GCul Cu 10 1300 5. 531 比較例GCu2 Cu 100 1300 5. 514 比較例GNil Ni 10 1300 5. 532 比較例GNi2 Ni 100 1300 5. 512 40 322881 201144252 ,— [表 13]Ga2〇3 content Cd content sintering temperature true density density relative density (% by mass) (ppm) (°C) (g/cm3) (g/cm3) (g/cm3) Comparative Example 1 0 0 1300 5. 607 5.484 97 8 Comparative Example C1 0 5 1300 5. 607 5. 529 98. 6 Comparative Example C2 0 10 1300 5. 607 5. 540 98. 8 Comparative Example G2 0. 5 0 1300 5. 608 5. 534 98. 7 Reference Example GC12 0. 5 5 1300 5. 608 5. 604 99. 9 Reference example GC14 0. 5 10 1300 5. 608 5. 608 100. 0 Comparative example G5 3. 0 0 1300 5. 616 5. 346 95. 2 Reference example GC37 3. 0 5 1300 5. 616 5.492 97. 8 Reference example GC38 3. 0 10 1300 5. 616 5. 509 98. 1 Comparative example G6 5. 0 0 1300 5. 622 5. 167 91. 9 Reference Example GC39 5. 0 5 1300 5. 622 5. 347 95. 1 Reference example GC40 5. 0 10 . 1300 5. 622 5. 363 95. 4 Comparative example G7 5. 7 0 1300 5. 625 5. 136 91. 3 Reference example GC41 5. 7 5 1300 5. 625 5. 299 94. 2 Reference example GC42 5. 7 10 1300 5. 625 5. 310 94. 4 39 322881 201144252 [Table 12] Metal type Metal content (ppm) Sintering temperature (°C) Density (g/cm3) Comparative Example G2 – 1300 5. 534 Reference example GP14 Pb 10 1300 5. 606 Reference example GP15 Pb 100 1300 5. 604 Reference Example GC14 Cd 10 1300 5. 608 Reference Example GC15 Cd 100 1300 5. 608 Comparative Example GA11 A1 10 1300 5. 537 Comparative Example GAI2 A1 100 1300 5. 547 Comparative Example GZrl Zr 10 1300 5. 536 Comparative Example GZr2 Zr 100 1300 5. 542 Comparative Example Glnl In 10 1300 5. 530 Comparative Example Gln2 In 100 1300 5. 521 Comparative Example GSnl Sn 10 1300 5. 527 Comparative Example GSn2 Sn 100 1300 5. 517 Comparative Example GSbl Sb 10 1300 5. 535 Comparison Example GSb2 Sb 100 1300 5. 547 Comparative Example GBil Bi 10 1300 5. 536 Comparative Example GBi2 Bi 100 1300 5. 540 Comparative Example GCul Cu 10 1300 5. 531 Comparative Example GCu2 Cu 100 1300 5. 514 Comparative Example GNil Ni 10 1300 5. 532 Comparative Example GNi2 Ni 100 1300 5. 512 40 322881 201144252 ,— [Table 13]
Ah〇3含量 Pb含量 燒結溫度 真密度 密度 相對密度 濺鍍速率 (質量90 (ppm) rc) (g/cma) (g/cm3) (g/cm3) 減少率(¾) 比較例1 0 0 1300 5. 607 5. 484 97. 8 — 比較例P1 0 5 1300 5. 607 5. 529 98. 6 - 比較例P2 0 10 1300 5. 607 5. 540 98. 8 - 比較例A1 0· 5 0 1300 5. 589 5. 505 98. 5 — 實施例API 0. 5 5 1300 5. 589 5. 544 99. 2 — 實施例AP2 0_ 5 10 1300 5. 589 5. 555 99. 4 一 比較例A2 2. 0 0 1300 5. 555 5. 466 98.4 26. 2 實施例AP3 2_ 0 5 1300 5. 555 5. 527 99. 5 21.9 實施例AP4 2. 0 10 1300 5. 555 5. 544 99. 8 19. 5 比較例A3 3. 0 0 1300 5. 532 5. 443 98. 4 - 實施例AP5 3. 0 5 1300 5. 532 5. 499 99.4 - 實施例AP6 3. 0 10 1300 5. 532 5. 515 99. 7 - 比較例A4 5. 0 0 1300 5.488 5. 384 98. 1 — 實施例AP7 5. 0 5 1300 5.488 5. 439 99. 1 - 實施例AP8 5. 0 10 1300 5.488 5. 455 99. 4 - 比較例A5 6. 0 0 1300 5. 473 5. 358 97. 9 - 實施例AP9 6. 0 5 1300 5. 473 5. 424 99. 1 - 實施例API0 6. 0 10 1300 5. 473 5.435 99. 3 — 41 322881 201144252 [表 14] Α1ϊ〇3含量 Cd含量 燒结溫度 真密度 密度 相對密度 濺鍍速率 (質董《 (ppm) (•C) (g/cm3) (g/cm3) (g/cm3) 減少率(90 比較例1 0 0 1300 5. 607 5. 484 97. 8 - 比較例Cl 0 5 1300 5. 607 5. 529 98. 6 — 比較例C2 0 10 1300 5. 607 5. 540 98. 8 — 比較例A1 0. 5 0 1300 5. 589 5. 505 98. 5 - 實施例AC1 0. 5 5 1300 5. 589 5. 567 99. 6 - 實施例AC2 0. 5 10 1300 5. 589 5. 589 100. 0 - 比較例A2 2. 0 0 1300 5. 555 5. 466 98. 4 26. 2 實施例AC3 2. 0 5 1300 5. 555 5. 544 99. 8 21.8 實施例AC4 2. 0 10 1300 5. 555 5. 566 100. 2 20. 4 比較例A3 3. 0 0 1300 5. 532 5. 443 98. 4 — 實施例AC5 3. 0 5 1300 5. 532 5. 515 99. 7 — 實施例AC6 3. 0 10 1300 5. 532 5. 543 100. 2 - 比較例A4 5. 0 0 1300 5.488 5. 384 98. 1 - 實施例AC7 5. 0 5 1300 5. 488 5. 461 99. 5 - 實施例AC8 5. 0 10 1300 5.488 5. 493 100. 1 — 比較例A 5 6. 0 0 1300 5. 473 5. 358 97. 9 - 實施例AC9 6. 0 5 1300 5. 473 5. 440 99. 4 - 實施例AC10 6. 0 10 1300 5.473 5. 462 99. 8 - 42 322881 201144252 [表 15]Ah〇3 content Pb content sintering temperature true density density relative density sputtering rate (mass 90 (ppm) rc) (g/cma) (g/cm3) (g/cm3) reduction rate (3⁄4) Comparative Example 1 0 0 1300 5. 607 5. 484 97. 8 - Comparative Example P1 0 5 1300 5. 607 5. 529 98. 6 - Comparative Example P2 0 10 1300 5. 607 5. 540 98. 8 - Comparative Example A1 0· 5 0 1300 5. 589 5. 505 98. 5 - Example API 0. 5 5 1300 5. 589 5. 544 99. 2 - Example AP2 0_ 5 10 1300 5. 589 5. 555 99. 4 A comparative example A2 2. 0 0 1300 5. 555 5. 466 98.4 26. 2 Example AP3 2_ 0 5 1300 5. 555 5. 527 99. 5 21.9 Example AP4 2. 0 10 1300 5. 555 5. 544 99. 8 19. 5 Comparative Example A3 3. 0 0 1300 5. 532 5. 443 98. 4 - Example AP5 3. 0 5 1300 5. 532 5. 499 99.4 - Example AP6 3. 0 10 1300 5. 532 5. 515 99. 7 - Comparative Example A4 5. 0 0 1300 5.488 5. 384 98. 1 - Example AP7 5. 0 5 1300 5.488 5. 439 99. 1 - Example AP8 5. 0 10 1300 5.488 5. 455 99. 4 - Comparative Example A5 6. 0 0 1300 5. 473 5. 358 97. 9 - Example AP9 6. 0 5 1300 5. 473 5. 424 99. 1 - Example API0 6. 0 10 1300 5. 473 5.435 99. 3 — 41 322881 201144252 [Table 14] Α1ϊ〇3 content Cd content sintering temperature true density density relative density sputtering rate (mass Dong (ppm) (•C) (g/cm3) (g/cm3) ( g/cm3) reduction rate (90 Comparative Example 1 0 0 1300 5. 607 5. 484 97. 8 - Comparative Example Cl 0 5 1300 5. 607 5. 529 98. 6 - Comparative Example C2 0 10 1300 5. 607 5 540 98. 8 - Comparative Example A1 0. 5 0 1300 5. 589 5. 505 98. 5 - Example AC1 0. 5 5 1300 5. 589 5. 567 99. 6 - Example AC2 0. 5 10 1300 5. 589 5. 589 100. 0 - Comparative Example A2 2. 0 0 1300 5. 555 5. 466 98. 4 26. 2 Example AC3 2. 0 5 1300 5. 555 5. 544 99. 8 21.8 Example AC4 2. 0 10 1300 5. 555 5. 566 100. 2 20. 4 Comparative example A3 3. 0 0 1300 5. 532 5. 443 98. 4 - Example AC5 3. 0 5 1300 5. 532 5. 515 99. 7 — Example AC6 3. 0 10 1300 5. 532 5. 543 100. 2 - Comparative Example A4 5. 0 0 1300 5.488 5. 384 98. 1 - Example AC7 5. 0 5 1300 5. 488 5 461 99. 5 - Example AC8 5. 0 10 1300 5.488 5. 493 100. 1 - Comparative Example A 5 6. 0 0 1300 5. 473 5. 358 97. 9 - Example AC9 6. 0 5 1300 5 473 5. 440 99. 4 - Example AC10 6. 0 10 1300 5.473 5. 462 99. 8 - 42 322881 201144252 [Table 15]
Al2〇3含量 (質量%) Pb含量 (ppm) 燒結溫度 rc) 密度 (g/cm3) 比較例A6 2. 0 0 1200 5. 372 實施例API 1 2. 0 5 1200 5. 452 實施例AP12 2. 0 10 1200 5. 493 比較例A2 2. 0 0 1300 5. 466 實施例AP3 2. 0 5 1300 5. 527 實施例AP4 2. 0 10 1300 5. 544 比較例A7 2. 0 0 1400 5. 511 實施例API3 2. 0 5 1400 5. 550 實施例API4 2. 0 10 1400 5. 552 比較例A8 2. 0 0 1500 5. 542 實施例API5 2. 0 5 1500 5. 556 實施例AP16 2.0 10 1500 5. 556 43 322881 201144252 [表 16]Al2〇3 content (% by mass) Pb content (ppm) Sintering temperature rc) Density (g/cm3) Comparative Example A6 2. 0 0 1200 5. 372 Example API 1 2. 0 5 1200 5. 452 Example AP12 2 0 10 1200 5. 493 Comparative Example A2 2. 0 0 1300 5. 466 Example AP3 2. 0 5 1300 5. 527 Example AP4 2. 0 10 1300 5. 544 Comparative Example A7 2. 0 0 1400 5. 511 Example API3 2. 0 5 1400 5. 550 Example API4 2. 0 10 1400 5. 552 Comparative Example A8 2. 0 0 1500 5. 542 Example API5 2. 0 5 1500 5. 556 Example AP16 2.0 10 1500 5. 556 43 322881 201144252 [Table 16]
Al2〇3含量 (質量%) Cd含量 (ppm) 燒結溫度 (°C) 密度 (g/cm3) 比較例A6 2. 0 0 1200 5. 372 實施例AC11 2. 0 5 1200 5. 466 實施例AC12 2. 0 10 1200 5. 501 比較例A2 2. 0 0 1300 5.466 實施例AC3 2. 0 5 1300 5. 544 實施例AC4 2. 0 10 1300 5. 566 比較例A7 2. 0 0 1400 5. 525 實施例AC13 2. 0 5 1400 5. 568 實施例AC14 2. 0 10 1400 5. 568 比較例A8 2. 0 0 1500 5. 548 實施例AC15 2. 0 5 1500 5. 568 實施例AC16 2. 0 10 1500 5. 569 【圖式簡單說明】 無。 【主要元件符號說明】 無0 44 322881Al2〇3 content (% by mass) Cd content (ppm) Sintering temperature (°C) Density (g/cm3) Comparative Example A6 2. 0 0 1200 5. 372 Example AC11 2. 0 5 1200 5. 466 Example AC12 2. 0 10 1200 5. 501 Comparative Example A2 2. 0 0 1300 5.466 Example AC3 2. 0 5 1300 5. 544 Example AC4 2. 0 10 1300 5. 566 Comparative Example A7 2. 0 0 1400 5. 525 EXAMPLE AC13 2. 0 5 1400 5. 568 Example AC14 2. 0 10 1400 5. 568 Comparative Example A8 2. 0 0 1500 5. 548 Example AC15 2. 0 5 1500 5. 568 Example AC16 2. 0 10 1500 5. 569 [Simple description of the diagram] None. [Main component symbol description] No 0 44 322881
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010046879A JP2013100565A (en) | 2010-03-03 | 2010-03-03 | Gallium oxide-zinc oxide sputtering target and aluminum oxide-zinc oxide sputtering target |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201144252A true TW201144252A (en) | 2011-12-16 |
Family
ID=44542186
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100106839A TW201144252A (en) | 2010-03-03 | 2011-03-02 | Spattering target of aluminum oxide-zinc oxide group |
TW100107064A TWI422701B (en) | 2010-03-03 | 2011-03-03 | Galliu oxide-zinc oxide series sputtering target |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100107064A TWI422701B (en) | 2010-03-03 | 2011-03-03 | Galliu oxide-zinc oxide series sputtering target |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013100565A (en) |
TW (2) | TW201144252A (en) |
WO (2) | WO2011108535A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140140187A (en) * | 2013-05-28 | 2014-12-09 | 삼성코닝어드밴스드글라스 유한회사 | ZnO BASED SPUTTERING TARGET AND PHOTOVOLTAIC CELL HAVING PASSIVATION LAYER DEPOSITED BY THE SAME |
CN114592173B (en) * | 2022-01-11 | 2023-09-29 | 先导薄膜材料(安徽)有限公司 | CdIn alloy target and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59163707A (en) * | 1983-03-08 | 1984-09-14 | 日本板硝子株式会社 | Transparent conductive film |
JP2805813B2 (en) * | 1988-08-09 | 1998-09-30 | 東ソー株式会社 | Sputtering target and method for manufacturing the same |
JP2903575B2 (en) * | 1989-11-24 | 1999-06-07 | 三菱マテリアル株式会社 | Method for producing Pb-Zr-Ti oxide-based target material |
JP2976713B2 (en) * | 1992-08-14 | 1999-11-10 | 三菱マテリアル株式会社 | Manufacturing method of sputtering target for forming ferroelectric film |
JP2000160331A (en) * | 1998-02-16 | 2000-06-13 | Asahi Glass Co Ltd | Oxide film, its formation, sputtering target and laminated body |
JPH11335825A (en) * | 1998-05-20 | 1999-12-07 | Ricoh Co Ltd | Sputtering target and its production |
KR101002492B1 (en) * | 2002-08-02 | 2010-12-17 | 이데미쓰 고산 가부시키가이샤 | Sputtering target, sintered body, conductive film formed by using them, organic el device, and substrate used for the organic el device |
KR100957733B1 (en) * | 2005-06-28 | 2010-05-12 | 닛코 킨조쿠 가부시키가이샤 | Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film |
JP5388266B2 (en) * | 2008-03-19 | 2014-01-15 | 国立大学法人岩手大学 | ZnO-based target and manufacturing method thereof, conductive thin film manufacturing method, and conductive thin film |
JP2009249187A (en) * | 2008-04-01 | 2009-10-29 | Hitachi Metals Ltd | Zinc oxide sintered compact, its producing method, sputtering target and electrode |
-
2010
- 2010-03-03 JP JP2010046879A patent/JP2013100565A/en active Pending
-
2011
- 2011-03-01 WO PCT/JP2011/054615 patent/WO2011108535A1/en active Application Filing
- 2011-03-01 WO PCT/JP2011/054616 patent/WO2011108536A1/en active Application Filing
- 2011-03-02 TW TW100106839A patent/TW201144252A/en unknown
- 2011-03-03 TW TW100107064A patent/TWI422701B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI422701B (en) | 2014-01-11 |
TW201207136A (en) | 2012-02-16 |
WO2011108536A1 (en) | 2011-09-09 |
JP2013100565A (en) | 2013-05-23 |
WO2011108535A1 (en) | 2011-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Silicon oxides: a promising family of anode materials for lithium-ion batteries | |
JP5551542B2 (en) | All-solid battery and method for producing all-solid battery | |
TWI251244B (en) | Multilayer ceramic capacitor | |
JP5561358B2 (en) | Transparent conductive film | |
US20190260068A1 (en) | Electrolyte, battery, and electronic apparatus | |
JP2004214210A5 (en) | ||
JP2012059786A (en) | Ceramic multilayer ptc thermistor | |
US20130192986A1 (en) | Method for producing cu-ga alloy powder, cu-ga alloy powder, method for producing cu-ga alloy sputtering target, and cu-ga alloy sputtering target | |
FR2996222A1 (en) | FOLIED GRAINS OF TITANIUM OXIDES AND CERAMIC PRODUCTS COMPRISING SUCH GRAINS | |
JP5910242B2 (en) | Method for producing lanthanum hexaboride fine particles, lanthanum hexaboride fine particles, lanthanum hexaboride sintered body, lanthanum hexaboride film, and organic semiconductor device | |
TW201144252A (en) | Spattering target of aluminum oxide-zinc oxide group | |
FR2852331A1 (en) | Inert anode production, comprises use of cermet containing iron, nickel and copper, for production of aluminum by igneous electrolysis | |
JP5748593B2 (en) | Electrochemical cell | |
JP2016189243A (en) | Interconnector for fuel battery and cell stack using the same | |
TW200925300A (en) | ZnO deposition material, method for producing the same, and ZnO film | |
JP2012048890A (en) | All-solid type lithium ion battery | |
Gao et al. | Plasma spray synthesis of La10 (SiO4) 6O3 as a new electrolyte for intermediate temperature solid oxide fuel cells | |
CN113199024B (en) | Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof | |
JP4960052B2 (en) | Ytterbium oxide containing oxide target | |
JP2012072467A (en) | Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET | |
CN102776530A (en) | Stable anodes including iron oxide and use of such anodes in metal production cells | |
JP6969374B2 (en) | A method for manufacturing an oxide electrolyte sintered body and a garnet-type ion conductive oxide used in the manufacturing method. | |
US10403881B2 (en) | Method for producing ceramic cathode layers on current collectors | |
JP5285115B2 (en) | Composite materials and their use | |
JP3662168B2 (en) | SnO2-Sb2O3 sintered sputtering target and method for producing the same |