TW201142358A - A stereoscopic image display device - Google Patents

A stereoscopic image display device Download PDF

Info

Publication number
TW201142358A
TW201142358A TW100112989A TW100112989A TW201142358A TW 201142358 A TW201142358 A TW 201142358A TW 100112989 A TW100112989 A TW 100112989A TW 100112989 A TW100112989 A TW 100112989A TW 201142358 A TW201142358 A TW 201142358A
Authority
TW
Taiwan
Prior art keywords
formula
plate
phase difference
image display
thickness direction
Prior art date
Application number
TW100112989A
Other languages
Chinese (zh)
Other versions
TWI494605B (en
Inventor
Byoung-Kun Jeon
Sin-Young Kim
Sergey Belyaev
Moon-Soo Park
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Publication of TW201142358A publication Critical patent/TW201142358A/en
Application granted granted Critical
Publication of TWI494605B publication Critical patent/TWI494605B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Polarising Elements (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention may provide a stereoscopic image display device capable of preventing crosstalk or reduction of viewing angles upon displaying stereoscopic images, and improving image quality such as contrast ratio; an optical filter for the stereoscopic image display device; polarizing glasses for observing stereoscopic images; or a method of improving stereoscopic image quality.

Description

201142358 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種立體圖像顯示裝置'一立體圖像顯 示裝置之光學濾光片、一觀看立體圖像之眼鏡與一改良立 體圖像品質之方法。 【先前技術】 立體圖像顯示裝置為一種顯示裝置,藉此一觀看者可 觀看三維之欲顯示對象物。 立體圖像顯示裝置’可區分為眼鏡型裝置和無眼鏡型 裝置。此外,眼鏡型可分為偏振(p〇larizing)眼鏡型和液晶 光圈(LC shutter)眼鏡型,而無眼鏡型可分為雙眼/多視角雙 眼視覺像差(binocular/multi_view binocular disparity)型,體積 型或全像(holographic)型,等等。 【發明内容】 本發明目的係包括提供一 體圖像顯示裝置之光學濾光片 改進立體圖像品質之方法。 種立體圖像顯示裝置、一立 、一觀看立體圖像之眼鏡與 本發明係關於一種立體圖像颟 一 口 1豕貝不裝置,包括一圖像顯 示部件,其能夠生成由右眼圖傻 ^ ^ ^ ^ 像先線與左眼圖像光線組成 之圖像㈣’並能夠將其再傳輸至觀看者-方;以及一相 位差膜(retardation film) > Α ^ , 子哎方向有一相位差,並設 置使圖像信號由圖像顯示部件根 根據厚度方向傳輸通過,然 201142358 後傳輸到觀看者一方。 立體圖像顯示裝置詳細說明如下。 在4明書中,術語,如垂直,水平,直立或平行,其 用於定義角度,表示實質上垂直,水平,直立或平行在範 圍内而不破壞預期的效果,且可能有如,一個誤差包括產 生的誤差或偏差,等等。例如,術語每個包括不超過約±】5 度的誤差,較佳為不超過約度的誤差,更佳不超過約± 5 度的誤差。 在說明書中’除非另有特別定義,角度的單位是 度相位差的單位疋奈米,串擾比(crosstalk ratio ) 或亮度的單位是“cd/m2” 。 如果右眼圖像光線與左眼圖像光線在立體圖像顯示裝 置之圖像顯示部件產生,在過程中適當地通過或阻止它們 傳送至觀看者,每個圖像光線可準確地被觀看者的右眼或 左眼觀看,因此,當圖像品質(如,對比度)改善時,明 暗可更明確辨識。 不過,一般來說,如果立體圖像顯示裝置在傾斜角度 觀看’报難適當地阻止右眼或左眼圖像光線漏光,因此發 生所謂的串擾現象,其中右眼圖像光線被左眼觀看或左眼 圖像光線被右眼觀看。此外視角變窄。為了防止串擾現象, 光屏蔽部件可形成於裝置;•然而,形成的光屏蔽部件不可 避免地導致亮度下降。 · 在立體圖像顯示裝置,一相位差膜,在厚度方向有一 相位差,在裝置運作時,沿路徑方向處理被觀看者觀看之 201142358 圖像訊號’即相位差膜設置於圖像顯示部件生成之圖像^ 號與觀看者之間。相位差膜可以控制圖像顯示部件生成之 圖像訊號之光學特性’然後將它們傳送到觀看者,以解決 如串擾或視角的下降之問題,而不減少亮度,且也可改進 立體圖像品質。術語“裝置運作,,在此是指當裝置是顯示 立體圖像之狀態。 只要相位差膜在厚度方向有一相位差,較佳為,在厚 度方向為一正相位差’各種在這領域内已知之相位差膜, 例如’ +C板或+B板’可被使用。+c板在此係指該膜符合 公式1之使用,而+B板在此係指該膜符合公式2或3之使 用。 [公式1] NX = Ny < Nz [公式2]201142358 VI. Description of the Invention: [Technical Field] The present invention relates to a stereoscopic image display device, an optical filter of a stereoscopic image display device, a glasses for viewing stereoscopic images, and an improved stereoscopic image quality. The method. [Prior Art] A stereoscopic image display device is a display device whereby a viewer can view a three-dimensional object to be displayed. The stereoscopic image display device ' can be distinguished as a glasses type device and a glassesless type device. In addition, the glasses type can be divided into a polarizing (p〇larizing) glasses type and a liquid crystal aperture (LC shutter) glasses type, and the non-glasses type can be classified into a binocular/multi_view binocular disparity type. , volume or holographic, and so on. SUMMARY OF THE INVENTION An object of the present invention is to provide a method of providing an optical filter of an integrated image display device to improve stereoscopic image quality. Stereoscopic image display device, eyeglasses for viewing stereoscopic images, and the present invention relates to a stereoscopic image, a mouth-and-mouth device, including an image display component capable of generating a silly picture by the right eye ^ ^ ^ Image of the first and left eye image rays (4) 'and can be retransmitted to the viewer-square; and a retardation film > Α ^ , the sub-direction has a phase difference And set the image signal to be transmitted by the image display component root according to the thickness direction, and then transmitted to the viewer side after 201142358. The stereoscopic image display device will be described in detail below. In 4, terms, such as vertical, horizontal, upright or parallel, are used to define an angle, meaning substantially vertical, horizontal, upright or parallel within the range without damaging the intended effect, and may be as Errors or deviations produced, and so on. For example, the terms each include an error of no more than about ± 5 degrees, preferably an error of no more than about a degree, and more preferably an error of no more than about ± 5 degrees. In the specification, unless otherwise specified, the unit of the angle is the unit of the phase difference, the unit of the crosstalk ratio or the brightness is "cd/m2". If the right-eye image ray and the left-eye image ray are generated in the image display component of the stereoscopic image display device, and appropriately passed or prevented from being transmitted to the viewer during the process, each image ray can be accurately viewed by the viewer. The right eye or the left eye is viewed, so that when the image quality (eg, contrast) is improved, the brightness and darkness can be more clearly recognized. However, in general, if the stereoscopic image display device is viewed at an oblique angle, it is difficult to properly prevent the light of the right eye or the left eye from leaking light, so a so-called crosstalk phenomenon occurs in which the right eye image light is viewed by the left eye or The left eye image is viewed by the right eye. In addition, the viewing angle is narrowed. In order to prevent crosstalk, a light shielding member may be formed on the device; however, the formed light shielding member inevitably causes a decrease in luminance. · In the stereoscopic image display device, a retardation film has a phase difference in the thickness direction, and when the device operates, the 201142358 image signal viewed by the viewer is processed along the path direction, that is, the phase difference film is set to be generated by the image display unit. The image ^ is between the viewer and the viewer. The retardation film can control the optical characteristics of the image signals generated by the image display unit and then transmit them to the viewer to solve problems such as crosstalk or drop in viewing angle without reducing brightness, and can also improve stereo image quality. . The term "device operation, herein refers to a state in which the device displays a stereoscopic image. As long as the phase difference film has a phase difference in the thickness direction, preferably, a positive phase difference in the thickness direction" is various in this field. Known retardation film, such as '+C plate or +B plate' can be used. +c plate here means that the film conforms to the use of formula 1, and +B plate here means that the film conforms to formula 2 or 3. Use [Formula 1] NX = Ny < Nz [Formula 2]

Nx / Ny ^ Nz [公式3]Nx / Ny ^ Nz [Formula 3]

Nx 关 Ny < Nz 其中’Nx表示在相位差膜之慢軸方向之平面折射率, Ny表示在相位差膜之快軸方向之平面折射率,Nz表在相位 差膜之厚度方向之折射率。 在上述’相位差膜在厚度方向之相位差(Rih)可由公 式4計算,而相位差膜在平面方向之相位差(Rin )可由公 式5計算。 [公式4] 201142358 [公式5]Nx off Ny < Nz where 'Nx denotes the plane refractive index in the slow axis direction of the retardation film, Ny denotes the plane refractive index in the fast axis direction of the retardation film, and Nz denotes the refractive index in the thickness direction of the retardation film . The phase difference (Rih) in the thickness direction of the above-mentioned retardation film can be calculated by the formula 4, and the phase difference (Rin) of the retardation film in the planar direction can be calculated by the formula 5. [Formula 4] 201142358 [Formula 5]

Rin = d x (Ny-Ns) 其中’ Nx、乂與队係與公式1至3具有相同定義,而d 表示相位差膜之厚度。 在這個領域中,測量相位差膜之Nx、Ny、Nz、Rth和Rin 的方法是廣為人知的,即熟悉該項技藝的人可以容易地測 罝相位差膜之Nx、Ny、Nz、Rth和Rin。 相位差膜之厚度方向之相位差範圍並沒有特別限制, 並可取決於立體圖像顯示裝置或相位差膜性質等等。 在一實施例中,在相位差膜之間,+C板之相位差可符 合於公式6或7’而+B板之相位差可符合於公式8至11。 [公式6] YL 或 Yr = 0.0201X2 -0.0398X+0.0339 $ 0.5 [公式7] YL = 0.0192X2 -0.0763X +0.0899 < 0.5 [公式8] YR = (9.24x10*7)X2 -0.000236X +0.0288 < 0.5 [公式9] YL = (5.5χ1〇·?)Χ2 -0.000347Χ +0.067 < 0.5 [公式10] YR = (1.97xlO'6)X2 -0.000616X +0.0644 < 0.5 [公式11] YL = (l.99xl〇-6)X2 -0.00125X +0.206 < 0.5 其中,公式6與7之X是+C板之厚度方向之相位差,而 公式8至11之X是+B板之厚度方向之相位差。 6 201142358 此外,公式6至11之yl表示在立體圖像裝置運行時,在 觀看者的左眼串擾比(單位:cd/m2)。Yl較佳為〇 3或更低, 更佳為0.1或更低,更佳仍是0 05或更低,最佳為〇 〇1或更 低。此外’ yr表示在立體圖像裝置運行時,在觀看者的右 眼串擾比(單位:cd/m2)。Yr較佳為〇 3或更低,更優選〇」 或以下,更多的還是0 05或以下,最優選〇 〇1或更低。 根據公式6至11 ’在一通過右眼圖像光線區域與一通過 左眼圖像光線區域之相位差膜在厚度方向之相位差,可被 設計成相互相同或相互不同。在上所述,在右眼圖像光線 與左眼圖像光線之間的區分並沒有特別的限制。例如,如 下描述’當裝置是包括一個偏振控制層之偏振眼鏡型裝 置’根據偏振控制層之類別,在右眼圖像光線與左眼圖像 光線之間的區分可由以下上下文定義。 當相位差的設計是相互不同,在+C板,一通過右眼圖 像光線區域與一通過左眼圖像光線區域之厚度方向之相位 差’可符合公式6;或一通過右眼圖像光線區域之厚度方向 之相位差,可符合公式6,而一通過左眼圖像光線區域之厚 度方向之相位差,可符合公式7,但不限於此。此外,在+ b 板’一通過右眼圖像光線區域之厚度方向之相位差,可符 合公式8,而一通過左眼圖像光線區域之厚度方向之相位 差’可符合公式9;或一通過右眼圖像光線區域之厚度方向 之相位差’可符合公式10,而一通過左眼圖像光線區域之 厚度方向之相位差,可符合公式11,但不限於此。 201142358 在-實施例中’相位差膜在厚度方向之相位差可例如式3〇 奈米至350奈米。此外,在情況下,相位差膜+B板,薄膜具 有在平面方向之相位差,與在厚度方向之相位差一樣且 在平面方向之相位差可考慮立體圖像品質作適當地選擇, 例如’可以選擇範圍約12〇奈米到16〇奈米。 不過,相位差之範圍只是一個例子說明,而相位差(Ru 與Rin)可以根據顯示裝置之種類與特定構造而設計。較佳 為,此等控制之實施例可依據上述公式完成。 圖像顯示部件包括在裝置内,並沒有任何特別限制, 所有的圖像顯示部件用於本領域中之各種立體圖像顯示裝 置’包括眼鏡型或無眼鏡類型都可使用。 在一實施例中,該裝置可能是眼鏡型,特別是偏振眼 鏡型立體圖像顯示裝置。圖像顯示部件可包括一圖像生成 部件,其可生成由右眼圖像光線與左眼圖像光線組成之圖 像信號,然後再傳輸至觀看者一方;與一偏振控制層,設 置在圖像生成部件之觀看者一方,如果圖像信號輸入其 中’其能夠控制圖像信號,使右眼圖像光線與左眼圖像光 線相互有具有不同之偏振狀態,且也能夠再傳輸到觀看者 —方。 圖1圖係如上述之立體圖像顯示裝置(丨)之一態樣代 表圖。 圖1之含有圖像生成部件之說明設備,包括,一光源 (11)、第一偏振板(12)、一圖像生成層(13)及一第 8 201142358 二偏振板(1 4 ),且一偏振控制層(丨5 )可設置在圖像生 成部件之觀看者(17) —方。 在一實施例中’觀看者(17)可以配戴偏眼鏡觀看立 體圖像。偏振眼鏡可例如有一個右眼鏡片和左眼鏡片,而 右眼鏡片和左眼鏡片可分別包括偏振板。透過將偏振板設 計在每個鏡片而有不同的吸收光軸,例如,控制在右眼鏡 片之偏振板之吸收光軸和左眼鏡片之偏振板之吸收光軸為 相互垂直,這可以使左眼圖像光線只被左眼觀看,而右眼 圖像光線只被右眼觀看。在一實施例中,右眼和左眼鏡片 可進一步分別包括一具有;1/4波長層之偏振板。在這種情 況下’偏振板之吸收光軸不必總是相互不同的。例如,在 以上之實施例,控制右眼和左眼鏡片之偏振板具有相互平 行之吸收光軸’同時也控制右眼與左眼;1 /4波長層之鏡片 相互具有不同方向之光學軸,例如,設計在右眼和左眼鏡 片之;1/4波長層之鏡片之光學軸為相互垂直,這可以使左 眼圖像光線只被左眼觀看,而右眼圖像光線只被右眼觀 看。另外,也可以使用一種方法以控制右眼和左眼鏡片之 偏振板為相互具有不同的方向’也控制右眼和左眼鏡片之 λ /4波長層之鏡片之光學轴為相互平行。術語“ a μ波長 層”這此係指相位延缓元件,其能夠延緩入射光的相位, 在入射光波長之1/4波長範圍。 圖1之裝置(1 ),光源(1 1 )是圖像生成部件之一部 分’例如,在使用裝置⑴狀態下’可發射未偏振之白色 光朝向偏振板(12)。如光源(11),例如,直接型或邊 201142358 緣型背光早元(BLU ),通常是用在液晶顯示設備,也可 使用。 圖1之裝置(1),第一偏振板(丨2)設置於光源(u) 側。第一偏振板(12)可具有一傳輸光軸,與一垂直於傳 輸光軸之吸收光軸。當光源(Π )發射出的光線被觀看時, 在入射光中,只有具有平行於傳輸光軸之偏振光軸之光線 能夠通過第一偏振板(12) ^該偏振軸之方向可能為電場 之振動方向。 圖1之裝置(1 ),圖像生成層(i 3 )可例如,一傳輸 液晶顯不裝置,其中能夠產生右眼或左眼圖像光線之單一 像素或複數個像素,並設置在直行及/或橫列方向。此類的 顯示面板(display panel)依據在使用裝置(丨)狀態下之 訊號,可由顯示各個像素而產生包括左眼和右眼圖像光線 之圖像信號,且將產生之圖像訊號傳輸至第二偏振板 (14)❶顯示面板可包括例如,一基板、像素電極、配向 層(alignment)、液晶層、另一配向層、共用電極、彩色 遽光片和基板,其係為了處理光源、〇丨)。在顯示面板, 單一像素或至少兩個像素可形成一右眼圖像生成區域 (UR )或左眼圖像生成區域(UL )。該右眼圖像生成區域 (UR )或左眼圖像生成區域(UL )可例如,設置於圖2所 不之由共同方向延伸之交替帶圖案,或設置於圖3所示之格 子圖案。 田立體圖像顯示裝置運作時,右眼和左眼圖像生成區 域會分別地生成右眼圖像和左眼圖像。例如,於圖丨之示例 !0 201142358 、1 )中,S由光源(1 1 )發射出之光線通過第一偏振 板(⑴、’然後輸入到顯示部件(13 ),該通過右眼圖像 生成區域(:R)之光線變成右眼圖像,而通過左眼圖像生成 區域⑴之光線變成左眼圖像。在一實施例中右眼和左 眼圖像可以在特定方向具有各個偏振光軸之線性偏振光, 且這些偏振光軸可具有相互平行方向性。 於圖1之裝置(1),第二偏振板(14)設置朝向於觀 看者一方。當右眼和左眼之光線進入第二偏振板(14), 僅有平行於偏振板(14)之傳輸光軸可以穿過偏振板(14)。 在一實施例中,第一和第二偏振板(12,14)之傳輸光軸 的可以被處理,如此可分別形成相互9〇度角。 於圖1之裝置(1),偏振控制層(15)包括一右眼圖 像光線之偏振控制區(AR)與一左眼圖像光線之偏振控制 區(AL)。右眼圖像光線之偏振控制區(AR)係為控制右 眼圖像光線之偏振狀態之區域,其生成與傳輸由右眼圖像 生成區域(UR),並可設置使右眼圖像光線輸入。左眼圖 像光線之偏振控制區(AL )係為控制左眼圖像光線之偏振 狀態之區域,其生成與傳輸由左眼圖像生成區域(, 並可設置使左眼圖像光線輸入。例如,如果在圖像生成層 (13 )之右眼和左眼圖像生成區域係設置如圖2,則偏振控 制區(AR ’ AL )可根據這樣如圖4設置。如果圖像生成區 域(UR ’ UL )係設置如圖3,則偏振控制區(AR,AL )可 根據這樣如圖5設置,但不限於此。 201142358 右眼和左眼圖像光線在通過偏振控制層(15)後,具 有相互不同的偏振狀態。在一實施例中,右眼和左眼圖像 光線可能包括具有方向性之線性偏振光線,且實質上為相 互垂直,也可包括左手圓偏振光或右手圓偏振光。 如圖1所說明,相位差膜(16)設置於裝置(丨)之圖 像生成部件和觀看者(17 )之間《相位差膜(丨6 )在厚度 方向有一相位差,該設置使圖像信號可依據厚度方向穿過 相位差膜(16)將圖像信號傳送到觀看者(n)。如圖】所 示’在實例中,立體圖像顯示裝置是偏振眼鏡型裝置,相 位差膜(1 6 )可結合依附於圖像顯示部件之偏振控制層 (15) ’也可以依附於觀看者(17)配戴的偏振眼鏡。 如圖1之設備(1 ),偏振控制層(15)包括右眼和左 眼圖像光線之偏振控制區(AR,AL ),右眼和左眼圖像光 線在通過控制層(15)後可以為線性偏振光線,且實質上 為相互垂直’也可包括左手圓偏振光或右手圓偏振光。 在一實施例上,右眼和左眼圖像光線分別為左手圓偏 振光或右手圓偏振光,該偏振控制層可包括右眼圖像光線 之偏振控制區域與左眼圖像光線之偏振控制區域,該控制 層也包括設置於右眼和左眼兩者之圖像光線之偏振控制區 域之λ /4波長層,在右眼圖像光線之偏振控制區域之又/4 波長層與在左眼圖像光線之偏振控制區域之λ /4波長層, 也可以有相互不同之光學軸。光學軸此處是指在入射光通 過相對應的區域時之快轴或慢軸。在右眼圖像光線之偏振 控制區之;I /4波長層之光學軸與在左眼圖像光線之偏振控 12 201142358 制區之λ /4波長層之光學軸可形成相互9Q度之角度。在此 之後,如上所述之偏振控制層可稱為“圖案化λ /4波長 層。在另一實施例中,偏振控制層產生左手圓偏振光和 右手圓偏振光,可包括左眼圖像光線之偏振控制區與右眼 圖像光線之偏振控制區,而該控制層還包括在右眼和左眼 圖像光線之偏振控制區之X /4波長層與在右眼和左眼圖像 光線之僅任一偏振控制區之λ /2波長層。下文中,該偏振 控制層可被稱為“(又/2+ λ /4 )波長層”。此外,該λ /4 波長層的定義是相同於前述,而用於此之術語“ λ /2波長 層“指相位延緩元件,其能夠延緩入射光的位相,在入射 光波長之1/2波長範圍。 當圖像信號由上述含有左手圓偏振光或右手圓偏振光 之偏振控制層發射出,觀看者為了適當地觀看圖像信號可 以配戴偏振眼鏡,其包括右眼和左眼鏡片,而該右眼和左 眼鏡片分別包括λ /4波長層與偏振板。下文中,偏振眼鏡 由λ / 4波長層組成,如前述所稱圓偏振眼鏡。此外,在一 實施例中’圓偏振眼鏡之右眼和左眼鏡片可分別包括一鏡 片、一偏振板和一 λ/4波長層,其在配戴眼鏡時從觀看者 一方依序排列。此外’如上所述圖像信號也可以配戴偏振 眼鏡觀看’由右眼和左眼鏡片,或含有偏振板之右眼和左 眼鏡片組成。於下文中’此偏振眼鏡可以指線性偏振眼鏡。 在圓偏振和線性偏振眼鏡之波長層之光學軸和偏振板之吸 收軸可如以上所述控制。 13 201142358 在偏振眼鏡型裝置,當偏振控制層是(A Α Μ)波 長層,相位差膜可以是+B或+(:板。 •說明書中’當偏振控制層是(λ/2+λ/4)波長層,通 過偏振控制層内僅存在λ/4波長層之區域的光線可被視為 右眼圖像光線,·通過偏振控制層㈣時存在又⑽長層與 又Μ波長層之區域的光線可被視為左眼圖像光線。 在前述例子’相位差膜是錢,在厚度方向之相位差 可依照公式6或7決定,例如約5〇奈米至27()奈米。較佳為, :眼圖像光線通過+C板區域時’在厚度方向之相位差可依 照公式6控制,例如M〇奈米至2〇〇奈米,更佳為15〇奈米到 190奈米。此外,左眼圖像光線通過區域時,在厚度方向之 相位差可依照公式7控制,例如6〇奈米至12〇奈米更佳為 7〇奈米到11G奈米。此外,在較佳例子,觀看者配戴前述圓 偏振眼鏡觀看立體圖像顯示裝置,但不限於此。此外,前 述之相位差膜只要設置於圖像顯示部件和觀看者之間,其 位置並沒有特別的限。例它1以依附於圖像顯示部 件之偏振控制層或偏振眼鏡正面。但是,如果右眼圖像光 線與左眼圖像光線相互在厚度方向有不同的相位差該相 位差膜較佳為方便依附於偏振眼鏡正面。然而,即使在上 述情況下,相位差膜也有可能本身圖形化,並結合於裝置, 而不附加於偏振眼鏡正面。 此外,如果相位差膜是+Β板,在厚度方向之相位差可 依照公式決定,例如約50奈米至35〇奈米。此外,在這種情 況下,在+Β板平面方向之相位差(Rin ),可例如為約〗2〇 14 201142358 奈米至160奈米。較佳為,右眼圖像光線通過+B板區域時, 在厚度方向之相位差可依照公式8控制,例如1 5〇奈米至35〇 奈米,更佳為200奈米到300奈米。此外,左眼圖像光線通 過+B板區域時,在厚度方向之相位差之可依照公式9控制, 例如50奈米至250奈米,更佳為100奈米到150奈米。此外, 較佳例子’通過右眼圖像光線之區域與通過左眼圖像光線 之區域’相互在厚度方向有不同的相位差。此外,在較佳 例子’觀看者配戴前述線性偏振眼鏡觀看立體圖像顯示裝 置,但不限於此。此外,前述相位差膜之設置位置係與前 述相同。 在偏振眼鏡型裝置,如果偏振控制層是圖案化λ /4波 長層,相位差膜可以是+c板或+ Β板,但更佳為+C板。 說明書中’當偏振控制層是圖案化λ/4波長層時,通 過在具有相互不同的光學軸之多個λ/4波長層中之任一又 /4波長層的光線可被視為右眼之圖像光線;通過在具有相 互不同的光學軸之多個λ/4波長層中之其他一 λ/4波長層 的光線可被視為左眼之圖像光線。 以上所述,相位差膜是+C板,在厚度方向之相位差可 依照公式決定,例如約3〇奈米至35〇奈米。較佳為,右眼圖 像光線通過+C板區域時,在厚度方向之相位差可依照公式6 控市!例如150奈米至3〇〇奈米,更佳為2〇〇奈米到3〇〇奈米。 此外,左眼圖像光線通過區域時,在厚度方向之相位差可 依照公式6控制,例如5〇奈米至25〇奈米,更佳為1〇〇奈米到 150不米。此外,在較佳例子,觀看者配戴前述圓偏振眼鏡 15 201142358 觀看立體圖像顯示裝置,但不限於此。此外,前述相位差 膜之設置位置係與前述相同。 如圖1之偏振眼鏡型裝置,當偏振控制層生成線性偏振 光線’且實質上為相互垂直,該偏振控制層可由右眼圖像 光線之偏振控制區與左眼圖像光線之偏振控制區組成,且 控制層可能包括一 λ /2波長層僅設置於右眼和左眼之偏振 控制區之任一區域。如上所述之偏振控制層可稱為“圖案 化又/2波長層”。 在偏振眼鏡型裝置,當偏振控制層是圖案化;i /2波長 層’相位差膜可以是+C板或+ B板,但更佳為+8板。 說明書中,當偏振控制層是圖案化;1/2波長層時,通 過不存在λ /2波長層之偏振控制層的區域之光線可視為右 眼之圖像光線;通過存在λ /2波長層之偏振控制層的區域 之光線可視為左眼之圖像光線。 在此’在+Β板厚度方向之相位差可依照公式決定,例 如約50奈米至350奈米。此外,在這種情況下,在+Β板平面 方向之相位差(RIN),可例如為約120奈米至ι6〇奈米。較 佳為’右眼圖像光線通過+B板區域時,在厚度方向之相位 差可依照公式10控制,例如150奈米至350奈米,更佳為2〇〇 奈米到300奈米。此外,左眼圖像光線通過該區域時,在厚 度方向之相位差之可依照公式11控制,例如5〇奈米至25〇奈 米’更佳為100奈米到200奈米。此外,在較佳例子,觀看 者配戴前述圓偏振眼鏡觀看立體圖像顯示襄置,但不限於 此。此外’前述相位差膜之設置位置係與前述相同。 16 201142358 相位差膜’可使用以上之描述,並未特別局限於任何 特定種類,以及熟悉該項領域使用之各種相位差膜,只要 它們表現如上述之相位差特性。在一實施例中,相位差膜 可以是液晶膜,或常用的高分子膜。在高分子膜之例子, 高分子膜之相位差可經由單軸向或雙向拉伸在厚度方向控 制。 本發明還涉及一種立體圖像顯示裝置之光學濾光片, 其包括一偏振控制層’能夠控制由右眼圖像光線與左眼圖 像光線組成之圖像信號,在圖像信號輸入時,使右眼圖像 光線與左眼圖像光線相互具有不同之偏振狀態,並能夠發 射它們;一相位差膜依附於控制層一側,使圖像信號被發 射,在厚度方向也有一相位差。 光學濾光片’如上所述之一光學濾光片具有一類似相 位差膜之外型以改善圖像品質,係連接依附於偏振控制 層,且可用於上述偏振眼鏡型立體圖像顯示裝置。圖6係表 示說明光學濾光片(6),其中相位差膜(16)依附於偏振 控制層(15)。如圖6之箭頭代表立體顯示裝置運作時,由 左眼和右眼圖像光線組成之圖像信號經過的方向。 因此,上述情況下可同樣適用於特定類型之相位差膜 或數值,如相位差。 例如’包含於光學濾光片之相位差膜為+C板,其相位 差可符合於公式6或7 ’或+B板,其相位差可符合於以下公 式8至11。 [公式6] 17 201142358Rin = d x (Ny-Ns) where 'Nx, 乂 and 队 have the same definition as Equations 1 to 3, and d denotes the thickness of the retardation film. In this field, methods for measuring Nx, Ny, Nz, Rth, and Rin of retardation films are well known, and those skilled in the art can easily measure Nx, Ny, Nz, Rth, and Rin of retardation films. . The range of the phase difference in the thickness direction of the retardation film is not particularly limited, and may depend on a stereoscopic image display device or a phase difference film property or the like. In one embodiment, between the retardation films, the phase difference of the +C plate may conform to Equation 6 or 7' and the phase difference of the +B plate may conform to Equations 8 through 11. [Formula 6] YL or Yr = 0.0201X2 -0.0398X+0.0339 $ 0.5 [Formula 7] YL = 0.0192X2 -0.0763X +0.0899 < 0.5 [Formula 8] YR = (9.24x10*7)X2 -0.000236X + 0.0288 < 0.5 [Formula 9] YL = (5.5χ1〇·?)Χ2 -0.000347Χ +0.067 < 0.5 [Formula 10] YR = (1.97xlO'6)X2 -0.000616X +0.0644 < 0.5 [Formula 11 ] YL = (l.99xl〇-6)X2 -0.00125X +0.206 < 0.5 where X of Equations 6 and 7 is the phase difference in the thickness direction of the +C plate, and X of Equations 8 to 11 is the +B plate The phase difference in the thickness direction. 6 201142358 Further, yl of Equations 6 to 11 represents the left eye crosstalk ratio (unit: cd/m2) of the viewer at the time of operation of the stereoscopic image device. Yl is preferably 〇 3 or lower, more preferably 0.1 or lower, still more preferably 0 05 or lower, most preferably 〇 〇 1 or lower. Further, 'yr' represents the right eye crosstalk ratio (unit: cd/m2) of the viewer when the stereoscopic image device is operating. Yr is preferably 〇 3 or lower, more preferably 〇" or below, more preferably 0 05 or less, and most preferably 〇 〇 1 or lower. According to the formula 6 to 11', the phase difference in the thickness direction between the right-eye image ray region and the phase difference film passing through the left-eye image ray region can be designed to be identical to each other or different from each other. As described above, the distinction between the right-eye image light and the left-eye image light is not particularly limited. For example, as described below, when the device is a polarized glasses type device including a polarization control layer, the distinction between the right-eye image light and the left-eye image light can be defined by the following context according to the category of the polarization control layer. When the design of the phase difference is different from each other, in the +C board, the phase difference between the light ray area passing through the right eye and the thickness direction of the ray area passing through the left eye image may conform to Equation 6; or one through the right eye image The phase difference in the thickness direction of the ray region can conform to Equation 6, and the phase difference in the thickness direction of the ray region of the left eye image can conform to Equation 7, but is not limited thereto. In addition, the phase difference between the thickness direction of the light region of the right eye image of the +b plate can be in accordance with Equation 8, and the phase difference of the thickness direction of the light region through the left eye image can conform to Equation 9; The phase difference 'in the thickness direction of the light region of the right eye image can conform to Equation 10, and the phase difference in the thickness direction of the light region of the left eye image can conform to Equation 11, but is not limited thereto. 201142358 In the embodiment, the phase difference of the retardation film in the thickness direction may be, for example, from 3 Å to 350 nm. Further, in the case of the retardation film + B plate, the film has a phase difference in the planar direction, and the phase difference in the thickness direction is the same, and the phase difference in the planar direction can be appropriately selected in consideration of the stereoscopic image quality, for example, You can choose from about 12 nanometers to 16 nanometers. However, the range of phase difference is only an example, and the phase difference (Ru and Rin) can be designed according to the type of display device and the specific configuration. Preferably, embodiments of such controls are accomplished in accordance with the above formula. The image display member is included in the device without any particular limitation, and all of the image display members can be used for various stereoscopic image display devices in the art including glasses type or non-glasses type. In one embodiment, the device may be of the spectacles type, particularly a polarizing eyeglass type stereoscopic image display device. The image display component may include an image generating component that generates an image signal composed of the right eye image light and the left eye image light, and then transmits the image signal to the viewer side; and a polarization control layer is disposed in the image Like the viewer side of the generating component, if the image signal is input into which 'the image signal can be controlled, the right eye image light and the left eye image light have mutually different polarization states, and can also be transmitted to the viewer. -square. Fig. 1 is a view showing an aspect of a stereoscopic image display device (丨) as described above. The apparatus for image forming component of FIG. 1 includes a light source (11), a first polarizing plate (12), an image generating layer (13), and an 8201142358 two polarizing plate (14), and A polarization control layer (丨5) can be placed in the viewer (17) of the image generation component. In one embodiment, the viewer (17) can wear polarized glasses to view the stereo image. The polarized glasses may have, for example, a right eyeglass lens and a left eyeglass lens, and the right eyeglass lens and the left eyeglass lens may respectively include a polarizing plate. There are different absorption optical axes by designing the polarizing plate on each lens. For example, the absorption optical axis of the polarizing plate of the right lens and the absorption axis of the polarizing plate of the left lens are perpendicular to each other, which can make the left The eye image light is only viewed by the left eye, while the right eye image light is only viewed by the right eye. In one embodiment, the right eye and left eyeglasses may further comprise a polarizing plate having a 1/4 wavelength layer, respectively. In this case, the absorption optical axes of the polarizing plates do not have to be always different from each other. For example, in the above embodiments, the polarizing plates that control the right eye and the left eyeglass lens have mutually parallel absorption optical axes' while also controlling the right eye and the left eye; the lenses of the 1/4 wavelength layer have optical axes of different directions from each other, For example, it is designed for the right eye and the left eyeglass; the optical axis of the lens of the 1/4 wavelength layer is perpendicular to each other, which allows the left eye image light to be viewed only by the left eye, while the right eye image light is only the right eye. Watch. Alternatively, a method may be used to control the polarizing plates of the right and left ophthalmic lenses to have different directions from each other. The optical axes of the lenses of the λ /4 wavelength layers of the right and left ophthalmic lenses are also controlled to be parallel to each other. The term "a μ wavelength layer" refers to a phase delay element that retards the phase of incident light at a quarter wavelength of the wavelength of the incident light. In the device (1) of Fig. 1, the light source (1 1 ) is a portion of the image generating member. For example, in the state of using the device (1), unpolarized white light can be emitted toward the polarizing plate (12). For example, the light source (11), for example, direct type or side 201142358 edge type backlight early element (BLU), is usually used in liquid crystal display devices and can also be used. In the device (1) of Fig. 1, the first polarizing plate (?2) is disposed on the side of the light source (u). The first polarizing plate (12) may have a transmission optical axis and an absorption optical axis perpendicular to the transmission optical axis. When the light emitted by the light source (Π) is viewed, only the light having the polarization axis parallel to the transmission optical axis can pass through the first polarizing plate (12). The direction of the polarization axis may be an electric field. Direction of vibration. The apparatus (1) of FIG. 1 , the image generation layer (i 3 ) may be, for example, a liquid crystal display device in which a single pixel or a plurality of pixels of a right-eye or left-eye image light can be generated and arranged in a straight line and / or the direction of the course. Such a display panel can generate an image signal including left-eye and right-eye image light by displaying each pixel according to the signal in the state of using the device (丨), and transmitting the generated image signal to The second polarizing plate (14) ❶ display panel may include, for example, a substrate, a pixel electrode, an alignment layer, a liquid crystal layer, another alignment layer, a common electrode, a color light-emitting sheet, and a substrate for processing the light source, 〇丨). In the display panel, a single pixel or at least two pixels may form a right eye image generation area (UR) or a left eye image generation area (UL). The right-eye image generation area (UR) or the left-eye image generation area (UL) may be, for example, an alternate strip pattern extending from a common direction as shown in Fig. 2, or a grid pattern as shown in Fig. 3. When the field stereoscopic image display device operates, the right eye and left eye image generation regions respectively generate a right eye image and a left eye image. For example, in the example of Figure 0! 0 201142358, 1), S light emitted by the light source (1 1 ) passes through the first polarizing plate ((1), 'and then input to the display part (13), which passes the right eye image The light that generates the area (:R) becomes the right eye image, and the light that passes through the left eye image generation area (1) becomes the left eye image. In one embodiment, the right and left eye images may have respective polarizations in a particular direction. Linearly polarized light of the optical axis, and these polarized optical axes may have mutually parallel directivity. In the device (1) of Fig. 1, the second polarizing plate (14) is disposed toward the viewer side. When the right eye and the left eye are light Entering the second polarizing plate (14), only the transmission optical axis parallel to the polarizing plate (14) can pass through the polarizing plate (14). In an embodiment, the first and second polarizing plates (12, 14) The transmission optical axis can be processed so as to form a mutual angle of 9 degrees. In the device (1) of Fig. 1, the polarization control layer (15) includes a polarization control region (AR) of a right eye image light and a left Polarization control area (AL) of the eye image light. Polarization control area (AR) of the right eye image light In order to control the polarization state of the light of the right eye image, it is generated and transmitted by the right eye image generation area (UR), and the right eye image light can be set to be input. The polarization control area of the left eye image light (AL) Is a region that controls the polarization state of the light of the left eye image, which is generated and transmitted by the left eye image generation region (and can be set to input the left eye image ray. For example, if at the image generation layer (13) The right eye and left eye image generation regions are set as shown in Fig. 2. The polarization control region (AR 'AL ) can be set as shown in Fig. 4. If the image generation region (UR 'UL ) is set as shown in Fig. 3, The polarization control region (AR, AL) may be set as shown in Fig. 5, but is not limited thereto. 201142358 The right eye and left eye image rays have mutually different polarization states after passing through the polarization control layer (15). In the example, the right- and left-eye image light rays may include linearly polarized light having directivity and may be substantially perpendicular to each other, and may also include left-hand circularly polarized light or right-hand circularly polarized light. As illustrated in FIG. 1, the retardation film (16) set on the device ( Between the image generating unit and the viewer (17), the phase difference film (丨6) has a phase difference in the thickness direction, which allows the image signal to pass through the phase difference film (16) according to the thickness direction. The signal is transmitted to the viewer (n). As shown in the figure, 'in the example, the stereoscopic image display device is a polarized glasses type device, and the retardation film (16) can be combined with the polarization control layer attached to the image display member ( 15) 'It can also be attached to polarized glasses worn by the viewer (17). As shown in Figure 1 (1), the polarization control layer (15) includes polarization control zones for the right and left eye image light (AR, AL). The right and left eye image rays may be linearly polarized rays after passing through the control layer (15) and may be substantially perpendicular to each other 'and may also include left hand circularly polarized light or right hand circularly polarized light. In one embodiment, the right eye and left eye image light rays are left-hand circularly polarized light or right-hand circularly polarized light, respectively, and the polarization control layer may include polarization control regions of the right-eye image light and polarization control of the left-eye image light. a region, the control layer also includes a λ /4 wavelength layer of a polarization control region of the image light disposed in both the right eye and the left eye, and a /4 wavelength layer on the left side of the polarization control region of the right eye image light The λ /4 wavelength layer of the polarization control region of the eye image light may also have mutually different optical axes. The optical axis here refers to the fast axis or the slow axis when the incident light passes through the corresponding region. In the polarization control region of the right eye image light; the optical axis of the I / 4 wavelength layer and the optical axis of the λ / 4 wavelength layer of the polarization control 12 201142358 region of the left eye image light can form an angle of 9Q to each other . Thereafter, the polarization control layer as described above may be referred to as a "patterned λ / 4 wavelength layer. In another embodiment, the polarization control layer produces left-hand circularly polarized light and right-hand circularly polarized light, which may include left eye images. The polarization control region of the light and the polarization control region of the right eye image light, and the control layer further includes an X/4 wavelength layer in the polarization control region of the right eye and left eye image light with images in the right eye and left eye The λ/2 wavelength layer of any of the polarization control regions of the light. Hereinafter, the polarization control layer may be referred to as a "(and /2+ λ /4) wavelength layer". In addition, the definition of the λ /4 wavelength layer It is the same as the foregoing, and the term "λ/2 wavelength layer" as used herein refers to a phase delay element capable of delaying the phase of incident light at a wavelength range of 1/2 of the wavelength of the incident light. When the image signal is left-handed by the above The polarization control layer of circularly polarized light or right-handed circularly polarized light is emitted, and the viewer can wear polarized glasses including right and left glasses for proper viewing of the image signal, and the right and left glasses respectively include λ /4 wavelength layer and polarizing plate. Hereinafter, polarization The glasses are composed of a λ / 4 wavelength layer, as described above for circularly polarized glasses. Further, in one embodiment, the right eye and the left eye lens of the 'circularly polarized glasses may include a lens, a polarizing plate, and a λ/4 wavelength, respectively. Layers, which are arranged in order from the viewer when wearing glasses. In addition, the image signals can also be worn with polarized glasses as described above, 'right and left glasses, or right and left glasses with polarizing plates. The composition of the sheet. Hereinafter, the polarized glasses may be referred to as linearly polarized glasses. The optical axes of the wavelength layers of the circularly polarized and linearly polarized glasses and the absorption axis of the polarizing plate may be controlled as described above. 13 201142358 In a polarized glasses type device, When the polarization control layer is an (A Α Μ) wavelength layer, the retardation film may be +B or +(: plate. • In the specification 'When the polarization control layer is a (λ/2+λ/4) wavelength layer, it is controlled by polarization. The light in the region where only the λ/4 wavelength layer exists may be regarded as the right-eye image light, and the light in the region of the (10) long layer and the further wavelength layer may be regarded as the left eye when passing through the polarization control layer (4). Image light. In the previous example 'phase The poor film is money, and the phase difference in the thickness direction can be determined according to the formula 6 or 7, for example, about 5 〇 nanometer to 27 () nanometer. Preferably, the eye image light passes through the +C plate region when the thickness is The phase difference of the direction can be controlled according to Equation 6, for example, M 〇 nanometer to 2 〇〇 nanometer, and more preferably 15 〇 nanometer to 190 nm. In addition, the phase of the left-eye image light passes through the region in the thickness direction. The difference can be controlled according to Equation 7, for example, 6 〇 nanometer to 12 〇 nanometer is preferably 7 〇 nanometer to 11 GHz nanometer. Further, in a preferred example, the viewer wears the aforementioned circularly polarized glasses to view a stereoscopic image display device. In addition, the aforementioned retardation film is not particularly limited as long as it is disposed between the image display member and the viewer. For example, the lens 1 is attached to the polarization control layer or polarization of the image display member. The front of the glasses. However, if the right eye image line and the left eye image line have different phase differences in the thickness direction, the phase difference film is preferably attached to the front side of the polarized glasses. However, even in the above case, the retardation film may be patterned by itself and incorporated into the device without being attached to the front surface of the polarized glasses. Further, if the retardation film is a +-plate, the phase difference in the thickness direction can be determined according to the formula, for example, about 50 nm to 35 Å. Further, in this case, the phase difference (Rin) in the plane of the + Β plate may be, for example, about 〇2〇 14 201142358 nm to 160 nm. Preferably, when the light of the right eye passes through the +B plate region, the phase difference in the thickness direction can be controlled according to Equation 8, for example, 1 5 〇 nanometer to 35 〇 nanometer, and more preferably 200 nm to 300 nm. . Further, when the left-eye image light passes through the +B plate region, the phase difference in the thickness direction can be controlled according to Formula 9, for example, 50 nm to 250 nm, more preferably 100 nm to 150 nm. Further, the preferred example 'has a different phase difference in the thickness direction from the region of the right-eye image ray and the region through the left-eye image ray. Further, in the preferred example, the viewer wears the aforementioned linearly polarized glasses to view the stereoscopic image display device, but is not limited thereto. Further, the position at which the retardation film is disposed is the same as described above. In the polarized glasses type device, if the polarization control layer is a patterned λ /4 wavelength layer, the retardation film may be a +c plate or a + Β plate, but more preferably a +C plate. In the specification, when the polarization control layer is a patterned λ/4 wavelength layer, light passing through any of the plurality of λ/4 wavelength layers having mutually different optical axes can be regarded as the right eye. The image light; the light passing through the other λ/4 wavelength layer in the plurality of λ/4 wavelength layers having mutually different optical axes can be regarded as the image light of the left eye. As described above, the retardation film is a +C plate, and the phase difference in the thickness direction can be determined according to the formula, for example, about 3 Å to 35 Å. Preferably, when the light of the right eye passes through the +C plate region, the phase difference in the thickness direction can be controlled according to the formula 6; for example, 150 nm to 3 〇〇 nanometer, more preferably 2 〇〇 nanometer to 3 〇〇 Nano. In addition, when the light of the left eye image passes through the region, the phase difference in the thickness direction can be controlled according to Equation 6, for example, 5 〇 nanometer to 25 〇 nanometer, and more preferably 1 〇〇 nanometer to 150 mil. Further, in a preferred example, the viewer wears the aforementioned circularly polarized glasses 15 201142358 to view the stereoscopic image display device, but is not limited thereto. Further, the position at which the retardation film is disposed is the same as described above. In the polarized glasses type device of FIG. 1, when the polarization control layer generates linearly polarized light rays' and is substantially perpendicular to each other, the polarization control layer may be composed of a polarization control region of the right eye image light and a polarization control region of the left eye image light. And the control layer may include a λ/2 wavelength layer disposed only in any of the polarization control regions of the right eye and the left eye. The polarization control layer as described above may be referred to as a "patterned and/2 wavelength layer." In the polarized glasses type device, when the polarization control layer is patterned; the i/2 wavelength layer' retardation film may be a +C plate or a +B plate, but more preferably a +8 plate. In the specification, when the polarization control layer is patterned; in the 1/2 wavelength layer, the light passing through the region of the polarization control layer where the λ/2 wavelength layer is absent may be regarded as the image light of the right eye; by the presence of the λ/2 wavelength layer The light of the area of the polarization control layer can be regarded as the image light of the left eye. Here, the phase difference in the thickness direction of the + gusset plate can be determined according to the formula, for example, about 50 nm to 350 nm. Further, in this case, the phase difference (RIN) in the plane of the + gusset plane may be, for example, about 120 nm to ι 6 〇 nanometer. Preferably, when the right eye image light passes through the +B plate region, the phase difference in the thickness direction can be controlled according to Equation 10, for example, from 150 nm to 350 nm, more preferably from 2 nm to 300 nm. Further, when the light of the left eye image passes through the region, the phase difference in the thickness direction can be controlled according to the formula 11, for example, 5 〇 nanometer to 25 〇 nanometers, more preferably 100 nanometers to 200 nanometers. Further, in a preferred example, the viewer wears the aforementioned circularly polarized glasses to view the stereoscopic image display device, but is not limited thereto. Further, the position at which the retardation film is disposed is the same as described above. 16 201142358 The retardation film ' can use the above description, and is not particularly limited to any particular kind, and is familiar with various retardation films used in the field as long as they exhibit phase difference characteristics as described above. In an embodiment, the retardation film may be a liquid crystal film or a commonly used polymer film. In the case of a polymer film, the phase difference of the polymer film can be controlled in the thickness direction by uniaxial or biaxial stretching. The invention also relates to an optical filter of a stereoscopic image display device, comprising a polarization control layer 'capable of controlling an image signal composed of a right eye image light and a left eye image light, when the image signal is input, The right eye image light and the left eye image light have different polarization states and can emit them; a retardation film is attached to one side of the control layer, so that the image signal is emitted, and there is also a phase difference in the thickness direction. Optical Filters As described above, one of the optical filters has a similar phase difference film type to improve image quality, is attached to the polarization control layer, and can be used in the above-described polarized glasses type stereoscopic image display device. Fig. 6 is a view showing an optical filter (6) in which a retardation film (16) is attached to a polarization control layer (15). The arrow in Fig. 6 represents the direction in which the image signal composed of the left-eye and right-eye image light passes when the stereoscopic display device operates. Therefore, the above case is equally applicable to a specific type of retardation film or value such as phase difference. For example, the retardation film contained in the optical filter is a +C plate, and the phase difference thereof can be in accordance with the formula 6 or 7' or the +B plate, and the phase difference can be in accordance with the following formulas 8 to 11. [Formula 6] 17 201142358

Yl 或 YR = 0.0201X2 -0.0398X +0.0339 $ 0.5 [公式7] YL = 0.0192X2 -0.0763X -^0.0899 < 0.5 [公式8] YR = (9.24χ10'7)Χ2 -0.000236X +0.0288 < 〇.5 [公式9] YL = (5.5xl〇-?)X2 -0.000347X +0.067 < 0.5 [公式10] YR = (1.97χ1〇-6)Χ2 -0.000616X +0.0644 < 〇.5 [公式11] YL = (1.99xlO*6)X2 -0.00125X +0.206 < 0.5 如上公式,公式6與7之X是+C板之厚度方向之相位 差’而公式8至11之X是+B板之厚度方向之相位差。 此外’公式ό至1 1之YR與YL分別表示在應用光學渡光片 之立體圖像裝置運行時,左眼和右眼之串擾比(單位: Cd/m )’该數值可以是單獨或同時地較佳為ο』或更低, 更佳為0.1或更低,更佳仍是0.05或更低,最佳為〇〇1或更 低。 此外’光學濾光片之偏振控制層可以構成前述立體圖 像顯示裝置之偏振控制層,並可例如,上述圖案化又/2或 A /4波長層或(λ /2 +又/4 )波長層。在立體圖像顯示裝置 領域内’各種圖案化λ/2波長層’圖案化a/4波長層或(入 /2+ ;1 /4 )波長層或它們具體化之方法是已知的,而所有上 述已知的方法都可以用於構成偏振控制層。 201142358 在光學濾光片應用於裝置之例子,它可以設置在偏振 控制層一方,使圖像顯示部件輸入和圖像信號生成之圖像 k號經由偏振控制層,並通過相位差膜傳送到觀看者。 另外,相位差膜依附於偏振控制層之方法並沒有特別 限制,可以是光學濾光片,例如,使用一般的感壓黏膠壓 合製備。 本發明還涉及到使用具有右眼和左眼鏡片之偏振眼鏡 觀看立體圖像。每個右眼和左眼鏡片包括一相位差膜,其 在厚度方向具有一相位差’與一偏振板。 偏振光眼鏡可用於觀看由偏振眼鏡型立體圖像顯示裝 置發射之影像。偏振眼鏡可以是如上所述之圓偏振眼鏡或 線性偏振眼鏡,其前面依附有用以改善影像品質之相位差 膜。圖7係表示說明偏振眼鏡。圖7 (A)表示偏振眼鏡,由 觀看者左眼(LE)位置之含有偏振板(71L)和相位差膜 (72L )之左眼鏡片,與觀看者右眼(RE )位置之含有偏 振板(71R)和相位差膜(72R)之右眼鏡片所組成。圖了 (A)和(B)中的箭頭表示圖像信號顯示於觀看者之方向。 因此’上述情況下可同樣適用於特定類型之相位差膜 或數值,如相位差。 例如,包含於偏振眼鏡之相位差膜為板,其相位差 可符合於公式6或7,或+B板,其相位差可符合於以下公式8 至11。 [公式6]Yl or YR = 0.0201X2 -0.0398X +0.0339 $ 0.5 [Formula 7] YL = 0.0192X2 -0.0763X -^0.0899 < 0.5 [Formula 8] YR = (9.24χ10'7)Χ2 -0.000236X +0.0288 < 〇.5 [Formula 9] YL = (5.5xl〇-?)X2 -0.000347X +0.067 < 0.5 [Formula 10] YR = (1.97χ1〇-6)Χ2 -0.000616X +0.0644 < 〇.5 [ Formula 11] YL = (1.99xlO*6)X2 -0.00125X +0.206 < 0.5 As above, the X of Equations 6 and 7 is the phase difference in the thickness direction of the +C plate' and the X of Equations 8 to 11 is +B The phase difference in the thickness direction of the board. In addition, the YR and YL of the formula ό1 to 1 1 respectively indicate the crosstalk ratio (unit: Cd/m) of the left eye and the right eye when the stereoscopic image device of the optical photopath is applied. The value may be single or simultaneous The ground is preferably ο or lower, more preferably 0.1 or lower, still more preferably 0.05 or lower, most preferably 〇〇1 or lower. Further, the polarization control layer of the 'optical filter may constitute a polarization control layer of the aforementioned stereoscopic image display device, and may, for example, be patterned as a /2 or A / 4 wavelength layer or (λ /2 + again / 4 ) wavelength. Floor. In the field of stereoscopic image display devices, 'various patterned λ/2 wavelength layers' patterning a/4 wavelength layers or (in / 2+; 1/4) wavelength layers or methods thereof are known, and All of the above known methods can be used to form the polarization control layer. 201142358 In the case of an optical filter applied to a device, it can be disposed on the polarization control layer side, so that the image display component input and the image signal generated by the image signal are transmitted via the polarization control layer and transmitted through the phase difference film. By. Further, the method of attaching the retardation film to the polarization control layer is not particularly limited, and may be an optical filter, for example, prepared by a general pressure-sensitive adhesive press. The invention also relates to viewing stereoscopic images using polarized glasses having right and left ophthalmic lenses. Each of the right and left ophthalmic lenses includes a retardation film having a phase difference ' in the thickness direction and a polarizing plate. Polarized glasses can be used to view images emitted by a polarized glasses type stereoscopic image display device. The polarized glasses may be circularly polarized glasses or linearly polarized glasses as described above, and are provided with a retardation film which is useful for improving image quality. Fig. 7 is a view showing a polarized glasses. Fig. 7(A) shows polarized glasses, a left-eye lens containing a polarizing plate (71L) and a retardation film (72L) at a position of a left eye (LE) of a viewer, and a polarizing plate at a position of a right eye (RE) of a viewer. (71R) and the right lens of the retardation film (72R). The arrows in (A) and (B) indicate that the image signal is displayed in the direction of the viewer. Therefore, the above case can be applied to a specific type of retardation film or a numerical value such as a phase difference. For example, the retardation film included in the polarized glasses is a plate whose phase difference can be in accordance with Formula 6 or 7, or a +B plate, and the phase difference can be in accordance with the following Formulas 8 to 11. [Formula 6]

Yl 或 Yr = 0.0201X2 -0.0398X+0.0339 $ 0.5 19 201142358 [公式7] YL = 0.0192X2 -0.0763X +0.0899 < 0.5 [公式8] YR = (9.24x10'7)X2 -0.000236Χ +0.0288 < 0.5 [公式9] YL = (5.5x10'7)X2 -0.000347X +0.067 < 0.5 [公式10] YR = (1.97χ10'6)Χ2 -0.000616Χ +0.0644 < 0.5 [公式η] YL = (Ι.99χ10*6)Χ2 -0.00125Χ +0.206 < 0.5 如上公式’公式ό與7之X是+C板之厚度方向之相位 差,而公式8至11之X是+B板之厚度方向之相位差。 此外,公式6至11之YR與YL分別表示在使用偏振眼鏡觀 看立體圖像期間’左眼和右眼之串擾比(單位:Cd/m2 ), 該數值可以是單獨或同時地較佳為0.3或更低,更佳為〇 J 或更低’更佳仍是0.05或更低,最佳為〇.〇1或更低。 此外’在偏振眼鏡為圓偏振眼鏡,左眼和右眼鏡片可 進一步包括又/4波長層。在前述例子中,包含於右眼和左 眼鏡片之偏振板之吸收軸,可以為相互平行方向,包含於 右眼和左眼鏡片之λ /4波長層,可以為相互不同之光學 軸。在其它實施例中,包含於右眼和左眼鏡片之偏振板之 吸收軸’可以為相互不同方向,包含於右眼和左眼鏡片之 λ/4波長層,可以為相互平行之光學軸。 圖7 (Β)係偏振眼鏡之說明圖,表示偏振眼鏡,由觀 看者左眼(LE)位置之含有偏振板(71L)、λ /4波長層(73L) 20 201142358 和相位差膜(72L)之左眼鏡片,與觀看者右眼(rE)位 置之含有偏振板(71R) ' λ/4波長層(73R)和相位差膜 (72R )之鏡片所組成。 本發明還涉及到一種改善立體圖像顯示品質之方法, 經由圖像顯示部件顯示立體圖像,其能夠生成由右眼和左 眼圖像光線組成之圖像信號,並分別被觀看者之右眼和左 眼觀看之,然後傳送至觀看者之一方。該方法包括設置一 相位差膜之步驟,在厚度方向有相位差,使圖像信號由圖 像顯示部件發射出’通過在厚度方向之相位差膜,然後傳 送至觀看者之一方。 在一實施例中,改善立體圖像顯示品質之方法可以為 製備立體圖像顯示裝置之方法,其立體圖像之品質可經由 相位差膜在圖像顯示部件與觀看者之間之位置而改善,或 使用立體圖像顯示裝置之方法,其中觀看者配戴偏振眼鏡 與接著觀看立體圖像。 因此’上述情況下可同樣適用於特定類型之相位差膜 或數值’如相位差。 例如’包含於方法之相位差膜為+C板,其相位差可符 合於公式6或7,或+B板’其相位差可符合於以下公式8至1 ^。 [公式6] YL 或 YR = 0.0201X2 -0.0398X +0.0339 $0.5 [公式7] YL = 0.0192X2 -0.0763X +0.0899 < 0.5 [公式8] YR = (9.24χ1〇·?)Χ2 -0.000236Χ +0.0288 < 0.5 21 201142358 [公式9]Yl or Yr = 0.0201X2 -0.0398X+0.0339 $ 0.5 19 201142358 [Formula 7] YL = 0.0192X2 -0.0763X +0.0899 < 0.5 [Formula 8] YR = (9.24x10'7)X2 -0.000236Χ +0.0288 <; 0.5 [Formula 9] YL = (5.5x10'7)X2 -0.000347X +0.067 < 0.5 [Formula 10] YR = (1.97χ10'6)Χ2 -0.000616Χ +0.0644 < 0.5 [Formula η] YL = (Ι.99χ10*6)Χ2 -0.00125Χ +0.206 < 0.5 The above formula 'Formula ό and 7' X are the phase difference in the thickness direction of the +C plate, and the X of the formula 8 to 11 is the thickness direction of the +B plate The phase difference. Further, YR and YL of Formulas 6 to 11 respectively indicate the crosstalk ratio (unit: Cd/m2) of the left eye and the right eye during viewing of the stereoscopic image using the polarized glasses, and the value may be 0.3 or less, preferably 0.3 or less. Or lower, more preferably 〇J or lower' is still preferably 0.05 or lower, and most preferably 〇.〇1 or lower. Further, in the case where the polarized glasses are circularly polarized glasses, the left and right glasses may further include a /4 wavelength layer. In the foregoing examples, the absorption axes of the polarizing plates included in the right and left ophthalmic lenses may be parallel to each other, and may be included in the λ /4 wavelength layers of the right and left ophthalmic lenses, and may be mutually different optical axes. In other embodiments, the absorption axes of the polarizing plates included in the right and left ophthalmic lenses may be in mutually different directions, included in the λ/4 wavelength layers of the right and left ophthalmic lenses, and may be mutually parallel optical axes. Fig. 7 (Β) is an explanatory diagram of polarized glasses, showing polarized glasses, including a polarizing plate (71L), a λ /4 wavelength layer (73L) 20 201142358 and a retardation film (72L) by the viewer's left eye (LE) position. The left eyeglass lens is composed of a lens containing a polarizing plate (71R) 'λ/4 wavelength layer (73R) and a retardation film (72R) at the viewer's right eye (rE) position. The present invention also relates to a method for improving the quality of stereoscopic image display, displaying a stereoscopic image via an image display component, which is capable of generating image signals composed of right-eye and left-eye image rays, respectively, and is respectively viewed by the viewer The eye and the left eye view it and then transmit it to one of the viewers. The method includes the step of providing a retardation film having a phase difference in the thickness direction such that the image signal is emitted by the image display member by a retardation film in the thickness direction and then transmitted to one of the viewers. In an embodiment, the method for improving the quality of stereoscopic image display may be a method for preparing a stereoscopic image display device, and the quality of the stereoscopic image may be improved by the position of the retardation film between the image display component and the viewer. Or a method of using a stereoscopic image display device in which a viewer wears polarized glasses and then views a stereoscopic image. Therefore, the above-mentioned case can be equally applied to a specific type of retardation film or a value such as a phase difference. For example, the retardation film included in the method is a +C plate, the phase difference thereof may conform to Equation 6 or 7, or the +B plate' may have a phase difference which satisfies the following formula 8 to 1^. [Formula 6] YL or YR = 0.0201X2 -0.0398X +0.0339 $0.5 [Formula 7] YL = 0.0192X2 -0.0763X +0.0899 < 0.5 [Formula 8] YR = (9.24χ1〇·?)Χ2 -0.000236Χ + 0.0288 < 0.5 21 201142358 [Formula 9]

Yl = (5.5χ1〇-7)χ2 -0.000347Χ +0.067 < 0.5 [公式10]Yl = (5.5χ1〇-7)χ2 -0.000347Χ +0.067 < 0.5 [Formula 10]

Yr = (1·97χ1〇-6)χ2 -〇.〇〇〇616χ +0.0644 < 0.5 [公式1】]Yr = (1·97χ1〇-6)χ2 -〇.〇〇〇616χ +0.0644 < 0.5 [Formula 1]]

Yl = (1.99χ1〇-6)χ2 -0.00J25X +0.206 < 0.5 如上公式,公式6與7之X是+C板之厚度方向之相位 差,而公式8至Π之X是+Β板之厚度方向之相位差。 △式6至】丨之、與Yl分別表示在立體圖像顯示裝置運 作時,左眼和㈣4擾比(n Cd/m2),該數值可以 是單獨或同時地較佳為㈣更低,更佳為(M或更低,更佳 仍是0.05或更低,最佳為〇 〇1或更低。 在該方法是-種製備立體圖像顯示裝置、 或偏振眼鏡之類之方法的情況,只要該方法包括將;:位差 膜放置在適合位置之步驟,就 使用並沒有特別限制,且在;;=步驟或元件種類的 以在此應用。 衫錢㈣已知时見内容可 【發明之有利效果】 本發明係提供—種立__ 立體圖像之串擾或視角減i肊夠防止顯示 度減少’同時提高圖像品質,如=立體圖像顯示之亮 裝置之光學濾光片;—又,一立體圖像顯示 立體圖像品質之方法。 _像之偏振眼鏡;或改進 22 201142358 【實施方式】 本發明藉由根據本發明之實施例與非本發明之 作更詳細之說明,但本發明之範#;^限於以下例子。交例 說明書中,物理性能係如下所述之方法測定。 1.相位差膜之相位差 相位差膜之相位差可使用波長為55〇奈米或589太 光線測量。相位差可由AxGsean (AxG_Hes製造)^相 位差膜之十六穆勒矩陣(sixteenMuUerma⑽μ)取得該 儀益根據廠商手冊測量十六穆勒矩陣。 5 2.串擾比之鑑定方法 立體圖像裝置之串擾比可被定義為在暗態與亮態之亮 度比。根據立體圖像裝置之種類,測定串擾比之各種方2 在該領域是已知的。在使用偏振眼鏡型立體圖像顯示裝置 J子中串擾比可用以下方法測定。首先,觀看立體圖 像之偏振眼鏡係設置在傳統立體圖像顯示裝置之觀看位 置。在前述中’傳統觀看點係位於由裝置中心處遠離裝置 之水平長度之3/2倍。在此條件下之偏振眼鏡位置,其傳統 觀看點係位於裝置中心處。水平長度可以是裝置在水平方 向的長度,相對於觀看者觀看立體圖像,即可是裝置之寬 度方向。在以上的設置,在裝置顯示左眼圖像之狀態下, 一冗度測量儀(SR-U2光譜儀)係分別被設置在偏振眼鏡 之左眼和右眼鏡片背面’然後測定左眼鏡片背面亮度和右 眼鏡片背面亮度。以上,左眼鏡片背面亮度是亮態的亮度, 23 201142358 而右眼鏡片背面亮度是暗態的亮度。亮度測量後,計算暗 態的亮度相對於亮態的亮度之比例([暗態的亮度]/ [亮態 的亮度]),可稱為左眼之串擾比(YL)。此外,右眼之串 擾比(yr )可用前述同樣的方法測定,尤其,在立體圖像 顯示裝置顯示右眼圖像之狀態下,可以計算由亮態和暗態 測定之亮度。在這種情況下,右眼鏡片背面亮度是亮態的 亮度’而左眼鏡片背面亮度是暗態的亮度。此外,該比率 ([暗態的亮度]/ [亮態的亮度])可同樣地稱為串擾比 (Yr)。 3·根據水平視角鑑定串擾比之方法 串擾比可根據以下方法鑑定水平視角。鑑定串擾比之 方法如剛述第2項描述,觀看立體圖像之偏振眼鏡係設置在 傳統的裝置觀看處,然後如前述第2項相同方法測定串擾比 (Yl與YR),同時參考觀看者,在水平方向之觀看角度由〇 到80度改變5度。在此,觀看角度是測定觀看者視線角度在 水平方向上之基線(0度)變化,同時參考觀看者於傳統觀 看處觀看裝置中心處時之觀看者的視線角度。此外,前述 第2項之串擾比數值係在觀看角度〇度時測定。 4.根據水平視角鑑定串擾亮度之方法 在刚述第3項描述之測定串擾比之方法,觀看立體圖像之偏 振眼鏡係設置在傳統的裝置觀看處,然後如前述第2項相同 方法測定根據水平視角之串擾亮度,同時參考觀看者,在 水平方向之觀看角度由〇到8〇度改變5度。根據水平視角之 24 201142358 左眼串擾亮度(CRleft)係由公式12計算,而根據水平視角 之之右眼串擾亮度(CRright)由公式13計算。 [公式12] CRleft =左眼圖像光線通過偏振眼鏡左眼區域之亮度/左眼 串擾比(YL ) [公式13] CRright =右眼圖像光線通過偏振眼鏡右眼區域之亮度/右 眼串擾比(YR) 範例1Yl = (1.99χ1〇-6)χ2 -0.00J25X +0.206 < 0.5 As the above formula, the X of the formulas 6 and 7 is the phase difference in the thickness direction of the +C plate, and the formula X to X is the + Β plate The phase difference in the thickness direction. Δ6 to 丨, and Y1 respectively indicate the left eye and (4) 4 scrambling ratio (n Cd/m2) when the stereoscopic image display device operates, and the value may be separately or simultaneously preferably (four) lower, more Preferably, M or lower, more preferably 0.05 or lower, most preferably 〇〇1 or lower. In the case where the method is a method of preparing a stereoscopic image display device, or polarized glasses, As long as the method comprises the steps of: placing the dislocation film in a suitable position, the use is not particularly limited, and in the;;= step or component type for application herein. Advantageous Effects of the Invention The present invention provides an optical filter that provides a crosstalk of a stereoscopic image or a reduced viewing angle to prevent a decrease in display degree while improving image quality, such as a bright device for stereoscopic image display; - In addition, a method of displaying a stereoscopic image quality in a stereoscopic image. _ Image polarized glasses; or improvement 22 201142358 [Embodiment] The present invention is explained in more detail by an embodiment according to the present invention and a non-invention of the present invention. However, the scope of the present invention is limited to the following examples. In the specification, the physical properties are determined by the method described below: 1. Phase difference film phase difference The phase difference of the film can be measured using a wavelength of 55 〇 nanometer or 589 ray. The phase difference can be determined by AxGsean (AxG_Hes)^ The sixteen Mueller matrix of the phase difference film (sixteenMuUerma(10)μ) is obtained by the manufacturer. The crosstalk ratio can be defined as the dark state and the bright state. The brightness ratio of the state. According to the type of the stereoscopic image device, various aspects of measuring the crosstalk ratio are known in the art. The crosstalk ratio in the case of using the polarized glasses type stereoscopic image display device J can be measured by the following method. The polarized glasses for viewing the stereoscopic image are disposed at the viewing position of the conventional stereoscopic image display device. In the foregoing, the 'traditional viewing point is located at 3/2 times the horizontal length of the device away from the center of the device. Polarization under this condition The position of the glasses, the traditional viewing point is located at the center of the device. The horizontal length may be the length of the device in the horizontal direction, and the stereoscopic image is viewed relative to the viewer. That is, the width direction of the device. In the above setting, in the state where the device displays the left eye image, a redundancy measuring instrument (SR-U2 spectrometer) is respectively disposed on the left eye of the polarized glasses and the back of the right eyeglass lens' Then measure the brightness of the back of the left lens and the brightness of the back of the right lens. Above, the brightness of the back of the left lens is the brightness of the bright state, 23 201142358 and the brightness of the back of the right lens is the brightness of the dark state. After the brightness measurement, calculate the brightness of the dark state. The ratio of the brightness relative to the bright state ([Brightness of Dark State] / [Brightness of Bright State]) may be referred to as the crosstalk ratio (YL) of the left eye. In addition, the crosstalk ratio (yr) of the right eye may be the same as described above. The method determines, in particular, that the brightness measured by the bright state and the dark state can be calculated in a state where the stereoscopic image display device displays the right eye image. In this case, the brightness of the back side of the right lens is the brightness of the bright state, and the brightness of the back side of the left lens is the brightness of the dark state. Further, the ratio ([brightness of brightness] / [brightness of bright state]) can be similarly referred to as crosstalk ratio (Yr). 3. Method of Identifying Crosstalk Ratio Based on Horizontal Viewing Crosstalk Ratio The horizontal viewing angle can be identified according to the following method. The method for identifying the crosstalk ratio is as described in item 2, and the polarized glasses for viewing the stereoscopic image are set at the conventional device viewing position, and then the crosstalk ratio (Yl and YR) is determined by the same method as the second item described above, while referring to the viewer. The viewing angle in the horizontal direction is changed by 5 degrees from 〇 to 80 degrees. Here, the viewing angle is a change in the baseline (0 degree) of the viewer's line of sight angle in the horizontal direction while referring to the viewer's line of sight angle when the viewer views the center of the device at the conventional viewing point. Further, the crosstalk ratio value of the above item 2 is measured at the viewing angle. 4. Method for identifying crosstalk luminance according to horizontal viewing angle In the method for measuring crosstalk ratio described in item 3, the polarized glasses for viewing stereoscopic images are placed at a conventional device viewing position, and then measured according to the same method as in the second item described above. The horizontal viewing angle of the crosstalk is bright, while referring to the viewer, the viewing angle in the horizontal direction is changed by 5 degrees from 〇 to 8 degrees. According to the horizontal viewing angle 24 201142358, the left eye crosstalk luminance (CRleft) is calculated by Equation 12, and the right eye crosstalk luminance (CRright) according to the horizontal viewing angle is calculated by Equation 13. [Formula 12] CRleft = Left-eye image light passes through the polarized glasses in the left-eye region of the luminance/left-eye crosstalk ratio (YL) [Equation 13] CRright = Right-eye image light passes through the polarized glasses right-eye region brightness/right-eye crosstalk Ratio (YR) example 1

製備一裝置’其具有如圖1表示之結構,並包括一偏振 控制層(圖1 ’ 15 ) ( ( λ /2+ λ /4 )波長層)。在偏振控制 層(圖1,15) ((λ /2+λ /4)波長層),一又/4波長層, 具有一慢軸與偏振板(圖1,14)之傳輸軸形成45度,並被 定位於右眼圖像光線之偏振控制區域(圖丨,15之尺);一 λ/2波長層,具有一慢轴與偏振板(圖丨,14)之傳輸軸形 成-45度,及一;I /2波長層,具有一慢軸與偏振板(圖i,14) 之傳輸軸形成45度,係#定位於左眼圖像光線之偏振控制 區域(圖1 ’ 15之L)。然後’利用具有右眼和左眼鏡片之 偏振眼鏡(圓偏振眼鏡),彡中一偏振膜具有一傳輸轴與 偏振板(圖丨’丨4)之傳輸軸形成9G度,—λ/4波長層具有 一慢軸與偏振板(圖1 ’ 14)之傳輸軸形成45度,與一+C 板’係相繼地依附於右眼鏡片;一偏振膜具有一傳輸軸與 偏振板’⑷之傳輸軸形成爾,—λ/4波長層具有 -慢轴與偏振板(1U ’ 14)之傳輸軸形成_45度,與一+C 25 201142358 板’係相繼地依附於力μ 、左艮1兄片,使圖像由立體圖像顯示裝 置發射出而觀看。在上水 、pal— 任上述過私中,左眼或右眼之串擾比是 被測疋’隨著依附在左 眼和右眼叙片之板厚度方向之相 位錢化,如圖8描述之結果。該+c板係一平常之液晶型相 位差膜’ ”該相位差膜採用垂直排列之光固化液晶,具 有又折射(△ N )為〇· 1。圖8 ( a )代表前述例子之左眼串 擾比(YL),其中X軸代表在+c板厚度方向之相位差(單 位:nm),而丫軸代表亊擾比(Cd/m2)。此外,圖8⑴ 代表右眼串擾比(Yr),其中χ軸代表在+c板厚度方向之 相位差(單位:nm),而γ軸代表_擾比(Cd/m2)。 範例2 一立體圖像顯示裝置與偏振眼鏡係由範例1相同方法 製備’除了考慮實施例1之結果之外’該+C板(液晶型相位 差膜塗佈垂直排列之光固化液晶,具有雙折射(△N )為 0.1 ’厚度為1.7/zm)在厚度方向之相位差為丨7〇 nm,並依 附於右眼鏡片;該+C板(液晶型相位差膜塗佈垂直排列之 光固化液晶’具有雙折射(ΔΝ)為0.1,厚度為〇.9//m) 在厚度方向之相位差為90 nm,並依附於左眼鏡片。 比較例1 一立體圖像顯示裝置與偏振眼鏡係由範例2相同方法 製備,除了該+C板未依附於右眼和左眼鏡片之外。 實驗例1 26 201142358 在使用範例2和比較例1之裝置,左眼圖像光線與右眼 圖像光線之串擾比,係、根據水平視角由前述方法測定如 圖9摇述。圖9 (a)代表根據水平視角之左眼串擾比,其中 X軸代表水平可視角度(單位··度),而¥軸代表串擾比 (Cd/m2)。圖9 (b)代表根據水平視角之右眼串擾比,其 中X軸代表水平可視角度(單位:度),而¥軸代表串擾:匕 (Cd/m2)。在每個圖式中,虛線表示比較例〗之結果,實 線表示範例2之結果。 ' 實驗例2 ,在使用範例2和比較例!之裝置過程中,串擾亮度根據 水平視角由前述方法測定,如圖丨〇描述於圖丨〇 ( a )中,X 軸代表水平可視角度(單位:度),而Y軸代表亮度(CR_)。 於圖10 (b)中’ X軸代表水平可視角度(單位:度),而 Y軸表示亮度(CRright)。在每個圖式中,虛線表示比較例 1之結果’實線表示範例2之結果。 範例3 ^ 一立體圖像顯示裝置與偏振眼鏡係由範例丨相同方法 製備,除了該偏振眼鏡(線性偏振眼鏡)製備之外,其包 W左眼鏡片’其中一偏振膜具有一傳輸抽與偏振板 (圖1 ’ 14)之傳輪軸形成9〇度,與一+B板在平面方向之相 位差(RIN)具有140nm,係相繼地依附於右眼鏡片;及一 偏振膜具有—傳輪軸與偏振板(圖卜14)之傳輸軸形成9〇 度,與一+B板在平面方向之相位差(Rin)具有14〇細,係 27 201142358 相繼地依附於左眼鏡片,使圖像由立體圖像顯示裝置發射 出而觀看。在上述過程中,左眼或右眼之串擾比是被上述 方法測定’隨著依附在左眼和右眼鏡片之+B板厚度方向之 相位差變化,如圖n描述之結果。如+B板,係一般使用之 cop(環馳聚合物)作為+B板使用。^] (a)代表左眼 串擾比(YL) ’其中X軸代表在+B板厚度方向之相位差(單 位:nm),而Υ軸代表串擾比(Cd/m2)。此外,圖11(b) 代表右眼串擾比(Yr ),其中χ軸代表在+B板厚度方向之 相位差(單位:nm),而γ軸代表串擾比(Cd/m2)。 範例4 ,立體圖像顯不裝置與偏振眼鏡係'由範例3相同方法 ,備除了考慮範例3之結果外,一 +B板(⑺p (環烯烴 聚《物)才目位差膜(厚度:8〇心))在厚度方向之相位差 為24〇nm與在平面方向之相位差為my,依附於右眼 鏡片,與一+B板(c〇p (環烯烴聚合物)相位差膜(厚度: 0“m))在厚度方向之相位差為㈣⑽與在平面方向之 相位差為137.5 nm,依附於左眼鏡片。 比較例2 立體圖像顯不裝置與偏振眼鏡係由範例4相同方法 備’除了該+B板未依附於右眼和左眼鏡片之夕卜 實驗例3 28 201142358 在使用範例4和比較例2之裝置,左眼圖像光線與右眼 圖像光線之串擾比,係根據水平視角由前述方法測定,如 圖12也述(a)代表根據水平視角之左眼串擾比,其 中x軸代表水平可視角度(單位:度),而Y軸代表串擾: (Cd/m2 ) °圖12⑴代表根據水平視角之右眼争擾比, 其中X軸代表水平可視角度(單位:度),而γ軸代表串擾 $ (Cd/m2)。在每個圖式中,虛線表示比較例2之結果, 實線表示範例4之結果。 實驗例4 在使用範例4和比較例2之裝置過程中,左眼圖像光線 與右眼圖像光線之串擾亮度’係根據水平視角由前述方法 測定,如圖13描述。於圖13 (a)中,χ軸代表水平可視角 度(單位:度),而γ軸代表亮度(CRieft)。於圖13(b) 中’X軸代表水平可視角度(單位:度),而γ軸表示亮度 (CRright) »在每個圖式中,虛線表示比較例2之結果,實 線表示範例4之結果。 範例5 製備一裝置’其具有如圖〗表示之結構’包括偏振控制 層(圖1,15)(圖案化λ/2波長層),其中一;波長層 具有一慢軸與偏振板(圖〗,14)之傳輸軸形成_45度,且 僅存在於左眼圖像光線之偏振控制區域(圖〗,15之^ , 藉由將一具有平面方向之相位差為14〇 nmi+B板,依附於 偏振控制層正面。然後,利用具有右眼和左眼鏡片之偏振 29 201142358 眼鏡(圓偏振眼鏡),其_一偏振膜具有一傳輸軸與偏振 板(圖1,14)之傳輸軸形成9〇度,及一 λ/4波長層具有一 慢軸與偏振板(圖丨,14)之傳輸軸形成45度,係相繼地依 附於右眼鏡片’·及一偏振膜具有一傳輸軸與偏振板(圖i, 14)之傳輸軸形成90度,及一 λ/4波長層具有一慢軸與偏 振板(圖1,14 )之傳輸軸形成_45度,係相繼地依附於左 眼鏡片,使圖像由立體圖像顯示裝置發射出而觀看。在上 述過程中,左眼或右眼之串擾比是被測定,隨著依附在偏 振控制層正面之+Β板厚度方向之相位差變化,如圖14描述 之結果。在此,如+Β板,係一般使用之c〇p (環烯烴聚合 物)作為+B板使用。如圖丨4,虛線代表左眼串擾比() (Cd/m2),而實線代表右眼串擾比(Yl) (Cd/m2),其 中X軸代表在+B板厚度方向之相位差(單位:χ丨〇〇 nm ), 而Y軸代表串擾比(Cd/m2)。 範例6 一立體圖像顯示裝置與偏振眼鏡係由範例5相同方法 製備,除了考慮範例5之結果外,一 +8板(c〇p (環烯烴聚 合物)相位差膜(厚度:8〇 "m))在平面方向之相位差為 137.5 nm與在厚度方向之相位差為21〇 ηηι,依附於裝置内 偏振控制層正面。 比較例3 一立體圖像顯示裝置與偏振眼鏡係由範例6相同方法 構成’除了該+B板未依附之外。 30 201142358 實驗例5 在使用範例6和比較例3之裝置過程中,左眼圖像光線 與右眼圖像光線之串擾比,係根據水平視角由前述方法測 定,如圖15描述。於圖15 (a)中,χ軸代表水平可視角度 (單位:度),而γ軸代表在左眼串擾比(Yl) (Cd/m2)。 於圖15(b)中,χ軸代表水平可視角度(單位:度),而 Y軸代表右眼串擾比(YR ) ( Cd/m2 )。在每個圖式中,虛 線表示比較例3之結果,實線表示範例6之結果。 實驗例6 在使用範例6和比較例3之裝置過程中,左眼圖像光線 與右眼圖像光線之串擾亮度,係根據水平視角由前述方法 測定,如圖16描述。於圖16 (a)中,χ軸代表水平可視角 度(單位:度),而Y軸代表亮度(CR丨…)。於圖16⑴ 中’X軸代表水平可視角度(單位:度),而γ軸表示亮度 (CRnght)。在母個圖式中,虛線表示比較例3之結果,實 線表示範例6之結果。 由上述可知,本發明無論就目的、手段及功效,均顯 =其迥異於習知技術之特徵,極具實用價值。惟應注意的 是,上述諸多實施例僅係為了便於說明而舉例而已,本發 明所主張之權利範圍自應以巾請專利範圍所述為準,而非 僅限於上述實施例。 【圖式簡單說明】 201142358 圖1係描繪顯示裝置說明之橫截面視圖。 眼圖像 圖2和3係說明描繪在立體圖像顯示裝置之右眼和卢 生成區域之設置圖式。 二 圖4和5係說明描繪在立體圖像顯示裝置之偏振控制層之右 眼和左眼偏振控制區之設置圖式。 圖6係描繪立體圖像顯示裝置之光學濾光片說明之圖式。 圖7係描繪說明觀看立體圖像之偏振眼鏡之圖式。 圖8至16係說明測量結果之圆式。 【主要元件符號說明】 1立體圖像顯示裝置 11光源 13圖像生成層 16相位差膜 UR右眼之圖像生成區域 6光學濾光片 12, 14偏振板 15偏振控制層 17觀看者 UL左眼之圖像生成區域 AR右眼圖像光線之偏振控制區 AL左眼圖像光線之偏振控制區 LE左眼 RE右眼 71L,71R偏振板 72L, 72R相位差膜 73L, 73R又/4波長層 32A device was prepared which has the structure shown in Fig. 1 and includes a polarization control layer (Fig. 1 '15) ((λ / 2 + λ / 4 ) wavelength layer). In the polarization control layer (Fig. 1, 15) ((λ / 2 / λ / 4) wavelength layer), a / / 4 wavelength layer, with a slow axis and the polarization axis (Figure 1, 14) transmission axis formed 45 degrees And is positioned in the polarization control region of the right eye image light (Fig. 15, 15 feet); a λ/2 wavelength layer having a slow axis and a polarization plate (Fig. 14, 14) forming a transmission axis - 45 degrees And a; I /2 wavelength layer having a slow axis and a polarization plate (Fig. i, 14) forming a transmission axis of 45 degrees, which is positioned in the polarization control region of the left eye image light (Fig. 1 '15 L ). Then 'Using polarized glasses with right-eye and left-eye glasses (circularly polarized glasses), a polarizing film in the middle has a transmission axis and a transmission axis of the polarizing plate (Fig. 丨'4) to form 9G degrees, λ/4 wavelength The layer has a slow axis forming 45 degrees with the transmission axis of the polarizing plate (Fig. 1 '14), and a +C plate' is successively attached to the right lens; a polarizing film has a transmission axis and a polarizing plate '(4) transmission The axis is formed, the λ/4 wavelength layer has a slow axis and the transmission axis of the polarizing plate (1U '14) forms _45 degrees, and a +C 25 201142358 plate 'system is successively attached to the force μ, left 艮 1 brother The slice is caused to be viewed by the stereoscopic image display device. In Sheung Shui, pal - in the above-mentioned private, the crosstalk ratio of the left eye or the right eye is the measured 疋 'with the phase of the thickness of the plate attached to the left eye and the right eye, as shown in Figure 8. result. The +c plate is a normal liquid crystal type retardation film ”. The retardation film adopts a vertically aligned photocurable liquid crystal having a refraction (ΔN) of 〇·1. Fig. 8(a) represents the left eye of the foregoing example. Crosstalk ratio (YL), where the X axis represents the phase difference in the thickness direction of the +c plate (unit: nm), and the x axis represents the interference ratio (Cd/m2). In addition, Fig. 8(1) represents the right eye crosstalk ratio (Yr). Wherein the χ axis represents the phase difference in the thickness direction of the +c plate (unit: nm), and the γ axis represents the _scrambling ratio (Cd/m2). Example 2 A stereoscopic image display device and a polarized glasses are the same as in the example 1. Preparation 'Beyond the results of considering Example 1' The +C plate (liquid crystal type retardation film coated vertically aligned photocurable liquid crystal having a birefringence (?N) of 0.1' thickness of 1.7/zm) in the thickness direction The phase difference is 丨7〇nm and is attached to the right spectacle lens; the +C plate (liquid crystal type retardation film coated vertically aligned photocurable liquid crystal) has a birefringence (ΔΝ) of 0.1 and a thickness of 〇.9/ /m) The phase difference in the thickness direction is 90 nm and is attached to the left lens. Comparative Example 1 A stereoscopic image display device Polarized glasses were prepared in the same manner as in Example 2 except that the +C plate was not attached to the right eye and left eyeglasses. Experimental Example 1 26 201142358 In the apparatus of Example 2 and Comparative Example 1, the left eye image was rayd to the right. The crosstalk ratio of the eye image light is determined by the aforementioned method according to the horizontal viewing angle as shown in Fig. 9. Fig. 9(a) represents the left eye crosstalk ratio according to the horizontal viewing angle, wherein the X axis represents the horizontal viewing angle (unit··degree ), while the ¥ axis represents the crosstalk ratio (Cd/m2). Figure 9 (b) represents the right eye crosstalk ratio according to the horizontal viewing angle, where the X axis represents the horizontal viewing angle (unit: degree), and the ¥ axis represents crosstalk: 匕 ( Cd/m2). In each of the drawings, the broken line indicates the result of the comparative example, and the solid line indicates the result of the example 2. 'Experiment 2, in the process of using the example 2 and the comparative example!, the crosstalk brightness is according to the level The viewing angle is determined by the aforementioned method, as shown in Figure 丨〇(a), the X-axis represents the horizontal viewing angle (unit: degree), and the Y-axis represents the brightness (CR_). In Figure 10 (b), 'X The axis represents the horizontal viewing angle (unit: degree), while the Y axis represents the brightness CRright) In each of the drawings, the broken line indicates the result of Comparative Example 1 and the solid line indicates the result of Example 2. Example 3 ^ A stereoscopic image display device and polarized glasses are prepared by the same method as the example, except for the polarized glasses. In addition to the preparation of the (linearly polarized glasses), the W lens of the left lens, in which one of the polarizing films has a transmission and polarization plate (Fig. 1 '14), the transmission axis forms 9 degrees, and a +B plate in the plane direction The phase difference (RIN) has 140 nm, which is successively attached to the right spectacle lens; and a polarizing film has a transmission axis formed by the transmission axis and the polarizing plate (Fig. 14), 9 degrees, and a +B plate in the planar direction. The phase difference (Rin) has a thickness of 14 inches, and the system 27 201142358 successively attaches to the left eyeglass lens to cause the image to be viewed by the stereoscopic image display device. In the above process, the crosstalk ratio of the left eye or the right eye is measured by the above method as a result of the phase difference in the thickness direction of the +B plate attached to the left eye and the right eyeglass, as shown in Fig. n. For example, the +B plate is a cop (cyclic polymer) used as a +B plate. ^] (a) represents the left-eye crosstalk ratio (YL) where the X-axis represents the phase difference in the thickness direction of the +B plate (unit: nm), and the x-axis represents the crosstalk ratio (Cd/m2). Further, Fig. 11(b) represents a right-eye crosstalk ratio (Yr) in which the x-axis represents the phase difference in the thickness direction of the +B plate (unit: nm), and the γ-axis represents the crosstalk ratio (Cd/m2). Example 4: Stereoscopic image display device and polarized glasses system 'The same method as in Example 3, except for the result of considering Example 3, a +B plate ((7)p (cycloolefin poly)) is a difference film (thickness: 8〇))) The phase difference in the thickness direction is 24〇nm and the phase difference in the plane direction is my, attached to the right spectacle lens, and a +B plate (c〇p (cycloolefin polymer) retardation film ( Thickness: 0 "m)) The phase difference in the thickness direction is (4) (10) and the phase difference in the plane direction is 137.5 nm, which is attached to the left lens. Comparative Example 2 The stereoscopic image display device and the polarized glasses are the same as in Example 4. In addition to the fact that the +B plate is not attached to the right eye and the left eye lens, Experimental Example 3 28 201142358 In the apparatus using the example 4 and the comparative example 2, the crosstalk ratio between the left eye image light and the right eye image light is It is determined by the aforementioned method according to the horizontal viewing angle, and as shown in FIG. 12 (a) represents the left-eye crosstalk ratio according to the horizontal viewing angle, wherein the x-axis represents the horizontal viewing angle (unit: degree), and the Y-axis represents crosstalk: (Cd/m2) ° Figure 12 (1) represents the right eye contention ratio according to the horizontal viewing angle, where the X axis represents The table horizontal viewing angle (unit: degree), and the γ axis represents crosstalk $ (Cd/m2). In each of the drawings, the broken line indicates the result of Comparative Example 2, and the solid line indicates the result of Example 4. Experimental Example 4 In use In the apparatus of Example 4 and Comparative Example 2, the crosstalk luminance of the left-eye image light and the right-eye image light is determined by the aforementioned method according to the horizontal viewing angle, as described in Fig. 13. In Fig. 13 (a), the x-axis Represents the horizontal viewing angle (unit: degree), while the γ axis represents the brightness (CRieft). In Figure 13(b), the 'X axis represents the horizontal viewing angle (unit: degree), and the γ axis represents the brightness (CRright) » in each In the drawings, the broken line indicates the result of Comparative Example 2, and the solid line indicates the result of Example 4. Example 5 A device was prepared which has a structure as shown in the figure 'including a polarization control layer (Fig. 1, 15) (patterned λ /2 wavelength layer), one of which; the wavelength layer has a slow axis and the polarization axis of the polarizing plate (Fig. 14, 14) forms _45 degrees, and exists only in the polarization control region of the left eye image light (Fig., 15 ^, by attaching a phase difference with a plane direction to 14〇nmi+B, attached Polarization control layer front side. Then, using polarizing lens 29201142358 glasses (circular polarized glasses) with right eye and left eyeglasses, the polarizing film has a transmission axis and a transmission axis of the polarizing plate (Fig. 1, 14). And a λ/4 wavelength layer having a slow axis forming 45 degrees with the transmission axis of the polarizing plate (Fig. 14, 14), successively attached to the right lens piece '· and a polarizing film having a transmission axis and a polarizing plate (Fig. i, 14) The transmission axis forms 90 degrees, and a λ/4 wavelength layer has a slow axis forming a _45 degree with the transmission axis of the polarizing plate (Fig. 1, 14), which are successively attached to the left eyeglass. The image is viewed by being emitted by the stereoscopic image display device. In the above process, the crosstalk ratio of the left eye or the right eye is measured, as the phase difference in the direction of the thickness of the + seesaw attached to the front side of the polarization control layer changes, as shown in Fig. 14. Here, as a +B plate, a commonly used c〇p (cycloolefin polymer) is used as the +B plate. As shown in Fig. 4, the broken line represents the left eye crosstalk ratio () (Cd/m2), and the solid line represents the right eye crosstalk ratio (Yl) (Cd/m2), where the X axis represents the phase difference in the +B plate thickness direction ( Unit: χ丨〇〇nm ), and the Y axis represents the crosstalk ratio (Cd/m2). Example 6 A stereoscopic image display device and polarized glasses were prepared in the same manner as in Example 5 except that the results of Example 5 were considered, a +8 plate (c〇p (cycloolefin polymer) retardation film (thickness: 8 〇 &quot ;m)) The phase difference in the plane direction is 137.5 nm and the phase difference in the thickness direction is 21〇ηηι, which is attached to the front side of the polarization control layer in the device. Comparative Example 3 A stereoscopic image display device and polarized glasses were constructed in the same manner as in Example 6 except that the +B plate was not attached. 30 201142358 Experimental Example 5 In the process of using the apparatus of Example 6 and Comparative Example 3, the crosstalk ratio of the left-eye image light to the right-eye image light was measured by the aforementioned method according to the horizontal viewing angle, as described in Fig. 15. In Fig. 15 (a), the x-axis represents the horizontal viewing angle (unit: degree), and the γ-axis represents the left-eye crosstalk ratio (Yl) (Cd/m2). In Fig. 15(b), the x-axis represents the horizontal viewing angle (unit: degree), and the Y-axis represents the right-eye crosstalk ratio (YR) (Cd/m2). In each of the figures, the dashed line indicates the result of Comparative Example 3, and the solid line indicates the result of Example 6. Experimental Example 6 In the process of using the apparatus of Example 6 and Comparative Example 3, the crosstalk luminance of the left-eye image light and the right-eye image light was measured by the aforementioned method according to the horizontal viewing angle, as described in Fig. 16. In Fig. 16 (a), the x-axis represents the horizontal viewable angle (unit: degree), and the Y-axis represents the brightness (CR丨...). In Fig. 16 (1), the 'X axis represents the horizontal viewing angle (unit: degree), and the γ axis represents the brightness (CRnght). In the parent pattern, the dashed line indicates the result of Comparative Example 3, and the solid line indicates the result of Example 6. From the above, it can be seen that the present invention is highly practical in terms of its purpose, means and efficacy, which are different from the characteristics of the prior art. It is to be noted that the various embodiments described above are merely illustrative for ease of explanation, and the scope of the claims is intended to be limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS 201142358 FIG. 1 is a cross-sectional view showing a description of a display device. Eye Image Figs. 2 and 3 are diagrams showing the arrangement of the right eye and the Lu generation area of the stereoscopic image display device. 2 and 5 are diagrams showing the arrangement of the right eye and left eye polarization control regions of the polarization control layer of the stereoscopic image display device. Fig. 6 is a diagram for explaining an optical filter of a stereoscopic image display device. Figure 7 is a diagram depicting polarized glasses for viewing a stereoscopic image. 8 to 16 are diagrams showing the circular form of the measurement result. [Description of main component symbols] 1 stereoscopic image display device 11 light source 13 image generation layer 16 phase difference film UR right eye image generation region 6 optical filter 12, 14 polarizing plate 15 polarization control layer 17 viewer UL left Eye image generation area AR Right eye image light polarization control area AL Left eye image light polarization control area LE Left eye RE Right eye 71L, 71R Polarizer 72L, 72R Phase difference film 73L, 73R / 4 wavelength Layer 32

Claims (1)

201142358 七、申請專利範圍: L 一種立體圖像顯示裝置,包括: 一圖像顯示部件,i /、靶夠生成由右眼圖像光線與左眼 _ 圖像信號,並能夠將其再傳輸至觀看者— 方,以及 相位差膜’在厚度方向有—相位差,並設置使圖像 信號由圖像顯示部件根據厚度方向傳輸通過相位差膜然 後傳輸到觀看者一方。 2·如申清專利範圍第1項所述之立體圖像顯示裝置, 其中該相位差膜為+B或+(:板β 3.如申請專利範圍第2項所述之立體圖像顯示裝置, 其中+C板符合於公式6或7,而+Β板符合於公式8至u : [公式6] YL 或 Yr = 0.0201X2 -0.0398X+0.0339 $ 0.5 [公式7] YL = 0.0192X2 -0.0763X +0.0899 < 0.5 [公式8] Yr = (9.24χ1〇'7)χ2 -0.000236Χ +0.0288 < 0.5 [公式9] YL = (5.5xlO'7)X2 -0.000347X +0.067 < 0.5 [公式1〇] Yr = (1·97χ1〇·6)χ2 -〇.〇〇〇616Χ +0.0644 < 0.5 [公式11] YL = (1.99χ1〇·6)χ2 -0.00125X +0.206 < 0.5 33 201142358 當中,公式6與7之X是+C板之厚度方向之相位差,而 公式8至11之X是+B板之厚度方向之相位差。 4. 如申請專利範圍第3項所述之立體圖像顯示裝置, 其中右眼圖像光線與左眼圖像光線通過之+C板區域之厚度 方向之相位差’係符合於公式6;或右眼圖像光線通過之+C 板區域之厚度方向之相位差,係符合於公式6,與左眼圖像 光線通過之+C板區域之厚度方向之相位差,係符合於公式 7 ° 5. 如申請專利範圍第3項所述之立體圖像顯示裝置, 其中右眼圖像光線通過之+B板區域之厚度方向之相位差, 係符合於公式8,而左眼圖像光線通過區域之厚度方向之相 位差,係符合於公式9 ;或右眼圖像光線通過區域之厚度方 向之相位差,係符合於公式1 〇,而左眼圖像光線通過區域 之厚度方向之相位差,係符合於公式1 J。 6·如申請專利範圍第】項所述之立體圖像顯示裝置, 其中該圖像顯示部件包括: 一圖像生成部件,其可生成由右眼圖像光線與左眼圖 像光線組成之圖像信號,然後將其再傳輸至觀看者一方; 偏振控制層,其设置在圖像生成部件之觀看者一 方,如果圖像信號輸入其中,其能夠控制圖像信號,使右 眼圖像光線與左眼圖像光線相互有具有不同之偏振狀態, 並能夠將其傳輸到觀看者一方。 7.如申請專利範圍第6項所述之立體圖像顯示裝置, 其中該偏振控制層包括-右眼圖像光線之偏振控制區和左 34 201142358 眼圖像光線之偏振控制區’且也包括設置於右眼和左眼圖 像光線之偏振控制區域之又/4波長層,與僅設置於右眼和 左眼圖像光線之任一偏振控制區域之A /2波長層。 8 ·如申請專利範圍第7項所述之立體圖像顯示裝置, 其中相位差膜是+C板或+ B板。 9. 如申請專利範圍第8項所述之立體圖像顯示裝置, 其中+C板在厚度方向之相位差為50奈米至27〇奈米,而+B 板在厚度方向之相位差為50奈米至350奈米。 10. 如申請專利範圍第6項所述之立體圖像顯示裝 置’其中該偏振控制層包括一右眼圖像光線之偏振控制區 和左眼圖像光線之偏振控制區’且也包括設置於右眼和 左眼圖像光線之偏振控制區域之;(/4波長層,其中在右眼 圖像光線之偏振控制區域之X /4波長層與在左眼圖像光線 之偏振控制區域之λ/4波長層,具有相互不同之光學軸。 11 ·如申请專利範圍第1 〇項所述之立體圖像顯示裝 置,其中相位差膜是+C板。 12. 如申請專利範圍第丨丨項所述之立體圖像顯示裝 置’其中+C板在厚度方向之相位差為3〇奈米至35〇奈米。 13. 如申請專利範圍第6項所述之立體圖像顯示裝 置,其中該偏振控制層包括一右眼圖像光線之偏振控制區 和一左眼圖像光線之偏振控制區,也包括僅設置於右眼和 左眼圖像光線之任一偏振控制區域之λ /2波長層。 14_如申請專利範圍第13項所述之立體圖像顯示裝 置’其中相位差膜是+Β板。 35 201142358 15. 如申請專利範圍第M項所述之立體圖像顯示裝 置其中+B板在厚度方向之相位差為50奈米至350奈米。 16. —種立體圖像顯示裝置之光學濾光片,包括·· 一偏振控制層,能夠控制由右眼圖像光線與左眼圖像 光線組成之圖像彳§號,在圖像信號輸入時,使右眼圖像光 線與左眼圖像光線相互具有不同之偏振狀態,並能夠將其 發射;以及 一相位差膜依附於控制層一側,使圖像信號被發射, 在厚度方向也有一相位差。 17·如申請專利範圍第16項所述之立體圖像顯示裝置 之光學濾光片,其中相位差膜為+C板,其符合於公式6或7, 或+B板,其符合於以下公式8至11 : [公式6] 0.0201X2 -0.0398X +0.0339 < 0.5 [公式7] 0.0192X2 -0.0763X +0.0899 < 0.5 [公式8] (9.24x10'7)X2 -0.000236X +0.0288 < 0.5 [公式9] (5.5x10'7)X2 -0.000347X +0.067 < 0.5 [公式10] (1.97χ 10'6)X2 -0.000616X +0.0644 < 0.5 [公式11] (1 .99x10'6)X2 -0.001 25Χ +0.206 < 0.5 201142358 當中’公式6至Π之X是+C板或+B板在厚度方向之相位 差。 18. —種用於觀看立體圖像之偏振眼鏡,包括一右眼 鏡片和左眼鏡片,其中每個右眼和左眼鏡片包括一相位差 膜’其在厚度方向具有一相位差,與一偏振板。 19. 如申請專利範圍第18項所述之用於觀看立體圖像 之偏振眼鏡,其中相位差膜為+C板,其符合於公式6或7’ 或+B板,其符合於以下公式8至11 : [公式6] 0.0201X2 -0.0398X +0.0339 < 0.5 [公式7] 0.0192X2 -0.0763X +0.0899 < 0.5 [公式8] (9.24x10'7)X2 -0.000236Χ +0.0288 < 0.5 [公式9] (5.5χ10'7)Χ2 -0.000347Χ +0.067 < 0.5 [公式10] (1.97χ10'6)χ2 -〇.〇〇〇616Χ +0.0644 < 0.5 [公式11] (1.99χ1〇-6)χ2 _〇.〇〇ι25Χ +0.206 < 0.5 當中’公式6至11之X是+C板或+Β板在厚度方向之相位 差。 20. 如申請專利範圍第18項所述之用於觀看立體圖像 之偏振眼鏡’其中左眼和右眼鏡片各自進一步包括λ /4波 長層。 37 201142358 2 1.如申清專利範圍第20項所述之用於觀看立體圖像 之偏振眼鏡’其中右眼和左眼鏡片之偏振板之吸收轴係在 相互水平方向,且右眼和左眼鏡片之λ/4波長層係為相互 不同之光學軸;或右眼和左眼鏡片之偏振板之吸收軸係為 相互不同方向,且右眼和左眼鏡片之λ/4波長層係為相互 平行之光學軸。 22. —種改善立體圖像顯示品質之方法,係經由圖像 顯示部件顯示立體圖像,其能夠生成由右眼和左眼圖像光 線組成之圖像信號,並分別被觀看者之右眼和左眼觀看 然後傳送至觀看者之—方,包括設置—相位差膜之步 驟,在厚度方向有相位差,使圖像信號由圖像顯示部件發 射出’通過在厚度方向之相位差g,然後傳送至觀看者之 一方0 23. 如中請專利範圍第22項所述之改善立體圖像顯示 品質之方法’其中相位錢為+c板,其符合於公式…, 或+B板’其符合於以下公式8至丨]: [公式6] 0.0201X2 -0.0398X +0.0339 < 0.5 [公式7] 0.0192X2 -0.0763X +0.0899 < 0.5 [公式8] (9.24χ1〇'7)χ2 .0.000236Χ +0.0288 < 0.5 [公式9] (5.5χ10*7)χ2 -0.000347Χ +0.067 < 0.5 [公式10] 38 201142358 (1.97x10'6)X2 -0.000616Χ +0.0644 < 0.5 [公式11] (1.99x10'6)X2 -0.00125Χ +0.206 < 0.5 其中,公式6至11之X是+C板之厚度方向之相位差。 39201142358 VII. Patent application scope: L A stereoscopic image display device comprising: an image display component, i /, a target capable of generating a right eye image light and a left eye image signal, and capable of retransmitting it to The viewer-square, and the retardation film 'has a phase difference in the thickness direction, and is arranged such that the image signal is transmitted by the image display member through the retardation film according to the thickness direction and then transmitted to the viewer side. 2. The stereoscopic image display device according to claim 1, wherein the retardation film is +B or + (: plate β 3. The stereoscopic image display device according to claim 2; , where +C plate conforms to Equation 6 or 7, and +Β plate conforms to Equation 8 to u: [Formula 6] YL or Yr = 0.0201X2 -0.0398X+0.0339 $ 0.5 [Formula 7] YL = 0.0192X2 -0.0763 X +0.0899 < 0.5 [Formula 8] Yr = (9.24χ1〇'7)χ2 -0.000236Χ +0.0288 < 0.5 [Formula 9] YL = (5.5xlO'7)X2 -0.000347X +0.067 < 0.5 [ Formula 1〇] Yr = (1·97χ1〇·6)χ2 -〇.〇〇〇616Χ +0.0644 < 0.5 [Formula 11] YL = (1.99χ1〇·6)χ2 -0.00125X +0.206 < 0.5 33 In 201142358, X of Equations 6 and 7 is the phase difference in the thickness direction of the +C plate, and X of Equations 8 to 11 is the phase difference in the thickness direction of the +B plate. 4. As described in Item 3 of the patent application. a stereoscopic image display device, wherein a phase difference between a right-eye image light and a left-eye image light passing through a +C plate region is in accordance with Formula 6; or a right-eye image light passes through a +C plate region The phase difference in the thickness direction, The phase difference between the thickness direction of the +C plate region and the light passing through the +C plate region of the left eye image is in accordance with the formula 7 ° 5. The stereoscopic image display device according to claim 3, wherein the right The phase difference between the thickness direction of the +B plate region of the eye image light is in accordance with Equation 8, and the phase difference of the left eye image light passing through the thickness direction of the region is in accordance with Formula 9; or the right eye image light The phase difference in the thickness direction of the passing region is in accordance with Equation 1 〇, and the phase difference in the thickness direction of the light passing through the region of the left eye is in accordance with Formula 1 J. 6. As described in the scope of the patent application. a stereoscopic image display device, wherein the image display component comprises: an image generating component that generates an image signal composed of a right eye image light and a left eye image light, and then transmits the image signal to the viewer side a polarization control layer disposed on a viewer side of the image generating component, and capable of controlling the image signal if the image signal is input therein, so that the right eye image light and the left eye image light are different from each other The polarization state of the light source, and the image control device of the invention, wherein the polarization control layer comprises a polarization control region of the right eye image light and a left 34 201142358 The polarization control area of the eye image light 'and also includes the /4 wavelength layer of the polarization control area of the right eye and left eye image light, and any of the right eye and left eye image light A /2 wavelength layer of the polarization control region. 8. The stereoscopic image display device according to claim 7, wherein the retardation film is a +C plate or a +B plate. 9. The stereoscopic image display device according to claim 8, wherein the phase difference of the +C plate in the thickness direction is 50 nm to 27 Å, and the phase difference of the +B plate in the thickness direction is 50. Nano to 350 nm. 10. The stereoscopic image display device of claim 6, wherein the polarization control layer comprises a polarization control region of a right eye image light and a polarization control region of a left eye image light and also includes The polarization control region of the right eye and left eye image light; (/4 wavelength layer, where the X/4 wavelength layer of the polarization control region of the right eye image light and the polarization control region of the left eye image light λ The /4 wavelength layer has optical axes different from each other. 11. The stereoscopic image display device according to the first aspect of the invention, wherein the retardation film is a +C plate. The stereoscopic image display device of the present invention, wherein the phase difference of the +C plate in the thickness direction is from 3 nanometers to 35 nanometers. The polarization control layer includes a polarization control region of a right eye image light and a polarization control region of a left eye image light, and also includes a λ/2 wavelength of only one of the polarization control regions of the right eye and the left eye image light. Layer 14_If the scope of patent application is 13 The stereoscopic image display device of the present invention, wherein the phase difference film is a + Β plate. 35 201142358 15. The stereoscopic image display device according to claim M, wherein the phase difference of the +B plate in the thickness direction is 50 奈Meter to 350 nm. 16. An optical filter for a stereoscopic image display device, comprising: a polarization control layer capable of controlling an image composed of a right eye image light and a left eye image light When the image signal is input, the right eye image light and the left eye image light have different polarization states and can be emitted; and a phase difference film is attached to the control layer side, so that the image signal is The optical filter of the stereoscopic image display device of claim 16, wherein the retardation film is a +C plate, which conforms to Equation 6 or 7, Or +B plate, which conforms to the following formulas 8 to 11: [Formula 6] 0.0201X2 - 0.0398X +0.0339 < 0.5 [Formula 7] 0.0192X2 -0.0763X +0.0899 < 0.5 [Formula 8] (9.24x10' 7) X2 - 0.000236X +0.0288 < 0.5 [Formula 9] (5.5x10'7) X2 -0.00034 7X +0.067 < 0.5 [Formula 10] (1.97χ 10'6)X2 -0.000616X +0.0644 < 0.5 [Formula 11] (1 .99x10'6)X2 -0.001 25Χ +0.206 < 0.5 201142358 Among the 'Formulas The X to X is the phase difference of the +C plate or the +B plate in the thickness direction. 18. A polarized glasses for viewing a stereoscopic image, comprising a right eyeglass lens and a left eyeglass lens, wherein each of the right eye lens and the left eyeglass lens comprises a retardation film having a phase difference in a thickness direction, and a Polarizing plate. 19. The polarized glasses for viewing a stereoscopic image according to claim 18, wherein the retardation film is a +C plate, which conforms to the formula 6 or 7' or +B plate, which conforms to the following formula 8 To 11: [Formula 6] 0.0201X2 -0.0398X +0.0339 < 0.5 [Formula 7] 0.0192X2 -0.0763X +0.0899 < 0.5 [Formula 8] (9.24x10'7)X2 -0.000236Χ +0.0288 < 0.5 [Formula 9] (5.5χ10'7)Χ2 -0.000347Χ +0.067 < 0.5 [Formula 10] (1.97χ10'6)χ2 -〇.〇〇〇616Χ +0.0644 < 0.5 [Formula 11] (1.99χ1〇 -6) χ2 _〇.〇〇ι25Χ +0.206 < 0.5 The X of Equations 6 to 11 is the phase difference of the +C plate or the + Β plate in the thickness direction. 20. The polarized glasses for viewing a stereoscopic image as described in claim 18, wherein the left and right ophthalmic lenses each further comprise a λ /4 wavelength layer. 37 201142358 2 1. Polarized glasses for viewing stereo images as described in claim 20 of the patent scope, wherein the absorption axes of the polarizing plates of the right eye and the left lens are horizontal to each other, and the right eye and the left The λ/4 wavelength layer of the spectacle lens is a mutually different optical axis; or the absorption axes of the polarizing plates of the right eye and the left ophthalmic lens are mutually different directions, and the λ/4 wavelength layer of the right eye and the left eye lens is Optical axes that are parallel to each other. 22. A method for improving the quality of a stereoscopic image display, wherein a stereoscopic image is displayed via an image display component, which is capable of generating an image signal composed of right-eye and left-eye image rays, respectively, and is respectively viewed by a viewer's right eye Viewing with the left eye and then transmitting it to the viewer, including the step of setting the retardation film, having a phase difference in the thickness direction, so that the image signal is emitted by the image display member 'through the phase difference g in the thickness direction, Then, it is transmitted to one of the viewers. 0 23. The method for improving the quality of the stereoscopic image display as described in the 22nd patent of the patent, wherein the phase money is +c board, which conforms to the formula..., or the +B board' It is in accordance with the following formula 8 to 丨]: [Formula 6] 0.0201X2 -0.0398X +0.0339 < 0.5 [Formula 7] 0.0192X2 -0.0763X +0.0899 < 0.5 [Formula 8] (9.24χ1〇'7)χ2 . 0.000236Χ +0.0288 < 0.5 [Formula 9] (5.5χ10*7)χ2 -0.000347Χ +0.067 < 0.5 [Formula 10] 38 201142358 (1.97x10'6)X2 -0.000616Χ +0.0644 < 0.5 [Formula 11 ] (1.99x10'6)X2 -0.00125Χ +0.206 < 0.5 where X of Equations 6 to 11 is the thickness of the +C plate The phase difference direction. 39
TW100112989A 2010-04-14 2011-04-14 A stereoscopic image display device, an optical filter, a polarizing glasses and a method for improving the quality of stereoscopic images TWI494605B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100034216 2010-04-14
KR1020110034353A KR101114911B1 (en) 2010-04-14 2011-04-13 A stereoscopic image display device

Publications (2)

Publication Number Publication Date
TW201142358A true TW201142358A (en) 2011-12-01
TWI494605B TWI494605B (en) 2015-08-01

Family

ID=45029854

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112989A TWI494605B (en) 2010-04-14 2011-04-14 A stereoscopic image display device, an optical filter, a polarizing glasses and a method for improving the quality of stereoscopic images

Country Status (4)

Country Link
JP (1) JP5633084B2 (en)
KR (1) KR101114911B1 (en)
CN (3) CN102859416B (en)
TW (1) TWI494605B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540574A (en) * 2012-02-29 2012-07-04 深圳市华星光电技术有限公司 Three-dimensional display panel and three-dimensional display system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974055B (en) * 2013-02-06 2016-06-08 城市图像科技有限公司 3D photo generation system and method
EP2972564A4 (en) * 2013-03-11 2017-01-11 Avegant Corporation System, apparatus, and method for enhancing stereoscopic images
JP2016065895A (en) * 2014-09-22 2016-04-28 大日本印刷株式会社 Dimmer, installation method, and partition member
JP6578640B2 (en) * 2014-09-22 2019-09-25 大日本印刷株式会社 Light control device, installation method, and partition member
CN108802886B (en) * 2018-06-15 2020-10-09 孙莹 Polarized stereoscopic sheet and manufacturing method thereof, and 3DLED and manufacturing method thereof
CN110927855A (en) * 2019-11-15 2020-03-27 浙江怡诚光电科技有限公司 3D display device, patterned circular polarizing plate and preparation method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463846B2 (en) * 1997-02-14 2003-11-05 シャープ株式会社 Polarizing element, method of manufacturing the same, and image display device
JP3767962B2 (en) * 1997-02-19 2006-04-19 シャープ株式会社 Video display system
JP3461680B2 (en) * 1997-03-13 2003-10-27 シャープ株式会社 Method for manufacturing optical element and image display device
JPH11352454A (en) * 1998-06-11 1999-12-24 Asahi Glass Co Ltd Array sheet, its production, three-dimensional display device and three-dimensional image display system
JP4618469B2 (en) * 2000-12-27 2011-01-26 ソニー株式会社 Image separation device
JP4304962B2 (en) * 2002-11-08 2009-07-29 ソニー株式会社 Stereoscopic image display device
KR100601920B1 (en) * 2004-01-09 2006-07-14 주식회사 엘지화학 In-plane switching liquid crystal display comprising compensation film for angular field of view using negative biaxial retardation film and + c-plate
US7267849B2 (en) * 2004-03-02 2007-09-11 Nitto Denko Corporation Compensator for liquid crystal display
CN101393296B (en) * 2004-09-10 2011-05-11 大日本印刷株式会社 Retardation film, optical functional film, polarizing film, and display apparatus
JP2006284873A (en) * 2005-03-31 2006-10-19 Arisawa Mfg Co Ltd Image display device
EP1729528A3 (en) * 2005-05-31 2009-08-12 Epson Imaging Devices Corporation Image display
JP2008134587A (en) * 2006-10-30 2008-06-12 Nitto Denko Corp Liquid crystal panel comprising liquid crystal cell having multigap structure, and liquid crystal display device
JP4967644B2 (en) * 2006-12-19 2012-07-04 凸版印刷株式会社 Color filter and liquid crystal display device
KR101086422B1 (en) * 2007-01-05 2011-11-25 삼성전자주식회사 Highly efficient 2D/3D switchable display device
JP2008170557A (en) * 2007-01-09 2008-07-24 Arisawa Mfg Co Ltd Polarizing spectacles and stereoscopic image display system
US20080239483A1 (en) * 2007-03-30 2008-10-02 Arisawa Mfg. Co., Ltd. Stereoscopic displaying apparatus
CN101183177A (en) * 2007-12-13 2008-05-21 友达光电股份有限公司 Steroscopic display and manufacturing method thereof
KR101345883B1 (en) * 2008-03-21 2013-12-30 하이디스 테크놀로지 주식회사 3 dimensional liquid crystal display with polarized glasses
CN101598830B (en) * 2009-07-10 2010-09-08 深圳市三利谱光电科技有限公司 Reusable three-dimensional polarized glass polarizer and glasses using same
CN103003737B (en) * 2010-07-13 2016-01-20 Lg化学株式会社 Polaroid glasses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540574A (en) * 2012-02-29 2012-07-04 深圳市华星光电技术有限公司 Three-dimensional display panel and three-dimensional display system

Also Published As

Publication number Publication date
KR101114911B1 (en) 2012-02-14
CN105467605A (en) 2016-04-06
JP2013529312A (en) 2013-07-18
CN105445951B (en) 2019-01-15
CN102859416A (en) 2013-01-02
CN105445951A (en) 2016-03-30
JP5633084B2 (en) 2014-12-03
KR20110115094A (en) 2011-10-20
TWI494605B (en) 2015-08-01
CN102859416B (en) 2016-06-01
CN105467605B (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP4618469B2 (en) Image separation device
TW201142358A (en) A stereoscopic image display device
US20110254834A1 (en) Stereoscopic image display device
WO2012005036A1 (en) Active shutter glasses and three-dimensional image recognition unit
JP6044846B2 (en) Polarized glasses and stereoscopic image display device
TWI448791B (en) Display apparatus and method for displaying images
CN102540557B (en) Stereoscopic image display
US9279994B2 (en) Stereoscopic image display device
KR101879717B1 (en) 3 dimensional stereography image displayable device
JP4893846B2 (en) Display device
US9667953B2 (en) Display device
JP2011039532A (en) Image separating device
KR20100098980A (en) Polarizing film and polarizing eyeglass using thereof
KR101799935B1 (en) 3 dimensional image displayable system
KR20120077311A (en) Method of fabricating retarder for image display device
KR20120013520A (en) 3 dimensional stereography image displayable system
KR101781504B1 (en) 3D image displayable device
KR20140137511A (en) Image display device
KR20130091285A (en) Stereoscopic image display device