TW201144215A - Carbon-containing matrix with additive that is not a metal - Google Patents

Carbon-containing matrix with additive that is not a metal Download PDF

Info

Publication number
TW201144215A
TW201144215A TW100118705A TW100118705A TW201144215A TW 201144215 A TW201144215 A TW 201144215A TW 100118705 A TW100118705 A TW 100118705A TW 100118705 A TW100118705 A TW 100118705A TW 201144215 A TW201144215 A TW 201144215A
Authority
TW
Taiwan
Prior art keywords
carbon
additive
compound
heat transfer
substrate
Prior art date
Application number
TW100118705A
Other languages
Chinese (zh)
Inventor
Zvi Yaniv
Nan Jiang
James Novak
Original Assignee
Applied Nanotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/793,656 external-priority patent/US20110147647A1/en
Application filed by Applied Nanotech Inc filed Critical Applied Nanotech Inc
Publication of TW201144215A publication Critical patent/TW201144215A/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

An article of manufacture comprises a carbon-containing matrix. The carbon-containing matrix may comprise at least one type of carbon material selected from the group comprising graphite crystalline carbon materials, carbon powder, carbon fibers, artificial graphite powder, or combinations thereof. In addition, the carbon-containing matrix comprises a plurality of pores. The article of manufacture also comprises an additive that is not a metal pressure disposed within at least a portion of the plurality of pores.

Description

201144215 六、發明說明: 本申請案依據美國35 U.S.C. §119(e)(l)規定,主張 2009年6月5曰申請之美國臨時申請案第61/184,549號的 優先權,其係以全文納入本申請案之範圍。 【發明所屬之技術領域】 本發明關於一種含碳基質。 【先前技術】 本申請案關於一種具非金屬添加物之含碳基質的充 填孔洞,藉以加強碳添加化合物的物理特性及熱力特性。 【發明内容】 本發明之組合物質通常包括含碳基質,而含碳基質可 包括至少一種下列之碳材,如石墨結晶碳材、碳粉、人造 石墨粉、碳纖、或其組合,其中,含碳基質可以塊體、織 物、薄片、或板狀的形式存在;此外,含碳基質亦可以是 非晶形式。另外,含碳基質具有複數個孔洞,且組合物質 還具有非金屬之添加物,其係加壓設置於至少一部份之該 等孔洞中,而添加物包括之物質係例如為聚氨酯、環氧樹 -脂、尼龍、矽、碳化矽、碳、及其組合物。再者,將非金 屬之添加物設置於含碳基質之孔洞中可以改善碳添加組 合物的彈性及強度。舉例而言,組合物質的彎折強度可以 介於3.5MPa至lO.OMPa之間。 添加物可以藉由化學反應設置於含碳基質的孔洞 3 201144215 中,例如,可以先將一個以上之前驅物設置於孔洞中,然 後藉由前驅物與含碳基質中的碳進行反應,進而形成非金 屬之添加物,其中,可以利用施加壓力或加熱方式誘發一 個以上之前驅物進行反應,以便在含碳基質之孔洞中形成 添加物。 在部分實施例中,一個以上之前驅物係非為金屬,其 中,前驅物可以是聚合物,例如為矽樹脂、聚氨酯、環氧 樹脂、尼龍、或其混合物;此外,前驅物亦可以是SiH4 氣體。當前驅物為含矽材料時,設置於含碳基質之孔洞中 的添加物可以包括碳化矽,其中,設置於含碳基質之孔洞 中的碳化矽可以改善碳添加化合物的強度、彈性、及熱傳 導性。另外’刖驅物可更包括熱傳導添加物,以便增加非 金屬添加物的熱傳導性,其例如為奈米碳管、微粒石墨、 石墨薄片、C60 ( Buckminster Fullerene )、及其組合。在部 分實施例中,前驅物可包括金屬熱傳導添加物,例如為奈 米-微粒金屬、碳·金屬化合物微塵、或其組合。 【實施方式】 以下將參照相關圖式’說明依本發明較佳實施例之— 種具非金屬添加物之含碳基質,其中,各參照符號最左邊 的數字係對應至各圖式之圖號,且相同的元件將以相同的 參照符號加以說明。 熱傳導係數可以依據三個主要的因子而定,即電子、 聲子、及磁性,因此總熱傳導係數可以為各因子之總和, 201144215 如式1所示: electronic + kph〇n〇n + (式 magnetic 以直接影響晶體結構心==-:: ::=,其中聲子係為結晶結構十的晶格振:二 :::=經過物質傳遞以傳送熱能,而具有規則性 厂曰之日日格4之尚朗性物f的能#傳輸效率係優於 較不規則或非結晶之物f ;第三_子。係與磁性交互 編電子 化合物(如物質A與物質B)之熱力特性可以由物質 A之顆粒與物質B之顆粒之界面的品f與特性而定,詳言 之,形成化合物之界面的品質係由下列因素而定:物質A 與物質B之顆粒之間的聲子耦合與聲子傳遞的品質;化合 物AxBy的生成,其係改變界面的特性以及界面之熱阻抗 的預期值;及物質A與物質B之顆粒之間的黏著強度,其 中,黏著強度不僅可以影響熱力性質’還可以影響化合物 的最終機械強度。 熱處理材料可以應用在產熱裝置的散熱,詳言之,在 暴露於一定熱量的情況下,某些裝置可能無法適當地操作 或是可能被損壞,因此,可以利用熱處理材料作為此些裝 置的散熱器,這些裝置係例如為電腦晶片、發光二極體封 裝、太陽能電池板、高負載之電容器、及高負载之半導體。 201144215 部份具有高熱傳導係數之熱處理材料係由具有高結 晶規則之含碳基質所構成,其係利用在高溫高壓下壓縮含 碳材料而製得,含碳基質可以是剛性且具有孔洞以提高其 表面積,其孔洞大小可以是數釐米至數奈米,因此,含碳 基質除了具有高熱傳導係數外,還具有導電性。 其中,含碳基質之孔洞的充填可以利用高壓注射融熔 態金屬,例如為铭、鎂、銅、及鎳,進入孔洞中,依據此 方式製得之碳-金屬化合物通常為剛性;此外,注射進入孔 洞之金屬與含碳基質之碳之間可能沒有良好的可濕性,因 此,含碳基質與金屬之間的界面可能形成有許多斷裂面, 此特性可能導致碳-金屬化合物容易碎裂?如此一來,將限 制碳-金屬化合物的應用領域,例如需要彈性之熱處理材料 以適應不規則且不平坦之表面。此外,上述之碳-金屬化合 物亦無法適用於暴露在振動環境下,因為此環境可能造成 碳-金屬化合物的破裂。 本發明之碳添加物化合物包括孔隙性含碳基質,其具 有設置於至少部份孔洞之非金屬之添加物,其中,本發明 之碳添加物化合物利用設置於含碳基質之孔洞中的添加 物的特性,而具有改良之物理特性並增加其彈性;舉例而 言,部分添加物可以相對增加其彎折強度。另外,設置於 含碳基質之孔洞中的添加物可以改善碳添加物化合物熱 學特性。此外,本發明之碳添加物化合物亦可以具有導電 性,以便提供部分之靜電放電防護功能,並能夠將射頻雜 訊接地。 201144215 可以利用化學反應誘發設置於含碳基質之孔洞中的 前驅物與含碳基質之碳之間的起始反應,在部分情況下, 可以利用增加前驅物與含碳基質的壓力及/或溫度的方式 來起始此化學反應,例如,可以利用一高壓浸潰反應 (HPIR)程序將非金屬添加物設置於含碳基質的孔洞中, 其中’高壓浸潰反應程序的溫度係低於將金屬注入含碳基 質之孔洞時的溫度,因此,可以降低充填含碳基質之孔洞 的成本。 此外,可以利用低熔點之前驅物來製備所需之非金屬 添加物’其可以增加與含碳基質之間的親和力,進而藉由 提高添加物與碳界面之聲子偶合及傳遞來增加熱傳導 性;另外,含碳基質之孔洞亦可以充填有高熔點之非金屬 添加物,其係由低熔點之前驅物之化學反應而形成,因 此,可以藉由化學反應將添加物設置於含碳基質之孔洞 中’以節省能量並減少成本,此方式不同於利用液態之添 加物來充填含碳基質之孔洞,而能夠在比添加物之熔點更 低的溫度下進行反應。 含碳基質之石墨碳可以是工業用焦炭產物,此碳殘留 物可以從天然原料或精製加工物中衍生而得,例如是煤礦 及石油工業’在部分示例性實施例中,從石油產物中衍生 出之高品質之針狀焦炭可以用來形成含碳基質,圖丨八顯 不咼品質之針狀焦炭的SEM影像,其品質係優於圖1B所 示之低品質焦炭。另外可以添加瀝青/焦油於針狀焦炭中, 其主要作為連結劑,並且在加熱至26〇〇〇c或更高溫度下, 7 201144215 轉變為石墨碳,其加熱溫度通常介於3200°C至3600°C之 間,粗石墨材料可以包括粗糙及精製的石墨顆粒,其大小 係介於0.2mm至2mm之間,其中,約10%的顆粒為近橢 圓形。圖2顯示SEM影像,其中標號a表示粗糙顆粒結構 之影像,標號b表示精緻顆粒結構之影像,且近橢圓形之 顆粒係如箭號所示。 圖3為一流程圖,其顯示用以製造含碳基質之方法 300。在步驟310中,首先將原料混合,在此混合過程中, 可以使用3種原料,如石油焦、針狀焦、焦油(液態)、 或其組合,其中,針狀焦可以用來控制含碳基質的形狀, 並降低最終含碳基質的電阻率,液態焦油可以用來控制碳 塊體的形狀,並充填於含碳基質的孔洞中,另外,石油焦 及針狀焦係碾碎並以約10:1的比例進行混合,當然其亦可 以利用其他比例進行混合,接著將此混合物在500°C或更 高溫下進行鍛燒製程,以蒸發除掉雜質,如硫,然後將液 態焦油摻雜加入此混合物。此外,亦可以僅利用針狀焦及 焦油來製造含碳基質,而不使用石油焦,其係由於針狀焦 具有較高的含碳量、較低的含硫量、較低的熱膨脹係數、 及較高的熱傳導係數,而且其製備係比石油焦容易。 在方法300中,步驟320係決定含碳基質的散熱方 向,例如,當含碳基質以射出成形製造時,其在Z軸方向 的散熱較快;另外,當含碳基質以高壓壓模成形製造時, 其在XY軸方向的散熱較快。若散熱方向為XY軸方向, 則方法300執行步驟330,其係將原料設置於高壓壓模中, 201144215 並以高於50MPa的壓力形成含碳基質;另外,若散熱方向 為Z轴方向,則方法300執行步驟340。 在步驟340中,石油焦、針狀焦、及/或焦油之混合原 料係送入擠壓製程中,以形成碳塊體,其形狀及大小係依 據用來製造含碳基質之模具而定;在一實施例中,此碳模 具可以是一圓柱體,其直徑約為700mm、長度約為 2700mm,而其重量約為1 11頓。然而,模具的尺寸可以依 據加工廠的大小而定。另外,擠壓製程可以在500°C至 800°C之間進行,並以3500噸的力量施壓30分鐘以便將 此混合物壓成柱狀。在部分情況下,受擠壓之碳塊體可以 是利用高壓壓模製程所形成,而碳塊體係接著送入冷卻水 浴進行冷卻,以防止破裂。 接著,步驟350係對塊體進行烘烤,而此烘烤程序可 以利用高溫將焦油進行碳化合反應,並移除揮發性成分; 在部分情況下,碳塊體係從冷卻水浴移至一烤箱,並加熱 至約1600°C,而且此碳塊體可以烘烤2至3天;在烘烤程 序後,碳塊體之表面可以變得粗糙且具孔隙,且碳塊體之 直徑係減少約10mm。 然後,步驟360係加熱碳塊體至3200°C至3600°C之 間以進行石墨化反應;在部分實施例中,石墨化反應係從 2600°C開始、並在約3200°C時形成高品質的石墨;其中, 在約3000°C下,堆疊之碳塊體之石墨板可以變成平行且可 以減少或消除其亂層混亂。在部分情況下,若加熱係在高 壓下進行,則碳塊體係加熱至較低温度,便能夠形成結晶 201144215 石墨,其中,碳塊體可以加熱約2至3天;在加熱程序中, 可以減少或完全消除碳塊體中的硫及揮發性成分。 在步驟370中,碳塊體係被檢驗並加工形成所需的形 狀;例如,可以測試碳塊體之電性特質,而且在下一步驟 之前先檢查其機械破裂或視覺可辨識之缺陷。在上述測試 之後,接著依據碳塊體之用途將含碳基質加工至特定形 狀。 含碳基質可包括各種形態之碳及微量之其他物質;例 如,含ί炭基質可包括石墨結晶碳物質、碳粉、人造石墨粉、 碳纖、或其組合,其中,含碳基質塊體之密度係介於1.6 g/cm3至1.9 g/cm3之間,碳塊體之電阻率係介於4μΩιη至 ΙΟμΩιη之間;在部分態樣中,含碳基質之電阻率係約為 5μΩιη。通常當碳塊體具有較低的電阻率時,表示含碳基 質之石墨片具有較佳的對準性,其亦可以提供較高的熱傳 導係數。 圖4為含碳基質的穿透式電子顯微鏡(ΤΕΜ)影像, 其顯示,石墨板之堆疊的形成且其尺寸係小於約1 OOnm。 圖4所示為石墨板之一特例,其厚度為約50nm,而其高 熱傳導性的方向為沿著其長軸的方向,如圖4之箭號所示。 圖5A及5B為另一個TEM影像,其顯示含碳基質之 奈米石墨板(標號為NGP)的TEM影像,其中,各石墨 板的設置方向係朝向擠壓方向(如圖5A所示)或加壓方 向(如圖5B所示),而依序堆疊之奈米石墨板能夠提高沿 著其長軸方向的熱傳效率。此外,圖5A及5B中亦顯示數 201144215 個奈米孔洞(標號為NV)及數個奈米狹縫(標號為NS), 其係由碳基顆粒在製造過程中加工製成,如圖5A及5B所 示,奈米孔洞的厚度約為70nm,而奈米狹縫的厚度約為 30nm ° 圖6A及6B顯示含碳基質的TEM衍射圖案及影像, 其中,圖6A所示之TEM衍射圖案與圖6B所示之TEM影 像顯示在擠壓過程中在含碳基質上形成之結晶度與石墨 性質;而圖6A所示之衍射圖案係由電子與石墨物質之結 晶晶格的交互作用而產生,另外,圖6B顯示時墨板之晶 格結構。 圖7顯示本發明之方法700的流程圖,其係填充一具 有許多孔洞704之含碳基質702,且孔洞704中係具有非 金屬之添加物;其中,含碳基質702可以是塊體、片狀、 或織物,此外,含碳基質702亦可以是非晶性。步驟706 係清潔含碳基質702,並測量其物理及熱學性質,例如, 可以利用氮氣喷搶清潔含碳基質702 ;在部分實施例中, 含碳基質702可以是利用圖3所示之方法300所製造的含 碳基質。 在步驟708中,含碳基質702係設置於一容器710中, 如加壓反應之模具;在步驟712中,添加物前驅物714係 設置於容器710中,其中添加物前驅物714可以是固體、 液體或氣體,且其亦可以是非金屬,舉例而言,添加物前 驅物714可包括石夕樹脂(如石夕油脂、石夕油等)、環氧樹脂、 聚氨酯、尼龍、及SiH4氣體。 11 201144215 在步驟716中,能量係以壓力及/或熱能的方式施加於 添加物前驅物714及含碳基質702,例如可以將一模口 718 應用於添加物前驅物714及含碳基質702 ;其中,施加於 添加物前驅物714及含碳基質702的壓力係介於0至 22000psi。在部分示例性實施例中,當添加物前驅物714 為液態或固態高分子時,施加於添加物前驅物714及含碳 基質702的壓力係高於500psi ;在部分示例性實施例中, 當添加物前驅物714為氣體時,施加於添加物前驅物714 及含碳基質702的壓力係低於500psi,例如為一半真空狀 態。 另外,利用模口 718施加壓力的時間可以在5至60 分鐘之間,而施加於添加物前驅物714及含碳基質702的 溫度係介於800°C至l〇〇〇°C ;在部分實施例中,添加物前 驅物714的反應性會影響容器710中施加於添加物前驅物 714及含碳基質702的壓力及/或溫度,舉例而言,當添加 物前驅物714為短鏈高分子或氣體時,通常會施加較低的 壓力及/或溫度,而當添加物前驅物714為長鏈高分子或固 體時,通常會施加較高的壓力及/或溫度。 當施加壓力及/或溫度至含碳基質702及添加物前驅 物714時,添加物前驅物714可填充至含碳基質702的至 少一部份之孔洞704 ;然後,產生一化學反應,並將一個 以上之添加物最終產物(如添加物722)形成於含碳基質 702之孔洞704中,藉以形成一碳添加化合物720,其中, 添加物722為非金屬,且含碳基質702的至少一部份之孔 12 201144215 洞704係填充添加物722;此外,含有添加物瓜之孔洞 彻中的空間係至少部分被添加物722所充填。在部分實 施例中’添加物前驅物714的黏度可以影響設置於孔洞7〇4 中的添力口物722 #量,例如’當添加物前驅物714(如SiH4 氣體或夕,由)具有較高黏度時,可能只在孔洞704中形成 薄薄一層添加物722,因此會限制設置於孔洞7〇4中的添 加物722的1 ,當使用另一種具有高黏度之添加物前驅物 714 (如環氧樹脂、尼龍、及矽油脂)時,可能可以填充 孔/同704中較多的空間。另外,施加於含碳基質702及添 加物前驅物714的壓力及/或溫度,以及施加壓力及/或溫 度的時間長短亦會影響設置於孔洞704中的添加物722的 量。 當添加物前驅物714含有矽時,若添加物前驅物714 中的矽與含碳基質702中的碳產生反應時,則會生成碳化 矽’例如,矽油可能與碳產生下列反應: (-SiC2H60-)n^Si0+2C+3H2->SiC +CO 其洋細内谷係揭露於「’’Thermal Decomposition of Commerical Silicone Oil to Produce High Yield High Surface Area SiC Nanorods,,J by V.G. Pol, S.B. Pol, A. Gedanken, S.H. Lim, Z. Zhong, and J. Lin, J. Phys. Chem. B 2006, 110, 11237-11240」,其係以全文納入本說明書之範 圍。依據上述方法,可以將碳化矽形成於含碳基質702之 孔洞704中’由於碳化矽與含碳基質7〇2中的碳具有良好 的親和力’所以會在碳化矽與含碳基質702之間形成一良 13 201144215 好之界面藉以提冋碳添力σ化合物,的彈性及強度;詳 言之’與前述之含碳基質7G2的彎折強度相較,碳添加化 合物720的.彎折強度可以增加約2〇%至π%。另外,由 於在碳切與含碳基質7()2之_成有—界面,所以亦能 夠增加通過孔洞704之聲子耦合及熱傳,因此,可以提高 碳添加化合物72G的熱傳係數;例如,與前述之含碳基質 7〇2的熱傳係數相較,碳添加化合物72〇的熱傳係數可以 增加5%至30%。 步驟724係清潔並固化碳添加化合物72〇,例如,先 將多餘的添加物前驅物7! 4以酒精片抹除,然後以空氣乾 燥碳添加化合物720,接著在100。(:至185。〇之間加熱}至 6小時以固化碳添加化合物72〇。然後,步驟係測量 碳添加化合物72G的各項特性,例如,可以湘3點彎折 法測量其彎折強度’並以雷射閃光分析(LFA)法(如A· E1461 )測量其熱傳導係數。 雖然上述之方法700係以非金屬添加物722填充含碳 基質702之孔洞7〇4,但是減可以藉由化學反應(如高 壓浸潰反應(HPIR))以利用其他物質來填充含碳基質逝 之孔洞704 ’而可以形成於含碳基質7〇2之孔洞7〇4中的 物質例如包括金屬(鐘、硼、石夕、鋅、銀、m 叙、錫、鎵等)、合金(銅辞合金、銘辞合金、贿合金、 銘鎮合金、齡辞合金等)、化合物(氣化㈣、氧化錫、 氣仙、氧減、碳化石夕、氣化紹、氮化石夕、氮化鎵、氧 化鋅、硫化鋅等)、及半導體超晶格或量子點⑴祕、 201144215201144215 VI. INSTRUCTIONS: This application is based on US 35 USC § 119(e)(l) and claims the priority of US Provisional Application No. 61/184,549, filed June 5, 2009, which is incorporated by reference in its entirety. The scope of this application. TECHNICAL FIELD OF THE INVENTION The present invention relates to a carbonaceous substrate. [Prior Art] This application relates to a filling hole of a carbonaceous substrate having a non-metallic additive, thereby enhancing the physical properties and thermodynamic properties of the carbon-added compound. SUMMARY OF THE INVENTION The composition of the present invention generally comprises a carbonaceous substrate, and the carbonaceous substrate may comprise at least one of the following carbon materials, such as graphite crystalline carbon material, carbon powder, artificial graphite powder, carbon fiber, or a combination thereof, wherein The carbon substrate may be in the form of a block, a fabric, a sheet, or a plate; in addition, the carbon-containing substrate may also be in an amorphous form. In addition, the carbonaceous substrate has a plurality of pores, and the composite material further has a non-metallic additive which is press-fitted in at least a portion of the pores, and the additive includes a substance such as polyurethane or epoxy. Tree-fat, nylon, hydrazine, tantalum carbide, carbon, and combinations thereof. Further, the addition of a non-metallic additive to the pores of the carbon-containing matrix improves the elasticity and strength of the carbon-added composition. For example, the bending strength of the combined material may range from 3.5 MPa to 10 MPa. The additive may be disposed in the pores 3 201144215 of the carbon-containing substrate by a chemical reaction. For example, more than one precursor may be first placed in the pore, and then reacted with carbon in the carbon-containing matrix to form a precursor. A non-metallic additive in which more than one precursor can be induced to react by application of pressure or heating to form an additive in the pores of the carbon-containing matrix. In some embodiments, more than one precursor is not a metal, wherein the precursor may be a polymer, such as ruthenium resin, polyurethane, epoxy, nylon, or a mixture thereof; in addition, the precursor may also be SiH4 gas. When the precursor is a ruthenium-containing material, the additive disposed in the pores of the carbon-containing matrix may include niobium carbide, wherein the niobium carbide disposed in the pores of the carbon-containing matrix can improve the strength, elasticity, and heat conduction of the carbon-added compound. Sex. Further, the ruthenium drive may further include a heat transfer additive to increase the thermal conductivity of the non-metal additive, such as carbon nanotubes, particulate graphite, graphite flakes, C60 (Buckminster Fullerene), and combinations thereof. In some embodiments, the precursor may comprise a metal heat transfer additive, such as a nano-particulate metal, a carbon metal compound dust, or a combination thereof. [Embodiment] Hereinafter, a carbon-containing substrate having a non-metallic additive according to a preferred embodiment of the present invention will be described with reference to the related drawings, wherein the leftmost digit of each reference symbol corresponds to the figure number of each figure. The same elements will be described with the same reference symbols. The heat transfer coefficient can be determined by three main factors, namely electron, phonon, and magnetism, so the total heat transfer coefficient can be the sum of the factors, 201144215 as shown in Equation 1: electronic + kph〇n〇n + (type magnetic To directly affect the crystal structure of the heart ==-:: ::=, where the phonon system is a crystal structure of the tenth crystal lattice: two::: = through the mass transfer to transfer thermal energy, and the regular factory day The energy transmission efficiency of 4 is better than that of the irregular or amorphous material f; the third-sub-system and the magnetic interaction of the electronic compound (such as substance A and substance B) can be The quality of the interface between the particles of substance A and the particles of substance B depends on the characteristics. In particular, the quality of the interface forming the compound is determined by the following factors: phonon coupling between the particles of substance A and substance B. The quality of phonon transport; the formation of compound AxBy, which changes the characteristics of the interface and the expected value of the thermal impedance of the interface; and the adhesion strength between the particles of substance A and substance B, wherein the adhesion strength can not only affect the thermal properties' Can also influence The final mechanical strength of the composite. The heat-treated material can be applied to the heat dissipation of the heat generating device. In particular, some devices may not operate properly or may be damaged when exposed to a certain amount of heat. Therefore, heat treatment may be utilized. Materials are used as heat sinks for such devices, such as computer chips, light-emitting diode packages, solar panels, high-load capacitors, and high-load semiconductors. 201144215 Some heat-treated materials with high thermal conductivity are A carbonaceous matrix having a high degree of crystallization, which is obtained by compressing a carbonaceous material under high temperature and high pressure. The carbonaceous substrate may be rigid and have pores to increase its surface area, and the pore size may be several centimeters to several nanometers. Therefore, the carbon-containing matrix has electrical conductivity in addition to high thermal conductivity. Among them, the filling of the carbon-containing matrix can use high-pressure injection of molten metal, such as Ming, Magnesium, Copper, and Nickel, into the hole. The carbon-metal compound prepared in this manner is generally rigid; in addition, the injection enters the hole There may be no good wettability between the metal of the hole and the carbon of the carbon-containing matrix. Therefore, the interface between the carbon-containing matrix and the metal may form many fracture surfaces, which may cause the carbon-metal compound to be easily broken. As a result, the application of carbon-metal compounds will be limited, such as the need for elastic heat-treated materials to accommodate irregular and uneven surfaces. Furthermore, the above-mentioned carbon-metal compounds are not suitable for exposure to vibration environments because of this environment. May cause rupture of the carbon-metal compound. The carbon additive compound of the present invention comprises a porous carbonaceous substrate having a non-metallic additive disposed in at least a portion of the pores, wherein the carbon additive compound of the present invention is utilized in The characteristics of the additives in the pores of the carbon-containing matrix have improved physical properties and increase their elasticity; for example, some additives may relatively increase their bending strength. Additionally, additives disposed in the pores of the carbonaceous substrate can improve the thermal properties of the carbon additive compound. In addition, the carbon additive compound of the present invention may also be electrically conductive to provide partial electrostatic discharge protection and to ground radio frequency noise. 201144215 A chemical reaction can be used to induce an initial reaction between a precursor disposed in a pore of a carbonaceous substrate and a carbon of a carbonaceous substrate, and in some cases, an increase in pressure and/or temperature of the precursor and the carbonaceous substrate can be utilized. Ways to initiate this chemical reaction, for example, a high pressure impregnation reaction (HPIR) procedure can be used to place non-metallic additives in the pores of the carbon-containing matrix, where the temperature of the high pressure impregnation reaction is lower than that of the metal The temperature at which the pores of the carbon-containing matrix are injected, and therefore, the cost of filling the pores of the carbon-containing matrix can be reduced. In addition, a low melting point precursor can be utilized to prepare the desired non-metallic additive' which increases the affinity with the carbonaceous substrate and thereby increases thermal conductivity by increasing the phonon coupling and transfer of the additive to the carbon interface. In addition, the pores of the carbon-containing matrix may also be filled with a non-metallic additive having a high melting point, which is formed by a chemical reaction of a low melting point precursor, and therefore, the additive may be disposed on the carbon-containing substrate by a chemical reaction. In the hole 'to save energy and reduce costs, this method is different from the use of liquid additives to fill the pores of the carbon-containing matrix, and can carry out the reaction at a lower temperature than the melting point of the additive. The graphite carbon of the carbonaceous substrate may be an industrial coke product which may be derived from natural or refined processes, such as the coal and petroleum industries 'in some exemplary embodiments, derived from petroleum products The high quality needle coke can be used to form a carbonaceous substrate, and the SEM image of the needle coke of the quality is superior to the low quality coke shown in Fig. 1B. In addition, asphalt/tar can be added to the needle coke, which is mainly used as a binder, and is converted to graphite carbon at a temperature of 26 〇〇〇c or higher, 7 201144215, and the heating temperature is usually between 3200 ° C and Between 3600 ° C, the coarse graphite material may comprise coarse and refined graphite particles having a size between 0.2 mm and 2 mm, wherein about 10% of the particles are nearly elliptical. Fig. 2 shows an SEM image in which the reference numeral a represents an image of a rough grain structure, the reference numeral b represents an image of an exquisite particle structure, and the particles of a nearly elliptical shape are indicated by arrows. 3 is a flow chart showing a method 300 for fabricating a carbonaceous substrate. In step 310, the raw materials are first mixed, and in the mixing process, three kinds of raw materials such as petroleum coke, needle coke, tar (liquid), or a combination thereof may be used, wherein the needle coke may be used to control carbonaceous The shape of the matrix and the electrical resistivity of the final carbonaceous substrate can be used to control the shape of the carbon block and fill the pores of the carbonaceous substrate. In addition, the petroleum coke and the needle coke are crushed and The ratio of 10:1 is mixed, of course, it can also be mixed by other ratios, and then the mixture is subjected to a calcination process at 500 ° C or higher to evaporate impurities such as sulfur, and then the liquid tar is doped. Add this mixture. In addition, it is also possible to use only needle coke and tar to produce a carbonaceous substrate without using petroleum coke because of the higher carbon content, lower sulfur content, lower thermal expansion coefficient, and needle coke. And a higher heat transfer coefficient, and its preparation is easier than petroleum coke. In method 300, step 320 determines the direction of heat dissipation of the carbon-containing matrix, for example, when the carbon-containing matrix is produced by injection molding, it dissipates heat faster in the Z-axis direction; in addition, when the carbon-containing matrix is formed by high pressure molding When it is in the XY axis direction, it dissipates heat faster. If the heat dissipation direction is the XY axis direction, the method 300 performs step 330 of placing the raw material in the high pressure stamp, 201144215 and forming a carbonaceous substrate at a pressure higher than 50 MPa; and if the heat dissipation direction is the Z axis direction, The method 300 performs step 340. In step 340, the mixed raw materials of petroleum coke, needle coke, and/or tar are fed into an extrusion process to form a carbon block, the shape and size of which are determined according to the mold used to manufacture the carbonaceous substrate; In one embodiment, the carbon mold can be a cylinder having a diameter of about 700 mm, a length of about 2700 mm, and a weight of about 11 tons. However, the size of the mold can vary depending on the size of the processing plant. Alternatively, the extrusion process can be carried out at a temperature between 500 ° C and 800 ° C and pressed for 30 minutes with a force of 3,500 tons to press the mixture into a column. In some cases, the extruded carbon block may be formed by a high pressure compression molding process, and the carbon block system is then sent to a cooling water bath for cooling to prevent cracking. Next, step 350 is to bake the block, and the baking process can utilize the high temperature to carbonize the tar and remove the volatile components; in some cases, the carbon block system is moved from the cooling water bath to an oven. And heating to about 1600 ° C, and the carbon block can be baked for 2 to 3 days; after the baking process, the surface of the carbon block can become rough and porous, and the diameter of the carbon block is reduced by about 10 mm . Then, step 360 heats the carbon block to between 3200 ° C and 3600 ° C for graphitization reaction; in some embodiments, the graphitization reaction starts at 2600 ° C and forms a high at about 3200 ° C. Quality graphite; wherein, at about 3000 ° C, the stacked carbon blocks of the graphite sheets can become parallel and can reduce or eliminate chaos. In some cases, if the heating is carried out under high pressure, the carbon block system is heated to a lower temperature to form crystallization 201144215 graphite, wherein the carbon block can be heated for about 2 to 3 days; in the heating process, it can be reduced Or completely eliminate sulfur and volatile components in carbon blocks. In step 370, the carbon block system is inspected and processed to form the desired shape; for example, the electrical properties of the carbon block can be tested and the mechanical crack or visually identifiable defect is checked prior to the next step. After the above test, the carbonaceous substrate is then processed to a specific shape depending on the use of the carbon block. The carbon-containing matrix may include various forms of carbon and traces of other substances; for example, the carbon-containing matrix may include graphite crystalline carbon material, carbon powder, artificial graphite powder, carbon fiber, or a combination thereof, wherein the density of the carbon-containing matrix block The system is between 1.6 g/cm3 and 1.9 g/cm3, and the resistivity of the carbon block is between 4 μΩιη and ΙΟμΩιη; in some aspects, the resistivity of the carbon-containing matrix is about 5 μΩ. Generally, when the carbon block has a lower electrical resistivity, the graphite sheet representing the carbonaceous substrate has better alignment, which also provides a higher thermal conductivity. Figure 4 is a transmission electron microscope (ΤΕΜ) image of a carbonaceous substrate showing the formation of a stack of graphite plates and having a size of less than about 1000 nm. Figure 4 shows a special example of a graphite plate having a thickness of about 50 nm and a direction of high thermal conductivity along its long axis, as indicated by the arrow in Figure 4. 5A and 5B are another TEM image showing a TEM image of a nanocrystalline graphite plate (labeled NGP) containing a carbon matrix, wherein each graphite plate is oriented in a direction of extrusion (as shown in FIG. 5A) or The direction of pressurization (as shown in Fig. 5B), and the sequentially stacked nanographite sheets can improve the heat transfer efficiency along the long axis direction thereof. In addition, Figures 2011A and 5B also show the number 201144215 nanopores (labeled NV) and several nano slits (labeled NS), which are processed by carbon-based particles during the manufacturing process, as shown in Figure 5A. And 5B, the thickness of the nanopore is about 70 nm, and the thickness of the nano slit is about 30 nm. FIGS. 6A and 6B show the TEM diffraction pattern and image of the carbon-containing matrix, wherein the TEM diffraction pattern shown in FIG. 6A The TEM image shown in Fig. 6B shows the crystallinity and graphite properties formed on the carbonaceous substrate during extrusion; and the diffraction pattern shown in Fig. 6A is produced by the interaction of electrons and the crystal lattice of the graphite material. In addition, FIG. 6B shows the lattice structure of the ink plate. 7 shows a flow diagram of a method 700 of the present invention, which is filled with a carbon-containing matrix 702 having a plurality of voids 704, and having a non-metallic additive in the voids 704; wherein the carbon-containing matrix 702 can be a bulk, a sheet. The shape, or fabric, in addition, the carbonaceous substrate 702 can also be amorphous. Step 706 is to clean the carbonaceous substrate 702 and measure its physical and thermal properties. For example, the carbonaceous substrate 702 can be cleaned by nitrogen blasting; in some embodiments, the carbonaceous substrate 702 can be formed using the method 300 of FIG. The carbonaceous substrate produced. In step 708, the carbonaceous substrate 702 is disposed in a vessel 710, such as a mold for pressurization reaction; in step 712, the additive precursor 714 is disposed in the vessel 710, wherein the additive precursor 714 can be solid. A liquid or a gas, and which may also be a non-metal. For example, the additive precursor 714 may include a stone resin (such as Shixia grease, Shishi oil, etc.), an epoxy resin, a polyurethane, a nylon, and a SiH 4 gas. 11 201144215 In step 716, energy is applied to the additive precursor 714 and the carbon-containing matrix 702 in a pressure and/or thermal manner. For example, a die 718 can be applied to the additive precursor 714 and the carbon-containing matrix 702; Wherein, the pressure applied to the additive precursor 714 and the carbonaceous substrate 702 is between 0 and 22,000 psi. In some exemplary embodiments, when the additive precursor 714 is a liquid or solid polymer, the pressure applied to the additive precursor 714 and the carbon-containing matrix 702 is greater than 500 psi; in some exemplary embodiments, When the additive precursor 714 is a gas, the pressure applied to the additive precursor 714 and the carbonaceous substrate 702 is less than 500 psi, such as a half vacuum. In addition, the pressure applied by the die 718 may be between 5 and 60 minutes, while the temperature applied to the additive precursor 714 and the carbonaceous substrate 702 is between 800 ° C and 10 ° C; In an embodiment, the reactivity of the additive precursor 714 affects the pressure and/or temperature applied to the additive precursor 714 and the carbonaceous substrate 702 in the vessel 710, for example, when the additive precursor 714 is short chain high. Lower molecular pressures or/or temperatures are typically applied to the molecules or gases, and higher pressures and/or temperatures are typically applied when the additive precursor 714 is a long chain polymer or solid. When pressure and/or temperature is applied to the carbon-containing matrix 702 and the additive precursor 714, the additive precursor 714 can be filled into the pores 704 of at least a portion of the carbon-containing matrix 702; then, a chemical reaction is generated and More than one additive final product (e.g., additive 722) is formed in the pores 704 of the carbon-containing matrix 702 to form a carbon-adding compound 720, wherein the additive 722 is non-metallic and at least one of the carbon-containing substrates 702 The hole 12 201144215 hole 704 is filled with the additive 722; in addition, the space containing the hole of the additive melon is at least partially filled with the additive 722. In some embodiments, the viscosity of the additive precursor 714 can affect the amount of the additive port 722 that is disposed in the hole 7〇4, such as 'when the additive precursor 714 (such as SiH4 gas or eve, by) At high viscosity, a thin layer of additive 722 may only be formed in the void 704, thus limiting the addition of the additive 722 to the void 7 〇 4 when using another additive precursor 714 having a high viscosity (eg, In the case of epoxy resin, nylon, and barium grease, it is possible to fill more holes in the hole/same 704. Additionally, the pressure and/or temperature applied to the carbonaceous substrate 702 and the additive precursor 714, as well as the length of time during which the pressure and/or temperature is applied, will also affect the amount of additive 722 disposed in the void 704. When the additive precursor 714 contains ruthenium, if the ruthenium in the additive precursor 714 reacts with the carbon in the carbonaceous substrate 702, ruthenium carbide is formed. For example, eucalyptus oil may react with carbon in the following reaction: (-SiC2H60 -)n^Si0+2C+3H2->SiC +CO The fine-grained valley is disclosed in "''Thermal Decomposition of Commerical Silicone Oil to Produce High Yield High Surface Area SiC Nanorods, J by VG Pol, SB Pol , A. Gedanken, SH Lim, Z. Zhong, and J. Lin, J. Phys. Chem. B 2006, 110, 11237-11240, which is incorporated by reference in its entirety. According to the above method, tantalum carbide can be formed in the pores 704 of the carbon-containing matrix 702 'Because the niobium carbide has a good affinity with the carbon in the carbon-containing matrix 7〇2', it will form between the tantalum carbide and the carbon-containing matrix 702. Yiliang 13 201144215 The interface of the good interface is used to enhance the elasticity and strength of the carbon-adding σ compound; in detail, the flexural strength of the carbon-added compound 720 can be increased compared with the bending strength of the carbon-containing matrix 7G2 described above. About 2〇% to π%. In addition, since the carbon cut and the carbon-containing matrix 7 () 2 have an interface, the phonon coupling and heat transfer through the holes 704 can also be increased, and therefore, the heat transfer coefficient of the carbon-added compound 72G can be improved; Compared with the heat transfer coefficient of the aforementioned carbon-containing substrate 7〇2, the heat transfer coefficient of the carbon-added compound 72〇 can be increased by 5% to 30%. Step 724 is to clean and cure the carbon addition compound 72, for example, by first removing the excess additive precursor 7! 4 with an alcohol tablet and then adding the compound 720 with air dry carbon, followed by 100. (: to 185. Heating between }) to 6 hours to cure the carbon addition compound 72. Then, the step measures the properties of the carbon-added compound 72G, for example, the bending strength can be measured by the 3-point bending method. The thermal conductivity is measured by a laser flash analysis (LFA) method (such as A·E1461). Although the above method 700 is to fill the pores 7含4 of the carbon-containing matrix 702 with a non-metallic additive 722, the reduction can be by chemistry. The reaction (such as high pressure impregnation reaction (HPIR)) to fill the pores 704' of the carbon-containing matrix by using other substances, and the substance which can be formed in the pores 7〇4 of the carbon-containing matrix 7〇2 includes, for example, metal (bell, boron). , Shi Xi, zinc, silver, m s, tin, gallium, etc.), alloys (copper alloy, Ming alloy, bribe alloy, Mingzhen alloy, ageing alloy, etc.), compounds (gasification (four), tin oxide, gas Xian, oxygen reduction, carbon carbide, gasification, nitriding, gallium nitride, zinc oxide, zinc sulfide, etc., and semiconductor superlattice or quantum dots (1) secret, 201144215

AlGaN、InNAs、GaAsP 等)。 圖8A至8C分別顯示含碳基質在顯微鏡下的照片,其 係分別為在含碳基質之孔洞中設置矽油脂前後的照片。其 中,圖8A顯示在含碳基質之孔洞中未填充者,部分未填 充之孔洞係以白色箭號標示;圖8B顯示在含碳基質之孔 洞中填充矽油脂者,部分填充矽油脂之孔洞係以白色箭號 標示;圖8C顯示在含碳基質之孔洞中填充矽油脂並經過 固化者,部分填充矽油脂之孔洞係以白色箭號標示。 圖9A及9B分別顯示可採用具有非金屬添加物填充之 含碳基質之熱傳導裝置的示意圖。在一實施例中,碳添加 化合物可以用作為一散熱器,如圖9A所示之散熱器910, 其中,碳添加化合物可以加工在散熱器910之中,以便對 與一基板930連接之一電腦晶片920進行散熱;此外,碳 添加化合物還可以應用於連接一發光二極體之散熱器。在 另一實施例中,如圖9B所示,碳添加化合物940可以連 接至一散熱器950,其係經由一絕緣層970連接至一電腦 晶片960,如絕緣閘極雙極電晶體(IGBT)。 圖10顯示具有熱傳導添加物1004之高分子1002的 應用示意圖。在步驟1006中,熱傳導添加物1004係與高 分子1002混合,其中,熱傳導添加物1004不應過量,以 確保高分子1002仍然具有足夠的黏著強度及介電強度以 符合特定應用之需求;高分子1002可以是一矽烷基高分 子,另外,高分子1002之橡膠硬度約在A式計量5至100 之間。 15 201144215 ’、、、〒艰力口物1004可以是有機物質或無機物質,其 中,4./ 為之熱傳導添加物1004例如包括石墨微粒、 奈米碳管、石— 蚤溥片、c60 ( Buckminster Fullerene )、及其 组合;另々k ’、 ' 卜’無機之物質之熱傳導添加物1004例如包括 微粒金屬、碳膜奈米微粒金屬、$膜奈米微粒金屬、 特疋金屬氧化物、特定金屬氮化物、特;t金屬碳化物、及 其組合。另 ^ 力外,熱傳導添加物1004可包括碳金屬化合物 質之微塵及薄片,例如為碳_銘化合物質、或碳善 物質,十Α ^ σ卩分貫施例中,碳-鋁化合物質及碳_鋁_矽化合物 貝可利用將鋁或含矽鋁合金射入孔隙式含碳基質之方式 所形成。 熱傳導添加物1004可以增加高分子1002的熱傳導係 數在。卩分貫施例中,熱傳導添加物1004亦可以改善高 分子1002的機械強度。在高分子1002中混合之熱傳導添 加物1004的種類及數量可以依據添加熱傳導添加物1〇〇4 後高分子1〇02的預期熱傳導係數而定。以下說明係以「加 強熱傳之高分子」1〇1〇來表示含有熱傳導添加物1〇〇4之 高分子1002。 加強熱傳之高分子1010可以有各種不同的應用,舉 例而言,在步驟1008中,加強熱傳之高分子1〇1〇係設置 於模具1012中,其中’加強熱傳之高分子1〇1〇可以利用 射出成形、澆鑄成形、加壓成形、加壓射出成形、或其組 合’以形成特定形狀,在一實施例中,加強熱傳之高分子 1010可以形成一電腦晶片之蓋體。 201144215 在步驟1014中,加強熱傳之高分子1010係從模具中 移出,並依據加強熱傳之高分子1010之成分在適當條件 下固化,例如,加強熱傳之高分子1010可以依據特定時 間函數進行加熱;此外,亦可以利用照射紫外光線以固化 加強熱傳之高分子1010。 在步驟1016中,加強熱傳之高分子1010係為一黏著 劑,且其係黏著於一基板1018上,因此,可以將一裝置 1020 (如電腦晶片)設置於加強熱傳之高分子1010上, 以連接基板1018 ;接著,加強熱傳之高分子1010可以作 為熱管理材料,以協助將熱能從裝置1020傳送至基板 1018。 在步驟1022中,加強熱傳之高分子1010係塗佈於裝 置1020及基板1018上,此時,加強熱傳之高分子1010 可以將熱能從裝置1020上散開。 在步驟1024中,加強熱傳之高分子1010係設置於一 容器1026中,另外,基板1018與設置1020也可以設置 於容器1026中,而且一含碳基質1028亦可以設置於容器 1026中;在部分實施例中,含碳基質1028可具有未填充 之孔洞,此外,含碳基質1028亦可以具有填充或部分填 充之孔洞。其中,含碳基質1028係設置於基板1018與設 置1020之間。 步驟1030係施加壓力及/或熱能至加強熱傳之高分子 1010、基板1018、裝置1020及含碳基質1028,其中,所 施加之壓力係介於500psi至llOOOpsi,所施加之溫度係介 17 201144215 於800°c至1000°C。由於壓力及/或熱能係施加至加強熱傳 之高分子1010、基板1018、裝置1020及含碳基質1028, 所以加強熱傳之高分子1010可以設置於含碳基質1028與 基板1018之間、且設置於含碳基質1028與裝置1020之 間’因此,加強熱傳之高分子1010可以作為一黏著劑以 連接基板1018、裝置1020及含碳基質1〇28。此外,加強 熱傳之高分子1010亦可以塗佈於基板1018、裝置1020及 含碳基質1028上,以協助從裝置移除熱能。 另外’加強熱傳之高分子1010可以設置於含碳基質 1028之孔洞中;在部分實施例中,加強熱傳之高分子1〇1〇 可以藉由將前驅物與含碳基質1028中的碳反應,以便在 含碳基質1028之孔洞中形成之最終產物。舉例而言,可 以藉由施加壓力及/或熱能至加強熱傳之高分子1〇1〇、基 板1018、裝置1020及含碳基質1028 ’以誘發高壓浸潰反 應,當加強熱傳之高分子1010包括矽時,最終產物可包 括碳化石夕。 利用加強熱傳之高’分子1010可以作為黏著劑、並設 置於含碳基質1028與基板1018之間且設置於含碳基質 1028與裝置1020之間,可以有效改善將熱能從裝置1〇20 移除的效率;此外,由於含碳基質1028之孔洞中係填充 有加強熱傳之高分子1010,所以可以改善含碳基質1028 之強度、彈性及熱傳係數。 在步驟1032中,加強熱傳之高分子1〇1〇、基板ι〇18、 裝置1020及含碳基質1028係在約l〇〇°c至200°C的溫度 201144215 下進行固化’以便產生一熱管理系統1034。 圖11顯示經由具有熱傳導添加物U04之高分子11〇2 進行熱傳導的示意圖’其中,高分子1102係設置於產熱 裝置1106與一基板1108之間,而產熱裝置1106係例如為 一電子裝置(如一電腦晶片)。 圖11所示之箭號111〇_1114顯示熱能從產熱裝置11〇6 流向基板1108,其中,箭號1110_1114越厚表示傳送的熱 能越多,如圖11所示,當熱傳導添加物1104設置在熱能 傳遞路徑上時,經由高分子1102之熱流較大;換言之, 由於熱傳導添加物1104之熱傳導係數高於高分子11〇2之 熱傳導係數,所以熱傳導添加物11〇4可以有效改善從產 熱裝置1106流向基板ιι〇8之熱能傳遞。 在如圖11所示之實施例中,當箭號1110_1114向前經 由高分子1102而從裝置1106至基板11〇8時,其厚度減 少,其表示從裝置1106傳送至基板1108的熱能減少;箭 號1110及1114顯示與熱傳導添加物11〇4接觸所產生之熱 能,而箭號1112顯示僅通過高分子11〇2之熱能,其中, 箭號1110及1114顯示從裝置1106傳送至基板11〇8的熱 能係大於箭號1112者。 · 在部分實施例中,熱傳導添加物1104與高分子11〇2 之間的界面特性可以影響從裝置1106至基板11〇8的熱 傳;例如,當高分子11〇2為一矽高分子且熱傳導添加物 1104包括奴時,在高分子11〇2與熱傳導添加物Η⑽之間 曰开y成奴化石夕界面,其具有高熱傳導係數,所以可以經 201144215 過熱傳導添加物1104提供大量的熱傳。在另一實施例中, 高分子1102係為一矽高分子且熱傳導添加物11〇4係含有 金屬’與碳基熱傳導添加物1104相比,此金屬熱傳導添 加物1104與矽高分子之間通常具有較低的親和力,所以 金屬熱傳導添加物1104與矽高分子1102之間的界面可能 會中斷高分子1102與熱傳導添加物1104之間的熱傳,並 減少通過熱傳導添加物1104.之熱傳。在部分實施例中, 可以藉由塗佈一碳基外膜於熱傳導添加物1104上,以改 善高分子1102與金屬熱傳導添加物1104之間的界面。 以下將列舉數個實驗例,以說明依據本發明之方法 700將非金屬添加物設置於含碳基質的孔洞中。 實驗例 實驗例1 薄板狀之含碳基質(POCO high temperature carbon (HTC))高溫碳之與矽油脂(Dow Corning 3-6751 )係設置 於一高壓模具中,其中,含碳基質(POCO HTC)的密度 約為0.9 g/cm3,其總孔隙度約為61%,其開放式開孔之孔 隙度約為57.9%,其在z軸方向之熱傳導係數約為 245W/mK,其在x/y軸方向之熱傳導係數約為70W/mK, 石夕油脂(Dow Corning 3-6751 )的密度約為2.3 g/cm3,其 黏度約為lOOOOcp,其熱傳導係數約為l.lW/mK ;首先將 含碳基質(POCO HTC)的樣品以氮氣喷槍進行清潔,然 後測量其原始重量;接著將含碳基質(POCO HTC)與矽 201144215 油脂(Dow Corning 3-6751 )設置於一高壓模具中,並針 對不同樣品施加壓力至約2200〇Psi並維持5至60分鐘不 等;在壓力釋放後,以酒精片擦拭樣品並以空氣乾燥,接 著測量樣品重量並在約100°C下靜置約1小時以固化樣 品,固化後再次測量樣品重量。各製程條件及含碳基質與 碳添加物之特性的測量結果係如表1所示。 表1 樣品 壓力 時間 碳塊 浸潰 固化 固化 固4匕 開放 編號 (psi) (分 體重 後之 後之 後之 後之 式孔 鐘) 量 重量 重量 油脂 油脂 洞填 (克) (克) (克) 重量 體積 充比 比 比 (%) (%) (%) 01 22000 60 1.4972 2.4878 2.8457 47.4 35.2 60.9 05 22000 30 1.4379 2.8425 2.8384 49.3 38.1 65.8 03 22000 15 1.4029 2.6615 2.6507 47.1 34.8 60.1 04 22000 5 1.4548 2.9410 2.9402 50.5 40.0 69.0 實驗例2 薄板狀之含後基質(P0C0HTC)與矽油脂(Dow Corning 3-6751 )係設置於一高壓模具中,其中,含碳基質 (POCO HTC )的密度約為〇.9 g/cm3,其總孔隙度約為61 %,其開放式開孔之孔隙度約為57.9% ’其在z轴方向之 熱傳導係數約為245 W/mK,其在x/y軸方向之熱傳導係數 21 201144215 約為70W/mK ’石夕油脂(Dow Corning 3-6751 )的密度約 為2_3 g/cm3,其黏度約為lOOOOcp,其熱傳導係數約為 l.lW/mK;首先將含碳基質(POCOHTC)的樣品以氮氣 喷搶進行清潔,然後測量其原始重量;接著將含碳基質 (POCO HTC )與石夕油脂(Dow Corning 3-6751 )設置於一 高壓模具中,並針對不同樣品施加不同壓力(從0至 22000psi)並維持15分鐘;在壓力釋放後,以酒精片擦拭 樣品並以空氣乾燥,接著測量樣品重量益在約100°C下靜 置約1小時以固化樣品,固化後再次測量樣品重量。各製 程條件及含碳基質與碳添加物之特性的測量結果係如表2 所示。 表2 樣品 編號 壓力 (psi) 時間 (分 鐘) 碳塊 體重 量 (克) 浸潰 後之 重量 (克) 固化 後之 重量 (克) 固化 後之 油脂 重量 比 (%) 固化 後之 油脂 體積 比 (%) 開放 式孔 洞填 充比 (%) 03 22000 15 1.4029 2.6615 2.6507 47.1 34.8 60.1 06 16500 15 1.4003 2.8065 2.7998 50.0 39.1 67.5 07 22000 15 1.3814 2.8259 2.8222 51.1 40.8 70.5 08 11000 15 1.3284 2.8342 2.8228 52.9 44.0 76.0 09 5500 15 1.5210 3.1197 3.1074 51.1 40.8 70.5 22 201144215 16 1320 15 1.3210 2.7463 2.7350 51.7 41.9 72.3 12 550 15 1.4105 2.9104 2.9037 51.4 41.4 71.5 15 220 15 1.3879 1.9934 1.9895 30.2 17.0 29.3 13 2.2 15 1.3474 1.8033 1.7990 25.1 13.1 22.7 11 0 15 1.4037 1.5371 1.5333 8.4 3.61 6.2 實驗例3 薄板狀之含碳基質(POCOHTC)與矽油脂(Dow Corning 3-6751 )係設置於一高壓模具中,其中,含碳基質 (POCOHTC)的密度約為0.9 g/cm3,其總孔隙度約為61 %,其開放式開孔之孔隙度約為57_9%,其在z軸方向之 熱傳導係數約為245W/mK,其在x/y軸方向之熱傳導係數 約為70W/mK ’石夕油脂(d〇w Corning 3-6751 )的密度約 為2.3 g/cm3,其黏度約為1〇〇〇〇cp,其熱傳導係數約為 l.lW/mK;首先將含碳基質(p〇c〇HTC)的樣品以氮氣 喷槍進行清潔’然後測量其原始重量;接著將含碳基質 (POCO HTC )與矽油脂(D〇w c〇ming 3 675 i )設置於一 面壓模具中’並在約55〇psi壓力下靜置15分鐘;在壓力 釋放後U/酉精片擦找樣品並以空氣乾燥,接著測量樣品 重里並在約100 C下靜置約i小時以固化樣品,固化後再 次測3樣°°°重量°各製程條件及含碳基質與碳添加物之特 性的測量結果係如表3所#。 表3 23 201144215 樣品 碳塊 浸潰後 固化後 固化 固>ί匕 固化 固^匕 開放 編號 體重 之重量 之重量 後之 後之 後之 後之 式孔 量 (克) (克) 油脂 質量 油脂 油脂 洞填 (克) 重量 密度 重量 體積 充比 損失 (克) 比 比 (%) 比 (%) (%) (%) 31 4.9700 10.9374 10.8385 0.9 1.81 54.1 46.2 79.8 33 5.1144 11.2992 11.2259 0.6 1.88 54.4 46.8 80.7 實驗例4 薄板狀之含碳基質(POCOHTC)與矽油脂(Dow Corning 3-6751 )係設置於一高壓模具中,其中,含碳基質 (POCOHTC)的密度約為0.9g/cm3,其總孔隙度約為61 %,其開放式開孔之孔隙度約為57.9%,其在z軸方向之 熱傳導係數約為245W/mK,其在x/y轴方向之熱傳導係數 約為70W/mK,石夕油脂(Dow Corning 3-6751 )的密度約 為2.3 g/cm3,其黏度約為loooocp,其熱傳導係數約為 l,lW7mK;首先將含碳基質(P〇c〇HTC)的樣品以氮氣 喷槍進行清潔,然後測量其原始重量;接著將含碳基質 (POCOHTC)與矽油脂(D〇wC〇rning 3-6751 )設置於一 高壓模具中,並在約55〇psi壓力下靜置15分鐘;在壓力 釋放後’以酒精片擦找樣品並以空氣乾燥,接著測量樣品 重罝並在約100 C下靜置約i小時以固化樣品,接著再次 24 201144215 測量樣品重量、並以3點彎折法測量彎折強度;另外,同 樣以3點彎折法測量裸碳塊體(未浸潰於矽油脂 Coming 3-6751 ))之彎折強度;再以雷射閃光分析法 (ASTME1461)測量樣品之熱傳導係數。含碳基質與碳 添加物之特性的測量結果係如表4及表5所示。 表4 樣品 裸碳 碳塊 浸潰 固化 固4匕 開放 彎折 彎折 編號 塊體 體重 及固 後之 後之 式孔 強度 強度 量 化後 油脂 油脂 洞填 (MPa) 增加 (克) 之重 重量 體積 充比 量 量 比 比 (%) (%) (克) (%) (%) 20X 是 2.70 19X 否 1.3246 2.9135 54.5 46.9 81.1 3.39 25.6 24Y 是 2.86 23Y 否 1.3701 3.1127 56.0 49.8 86.0 3.59 25.5 28Z 是 3.06 27Z 否 1.3299 2.8421 53.2 44.5 76.8 3.59 17.3 表5 ~~ 樣品編號 25°C之厚 25°C之容 比熱 熱擴散係 熱傳導係數 度(mm) 積密度 (J/g-K) 數(mm2/s) (W/m-K) (g/cm3) 25 201144215 31X 2.85 1.93 0.777 43.0 64.515 32Y 2.76 1.95 0.864 43.6 73.45 33Z 2.94 1.95 0.824 173 277.565 實驗例5 薄板狀之含礙基質(POCO HTC)與環氧樹脂(Master Bond EP112)係設置於一高壓模具中,其中,含碳基質 (POCO HTC )的密度約為0.9 g/cm3,其總孔隙度約為61 %,其開放式開孔之孔隙度約為57.9%,其在z軸方向之 熱傳導係數約為245W/mK,其在x/y轴方向之熱傳導係數 約為70W/mK,環氧樹脂(Master Bond EP112)的密度約 為1.0 g/cm3,其黏度約為300-400cp ;首先將含碳基質 (POCO HTC )的樣品以氮氣喷槍進行清潔,然後測量其 原始重量;接著將含碳基質(POCOHTC)與環氧樹脂 (Master Bond EP112)設置於一高壓模具中,並在約550psi 壓力下靜置15分鐘;在壓力釋放後,以酒精片擦拭樣品 並以空氣乾燥,接著測量樣品重量並在約185°C下靜置約 6小時以固化樣品,接著再次測量樣品重量、以3點彎折 法測量彎折強度、並以雷射閃光分析法(ASTM E1461 ) 測量樣品之熱傳導係數。含碳基質與碳添加物之特性的測 量結果係如表6、表7及表8所示。 表6 樣品 碳塊 浸潰後 固化 固化 固化 固化 固化 開放 26 201144215 編號 體重 之重量 後之 後之 後之 後之 後之 式孔 量 (克) 重量 環氧 質量 環氧 環氧 洞填 (克) (克) 樹脂 密度 樹脂 樹脂 充比 重量 (%) 重量 體積 (%) 損失 比 比 比 (%) (%) (%) 44X 6.4448 9.9895 9.1476 8.5 1.28 29.5 37.7 65.2 45Y 6.5525 9.8280 8.9571 8.9 1.23 26.8 33.0 57.0 46Z 6.6930 10.1307 9.1105 10.0 1.23 26.5 32.5 56.1 表7 樣品編號 裸碳塊體 彎折強度 彎折強度增加量 (MPa) (%) 20X 是 2.70 38X 否 9.82 264 24Y 是 2.86 40Y 否 9.91 247 28Z 是 3.06 42Z 否 9.60 213 表8 樣品編號 25°C之厚 25°C之容 比熱 熱擴散係 熱傳導係 27 201144215 度(mm) 積密度 (g/cm3) (J/g-K) 數 (mm2/s) 數 (W/m-K) 44X 3.06 1.17 0.894 75.8 78.914 45Y 2.92 1.18 0.821 96.8 93.409 46Z 2.99 1.17 0.803 303 285.085 貫驗例6 薄板狀之含碳基質(POCOHTC)與矽烷基密封膠係 設置於一高壓模具中,其中,含碳基質(POCOHTC)的 密度約為0.9 g/cm3,其總孔隙度約為61%,其開放式開孔 之孔隙度約為57.9%,其在z軸方向之熱傳導係數約為 245W/mK,其在x/y軸方向之熱傳導係數約為70W/mK, 矽烷基密封膠的密度約為1.0 g/cm3 ;首先將含碳基質 (POCOHTC)的樣品以氮氣喷槍進行清潔,然後測量其 原始重量;接著將含碳基質(POCOHTC)與矽烷基密封 膠設置於一高壓模具中,並在約550psi壓力下靜置15分 鐘,但是其中一個樣品的壓力為2750psi ;在壓力釋放後, 以酒精片擦拭樣品並以空氣乾燥,接著測量樣品重量並在 約100°C下靜置約6小時以固化樣品,接著再次測量樣品 重量、並以3點彎折法測量彎折強度。含碳基質與碳添加 物之特性的測量結果係如表9及表10所示。 表9 樣品編破 碳塊體 浸潰後之 固化後之 開放式 28 201144215 重量 (克) 重量 (克) 質量密度 (g/cm3) 密封膠 之重量 比 (%) 密封膠 之體積 比 (%) 孔洞填 充比 (%) 47Z 0.6477 1.0126 1.41 36.0 50.7 87.6 48Z 0.9081 1.3998 1.39 35.1 48.7 84.1 49Z 0.6969 10.1307 1.33 32.1 42.5 73.4 (2750psi) 50Z 1.5758 2.5653 1.47 38.4 56.4 85.4 表ίο 樣品編號 裸碳塊體 彎折強度 彎折強度增加 (MPa) 量 (%) 28Z 是 3.06 50Z 否 4.92 60.8 實驗例7 薄板狀之含碳基質(POCOHTC)與尼龍11係設置於 一高壓模具中,其中,含碳基質(POCOHTC)的密度約 為0.9 g/cm3,其總孔隙度約為61%,其開放式開孔之孔隙 度約為57.9%,其在z軸方向之熱傳導係數約為 245W/mK,其在x/y軸方向之熱傳導係數約為70W/mK, 29 201144215 尼龍11的密度約為1.0 g/cm3 ;首先將含碳基質.(POCO HTC )的樣品以氮氣喷槍進行清潔,然後測量其原始重量; 接著將含碳基質(POCOHTC)與尼龍11設置於一高壓模 具中,並在約550psi壓力及260°C下靜置15分鐘;在壓力 釋放後’以酒精片擦拭樣品並以空氣乾餘,接者測ΐ樣品 重量並以3點彎折法測量彎折強度。含碳基質與碳添加物 之特性的測量結果係如表11及表12所示。 表11 樣品編號 碳塊體 浸潰後之 質量密度 尼龍之 尼龍之 開放式 重量 重量 (g/cm3) 重量比 體積比 孔洞填 (克) (克) (%) (%) 充比 (%) 53Ζ 8.6949 12.9385 1.31 32.8 43.9 75.9 表12 樣品編號 裸碳塊體 彎折強度 彎折強度增加量 (MPa) (%) 28Z 是 3.06 53Z 否 9.84 221.6 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 30 201144215 圖1A及1B分別顯示高品質針狀焦炭及低品質焦炭之 掃描式電子顯微鏡(SEM)影像的示意圖; 圖2顯示粗石墨顆粒結構及精製石墨顆粒結構之SEM 影像的示意圖; 圖3顯示製造示例性含碳基質之方法的流程圖; 圖4顯示含碳基質之穿透式電子顯微鏡(TEM)影像 的不意圖, 圖5A及5B分別顯示含碳基質之奈米石墨板的TEM 影像的示意圖; 圖6A及6B分別顯示含碳基質的TEM衍射圖案及影 像的示意圖; 圖7顯示將非金屬添加物設置於含碳基質之孔洞中之 方法的流程圖; 圖8A至8C分別顯示含碳基質在顯微鏡下的照片,其 係分別為在含碳基質之孔洞中設置矽油脂前後的照片; 圖9A及9B分別顯示可採用碳添加化合物之熱傳導裝 置的示意圖; 圖10顯示具有熱傳導添加物之高分子的應用示意 圖;以及 圖11顯示經由具有熱傳導添加物之高分子進行熱傳 導的不意圖。 【主要元件符號說明】 300、700 :方法 31 201144215 310 、 320 ' 330 、 340 ' 350 ' 360 ' 370 ' 706 ' 708 ' 712 、 716、724、726、1006、1008、1014、1016、1022、1024、 1030、1032 :步驟 702、1028 :含碳基質 704 :孔洞 710、1026 :容器 714 :添加物前驅物 718 :模口 720、940 :碳添加化合物 722 :添加物 910、950 :散熱器 920、960·電腦晶片 930、1018、1108 :基板 1002、1102 :高分子 1004、1104 :熱傳導添加物 1010 :加強熱傳之高分子 1012 :模具 1020 :裝置 1034 :熱管理系統 1106 :產熱裝置 1110、1112、1114 :箭號 a、b :影像 NGP :含碳基質之奈米石墨板 NS :奈米狹缝 NV :奈米孔洞 32AlGaN, InNAs, GaAsP, etc.). Figures 8A to 8C respectively show photographs of a carbon-containing substrate under a microscope, which are photographs before and after the setting of the barium fat in the pores of the carbon-containing substrate, respectively. 8A shows that the unfilled holes in the carbon-containing matrix are not filled, and some unfilled holes are indicated by white arrows; FIG. 8B shows the hole filled with yttrium oil in the holes of the carbon-containing matrix, and partially filled with sputum It is indicated by a white arrow; Figure 8C shows that the hole in the carbon-containing matrix is filled with yttrium oil and solidified, and the hole system partially filled with yttrium oil is indicated by a white arrow. Figures 9A and 9B show schematic views of a heat transfer device that may employ a carbonaceous substrate filled with a non-metallic additive, respectively. In one embodiment, the carbon addition compound can be used as a heat sink, such as the heat sink 910 shown in FIG. 9A, wherein the carbon addition compound can be processed in the heat sink 910 to connect a computer to a substrate 930. The wafer 920 performs heat dissipation; in addition, the carbon addition compound can also be applied to a heat sink that connects a light emitting diode. In another embodiment, as shown in FIG. 9B, the carbon addition compound 940 can be coupled to a heat sink 950 that is coupled via an insulating layer 970 to a computer chip 960, such as an insulated gate bipolar transistor (IGBT). . Figure 10 shows a schematic representation of the application of polymer 1002 with heat transfer additive 1004. In step 1006, the heat transfer additive 1004 is mixed with the polymer 1002, wherein the heat transfer additive 1004 should not be excessive to ensure that the polymer 1002 still has sufficient adhesive strength and dielectric strength to meet the needs of a specific application; 1002 may be a monoalkyl polymer, and the rubber hardness of the polymer 1002 is about 5 to 100 in the range of A. 15 201144215 ',,, 〒 力 口 100 1004 can be organic or inorganic substances, of which 4. / for heat conduction additives 1004, for example, including graphite particles, carbon nanotubes, stone - cymbals, c60 ( Buckminster Fullerene), and combinations thereof; another heat transfer additive 1004 of k', 'b' inorganic substance includes, for example, particulate metal, carbon nanoparticle metal, $nanoparticle metal, special metal oxide, specific metal Nitride, special; t metal carbide, and combinations thereof. In addition, the heat transfer additive 1004 may include carbon dust and flakes of a carbon metal compound, such as a carbon compound, or a carbon good substance, a carbon-aluminum compound and a carbon-aluminum compound. The carbon_aluminum_antimony compound can be formed by injecting aluminum or a bismuth-containing aluminum alloy into a porous carbonaceous substrate. The heat transfer additive 1004 can increase the heat transfer coefficient of the polymer 1002. In a separate embodiment, the heat transfer additive 1004 can also improve the mechanical strength of the high molecular weight 1002. The type and amount of the heat conduction additive 1004 mixed in the polymer 1002 can be determined depending on the expected heat transfer coefficient of the polymer 1〇02 after the addition of the heat conduction additive 1〇〇4. Hereinafter, the polymer 1002 containing the heat conduction additive 1〇〇4 will be described by the phrase "polymer which enhances heat transfer". The heat-transferring polymer 1010 can have various applications. For example, in step 1008, the heat-transferring polymer 1〇1〇 is disposed in the mold 1012, wherein the 'enhanced heat transfer polymer 1〇 1〇 may be formed by injection molding, casting molding, press molding, pressure injection molding, or a combination thereof to form a specific shape. In one embodiment, the heat-transferring polymer 1010 may form a cover of a computer wafer. 201144215 In step 1014, the heat-transferring polymer 1010 is removed from the mold and cured under appropriate conditions according to the composition of the polymer 1010 which enhances heat transfer. For example, the polymer 1010 which enhances heat transfer can be based on a specific time function. Heating is also performed; in addition, it is also possible to use ultraviolet light to cure the polymer 1010 which enhances heat transfer. In step 1016, the heat-transferring polymer 1010 is an adhesive and is adhered to a substrate 1018. Therefore, a device 1020 (such as a computer chip) can be disposed on the heat-transferring polymer 1010. To connect the substrate 1018; then, the heat-transferring polymer 1010 can serve as a thermal management material to assist in transferring thermal energy from the device 1020 to the substrate 1018. In step 1022, the heat-transferring polymer 1010 is applied to the device 1020 and the substrate 1018. At this time, the heat-transferring polymer 1010 can dissipate thermal energy from the device 1020. In step 1024, the heat-transferring polymer 1010 is disposed in a container 1026. Alternatively, the substrate 1018 and the setting 1020 may be disposed in the container 1026, and a carbon-containing substrate 1028 may also be disposed in the container 1026; In some embodiments, the carbon-containing matrix 1028 can have unfilled pores. In addition, the carbon-containing matrix 1028 can also have filled or partially filled pores. The carbon-containing substrate 1028 is disposed between the substrate 1018 and the set 1020. Step 1030 applies pressure and/or thermal energy to the enhanced heat transfer polymer 1010, substrate 1018, device 1020, and carbonaceous substrate 1028, wherein the applied pressure is between 500 psi and 110 psi, and the applied temperature is 17 201144215. From 800 ° C to 1000 ° C. Since the pressure and/or thermal energy is applied to the heat-transferring polymer 1010, the substrate 1018, the device 1020, and the carbon-containing substrate 1028, the heat-enhancing polymer 1010 may be disposed between the carbon-containing substrate 1028 and the substrate 1018, and The carbonaceous substrate 1028 is disposed between the carbonaceous substrate 1028 and the device 1020. Thus, the heat-transferring polymer 1010 can serve as an adhesive to connect the substrate 1018, the device 1020, and the carbon-containing substrate 1〇28. Additionally, the enhanced heat transfer polymer 1010 can also be applied to the substrate 1018, the device 1020, and the carbonaceous substrate 1028 to assist in the removal of thermal energy from the device. In addition, the 'heat-enhanced polymer 1010 can be disposed in the pores of the carbon-containing matrix 1028; in some embodiments, the heat-enhancing polymer can be made by the precursor and the carbon in the carbon-containing matrix 1028. The reaction is such that a final product is formed in the pores of the carbonaceous substrate 1028. For example, by applying pressure and/or thermal energy to enhance the heat transfer of the polymer 1〇1〇, the substrate 1018, the device 1020, and the carbon-containing substrate 1028′ to induce a high pressure impregnation reaction, when the heat transfer polymer is enhanced When 1010 includes ruthenium, the final product may include carbon stone. The high-molecular molecule 1010 can be used as an adhesive and disposed between the carbon-containing substrate 1028 and the substrate 1018 and disposed between the carbon-containing substrate 1028 and the device 1020, which can effectively improve the transfer of thermal energy from the device 1〇20. In addition, the strength, elasticity, and heat transfer coefficient of the carbonaceous substrate 1028 can be improved because the pores of the carbonaceous substrate 1028 are filled with the polymer 1010 which enhances heat transfer. In step 1032, the heat-transferring polymer 1〇1〇, the substrate ι18, the device 1020, and the carbon-containing substrate 1028 are cured at a temperature of about 11 ° C to 200 ° C at 201144215 to generate a Thermal management system 1034. 11 shows a schematic diagram of heat conduction through a polymer 11〇2 having a heat conduction additive U04 in which a polymer 1102 is disposed between a heat generating device 1106 and a substrate 1108, and the heat generating device 1106 is, for example, an electronic device. (such as a computer chip). The arrow 111〇_1114 shown in Fig. 11 indicates that heat energy flows from the heat generating device 11〇6 to the substrate 1108, wherein the thicker the arrow 1110_1114 indicates the more heat energy transferred, as shown in Fig. 11, when the heat conduction additive 1104 is set. In the thermal energy transfer path, the heat flow through the polymer 1102 is large; in other words, since the heat transfer coefficient of the heat transfer additive 1104 is higher than the heat transfer coefficient of the polymer 11〇2, the heat transfer additive 11〇4 can effectively improve the heat generation. The device 1106 flows to the substrate ι 8 for thermal energy transfer. In the embodiment shown in FIG. 11, when the arrow 1110_1114 is forwardly passed from the device 1106 to the substrate 11〇8 via the polymer 1102, its thickness is reduced, which represents a decrease in thermal energy transferred from the device 1106 to the substrate 1108; Nos. 1110 and 1114 show thermal energy generated by contact with the heat transfer additive 11〇4, while arrow 1112 shows thermal energy only through the polymer 11〇2, where arrows 1110 and 1114 are shown to be transferred from the device 1106 to the substrate 11〇8. The thermal energy system is greater than the arrow number 1112. In some embodiments, the interface characteristics between the heat transfer additive 1104 and the polymer 11〇2 may affect heat transfer from the device 1106 to the substrate 11〇8; for example, when the polymer 11〇2 is a polymer and When the heat conduction additive 1104 includes a slave, the interface between the polymer 11〇2 and the heat conduction additive Η(10) is opened to form a nucleus, which has a high heat transfer coefficient, so that a large amount of heat transfer can be provided through the 201144215 superheated conductive additive 1104. . In another embodiment, the polymer 1102 is a mono-polymer and the heat-conducting additive 11〇4-containing metal is generally compared with the carbon-based heat-conducting additive 1104. With a lower affinity, the interface between the metal heat transfer additive 1104 and the ruthenium polymer 1102 may disrupt heat transfer between the polymer 1102 and the heat transfer additive 1104 and reduce heat transfer through the heat transfer additive 1104. In some embodiments, the interface between the polymer 1102 and the metal heat transfer additive 1104 can be improved by coating a carbon-based outer film on the heat transfer additive 1104. Several experimental examples will be enumerated below to illustrate the placement of a non-metallic additive in a void of a carbonaceous substrate in accordance with the method 700 of the present invention. Experimental Example Experimental Example 1 POCO high temperature carbon (HTC) high temperature carbon and lanthanum oil (Dow Corning 3-6751) was placed in a high pressure mold, wherein a carbonaceous substrate (POCO HTC) The density is about 0.9 g/cm3, the total porosity is about 61%, the porosity of the open pores is about 57.9%, and the heat transfer coefficient in the z-axis direction is about 245 W/mK, which is at x/y. The heat transfer coefficient in the axial direction is about 70 W/mK, and the density of Dow Corning 3-6751 is about 2.3 g/cm3, the viscosity is about 1000 cp, and the heat transfer coefficient is about l.lW/mK. The carbon matrix (POCO HTC) sample was cleaned with a nitrogen lance and then measured for its original weight; then the carbonaceous substrate (POCO HTC) and 矽201144215 grease (Dow Corning 3-6751) were placed in a high pressure mold and targeted Different samples were applied with a pressure of about 2200 〇 Psi and maintained for 5 to 60 minutes; after the pressure was released, the sample was wiped with an alcohol sheet and air dried, then the sample weight was measured and allowed to stand at about 100 ° C for about 1 hour. The sample was cured and the sample weight was measured again after curing. The measurement results of each process condition and the characteristics of the carbonaceous substrate and the carbon additive are shown in Table 1. Table 1 Sample pressure time Carbon block impregnation Solidification solid 4匕 Open number (psi) (after the weight after the hole clock) Weight, weight, grease and grease hole filling (g) (g) (g) Weight and volume Bibi ratio (%) (%) (%) 01 22000 60 1.4972 2.4878 2.8457 47.4 35.2 60.9 05 22000 30 1.4379 2.8425 2.8384 49.3 38.1 65.8 03 22000 15 1.4029 2.6615 2.6507 47.1 34.8 60.1 04 22000 5 1.4548 2.9410 2.9402 50.5 40.0 69.0 Experimental example 2 The thin plate-like matrix (P0C0HTC) and the lanthanum grease (Dow Corning 3-6751) are disposed in a high pressure mold in which the carbonaceous substrate (POCO HTC) has a density of about 99 g/cm3 and its total pores. The degree is about 61%, and the porosity of the open opening is about 57.9%. The heat transfer coefficient in the z-axis direction is about 245 W/mK, and the heat transfer coefficient 21 201144215 in the x/y axis direction is about 70 W/ mK 'Dow Corning 3-6751' has a density of about 2_3 g/cm3, a viscosity of about 100 cp, and a heat transfer coefficient of about lW/mK. First, a sample of carbon-containing matrix (POCOHTC) is nitrogen. spray Grab the cleaning and measure its original weight; then place the carbonaceous substrate (POCO HTC) and Shiwa grease (Dow Corning 3-6751) in a high pressure mold and apply different pressures (from 0 to 22000 psi) for different samples. After 15 minutes of pressure release, the sample was wiped with an alcohol sheet and air dried, and then the sample weight was measured to stand at about 100 ° C for about 1 hour to cure the sample, and the sample weight was measured again after curing. The measurement results of each process condition and the characteristics of the carbonaceous substrate and the carbon additive are shown in Table 2. Table 2 Sample No. Pressure (psi) Time (minutes) Carbon block weight (g) Weight after impregnation (g) Weight after curing (g) Weight ratio of grease after curing (%) Volume ratio of grease after curing ( %) Open hole filling ratio (%) 03 22000 15 1.4029 2.6615 2.6507 47.1 34.8 60.1 06 16500 15 1.4003 2.8065 2.7998 50.0 39.1 67.5 07 22000 15 1.3814 2.8259 2.8222 51.1 40.8 70.5 08 11000 15 1.3284 2.8342 2.8228 52.9 44.0 76.0 09 5500 15 1.5210 3.1197 3.1074 51.1 40.8 70.5 22 201144215 16 1320 15 1.3210 2.7463 2.7350 51.7 41.9 72.3 12 550 15 1.4105 2.9104 2.9037 51.4 41.4 71.5 15 220 15 1.3879 1.9934 1.9895 30.2 17.0 29.3 13 2.2 15 1.3474 1.8033 1.7990 25.1 13.1 22.7 11 0 15 1.4037 1.5371 1.5333 8.4 3.61 6.2 Experimental Example 3 A thin plate-like carbonaceous substrate (POCOHTC) and a barium grease (Dow Corning 3-6751) are disposed in a high pressure mold in which the carbonaceous substrate (POCOHTC) has a density of about 0.9 g/cm3. The total porosity is about 61%, and the porosity of the open opening is about 57_9%, and its heat conduction in the z-axis direction. The coefficient is about 245W/mK, and its heat transfer coefficient in the x/y axis direction is about 70W/mK. The density of d〇w Corning 3-6751 is about 2.3 g/cm3, and its viscosity is about 1〇. 〇〇〇cp, which has a heat transfer coefficient of about lW/mK; first clean the sample of the carbonaceous substrate (p〇c〇HTC) with a nitrogen lance> and then measure its original weight; then the carbonaceous substrate (POCO) HTC) and 矽 grease (D〇wc〇ming 3 675 i ) set in one side of the mold 'and hold at pressure of about 55 psi for 15 minutes; after pressure release U / 酉 fine film to find samples and air Dry, then measure the sample weight and let stand at about 100 C for about 1 hour to solidify the sample. After curing, measure again 3 ° ° ° ° ° ° process conditions and the characteristics of the carbon matrix and carbon additives measured as Table 3 is #. Table 3 23 201144215 Sample carbon block impregnation after solidification solidification> 匕 匕 匕 匕 匕 重量 匕 编号 编号 编号 编号 编号 编号 编号 编号 编号 编号 编号 编号 孔 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂 油脂克) Weight density Weight volume Charge loss (g) Ratio (%) Ratio (%) (%) (%) 31 4.9700 10.9374 10.8385 0.9 1.81 54.1 46.2 79.8 33 5.1144 11.2992 11.2259 0.6 1.88 54.4 46.8 80.7 Experimental example 4 Thin plate The carbonaceous substrate (POCOHTC) and the lanthanum grease (Dow Corning 3-6751) are disposed in a high pressure mold, wherein the carbonaceous substrate (POCOHTC) has a density of about 0.9 g/cm3 and a total porosity of about 61%. Its open pores have a porosity of about 57.9%, a thermal conductivity of about 245 W/mK in the z-axis, and a heat transfer coefficient of about 70 W/mK in the x/y axis. Dow Corning 3 -6751) has a density of about 2.3 g/cm3, a viscosity of about loooocp, and a heat transfer coefficient of about l, lW7mK; first, a sample of a carbonaceous substrate (P〇c〇HTC) is cleaned with a nitrogen gas gun, and then measured. Its original Weight; then the carbonaceous substrate (POCOHTC) and strontium oil (D〇wC〇rning 3-6751) were placed in a high pressure mold and allowed to stand under a pressure of about 55 psi for 15 minutes; after the pressure was released, 'alcohol The sample was wiped and air dried, then the sample was weighed and allowed to stand at about 100 C for about i hours to solidify the sample, then again 24 201144215 to measure the sample weight and measure the bending strength by a 3-point bending method; The bending strength of the bare carbon block (not impregnated in the crucible oil Coming 3-6751) was also measured by a 3-point bending method; the thermal conductivity of the sample was measured by a laser flash analysis method (ASTME1461). The measurement results of the characteristics of the carbonaceous substrate and the carbon additive are shown in Tables 4 and 5. Table 4 Sample bare carbon block impregnation solidification 4匕 open bending and bending number body weight and post-solid pore strength after quantification grease and grease hole filling (MPa) increase (g) weight and volume volume Quantity ratio (%) (%) (g) (%) (%) 20X is 2.70 19X No 1.3246 2.9135 54.5 46.9 81.1 3.39 25.6 24Y is 2.86 23Y No 1.3701 3.1127 56.0 49.8 86.0 3.59 25.5 28Z is 3.06 27Z No 1.3299 2.8421 53.2 44.5 76.8 3.59 17.3 Table 5 ~~ Sample No. 25°C Thickness 25°C Ratio Thermal Coefficient Heat Transfer Coefficient (mm) Product Density (J/gK) Number (mm2/s) (W/mK) (g /2011/15. In the mold, wherein the carbonaceous substrate (POCO HTC) has a density of about 0.9 g/cm3, a total porosity of about 61%, and an open pore porosity of about 57.9%, and the heat in the z-axis direction. pass The conductivity is about 245W/mK, its thermal conductivity is about 70W/mK in the x/y axis, and the density of epoxy resin (Master Bond EP112) is about 1.0 g/cm3. Its viscosity is about 300-400 cp. A sample containing a carbonaceous substrate (POCO HTC) was cleaned with a nitrogen lance and then measured for its original weight; then a carbonaceous substrate (POCOHTC) and epoxy resin (Master Bond EP112) were placed in a high pressure mold and The sample was allowed to stand at 550 psi for 15 minutes; after the pressure was released, the sample was wiped with an alcohol sheet and air dried, then the sample weight was measured and allowed to stand at about 185 ° C for about 6 hours to cure the sample, and then the sample weight was measured again. The bending strength was measured by a 3-point bending method, and the heat transfer coefficient of the sample was measured by a laser flash analysis method (ASTM E1461). The measurement results of the characteristics of the carbonaceous substrate and the carbon additive are shown in Table 6, Table 7, and Table 8. Table 6 Sample carbon block impregnation, curing, curing, curing, curing, curing, opening 26 201144215 Number of weights after weight, after and after the amount of holes (g) Weight Epoxy quality Epoxy epoxy hole filling (g) (g) Resin density Resin resin Charge weight (%) Weight to volume (%) Loss ratio (%) (%) (%) 44X 6.4448 9.9895 9.1476 8.5 1.28 29.5 37.7 65.2 45Y 6.5525 9.8280 8.9571 8.9 1.23 26.8 33.0 57.0 46Z 6.6930 10.1307 9.1105 10.0 1.23 26.5 32.5 56.1 Table 7 Sample No. Bare Strength Bending Strength Bending Strength Increase (MPa) (%) 20X Yes 2.70 38X No 9.82 264 24Y Yes 2.86 40Y No 9.91 247 28Z Yes 3.06 42Z No 9.60 213 Table 8 Sample No. 25 °C thickness 25 °C capacity heat transfer heat transfer system 27 201144215 degrees (mm) product density (g / cm3) (J / gK) number (mm2 / s) number (W / mK) 44X 3.06 1.17 0.894 75.8 78.914 45Y 2.92 1.18 0.821 96.8 93.409 46Z 2.99 1.17 0.803 303 285.085 Test Example 6 Thin-plate carbonaceous substrate (POCOHTC) and decyl sealant In a high pressure mold, wherein the carbonaceous substrate (POCOHTC) has a density of about 0.9 g/cm3, a total porosity of about 61%, and an open pore porosity of about 57.9%, which is in the z-axis direction. The thermal conductivity is about 245 W/mK, the thermal conductivity in the x/y axis is about 70 W/mK, and the density of the decyl sealant is about 1.0 g/cm3. First, the sample containing the carbon substrate (POCOHTC) is nitrogen. The gun was cleaned and then measured for its original weight; then the carbonaceous substrate (POCOHTC) and the decyl sealant were placed in a high pressure mold and allowed to stand at a pressure of about 550 psi for 15 minutes, but one of the samples had a pressure of 2750 psi. After the pressure is released, the sample is wiped with an alcohol sheet and air-dried, then the sample weight is measured and allowed to stand at about 100 ° C for about 6 hours to solidify the sample, and then the sample weight is measured again and measured by a 3-point bending method. Bending strength. The measurement results of the characteristics of the carbonaceous substrate and the carbon additive are shown in Tables 9 and 10. Table 9 Samples are broken after solidification after carbon block impregnation. Open type 28 201144215 Weight (g) Weight (g) Mass density (g/cm3) Sealant weight ratio (%) Sealant volume ratio (%) Hole filling ratio (%) 47Z 0.6477 1.0126 1.41 36.0 50.7 87.6 48Z 0.9081 1.3998 1.39 35.1 48.7 84.1 49Z 0.6969 10.1307 1.33 32.1 42.5 73.4 (2750psi) 50Z 1.5758 2.5653 1.47 38.4 56.4 85.4 Table ί 】 Sample number bare carbon block bending strength bending Strength increase (MPa) Amount (%) 28Z is 3.06 50Z No 4.92 60.8 Experimental Example 7 A thin plate-like carbonaceous substrate (POCOHTC) and a nylon 11 system are disposed in a high pressure mold in which the density of the carbonaceous substrate (POCOHTC) is about It is 0.9 g/cm3, its total porosity is about 61%, its open pores have a porosity of about 57.9%, and its heat transfer coefficient in the z-axis direction is about 245 W/mK, which is in the x/y axis direction. The heat transfer coefficient is about 70 W/mK, 29 201144215. The density of nylon 11 is about 1.0 g/cm3. First, the sample of carbon-containing matrix (POCO HTC) is cleaned with a nitrogen spray gun, and then the original weight is measured; base (POCOHTC) and nylon 11 are placed in a high pressure mold and allowed to stand at a pressure of about 550 psi and 260 ° C for 15 minutes; after the pressure is released, the sample is wiped with an alcohol sheet and dried with air to measure the weight of the sample. The bending strength was measured by a 3-point bending method. The measurement results of the characteristics of the carbonaceous substrate and the carbon additive are shown in Table 11 and Table 12. Table 11 Sample No. Mass density after carbon block impregnation Nylon open weight weight (g/cm3) Weight to volume ratio Hole filling (grams) (grams) (%) (%) Filling ratio (%) 53Ζ 8.6949 12.9385 1.31 32.8 43.9 75.9 Table 12 Sample No. Bare Carbon Bending Strength Bending Strength Increase (MPa) (%) 28Z is 3.06 53Z No 9.84 221.6 The above description is for illustrative purposes only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. [Simple description of the schema] 30 201144215 Figures 1A and 1B show schematic diagrams of scanning electron microscope (SEM) images of high-quality needle coke and low-quality coke, respectively; Figure 2 shows SEM images of coarse graphite particle structure and refined graphite particle structure. Figure 3 shows a flow chart of a method for producing an exemplary carbon-containing substrate; Figure 4 shows a schematic of a transmission electron microscope (TEM) image of a carbon-containing substrate, and Figures 5A and 5B show the carbon-containing matrix of nanoparticles, respectively. Schematic diagram of a TEM image of a graphite plate; Figures 6A and 6B show schematic views of TEM diffraction patterns and images of a carbon-containing substrate, respectively; Figure 7 shows a flow chart of a method of placing a non-metallic additive in a hole of a carbon-containing substrate; Figure 8A To 8C, respectively, photographs of the carbon-containing matrix under the microscope, which are photographs before and after the placement of the bismuth oil in the pores of the carbon-containing matrix; FIGS. 9A and 9B respectively show schematic diagrams of the heat-transfer device using the carbon-adding compound; Schematic diagram showing the application of a polymer having a heat conduction additive; and FIG. 11 showing heat conduction via a polymer having a heat conduction additive Not intended. [Description of main component symbols] 300, 700: Method 31 201144215 310 , 320 ' 330 , 340 ' 350 ' 360 ' 370 ' 706 ' 708 ' 712 , 716 , 724 , 726 , 1006 , 1008 , 1014 , 1016 , 1022 , 1024 1030, 1032: Steps 702, 1028: Carbon-containing matrix 704: Holes 710, 1026: Container 714: Additive precursor 718: Die 720, 940: Carbon addition compound 722: Additives 910, 950: Heat sink 920, 960·Computer chip 930, 1018, 1108: Substrate 1002, 1102: Polymer 1004, 1104: Heat transfer additive 1010: Polymer 1012 for heat transfer enhancement: Mold 1020: Device 1034: Thermal management system 1106: Heat generating device 1110, 1112, 1114: Arrows a, b: Image NGP: Nano-graphite plate with carbon matrix NS: Nano slit NV: Nano hole 32

Claims (1)

201144215 七、申請專利範圍: 1、 一種化合物質,包含: 一含碳基質,其具有複數個孔洞;以及 一非金屬添加物,其係以加壓方式設置於至少部分之 該等孔洞中。 2、 如申請專利範圍第1項所述之化合物質,其中構成該 含碳基質之至少一種碳材料係選自石墨結晶碳材、碳 粉、人造石墨粉、碳纖、及其組合。 3、 如申請專利範圍第1項所述之化合物質,其中該添加 物係為一含碎添加物。 4、 如申請專利範圍第丨項所述之化合物質,其中該化合 物質之彎折強度係介於3.50MPa至i0 00]vlpa之間。 5、 如申請專利範圍第丨項所述之化合物質,其中該添加 物以塗佈方式在至少部分之該等孔洞中形成一膜層。 6、 如申請專利範圍第丨項所述之化合物質,其中該化合 物質之開放式孔洞填充率係介於5%至90%之間。 7、 如申請專利範圍第丨項所述之化合物質,其中該添加 物係利用高壓浸潰反應(HPIR )所形成。 8、 如申請專利範圍第1項所述之化合物質,更包含一個 以上之熱傳導添加物。 9、 如申請專利範圍第8項所述之化合物質,其中該熱傳 導添加物係選自由奈米碳管、奈米微粒金屬、碳膜奈 米微粒金屬、矽膜奈米微粒金屬、特定金屬氮化物、 特定金屬碳化物、微粒石墨、石墨薄片、(:⑶、碳金屬 33 201144215 化合物質微塵、及其組合所構成之群組。 10、 如申請專利範圍第1項所述之化合物質,其中該化合 物質係形成板狀,其在X轴方向之熱傳導係數約為 65W/mK,其在y軸方向之熱傳導係數約為70W/mK, 且其在z軸方向之熱傳導係數約為275W/mK。 11、 如申請專利範圍第1項所述之化合物質,其中該化合 物質在固化後之質量密度係介於1.20 g/cm3至1.90 g/cm3之間。 12、 如申請專利範圍第1項所述之化合物質,其中該添加 物在固化後之體積比係介於3%至50%之間。 13、 如申請專利範圍第1項所述之化合物質,其中該添加 物在固化後之重量比係介於5%至60%之間。 14、 一種製造如申請專利範圍第1項所述之該化合物質的 方法,包含: 提供該含碳基質及一添加物前驅物,其中該添加物前 驅物係選自由^夕烧基高分子、石夕油、梦油脂、尼龍、 環氧樹脂、聚氨酯、SiH4氣體、及其組合所構成之 群組;以及 誘發該添加物前驅物與碳產生一反應以生成該非金 屬添加物,其中該非金屬添加物係設置於至少部分 之該含碳基質之該等孔洞中。 15、 如申請專利範圍第14項所述之方法,其中誘發該反 應之步驟係藉由施加一大於至少約500psi的壓力至該 含碳基質與該添加物前驅物、並靜置15至60分鐘而 34 201144215 進行。 16、 如申請專利範圍第14項所述之方法,其中誘發該反 應之步驟係藉由施加介於8〇〇乞至〗〇〇〇〇c之溫度至該 含碳基質與該添加物前驅物而進行。 17、 如申請專利範圍第14項所述之方法,其中該添加物 前驅物之黏度係介於3〇〇_i〇〇〇〇Cp。 、如申請專利範圍第14項所述之方法,更包含·· 固化如申請專利範圍第1項所述之該化合物質,其係 藉由將該化合物質設置於1〇〇。(:至l8rc之間並靜 置1至6小時而進行。 19、 一種產品,其係藉由加工如申請專利範圍第丨項所述 之該化合物質成為一熱傳導裝置而製得。 20、 一種化合物質之製造方法,包含: 提供一含碳基質及一添加物前驅物,其中該含碳基質 具有複數個孔洞,且該含碳基質包含至少一種碳材 料,其係選自石墨結晶碳材、碳粉、人造石墨粉、 碳纖、及其組合,而該添加物前驅物係選自由矽烧 基高分子、矽油、矽油脂、SiH4氣體、及其組合所 構成之群組;以及 將該添加物前驅物與碳進行反應以生成一非金屬添 加物,其中該非金屬添加物係設置於至少部分之該 等孔洞中,且該添加物包含至少一種材料,其係選 自碳、碳化矽、矽、及其組合所構成之群組。 35201144215 VII. Patent Application Range: 1. A compound substance comprising: a carbonaceous substrate having a plurality of pores; and a non-metallic additive disposed in at least a portion of the pores in a pressurized manner. 2. The compound of claim 1, wherein the at least one carbon material constituting the carbonaceous substrate is selected from the group consisting of graphite crystalline carbon material, carbon powder, artificial graphite powder, carbon fiber, and combinations thereof. 3. The compound of claim 1, wherein the additive is a scum-containing additive. 4. The compound of claim 1, wherein the compound has a flexural strength of between 3.50 MPa and i0 00] vlpa. 5. The compound of claim 1, wherein the additive forms a film in at least a portion of the pores by coating. 6. The compound of claim 1, wherein the open porosity of the compound is between 5% and 90%. 7. The compound of claim 2, wherein the additive is formed by a high pressure impregnation reaction (HPIR). 8. The compound of claim 1, as claimed in claim 1, further comprising more than one heat transfer additive. 9. The compound of claim 8, wherein the heat transfer additive is selected from the group consisting of a carbon nanotube, a nanoparticulate metal, a carbon film nanoparticulate metal, a bismuth nanoparticle metal, a specific metal nitrogen. a compound, a specific metal carbide, a particulate graphite, a graphite flake, (: (3), a carbon metal 33 201144215 compound dust, and a combination thereof. 10. The compound according to claim 1, wherein The compound is formed into a plate shape having a heat transfer coefficient of about 65 W/mK in the X-axis direction, a heat transfer coefficient of about 70 W/mK in the y-axis direction, and a heat transfer coefficient of about 275 W/mK in the z-axis direction. 11. The compound of claim 1, wherein the mass density of the compound after curing is between 1.20 g/cm3 and 1.90 g/cm3. 12. If the patent application is in the first item The compounding substance, wherein the additive has a volume ratio of 3% to 50% after curing. 13. The compound according to claim 1, wherein the additive is cured. Weight ratio Between 5% and 60%. A method for producing the compound according to claim 1, comprising: providing the carbonaceous substrate and an additive precursor, wherein the additive precursor is selected a group consisting of a free base polymer, a stone oil, a dream grease, a nylon, an epoxy resin, a polyurethane, a SiH 4 gas, and combinations thereof; and inducing a reaction of the additive precursor with carbon to generate the non- a metal additive, wherein the non-metallic additive is disposed in at least a portion of the pores of the carbon-containing substrate. 15. The method of claim 14, wherein the step of inducing the reaction is by applying a a method of inducing the reaction, wherein the pressure is greater than at least about 500 psi to the carbonaceous substrate and the additive precursor, and is allowed to stand for 15 to 60 minutes and 34 201144215. By applying a temperature between 8 〇〇乞 and 〇〇〇〇c to the carbon-containing substrate and the additive precursor. 17. The method of claim 14, The viscosity of the additive precursor is between 3〇〇_i〇〇〇〇Cp. The method according to claim 14 of the patent application, further comprising: curing as described in claim 1 The compound is obtained by setting the compound to 1 〇〇 ((: to l8rc and standing for 1 to 6 hours.) 19. A product which is processed by the patent application The compound of the invention is prepared as a heat transfer device. 20. A method for producing a compound comprising: providing a carbonaceous substrate and an additive precursor, wherein the carbonaceous substrate has a plurality of pores, and the The carbonaceous substrate comprises at least one carbon material selected from the group consisting of graphite crystalline carbon materials, carbon powder, artificial graphite powder, carbon fibers, and combinations thereof, and the additive precursor is selected from the group consisting of bismuth-based polymers, eucalyptus oils, and strontium oils. a group of SiH4 gases, and combinations thereof; and reacting the additive precursor with carbon to form a non-metallic additive, wherein the non-metallic additive is disposed in at least a portion of the pores, and The additive comprises at least one material selected from the group consisting of carbon, tantalum carbide, niobium, and combinations thereof. 35
TW100118705A 2010-06-03 2011-05-27 Carbon-containing matrix with additive that is not a metal TW201144215A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/793,656 US20110147647A1 (en) 2009-06-05 2010-06-03 Carbon-containing matrix with additive that is not a metal

Publications (1)

Publication Number Publication Date
TW201144215A true TW201144215A (en) 2011-12-16

Family

ID=46765567

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100118705A TW201144215A (en) 2010-06-03 2011-05-27 Carbon-containing matrix with additive that is not a metal

Country Status (1)

Country Link
TW (1) TW201144215A (en)

Similar Documents

Publication Publication Date Title
Khan et al. A review on advanced carbon-based thermal interface materials for electronic devices
Liu et al. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties
Vu et al. High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds
Fu et al. Highly multifunctional and thermoconductive performances of densely filled boron nitride nanosheets/epoxy resin bulk composites
Ji et al. Ice-templated MXene/Ag–epoxy nanocomposites as high-performance thermal management materials
Yu et al. One-step in situ ball milling synthesis of polymer-functionalized few-layered boron nitride and its application in high thermally conductive cellulose composites
Zhao et al. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres
Liang et al. Epoxy nanocomposites with reduced graphene oxide-constructed three-dimensional networks of single wall carbon nanotube for enhanced thermal management capability with low filler loading
Kong et al. Hierarchical graphene–carbon fiber composite paper as a flexible lateral heat spreader
Wang et al. Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites
Kim et al. Pyrolysis behavior of polysilazane and polysilazane-coated-boron nitride for high thermal conductive composite
WO2015147501A1 (en) Catecholamine-flaky graphite based polymer complex for preparation of composite
Hao et al. Enhanced thermal conductivity of epoxy composites by introducing 1D AlN whiskers and constructing directionally aligned 3D AlN filler skeletons
Liu et al. Silver nanoparticle-enhanced three-dimensional boron nitride/reduced graphene oxide skeletons for improving thermal conductivity of polymer composites
Lin et al. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability
Sun et al. Graphene/polyolefin elastomer films as thermal interface materials with high thermal conductivity, flexibility, and good adhesion
Hou et al. Aluminum borate/boron nitride nanosheet fibers for enhancing the thermal conductivity of polymer composites
US20220098463A1 (en) Thermal dissipation composite material and manufacturing method thereof
Ding et al. Effect of nanoscale in situ interface welding on the macroscale thermal conductivity of insulating epoxy composites: a multiscale simulation investigation
Wu et al. Novel in-situ constructing approach for vertically aligned AlN skeleton and its thermal conductivity enhancement effect on epoxy
Chi et al. Simultaneously enhanced in-plane and out-of-plane thermal conductivity of a PI composite film by tetraneedle-like ZnO whiskers and BN nanosheets
Yang et al. Vertically aligned boron nitride nanosheets films for superior electronic cooling
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
Kong et al. Conformal BN coating to enhance the electrical insulation and thermal conductivity of spherical graphite fillers for electronic encapsulation field
Jiang et al. In Situ Construction of High-Thermal-Conductivity and Negative-Permittivity Epoxy/Carbon Fiber@ Carbon Composites with a 3D Network by High-Temperature Chemical Vapor Deposition